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ABSTRACT

The strategy of the sacrifice bunt is a situational strategy
which is most often used when the scoring of a single run is
considered to be an important objective. Despite this, exist-
ing research has focused on determining whether the sacrifice
bunt is useful in a general context. The objective of this thesis
is to attempt to develop a method to determine the strategy
giving the higher probability of scoring at least one run-
attempting a sacrifice bunt or batting normally (when the
situational variables are essentially neutral and do not suggest
a course of action). This will be done by simulating a large
number of half innings in which each of the two options is used.
The output of the simulations will then be used to perform two
regression analyses, which will generate two equations. Fhe first
equation will equate the probability of scoring at least one run to
some combination of sacrifice bunting efficiency, team batting
average and team slugging percentage. The second equation will
equate the probability of scoring at least one run to some com-
bination of the potential bunter's slugging percentage, team batting
average and team slugging percentage. The two equations will then
be subtracted and simplified to produce one equation that equates
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sacrifice bunting efficiency to some combination of the potential
bunter's slugging percentage, team slugging percentage and team
batting average. This will allow us to compare the two strategies
in the form of a single equation. This is done by simply entering
the values of the potential bunter's slugging percentage. the team
slugging percentage and the team batting average in the equation.
This will generate the sacrifice bunting efficiency that has an equal
probability to score at least one run in the given situation. There-
fore, if the actual sacrifice bunting efficiency is greater than this
generated value, then the better strategy is to sacrifice bunt. The
strategies can also be examined graphically, where the graph of the
equation generated represent where the two probabilities involved
are approximately equal. Therefore, the better strategy can be deter-
mined based on which side of the curve the values of the variables
occur. This approach to decision analysis, to our knowledée, has
not been used before. This thesis will also consider the advantages
of this method, examine some of the different considerations invol-
ved in whether this method can be used in other similar situations
and try to specify what is necessary to be able to apply this method

to other types of decision analysis problems.
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1 Introduction

There have been many articles written about various aspects of baseball.
There are many reasons for this. First, there have been extensive records
kept for many decades of all Major League Baseball games, which provides
a vast resource of data for research concerning baseball. Second, unlike most
other professional sports, the non-continuous nature of the action in baseball
makes it relatively simple to classify and analyze. It is easy to classify all
results of a single play and, because there can only be a finite number of
plays in any one game, it is relatively simple to determine how often each
result occurs. Therefore, just about every aspect of the game of baseball
can be analyzed and studied. Other prominent sports, such as football,
hockey, or basketball, are not suited to such broad analysis. In football, you
can analyze whether or not to try a long field goal, depending on the field
position of the team, or in hockey, where you can study whether or not to
remove the goaltender and how early to remove the goaltender, when trailing
by one goal late in a game. Analysis of player value can be done in just about
any sport.

In many articles concerned with baseball strategy, the effectiveness of



using the sacrifice bunt has been considered. In these articles. the authors
have focused on the general usefulness of the sacrifice bunt and usually re-
lied on data from actual player performances and games played to support
their conclusions. Examples are “A Scientific Approach to Strategy in Base-
ball” by G. Lindsey (1977) in which the games played during the 1958, 1959
and 1960 Major League baseball seasons were used as evidence for the effec-
tiveness of the suggested strategies, and “Analysis of Baseball as a Markov
Process” by R. Trueman (1977) which relied on the season averages of the
most regularly used lineup players of the 1973 Los Angeles Dodgers as its
source of data. It has been found that the sacrifice bunt is not a useful play,
in general. It is usually acknowledged, however, that the sacrifice bunt could
be considered useful in the late innings of games where the scoring of one
run is an important objective (i.e. when the game is tied or the batting team
is behind by one run). It should be noted that, except when the situation
would strongly suggest attempting a sacrifice bunt, such as a pitcher hitting
with less than two outs and a man on base, or when facing a pitcher who
is pitching extremely well in a close game, the sacrifice bunt is only used in
these late inning situations. Therefore, there is not really anything surpris-
ing about their results since the sacrifice bunt is not a strategy that is used,
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in general. Previous articles have not, however, attempted to determine in
these late inning situations, when the manager might consider using a sacri-
fice bunt. when is it more probable to score with a sacrifice bunt rather than
with the batter hitting normally or swinging away in the hope of scoring
one run. The results of these previous articles are of limited applicability for
trying to make this determination since. in general, the ability to sacrifice
bunt has been ignored as a factor. Also, in most articles, the presence of any
situational variables have been ignored.

Diagraml: Tree Diagram of Sacrifice Bunt Situation




In this situation. P, corresponds to the probability of scoring at least one
run given that the batter bats normally, and P; corresponds to the probability
of scoring at least one run given that the batter sacrifice bunts. In terms of
expected reward, the batting normally option has an expected reward of P,
and the expected reward of the bunting option is P,.

The objective of this investigation will be, using a computer program to
simulate a half inning of baseball, to develop a method to determine whether
a sacrifice bunt is advisable in any situation where the manager considers the
scoring of one run to be important. The method could be applied when the
situational variables do not strongly suggest what would be the best strategy
and would make use of certain variables such as team batting average. team
slugging percentage. the potential bunter’s slugging percentage and sacrifice
bunting efficiency. It could also be applied to determine whether or not to
pinch hit in such situations, comparing the batter’s bunting to the potential
pinch hitter’s hitting or vice versa, or even to determine who to use to pinch
hit, comparing one potential pinch hitter’s bunting to another potential pinch
hitter’s hitting. It will not be concerned with trying to determine when the
scoring of one run should be a primary objective since this is the decision of
the manager. The output of the computer program will be used to generate
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two regression equations. This is a new approach to decision analysis since.
to our knowledge, no one has attempted to do regression analysis on the
output of a simulation of this type even though there would seem to be some
significant advantages to doing this.

The first equation will equate the probability of scoring at least one run
to a function of individual slugging percentage, team batting average and
team slugging percentage, given that the player bats normally (P;). The
second equation will equate the probability of scoring at least one run to a
function of individual sacrifice bunting efficiency, team batting average and
team slugging percentage, given that the player attempts to sacrifice bunt
(P;). Both of these are conditional probabilities. They are conditional on
the strategy used and on the values of team batting average and slugging
percentage. Then, since the two equations are both probabilities of scoring
at least one run, by subtracting the two equations, the resulting equation,
when simplified, will relate sacrifice bunting efficiency to individual slugging
percentage, team slugging percentage and team batting average. When given
the values of the individual’s slugging percentage, the team batting average
and the team slugging percentage, this equation will generate the sacrifice
bunting efficiency that would have an equal probability of scoring at least one
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run with that given by the other three values. This will allow us to compare
the strategies by simply examining this equation. We determine the better
strategy by computing the boundary value for sacrifice bunting efficiency by
entering all the other values in the equation for a given situation. For a given
individual with known bunting efficiency. we compare the boundary value
with the known bunting efficieny. If the boundary value is less than the known
value, it is better to sacrifice bunt. The two strategies can be compared
graphically with the equation generated defining a curve in a plane, for fixed
team batting average and team slugging percentage, where the probabilities
involved are equal. Therefore. the better strategy for each plaver can be
determined by considering the values of the variables for that player and
observing which side of the curve these values indicate. This is similar to
discriminant analysis in that the equation produced can be manipulated so
that it is a type of discriminant function.

Discriminant analysis is the technique of using a number of measurements
on some individual or object to classify that individual or object into one and
only one of a number of categories. For our problem, we are trying to classify
the situation into better to sacrifice bunt or better to bat normally based on
the values of sacrifice bunting efficiency, player slugging percentage, team
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slugging percentage and team batting average. This can be done in this case
by defining the discriminant function to be equal to the right side of the
above equation minus sacrifice bunting efficiency. Therefore, if the discrim-
inant function was less than zero, the situation would be classified as being
better to sacrifice bunt which is consistent with the method above. Similarly,
if the discriminant function was greater than zero, then the situation would
be classified as being better to hit normally. The graphical analysis is also
consistent with discriminant analysis. The difference is that the classifica-
tion that is being done is based on simulated probabilities and not on some
observable characteristic. It is not possible to determine into which category
an individual should be classified by simply observing a single outcome since
the fact that the strategy was unsuccessful does not necessarily mean that
it was not still the better strategy. We would have to compare all the sit-
uations simulated and classify them ourselves based on the output, but, by
doing a regression, this work is done for us. Also, in discriminant analysis,
the discriminant function is linear, which was not the case here.

Using this method of performing regression analyses on the output of
many simulations has a number of advantages. The simulation is random by
design and, therefore, should automatically produce a random sample. Es-
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sentially, the simulation can be designed to satisfy most of the assumptions
necessary to do a regression and produce meaningful results. [f any statistical
test indicates that an assumption has been violated. it is a problem of design
and. in most cases, should be easily corrected, whereas, in most other inves-
tigations, the discovery that the sample is not random, for example, could
indicate a massive waste of resources and a resolution by which randomness
is attained may not be so easy to find.

It is also much easier to include the variables of interest, provided that
these variables are sufficient to generate an adequate model. and exclude
any other variables, while at the same time maintaining the desired general
applicability. This is important when doing an investigation involving the
sacrifice bunt because there are many variables which could h_ave a significant
effect on the probabilities involved. If one or more of these variables strongly
suggest a course of action, then, naturally, these factors should be heeded.
If, however, the situational variables do not suggest a course of action, it is
then that these results become useful.

Previous methods of investigation have been of limited applicability for
attempting to determine which strategy has the better probability of scoring
at least one run. The first reason is that previous investigations having
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focused on the criteria of higher average number of runs scored instead of
the probability of scoring at least one run. Other reasons for this are either
the investigator has focused on the effect of using the sacrifice bunt on one
specific lineup. which is only applicable to that lineup, or the investigator
has used what has occurred throughout the recorded history of baseball to
estimate the probabilities of interest. The investigator then applied various
statistical or operations research methods to arrive at their conclusions. The
first problem is that using one sacrifice bunting efficiency as every player’s
sacrifice bunting efficiency is inaccurate since not all players are equal in
their ability to sacrifice bunt. Therefore. their results are only applicable
to situations with players who have that same average ability to sacrifice
bunt. Essentially, ability to sacrifice bunt has been ignored as a factor on
the probability of scoring at least one run when the sacrifice bunt is used.
The second problem is that to use what has occurred during the recorded
history of baseball to estimate the desired probabilities, it would be desirable,
first, to identify all the possible variables which could have a significant effect
on the probabilities involved, second, to determine which of these variables
actually have a significant effect on the probabilities of interest and whether

that effect is consistent for all players, and, finally, consider only the cases for



which these variables are neutral. The amount of work that would be involved
would be overwhelming and we are not even sure it is possible to identify all
the possible factors on the probability of getting a hit, let alone any other of
the actions involved. The result of this would probably be that the number
of cases which remained would not be large enough to produce confident
estimates of the probabilities of interest, especially when you consider that
with the sacrifice bunt, one can only count the cases where the ability to
sacrifice bunt is comparable to the situation that is being considered. By
using a simulation, we are able to concentrate on the variables of interest,
provided that these variables are sufficient to produce an adequate model,
and assume any other variables, significant or not significant, to be neutral.
Therefore. we can easily generate a large enough sample to Rroduce accurate
estimates of the probabilities involved.

The method used is applicable to other situations involving decisions and
determining the best course of action. The potential difficulties of using this
method for other situations and the general characteristics necessary to use

this method will also be considered. In chapter 6, we discuss these issues.

10



2 A Survey of O.R. and Statistical Analysis

in Baseball

There have been a great number of articles written about mathematical and
operations research applications to sports. Some useful references are listed in
the survey article “General Review of OR in Sports™ by Yigal Gerchak (1994).
Articles which deal with applications to baseball are the most prevalent.
One of the most frequently explored topics has been strategy analysis in
baseball. One article that considers this topic is “Analysis of Baseball as a
Markov Process” by Richard Trueman (1977). In the article it was proposed
that the game of baseball satisfied the four basic requirements of a Stationary

Process:
e Baseball has a finite number of states.

e The transition probabilities do not change over time. (Trueman claimed
that this is a slight simplification since it ignores situational and man-

agerial strategies)

e The probability that a system will be in a state depends only on the

previous state and not how that state was reached.
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o For all states, the probability that the system initially occupies that

state is known since there is only one possible initial state.

Using the everyday lineup of the 1973 Los Angeles Dodgers, Trueman showed
how a detailed model of baseball, considered as a Markov Process. could be
developed to evaluate different lineup orders and analyze strategies for many

different situations. Trueman concluded:

The attempted sacrifice was, in general, a very poor strategy.

o Only the pitcher should be asked to bunt, although, he admits that one

or two others in the lineup could reasonably attempt to bunt, if they

are excellent bunters.

o If the pitcher is a good bunter, he can try to sacrifice in the situation

of a runner on first and one out.

o If the batter can successfully sacrifice 75 percent of the time, the suicide

squeeze should be considered.

o Even in situations where the probability of scoring at least one run
is increased, the sacrifice always reduces the expected number of runs

scored.
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e Basestealing can be worthwhile with good basestealers.

o The attempted steal is best if the baserunner is on first base. as com-
pared to second or third base, with the strategy being better when

there are more outs recorded as compared to less outs recorded.

e For a baserunner on third and two outs, stealing home plate is advisable

only if successfully at least one third of the time.

o With less that two outs, the double steal will have a slightly lower

required success probability.

Trueman also looked at lineup rearrangement to attempt to find the most
productive lineup in terms of expected runs scored. Trueman actually found
a lineup different from that commonly used with a slightly higher expected
number of runs scored, but he did not believe that the improvement was
significant enough to warrant a conclusion of rearranging the lineup.
Another article dealing with baseball strategy was “A Scientific Approach
to Strategy in Baseball” by G. R. Lindsey (1977), in which Lindsey used prob-
ability theory and the statistics from the 1958, 1959 and 1960 Major League

Baseball seasons to determine the probability of winning a baseball game
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given a lead or a deficit in a given inning. and to find the distribution of runs
per half-inning. Using these results, Lindsey considered the strategies of the
intentional walk, the sacrifice bunt and the stolen base to try to determine
whether their use resulted in a significant difference in the probability of win-
ning a game. For the sacrifice bunt and the stolen base, Lindsey’s conclusions
were essentially the same as Trueman’s. For the intentional walk, Lindsey
concluded that, in general, it was not a good strategy and the only time it
might be useful was when there was only one out, a man on third base, the
lead was one run and it is the ninth inning. This created the possibility of a
game ending double play. It is acknowledged that, however, the intentional
walk should be assessed on an individual basis. Lindsey also considered the
value of outstanding players and a new ‘batting efficiency’ statistic which, by
determining the increase or decrease of all possible results on the expected
number of runs scored, could convert a player’s results into a new statistic.
Lindsey also noted the limitation of using past performances as a predictor
of future performance.

In the article “Baseball a la Russe” by Ronald Howard (1977), which
was also concerned with baseball strategies, Howard modeled baseball as a
Markov process with 25 states and used Dynamic Programming to examine
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the effectiveness of various strategies. Howard considered strategies such as
base stealing, the intentional walk and the sacrifice bunt as having a short
term or immediate focus. He considered having a short term focus as being
not as effective as having a long term focus, which basically meant letting each
batter hit normally, when considering the expected number of runs scored.
Howard calculated the probability of scoring z; number of runs from state
¢ using an average lineup and the expected number of runs scored in each
situation, before and after the proposed strategy, to arrive at his conclusions.

Another article involving strategy analysis was “Dynamic Programming
and Markovian Decision Processes, with Application to Baseball”™ by Richard
Bellman (1977), which arrives at the same basic conclusions as the previous
articles. The one difference is that Bellman acknowledges that the percent-
ages are not a definitive standard upon which to base strategic decisions. As

Bellman states:

As in poker, one can do very well playing the percentages; but if

one wants to win big, one has to play psychology.

The distribution of runs in a baseball game is another topic which has

been considered. Two articles that looked at this topic are “The Distribution
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of Runs in the Game of Baseball” by D. A. D'Esopo and B. Lefkowitz (1977).
and “Percentage Baseball, An Analysis of Baseball as a Game of Chance by
the Monte Carlo Method” by Earnshaw Cook (1977), as well as Earnshaw

Cook’s book Percentage Baseball (1966). Both articles used probability the-

ory to calculate the probabilities of scoring various numbers of runs in given
situations. Both articles ignored situational variables. In Cook’s book, he
also looked at strategies as well as other topics, such as batting order. Cook’s
conclusions supported the obvious results. such as that the sacrifice bunt is
not, in general, a useful strategy, but Cook believed his results to be novel
and even went so far as to suggest that, by using his book and applying its
principles, an average team would be elevated to becoming a pennant con-
tender. Cook had difficulty understanding why no one involved with baseball
was using his book. All other articles generally cautioned against applying
the results too broadly, whereas, Cook seemed to openly invite this.

Batting order has been another topic considered in many articles, such
as “Monte Carlo Anpalysis of Baseball Batting Order” by R. Allen Freeze
(1977), and “Comparing the Run-Scoring Abilities of Two Different Batting
Orders: Results of a Simulation” by Arthur Peterson (1977). Both articles
used simulation to test different orderings of the same batters to observe
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which lineup would produce the most runs. Freeze used an existing New York
Yankees lineup. as well as an all-star New York Yankees lineup as a basis,
whereas Peterson used a fabricated average lineup. Both ignored situational
variables and the fact that the batter’s results would not necessarily have the
same distribution for a given batter if that batter were hitting in a different
position in the lineup. They both found some differences in the number of
runs produced. but the new lineups were not significantly better that the
standard lineups used.

Another topic that has been considered is playoff and tournament struc-
tures and elimination. One article that considered this topic is “On the
Probability that the Better Team Wins the World Series” by James Kepner
(1985). In this article, Kepner considered two questions. ‘Hf)w many games
must be plaved in an uncurtailed World Series so that we may be reason-
ably confident that the better team will win the World Series?’ and ‘How
many games do we expect to be played in a curtailed World Series?’. For
the first question, Kepner considered the variable Y; = 0 or 1 depending on
whether or not the better team wins the i** game and then let Y = Y Yi. Let
p = P(Y; = 1) where the outcomes are independent. Kepner observed that
Y is a binomially distributed random variable with mean np and variance
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np(l — p), where n is the number of games. Therefore. using the Central
Limit Theorem, one can find P(Y > n/2) for the desired confidence level.
For the second question. Kepner found the expected value on :N. the num-
ber of games necessary to win a curtailed World Series. where N could be
any number between the minimum number of games necessary to win the
World Series and n, the number of games in the World Series. Kepner then
produced a distribution for P(N = z) and found that the probability that
the better team wins a curtailed World Series that may last as long as n
games is p¥¥1 Y qu-y which is summed fromz = ytoz = n — 1.
Kepner evaluated this probability for different n and p to arrive at answers
for different confidence levels. Kepner also found that the probability that
the better team wins an uncurtailed World Series is equal to the probability
that the better team wins a curtailed World Series.

Another article concerning playoff eliminations is “Baseball Playoff Elimi-
nation: An application of linear programming” by Lawrence Robinson (1991)
which is a proposal for a better method for mathematically eliminating a
team from playoff contention. The present system concludes that a team is
eliminated when they are trailing the leading team or teams by more games
than remain on the regular season schedule. This assumes that no other
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team can affect the outcome of whether any one team reaches the playoffs.
Robinson proposed to use linear programming to determine for team A, the
best possible outcomes for all remaining games not including team A, which
might allow team A to reach the playoffs, assuming team A wins all of its
remaining games. If team A cannot make the playoffs under this best possi-
ble scenario, then team A would be eliminated from playoff contention, and
would do so at least as fast as the present system, and would probably be
faster for most teams. For example, if team 1 is leading a division, team 2 is
2 games behind team 1 and team 3 is 8§ games behind team 1, and there are
10 games remaining in the schedule, then under the present system, team 3
would not yet be eliminated from playoff contention since they trail team 1
by less games than remain in the schedule. Suppose, howeyer, that team 1
and team 2 play each other in 7 of the last 10 games. The best result that
team 3 could hope for is that team 2 wins 4 or 5 of these games which would
put team 1 and team 2 within 1 game of each other at the end of the sched-
ule. But this would mean that, at best, team 3 would have to win 11 games
to tie the division leader, which is impossible since only 10 games remain.
Therefore, team 3 would be eliminated under Robinson’s system. Robinson’s
system is used on a limited basis, but he proposed a much broader application
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and even. possibly using the system in hockey and basketball.

In the article “Choice Models for Predicting Divisional Winners in Major
League Baseball” by Daniel Barry and J. A. Hartigan (1993), a system was
developed for calculating the probability that a team would win their division
and, therefore, could predict a division winner based on the team with the
highest probability of winning. The system estimated each team'’s probability
of winning the division given what had occurred in the games played thus
far, by producing a model for predicting which team would win each of
the remaining games. The model depended on which teams are playing,
which team is the home team and allows for different team strengths and
home field advantages. Barry and Hartigan used Markov chain sampling to
simulate the outcomes of future games, while at the same time, they made
allowances for changing team strengths since teams will appear to change over
the course of a season, as not all players have the same durability. This system
was applied to the 1991 National League season at the all-star break and it
correctly predicted that the Atlanta Braves would win the National League
West division, even though the Braves trailed the Los Angeles Dodgers at
that time. It would be interesting to see this model applied to other seasons

to see how well it would perform.



Another article which deals with tournament structure is “Double-Elimination
Tournaments: Counting and Calculating” by Christopher Edwards (1996).
This article looked at different structures for single and double elimination
tournaments and developed a method for determining the probability of win-
ning a double elimination tournament. There are three possible scenarios for
winning;

e Win the winner’s tournament and then defeat the winner of the loser’s

tournament.

e Win the winner’s tournament, lose once to the winner of the loser’s

tournament and then defeat the winner of the loser’s tournament.

e Win the loser’s tournament and then defeat the winner of the winner’s

tournament twice.

Given the probability of any one team defeating another, Edwards developed
probabilities for winning in each round of a tournament, based on potential
‘seating’ in each round and then calculated the probability of winning a single
elimination tournament. This could then be used to calculate the probability
of winning a double elimination tournament. Edwards demonstrated this us-
ing a four team tournament. Edwards also looked at calculating the number
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of tournaments. structures and draws needed for a tournament involving a
given number of teams playing and different types of structures.

Another important topic is player evaluation and its applications. One
article on this topic is “Did Shoeless Joe Jackson Throw the 1919 World Se-
ries?” by Jay Bennett (1993). In this article, Bennett used the concepts of a
Player Win Average and Player Game Percentage to show that, by the way
Jackson played in the 1919 World Series, there is no reason to believe that
he threw the World Series. The Player Win Average is based on the premise
that the performance of baseball players should be quantified, based on the
degree that their performance increased or decreased their team’s chance of
victory in each game. To find the Player Win Average (PW A), one must
find | AWP | (the change in the probability of a win by the player’s team)
after a play involving the player, either offensive or defensive, and credit it
to the player as Win Points if AW P is positive, or credit it to the player as
Loss Points if AW P is negative, as originally proposed by Mills and Mills
(1970). Then the PW A is equal to the total of the player’s Win Points,
divided by the total of the player’s Win Points and Loss Points. The keys to
this system is that it took the situation of a play into consideration, which
is not done by normal baseball statistics, and that the PW A allowed for an
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effective way of comparing hitters and pitchers. P 4 was especially good
at evaluating relief pitchers and fielding performances in general. The major
drawback of the PI¥".4 was that the calculation of the PW A was a greater
data collection burden than standard baseball scorekeeping since it must de-
termine the percentage of time each standard baseball event occurred and
then thousands of games must be simulated to determine the win probabil-
ities for each situation for all possible points in a game. Bennett used an
updated Player Game Percent ( PGP ), which is based on the PW 4. where
PGP = (WinPoints — LossPoints)/40, (dividing by 40 provided a better
scale). Bennett and Flueck also provided in their article “Plaver Game Per-
centage” (1984), a method for estimating win probabilities. One advantage
of the PGP over the PW'A is that it is easier to interpret since a positive
PGP is good and a negative PGP is bad. The interpretation of the PW A is
not so easy. The PGP also provides a more valid quantification of a plaver’s
contribution to victory. Another article on the topic of player evaluation is
“The Valuation of a Baseball Player” by Carl Mitchell and Allen Michael
(1977) which used simulation and Bayesian statistics to look at expenditure
vs. expected return of having certain players on one’s team.

A more in-depth examination of this topic from the point of view of salary
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was done in the article “Salary Evaluation for Professional Baseball Plavers”
by James Lackritz (1990). The proposed evaluation was done using the ef-
fect of a plaver on the winning percentage of the team by measuring the
impact of the performance statistics on the team’s winning percentage and
projecting this impact into dollars and cents and into home attendance. In
previous unpublished papers, Lackritz proposed comparing a player with an
‘average playver. with average being either a league or team average, and
then multiplying any difference by the player’s utilization function. The uti-
lization function was defined as the player’s total at-bats, fielding chances
or innings pitched divided by his team’s totals. This measured the plaver’s
fractional impact on his team’s total chances. Lackritz established a base
salary for plavers. based on how much they played, plus a bonus according
to their final impact on the winning percentage, with it being possible to
have a negative bonus. The statistics used were offensive average (equal to
(total bases + walks + # of hit by pitch) / (total at-bats + walks)), on
base percentage. stolen bases, ratio of strikeouts to walks allowed, hits per
innings pitched. earned runs per innings pitched, # of saves per # of wins
(this statistic compensated relief pitchers) and fielding percentage. For each
of these statistics, one finds the difference between the plaver’s statistic and
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the average. multiplied by the coefficient weight of the statistic calculated.
multiplied by the appropriate utility function (offensive. defensive or pitch-
ing) to get a net effect on the percentage. Then one adds these numbers
for all the statistics and multiples by 25000 dollars. This is the bonus to
be added to the base salary. Lackritz also proposed a model for home at-
tendance based on percentage of games won, last vear's percentage of games
won, the number of competing sports teams in the same market, weather
effects on attendance. pennants won in the last 5 vears and the number of
‘superstars’ on the team.

Another topic is the effect of the strike count on batting performance
which was considered in the article “Batting Performance vs. Strike Count”
by Pete Palmer (1977). Palmer used data from twelve World Series to cal-
culate probabilities of success from different ‘counts’. Palmer also looked at
the effect of being ahead or behind in the count on batting performance. A
related article was “A Statistical Analysis of Hitting Streaks in Baseball” by
Christian Albright (1993), which looked at whether streaks occurred more
often than expected under an assumption of randomness. This required the
sequencing of success and failures instead of the totals of hits and at-bats.
A previous study by the Elias Baseball Analyst found batting averages were
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just as likely to be higher following defined ‘hot streaks™ as following cold
streaks’. Albright was concerned with how many players exhibited streaky
sequences since some streakiness can be expected, and if hitters were peren-
nially streaky or if streakiness was a one year phenomenon. The problem of
the latter was that there were not enough streaky hitters to get significant
results. The other problems were how to classify the results of successive at-
bats (whether to distinguish the types of hits and how to classify walks), the
effect of situational variables and how to define streakiness and randomness,
in general. Albright used a method based on the number of ‘runs.’ a method
of checking whether successive at-bats form a first-order Markov chain and a
method using Logistic Regression Models. Albright failed to find convincing

evidence of wide-scale streakiness.
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3 Data and Simulation Methodology

The objective of this thesis is to develop a method to determine the strat-
egy giving the higher probability of scoring at least one run- attempting a
sacrifice bunt or batting normally (when the situational variables are essen-
tially neutral and do not suggest a course of action). This will be done by
simulating a large number of half innings in which each of the two options is
used. There will be twelve different play results that will be considered by

the simulation used in this thesis.

e No Advance: batter out, baserunners do not advance. (NoA)

o Sacrifice Out: batter out, baserunners all advance one base. (also deals

with successful sacrifice bunts) (SO)

o Sacrifice Fly: batter out, baserunner on third base can score. (SF)

 Double Play: Play in which the batter and possibly one baserunner are
forced out. If there is no baserunner on first base then there is one out
recorded and no runners advance. If there is a baserunner on first base,
then there are two outs recorded, except when there are baserunners on

first and third only and no outs have been recorded. In that case, the
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baserunner on third is held at third. the baserunner on first advances
to second base and the batter is out at first base. The reason is that
getting the double play would have allowed the runner on third to score
and so, holding the runner on third base means only one out can be
recorded. Essentially, this is not really a double play. It is included
in this category as a convenience. If the bases are loaded, then the

baserunner at third is forced out at home plate and the batter is out

at first base. (DP)

Walk: batter to first base, baserunners advance if forced. ( also includes

hit batters ) (Walk)

ShortSingle: batter to first base, all baserunners advance one base only.

(ShSgle)

Single: batter to first base, baserunner on first base to second base and

baserunners on second and third base score. (Sgle)

Long Single: batter to first base, all baserunners advance two bases.

(LgSgle)
Short Double: batter to second base, all baserunners advance two bases.
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(ShDble)

¢ Long Double: batter to second base. all baserunners score. (LgDble)

o Triple: batter to third base. all baserunners score. (Tple)

¢ Home Run: all baserunners and batter score. (HR)

Initially. the system has a baserunner on first base with no outs. The
states of the system can be described as follows. For each base, there will
be a player there or not. For three bases, this gives 22 = 8 possibilities.
Also, there can be zero, one, two, or three outs recorded or a run scored. If
there are three outs or a run scored, the simulation of that half inning ends.
Therefore, nobody is left on base, effectively, once either of these states are

entered. Thus, there are 8 x 3 + 2 = 26 states. Therefore. the states are

e Three outs

e Run scored

¢ The following states exist for zero out, one out and two out (24 states)

1. No one on base

2. Baserunner on first base
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3. Baserunner on second base

4. Baserunner on third base

5. Baserunners on first and second base

6. Baserunners on first and third base

. Baserunners on second and third base

~1

8. Baserunners on first, second and third base

Diagram?2: Markov Transition Matrix

— Ao A A A3 -
0 By By Bj
0 0 G G

i 0 0 0 Dj ]

where Ag, 4y, Ay, By, B, Co are 8x8, Az, B3, Cz are 8x2, and Dj is 2x 2. The
0 entries are matrices of appropriate size. The subscript denotes the number
of outs. Therefore. 4y would denote the matrix containing the probabilities
of beginning a play in some state with no outs and moving to another state

with no outs. For our analysis, we assume 4, = 4, = B} = By = C,,
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A; = B3 = (3. We have two versions of 49 depending on which of the
strategies we use. The probabilities which are the entries for these matrices
depend on the team batting average and hit distribution.

Team batting average is the average for the rest of the batters in the
lineup. It excludes the potential bunter. which is important since it main-
tains the independence of the potential bunter’s statistics with respect to the
team’s statistics for the purposes of the simulation. Similarly, team slugging
percentage is the slugging percentage for the rest of the batters in the lineup.
Sacrifice bunting efficiency is exactly that, the probability that an attempted
sacrifice bunt is successful. Batting average is the number of hits divided by
the number of official at bats, where each type of hit is given equal weight.
Slugging percentage is basically a weighted batting average where instead of
giving each type of hit equal weight, each type of hit is given weight according
to the number of bases that are reached. For example, a double is counted
as two bases and a home run is counted as four bases.

The probability of each of these plays occurring will be based, initially, on
their occurrence during the 1994 and 1995 Major League baseball seasons,

which represents an average distribution of hits. This information was found
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in the STATS Player Profiles 1995 (1994) and the STATS Plaver Profiles 1996

(1995), as well as an existing baseball simulation game, Pursue the Pennant
for the years 1995 and 1996. After running sufficient simulations for the ini-
tial distribution. simulations will then be run using probabilities generated
from a distribution that results in a lower slugging percentage, and then a
distribution that results in a higher slugging percentage from initial distri-
bution.

The first batter, or potential bunter, will be assigned an average between
0.150 and 0.400. which is a reasonable range for a batting average of a player
who one would not automatically replace with a pinch hitter, but would
consider having sacrifice bunt. The slugging percentage is determined by
the batting average and the distribution of hits. For the different batting
averages and hit distributions used, the potential bunter’s slugging percent-
age ranged between 0.177 and 0.86. The rest of the lineup will all have
the same batting average, which will range between .248 and .308. This
represents the majority of team batting averages. The rest of the lineup
will have the same slugging percentage, which as a function of the batting
average and the hit distribution, ranged between 0.29264 and 0.6192. Ide-
ally, it would be best to perform the simulations with all batters having
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potentially different batting averages and slugging percentages. The prob-
lem with this approach is that it there are. effectively. an infinite number of
combinations of batting averages and slugging percentages for comprising a

single team batting average and team slugging percentage. The only other

alternative would be to use a much more complex model that would have
as many as twelve variables, and would still require an extraordinarily large
number of simulations to generate a result and still not be confident that
all possible combinations were included. Several thousand simulations were
performed for the method that was used here.

The distribution of hits will be based, initially, on their distribution during

the 1994 and 1995 seasons, which was found in the STATS Player Profiles 1995

and the STATS Player Profiles 1996. Therefore, if one out of every ten hits

is a home run, then the batter will produce one home run for every 10 hits,
regardless of batting average. The chance of a walk will be the same for every
batter, which will be with the same frequency as it occurred during the 1994
and 1995 seasons. The chance of a double play, sacrifice out and sacrifice fly
will be a function of the batter’s chance of not getting a hit or walk and will
also be based on the 1994 and 1995 seasons. For example, if one out of every

ten outs would be a potential double play a double play would have been
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recorded if there were a runner on first base. then the double play result will
occur ten percent of (1 — (OnBasePercentage)).

The simulation will be of a single half-inning and each simulated half-
inning will start with a man on first and no outs. The simulation will observe
how often at least one run is scored for the given conditions. If the sacrifice
bunt is attempted, it can result in a successful sacrifice, an infield single.
no runner advancement or a double play. A successful sacrifice is when the
batter is out, but the runner on first base advances to second base. An
infield single is described as a short single, just as the double play result
and the no advancement result are as described above. The no advancement
result could mean that the baserunner is out and the bunter is on first base,
or that the bunter popped out or struck out. The probabilities of each of
these occurring will be a function of the sacrifice bunting efficiency and not
the assigned batting average of the bunter. These probabilities will also be
based on the 1994 and 1995 Major League baseball seasons.

Since the simulation is testing how often at least one run is scored, the
simulation will stop each test when either one run is scored or when there
are three outs recorded, with precedence given to three outs being recorded.

Therefore, it will never occur that a run will score on the same play as the
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third out is recorded. It is also unnecessary to consider whether the potential
bunter will be hitting again, since this cannot occur before either the third
out is recorded or at least one run is scored, thus ending the test.

The computer program which performed the simulation appears in Ap-
pendix A. It was written using the Pascal programming language. With this
program, it is relatively simple to change the distribution of hits. Also, af-
ter an equation is established, simulation was used to test the equation for
lineups that do not have all hitters, other than the potential bunter, hitting
with the same batting average and distribution of hits. This will verify that
the equation is applicable to essentially any lineup.

After the computer program generated several thousand simulated re-
sults, the output was run through a regression program. It_was hoped that
totally linear models would be adequate for both the bunting option and the
batting normally option. Unfortunately, this was not the case. The linear
model for the bunting option was found to be very adequate with an R?
value of 0.965054. The T value for testing that the coefficient is not zero
for the square of the sacrifice bunting efficiency term was 0.34. This is not
significant and, therefore, for the bunting option, the linear model was ad-
equate. For the batting normally option, the linear model had an R? value
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of 0.860883. which is fairly good. However. by including the square of the
player slugging percentage term. the R? value of this model was 0.908341,
which is a significant improvement. Also. the T value for testing that the
coefficient of this squared term is not zero had a value of —48.99, which is
significant and, therefore, the squared term contributes significantly to the

model and should be included.
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4 Assumptions

The first assumption to be dealt with is the normality of the distribution
of the errors about the regression line. This was tested by generating his-
tograms. The histograms of the simulations generated from these data are
all clearly symmetric and appear bell shaped. Therefore, since the generated
observations are symmetric, even if the data are not normally distributed,
the robustness of the model makes the conclusions reasonable. Normality is
assumed when testing for equality of variance. The histograms generated are
shown in Appendix B.

The next set of assumptions concerns the error terms. It is assumed that
the mean error terms associated with different effects are uncorrelated, and
that the variance is constant and equal for different team batting averages
and team slugging percentages. Both of these assumptions can be checked by
the examination of the residual plots. The residual plots are in a band along
the x-axis, which is the ideal shape, suggesting equal variance. Random
simulation also guarantees that the mean error terms associated with the
different effects are uncorrelated. Since team batting average and team slug-

ging percentage are independent of sacrifice bunting efficiency and slugging
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percentage of the potential bunter. there should be no expectation that the
mean error terms would be correlated. Also, Levene’s test for equal variance
was performed on a preliminary data set to determine if any transformations
were required and it was found that for the batting option, the F-value from
the data was 0.25 with degrees of freedom of 1, 2497: which is not significant.
For the bunting option, the F-value from the data was 0.00 with degrees of
freedom of 1. 2007; which is also not significant. Therefore, there is no evi-
dence that the assumption of equal variance is violated. The residual plots
generated are shown in Appendix C.

The assumption that the models used are adequate is tested. The results
of these tests were summarized in the Methodology section. We used the R?
value. which measures how much variation in the dependent_va.riable can be
accounted for by the model. A value close to 1 indicates a strong relationship
and, therefore, a good fit for the model. The value of R? for the linear model
for the bunting option was 0.965054, which indicated that the linear model
provided a good fit for this model. The R? value for the model for the batting
normally option was 0.908341, which also indicated a good fit for this model.
As noted in the previous section, a linear model was hoped to be adequate

for both models, and it was in the course of checking the adequacy of the
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linear model that a better model was discovered.
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5 Results

The abbreviations used are

e P = Probability of Scoring at Least One Run (P, and P,)

TBA = Team Batting Average

e TSP = Team Slugging Percentage
e PSP = Player Slugging Percentage
e SBE = Sacrifice Bunting Efficiency

The equation generated for the batting option is

P, = —0.106279018 + (1.788996558 x TBA) + (—0.306195021 x TSP) +
(0.6338697 x PSP) — (0.359820521 x PS P?)

The equation generated for the bunting option is

P, = —0.096135634+(1.226926907xT BA)+(0.032219952x TS P)+(0.251559797 x
SBE).

Therefore, when the two equations are subtracted and simplified, the result-

ing equation, which determines where P, and P; are equal, is

SBE = —0.04032+(2.23434 x TBA) —(1.34527 x TSP) +(2.51976 x PSP) -
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(1.43036 x PSP?). (1) Although the given equations could be less than
zero for certain values, the range of values for the variables involved are such
that this would not normally occur.

This is the graph of this function given TBA = .3 and TSP = .5.

Diagram3:
1+

08+ /
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This equation will provide the mechanism of the decision process. For
fixed TBA and TSP. the equation represents a quadratic in a plane with
the axes being SBE and PSP. This curve marks a boundary where P is
equal for the two options. It is better to sacrifice bunt on one side. and
on the other side, the situation is classified as better to bat normally. By
entering the values of the potential bunter’'s slugging percentage, the team
slugging percentage and the team batting average for the given situation
when a sacrifice bunt is being considered, the equation will generate the
sacrifice bunting efficiency which would have equal probability of scoring at
least one run for the given values. Therefore, if the actual sacrifice bunting
efficiency is greater than the generated value, the better strategy would be
to sacrifice bunt. If the generated value is greater than the_ actual value of
the player’s sacrifice bunting efficiency, then that would indicate that letting
the batter hit normally has a greater probability of scoring at least one run.
For example, if equation (1) generated a sacrifice bunting efficency of .85 for
a given situation, but the actual sacrifice bunting efiiciency was only .8, this
would indicate that batting normally would be the better strategy for this

situation.
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Equation (1) was then tested for lineups that did not have all batters as-
signed the same batting average or hit distribution. After doing a large num-
ber of tests using this equation and comparing the results to those generated
by simulation, it was found that the equation deals with non-homogeneous

lineups fairly well. Here are ten examples from the many tests done.

1. TBA =0.27625
TSP =0.4455625
PSP = 354
SBE = .99
The simulation generated probabilities of 0.4186 for bunting and 0.3726
for batting normally. Therefore, simulation indicates that bunting is
the better option. By entering the given values into equation (1), the
actual SBE is greater than the generated value for SBE. Therefore,
equation (1) also indicates that bunting is the better option, which

agrees with the simulation result.

2. TBA =0.245
TSP =0.3897625

PSP =0.5375
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SBE =09

The simulation generated probabilities of 0.4084 for bunting and 0.4142
for batting normally. Therefore. simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1),
the actual SBE is less than the generated value for SBE. Therefore.
equation (1) also indicates that batting normally is the better option,

which agrees with the simulation result.

3. TBA=0.23
TSP =0.3182
PSP =043175
SBE =03

The simulation generated probabilities of 0.2904 for bunting and 0.3796
for batting normally. Therefore, simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1),
the actual SBE is less than the generated value for SBE. Therefore,
equation (1) also indicates that batting normally is the better option,

which agrees with the simulation result.

4. TBA=0.27
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TSP =0.475875

PSP =0.16315

SBE =0.75

The simulation generated probabilities of 0.4092 for bunting and 0.4178
for batting normally. Therefore, simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1).
the actual SBE is less than the generated value for SBE. Therefore,
equation (1) also indicates that batting normally is the better option,

which agrees with the simulation result.

.TBA=10.25

TSP =0.378125

PSP = 0.54825

SBE =0.95

The simulation generated probabilities of 0.412 for bunting and 0.4026
for batting normally. Therefore, simulation indicates that bunting is
the better option. By entering the values into equation (1), the actual
SBE is less than the generated value for SBE. Therefore, equation (1)

indicates that batting normally is the better option, which disagrees



=1

with the simulation result. This indicates that equation (1) is not
perfect or that the simulation is giving a false result. (The actual SBE

is actually very close in value to the generated SBE)

TBA=0.275

TSP =0.375175

PSP =0.3032

SBE =0.7

The simulation generated probabilities of 0.3806 for bunting and 0.3996
for batting normally. Therefore, simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1),
the actual SBE is greater than the generated value for SBE. There-
fore, equation (1) indicates that bunting is the better option, which
disagrees with the simulated result. This indicates that equation (1) is
not perfect or that the simulation is giving a false result. (The actual

SBE is actually very close in value to the generated SBE)

. TBA =0.2375
TSP =10.38015
PSP =0.46786
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SBE =10.8

The simulation generated probabilities of 0.3792 for bunting and 0.3952
for batting normally. Therefore, simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1),
the actual SBE is less than the generated value for SBE. Therefore,
equation (1) also indicates that batting normally is the better option,

which agrees with the simulated result.

8. TBA=10.25
TSP =0.4410575
PSP = 0.354
SBE =0.9
The simulation generated probabilities of 0.402 for bunting and 0.3822
for batting normally. Therefore, simulation indicates that bunting is
the better option. By entering the values into equation (1 ), the actual
SBE is greater than the generated value for SBE. Therefore, equation
(1) also indicates that bunting is the better option, which agrees with

the simulated result.
9. TBA = 0.275
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10.

TSP =0.4046875

PSP =043

SBE =07

The simulation generated probabilities of 0.4012 for bunting and 0.4362
for batting normally. Therefore. simulation indicates that batting nor-
mally is the better option. By entering the values into equation (1),
the actual SBE is less than the generated value for SBE. Therefore,

equation (1) also indicates that battting normally is the better option.

TBA=10.2795

TSP =0.416035

PSP =0.471

SBE =097

The simulation generated probabilities of 0.4484 for bunting and 0.4226
for batting normally. Therefore, simulation indicates that bunting is
the better option. By entering the values into equation (1), the actual
SBE is greater than the generated value for SBE. Therefore, equation

(1) also indicates that bunting is the better option.
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These examples are fairly representative of all the tests done. The equation
developed performs well for these lineups. although there are a small number
of cases where the difference is very minor.

The next step is to consider whether or not to employ a minimum dif-
ference between the two sides of the equations when determining whether to
sacrifice bunt. This means that if the difference in the values of the actual
sacrifice bunting efficiency and the generated sacrifice bunting efficiency is
greater than the minimum difference, then you would proceed as indicated.
If the difference in values is less than the minimum difference, then it makes
almost no difference probabilistically as to which strategy is used. There-
fore, when there is no advantage to either strategy with respect to trying
to score at least one run, a secondary consideration is whic]:_l strategy scores
a higher average number of runs. It has been shown in many articles that
batting normally will score a higher average of runs. Since this is the case.
the appropriate course of action would be to let the batter hit normally if the
generated sacrifice bunting efficiency is greater than actual sacrifice bunting
efficiency or if the actual sacrifice bunting efficiency is greater than the gen-
erated sacrifice bunting efficiency by a value which is less than the minimum
difference. Therefore, the equation can be modified to reflect this simply by
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adding the appropriate amount to the right side of the equation equal to
the value of the minimum difference. The value of the minimum difference
can be subjective, decided upon by the manager in question. which can be
zero, or it can be the value used for determining a confidence interval of
the probability of scoring at least one run from the swinging away option.
Essentially, this is a hypothesis test that the probability of scoring at least
one run from the bunting option is different than the probability of scoring
at least one run from the batting normally. From the output. the standard
error of prediction for the batting option is estimated to be 0.01415. Using
the value 2.326 for the value of g 4638, a confidence interval would be the
generated predicted value + 0.033 approximately.

Using this adjustment, all ten test cases above would produce results
using the equation that are consistent with the simulated result. This does
not mean that the equation perfectly produces the best decision. There are
still cases for which the simulated probabilities disagree with the prediction
by the equation, but the performance is improved. Different values for ¢ can

be used corresponding to different confidence intervals.
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6 Other Applications

There are a number of other possible applications for the method we devel-
oped for determining the better baseball strategy. Essentially, this method
provides a way to decide which is the best initial strategy in a given situation.
given certain variables. The basic characteristics that are needed in any such
situation where the goal is to find the strategy with the better probability

are that:

o There can be only a finite number of attempts to achieve the desired
objective. This could be a time limit as well as simply a limit on the

number of attempts.

o There should be a standard procedure or strategy that is applied, as

well as some manner of ‘safety play.’ or alternative strategy.

o The aim of the safety play is to make it easier to achieve the desired
objective and will not, by itself, immediately achieve the desired ob-
jective. If the safety play is successful, then it will be easier to achieve

the objective, and if not successful could make it harder.

o All the possible outcomes of a course of action must be known.
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o There must be a method to obtain reasonable estimates of the proba-

bilities involved.

e The variables of interest must be sufficient to provide an adequate

model.

If the goal is not based on probability, but instead on cost or quickness.
then the first. second and third items above do not apply. The fourth. fifth
and sixth items are still relevant, and if cost or time is involved, there must
be a method to obtain reasonable estimates of these quantities as well.

In our case, there are only two options that are being considered. This is
the easiest situation since it guarantees that there will be only one equation
generated for the purpose of comparison.

Diagram4: Two Option Tree Diagram

Decision 1 Evaluation

Choice

Decision 2 Evﬁuation



The method works well for this analysis because the model for the bunting
option is linear and. therefore, the resulting equation is only as complex as
the model for the batting normally option. This will not always be the
case, although, ideally, both models will be linear and, therefore, will be a
single line. We now consider a collection of general problems of a similar
type. Let z be some measure of the success of some strategyl. Let z be a
variable which influences z. Assume z = f(z) in an equation relating the
two variables. Similarly, we have z = g(y) where y is a different variable
and z is the same measure applied to some strategy2. By eliminating = from
the two equations z = f(z) and z = g(y), we obtain an equation of the
form y = h(z) (this implicitly assumes that g(y) is invertable, which is not
always the case). This represents a boundary for which the two strategies
are equivalent. It is interesting to consider what the boundary equation
looks like for different functions f(z) and g(y). If the two regression lines
are non-linear, non-monotone lines, the resulting equation can produce a very
complex situation. It is possible to have many boundary lines and alternating
areas of classification.

Casel

]

= g(y) =y — y? (See Diagram5)
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y:

f(z) = .5(sin(z) + 1) (see Diagramé)

h(z) =.5 - \/—.5 sin(z) — .25 (See Diagram?)

Diagramj: z = g(y) = y — y?
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f(z) = .5(sin(z) + 1)
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Diagram7: y = h(z) = .5 — \/—.5 sin(zr) — .25

The result is very complex.
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Case2

f(z) = = — £? (See Diagrams8)

t
ll

= =g(y) = y* — y + .25 (See Diagram9)

h(z) = .5+ Vz — 22 (See Diagraml0)

y
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Diagram8: z = f(z)=z -z
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Diagraml0: = = g(y) = y®> —y + .25
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Diagraml0: y = h(z) = .5+ Vz - 2

This is still relatively simple.
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This method can also deal with situations for which the decision to be
made has more than two options. but it becomes much more complex since.
if there are n options. then this method can produce Y (n — 1) equations for
the purpose of comparison.

Diagraml1: Multiple Options Tree Diagram

Evaluation

Decision 1

Decision 2

Choice
Evaluation

Decision 3

Evaluation

Decision 4

Evaluation
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There are other applications in sports. In baseball, this method could
be used for comparing bunting to batting normally when considering the
average number of runs scored. This method could also be used for testing the
strategies in baseball of base stealing, the hit-and-run play or the intentional
walk. Of these three, the hit-and-run play would be the hardest to test
since it involves probabilities not easily estimated, such as the probability of
making contact on a swing.

Our method should be applicable in football, for deciding whether to
punt or try a field goal given your field position and the score of the game,
or to find the point at which it becomes more advantageous to try to score a
touchdown instead of simply seeking to achieve a first down. For the field goal
situation, the finite opportunities would be the time limit and the desired
objective would be to win the game. The field goal, if successful, could give
the team a lead such that the opposing team must either score twice {a lead
of nine points or more) or must score a touchdown instead of a field goal (a
lead of four to six points). If the field goal was not successful, this would
give the opposing team good field position. By punting, the field position of
the opposing team could be made much worse, hopefully within ten yards of
their own end zone, thus making it much harder for the opposing team to
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score. The variables of interest are the field position. the score, ‘field goal’
ability, ‘punting’ ability and the relative offensive and defensive skills of the
opposing teams.

It has been suggested that this method may be applicable in certain
track and field events, such as high jump. This method may not apply to
high jump, because of the problem of having only finite chances. In high
jump, human endurance would seem to dictate that there would be only a
finite number of chances to achieve the objective, but it would be hard to
determine how many chances would be needed during the course of an event.
especially since it could change from event to event.

Another possible application of our method is to find the strategy with the
lower cost (instead of higher probability) in the following queueing problem.
Assume a GI/G/2 queue, for specified GI and G. Suppose two “paired”
arrivals (such as husband and wife) enter this queueing situation with two
servers and equal two noempty lines. The “paired” arrivals have two possible
strategies. One strategy is that they can each enter a line. When the first
person enters service, the other person would renege. The other strategy
is to have the “paired” arrivals stay together by choosing a line and both
entering it. The service rates are known to be g, and p,, where g, is the
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higher rate. There are values attached to staying together, a per unit time.
and values attached to being apart, b per unit time. We assume that the
value of a is less than the value of . This assumes that the pair prefers
to be together. Splitting up is faster, on average, but has a higher cost per
unit time. By doing a simulation and performing regression analyses on the
output, the result should be two equations. The first equation, associated
with the strategy of staying together, would equate cost to a function of a and
p1- The second equation, associated with the strategy of splitting up, would
equate cost to a function of b, u; and p,. By combining the two equations
and simplifying, the result would be an equation where a is equated to a
function of b, p; and pu, (could also compare by costs a and b). The values of
K1, 2, a, b could be known from previous experience. The outcomes are all
known and the variables should be sufficient for this model.

There are other possible applications in the world of medicine. The im-
portant point is to consider is that the baseball situation examined could be
looked at as having two absorbing states (run scored and three outs) and all
other situations are transient states collasped to the number of outs (none
out, one out, and two out). When considered this way, the desired objective
can be looked upon as simply trying to remain outside of the absorbing state
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of three outs. Similarly. there are many situations in medicine where one is
simply trving to remain outside of some absorbing state. such as some stage
of an illness which is considered to be irreversible.

One possible application is in the treatment of patients whose heart has
stopped. The standard procedure is the application of electrical shocks or a
defibrillator (which itself is a perfect example of a situational strategy), with
a possible ‘safety play’ being the injection of adrenaline. The objective is to
determine whether it is always best to administer adrenaline. The finite limit
would be the time limit of getting the heart restarted before brain damage
occurs. The situation variables could be the general health of the patient. the
skill of the people providing the treatment and the quality of the equipment
being used to provide the treatment.

Another possible application is determining the best initial treatment
for people diagnosed with cancer. The options would be chemotherapy, as
opposed to surgery or other possible treatments. The finite limit is the
apparent time span after which the life expectancy of a person diagnosed
with cancer does not differ significantly from a ‘normal’ person, and so, if
the patient survives for this apparent time span after being diagnosed, the
patient is considered to be cured. Again, the situational variables could
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be the general health of the patient. the skill of the people who would be
providing the different treatments and the quality of the facility.

Another possible application is in the treatment of HIV positive patients.
A patient does not want to enter the absorbing state of having AIDS. There
is no real finite limit on the objective. There are a variety of treatments that
are presently being used. This is another possible application in the field of

medicine. Many others possibly exist.
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7 Conclusion

The method of performing a regression on the output of a simulation is, po-
tentially. a very useful method. The method of equating a common variable,
measuring two possible actions, gives a useful boundary to describe the best
choice. As applied to baseball, we have shown that, although the sacrifice
bunt is not a generally useful strategy, it can be a useful strategy in the

proper circumstances.
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8 Appendix A

Program Baseball.pas

Program Baseball(output);
Var outs, basel, base2, base3, runs, count : Integer:

hit, bunt, average, averageb : Real;

procedure Walk;
begin
if basel =1 then begin
if (base2 = 1) and (base3 = 1) then base3 := 2
else begin
if base2 = 1 then base3 := 1
base2 := 1;
end {else};
end;
basel := 1;

end {Walk};



procedure ShSgle;

begin

if base3 = 1 then base3 := 2
else begin

if (base2 = 1) and (basel = 0) then begin

base3d :=1;
base2 := 0:
end
else Walk
end {else};
basel := 1;

end {ShSgle};

procedure Sgle;
begin
if (base3 = 1) or (base2 = 1) then base3 := 2
else begin
if basel then base2 :=1
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end {else}:
basel := I:

end {Sgle}:

procedure LgSgle;
begin
if (base3 = 1) or (base2 = 1) then base3 := 2
else begin
if basel = 1 then base3 :=1
end {else};
basel := 1;

end {LgSgle};

procedure ShDble;

begin
LgSgle;
basel := 0;
base2 := 1;

end {ShDble};
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procedure LgDble:

begin

if basel = 0 then ShDble
else base3 := 2;

end {LgDble};

procedure Tple:

begin

LgDble;

if based = 0 then base3 := 1;

end {Tple}:

procedure HR;

begin
base3 := 2;
end {HR};

procedure SF;



begin
if (outs < 2) and (base3 = 1) then base3 := 2:
outs := outs + 1:

end {SF};

procedure SO:

begin

if outs < 2 then ShSgle;
basel := 0;

outs := outs + 1;

end {SO};

procedure NoA;
begin
outs := outs + I;

end {NoA}

procedure DP;
begin
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if basel = 0 then NoA
else begin
if outs > 0 then outs := 3
else begin
if based = 1 then begin
if base2 = 1 then outs := 2
else begin
outs := 1
base2 :=1
end {else}
end
else begin
SO;
base2 := 0;
outs := 2;
end {else};
end {else};
end {else};
basel := 0;
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end {DP}:

begin {main}

writeln("Enter team average in decimal form’);
readln(average):

writeln(*Enter bunter batting average in decimal form’);
readln(averageb);

writeln(*Enter sacrifice bunt efficiency in decimal form’);
writeln("or zero if not bunting’);

readln(bunt):

runs := 0:

Randomize:

for count : 1 to 3000

do begin
basel := 1;
base2 := 0;
base3 := 0;
outs := 0;

if bunt > 0 then begin
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hit := Random:
if hit < (.15 x bunt) then ShSgle
else begin
if hit < bunt then SO
else begin
if hit < (.2 x bunt + .8) then NoA
else DP;
end {else}:
end {else};
end;
else begin
hit := Random:
if hit < (.11 x averageb) then HR;
if hit < (.135 x averagebd) and hit > (.11 x averagebd)
then Tple;
if hit < (.23 x averageb) and hit > (.135 x averageb)
then LgDble;
if hit < (.325 x averageb) and hit > (.23 x averagebd)

then ShDble;



if hit < (.55 x averageb) and hit > (.325 x averageb)
then LgSgle:
if hit < (.925 x averageb) and hit > (.55 x averageb) then Sgle:
if hit < averageb and hit > (.925 x averageb) then ShSgle:
if hit < (averageb + .06) and hit > averageb then Walk:
if hit < (.85 x averageb + .201) and hit > (averageb + .06)
then SO:;
if hit < (.6 x averageb+.436) and hit > (.85 x averageb+ .201)
then SF:
if hit < (.1 x averageb+ .906) and hit > (.6 x averageb+ .436)
then NoA;
if hit > (.1 x averageb+ .906) then DP;

end {else};

repeat

hit := Random;

if hit < (.11 x average) then HR;

if hit < (.135 x average) and hit > (.1} x average) then Tple:

if hit < (.23 x average) and hit > (.135 x average) then LgDble;

if hit < (.325 x average) and hit > (.23 x average) then ShDble;
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if hit < (.35 x average) and hit > (.325 x average) then LgSgle;
if hit < (.925 x average) and hit > (.35 x average) then Sgle:
if hit < average and hit > (.925 x average) then ShSgle;
if hit < (average + .06) and hit > average then Walk;
if hit < (.83 x average + .201) and hit > (average + .06) then SO:
if hit < (.6 x average + .436) and hit > (.85 x average + .201)
then SF;
if hit < (.1 x average + .906) and hit > (.6 x average + .436)
then NoA;
if hit > (.1 x average + .906) then DP:
until (base3d = 2) or (outs = 3);
if base3 = 2 then runs := runs + I;
end {for};
if bunt = 0 then writeln(’with no bunt. the # of runs was’. runs, averageb);
else writeln('with the bunt, the # of runs was’, runs, bunt);

end {main}
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Appendix B

9

Diagraml2:

This is the histogram generated from the batting normally option.
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Diagram13:
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10 Appendix C

Diagraml4:

This is the residual plot generated from the batting normally option.
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