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Abstract

The advent of the ep collider HERA at the DESY research center has opened a wide
kinematical window for the study of the Deep Inelastic Scattering (DIS) processes
etp — e* X. Recent measurements of the structure function F; of the proton have
confirmed the fact that the Bjorken scaling which arises from the naive Quark-Parton
Model is broken in the limit where the scaling variable, z-Bjorken, is small. It also
revealed that F, grows exponentially with z-Bjorken at low z. The standard picture
of parton evolution, based on the DGLAP equations, reproduces this steep rise if it is
used with an appropriate set of F, parametrizations. However these parametrizations
include “ad-hoc” assumptions on the non-perturbative behaviour of the structure
functions and depend on a large set of phenomenological parameters.

The steep rise can also be reproduced by using a different perturbative treatment
for the parton evolution. This treatment, based on the BFKL evolution equations,
differs from the standard DGLAP picture by the lack of ordering in the transverse
energy cf ihe emitted partons. Unlike DGLAP, the BFKL picture reproduces the
steep rise of F; without assuming any particular shape of the structure function in
the non-perturbative domain.

In order to gain an insight on parton dynamics in DIS at low z and discriminate be-
tween these two pictures, jet observables are used as they are expected to be closely
related to the hard scattering and depend only slightly on the hadronization effects.
Two jet observables are studied here in more details: the azimuthal correlation be-
tween the two leading-order jets and the cross section of the forward jet production.
The measured cross sections are corrected for detector effects and compared to several
DIS Monte Carlo models and next-to-leading order simulations over a wide kinematic
range. The results are evaluated in the light of the BFKL and the DGLAP pic-
tures. The experimental results are compared to other models of parton evolution as
well, like the Colour Dipole Model (CDM), the Linked Dipole Chain (LDC) and the
resolved photon model in DIS.



Résumé

L’arrivée du collisionneur positron-proton HERA au centre de recherche DESY a ou-
vert de nouveaux horizons dans ’étude des processus de diffusion inélastique profonde
(DIP) etp — e* X. Les mesures récentes de la fonction de structure F; du proton ont
confirmé le fait que 1'échelle de Bjorken, conséquence du modéle naif quark-parton,
est brisée pour les petites valeurs de la variable d’échelle z-Bjorken. Ces expériences
ont également révélé que F, croit exponentiellement avec z dans la limite ou z est
petit. Le modéle standard de I’évolution partonique, basé sur les équations DGLAP,
reproduit cette croissance rapide s’il est employé avec les paramétrisations modernes
des fonctions de structure. Cependant, ces paramétrisations forment des hypotheéses
sur le comportement des fonctions de structure dans les domaines cinématiques qui
ne sont pas calculables selon la théorie des perturbations et dépendent par conséquent
d’un grand nombre de parameétres phénoménologiques.

On peut également reproduire la croissance “aigue” de F; en utilisant un autre traite-
ment perturbatif de I’évolution partonique. Celui-ci, basé sur I’équation d’évolution
BFKL, differe du modéle standard DGLAP par I'absence d’arrangement dans I’énergie
transverse des partons émis durant la collision. Contrairement 3 DGLAP, BFKL
décrit la croissance de F, sans faire d’hypothese sur la forme que cette fonction de
structure doit adopter dans les domaines non perturbatifs.

Des observables basés sur les “jets” sont utilisés pour explorer la dynamique par-
tonique dans la région cinématique caractérisée par les petites valeurs de z. Ces
observables sont censés décrire de fagon précise la dynamique partonique puisque
les effets de I’hadronisation y sont faibles. Deux observables de jets sont étudiées
ici: la corrélation entre les deux jets du premier ordre et la production de jets vers
’avant. Les sections efficaces sont mesurées pour ces deux observables et comparées
aux prédictions de différentes simulations apres correction des effets du détecteur. Les
résultats sont discutés a la lumiere des différents modéles DGLAP et BFKL. D’autres
modéles sont pris en considération, comme le Colour Dipole Model (CDM), le Linked
Dipole Chain (LDC) et le modéle de photon résolu en DIP.
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Chapter 1

Introduction

Particle physics is the science of the basic building blocks and the fundamental inter-
actions of nature. Considerations of symmetry have helped scientists to describe the
various forces and particles which have been recorded all along the history of science
in the framework of the Standard Model. The goal of this model is to reproduce a
maximum number of observable phenomena, from the properties of sub-atomic par-
ticles to cosmological considerations, with a reduced number of theoretical predicates
(describing the most empirical properties with the least number of parameters is the
general aim of all sciences). So far, four forces account for all the interactions which
occur in nature: the gravitationnal force, the electromagnetic force, the weak and the
strong forces. These forces act on the fundamental constituents of matter through a
gauge field carried by gauge bosons, which are particles of various masses and integer
spins. The strength of the coupling and the spin of the gauge boson define the inter-
action. For instance, gravitation is carried by “gravitons” of spin 2 and is the weakest
of all forces, although its macroscopic properties are the most dramatic of all. The
rest of the particles participating in the interactions and then building all the known
matter of the universe, at least in the current shape of the Standard Model, have
half-integer spin and are classified into two groups: the leptons and the hadrons. The
first group is mostly characterized by its sensitivity towards the electro-weak inter-
action and its inability to interact through the strong force. Particles like electrons
and neutrinos are part of this group. The second group, the hadrons, can interact
through the strong force and are in fact bound states of fundamental particles called
quarks. The proton and the neutron are examples of hadrons. Stable hadrons and
leptons, namely protons, neutrons and electrons constitute the atom, the building
block of the long evolution process giving rise to our familiar environment.



Of all the interactions listed in the Standard Model, the strong force has the largest
coupling strength and its description is therefore most challenging. As a matter of
fact, the stronger the force, the weaker is our ability to observe and characterize the
properties of the particles sharing this interaction, as the well-known perturbative
treatment which helps finding out the amplitude of the interaction mechanism is only
valid in the limit where the particles can be considered as “free”. The strong force is
carried by the spin 1 gluons, which have the intriguing property of coupling to each
other through an additional quantum number, the colour charge. Together with the
incoming of the theory of colour, the concept of “quark” came out as the fundamen-
tal object taking place in the strong interaction mechanism. The strong force is then
described through the exchange of coloured gluons between coloured quarks in the
framework of Quantum Chromodynamics (QCD). The most fundamental property
of this theory is that the quarks are never observed as free particles but always in
a bound state. This property, called confinement, is at the basis of all known mod-
els aiming at describing the behavior of quarks and gluors. However, in the limit
of large momentum transfer, these particles can be described as “free” and there-
fore perturbative calculations can be applied. The quarks and gluons then evolve
towards the final state hadrons, first through a perturbative mechanism controlled
by the so-called “evolution equations”, then within a phase called “hadronization”
and which is not calculable through perturbative theory. The first, perturbative part
of this evolution is the object of this study and will be described in detail in chapter 2.

The experimental study of the properties of QCD is only achievable through the ob-
servation of the final state particles, i.e. after the hadronization phase. As this is
not calculable, one needs models to reproduce it. These models can also implement
the various perturbative schemes which can be probed, according to a specific set of
approximations, and are usually given in the form of event generator of Monte Carlo
simulation. This will be described in more detail in chapter 3.

As the size of the effects which are probed is extremely small, an optical microscope
would not be capable of detecting them, even with a very good resolution. Probing
the parton dynamics of QCD requires very large energies and specific processes, like
Deep Inelastic Scattering (DIS), which consists of a high momentum transfer colli-
sion between a probe, which is often a lepton, and a hadronic target. Deep inelastic



processes are characterized by two variables, which parametrize the parton density
of the proton: the momentum transfer of the collision called @2, which is also the
inverse square of the momentum of the exchanged boson, and the so-called “scaling
variable”, z-Bjorken or zp;s!, which can be seen as the fraction of the momentum
of the parton participating in the interaction with respect to the momentum of the
hadron (in the frame where the hadron is moving very fast so that its mass can be
neglected). Since the early 70’s, many experiments investigated these DIS processes,
thereby proving the composite nature of the proton, but none of them could probe
such a wide phase space window as the HERA accelerator. The ZEUS detector which
must satisfy the requirements set by the difficult kinematic region to be probed, and
the HERA accelerator will be described in chapter 4. The event selection, to target
a specific phase space region, will be described in chapter 5.

The quarks and gluons are not observable directly in the detectors, as for instance are
the electrons and the muons. However, their properties can be probed through the
use of phenomenological objects called jets, defined as collimated streams of particles,
related to the fundamental constituents which are present during the perturbative
phase of the collision. These objects will be defined in chapter 6, and two methods to
use them in order to determine the properties of the parton dynamics at low z will
be presented in chapters 7 and 8.

In the rest of this work, we will follow the standard notation and refer to z5; simply as z unless
otherwise specified



Chapter 2

Basics of Perturbative QCD:
Various Models of Parton
Evolution

One of the main challenges of the experimental study of the strong interaction the-
ory, Quantum Chromodynamics (QCD), is to relate the properties of the basic con-
stituents of the theory, the quarks and the gluons, to the properties of the observed
particles, the hadrons, which are bound states of these fundamental elements. A
major step towards a global understanding of the evolution of the fundamental par-
tons towards final state hadrons was the discovery by Altarelli and Parisi in 1973
of asymptotic freedom [1] and the possibility to use the short range interactions to
apply perturbative calculations to the hadronic system. One of the most important
phenomenological successes of this theory was the accurate description of the deep
inelastic scattering of a lepton off a hadron and in particular the explanation of the
breaking of simple Bjorken scaling. A large number of experimental tests in fixed
target as well as collider experiments already confirmed most of the predictions made
in various kinematic limits. However the HERA collider, built from 1988 to 1992, can
now push further down these limits and explore phase space regions which are at the
boundaries of the range of validity of the standard descriptions of the parton evolu-
tion mechanism. These new regions, close to the so-called “Regge” limit, can still be
described in a perturbative way, but with different tools, and with phenomenological
implications which are expected to differ from the standard ones, as will be explained
in this chapter.

The main question of this work is whether this new perturbative domain can be
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reached within the limits of HERA and whether the conclusions drawn from the mea-
surement stand firm with respect to non-perturbative physics.

2.1 Fundamental Properties of the Strong Inter-
action

Before entering into the details of QCD and Deep Inelastic Scattering (DIS), we shall
briefly review the fundamental predicates on which the theory is based. Although
DIS provided the strongest experimental evidence for the existence of quarks and
gluons, these fundamental constituents were part of the theory of the strong interac-
tion before, but their interpretation in terms of real particles, rather than theoretical
concepts and part of the SU(3) theory, was uncertain. Moreover, the main proper-
ties on which QCD lies, like the concepts of colour and confinement, were inferred
without a deep understanding of the structure of the hadrons. Today, thanks to
new experimental evidence and much theoretical progress, both in perturbative and
non-perturbative QCD, the nature of the partons and their evolution into the colour
singlet states called hadrons is much better understood. On the other hand, the
understanding of confinement, for instance, has not really improved since its intro-
duction in the mid-60’s.

In this section, we will review the concept of confinement, as well as its theoreti-
cal basis, the notion of colour. Finally, we will see how, in spite of that property,
asymptotic freedom enables theorists to perform perturbative calculations on par-
tonic mechanisms.

2.1.1 Hadron Spectroscopy: the Concept of Colour

The basis of our understanding of the particles involved in strong interactions (the
hadrons) comes from the results of hadron spectroscopy. Without any assumption
about their internal structure, the accounting of the observed hadrons suggested a
classification based on their mass and quantum numbers. This classification, known
as the “eight-fold way” was performed in 1961 independently by Gell-Mann and
Ne’eman [2]. The hadrons are divided into two groups, according to whether their



Mesons Baryons

JP| o 1- 5 3
K*(494) K*+(892) p(938) A+*(1232)
K°(498) K*°(896) n(940)  A*(1232)
w+(140) p*(768)  A(1116)  A°(1232)
70(135)  p°(768) T+(1189) A-(1232)
7~(140) p~(768) X°(1193) X++(1383)
K°(498) K°°(896) L-(1197) X°(1384)
K-(494) K*-(892) Z=°(1315) x-+(1387)
n(549)  w(782) =-(1321) Z=°+(1532)
7'(958)  $(1019) =-+(1535)

Q- (1672)

§+

Table 2.1: List of the light hadrons, mesons and baryons in singlet, octet and decuplet
groups. The mass in GeV/c? is given in brackets.

spin (i.e. the “internal” angular momentum of the particle at rest) is an integer
(the mesons) or half-integer (the baryons). Each one of these groups is subdivided
into two sub-groups, once again according to the spin of the particles (this is for the
“light particles”, without orbital angular momentum), J¥ (where J is the spin and

P, the parity quantum number of the hadron, noted + or — for P = +1 and -1
2 02

key to interpret this classification is to realize that mesons come as singlet or octet

respectively): 0~, 1~ for the mesons an for the baryons. The fundamental
in the 0~ and 1~ groups while hadrons are seen as singlet, octet or decuplet (see
table 2.1 for a listing of the light hadrons). The important point is that 1, 8 and
10 are dimensional representations of the SU(3) group of three-dimensional unitary
matrices. This observation has lead Gell-Mann and Zweig [3] in 1964 to suggest the
idea of a fundamental triplet of SU(3) which could explain the formation of all known
hadrons, using the following combination rules:

mesons : ¢j=3R3=168
baryons : g =3Q@3Q03=16888¢10.

This fundamental triplet consists of three spin 1/2 particles: the quarks. These quarks
come in three flavors up (u), down (d) and strange (s). The puzzling fact is that,
unlike all other particles they have fractional charge: u has +§, d and s have —%.
Besides, although the strong interaction Hamiltonian obeys naturally the SU(3) sym-
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metry, the origin of this symmetry is unknown and therefore, the physical meaning of
its constituents was put to doubt until the early 70’s and the first DIS experiments;
quarks were then merely considered as a mnemonic tool which helped building up the
various hadronic wave functions.

The SU(3) theory has however a drawback as it predicts the existence of the A*+ and
-, made respectively of three u and three s quarks. Considering the quantum num-
bers of each one of the quarks (spin and flavour) and knowing that these quarks are
fermions, this violates the Pauli uncertainty principle which states that two fermions
can not occupy the same quantum state (in this case two of the u quarks must have
the same spin and therefore all their quantum numbers are identical). To solve this
puzzle, Greenberg introduced in 1964, the concept of colour charge and the colour
wave function [4]. Colour is an additional quantum number carried by the quark.
There are three basic colours: red (r), green (g) and blue (), corresponding to the
three colour states in which the quark can be found. To these three colours corre-
spond three anti colours 7, § and b which react with the colour states the same way
as charges react with anti-charges. The vector of the colour exchange mechanism is
a spin-1 particle: the gluon (which is therefore the vector of the strong interaction,
similar to the photon in Quantum Electrodynamics, QED). Gluons themselves carry
a colour charge and can therefore couple to each other, unlike photons in QED.

An additional assumption arises from the concept of colour: the hadrons observed
in nature do not carry a colour charge, which comes to say that the hadron are al-
ways found in a colour singlet state. This hypothesis leads to the so-called colour
confinement (5] and restricts the number of quark systems to only qg and ¢qq. From
this comes the name QCD, Quantum Chromodynamics, that is the part of quantum
mechanics which studies coloured objects and the mechanisms of colour exchange.

2.1.2 Confinement and Asymptotic Freedom

We saw how the hypothesis of confinement of quarks arises from the concept of colour:
only colour singlet objects can be observed as free particles in nature so quarks, which
are in a colour octet state, can only exist in a confined state, that is as part of a
combination. This translates into the shape of the potential of the strong interaction:
in QED, the Coulomb potential decreases as 1/r to infinity (at leading order). By

7



contrast, in QCD, the hypothesis that the strength of the interaction rises at large
distances generates a non-Coulomb potential which rises to infinity at large distances.
The QCD potential can be written as [6]:

V(r) = —constant - a,/r + Vi(r), (2.1)

Here, a, is the coupling parameter of the strong interaction, which yields the strength
of the interaction (similar to a.m in QED); Vi(r) is the non-Coulomb part of the po-
tential. It is assumed that this property of the strong interaction arises from the fact
that, contrary to QED, the vectors of the interaction, the gluons, are colour charged
and can therefore couple to each other, increasing the effective coupling strength at
long distance (5].

In this context, no perturbative calculation describing the behavior of quarks and glu-
ons was possible, as it would require to expand the QCD Lagrangian in series of a,,
and the magnitude of the coupling term would be such that the series would diverge.
The real birth of QCD happened in 1973, with the discovery of asymptotic freedom [1]
which enabled perturbative calculations to be used to describe the quarks and the
gluons. This is the property which states that the strength of the interaction (the
magnitude of the coupling constant) decreases at very short distances (around 0.1
fm). In this limit, quarks and gluons can be treated as free particles. Some attempts
of explanation for this effect exist: one of them deals with the fact that, similarly to
the electron in QED, polarizing the vacuum and creating new electrical charges, the
gluon creates in the surrounding vacuum new colour charges. The key point is that
these colour charges couple to each other creating colour distributions which overlap
at short distances. In this case the interaction strength is smaller than from point
charges, so that the effective strength tends to zero and the colour charges can be
considered as free particles. Another explanation considers the relative diamagnetic
and paramagnetic contributions of the gluons, which couple to the magnetic field of
the polarized vacuum through their spin (7).

2.1.3 Renormalization Group Equation and Running Cou-
pling Constant

The two properties of confinement and asymptotic freedom reflect themselves in the
behavior of the coupling strength of the strong interaction potential: a,. They ac-

8



tually translate into the fact that a, varies as a function of the scale of the process
Q (a, is said to “run” with the scale Q). This scale is defined as being the largest
dimensional parameter of the process, so that all the dimensionless parameters are
defined with respect to it.

This is however not the only type of scale which can be defined in quantum field
theory: after having applied perturbative expansion to a large order, the perturbative
series starts to diverge. In other words, at higher order, the series diverges. Because
of the small wavelength of the particles participating in the interaction in this limit,
this behavior is called ultra-violet divergence. In order to suppress these divergences,
a cut-off has to be introduced in the form of a scale called the renormalization scale
p. As p is an arbitrary parameter, any physical process of the process should be
independent of them. It can be shown (see for instance {7]) that the scale dependence
of a variable enters through the dependence of the coupling constant a, on the scale
Q. The renormalization group equation, which determines the running of the coupling
constant is a consequence of that and can be written as [7]:

da,

e

The B(a,) is referred to as the “beta” function and can be calculated in a perturbative

= B(as). (2:2)

manner. By expanding it in perturbative series, the following equation is obtained:
Q5% = ~boal — brad ~ byat — -+, (23)

where bg, by, by, ... are known terms of the perturbative series (the perturbative
expansion is commonly expressed as a function of §; terms with G, = 4nby, 8 =
16725, B2 = 64n3b,,...). If only the first term of this expansion is taken into account,
the value of a,(Q) can be expressed as a function of a,(x), at a fixed reference scale
(which can be for instance the renormalization scale):

a(p)
({Q) = . 24
Q) = T (@) &4
The coefficient by is equal to - (11 - §n,), were ny is the number of quark flavours
in the theory. If ny is smaller than 17 (which is the case in the SU(3) theory), the
coefficient by is positive and therefore a, decreases when Q becomes large and one
recovers the property of asymptotic freedom. Should the number of flavours be larger




than 17, @, would increase at large Q and QCD would not be an asymptotically free
theory. By contrast, the coupling strength in QED can be expressed as:

Aem(Q) = ——

—_— 2.5
1- %;’:ln;!-;: (2:5)

There, the coefficient in the denominator is negative and a.m(Q) grows as Q grows
and unlike QCD, QED is not an asymptotically free theory.

2.2 DIS: the Success of the DGLAP Equations

The best laboratory to study the theory of the strong interaction is the proton itself.
Provided that small enough distances inside the proton can be probed, its funda-
mental constituents can even be studied. This is the concept behind deep inelastic
scattering (DIS), whereby a high-energy lepton collides against a hadron target. Pro-
vided that the momentum of the exchanged boson, @ is larger than the inverse size
of the hadron, the inner structure of the target can be revealed, and in particular the
momentum distribution of its constituents. These momentum distributions can be
parametrized in the form of structure functions and compared to theoretical predic-
tions.

The first DIS experiments took place in SLAC (Stanford Linear Accelerator Center)
in the late 1960’s [8] and revealed a number of discoveries, in particular the invari-
ance of the structure function of the proton with respect to the momentum transfer
between the scattered electron and the target proton. This structure function was
found to be only dependent on the momentum fraction of the struck constituent of
the proton 2. This “scale invariance” was interpreted as an evidence that the scat-
tering involved point-like particles inside the proton: the partons. In 1969, following
a model created by Feynman in 1968 (the parton model [9]), Bjorken and Paschos
identified the partons with the quarks described in the previous chapter {10].

The breaking of this scale invariance, also called “Bjorken scaling”, at low momentum
transfer Q2 was observed in the muon-proton scattering, BCDMS [11] and NMC [12]
at CERN and then in ep scattering at HERA. It was the first evidence that the simple
parton model was a crude approximation and that more complex diagrams (the NLO
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corrections) had to be considered.

Several DIS experiments after the pioneering SLAC experiment took place in the
CERN and FNAL institutes. These experiments could probe the structure function
of the proton over an extended kinematic range, but none of them could match the
HERA experiment, the world’s first ep collider, where the center-of-mass energy of
around 300 GeV enables to reach new kinematic ranges and probe new kinematic

regimes.

2.2.1 The Quark-Parton Model (QPM)
Basic DIS Variables

The simplest and first order Feynman diagram to be considered in the deeply inelastic
scattering of a lepton off a proton is shown in figure 2.1. There, the incoming lepton
(of momentum k) exchanges a virtual boson (momentum ¢) with the target hadron
(momentum p), which disintegrates into a number of particles. If &’ is the momentum
of the scattered lepton, p’ the total momentum of the proton system after the collision,
s the square of the total center of mass energy of the collision and ¢t the squared energy
transfer of the collision, the system is kinematically defined by the set of equations:

¢ =(k~k)=(p-p) =t, (2.6)

s = (k+p)® ~4E,E. (2.7)

Here E is the energy of the incoming lepton. At leading order, the virtual boson
scatters off one of the three valence quarks of the proton. In this picture, called
the Quark-Parton Model, the total cross section of this process can be described by
two independent variables. By convenience, Lorentz invariant parameters have been

chosen:
Q2 = -qza (2.8)
_ e
z= g (2.9)

Two other variables are usually introduced:

v="—, (2.10)



q-p
= X p (2.11)
If E' is the energy of the outgoing lepton in the rest frame of the proton, v and y can
be shown to be respectively the total and relative energy transfer between the lepton
and the target hadron:
v=E-E, (2.12)
E-F
y= E
Using the Mandelstam variables, one can show that z, y and Q? are not independent
but related to the square of the center of mass energy s by the relation:

(2.13)

Q? = szy. (2.14)

The important feature of the QPM is that the partons are supposed to act as free par-
ticles, without interaction. Besides, if the proton moves very fast in the center of mass
frame, the transverse momentum of the partons inside the proton can be neglected
with respect to their longitudinal momentum. In this context, the variable z can be
shown to be equal to the momentum fraction of proton carried by the struck quark. In
the experiment, the variables z, y and Q? can be reconstructed from the energies and
angles of the scattered lepton and the hadronic system. Three reconstruction meth-
ods exist, which are described in the appendix A: the electron method, which relies
only on the scattered electron (positron) information, the Jacquet-Blondel, which
takes into account only the hadronic energy and average angle and the double angle
method which combines both and relies on the angles of the scattered lepton and
the hadronic system. According to the equation 2.8, Q? is the negative square of the
momentum transfer and determines the scale of the process. As a matter of fact, the
resolution power of the photon is given by its wavelength A: the smaller )\, the smaller
is the distance that the photon can probe within the proton. Through Heisenberg
uncertainty principle, it can be shown through the De Broglie wavelength, that:

1 1 1 2myz
A=—= = e N -, 2.15
9 JE-Ep+@ Jr+@ @ &)

This shows that the larger Q? is, the smaller is the wavelength of the photon and
therefore the larger is the resolution power of the exchanged boson.
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Figure 2.1: Deep inelastic scattering between the virtual photon and the proton in the
Quark Parton Model.

DIS Cross Section and Structure Function

The cross section of the DIS process can be shown (for instance in [7] or [13]) to
depend on two terms, one related to the electromagnetic vertex, calculable to all
orders in Quantum Electrodynamics (QED) and another one, at the proton vertex,
which can not be fully calculated in perturbative QCD (pQCD). In the case of a
virtual photon exchange, the cross section can be parametrized the following way !:

do
dzdQ?

where F; and F, are two independent structure functions, parametrizing the mo-

4ra’? 2 2 5
= :!:Q’ [(1 - y)Fz(za Q ) +y°zFy(z,Q )]1 (2.16)

mentum distribution of the partons inside the proton. ¢ is sometimes written as a
function of a longitudinal structure function, featuring the absorption by the proton
of a longitudinally polarized virtual photon: Fy = F; — 2z F;.

do

dzdQ®

Fyp is often neglected with respect to F;. Indeed it vanishes in the QPM, due to the
Callan-Gross relation [14] (which state that spin 1/2 quarks cannot absorb longitu-

ﬂ.az 2 2
-y PR -LREeL e

LIf Z or W are involved in the process, a third terms appears which takes into account the
amount of parity violation of the system.
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dinally polarized photons):
Fg = 23F1. (2.18)

The structure function F; cannot be calculated from the first principles, as it receives
contributions from the long-range, non-perturbative part of the QCD Lagrangian,
but it can be parametrized as a function of the contributions from the various quark
flavours:

F,=z z e? fi(z, Q?), (2.19)

where e; is the charge of the quark of flavour i and f; is the distribution of probability
to find the quark ¢ with the momentum fraction z. In the QPM, the partonic cross
section & can be similarly parametrized and a partonic structure function ¥, can be
defined. The amplitude of the collision: e(k)+q(p,) — e(k’) + q(p}) can be computed
and F; can be derived (see [7, 13]):

= zelb(z — e), (2.20)

where € is the momentum fraction carried by the struck quark. This is conform to
the idea that the photon collides against point like constituents of the proton (of
fractional charge e;) and therefore, at a given z, F; is independent of Q?, which can
then be written as:

Fiy(z,Q?%) — Fy(z). (2.21)

The measurement of this structure function has been performed on an extended range
of z and Q? by several experiments and in particular the ZEUS experiment {15] at
HERA. The result of the F, measurement for different bins of z is shown in figure 2.2.
The trend expected by the Bjorken scaling is seen at high Q? and high z, where the
F, distribution is flat with respect to Q?, in different bins of z. At lower z, however,
systematic deviations from this scaling can be observed. A closer look at the plot
would show that the amount of deviation from the Bjorken scaling is proportional to
In@Q?. The scaling is said to be broken in logarithms of Q2. One can also show that
in the small-z limit, F; follows a power law as a function of z, such as: F; ~ z7%,

where A ~ 0.3. This behavior can not be explained within the limits of the QPM.
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Figure 2.2: Measurement of the structure function of the proton F, as a function of
Q? in various bins of z. Together with the ZEUS measurement are presented Hl,
NMC, E665 and BCDMS measurements.
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2.2.2 Scaling Violation and Factorization Theorem

On top of the basic hypotheses of QCD, the QPM makes assumptions on the dynamic
of the hadron collision, namely the absence of transverse momentum for the partons
inside the proton and the absence of interactions between these partons. In the QPM,
the proton is made of three valence quarks (it is said to be completely valence-like).
This is however only true at high Q2, where the longitudinal momentum of each one
of the quarks within the proton is much larger than their transverse momentum (the
proton is then said to be moving in the infinite momentum frame), so that their
interaction can be neglected. At lower Q? and lower z, the quark can emit a gluon,
which can in turn change the quark’s transverse momentum. The photon can then
couple directly to the emitted gluon.

Several additional Feynman diagrams have to be considered to take into account these
high-order effects. The leading-order diagrams are shown in figure 2.3 and reflect the
possible modes of coupling between the virtual photon and the partons within the
proton; the photon can couple directly to the quark before (or after) the gluon emis-
sion: this diagram is called QCD Compton or QCDC (by reference to the “QED
Compton” process where the photon couples to the lepton and is then re-emitted).
The photon can also couple directly to the incoming gluon, giving rise to a quark-
antiquark pair, through the Boson Gluon Fusion (BGF) mechanism. These diagrams
show that at low z, the parton which is probed is not a fundamental constituent,
but it has a structure related to its history (which can start within the proton itself).
These fluctuations, which form the real history of the probed parton are large at small
z; here z cannot refer any more to the momentum fraction of the original constituent,
but to that of the propagator involved in the photon coupling. The smaller z is, the
larger is the probability that the propagator parton arises from the fluctuation of an-
other parton, rather than from the primordial constituent of the proton). Because Q*
determines the resolution power of the process (remember that \/E is proportional
to the inverse wavelengih of the virtual photon), as Q% becomes larger, so does the
number of partons resulting from these fluctuations which can be observed. Therefore
the effective density of partons within the proton, and hence the magnitude of the
structure function F3, will rise with the resolution power Q? at small z. This is the
intuitive idea behind the concept of scaling violation.

In order to quantify this effect, the cross sections of each one of these processes, o,
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a) b)

Figure 2.3: Three modes of parton-photon coupling at leading order in a,:a) and b)
QCD Compton, c) Boson Gluon Fusion.

have to be evaluated. But at this point, one faces two problems: first, the structure
functions of the proton can not be calculated from pQCD, because the partons are
confined within the proton and part of the observed cross section then comes from
long-range, non-calculable processes. On the other hand, the calculation of the par-
tonic cross section (when considering only the collision between the original parton
and the virtual photon; for instance v* +¢ — g+ ¢ in the diagram 2.3 a)) leads to log-
arithmic divergences. Several techniques exist to get rid of these divergencies (see for
instance (7, 13]), involving the use of cut-off or dimensional regularization (changing
the number of space-time dimensions in order to regularize the divergent integral).
These divergences occur when one of the partons of figure 2.3 is either soft (k = 0) or
collinear to its parent parton (kr = 0). In both cases the emitted parton has a long
wavelength (this is why they are referred to as infra-red divergences) and corresponds
to the long-range physics which has been described in the previous section, namely
the processes where a, is large and pQCD calculations cannot be applied any more.

The important result which has been obtained is that both problems, divergencies of
the partonic cross section and impossibility to derive F; from the first principles, are
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due to the same cause, the failure of applying perturbative QCD outside the scope of
asymptotic freedom, that is to say, outside the limits of short-distance interactions.
To solve this puzzle, one introduces a non-calculable (“bare”) parton distribution,
at a certain scale up (the “factorization” scale): g(z,u}), which is related to the
probability of finding a parton with momentum fraction z within the proton. This
distribution is convoluted with the partonic cross section &(z,u}), according to the
factorization formula:

oprs = 3 q(z, £F) D &(z, pE)s (2.22)

where ¢ runs over the type of partons (gluons and various quarks flavours). The fac-
torization theorem states that this formula is true for any kind of processes and that
q(z, p}) is universal, i.e. it does not depend on the type of collision or on the diagram
which is considered.

The introduction of the scale ur enables the solution of the divergencies the following
way:

o If the transverse momentum kg of the emitted parton is larger than the fac-
torization scale up (typically 1-2 GeV), it is included in the calculation of the
partonic cross section 4.

o if kr < pr, then the parton is “absorbed” into the bare parton distribution.

In practice, the exact determination of the parton distribution g(z,u%) requires the
integration over a large number of diagrams, which can be summarized in the gluon
ladder of figure 2.4. This involves integrations over the transverse momenta kr of
the emitted partons along the gluon ladder shown in figure 2.4, so that the real par-
ton distribution is a combination of many distributions depending on the transverse
momenta of the emitted partons:

dkm up dan

Here f(z,krn) is the pa.rton d:stnbutlon unintcgra.ted over the gluon ladder (related
to the probability to emit a parton with momentum fraction z and transverse mo-
mentum kr,).

dkrz

a(z,uF) = f(z kr.z) - -7 f(z,kra). (2.23)

By requiring the parton emissions to be strongly ordered, so that:
Q> kj, > - > ko >k, (2.24)

18



one can reorder the integrals and perform the integration over the n “rungs” of the
gluon ladder (see [16]). Only in this case, equation 2.22 can be solved numerically
while the full dependence over each of the transverse momenta of the emitted gluons
is lost.

q’ﬂh&g%
2 _._Xp+q

Q" x
e (x,-x)P
KraXn 3 (X.q = %) P
SRR (X X q) P
Decreasing ky
(xy-x,) P
Kr.1 %y

Figure 2.4: Gluon ladder representing the sum of all the Feynman diagrams contribut-
ing to the DIS cross section. The momenta of all the gluon rungs are written to the
right of the gluon line. From energy-momentum conservation, we obtain the relation
T < <21,

2.2.3 The DGLAP Equations and the Leading Log Approx-
imation

From equations 2.22 and 2.16, one can in principle obtain an expression for the struc-
ture function of the proton F;. But the determination of the exact value of F} is still
bound to uncertainties: first, there is a non-perturbative, that is a non-calculable, part
in this expression corresponding to the contributions from the long-distance part of
the strong interaction to the total DIS cross section. Then, the expression involves an
arbitrary scale pp, which delimits the relative contributions of perturbative and non-
perturbative physics. Since this scale is not “physical”, the total cross section should
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not depend upon it. Finally, as we saw in the previous paragraph, some approxima-
tions are made which restrict the phase space available for the parton emissions in
order to enable numerical estimations.

As in the case of the strong coupling constant a,, whose scale independence require-
ment lead to the renormalization equation, a similar type of equation can be derived
for the total DIS cross section (for convenience, the logarithmic derivative is taken):

do d
dinpp dlnp

Z (2, pF) @ iz, uF) = 0. (2.25)

One can expand this equation:

do d d .
dnnr Z ( dinar a(z, pF) @ 6i(z, uF) + Gz, %) © mﬂ(z,u})) =0.
(2.26)
And it can be rewritten as (7]:
d 1 de
Qt(x F‘F) = Z PIJ( ’QO(FF))QJ( HU'F) (2.27)
diny 2r

The term P;; is called the splitting function and corresponds to the probability for
the parton ¢ with momentum eP to branch to emit the parton j, with a fractional
momentum z (smaller than ¢, in order to conserve energy and momentum). There
are four types of splitting functions: Py, Pyq, Pyg and Py (see figure 2.5). They can
be expanded in perturbation series:

Po(E k) = 8:BC) + 2RO+ () BD)+ - a9

The leading order splitting functions have been derived (for instance in {16]) and are
given below for the four type of branchings: ¢ — q9,9 — ggand g = gg and g — ¢4

P(z) = (1” ) (2:29)

P:q(z) = ; (}"i'(lz-_i):) ) (2.30)
Po(z) = %(:’ +(1-2)), (2.31)
P;’,(z)=6(1fz+1;’)+z(1—z). (2.32)
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This leads to the famous leading order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (or
DGLAP) equations [17], where only the first order terms of the splitting function are
taken into account:

dgi(z,4}) _ o Vde 0,2\, 3
dl‘n;l.p - 2 z;/; ?P‘J( e)qJ(fa »u'l"‘) (233)

The solution to this equation enables to obtain the parton distribution at any scale

qu >_‘qu >—~4
£ (4

) >——"P“ >-v~ﬂ
€ €

Figure 2.5: Splitting functions corresponding to the probability, for a parton with
momentum eP, to split into 2 partons, one having a momentum z P and the other

(e — z)P.

@3, if it is know at a given scale Q2 (Q32 < Q?).

The DGLAP equations have an interpretation in terms of probability: by increasing
the virtuality of the parton i by an amount of Inur, there is a certain probability to
resolve its parent parton j, carrying a momentum fraction ¢ (that is Z larger momen-
tum than ¢) and with a smaller transverse momentum (see figure 2.6).

In practice, all these approximations lead to retain, in the perturbative expansion of
the parton density g(z,u}), only those terms with a leading (a,in@Q?)". Therefore,
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this method is called the “Leading Logarithm Approximation” or LLA(Q?).

Thus, this picture predicts that each parton evolves independently of all the others
in increasing virtuality and decreasing momentum fraction. As we will see in the
following, these approximations are valid only in a certain kinematic range and one
of the goals of the present study is to determine this range of validity.

xP

xP
d/dlogu,

P P

Figure 2.6: Schematic representation of the DGLAP equations in terms of Feynman
diagram: increasing the virtuality of the parton with momentum fraction z enables to
resolve its parent parton with momentum fraction e.

2.3 The Low x Region: High Energy Limit and
BFKL Equation

2.3.1 Non Linear Phenomena: Shadowing and Hot Spots

In the previous section, the partonic mechanism of DIS has been pictured as an
independent evolution of a single parton: inside the proton, the parton “on-mass-
shell” (this means that its invariant mass is equal to its rest mass) evolves towards
the collision and the coupling with the photon by successively emitting daughter
partons along a gluon ladder, losing each time a fraction of its total momentum. A
look at the fundamental parameters of the evolution equation, namely the splitting
functions (equations 2.28 to 2.31), shows that at low z, singularities appear:

4 1 41 1
P" - §, P“ — 5, P" - 5;, P,, - 6;. (2.34)
The branchings which give rise to a gluon are singular, leading to divergent gluon

densities at low z. In [18], Mueller describes the dynamic of the low z processes in
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the following terms: “At very small values of z, the number densities [of partons]
obtained may become large enough that the quanta overlap spatially, in which case
one expects scattering and annihilation to occur as well as evolution”. In this con-
text, the approximations which lead to a description of the parton dynamics using
linear equations are not valid any more and the gluons can recombine and annihilate
each other. At some point the gluon density might therefore saturate and evolution
cannot occur any more. This process is known as shadowing (18, 19] and leads to a
flatiening of the structure functions at very low z. This happens when the transverse
area occupied by the gluon?® is comparable to the size of a nucleon #R? (R ~ 1 fm).
If the gluon density inside the proton occupies a transverse area of the size of a par-
ton (R ~ 0.4 fm), a different scenario is expected, which is called “Hot Spot” [20].
However all these effects should happen for low values of Q2, where the uncertainty
due to non-perturbative physics is expected to be large and the measurements of the
shadowing and Hot Spot might be difficult to perform at HERA.

2.3.2 Double Leading Log Approximation and Description of
the Low z Region by the Standard Structure Functions

In the previous section, we saw how, intuitively, the rise of the structure function at
low z can be understood by taking into account the history of the parton involved
in the coupling to the photon, that is, in practice, looking at higher order Feynman
diagrams. This leads to a parton distribution which evolves as (a,in(Q?/Q3))", where
Q2 is the starting scale, at which the parton distribution is known. In practice, this
means that, in the perturbative expansion of the parton density in terms of InQ? and
lni, only the terms with a leading [nQ? are retained, neglecting the terms involving
In: and InQ%Int. In order to improve the description of the parton densities at low
z and include the In? terms in the distribution, another approximation is performed
when solving the DGLAP equations, which consists in retaining the most singular
Inl terms, when they are accompanied by [nQ3?. This corresponds to an additional
requirement on top of the strong ordering of equation 2.24: the strong ordering in
the momentum fraction of the emitted partons:

2L K KL 2 (2.35)

3 If the photon probes the proton at a scale @2, it can resolve a transverse size of 1/Q and
therefore, the transverse area goes as zg(z, Q%)r/Q?, where g(z, Q?) is the gluon density inside the
proton
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This method is called the Double Leading Log Approximation {21] (DLLA) as it
is effectively summing up terms with large logarithms of Q? accompanied by large
logarithms of 1. It is only valid in the limit z — 0 and Q* — oc. As the gluons
dominate the parton densities within the proton in this low-z region, only the gluon
distribution is relevant here. It takes the following shape:

oz, Q%) = %cxp {J ;lr% In (ll‘;—g;) In (%) } . (2.36)

From this equation, we can see that, although they predict a Q* dependence for Fs,
neither the Leading Logarithm Approximation, nor the DLLA have the kind of sin-
gular behavior in z~* which can be inferred from the data.

However, the current parametrizations of F, using both leading and double-leading
logarithm approximations, manage to describe the data. To achieve this agreement,
the common procedure is to parametrize the structure function at a starting scale Q3
(this gives the input parametrization, as a function of z) and then evolve it according
to the DGLAP equations. The most popular and commonly used parametrizations
use the following methods to reproduce the singular behavior of F; in the data:

e The CTEQ [22] (Coordinated Theoretical and Experimental Project on QCD)
and the MRS (23] (Martin-Roberts-Stirling) groups use singular input, of the
form z~* at a large enough Q3: Q2 = 2.56 GeV? for CTEQ and Q2 = 4 GeV?
for the MRS parametrizations. Both parametrizations look like:

zqi(z,Q3) = Aiz™™(1 — z)% P(z,1). (2.37)

Here i is the quark flavour or gluon. P(z,i) = (1 + €\/z + ¥iz) for MRS and
(147;z%) for CTEQ. The various parameters, A;, ¥, €, Ai, 7; must satisfy some
basic requirements like flavour sum rules and other momentum sum rules (see
for instance [24] for the various criteria). The other free parameters are derived
from comparison to data at LEP or at fixed target experiments. The main
problems with these methods is the big dependence on the various parameters:
as the inputs are singular, a small change in the phenomenological parameters
might result in dramatic discrepancies.

o The GRV (Gliick-Reya-Vogt) group [25] uses flat input at very small start-
ing scale (Q2 ~ 0.3 GeV?): in this picture, the proton is constituted by va-
lence quarks at low @2, the gluons and sea quark being generated dynamically
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through the DGLAP equations. The input parametrizations are actually the
MRS “valence-like” parametrizations (at high Q2) evolved backwards towards
a smaller scale:

2¢i(z, Q3) = Aiz™ (1 - z ). (2.38)

Here again, 7 runs over the type of parton chosen and the various phenomeno-
logical parameters are derived from fits to the data. This method is much less
sensitive to the value of the input parameters, but it uses pQCD (the DGLAP
equations) at very small scales, where non-perturbative effects can be large
and contributions from non-linear phenomena (see previous paragraph) can be
important.

In 1994, the ZEUS collaboration measured the F; of the proton and compared it to
the various parametrizations [15]. The result of this comparison is shown in figure 2.7.
At small Q?, the GRV parametrization lies a little bit above the data points, while
the MRS and CTEQ distributions describe the data well (at Q2 above their starting
scales).
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Figure 2.7: Structure function F; of the proton as a function of z in various Q2bins.
The indezes “ISR” and “SVX” (respectively “Initial State Radiations” and “Shifted
Vertez Runs”) refer to specific methods to obtain Fy at very low z and Q2. Together

with the ZEUS measurement are presented the results from NMC, E665, BCDMS and
SLAC.
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2.3.3 A Perturbative Origin to the Steep Rise of F,: the
BFKL Equation

In the previous sections, the structure function of the proton was shown to rise at
fixed z, as a function of Q?, breaking this way the “Bjorken scaling” which arose
from the QPM. This rise can be shown to follow a power law: F, ~ z=* and it can
be reproduced by a common set of parametrizations, using the standard DGLAP
evolution picture, either by starting from a singular input at moderate Q?(see pre-
vious section), or by chosing a flat input at very low Q. Although both methods
agree with the data, they have drawbacks, mainly because they apply perturbative
calculations in a region where non-perturbative and non-linear effects can be large.
Moreover, we have seen in the section 2.2.3 that the splitting functions could be ex-
panded in perturbative series involving terms of ! at high order (in particular the
two splitting functions P,y and P,;). The DGLAP equations neglect those terms in
Inl, if they do not come with a large logarithm of Q. However, at low z, these
terms become large and can not be neglected any more and the DLLA might lead to
missing some of these large logarithms of %, which do not come with a logarithm of Q2.

We have seen that the LLA solution to the DGLAP equations was obtained by re-
stricting the calculations (o the phase space where the parton emissions were strongly
ordered in kr (see equation 2.24), and therefore uses the gluon density zg(z, @?), inte-
grated over k}. In order to include the leading In! terms in the summation, a different
technique has been developed, which is expressed as a function of the unintegrated
gluon density defined as:
2 12

co(e @)= [ BEfe k) (29)

The summation of the leading logarithms of 1, taking into account the full dependence

on the kr of the emitted gluons is performed by the BFKL (Balitski-Fadin-Kuraev-
Lipatov) equation [26]:

6f(z,k§-)_3a. 2 “dk? f(z:,k?)—f(:,k«}) f(z, k%)
oSl A [ T TRay ey B
MekD) _ [ i krolke, ) Sz, D). .4)

As the equation only involves the unintegrated gluon density, it is no longer necessary
to require strong ordering in the parton emissions and the phase space constrained
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by equation 2.24 can be widened. However, because the equation sums only leading
Ini terms, a strong ordering on z’s is required, similarly to the DLLA case:

2L K- K 2 (2.42)

The BFKL equation is only valid in the high energy limit, where s > —t (using the
Mandelstam variables s and ¢ defined in section 2.2.1), that is, at fixed Q?,in the low
z limit. The derivation of this equation is quite difficult and is beyond the scope of
the present work. It refers to the fundamentals of Regge theory, which has not been
discussed here. For a detailed discussion on Regge theory, derivation and treatment
of the BFKL equation, the reader can refer to [27)].

The leading order term Ko in equation 2.41 is the kernel of the Leading Order BFKL
equation. The solution of equation 2.41 involves the determination of the eigenvalues
of this kernel (it can be shown to be dominated by the largest eigenvalue of Ko [28]).

The enticing feature of this evolution picture is that the integrated gluon distribution
which is derived follows a power law as a function of z, reproducing the shape of the
structure function F, as inferred through the experimental data, without having to
make assumptions on the input parton distribution or to use pQCD at very low Q?:

za(z,Q%) ~ f(Q*)e™%. (2.43)

Here, A has been found to be of the form A = §5’,;‘41712 ~ (.5. The rise of the structure
function is therefore steeper than what is expected from the experimental data (where
it has been found that F, was rising as %3), but this result relies on numerous ap-
proximations and is bound to some uncertainties, so that one can hope to improve
this estimation.

First of all, because of the absence of kr ordering, the parton emissions can diffuse
in the non-perturbative region where hadronization uncertainties are large. A cut-off
kro has to be introduced so that Q¢ < kro < kr. The result of the equation might
therefore depend on this cut-off.

Next the result given in equation 2.43 has been obtained with a fixed a,. Considering
a running a, might lead to a dramatic change of the results, as we just saw that the
partons emitted might have very small kr and therefore a, can become very large.
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In any case, a running a, is expected to decrease the value of A [29)].

Unitarity corrections have to be envisaged as the parton distributions are singular for
z — 0. However considering the running a, might reduce this effect as it is supposed
to weight the distribution towards the infra-red (non-perturbative) limit.

Contrary to DGLAP, the BFKL equation does not require energy and momentum
conservation at each branching. Implementing this requirement could lead to large
discrepancies, in particular for the hadronic final states distributions (see [30]).

Finally, the most important changes to equation 2.43 might arise from the next-to-
leading order (NLO) corrections to the BFKL equation. Much work has been done
to implement them in the BFKL kernel [31] and the first estimations yield large and
negative corrections. According to the authors, the BFKL equation at next-to-leading
order would look like:

afegf,lf%) = / &k (a,Kro(kr,Kr) + a2 Knco(kr, k) f(=, k7), (2.44)

leading to the following solution:

zg(z, Q%) ~ f(Q*)z M+, (2.45)

Here, the exponent of z is —A + AX ~ 0.03 [32]. At this stage, this number is only a
rough estimate of the expected next-to-leading order corrections effects to the BFKL
kernel and corresponds to the one-loop corrections only. It does not include eflects
of the running «, and therefore the value of 0.03 should be considered very carefully.
If this is true, this means that the BFKL picture is unable to describe the steep rise
of F, and then the whole picture is wrong. However, as these NLO corrections are
large, one might expect also large NNLO corrections (Next-to-Next-to-Leading Or-
der), which could be on the other direction [32], increasing the slope of the predicted
F,. In this context, no solid conclusion could be drawn until one finds small high
order corrections.
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2.3.4 Attempts to Unify the DGLAP and the BFKL Pictures

Expanding the splitting function terms

One of the goals of the description of the parton evolution is to unify both pictures
DGLAP and BFKL, as they are valid in complementary phase space regions: high z
and high Q? for DGLAP, low z for BFKL. The validity range of each one of the model,
as well as the kinematic boundaries which limit the use of perturbative calculations
and linear equations, are shown in figure 2.8,
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To perform such a task, one might think about including in the DGLAP picture the
higher order terms in Inl which appear in the perturbative expansion of the splitting
functions. The general shape of the splitting function P(z) is (see [7, 24]):

zP(z,a)) = 3 (%) 3 A,';(ln%)”‘“] (2.46)

n=1 = =00
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where the negative m terms are finite in the limit z — 0. The various models which

were part of the previous discussion correspond to the following approximations:

¢ n = 1: only leading logarithms of Q? are retained in the sum. This corresponds

to the LLA(Q?).

e n = 2: this is the so-called next-to-leading logarithm approximation (NLLA),

where the first term in

ln% is taken into account.

e n 2 1,m = n: this corresponds to the summations of the leading Inl terms and
therefore the LLA(Z). This can approximate the result of the BFKL equation.

en2>1ln=morn=m+l: it gives the next-to-leading logarithm correction
to the ! sum, It is called NLLX(2)

¢ n =1,m = 1: this is the common point between the LLA(1) and the LLA(Q?)

and corresponds to the

DLLA.

The summary of these calculations is illustrated in figure 2.9.
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Figure 2.9: The (n,m) plane defining the different kinds of summations, including the

DGLAP and BFKL pictures.
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Angular ordering and the CCFM equation

A second attempt to match BFKL and DGLAP evolution pictures has been per-
formed by the CCFM group {33] (Ciafaloni-Catani-Fiorani-Marchesini). Unlike the
previous splitting function picture, the CCFM equation deals with an unintegrated
gluon density (like the BFKL equation) and is based upon the idea that partons along
the gluon ladder shown in figure 2.4 are emitted with an angular ordering, so that,
if 8; is the angle of the i** emitted parton with respect to the original direction of
the first gluon emitted in the ladder, 6;,; > 6;. The basis of this idea lies in the
concept of colour coherence (34]. The theory of coherent emissions comes from QED:
the starting point is the observation that a photon emitted from an e*e~ pair could
not resolve the internal structure of the pair if it is emitted with an angle larger than
the angle between the two electrons. As a matter of fact, the transverse separation
p. between the ete~ can be related to the emission angle of the photon through [16]:

Bet o

pL = '\.L ) . (2.47)
Te

Here A, is the transverse wavelength of the emitted photon. Therefore, if 6., > 6.+.-,
the wavelength of the photon is larger than the distance separating the electron-
positron pair and the photon can not resolve each individual charge. It only resolves
the total electric charge of the pair, which is zero in this case.

Similarly in QCD, the gluon emitted at large angle by a quark-antiquark pair can not
resolve the internal structure of any one of the quarks or act as if it were emitted by
the parent gluon (see figure 2.10). From this property follows that one can approxi-
mate the sequential emissions of partons along the gluon ladder as being ordered in
angle. As the emission angle of the gluon is related to its energy E and transverse
momentum kr through § = '—‘g‘-, the partons emitted in the high energy limit or at
small z, where E > kr can be ordered in angle without being ordered in kr, so the
effects of the BFKL evolution can be approximated. At moderate z and Q?, ordering
in kr is again implied and the result of the evolution should match the predictions
based on the DGLAP equations.

Some work is currently made to match the CCFM predictions to the experimental
data, but it has been found that the calculations are very much dependent on high
order corrections, leading to large uncertainties in the description of the structure
function of the proton [35, 36].
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Figure 2.10: Schematic representation of angular ordering in a QCD cascade due to
colour coherence. The condition of colour coherence is: 8, < 6; and 8, < 6;.

2.4 Experimental Evidences for a BFKL-like Evo-
lution Picture

The main purpose of the current study is to evaluate the validity range of the various
pictures discussed above and in particular discriminate between the DGLAP and the
BFKL evolution schemes. Since the early 90’s, a great deal of work has been per-
formed, especially at the ep collider HERA, to probe the low-z kinematic range with
various observables.

We have seen that the structure function evolved with the DGLAP equations man-
aged to reproduce quite well the steep rise of F, observed at HERA and in various
fixed target experiments. To do that, the various parametrizations have to take into
account the non-perturbative contributions to the structure functions F, either by
chosing singular inputs to the DGLAP equations, or by starting the evolution mech-
anism at very low Q. It has then been concluded (for instance in [37]) that F} is too
inclusive a quantity to be sensitive to the perturbative mechanisms which control the
parton evolution. In order to probe the latter, it might be more suitable to use more
exclusive quantities like the ones constructed from the hadronic final states, that is
the hadronic outcome of the ep collision (further details on the definition of “hadronic
final state” will be provided in chapter 6).

The starting point of all analyses aiming at determining the validity range of the
various evolution pictures in DIS is the difference in the strong ordering requirements
between the different evolution equations and in particular the absence of strong
kr ordering in the BFKL and CCFM pictures. Another important feature of the
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BFKL/CCFM pictures is the steep rise of the gluon density at small z, which makes
this kinematic region very sensitive to the parton evolution scheme.

The main quantities used up to now to probe the partonic mechanisms at small z
are the transverse energy flow in the Hadronic Center of Mass (HCM) distribution,
the transverse momentum pr spectrum of charged particles, the forward 7% meson
production, the forward jet cross sections and the angular correlations between lead-
ing order jets in the HCM3. Although all these measurements can provide greater
insight on small-z physics, they are bound to the same uncertainty as F3, namely
the hadronization and non-perturbative effects, although it is hoped that these are
reduced in the case of hadronic final states.

2.4.1 Transverse Energy Flow in DIS

The first relevant observable to have been studied and measured at HERA is the
transverse energy flow in the central rapidity region of the hadronic center of mass
frame 4. The studies have been performed mainly by the Durham group and explicit
calculations were provided for comparison with the experimental data [39]. The idea
is that in the BFKL picture, a larger amount of transverse energy than in the DGLAP
scheme is expected in the region between the leading order partons (quark box in fig-
ure 2.4) and the proton remnant, which correspond to the central rapidity region in
the HCM. The calculations have been performed for ¢ < 1072 and have yielded a
Er distribution exhibiting a fairly flat plateau in rapidity with Er =~ 2 GeV per unit
of rapidity. The same calculations performed with the DGLAP equations lead to a
much smaller amount of transverse energy in the rapidity plateau (Er < 0.5 GeV per
unit rapidity).

The transverse energy flow was first measured by the Hi collaboration in [40] using

the 1993 data of the HERA ep collider (center of mass energy: /s = 296 GeV). The
low-z range was probed by this analysis: 5 < @ < 100 GeV? and 10~* < z < 1072,
and the quantity #%1 was estimated in various bins of z and Q2. A second measure-

3 In the following introduction, we will concentrate on measurements performed at EERA and
we won't speak about other attempts, like the one performed by the DO collaboration at Tevatron,
to study the production of a pair of jets at large rapidity interval [38]

4 The rapidity is a longitudinally Lorents invariant measure of the polar angle. In practice, the
pseudorapidity 7 is used in the measurement. This quantity will be defined in chapter 4.
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ment by the ZEUS collaboration [41] used the 1994 data sample of HERA with en-
hanced statistics and probed a similar kinematic range: Q? > 10 GeV? and z < 10-3.
Both measurements found trends which were compatible with a BFKL-like dynamics,

namely an enhanced amount of transverse energy in the central region of rapidity in
the HCM.

However there were large uncertainties with these results, mostly due to the hadroniza-
tion effects: the data which is collected in the ZEUS and H1 detectors is made of stable
hadrons, which live long enough to reach the main component of the detectors. At
this stage, the long-range physics contributes significantly to the measured effect and
the perturbative calculations, performed in the limit of short-range physics must be
corrected for all the non-perturbative phenomena which enter into the physics pro-
cess. As these effects are not calculable, one is bound to use models to estimate
them. These simulations, called Monte Carlo models because they use random num-
bers in the process of event generation, will be discussed in details in the next chapter.
In the transverse energy flow analysis, the DGLAP-based generator LEPTO (42] and
the BFKL-like model ARIADNE [43] were used to estimate the “hadron level” energy
flow. The non-perturbative effects included in the Monte Carlo model can be tuned
and the transverse energy flow was found to be very sensitive to one of LEPTO’s soft
effect: the Soft Colour Interaction (SCI) (this effect will be discussed in some details
in the next chapter). By varying the amount of SCI, the LEPTO model was able to
reproduce the transverse energy flow in the central rapidity region (see [44]). The key
point is that 60-80% of the energy flow predicted by this model is produced during
the hadronization phase. By contrast, in a BFKL-like model like ARIADNE, only
30-40% of the energy flow is produced during the hadronization phase. The parton
level predictions, based on pure BFKL calculations lie, significantly above both mod-
els predictions.

The measurement of the transverse energy flow is therefore unable to distinguish
between the DGLAP and the BFKL pictures. Similarly to the F; case, the non-
perturbative contributions to this process are too large to draw a conclusion. One
might then think that the Monte Carlo models can be used to correct the data to
the parton level, and then compare them directly with the analytical calculations.
Unfortunately, these corrections vary considerably from one model to another and
the systematic errors which arise from the model dependence are too large to allow a
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statement.

2.4.2 Charged Particle Spectrum

Since the contribution from the non-perturbative phenomena is larger than the pre-
dicted effects of the perturbative evolution in the transverse energy flow analysis,
some attempts have been performed to define observables which are less sensitive to
hadronization.

In 1995, M.Kuhlen suggested the study of the hard tail of the transverse momentum
pr spectrum of the charged particles, as a way to discriminate between DGLAP and
BFKL pictures [45] (in this context, the term “hard” refers to the large transverse
momentum contributions which are supposed to arise from the perturbative part of
the process). The measurement of the pr spectrum of single particles, instead of the
global transverse energy flow of an event, is expected to be closely related to the
parton cascade process, which takes place before hadronization. In a scenario where
this parton cascade is unordered in transverse momentum, more high pr particles
should be produced than in the DGLAP scheme, where the kr-ordering suppresses
this type of particles. The difference with the previous analysis is that in this case,
the expected excess of high pr particles is less likely to come from non-perturbative
effects as these ones happen mainly at low pr (the low transverse momentum contri-
butions arising from non-perturbative processes are called “soft” effects).

The H1 collaboration measured this hard pr tail in [46] using the 1994 data for
5 < Q® < 50 GeV? and several z bins from z = 0.0021 to z = 0.00016. The
charged particles were measured in the forward tracking chamber and were required
to originate from the primary vertex. The result of this measurement is shown in
figure 2.11. The two models LEPTO and HERWIG refer to DGLAP-based simula-
tion, while ARIADNE is a model which incorporates a non-ordered parton shower
(see next chapter). While the data agree with all the models (DGLAP and BFKL)
at high z, the DGLAP-based models exhibit a “softer” pr spectrum at low z, and
ARIADNE, which does not require a strong ordering in the parton emissions agrees
fairly well with the data in each z bin. These promising results have yet to wait for
accurate theoretical calculations as input to the simulations.
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2.4.3 Forward Pion Production

An alternative measurement to the forward jet cross section has been recently sug-
gested and performed by the H1 collaboration: the study of forward going pions [47].
The basis of this measurement is the same than for the forward jet analysis: the most
forward parton emitted in the gluon ladder displayed in figure 2.4 is followed through
the entire evolution process and can be found as a single pion in the detector. The
theoretical predictions for this analysis have been performed by the Durham group
and can be found in [48].

The H1 analysis measured #° in the dominant channel: #° — 44 and within the
polar angle: 5° < 6, < 25°. They were required to have an energy E, > 8 GeV
and transverse energy Er, > 1 GeV. The pion production rate as measured in the
H1 detector was much larger than the predictions based on the DGLAP equations.
As a complementary check, forward charged particles were also measured, using the
forward tracker of the H1 detector and the results were found to be in good agreement
with the 7% production.

2.4.4 Forward Jets and Angular Correlation between Jets

A second class of study focuses on the observation of a single parton, emitted at the
bottom of the gluon ladder shown in figure 2.4. This type of analysis, suggested by
Mueller in the early 90’s [49], is based on the idea that, due to the combined require-
ments of strong ordering in kr and ordering in z; (see figure 2.4 for the description
of the variables), the cross section for a parton emitted at large z; and large trans-
verse momentum should be suppressed in the DGLAP-scheme, while it should be
enhanced in the BFKL and CCFM pictures. In practice, obtaining large z; partons
means studying forward going jets, so the objects studied lie in the forward region of
the detector.

Alternatively, one can study the angular correlation between the two partons at the
top of the gluon ladder (see figure 2.4): if the subsequent parton emissions yield a
small overall transverse energy, the two jets should be strongly back-to-back corre-
lated in the hadronic center of mass frame. If the amount of transverse energy is large,
like in the BFKL/CCFM pictures, then they must lose this back-to-back correlation.
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As these two studies form the core of the present work, they will be described in more
detail in chapter 6 and are not developed here.

2.5 From Theory to Experiment

In this chapter, we saw how the various models of parton evolution are supposed
to describe the experimental data and in particular the behavior of the structure
function of the proton F3, within a set of approximations which are valid in some
part of the kinematical domain: high z, high Q? for DGLAP, low z and moderate Q?
for BFKL, both high and low z in the CCFM picture. Some experimental methods to
discriminate between the various models have also been discussed and two of them will
be studied more extensively later (chapters 7 and 8). Unfortunately, in most analyses
and in particular in most QCD studies, the sole understanding of the perturbative
theory is not sufficient to interpret the data. To achieve such an understanding, a more
global picture, which also include the effects of hadronization, has to be considered.
Such a picture is avalaible in the Monte Carlo simulation which is both an extension
of the theory as it includes the results of the perturbative calculations as well as a
model for the non-perturbative phase, and an experimental tool, as it is supposed to
picture the distribution of particles as seen in the detector and can implement the
response from the various detector components. The description of the various Monte
Carlo models and in particular the implementation of the different models of parton
evolution is discussed in the next chapter.
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Figure 2.11: Transverse momentum distribution for single charged particles in various
bins of ¢ and Q*. The data are compared to two DGLAP-based models (LEPTO and
HERWIG) and to ARIADNE, which does rot implement strong kr ordering for the
parton emissions. The inner error bars are the statistical errors while the outer error
bars represent the systematic uncertainties.



Chapter 3

Event generators and Detector
Simulation

The predictions provided by the various evolution pictures presented in the previous
chapter are very useful from a theoretical side to understand the underlying parton
dynamics, but they are very hard to compare to the data extracted from the ep col-
lision at HERA. First, the data seen by the detector is made of hadrons and the
theoretical calculations are mostly based on parton-level models (i.e. DGLAP and
BFKL equations). The necessary step of hadronization is not analytically calculable
and the uncertainty that it adds to the interpretation has to be taken into account.
Moreover the theory does not take into consideration all the detector effects which
can alter the results and generate additional uncertainties.

To include these two effects into the interpretation of the data, one has to rely on
models, which are based on the various theory calculations and evolution pictures,
but implement the additional effects. These models are useful for two reasons: they
are used to correct the data for both detector and hadronization effects and they pro-
vide themselves a first theoretical approach on the physics which is being probed and
can therefore be directly compared to the data. This last point is subject to polemic,
as these models have a set of phenomenological parameters which must be tuned to
some well-known distributions, in order to define their validity range. However it
is not known for sure whether these parameters are universal and can be used in
any kind of analysis, although the common understanding is that they should not be
changed from one analysis to another. Another bone of contention is that, although
all the models must have a similar response to the detector effects, the hadronization
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step might be very different from one to another. In this case, it might be difficult
to determine which model to compare the data to and what is the real contribution
from hadronization to the effect to be seen or to the quantity to be measured. For
instance, in the case of the transverse energy flow analysis (see chapter 2), two models
were giving the correct description of the data, although both underlying partonic
mechanism and non-perturbative effects were very different. In this case, the “com-
pensating” effect of soft physics prevented any strong conclusion about the real nature
of the parton evolution.

3.1 Basics of a Monte Carlo Simulation

The event generators which are used all along in this work and in most analyses in high
energy physics have all a common statistical basis: that is the so-called Monte Carlo
method. The purpose is to simulate a probability distribution, using the random be-
havior of the physical variables, as in games of chance, hence the name ‘Monte Carlo’.

The principle of the method is the following: in order to describe the behavior of
function f, for instance a differential cross section, which depends on one or several
variables z, which can be for instance phase space variables, one uses the integral
of the distribution f(z) and interprets it as being an average. The normalization is
taken care of at the end of the generation process. The integral of the distribution,
within the phase space range under investigation (here defined by the lower limit z,
and the upper limit z,) can be written as:

3 1 N
I(z) = / Cf)ds = (m2-m) < @) >x (m-a) g L flm) = Iy (3)

i=1

Here the value of the distribution f is known at the N rungs z,,z,,...,2;.

The integral I can therefore be approximated by a discrete sum Iy. This approach
will be more accurate when the number of points in the sample will be large. The
error can be estimated by the variance of the distribution.

If the various degrees of freedom z; are independent, the Central Limit theorem gives
the value of the variance Vy as a function of the number of integration points N and
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the mean 7 of the distribution:

IzINi\/Vn/N (3.2)

Therefore the error on the true value goes as 1/v/N. This error is independent of
the number of dimensions (i.e. number of phase space variables) and depends only
on the number of samples one considers. In practice, the following method is used
in the process of generating events: a given random number u is generated from a
uniform distribution from 0 to 1 which corresponds to the integral I. For each u, the
phase space variable z, is obtained so that In(%k-1) < u < In(zi). The probability
distribution f(z) is then derived through the relation: f(zx) = In(zi) — IN(Zk-1).
The method is illustrated in figure 3.1. One can see that the steeper the distribution
is, the more points are needed for the sampling in order to describe accurately the
probability distribution, so that in practice, one generates more events in the region
where the function is rapidly growing.

o Xy X

Figure 3.1: Schematic representation of the sampling technic used in the Monte Carlo
simulation, based on the choice of a random number generator to find the differential
probability distribution f(z).

The phase space available to generate n particles in a Monte Carlo is defined by the
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Lorentz invariant:

&p; ) n
4r9i= 11 Grpayar®® (m - 57 9

i=ln i=1

Where po is the momentum of the initial particle and p;, the momentum of the itt
final state particle. The last term expresses energy and momentum conservation. In
practice, the events are generated within a certain phase space, defined by cuts on the
kinematic variables. These cuts are then the boundaries of the integral of the cross
section. To save computer time, the phase space coordinates are generated once (in
the first step of the simulation), on a uniform grid which depends on the boundary
conditions which limit the kinematic region. The grid also depends on the input par-
ton density which has to be given by the user and which is used in the subsequent
parton evolution. The parton density sets the absolute normalization (total cross
section) of the process. In the present work, the parametrization CTEQ4D [22] was
used as it described the total event cross section best.

3.2 Models of Parton Evolution

Once a DIS event has been generated in the appropriate phase space, it must follow
the usual steps of evolution until it reaches the stage of observable. The first part of
this so-called QCD radiation process is to generate a perturbative parton level evo-
lution according to the standard evolution equations like DGLAP, BFKL and other.

On top of the standard requirements proper to each evolution picture, the Monte
Carlo simulation has to implement additional criteria to make the evolution realis-
tic on a physics point of view and therefore describe the full final state observed in
the experiment. These criteria are (usually) subleading corrections to the final cross
section, like conservation of energy and momentum at each parton branching (which
is implicit in the DGLAP picture but not in the BFKL equation) or radiation from
quark (which is usually neglected in the CCFM picture) or heavy quark mass. All
this makes the process of generating the parton evolution a tedious but necessary task.
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3.2.1 The Matrix Elements-Parton Shower Model

Most of the current Monte Carlo simulations use the Matrix Elements -Parton Shower
(MEPS) ansatz to generate the physics processes taking place at HERA. The idea _
is to use fixed-order perturbative calculations (up to now only at leading order) and
then, simulate the higher-order processes by a “parton shower” based on a leading
logarithm approximation, like the one obtained from the DGLAP equations. The
schematic organization of the MEPS ansatz is illustrated in figure 3.2.

Final
Photon State
Radiation
Matrix \< 5 — "
Elements S §
.g —— £
5 T
-
=
]
Initial
State | S
Proton Radiation

Parton Shower = ISR + FSR

Figure 3.2: Schematic representation of the Matriz Elements-Parton Shower ansatz.
The parton shower is divided into initial state and final state radiation.

Matrix Elements

The leading order process in DIS is the QPM: y¢ — ¢ shown in figure 2.1. In this
process, there is no gluon vertex and the process is therefore O(al). The two O(a;})
(leading order QCD) processes are also included in the determination of the matrix
elements: the BGF vg — ¢§ and the QCDC 49 — gg, both shown in figure 2.3.
The determination of which process is to be used on an event-by-event basis is done
through probabilities, given P, + P, + Pyg = 1. The total probability for a specific
process to occur is given by the total cross section of this process within the kinematic
region under consideration (and depends also upon the parton density and the choice
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of cut-off).

As we saw in the section 2.2.2, the leading order QCD cross sections have logarithm di-
vergencies which correspond to the case where the two partons are emitted collinearly
or when they have very small energy (“infra-red” domain). To get rid of these diver-
gencies, the Monte Carlo simulation uses the factorization property of the DIS cross
section [13] and integrates the singularities into the parton densities, which are later
evolved in the parton shower phase. In practice, the procedure is to impose a cut-off
in the phase space. Usually, the cut-off is applied to the invariant mass distribution
of the two leading-order partons s;; = (p; + p;)?. The cut-off is proportional to the
invariant hadronic mass W2 = (P +q)? (where P is the four momentum of the proton
and g, the four momentum of the photon). The cut-off is expressed by the relation:

8ij < Yeut W? (3.4)

The cut-off yey is a tunable parameter in the package. Its effect is mainly to change
the relative contributions of the three leading-order processes involved in the matrix
elements (see [42] and [50] for a further discussion on the cut-oft parameter and some
alternative implementations in Monte Carlo and NLO calculations). So far, there
is no NLO calculation implerented in the MEPS simulations. The main reason is
that, because of the divergencies, it is quite difficult to interpret the NLO cross sec-
tion in term of probabilities, as the differential cross section is not always positive
definite [51] (which is mandatory in order to interpret the integral defined in the
previous chapter as an average over a probability distribution). However, there are
NLO predictions on the form of calculation package like MEPJET [52], DISENT [53]
or DISASTER++ (54]. These calculations provide the full NLO corrections to the 1

and 2 partons emissions, including the virtual corrections.

Parton Shower

As the high-order calculations can not be included in the Monte Carlo simulation,
these corrections are approximated by the parton shower processes which are based on
the evolution equations discussed in chapter 2. The standard parton showers are ruled
by the DGLAP equations [17], described in chapter 2. This picture is also called the
“collinear limit” as it features partons evolving towards (or from) the photon coupling
and gaining (or loosing) virtuality by successively emitting harder (softer) partons

45



(that is partons with larger (smaller) transverse momenta). As shown in figure 3.2,
the parton shower is in practice split into two phase, which are indistinguishable from
a theoretical point of view (Heisenberg uncertainty principle) but give a convenient
picture of the DIS processes:

o the Initial State Radiation (ISR) pictures the evolution of a constituent of the
proton, initially on mass-shell, which acquires increasing negative virtuality
(this is called a space-like cascade) by emitting successively harder partons and
loosing at each branching a fraction of its total momentum (from momentum-
energy conservation). In the standard application of the collinear limit, this
process is actually implemented backward (from the photon coupling towards
the parton within the proton). The ISR corresponds to the evolution of the
structure function F; of the proton.

o the Final State Radiation is comparable to the ete™ — ¢g evolution picture.
After the coupling with the photon, the off-shell parton (with a large space-
like virtuality) reduces its mass by successive parton emissions. This is called a
time-like evolution and it goes on until all emitted partons become on-mass-shell
again (in practice, until a, becomes too large to apply perturbative equations).

The branchings involved in a parton shower are defined by the splitting functions (see
chapter 2) in the frame work of the DGLAP picture. In order to implement them in
the simulation, a probability is defined keeping in mind that, if a parton branches in
an interval [¢® + dq?, ¢%], then nothing must have happened between Q?(at the start
of the evolution) and ¢? (the virtuality of the parton before the branching). The
situation is then analog to a radioactive decay: if dP is the probability that there is
an emission between ¢? + dg® and ¢?, and A,(Q?), the probability that there is no
emission between Q%and ¢?, translates into:

dAg(Q?) _ P
o = —Aa(@) g (3.5)

Since the probability P;; can be written as a function of one of the splitting functions
P;; defined in section 2.2.3, as

_ @ dg’ .
dpij = E?—/dtp.:(z), (3.6)
the solution of this equation gives the “Sudakov form factor” A.(Q?):
Qdk? ¢ a
2y - —_— -
Ap(Q?) =ezp ( /'3 D ./dz21rp(z) (3.7
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The evolution process can therefore be calculated step by step, using the Sudakov
form factor (a detailed description of the Monte Carlo method of evolution can be
found in [7]). This is carried on until the partons reach a small enough virtuality Q3
(on the order of 1-2 GeV?, depending on the simulation). At this point, the evolution
is stopped and the hadronization phase takes place.

Most of the modern Monte Carlo models use the MLLA [55] (modified leading log-
arithm approximation) instead of the standard LLA. This new approximation takes
into account the interferences between ISR and FSR, so that the total contribution
of the parton shower is not equal to the sum of the each ISR and FSR individual
contributions. Moreover coherence effects are implemented in most of the modern
simulations. All these effects improve a lot the description of the data, with respect
of the basic picture of independent parton evolution.

The MEPS-based Monte Carlo used all along the present study are LEPTO 6.5 [42],
RAPGAP 2.06 {56] and HERWIG 5.9 [57]. All these Monte Carlo simulations im-
plement the DGLAP evolution picture and are therefore are expected to reproduce
its validity range. Unlike LEPTO and RAPGAP which implement the strict kr-
ordering in the parton emissions, HERWIG implements a strict angular ordering in
the FSR, while it has an energy and angular ordering in the ISR (in order to take
into account coherence effects as accurately as possible) [57]. HERWIG also uses a
different hadronization scheme based on the cluster model [58] (see below). RAPGAP
implements, on top of the standard parton shower, a “backwards evolution” from the
quark box to the photon side, which reproduces the effect of a resolved photon (this
will be developed later in chapter 8).

Another Monte Carlo model, PYTHIA [59], uses the ME-PS method but it has been
developed and checked more extensively for hadron-hadron collisions than for DIS,
although a DIS mode exists. This is why this simulation is not used in this study.

3.2.2 The Colour Dipole Model

Another type of QCD radiation is implemented in the Colour Dipole Model (CDM) [60].
Unlike the previous ansatz, the CDM does not make explicit use of an evolution equa-
tion and Feynman diagram to describe the parton evolution process. Here parton
pairs involved either in e*e~ or in ep collisions are treated as independent dipoles,
radiating other partons which are themselves part of a radiative dipole, as it is shown
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in figure 3.3. In DIS, the radiations occur between the struck quark and the proton
remnant, therefore all the QCD cascades can be treated as FSR. The total phase
space for parton emission is limited in rapidity: y < in(W/Pr), where W is the total
amount of energy radiated and Pr, the transverse momentum of the radiated parton.
From the proton side, the phase space is further suppressed because the proton has
a finite size and acts therefore as an extended antenna, so that the total phase space
allowed for radiative emission looks like the one shown in figure 3.4.

A i

Figure 3.3: The QCD cascade as implemented in the Colour Dipole Model. Each pair
of partons is treated as independent radiating dipole.

In the CDM, the boundary conditions which restrict the available phase space for
evolution are relaxed, so that a parton radiation can occur at a scale higher than
the scale of previous one (but the emissions are still ordered in rapidity, or, which is
equivalent, in z). In this context, the CDM can be seen as a BFKL-like simulation,
since it lacks strong ordering in the parton emissions. This feature should enhance the
parton emissions at small z, exactly as it is expected in the BFKL scheme, although
the CDM does not implement literally the BFKL equation.

The measurement of the di-jet cross section by the H1 collaboration {40, 61] confirmed
that the CDM predicts a much larger rate than the MEPS-based models. Recently,
it has been argued that this increase is due to an “unorthodox” suppression factor in
the CDM, with respect to the MEPS models [62]. This factor is due to the absence
of initial state radiation in the CDM, and the subsequent boundary conditions from
the proton side. Instead, the boundary conditions arise from the fact that the proton
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Suppresion due to extended antenna

Y

Figure 3.4: Available phase space for parton radiation in the Colour Dipole Model.
Pr is the transverse momentum of the emitted parton and y is its rapidity.

emits radiations as an extended antenna. According to these authors, this creates an
increase of hard parton emissions at small z. In any case, the physics implications of
the CDM are not yet fully understood, and although it offers a convenient alternative
to the DGLAP-based models (as it describes the total jet rate observed in the exper-
iment), it is too premature to state on its correspondence with the BFKL picture.

In this study, the CDM is implemented in the ARIADNE package [43] (ARIADNE
4.08). Here, the LO matrix elements are taken from the LEPTO package, while the
QCD cascade follows the CDM.

3.2.3 The Linked Dipole Chain

Recently, a new model has appeared which enables the implementation of the CCFM
equation in a Monte Carlo simulation: the Linked Dipole Chain model (LDC) [63].

As it was shown in section 2.3.4, the CCFM picture interpolates between the DGLAP
and the BFKL schemes, so that first estimations of a BFKL-type effect can be eval-
uated. This Monte Carlo simulation has more solid theoretical basis than the CDM,
as it is based on an evolution equation and implements ISR.

The Linked Dipole Chain Monte Carlo (LDCMC) [64] uses the CCFM equation to
evolve the structure function of the proton in the Initial State Radiation. On top of
the angular ordering which restricts the phase space available for radiations, the LD-
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CMC implements other requirements which are needed in a Monte Carlo simulation,
like the conservation of energy and momentum at each branching, the quark density
of the proton and the suppression factor for heavy quarks. The ISR creates a pattern
of color charges which are then evolved into a final state cascade with the CDM itself.

The LDCMC (version 1.0) implements its own parametrization of the structure func-
tions, which are described in [64]. It has been compared in [64] to several final state
observables and its predictions lie between ARIADNE and LEPTO. As will be seen
later (chapter 8), it is not yet understood why the LDC does not describe the data.

3.3 Hadronization Phase and Non-Perturbative Ef-
fects

The models presented earlier already differ in the perturbative treatment they apply
to the parton cascade. In order to obtain the final state quantities, an additional
step has to be taken, that is transforming the coloured partons into observable colour
singlet hadrons. Unlike the parton cascades, the hadronization models are not based
on perturbative calculations but are phenomenological pictures determined by a set of
parameters which are often obtained by fitting experimental data. This hadronization
phase decreases the predictive power of the Monte Carlo simulation, but is mandatory
for a good description of the data.

3.3.1 String Fragmentation

The Lund string model [65] provides the most common picture for the Monte Carlo
simulation. It predicts that a string is stretched between any quark-antiquark pairs
created during the QCD radiation phase, as well as between quark-diquark (proton
remnant) pair. The string creates a uniform QCD field on the order of 1 GeV/fm,
which then creates ¢ pairs when the stored energy is large enough. The “break
points” of the string are the color triplets ¢ and g, while the incident gluons, a color
octet state, only produce “kinks” on the string, thus modifying its energy and mo-
mentum at the particular point where the gluon hits it, without breaking it (see
figure 3.5a). These kinks lead to the rapidity (polar angle) distributions of the final
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state particles in the detector. The attractive feature of this model is the indepen-
dence of the final result on soft and collinear particles which can be created during
the QCD cascade phase [66].

The string model is implemented in the LEPTO, ARIADNE, RAPGAP and LDC
simulations via the JETSET package {59]. The various parameters are obtained
through fits of the e*e~ data.

\ lf

Figure 3.5: a) Colour connection between partons in the standard string model. b)
Soft colour interaction between parton pairs. No string is stretched between the quark
boz and the proton remnant creating a rapidity gap.

3.3.2 Cluster Fragmentation

The cluster model [58] uses the property of “preconfinement” of colour to describe
the hadronization phase: in the perturbative limit (high masses), the confinement of
a partonic system is local, independent from the type of hard subprocess from Q3.
This leads to the property of Local Parton-Hadron Duality, meaning that the partons
are converted into hadrons locally in phase space (this property will be discussed in
chapter 6).

In the cluster model, each gluon which arises from the parton shower decays into a pair
of quark-antiquark (or diquark-anti-diquark). Each parton of the pair is connected
by a colour line to the neighboring parton (this is the planar approximation), thus
forming a colour singlet cluster. This cluster follows the “preconfinement” property,
that is, it is independent of the hard subprocess and the energy scale. The cluster
then fragments isotropically (in its rest frame) into pairs of hadrons, following flavour
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conservation.

This model is implemented in the HERWIG simulation and has the advantages of
having less phenomenological parameters and of describing well the e*e~ scattering.
However, we will see in chapters 7 and 8 that it does not describe well all the kine-
matic variables of our DIS sample, in the kinematic range selected for this analysis.

3.3.3 Soft Colour Interaction

A third kind of non-perturbative effect has been implemented into the LEPTO model:
the Soft Colour Interaction (SCI) [67). In this model, similar to the Lund string
model, all the partons created perturbatively after the parton shower phase interact
softly between each other and with the colour medium of the proton through colour
strings. These interactions modify the partons’ colour but do not change their mo-
menta. Unlike the strings from the Lund model, the soft colour connections can be
formed between any pair of partons, including the gluons. This property affects the
topology of the subsequent hadronization strings, thereby modifying the final state
distributions. In figure 3.5, the pattern of a soft colour interaction is compared to
the usual Lund string model picture. In the SCI case, the gluon can couple to the
diquark (proton remnant) creating a colour singlet object. On the other hand, the
leading order partons, from the quark box, are also connected by a soft string, lead-
ing to another colour singlet system. In between the two colour singlets, there is no
colour connection, leading to a rapidity gap (no hadronic activity in a large rapidity
interval). Historically, the SCI was introduced to explain the large fraction of DIS
events with a large rapidity gap (around 10%) (68]. The theorists claim [69] that this
model is adequate to describe the events observed at HERA.

A side effect of this model, presented in [69], is the increase of hadronic energy in the
forward region of the detector (corresponding the central rapidity region in the HCM
frame). This effect, apparently orthogonal to the previous one, is due to fluctuations
created by the soft colour strings, leading to an increase of energy per unit of rapid-
ity. In section 2.4.1, the excess of transverse energy in the central rapidity region
of the HCM frame was interpreted as being one of the possible effects due to a new
kinematic regime, namely the BFKL picture. The conventional Monte Carlo mod-
els, based on the DGLAP equations, were unable to describe correctly this amount.
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The implementation of SCI in the LEPTO model enables to describe the distribu-
tion of transverse energy flow observed in the data, without having to require a new
kinematic regime as it is shown in figure 3.6. The data collected by the H1 experi-
ment (40, 70] are compared to the LEPTO model, implementing the SCI and a new
sea quark treatment (SQT) [42]. These two non-perturbative phenomena manage
to increase the relative amount predicted by the LEPTO model, so that this Monte
Carlo simulation matches the rate observed in the data.

In LEPTO, the SCI are handled through a parameter adjustable by the user. It sets
the probability for a parton to interact through SCI with another parton (or with
the proton remnant). This parameter was tuned to reproduce the relative amount
of rapidity gaps observed in the data and the amount of transverse energy observed
at HERA. The value of this parameter used in this analysis was tuned to describe
accurately the rate of events with a large rapidity gap observed at HERA [67).

3.4 Detector Simulation

After having been generated according to a specific model, the events need to pass
through a detector simulation before being compared to the data, in order to take into
account the response of the various components. The detector simulation is based
on a fortran package MOZART ([71], itself based on the GEANT [72] program used
in most of the experiments in high-energy physics. They include all the information
about geometry, calibration, position and energy resolution and other properties, as
well as the beam gas effects on the various part of the detector (see chapter 4).

The triggers, which select “good” events as opposite as background (see chapter 5)
were simulated by another fortran package: ZGANA {73]. Once the events have
passed all the detector and trigger requirements, they are reconstructed (similarly for
data and Monte Carlo simulation) using the ZEPHYR package [71]. At this stage,
the events are called “reconstructed”, by opposition to “generated” or “hadron level”,
before the stage of detector simulation. The comparison between reconstructed and
generated events is used to correct the data for detector effects, evaluate the resolution
for a specific kinematic variable and determine the quality of the reconstruction of
the various kinematical variables as well as the amount of background in the data
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Name Hadronization scheme | Parton evolution model Application
LEPTO Lund string model MEPS DIS
ARIADNE | Lund string model CDM DIS
HERWIG Cluster model MEPS DIS and
photoproduction
PYTHIA Lund string model MEPS photoproduction
LDCMC Lund string model LDC DIS
(CCFM and CDM)
RAPGAP Lund string model MEPS DIS
with resolved photon

Table 3.1: List of the Monte Carlo simulations with the corresponding parton evolu-
tion models and hadronization schemes.

sample. Finally, it is important to stress that the response of the detector component

should not depend on the model used to generate the events. In practice, small model

dependences are expected, as the components have a different response for difterent

final state distributions and these model dependences must be taken into account in

the calculation of the systematic errors. A summary of all the Monte Carlo models
presented here is shown in table 3.1.
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Figure 3.6: Transverse energy flow versus pseudo-rapidity n° defined in the hadronic
center of mass frame in different bins of ¢ and Q2. The data come from the H1
analysis. The data are compared to the predictions of LEPTO 6.5, with and without
SCI. The model has also been running with a new sea quark treatment (SQT).
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Chapter 4

Experimental Setup and Data
Acquisition

4.1 The HERA Accelerator

The experimental observation and study of Deep Inelastic Scattering and related
processes requires probing very small scales or distances. As the observed length is
inversely proportional to the energy of the probe, looking at very small scales means
using very high energies. This motivated the construction of the large accelerator
HERA (Hadron Elektron Ring Anlage), which began in 1984 and was completed in
November 1990. It is designed to accelerate electrons or positrons up to an energy of
around 30 GeV and protons up to around 820 GeV (plans have been made to increase
this value to around 920 GeV for the next running periods), yielding a center of mass
energy /s = 314 GeV.,

By reference to the fixed target experiments, the physics process going on at HERA
is sometimes referred to as a collision between an electron (or positron) probe and
a moving proton target. The traditional experimental studies on DIS were made on
fixed target experiments like the SLAC-MIT (using the Stanford Linear Accelerator
Center), BCDMS, EMC or NMC (in CERN), CCFR (in Fermilab) colliding lepton
probes on fixed nuclei. The main advantage at HERA lies in the value of the center
of mass energy, which is much larger than in the previous accelerators, allowing to
probe much a wider kinematic range, going from very low z (below 10~%) to very high
Q2 (10* GeV?). The kinematic range covered by HERA and ZEUS is compared to
the fixed target experiments in figure 4.1.
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Figure 4.1: Kinematic range covered by the HERA accelerator as a function of (z,Q?),
compared with several fized target DIS experiments. Also shown is the kinematic range
accessible in the ZEUS detector at HERA thanks to the beam pipe calorimeter (BPC)
and the shifted vertez runs (SVTX).

The two main experiments operating on the HERA accelerator are ZEUS and H1,
located in the south and north hall respectively. They first took data in 1992, with
an electron energy of 26.7 GeV and a proton energy of 820 GeV. Two other non-
collider experiments, HERMES and HERA-B make also use the accelerator facilities
to study respectively the spin structure of the nucleon and the CP violation in the
B°B° system.

The HERA accelerator is schematically shown in figure 4.2. The electrons (positrons)
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and the protons are accelerated in two separate rings using superconducting magnets
and housed in a 6.34 km long tunnel.
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Figure 4.2: Layout of the HERA ring and layout of the injection system.

Starting from negatively charged hydrogen, H~, brought to an energy of 50 GeV in
the H-, LINAC (linear accelerator), the protons are obtained by stripping the ions
of their electrons before injecting them into the DESY III storage ring. At this point,
there are eleven proton bunches separated by 96 ns. The protons are then accelerated
to an energy of 7.5 GeV before being transferred to the PETRA (Positronen Elektro-
nen Tandem Anlage), where seventy bunches are accumulated and accelerated to an
energy of 40 GeV before being transferred to the HERA main ring. This is repeated
until 210 bunches are accumulated. Finally the proton bunches are accelerated to an
energy of 820 GeV.

The injection chain for the electrons (positrons) starts in the LINAC, where they are
accelerated to an energy of 450 MeV. At this energy, they are stored in the positron
intensity accumulator, PIA, where a single bunch of 60 mA is created. They are then
transferred to the DESY II ring and accelerated to 7.5 GeV, before being transferred
to the PETRA II ring where they are accelerated to 12 GeV. There 70 bunches are
created, separated by 96 ns. Finally the electrons bunches are injected in the main
HERA ring where up to 210 bunches can be accumulated (in practice, not all the
electron and proton bunches are filled. There are some unpaired “pilot” bunches
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generated to estimate the beam gas backgrounds). In HERA, the electron bunches
are accelerated to an energy of 30 GeV.

The electron lifetime is very short (~ 2-3 hours), due to positively charged particles
in the beam pipe which were attracted in the electron beam and scattered against
them. This was solved by inverting the polarities of the magnets and using positrons
instead of electrons (July 1994). The lifetime of the positron beam is much larger: in
the order of 8 to 9 hours. Apart from charged current analyses, this change did not
affect the physics process rates at HERA.

The luminosity obtained in HERA has been continuously increased since the first
electron proton collision in 1992. The present analysis is based on 1995 data, when
HERA delivered an integrated luminosity of 12.3 pb~!. Qut of this, ZEUS collected
about 8 pb~!, corresponding to the period during which the detector was operational
and the beam conditions were good enough for data taking. After subtracting bad
runs, due to faulty components or high beam gas background, we are left with 6.36
pb~!. This is the luminosity used all along this study.

4.2 The ZEUS Detector

The exploration of finer structures and smaller scales in high energy physics leads
to a growing degree of complexity in the design of the large detectors, together with
larger collaborations and varieties of competences. The ZEUS detector, operating at
HERA, represents a step forward with respect to the previous generation of detectors
(like those operating at the Tevatron ring and the LEP collider), in particular in view
of the size of the collaboration: more than 450 people coming from 51 institutes in
11 countries are participating in this effort. Because of its complexity, an exhaustive
description of the detector would be too ambitious taking into account the scale of
this work. This description can be found in [74]. ZEUS is a multi-purpose detector,
covering most of the 4r solid angle around the collision point except for the small
angle around the beam pipe. Because of the strong asymmetry in the collision due
the boost caused by the difference of energies between the incoming proton and the
positron, the detector is asymmetric: the forward direction, defined by the direction
of the proton is larger and deeper than the rear region, defined by the direction of
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the positron.

The coordinate system is orthogonal and right-handed: the center is taken as the
nominal interaction point, the Z axis points towards the direction of the proton, Y
points upwards and X towards the center of the HERA ring. The polar angle 6,
defined with respect to the Z axis is therefore 0° for the proton beam and 180° for
the positron beam. In most of high energy physics analyses, the measure of the polar
angle is given by a relativistic invariant parameter (provided that the mass effects are
neglected): the pseudorapidity n defined as: n = —In tan(4/2).

The various components of the ZEUS detector are pictured in figure 4.3: the inner
part is made of a large wire chamber, the CTD (Central Tracking Detector) [75], sur-
rounded by a superconducting solenoid generating a longitudinal field of 1.43 T. This
detector yields information about the momenta of the charged particles and enables
the collision vertex reconstruction. The FTD znd RTD (forward and rear tracking
detectors) are respectively in front and behind the CTD and provide the same kind
of information for particles going outside the range of the CTD. Further behind the
CTD, lies the SRTD {76] (Small Rear Tracking Device) which improves the detec-
tion of positrons scattered at small angles. These components are surrounded by the
uranium scintillator calorimeter or UCAL [77], which measures the energy deposited
by the particles passing the tracking devices. It is divided into three sections: the
FCAL (forward calorimeter) in the forward direction, the BCAL (barrel calorimeter)
in the central region around the threshold and the RCAL (rear calorimeter) in the
rear region. A layer of scintillator tiles in front of the FCAL and RCAL, the pre-
sampler (78], improves the accuracy of the energy reconstruction by correcting for
energy losses due to showers in the dead material in front of the calorimeter. The
calorimeter is enclosed in a iron yoke made of several 7.3 cm thick iron plates which
catches the return lines of the magnetic field and serves as a secondary absorber for
the backing calorimeter (the BAC). This calorimeter measures the energy leakage
of the main calorimeter. Finally, on the inner and outer sides of the yoke, limited
streamer tubes are mounted outside the barrel part (BMUI, BMUO) and the rear part
(RMUI, RMUOQ). They measure minimum ionizing particles traversing the calorime-
ter, mainly muons. They also allow to reject background events coming from cosmic
rays and beam halos (results of the interaction between the protons and particles in

the beam pipe). A forward spectrometer (FMUON) is installed in front of the FCAL
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(in the positive Z direction) and allows in addition the precise determination of the
muon tracks.

In the following, the components specifically used in this analysis will be shortly re-
viewed.

Overview of the ZEUS Detector
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Figure 4.3: Side view of the various components of the ZEUS detector.

4.2.1 The Uranium Calorimeter (UCAL)

The energy reconstruction of an event observed by the ZEUS detector is performed
by the uranium calorimeter. It is the main component of the detector as it deter-
mines whether an event is accepted or not and is thus at the bottom of the trigger
chain which will be discussed in chapter 5. As mentioned above, the calorimeter is
divided into rear, barrel and forward regions (RCAL, BCAL and FCAL) covering
respectively a polar angle (pseudorapidity) region of: 128.1°(-0.72) to 176.5°(-3.49),
36.7°(1.1) to 129.1°(-0.74) and 2.2°(3.9) to 39.9°(1.0). 99.6% of the 4r solid angle
around the interaction point is covered, leaving a hole of 20x20 c¢m? in the forward
region and 20x 12 cm? in the rear region to allow room for the beam pipe.
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The calorimeter consists of alternating layers of absorber (3.3 mm of depleted ura-
nium) and active material (2.6 mm thick plastic scintillator plates). Because of its
stable radioactive properties, the uranium noise from the calorimeter is used to check
the calibration of the data acquisition chain and the calibration of the photomultiplier
tubes, which record the amount of energy deposition (known to 1-2% accuracy). The
uranium calorimeter also provides compensation, i.e. the signal response for hadrons
and electrons is equal (e/h = 1.00 £+ 0.02). This property improves the energy reso-
lution of the hadrons: under test beam conditions, the resolution for the hadron jets
has been found to be og/E = 0.35/\/E (E is the energy of the particle in GeV). For
the electron, the resolution was measured to be: og/E = 0.18/VE.

Each of the calorimeter components is made up of modules of various lengths: there
are 23 modules in the FCAL and the RCAL and 32 in the BCAL. The layout of an
FCAL module is displayed in figure 4.4. These modules are further segmented into
towers with a front surface area of 20 x 20 cm? in the FCAL and RCAL and 20 x 24
cm? in the BCAL.

Figure 4.4: Layout of an FCAL module.

Each tower is further longitudinally subdivided into hadronic (HAC) and electromag-
netic (EMC) sections: there is one EMC section in RCAL, BCAL and FCAL, two
HAC sections in BCAL and FCAL and one HAC section in RCAL. Each section con-
sists of one or more cells. One cell is divided into two photomultiplier tubes which
read the signal given by the energy deposition in the calorimeter. The EMC sections
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consist of four cells of 5 x 20 cm? in the FCAL and the BCAL and two cells of 10 x 20
cm? in the RCAL. The HAC section forms a single cell of size 20 x 20 cm?®. The BCAL
EMC cells are projective to the interaction point. This information is particularly
crucial for this analysis: as the measure of the polar angle is done in unit of pseudora-
pidity, the width of the cell in the (7, @) plane will change accordingly to its position
(here ¢ is the azimuthal angle). The crucial point is that 7 is a logarithmic quantity,
so the cells in the forward region, in the (7, ¢) plane are quite large. In figure 4.5, a
cross section of the forward calorimeter is shown in the (7, ¢) plane in one real event.
For this example, the HAC cells only are displayed. The black circle defines a jet,
which is now seen as a cluster of cells with a radius R=1 in the (7, ¢) plane. The full
dots represent the energy deposition in the cells which are associated with the jet in
this event, while the small open dots represent the energy deposition in a cell which
is not associated with the jet. The radius of the full and open dots is proportional to
the amount of energy deposited in the cell (if the dot is not in the center of the cell,
it means that the energy has been deposited in another HAC section or in a EMC
cell). The increase in the size of the cell is very noticeable for n > 2. This results
from a certain lack of accuracy in the position reconstruction, especially in the HAC

sections, which are not segmented.
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Figure 4.5: Cross section of the HAC cells of the FCAL in the (,¢) plane. The black
dots represent the energy deposition in each cell. The black circle defines a cluster of
cells with a radius of 1.

The calorimeter has been designed to fully contain 95% of the hadronic (jet) energy
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and 98% of the electromagnetic showers (in average for the highest energy particles
produced). The parameter which defines the containment depth of the electromag-
netic shower is the radiation length X,. This is the average distance for an electron
to lose 63% (1/e) of its energy (in the EMC cells, it is equal to 0.74 cm). The EMC
cells have a radiation length of 25 X,. The hadronic showers are given in units of
interaction length A\. The absorption length in the three sections of the calorimeter
is: 7.14 (FCAL), 4.92 (BCAL) and 3.99 (RCAL).

Besides energy and position information, the calorimeter provides a good time mea-
surement: the time resolution for a calorimeter cell with an energy deposition above

3GeViso, = 1.5/\/(E) @ 0.5 ns.

Every particle reaching the calorimeter has to cross a certain amount of inactive
(“dead”) material where it deposits some of its energy by interacting with the par-
ticles of the medium. Therefore the measured energy in the calorimeter is not equal
to the true energy of the produced particles (the correction method in the case of
hadron jets will be reviewed in chapter 7). In the front and rear calorimeters, a
segmented scintillator array (the presampler detector) has been installed to correct
for the energy loss of the positron: the presampler measures the multiplicity of par-
ticles created by the showering of the incoming positron in front of the F/RCAL
and uses it to correct for energy losses on an event-by-event basis. The result of the
presampler correction on a test sample of 25 GeV electrons is shown in figure 4.6 [78].

BT 3 1 1 ¥ T 1
i oo
EI F 1 Corrected
bl ; . Uncorrected
400 -
oo -
200 -
100 f-
0 F ' I\t [ ) Z 2
10 125 18 175 0 ns Fg 7.5 o
Calorimeter Signal (GeV)

Figure 4.6: Energy distributions for 25 GeV electrons before and after the presampler
corrections.
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4.2.2 The SRTD

The small rear tracking detector is installed in front of the RCAL and cover a polar
angle domain of 162° to 176°: a region mostly not covered by the other tracking de-
tectors. Its goal is to improve the measurement of the positron energy and position,
when it is scattered at low angles. This corresponds to the kinematic region of low
Q? as Q? = 4F, E.cos*(6/2), where E, is the energy of the scattered positron, E.,
the energy of the incoming positron and 8, the angle of the scattered positron (the
formula is given by the electron method, see appendix A). It is therefore particularly
suitable for low-Q%and low-z studies.

The SRTD consists of two layers of scintillator strips (the same material as for the
ZEUS calorimeter has been chosen for the scintillators). It is divided in four quad-
rants in the XY plane of 24 x 44 cm?®. The scintillation light is transported to the
photomultiplicator tubes via light guides. The scintillator strips have a fine segmen-
tation, so that in average the position resolution of the positron is better than in
the calorimeter (it is approximately 0.3 cm, while in the RCAL it is only 1 cm in
average). The energy resolution of the positron in the SRTD is o = 26%+/E., where
E, is the energy of the positron in GeV.

4.2.3 The Central Tracking Detector

The central tracking detector is mostly used in this analysis to measure the value of
the vertex position in this analysis. Generally, it enables the reconstruction of the
four momentum of the charged particles tracks. The CTD consists in a cylindrical
drift chamber of inner radius of 16.2 cm and outer radius of 85.0 cm and length 241
cm. It is made of 72 cylindrical layers arranged into 9 superlayers. The odd-numbered
superlayers have axial wires (parallel to the beam line) while the even-numbered su-
petlayers have stereo layers (tilted by +5° with respect to the beam line to provide a
measurement of the Z position of the track). It is filled with a gas mixture of argon,
CO2 and ethane.

The resolution of the CTD in 1995, in the (r,¢) plane was about 230 um and 2
mm on the Z axis. The resolution on the transverse momentum is: o(p:)/p =
\/(0.005 - p,)? + (0.0016)?, where p, is in GeV/c.
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4.2.4 The Luminosity Monitor

The luminosity is measured in ZEUS through the radiative emissions of real photons
from the positron: ep — e’py. This process, known as Bremsstrahlung, has been cal-
culated by Bethe and Heitler [79] in 1934: the total cross section for a Bremsstrahlung
radiation by a relativistic photon of energy E and producing a photon of energy E,
is given by:

do E' , AE,EE' 1
iE = daenr! 55 F(E/E + E'[E - 2/3)(In -3 (4.1)

mpm.E,

E' is the energy of the positron after the photon radiation, m, and m, are the mass
of the proton and the positron respectively and a.n, is the QED coupling strength.

The monitor consists in a lead-scintillator calorimeter situated 107 m down the beam
line with respect to the nominal interaction point. Its resolution is o(E)/E = %'Sg!.
The acceptance of the calorimeter A (determined by Monte Carlo studies), together
with the total rate R of radiative photons observed in a run and the integrated cross
section (quoted above) of the process yield the total luminosity of the run by the

formula:
R
L= o (4.2)

4.3 Data taking

The data used in this study were collected by the ZEUS detector in 1995, with an
integrated luminosity of 6.36 pb~?!, which corresponds to nearly three times as much
luminosity than in 1994. No big detector upgrade has been undertaken between 1993
and 1997, but the high luminoesity available from the HERA accelerator has made
it difficult to trigger on every physical process, especially after 1996. The trigger
channel used in this work (see next section) was prescaled in the following years
(1996 and 1997), leading to numerous statistical problems in the analysis. This is
why we restricted ourselves to 1995 data set in this work.
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Chapter 5

Event Selection

5.1 On-line Triggers

Most of the events seen by the ZEUS detector at HERA do not come from the ep
scattering but are the results of interactions between the particles in the beam and
the residual gas in the beam pipe, or of halo interactions (interactions between the
protons and positrons and particles trapped in the beam lines). Some of the events
observed are also the result of cosmic rays passing through the detector.

Because of these high background rates, it is necessary to build a sophisticated trig-
ger system which filters the interesting physics events out of the noise. Furthermore,
these high rates require a decision time short enough, so that the readout electronics
and the transfer of data to the storage system can handle them. As it is impossible
to make such a decision within the HERA bunch crossing time of 96 ns, the trigger
system is subdivided into three levels: the GFLT, GSLT and TLT (global first and
second level triggers and third level trigger). The purpose of it is to reduce the in-
coming rate, which is on the order of 10 MHz to a few Hz at the end of the chain.
Each trigger has to make a decision on whether to keep or to reject the event. The
first level trigger uses simple algorithms which allow it to make crude decisions in a
very short time. The higher levels use more elaborate algorithms and criteria so that
they can make a finer selection in a slightly longer period. In order to reduce the
dead time due to the decision making, the first level trigger is pipelined, which means
that the data are stored in 52 buffers at a rate of 10.4 MHz before being send to the
GSLT. The various components of the GFLT process in parallel the algorithms in
order to select the event and send back their decision to the GFLT which then passes
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the events further down the chain or clears the buffers, according to a decision based
on a combination of all the components decisions, Once the event has been processed
by the GFLT and the GSLT, it is transferred to the event builder which combines all
the information of the various components into one event record. The data is then
transferred to the third level trigger (TLT) which makes the final decision and reduces
the data set to a few events per second. A simplified diagram of the three-level trigger
system at ZEUS is shown in figure 5.1. Also shown is the expected reduction rate at
each level.

The description of the various cuts made to select the events considered in this anal-

ysis is presented below.
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Figure 5.1: Schematic organization of the three-level trigger system in ZEUS.
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5.1.1 GFLT

At the first level trigger, the information on the energy deposit in the ZEUS calorime-
ter is responsible for selecting the events which will be further processed. The
calorimeter is therefore the most crucial component of the ZEUS detector as it ap-
pears at the bottom of the event selection chain. The GFLT consists of a logical
“OR” between the various parts of the calorimeter, the selection being based ox sev-
eral energy thresholds: the total energy of the electromagnetic sections has to be
larger than 4.8 GeV in the barrel (central) region (BEMC), or 3.4 GeV in the rear
calorimeter(REMC). The events are also triggered if an isolated positron (defined as a
set of up to four trigger towers surrounded by silent triggers) is found with an energy
larger than 2 GeV. An output rate of 1 kHz is expected after the first level trigger.
The rates are adjustable by varying the thresholds, depending on the luminosity and
the running conditions. ‘

5.1.2 GSLT

The main goal of the second level trigger is to reject the beam gas background to
obtain a cleaner physics sample and lower rates. As for the first level trigger, the main
component for the event selection is the calorimeter. In Deep Inelastic Scattering,
two variables are used to trigger on the events:

e The total transverse energy of the calorimeter, calculated using the variable
§ = E— Pz =5, E;(1 — cosb;), where the sum is carried over all the calorimeter
cells. In a fully contained DIS event, following energy conservation, the quantity
§ must be equal to twice the energy of the incoming positron, that is 2-27.5 = 55
GeV. In photoproduction, where the positron goes undetected down the beam
pipe, the § distribution peaks at lower values, around 30 GeV. In DIS, the
events are selected by applying a loose cut on this variable: £ — Pz + E, > 24
GeV, where E, is the energy of a photon detected in the lumi monitor, to take
into account possible electromagnetic radiation of the positron. The E — Pz
distribution in DIS and in photoproduction is shown in figure 5.2, together with
the nominal value of the cut (see section 5.3).

o The calorimeter timing offers a powerful way of discriminating beam gas from
physics events, thanks to the good time resolution of the measurement (1 ns for
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cells with an energy above 1 GeV). In an ep scattering process, as the origin of
time in an event is taken at the nominal interaction point, the timing difference
between the FCAL and the RCAL will be small. On the other hand, if the
events are coming from the proton-beam gas and given that the proton beam
moves in the forward direction, the rear calorimeter will record an early energy
deposition. This is why the cuts Trcar — Trcar > 8 ns and |Trear| < 8 ns are
used to reject beam-gas events. The events originating from the positron beam
gas (interaction of a positron with a beam gas particle) are removed by cutting
on the FCAL timing: |[Trcar| < 8 ns. This cut provides with a very powerful
way of discriminating between the beam gas background and the outcome of
the ep collision as is shown in figure 5.3.

An additional loose cut on the Z vertex allows further beam-gas related background
rejection (the event vertex reconstructed by the CTD is required to be within 100 cm

from the nominal interaction point, if there are at least two tracks pointing towards
it in the CTD).

The SLT reduces the event rate to about 100 Hz and transfers the various parameters
of the event to the event builder.

* ZEUS Dote
N 0is

@ e

Number of Events

3
o
L
200 5
wg 3
LY Y-
100 = 42107
50

:
3

3 3 4 4 5 S5 @ €S

8 (Gev)

Figure 5.2: E— Pz distribution in the ZEUS data and in two Monte Carlo simulations.
The DIS Monte Carlo model is shown as a gray histogram, while the photoproduction
one is in black.
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Figure 5.3: RCAL and FCAL time distributions.

5.1.3 TLT

The final on-line event selection is performed by the third-level trigger (TLT). At this
stage, more elaborate algorithms can be used for the selection (like jet or positron
finders) as the processing time constraints are relaxed. In the present study, the
events triggered are required to have £ — Pz + E, > 30 GeV (similarly to the SLT
requirement). A positron, found with the on-line algorithm such as ‘Local’ [80] or
‘Elec5’ [81], is required to be found with an energy larger than 4 GeV. Additional
cuts on the position of the detected positron were applied.

In 1995, because of the high rate due to the high luminosity, some of the trigger slots
used were pre-scaled. In practice, the selection requirement on the events were tight-
ened (the box cut applied to the positron was increased from (12,6) cm to (14,14) cm
in the (X,Y) plane - for the reason for this box cut, see section 5.2). This can cause
problems when computing cross sections as the observed cross section per run might
vary from one period to another and depend on the reduction factors coming from the
preselection. In figure 5.4, the first plot shows how this affected the rate of events over
luminosity per run: a clear step shows up for the run numbers above 12750. However,
just by applying a cut on Q2 (Q? > 7 GeV?), the effect practically disappeats, the av-
erage cross section per run is approximately flat and does not depend any more on the
run number. As the kinematic region considered in this analysis is constrained to be
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Figure 5.4: Number of events per run, divided by the luminosity of the run (in nb~!)
without and with a Q% cut in the 1995 data, using the TLT as ezplained in the tezt.

Q% > 10 GeV?, the effect of the prescaling is not important.

After applying the on-line selection, the data sample in 1995 contains 7.6 x 10° events.

5.2 Positron Reconstruction

Before turning towards the off-line cuts which determine the final event sample, we
shall consider one of the crucial point of this analysis, that is the reconstruction of the
positron energy and position. In DIS, the accuracy of the reconstructed kinematics
of an event depends on the reconstruction of the scattered lepton parameters (energy
and position) since the method used to determine the kinematic variables z, y and
Q? is based on the positron variables (see appendix A).

The reconstruction algorithm used for the positron finding is called SINISTRA and
is described in detail in [82]. This algorithm is a neural network simulation based on
calorimeter cells and more specifically on the concept of islands: these are clusters of
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cells, gathered around a single local maximum which approximate a single particle
shower in the calorimeter. Only the cells neighboring (in the 3 dimensions) the local
maximum are taken into account. To increase efficiency, only well isolated islands
are considered, for which all the surrounding cells have no significant energy deposit.
The positron finder is based on a probabilistic method: the energies in the PMT’s
of the tower surrounding the local maximum constitute a “neural” network, from
which a probability Psy is extracted. Only electromagnetic cells are considered in the
elaboration of the network. If the probability is close to 0, the algorithm assumes
that the island has been created by a hadron. If the probability is close to one, it
assumes that the island has been created by a positron (it can also be a photon). The
energy of the positron is then the sum of the energies of the cells in the island. In
this analysis, the probability cut of the algorithm, in order to identify the island as a
positron, has been set to Psy > 0.9.

The position of the positron is also calculated by an algorithm finder, except in the
cases where the positron has been detected in the SRTD, in which case, only the SRTD
information is taken into account. In the first case, the position of the positron is
determined by fitting the energy weighted distribution of the shower. This fit be-
comes however inaccurate close to the beam pipe. The positron scattered at low
angles (close to the beam line) can also lose part of its energy in the beam pipe.
To reject those positrons, a “box” cut has been performed on the positron position
in the (X,Y) plane: |X| > 13 ¢cm and |Y| > 8 cm. The positions of the scattered
positrons with hits in the SRTD and with calorimeter information only are shown in
figure 5.5. The SRTD hits are shown as black dots. The shape of these hits shows
the characteristic acceptance of the SRTD.

5.3 Off-line Selection

We saw up to now how the detector selects on-line the event sample and how the
reconstruction of the positron energy and position is described, which allows in order
to determine accurately thereafter the kinematic variables in the events and at the
reconstructed level of the Monte Carlo simulation.

Another set of cuts is applied off-line to further constraint the data sample. These
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Figure 5.5: Positron position in the calorimeter and the SRTD in the transverse
(X,Y) plane. The positron is found with the SINISTRA algorithm. The gray dots
represent hits for the positrons in the calorimeter, while the black dots are hits of the
positrons in the SRTD.

cuts can be roughly divided into two groups: the “cleaning cuts” which are applied
at the reconstructed level only and which provide us with a cleaner, background-free
sample of the experimental and simulated data, and the “phase-space cuts”, which
determine the value of the total cross section within the phase space of investigation.
Unlike the former set, these latter cuts are applied at both levels, reconstructed and
generated level and are used as well in the theoretical calculations. The first set of
cuts does not appear at the theoretical level (which does not know about the detec-
tor). The loss of events due to these cuts is therefore part of the overall efficiency of
the reconstruction (see section 7.3.3).

Cleaning Cuts

After the on-line selection, not all the runs and events are conserved for data pro-
cessing. Some of the events (or even entire runs) are removed on behalf of criteria
like holes (local losses of sensitivity) in the calorimeter during the data taking period,
part of the trigger being off, high voltage or timing problems. These runs are removed
in the first stage of the processing period to save computer time and space.
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. Some basic, general checks are then performed to remove characteristic events which
can occur in parallel to the normal ep scattering:

o Compton events: the elastic QED compton process occurs when an electron
or positron scatters off a real photon, and both particles are detected in the
calorimeter. The proton is left unscattered and goes undetected in the forward
beam pipe. The signature for this type of event is the presence of two elec-
tromagnetic condensates and the fact that the energy ratio of each one of the
condensates to the total energy in the calorimeter is larger than a certain value
(here we take 0.9). These events are removed from the sample. The effect is
however quite small in the current sample (on the order of 1%).

¢ Events with a cosmic muon in the detector are rejected.

o Events with sparking cells, i.e. cells which can produce wrong signals due to
sparks recorded in the PMT’s are rejected if a high energy isolated cell is found
in the calorimeter,

The other cleaning cuts performed on the reconstructed sample (data and simulation)
are:

e 35 < E— Pz < 65 GeV: the variable E — Pz has been described earlier (section
5.1.2). The lower cut is however performed in order to remove photoproduction
background, where the positron disappears undetected, and the event is not
fully contained in the detector (therefore the variable E — P peaks at lower
values). The upper cut is set to remove beam-gas events and misreconstructed
vertex which can artificially increase the value of E — Pgz.

e To further remove beam-gas background, a cut on the vertex position has been
performed: |VTX(Z)| < 50 cm, with respect to the nominal interaction point.

o The variable y, is proportional to the scattering angle of the positron (see
appendix A). In order not to mix the reconstructed positron with a low energy,
forward going photon, the following cut is applied: ya < 0.8.

o Finally, the cut on the positron position, described in section 5.2, is applied:
|X| > 13 cmor |Y| > 8 cm.

75



. Phase Space Cuts

The second set of cuts, which determine the phase space under investigation in the
forward jet study and in the study of the angular correlation between jets, is:

¢ The positron is required to be found with an energy larger than 10 GeV.

o The y;p variable (see appendix A) gives the relative amount of hadronic energy
in the central region of the detector. Any measurement with a large amount of
energy in the forward region and no energy in the central region would be too
sensitive to the proton remnant, whose contribution lies mainly in the forward
region. Besides, the y variable represents (in the QPM) the fraction of energy
transferred from the leptonic to the hadronic system. A large y ensures an
easier interpretation of the results in terms of perturbative physics. In the di-
jet analysis (angular correlation between jets, chapter 7), the measured jets lie
in the central region of pseudorapidity, therefore a cut of y;p > 0.04 is enough
to ensure a sufficient amount of energy in the central region. In the forward jet
studv, the jet probed lies mostly in the FCAL. To ensure a reasonable amount
of energy in the BCAL, the cut has been raised to ys5 > 0.1.

® A Q? cut is applied in the di-jet analysis, Q% > 10 GeV?, in order to make sure
that the process can be treated in a perturbative manner. In the forward jet
study, the phase space under investigation is restricted to Q* > 12.5 GeV? by
other cuts (see section 6.2.2 for the detailed explanation).

o The goal of both analyses is to probe a wide range in z, therefore the kinematic
cuts for the two analyses are:

— Angular correlation between jets: 107 < z < 1072,
— Forward jet study: 4.5 x 10™* < z < 4.5 x 1072,
The exact value of these cuts depends on the resolution of the z variable and

the choice of the binning. This will be discussed in each of the relevant analysis
chapters (7 and 8).

The phase space region under investigation in each one of the analyses is shown in
figure 5.6. In figure 5.7, the main kinematic variables z, y and Q* are compared to
the predictions of some of the Monte Carlo models discussed in the previous chapter:
. ARIADNE 4.08, LEPTO 6.5 and HERWIG 5.9 (the cuts are the ones used in the
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di-jet analysis. The same conclusions stand when using the other set of cuts). The
comparison is performed at the detector level, all cleaning cuts being included. The
agreement between data and the various models is very good, which does not come
as a surprise as we are only evaluating here the total cross section of the phase space
under consideration, driven only by the structure function F; of the proton in DIS.

These plots are therefore an evidence on how well F; is reproduced by the various
Monte Carlo models.

The final samples considered, including the jet cuts will be discussed in chapter 6.
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Figure 5.6: Kinematic boundaries for the phase space region under investigations for
a) the forward jet study and b) the study of the correlation between jet. The lines
correspond to the kinematic cuts. Some points are outside the range. This is due to
the bin size and the resolution of the kinematic variables.
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Figure 5.7: General kinematic variables in data and Monte Carlo simulations after
the cleaning cuts and within the phase space defined by the di-jet analysis (angular
correlation between jets) that is Q* > 10 Gel?, 107* < z < 1072, E, > 10 GeV
and y > 0.04. The data are shoun as black dots and the Monte Carlo simulations as
histograms. Statistical errors only.
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Chapter 6
Jet Physics in DIS at HERA

6.1 Introduction to Jet Studies in QCD

6.1.1 Hadronic Final States Observables and Jets

Unlike lepton, photons, W or Z bosons, partons cannot be either observed directly or
reconstructed in a detector. Their very existence arises from theoretical concepts, in
particular from group theory. But in order to relate the experimental observations to
the theory, some quantities need to be defined, which should carry information about
the underlying parton processes. In addition to obvious experimental constraints
(the quantities must be detected unambiguously and separated from the background
present in the detector), these observables must obey some theoretical requirements
without which no stable conclusion can be drawn. The most important of them is to
make sure that effects due to soft (low energy) and collinear particles are small. As
has been shown in section 2.3.1, these particles lead to divergent partonic cross section
in the standard Feynman graphs and special techniques (cut-off, dimensional regular-
ization) have to be applied to remove these divergencies. This is why any observable
whose value depends on these soft and collinear particles cannot have an unambiguous
theoretical treatment. This leads to the property of “infra-red safety”: A quantity
S which depends on a certain number of particles momenta (p},p5,- - ,p!,- -, p4) is
said to be infra-red safe if its value does not change when a particle is added which
is either collinear to one of the p! or which has a vanishing momentum (p}’ = 0).

This can be translated by the mathematical formula:

SnH(P‘llaP‘z"""P:"“'s(l —A)ﬁ,,\p“") =Sn(P‘1‘an""1P€‘""v#‘n) (6'1)
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where ) is a real number between 0 and 1.

For instance the multiplicity of charged particles in an event is not an infra-red safe
quantity but the transverse momentum Pr spectrum of these particles is. The search
for “infra-red safe” quantities in deep inelastic scattering is one of the most important
efforts to relate theory to experiment. A standard example of “infra-red safe” quantity
is the total inclusive cross section of the process, o,,: as the soft and collinear con-
tributions cancel out when summing over all contributions, adding a soft or collinear
particle does not change the value of oy,e. Other quantities can be derived from the
so-called “hadronic final state” of a process, which is, in HERA, one of the possible
states of the hadronic energy in which the proton can fluctuate after the collision with
the probe, the virtual photon. This corresponds to the projection of the proton wave
function on a particular state. The sphericity of an event or the angular distribution
of the energy in the detector are examples of hadronic final state quantities which
implement the requirement of “infra-red safety”. These quantities relate the global
properties of an event to the theoretical framework and allow predictions to be tested
accurately on an event-by-event basis. They can be predicted by perturbative QCD
but the calculations are more difficult and less rigorous than for o¢,; and the influence
of hadronization can be large so that a definitive statement on parton level properties
is sometimes hard to make and dependent on long range physics (see chapter 2).

An attempt to improve the correspondence between quarks, gluons and the final states
observables leads to the definition of the “jets”. These objects are collimated subsys-
tems in an event, often (but not always) clustered according to the energy deposition
in the detector. They differ from the previous quantities by the fact that they are
closely related to the history of a single parton evolution and therefore less likely to
be sensitive to the non-perturbative fragmentation processes. This argument relies
on the property of local “hadron-parton” duality {84], that is the observation that
long range processes, which are responsible for the hadronization mechanism, create
a small amount of transverse energy in the detector and therefore do not affect the
topology of the high transverse momentum partons; the jets which are subsequently
observed by clustering final state particles (hadrons) will therefore have a transverse
momentum close to the formerly created partons.

Like the former observables, jets are known to be infra-red safe quantities and there-



fore reliable theoretical predictions on the jet cross sections or on the angular distri-
bution of the jets can be made. Experimentally, jets are usually defined as clusters of
calorimeter cells, They can also be defined in the theoretical frameworks as a clusters
of four-momenta partons coming from QCD radiations or of final state particles after
hadronization. But the correspondence between the real parton four-momenta and
the jet energy and position is not perfect, as the jet is always defined according to an
algorithm which merges the various particles in the event. The relation between the
partons and the jets might strongly depend on the choice of the algorithm,

6.1.2 Standard Definitions and Jet Algorithms

One of the first attempts to use jets to relate experimental results to theoretical
predictions was performed by the JADE collaboration using the “minimal invariant
mass” or JADE algorithm [85]. To define a jet, this algorithm loops over any pair of
particles p; in the sample. If the minimum invariant mass of a parton pair is smaller
than a fraction y of the center of mass energy of the event (ys, where s is the center
of mass energy of the collision), the partons are merged into a new object:

(pi + p;)* = 2E:E;(1 — cosb;)) < ys, (6.2)

where ¢ and j run over all the particles in an event. The algorithm then keeps merg-
ing particles until all pairs of “particles” have an invariant mass larger than ys. All
the thus remaining pseudo-particles are then called “jets” (experimentally, at HERA,
one introduces an extra particle carrying infinite momentum in the direction of the
incoming beam in order to simulate the proton remnant and merge the particles close
to the proton beam line to the remnant). This simple algorithm has however short-
comings when describing soft parton emissions (that is emissions of partons with a
small amount of energy, often collinear to the parent parton) and leads to the creation
of spurious (“ghost”) jets which momenta does not coincide with an approximately
collinear set of particles [86]; in figure 6.1, one can see an example of such creation
of “ghost™ jet: the two soft gluons are merged into a jet whose momentum does not
coincide with any of the hard partons momenta. Such a behavior creates large dis-
crepancies between the jet cross sections and the NLO predictions at parton level.

To overcome these problems, a new algorithm has been suggested: the “Durham” or
“kr” algorithm [87] which clusters particles in the same way as the Jade algorithm
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Figure 6.1: The gluons I and 2 are merged into the jet 12. The event is then classified
as a three-jet event, although there are only two hard partons.

but instead of comparing the invariant mass of the two particles, it compares the
minimum relative transverse energy of the two-parton system to a cut-off yey::

2min(E}, E})(1 — c0s6i;) < Yeuts (6.3)

The y.. introduced here depends on some arbitrary scale of the process (which can
also be taken as a constant). As in the previous case, a pseudoparticle of infinite
momentum in the z direction can be introduced to simulate the proton remnant. The
jet fractions which are obtained with this algorithm are in better agreement with
the predictions of perturbative QCD. However, this algorithm has some experimental
drawbacks which will be briefly discussed in chapter 8 and its performances in the
forward region are limited.

The two previous kinds of jet algorithms belong to the so-called “cluster” type. Be-
cause of their theoretical and experimental limitations, a second class of algorithm is
preferred: the “cone” type [88]. In the previous cases, all the energy available in the
collision was assigned to a jet (which could possibly be the proton remnant). Here, a
fraction of the total available energy, contained in a fixed solid angle, is called a jet
if the total transverse energy in this solid angle is larger than some cut-off (usually a
few GeV. The value of this cut-off Epmin and the comparison with the scale of the
process will be discussed later). Therefore some of the available energy of the process
can be found outside the jets.

One of the first attempts to use such algorithm was performed by Steerman and
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Weinberg [89]: they classified a final state as a two-jet system if all but a fraction ¢
of the total energy available was contained in a pair of cones of half angles §. This
allowed comparisons of jet cross sections with leading order predictions. At next-to-
leading order, the contribution of the three-jet systems become significant and the
comparison breaks down.

A more flexible way to define a jet with the cone algorithm is to introduce a distance
R,as R = \/(Adb)’ + (An)?, where A¢ is the difference of azimuthal angle between
the object to be merged and the “seed” of the jet (which later becomes the center
of the cone) and An, the difference in pseudorapidity. All the objects within a cone
radius R (usually taken to 1 in HERA) are merged and a jet is found if the sum of the
transverse energies of these objects is larger than the cut-off Ermin. The kinematic
parameters of the jets are defined according to the Snowmass convention [90] or “pr”
scheme:

Er= Y Er, (6.4)
i€Jet
n= Y Ermi/Er. (6.5)
i€Jet
¢= Y Eri¢i/Er. (6.6)
i€et

In this case, the convention defines the transverse momentum as

Pr = \/P? + P? = \/(Ercos¢)? + (Ersing)? = Er. (6.7)

The jets are therefore massless by construction. This algorithm is easy to use and
fairly intuitive (in this study, the algorithm used is PUCELL. Its exact implemen-
tation of the algorithm in the current study will be described in the appendix B).
It has however shortcomings from a theoretical side. The properties of the cone jets
depend on the number of particles in the jet, and differences can occur when com-
paring partons (where there are usually a few particles only) to hadrons (where the
number of particles in a jet is usually quite large) [91]. Depending on its width, a
one-jet event at parton level (which occurs for instance when clustering two partons
into a jet) can become a two-jet event at hadron level. To deal with this problem,
a phenomenological parameter, R,,, has been introduced, which sets a limit to the
maximal distance between two partons in a jet [92] (instead of 2R). R,p is selected
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at both experimental and theoretical levels and its value is tuned in the central region
of the detector so that the jet rates at both levels match.

6.1.3 Examples of Jet Physics at HERA in DIS

For more than a decade, jets have been used extensively in Deep Inelastic Scattering.
These objects are ideal to probe perturbative QCD, as the amount of hadronization
correction is expected to be small [93]. The determination of QCD parameters, like
the strong coupling parameter a,(Q?) has been presented as an ideal field to test
their performance [94]. But jets are also used to probe non-perturbative quantities
like the gluon density of the proton [95] and the internal properties of jets can be
used to study the different fragmentation properties of quarks and gluons, in partic-
ular through jet shapes [96].

Determination of a,

As we saw in section 2.2.1, in the QPM (quark parton model), the process y¢ — ¢
gives rise to a one-parton system, that is a one-jet system if the parton is resolved
as a jet. In the first order of a,, the diagrams pictured in figure 2.3 give rise to a
two-jet system. In the HERA convention, such a system is called “2+1” jet event,
the “2” referring to the two hard jets and “+1”, to the associated proton remnant.
In the first order of a,, two diagrams contribute to the total cross section: the Boson
Gluon Fusion (v¢ — ¢g3) and the QCD Compton (yg — ¢g). The determination of
the strong coupling a, can be made by measuring the rate of 2+1 jet events, starting
at high Q?, where the QCDC dominates. As will be shown in the next subsection,
at low Q2 and low z, the BGF process is used to determine the gluon density of the
proton. The 2+1 rate is defined as: Ry, = 2L, where 034, is the cross section for
the 2+1 jet production and o, is the total cross section in the same phase space
under consideration. At leading order, the 2+1 jet cross section can be expressed as:

y = c31 ' Q, (6.8)

where c;; contain the hard matrix elements coefficients and the contribution of the
parton density. The first index i refers to the jet multiplicity including the remnant
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and the second index j refers to the order of a,. a, is therefore the only free param-
eter in this expression.

However, we saw in section 2.1.3 that at leading order in a,, the process was very
dependent on the renormalization and factorization scales. In order to determine the
renormalization scheme unambiguously, the cross section has to be evaluated in the

NLO in a, (O(a?)):

= c31 - @, + C33 - @2, (6.9)

The 2+1 jet rate in the experimental data must be corrected to the parton level in
order to be compared to the NLO calculations, which are provided by adjustable user
routines.

In 1994, the ZEUS experiment measured the jet rates using the Jade algorithm and
compared the results to two programs: DISJET {97] and PROJET (98]. In order to
describe the 2+1 jet kinematics, 5 independent kinematic variables are needed (re-
member than in the QPM, the 1+1 jet cross section depends only on two independent
variables z and Q?); these variables are z, y (which were already defined in the QPM),
z,, ¢ and z, where, using the same convention than in section 2.2.1:

-

z
p-q &

where ¢ is the fraction of the proton’s four momentum P carried by the incoming

(6.10)

quark of momentum p:

p=¢§P, (6.11)
PP E; —p.;
Z: = ~ 6.12
T g Ticra(Ei - pai)’ (6.12)

where p; is the four momentum of parton j. The variable z is then taken as z =
min, 2(21, 23)-

Finally ¢ is the azimuthal angle between the parton plane and the lepton scattering
plane in the hadronic center of mass.

To determine the a, parameter, the measurement was performed in the kinematic re-
gion [94]: 120 < Q2 < 3600 GeV?,0.01 <z < 0.1 and 0.1 < y < 0.95. An additional
cut has been set on the z variable in order to remove regions sensitive to infrared
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and collinear singularities: 0.1 < z < 0.9. The values of the jet rates in different
Q? bins can be found in [94]. The jet rates were compared to the NLO calculations
as a function of several jet variables (z, z,, the transverse momentum pr and the
invariant mass of the two-jet system m,;). In figure 6.2, one can see that the data are
in good agreement with the theory calculations. Finally, the determination of a, has
been performed by varying the scale Agcp until the best fit to Ry, was obtained
(see figure 6.3).

The value of a, at the mass of the Z° was found to be (for Agcp = 200 GeV):

a,(Mzo) = 0.117 1 0.005(stat)*3-308(systezp) £ 0.007(5ysteheory ),

which is close to the world average 0.119 + 0.002 {99)].
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Figure 6.2: Comparison of the 2+1 jet rate as a function of four kinematic variables
with the NLO predictions: a) z, b) z,, ¢) pr and d) m;;. The data points are corrected
to the parton level and are plotted with statistical errors only.
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Figure 6.3: Measured a, in three different Q? regions. The dashed curves represent
a, with Agep = 100,200 and 300 GeV. The statistical error bars correspond to the
inner bars and the sum in quadrature of statistical and systematical errors are the
thin error bars.

Gluon Density from Jets

In the QPM, half of the momentum of the proton is carried by the gluons. Measur-
ing the gluon content of the proton is therefore an important test of QCD. These
measurements can be performed indirectly by fitting the Q? slopes of the structure
function F;, of the proton [100], but are limited in the z range. A direct method to
measure the momentum distribution of the gluon content of the proton from the 2+1
jet rate has been proposed in [101]. At leading order in a,, two processes contribute
to the two-jet production as we saw in the previous section: the BGF and the QCDC
processes. With an appropriate set of cuts, one can obtain a sample enriched with
BGF events, where the gluon couples to the exchanged boson to give rise to two
quark jets (see figure 2.3). At leading order, the momentum fraction of the gluon
participating in the interaction, z, is given by:
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z, = 2(1+m};/Q?), (6.13)

where m;; is the invariant mass of the quark-antiquark pair.

At low z, the 2+1 jet cross section can be written as:

o241 = a,(G(z, Q%) - Cser + Aqcpe), (6.14)

where Cpgr is a coefficient which can be computed in pQCD and Agcpc is the back-
ground due to the QCDC process. The strong coupling is assumed to be known and
taken from the Particle Data Book (PDG) world average. The function G(z,Q?)
can therefore be determined when compared to the Monte Carlo prediction using the
formula:

2 — f(2)measG(2, @*)Mc Lmc
G @ meas = f(z)mc Lpara’
where the subscript MC refers to the distribution obtained in the Monte Carlo sim-
ulation, f(z) is the distribution of z, as a function of z and £ is the luminosity of
the sample. To make this comparison, the data must be corrected to parton level as

(6.15)

in the previous section. This involves, as we said earlier, large uncertainties due to
hadronization effects.

The ZEUS collaboration has measured the z, distribution, using the cone algorithm
(radius of 1) in the laboratory system and in the center of mass frame to deter-
mine the 2+1 jet cross section [95]. The measurement covered the kinematic range:
0.01 < z < 3-0.03, Q* > 10 GeV? and 0.005 < z, < 0.1. The jets have been selected
if their pseudorapidity n was less than 2 in the laboratory frame and —0.5 in the HCM
frame (for experimental purposes: the forward region is quite difficult to handle as we
are going to see in the following). Their transverse energy was required to be larger
than 3.5 GeV in the laboratory frame and 4 GeV in the HCM. The background due to
the QCDC process and to the QPM (where one of the jets is coming from energy fluc-
tuations due to hadronization effects) was determined by the Monte Carlo simulation.
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The H1 experiment performed a similar analysis [102] at smaller z: 0.0003 < z <
0.0015. The z, range was: 0.002 < z, < 0.2. The measurement confirmed the steep
rise of the gluon density at small z (which has been seen by indirect measurements).

Recent progress on this analysis focus on comparing the data to the NLO corrections
which are now available in programs like MEPJET [53], DISENT [54] or DISAS-
TER++ [55]. These allow a more precise comparison with the 2+1 jet rate in the
data. However until now, the data revealed a jet rate about 30% higher than the
NLO predictions [103] (this problem will be addressed in the chapter 7).

Other attempts focus on measuring the gluon densities at lower z and z, where indi-
rect measurements are limited by large systematic errors. However, the various effects
leading to the 2+1 jet production are not yet clear in this extreme region and a better
understanding of perturbative QCD and hadronization is needed before completing

this effort. The current analysis is an example of such an attempt to understand this
difficult region.

Jet Shapes in DIS

Not only the jet rates and cross sections can be predicted by pQCD, but also the
internal structure of the jets. Using a cluster algerithm, one can for instance increase
the resolution power of the jet to observe smaller “sub-jets” within a jet. This is
consistent with the theoretical concept that the jet width is not only arising from
smearing in angle due to hadronization but also from the clustering of several par-
tons within a jets (104, 105]. PQCD also predicts that the width of a jet depends on
the type of parton (quark or gluon) which initiates the process; thus gluon jets are
predicted to be broader than quark jets, which is due to a property of the gluon-gluon
coupling which stronger than the gluon-quark coupling [106].

In 1995, the ZEUS collaboration has measured the differential and integrated jet
shape for neutral and charged current in DIS, using the cone algorithm (radius 1).
The differential jet shape is defined as the average fraction of the jet transverse energy
that lies inside an annulus in the 5-¢ plane of inner (outer) radius r—Ar/2 (r+Ar/2):
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plr) = o 3 Brinlr = Ar/r £ Arf2)

6.16
Jets jeeq ETJ“(T = R) ’ ( )

where the radius of the cone jet is R and Er j.(r — Ar/2,r + Ar/2) is the transverse
energy in the given annulus. N, is the total number of jets in the sample.

The integrated jet shape is defined as the average fraction of the jet transverse energy
that lies inside an inner cone of radius r concentric with the jet axis:

1 Ejf(r)
Njcu jets E;v“(‘l‘ = R) '

¥(r) = (6.17)

The measurement was performed for @ > 100 GeV2. The jets were required to have
a transverse energy Ej" > 14 GeV a pseudorapidity lying within: —1 < 77 < 2.
Figures 6.4 and 6.5 present respectively the differential and integrated jet shapes
compared to various Monte Carlo predictions in bins of Er and 7. The jets become
narrower with increasing Er, which is consistent with the QCD predictions. All the
models are in good agreement with the data, except PYTHIA which exhibits too
narrow jets. These results were compared to the pp measurements from D0 and
CDF [107, 108] and to the e*e~ measurements from OPAL [109]. The HERA jets
were found to be narrower than the pp jets, which is consistent with theoretical
expectations, as there is a larger gluon jet contribution at the Tevatron than at
HERA. The measured jet shapes of ZEUS were similar to the e*e™, where the jets
are mostly quark initiated. This shows the universality of the QCD radiation for a
quark-initiated process.
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6.2 Jets as a Probe of Parton Dynamics at Low z.

The low z regime is one of the most difficult and challenging phase space regions to
study for both inclusive and final state analyses. As an example, out of the three
analyses presented in the previous sections, two (the jet shape analysis and the a,
determination) limit themselves to the extreme high-Q?/high-z region, and the third
one (determination of the gluon density), which probes lower Q? values, has experi-
mental and theoretical uncertainties such that it cannot go down beyond z =~ 10~2.
As it was shown in section 2.3.1, the reason is that multi-gluon production domi-
nates at these values of z and Q?, so that the standard perturbative picture of the
parton evolution breaks down. Contributions from non-perturbative effects, such as
Soft Colour Interaction (see section 3.3.3) or hadronization effects make it difficult
to interpret the results as pQCD effects. A better understanding of this kinematic
regime is therefore mandatory to extract information on the various parameters and
distributions predicted by pQCD.

The use of hard jets in this region is an excellent alternative to inclusive analyses. It
should decrease the sensitivity to hadronization effects and improve the interpretation
in terms of pQCD predictions. As it was mentioned in chapter 2, two jet analyses
(among others) were suggested to study the parton dynamics: the angular correlation
between jets [110] and the forward jet production [111]. The strategy in particular
aims to discriminate between the two leading order set of equations describing parton
evolution in DIS: the DGLAP and the BFKL pictures. A description of these two
analyses is given below.

6.2.1 Angular Correlation Between Jets

We saw in section 2.2 that the evolution equation describes the time scale between
the long-range processes such as hadronization and the short-range processes such as
leading order QCD matrix element calculations. This intermediate phase space can
be pictured as in figure 2.4. At low z, the BGF is the main diagram contributing to
the jet production, this is why the t-channel propagator, which initiates the process,
in figure 2.4 is drawn as a gluon ladder. In figure 6.6, the two possible cases of such
processes are pictured. In case a), either there is no parton emission from the gluon
ladder or these parton emissions do not yield a large overall transverse momentum.
This is typically the case at high z, where the momentum of the gluon propagator is
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large, or in the DGLAP picture, where the parton emissions with large kr are sup-
pressed due to the requirement of strong ordering in transverse momenta. The two
leading order jets are carrying all the transverse momentum of the process and must
therefore be strongly back-to-back correlated in the hadronic center of mass system
in order to conserve energy and momentum. In case b), some transverse energy is
carried by the gluon rungs emitted from the gluon ladder. This can happen if the kr
of the partons is randomly distributed along the gluon ladder as in the BFKL pic-
ture. There, the two leading order jets are carrying only part of the total transverse
momentum of the process. In the HCM frame, this will translate as a weakening of
the azimuthal correlation between these two jets as the remaining transverse momen-
tum can be compensated by the kr of the higher order partons. This effect must
increase as ¢ (or z,) becomes smaller because multi-gluon emissions are becoming
predominant. Therefore, at small z, instead of having A¢ distributions peaked at
the value of 7, broader azimuthal distributions are expected. However, in practice,
these distributions can also be accounted for NLO processes where a third hard jet
can balance the transverse momentum of the other two leading order jets.

Calculation at leading and next-to-leading order have been performed in {110} using
the PROJET package and the A¢p dependence of the di-jet cross section has been
evaluated for Q* > 10 GeV?. The jets were required to have E3 > 10 GeV?. For the
NLO calculations, the third jet was required to be E} < 10 GeV?, so that it simulates
a relatively soft parton. It should be added that in these calculations, both the NLO
and the BFKL predictions have been made at parton level without using a jet algo-
rithm. A one-to-one correspondence between the parton and the jet was assumed.
Figures 6.7 show the dependence of the differential cross section on the variable ¢ for
two values of Q2 and three values of z. In the region where A¢ ~ =, the two jets
usually have low momenta. This leads to larger hadronization corrections and this is
why this region is not shown in the figures. The NLO distributions are falling sharply
for A < 2.8, whereas the BFKL curve exhibits much broader tails. At the parton
level, this distinctive effect can be interpreted as a clear signal of the BFKL dynamics.

In order to reproduce this effect in the data, the cone algorithm as described earlier
is used with a radius of 1, in order to determine the two leading order jets. The jets
are found in the laboratory frame and then boosted to the HCM frame to find out
the values of the kinematic parameters (Er, E and 7) in this frame.
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Figure 6.6: a) Dijet production through the BGF process. No initial state parton
emission, or no kr production in the gluon ladder: in the HCM, the two jets are
back-to-back correlated. b) Dijet production with parton emissions. The overall kr
produced by the initial state emissions balances the kr of the two leading order jets in
the hadronic center of mass frame.

In the DGLAP scheme, the parton emissions are ordered both in z;, and in kr,
while they are only ordered in ., in the BFKL scheme. In order to select the two
leading order partons, the jets are therefore sorted in the HCM according to their
pseudorapidity 7 (which is equivalent to sort the jets by zj.) and the two jets with
the highest n are marked as the leading order partons. These jets are compared if
they obey the following criteria:

® In order to have reasonably hard jets, the transverse momentum in the labora-
tory frame is required to be Er; > 4 GeV, and Er; > 6 GeV. The indices 1
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and 2 are not specific for the jet selected. This only means that one of the jets
is required to have a transverse energy larger than 4 GeV and the other, larger

than 6 GeV. The reason of this asymmetric cut will be explained in section
7.3.2.

e Asthe ¢ distribution is observed in the HCM frame, the transverse energy of the
jets in this frame is also required to be within Ef{¥ > 4 GeV, and EF$M > 6
GeV.

e In order to reconstruct accurately the jets, in a region far enough from the
proton remnant and where the position resolution is not degraded by the size
of the calorimeter cells, the pseudorapidity 7 of the jets in the laboratory frame
is required to be within -2 < p < 2.2,

o A cut is applied on the difference between the pseudorapidity of the jets in the
HCM frame: AnHSM > 1.2. The reason of this cut will be explained in the
next chapter, as well as its consequences on the theoretical predictions.

o Finally, to make sure that the selected jets are coming from the box diagram
and not from radiations from the gluon ladder, a requirement is set on the
pseudorapidity of the jets in the HCM frame: nH¢M > 0.

The last cut was suggested by theorists working the subject [112]. Unfortunately,
there is not so far a BFKL Monte Carlo model which could optimize these cuts. All
the information relies on theoretical calculations.
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Figure 6.7: Differential two-jels cross section as a function of A¢, the difference
in azimuthal angle between the two jets in the HCM frame. The curves represent the
BFKL predictions while the histograms show the NLO calculations (using the program
PROJET) for various values of z and Q2.
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6.2.2 Forward Jets

o

Q% ,x

—
X, Prn
X ' pT.n-1
*  Forward jet
Large py ,, large x,

Figure 6.8: Forward jet production in DIS. pr is the transverse momentum of the
emitted parton and z; is the fraction of longitudinal momentum. The forward jet is
the parton with the largest ;...

A second attempt to probe the parton evolution is the study of forward jets at low
z. The method was proposed by Mueller in [111] and studied by the Durham group
in [38]. In order to probe the parton dynamics at low z, the strategy is to look at the
bottom of the gluon ladder pictured in figure 6.8. The last parton emitted is treated
inclusively as a probe of the dynamics of the process. The idea comes once again
from the difference in the ordering of the parton emissions between the DGLAP and
the BFKL schemes. In the DGLAP picture, the last parton emitted has the smallest
transverse momentum pr of all (because of the strong ordering in pr requirement)
and the largest fraction of longitudinal momentum, z;.. This also means that this
jet is the most forward one, as Zje¢ = P;/Pproton = E ~c080/Pproton. The larger z is,
the closer the process is to the so-called high energy limit [113]. This can be shown by
looking at the parton-photon center of mass energy (z, is the fraction of longitudinal
momentum of this first jet, p; ~ z,p is the momentum of the parton 1 and ¢ is the
momentum of the photon):

Tje
812 - q>2zp-q ™ ;'Q’. (6.18)

Therefore, if z;.. >> z, the partonic cross section becomes very large. Besides, because
of the ordering in the transverse energy of the emitted partons, if this parton has a
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momentum pr comparable to the scale of the process (here Q?), this emission will be
suppressed in the DGLAP scheme. On the other hand, the BFKL scheme predicts a
random pr distribution along the gluon ladder. The evolution is nevertheless strongly

ordered in zj,. The last emitted parton, with the highest z;. can therefore have a
py of the order of Q2.

Therefore the two following requirements suppress the phase space for a DGLAP-
based evolution, while they enhance the contributions of a possible BFKL-type pro-
cess:

° pr ~@Q°
® T >T

The forward jet cross section has been formally calculated in [113] and numerical
estimations have been performed. It has been found to be:

.\ 4in22afe 2\ #
O forward jet ™~ (m) (Q—) - (619)

z n
Where ux is an exponent depending on the factorization scale of the process and
N, is the number of active colors. Let’s note that the forward jet cross section
grows like the gluon density: in section 2.3.3, we showed that zg(z,Q?) ~ z~?, with
A= 12p2x0.5.

Expanding the exponent in eq. 6.19, we obtain:

_ o2 2\ 144

{1 + %v—‘zunzlog (%) +% [ﬂgiunzlog (-”;—‘)] + } (%) . (6.20)
This is the standard perturbative expansion in terms of leading In(1) predicted by the
BFKL equation. The first term of this expansion (‘1’') corresponds to the emission
of a forward parton on top of the fixed matrix elements calculated from the quark
box to which the photon couples. It is therefore similar to the NLO calculations in
the DGLAP perturbation theory. The second term corresponds to the emission of
a second parton between the forward going parton and the quark box. Each higher
term of the perturbative expansion corresponds to a new gluon emitted between the
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forward jet and the leading order partons coming from the matrix elements. Because
it is a leading In(1) expansion, each new gluon is emitted far in z,.; (and therefore in
rapidity) from the previously emitted partons, leading to parton emissions strongly
ordered in rapidity. Nevertheless, because of the NLO corrections to the BFKL ker-
nel (see chapter 2), we expect that this strong ordering in rapidity breaks down.
The results would be a total cross sectior growing as: o ~ z~(*+43) where A is
the outcome of the NLO corrections (large and negative) to the BFKL kernel. This
would result in a much flatter and smaller cross section. However, so far, the NLO
corrections have only be evaluated for the total cross section [32]. Their application
to specific hadronic final states is not yet certain and the above estimation can at
best be taken as a rough estimate.

Experimentally, to select the forward jets in the data, the cone algorithm with a
radius 1 is used, as in the previous analysis, and the following cuts are set:

® z,. > 0.036. This cut selects high energy jets at the bottom of the gluon ladder
(it also makes sure that we probe higher orders of a,). At low z, it enhances
the contributions from a BFKL-type evolution. The value of 0.036 is set to be
roughly consistent with the other kinematic cuts (Er and 7).

® 0.5 < Fr?/Q® < 2. Together with the previous one, this cut suppresses the
phase space for DGLAP evolution. Within the cone algorithm, the transverse
energy and the transverse momentum are equal.

® The jet selected is required to lie in the target region of the Breit frame':
P:z.Breit > 0. This cuts prevents the leading order jets from the quark box from
contributing to the jet cross section. This can happen at high z, where z;¢, ~ z.

e To make sure that we nevertheless observe hard jets, a cut on the transverse
energy Er > 5 GeV is necessary.

o The pseudorapidity is required to lie within the range: 0 < 5 < 2.6. The lower
cut is not really needed as the requirement on zj, selects jets with n > 0.5.
The upper cut is needed for experimental reasons. First, the jets have to be
fully contained in the calorimeter and the last cell is at n ~ 3.7. Besides,
the correlation between detected and true jets is getting worse at n > 2.6 (see
figure 6.9). This is due to the bad position resolution in the forward region of

1For a definition of the Breit frame, see appendix C
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the calorimeter, as an effect of the granularity of the cells (see section 4.2.1).
Finally, because of the original boost, the proton remnant deposits a lot of
energy in the forward region and the separation of the forward jet from the
remnant is quite difficult in this region. This issue will be treated in the next
section.
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Figure 6.9: Correlation between the pseudorapidities at the detector level and at the
hadron or true level. All the cuts (section 6.2.2) but the one on the jet pseudorapidity
have been applied. The vertical and horizontal lines correspond to the value of the 7
cut. At nye > 2.6, the correlation starts to worsen.

6.3 Some Properties of the Jets in the Forward
Region

The forward region of the ZEUS calorimeter is known to be very challenging to study
and it is excluded from most of the physics analyses made at ZEUS. The three main
reasons for this are: the hole in the detector due to the beam pipe and the energy loss
which follows, the presence of the proton remnant, and the reconstruction accuracy
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which is limited by the coarse granularity of the calorimeter cells. As we want to
study jets which can be very close to the beam pipe, it is important to check that
their behavior can be predicted from a theoretical and an experimental sides. These
jets might also receive contributions from the proton remnant. One of the goals of
this section is to estimate how large these contributions can be. Unfortunately, there
is no model for the behavior of the proton remnant, the dissociation being bound
by too many uncertainties (the boost, the effect of the hadronization...). So far, it
has not been possible to make a quantitative prediction for the average amount of
energy which arises from the remnant. The following arguments will therefore be
mainly qualitative; their purpose is to convince ourselves that the measured jets are
not merely energy fluctuations of the remnant. The study will be performed with the
cuts defined in previous section (forward jets).

6.3.1 Energy Flow around the Jets

The first check which is performed is the study of the energy flow around the forward
jets. All the calorimeter cells with a significant energy deposition are considered with
respect to the position of the center of the jet and averaged over all events with a
forward jet. As the cone algorithm has a radius defined as a function of the pseu-
dorapidity n and the azimuthal angle ¢, it is natural to express the position of the
calorimeter cells as a function of these two variables. In the following, the differ-
ence between the pseudorapidity of the jet and the cell pseudorapidity is called A7:
AN = Njet — Neeti- The forward direction (direction forward with respect to the jet po-
sition) lies therefore in the negative values of An. The difference between the azimuth
of the jet and the azimuth of the cell is called A¢d: AP = @jet — Pce- In figure 6.10,
the transverse energy flow in the 1995 data with respect of the jet position is plotted
as a function of Ay and A¢. This transverse energy flow is plotted in various 7 bins,
where 7 is the pseudorapidity of the forward jet. The energy belonging to the jet is
plotted as the shaded area. Up to 5 of 2.5, the jet appears to be very well separated
from the energy activity in the rest of the calorimeter (represented by the blank his-
togram). For = 2.5, the jet can still be fairly well separated from the rest of the
event, but this becomes more difficult for 2.6 < n < 2.8. There, the jet looses its
sharp peak structure and becomes much wider. An excess of energy which does not
belong to the jet is visible in the region forward to the center of the cone and can
barely be distinguished from the energy inside the jet.
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To better estimate the effect of the amount of energy forward to the jet’s center (which
could possibly arise from a contribution of the proton remnant), a cross section of
the previous plot is shown in figure 6.11. Here, the transverse energy flow is plotted
versus A7 only, the amount of transverse energy being integrated over the full A¢
range (full line histogram) and the region where —1 < A¢ < 1 (dashed histogram).
The characteristic peak structure of the transverse energy appears in all the 7 bins,
indicating the jettiness of the object found. However, for 7 > 2, a second peak ap-
pears on the left of the jet axis (that is in a region which is forward with respect to
the center of the jet). This second peak moves closer to the jet center in the high 7
regions and finally merges with the primary peak for n > 2.6. This structure is very
well reproduced in the Monte Carlo simulation (see figure 6.12).

Interpreting this feature in terms of proton remnant is not so straightforward. One
has first to remember the structure and the shape of the calorimeter cells (see chap-
ter 4). In the forward region, these cells becomes wider and the gap between two
cells becomes large. The position of a given cell in the calorimeter is given from the
data base by the center of this cell. Therefore, the wider in angle the cell is, the
larger the uncertainty on the position becomes. Part of the gap between the two
peaks can come from the empty space which lies between two cells in the forward
region of the calorimeter . When the jet is very forward (typically n > 2.6), it merges
these very wide cells and the position reconstruction becomes unaccurate, which may
explain its flattening and widening. However the contribution from the energy of the
proton remnant in the forward region is also quite important and must be taken into
consideration for a correct interpretation of the results.

6.3.2 Jet Shapes

The contribution of the proton remnant and the accuracy of the jet reconstruction
should also reflect themselves in the internal structure of the jet. A usual way to
look at the internal properties of the jet is to study the jet shape. In section 6.1.3,
the integral and differential jet shapes were defined: they picture the width of the jet
and reflect how well it is collimated. At low z, we expect a much more important
contribution from gluons than from quarks, and therefore, for reasons quoted above,
we expect the jets to be quite large.
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In figures 6.13 and 6.14, the differential jet rates in Er and 7 bins are plotted for the
data and the Monte Carlo simulations. The differential jet rate is defined as above in
equation 6.16. All the cuts of the forward jet analysis, defined in section 6.2.2, have
been applied (except for the 5 cut on the last plot on figure 6.14). The first noticeable
feature of these plots is that the differential jet shape is more irregular than in the
plots presented in section 6.1.3, especially at high 7 and low Er. Furthermore, the
amount of energy observed in the higher »/R bins of each plot is much larger than in
the previous plots, meaning that a substantial amount of energy lies outside the cone
radius of 1. However, the core of the jets is still hard which means that the energy is
in average collimated around the center. Another characteristic feature of these plots
is that the jets tend to becomes broader when they are more forward (cf. figure 6.14)
and less energetic (cf.figure 6.13). This is in agreement with the QCD predictions for
jets.

These features are quite well reproduced by the ARIADNE model, while LEPTO
does not describe the differential shapes as well and tends to find more energy in the
tails of the jets.

The integrated jet shapes are shown in figures 6.15, 6.16 and 6.17. The same definition
as in section 6.1.3 is taken. In figure 6.17, the integrated jet shape at a radius
r = 0.5R is shown (half-way to the full width of the jets). These plots lead to the
same conclusion as the previous ones: the width of the jet decreases with increasing
pseudorapidity and with increasing transverse energy. The increase of the integrated
width with increasing Er is well in agreement with the QCD prediction [114]. Once
again, the ARIADNE Model reproduces the jet shape fairly well, whereas the LEPTO
Monte Carlo yields systematically wider jets. If the width of the jet is a signature of
its hardness, and therefore its relation to the hard perturbative physics, the data and
ARIADNE exhibits more perturbative-like jets than LEPTO.
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Figure 6.10: Transverse energy flow around the center of the jet as a function of Ay
and A¢. The shaded region represents the cells belonging to the jet, while the open
histograms picture all the cells in the calorimeter.
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Figure 6.11: Transverse energy flow in the calorimeter around the jet in the data.
The shaded histograms show the cells belonging to the jet. The full line histograms
show all the cells in the calorimeter, integrated over all A¢. The dashed histograms
picture the cells in the calorimeter integrated over |Ad| < 1.
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Figure 6.12: Transverse energy flow in the calorimeter around the jet in the Monte
Carlo simulation (detector level). The shaded histograms show the cells belonging to
the jet. The full line histograms show all the cells in the calorimeter, integrated over
all A¢. The dashed histograms picture the cells in the calorimeter integrated over
|Ad| < 1.
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Differential jet shape
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Figure 6.13: Differential jet shape in various Er bins. The data are shown as dots,
ARIADNE, as a full line and LEPTO as a dashed line. Statistical errors only.
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Figure 6.14: Differential jet shape in various n bins. The data are shown as dots,
ARIADNE, as a full line and LEPTO as a dashed line. Statistical errors only.
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Integrated jet shape
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Figure 6.15: Integrated jet shape in various Ep bins. The data are shown as dots,
ARIADNE, as a full line and LEPTO as a dashed line. Statistical errors only.
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Figure 6.16: Integrated jet shape in various n bins. The data are shown as dots,
ARIADNE, as a full line and LEPTQ as a dashed line. Statistical errors only.
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Figure 6.17: Integrated jet shape for r = 0.5R. The data are shown as dots, ARI-
ADNE, as a full line and LEPTO as a dashed line. Statistical errors only.
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Chapter 7

Angular Correlation between Jets

7.1 Introduction

In the previous chapters, we explained why a better understanding of the low-z physics
is a crucial step towards a global understanding of pQCD and how the jet observables
could help us reaching this goal. In this chapter, the angular correlation between two
jets in the hadronic center of mass frame will be studied. The correlation between the
azimuthal angles of the two leading order jets, in this frame, is supposed to give a hint
on the underlying parton processes [109]. The main purpose is to test the validity
range of the DGLAP evolution picture. According to these evolution equations, the
overall transverse momentum carried away by the higher order partons (beyond lead-
ing order in a,) is small. Therefore the two leading order jets must be approximately
back-to-back in the transverse plane over the entire kinematic range. In another type
of evolution scheme, the BFKL evolution picture, the transverse momentum of the
high-order partons could be comparable to the one of the leading order jets. There-
fore, the correlation between the leading-order jets should become weaker when the
multigluon emissions become large. This is the case when the scaling variable z or
the momentum fraction carried by the gluon z, (described in the section 6.2.1) is
small. To study these processes, some cuts were applied which were described in the
section 6.2.1 and are summarized in the table 7.1. The aim of this analysis is to study
the azimuthal angle A¢ between the two leading order jets in bins of z and z, and
see if, going to small z and z, values, one can really observe a significant weakening
of the azimuthal correlation.

The strategy used in this analysis is standard in high-energy physics and will be the
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same for the next study on forward jet: the data will be first compared to the Monte
Carlo predictions at detector level. The Monte Carlo model which describes the data
best will be used for the detector corrections. Once corrected back to hadron level,
the data will be compared to the various simulations and some first conclusions on the
validity of the models will be drawn. Finally, the data will be corrected for hadroniza-
tion effects (to “parton level”) in order to be compared to the NLO calculations.

E. > 10 GeV
y > 0.04
Q% > 8 GeV?
Ef%}.. > 4 GeV, Ef%,, > 6 GeV
EBSM > 4 GeV, Ef5Y > 6 GeV
~2 < plsb < 2.2

e >0

AnHCM >1.2
107 <z <102

103 <z, <107?

Table 7.1: Selected phase space region for the cross section measurement.

7.2 Comparison between the Data and the Monte
Carlo Simulations

The data which are obtained in ZEUS need to be corrected for detector effects: all
the subcomponents of the detector have a finite acceptance, a certain resolution and
the background arising from the beam gas can contribute to spoil the accuracy of
the measurement. The usual method to correct the data is to use the Monte Carlo
model, which includes a full simulation of the detector through the GEANT pack-
age (see chapter 3). The geometrical acceptance and the resolution of each one of
the subcomponents of the detector are implemented in the simulation, as well as the
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Figure 7.1: Comparison between the data (shown as full dots) and Monte Carlo sim-
" ulations for siz variables: a) Q?, b) E, ¢) ysp, d) E — Pz, ¢) logiez, f) logiez,.
The data are displayed as full dots. ARIADNE is shouwn as a full line, LEPTO as a
dashed line and HERWIG as a dotted line. Errors shown are statistical only.

beam gas background. The comparison between the “true” level, where no detector
is present, and the detector level (after the simulation of all the subcomponents) pro-
vides the tool for the corrections. The technics and results of these corrections will be
discussed in the next section. But before correcting the data with the Monte Carlo
simulation, one needs to make sure that the model describes fairly accurately all the
distributions observed in the data. If this is not the case, the results of the correction
might be inaccurate or completely wrong.

It is extremely important that the Monte Carlo model describes the data in the par-
ticular phase space under investigation. We saw in section 5.3 that all the models
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Figure 7.2: Comparison between the data (shown as full dots) and Monte Carlo sim-

 ulations for four jets variables: a) Eit%,,, b) EfSM, ¢) /%, d) "M, The data are

displayed as full dots. ARIADNE is shown as a full line, LEPTO as a dashed line
and HERWIG as a dotted line. Errors shown are statistical only.

provide a good description of the overall DIS kinematic variables. This is not enough
to safely use any of these models to correct the data. For example, a model like
LEPTO which does not have the super-symmetry implemented could not be used in
a leptoquark search, but could still describe the general kinematics of the event in
this type of analysis. In figure 7.1, the differential cross section of the events at detec-
tor level, within the phase space defined by the cuts in table 7.1, is compared to six
general kinematic variables: Q?, the energy of the scattered lepton E,/, y;5, E — Pz,
z and z,. The data points are compared to three Monte Carlo models: ARIADNE
4.08, LEPTO 6.5 and HERWIG 5.9. The striking feature of these plots is that none
of the Monte Carlo describes the absolute normalization of the data. ARIADNE pre-
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Figure 7.3: Shape comparison between the data (shown as full dots) and Monte Carlo
simulations for siz variables: a) Q*, b) E.., ¢) ysp, d) E — Pz, ¢) logoz, f) logroz,.
The data are displayed as full dots. ARIADNE is shown as a full line, LEPTO as a
dashed line and HERWIG as a dotted line. Errors shown are statistical only.

dicts a cross section which is 25% too large, whereas LEPTO and HERWIG predict a
much too small cross sections (by about 40%). In figure 7.2, the comparison is made
between some jet variables in the data and in the Monte Carlo models: the transverse
energy of the jets in the laboratory frame, the transverse energy in the HCM frame,
the pseudorapidity in the laboratory frame and the pseudorapidity in the HCM frame
(all these variables are used in the selection of the final sample). There again, none of
the models can reproduce the absolute normalization of the data in this phase space
region. The reason for this is still unclear. All the Monte Carlo models have been
tuned to describe the hadronic final states in several distributions, like the hadronic
energy flow versus the pseudo-rapidity, but fail to describe these ones. This is also
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line and HERWIG as a dotted line. Errors shown are statistical only.

the case in other di-jet analyses (like the determination of the gluon density [114]).

This normalization between data and Monte Carlo is however not critical. The cor-
rection factors are ratios between the true and the detector levels and the absolute
normalization cancels out to the first order. It is however crucial that the shape of
each one of the distributions agrees with the data, otherwise, migrations of events
from bin to bin are not properly taken into account and the corrections might be
biased. The shape comparison between data and Monte Carlo simulations is shown
in figures 7.3 (for the general kinematic variables quoted above) and 7.4 (for the jet
variables). Here ARIADNE and LEPTO give an accurate description of the shape
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of most of the variables considered (except for the z, distribution in ARIADNE and
both pseudorapidity distributions in LEPTO which seem shifted). These models can
therefore be used for correcting the variables for detector effects. HERWIG, however,
fails completely in describing the shape of the z distribution, so it can not be used to
determine the detector corrections.

7.3 Detector Correction

Once the Monte Carlo models which describe the experimental data, have been de-
termined, the correction procedure is fairly straightforward. The first step is the jet
energy correction, in order to minimize the differences between the model predictions
and the experimental data, using the Monte Carlo simulations. Then, the same sim-
ulations are used to evaluate the acceptance correction, purity and efficiency of the
sample, by a simple comparison between what has been generated (the true physics
process) and what has been observed after the detector simulation. These numbers
will be used to correct the data for both acceptance and migration.

7.3.1 Jet Energy Correction

The energy correction is a quite usual step in the study of hadronic final states, and
in particular in jet analyses. This is not strictly speaking mandatory for the final re-
sults. As a matter of fact, the full acceptance correction should also take into account
the effects of energy loss in the calorimeter due to dead material (see chapter 4). For
instance, let’s consider a jet generated with a transverse energy Er, larger than some
minimum value E5*~°// to ensure that the jet comes from hard processes and not
merely from energy fluctuation inside the calorimeter. Let’s assume that due to dead
material, the jet loses part of its energy and is observed with an energy E7 < E';-“"“ !,
The jet will not participate in the observed jet distribution but will be included in
the generated jet distribution. After looping over all the jets (and assuming that the
energy loss is the only cause of discrepancy between true and reconstructed level), the
number of jets ending up in the observed distribution will be smaller than the number
of jets ending up in the true distribution. Therefore, the amount of jets which are
lost due to energy loss in the detector is part of the overall efficiency of the detector
reconstruction.
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If the model would describe the data perfectly, there would not be a need for such a
correction. Unfortunately no model can pretend to reproduce exactly the energy loss
within the detector so that discrepancies between simulation and reality are always
present. Besides, there is at ZEUS an uncertainty on the total energy scale when
comparing data and Monte Carlo simulation [115] (the data are off by 5% in the
BCAL and 3% in the RCAL, compared to the GEANT simulations. The energy scale
discrepancy in the FCAL is known less accurately but is believed to be on the order of
3% as in the RCAL). This systematic shift in the energy distribution could therefore
bias the correction.

Therefore such a correction has to be applied for any energy deposition in the calorime-
ter and in particular for the jets. In figure 7.5, the relative difference between detector
level and generator level jets if displayed (after all the cuts listed in table 7.1. The
energy of the generated jets is 13%-16% larger than the energy of the reconstructed
jets. This discrepancy is due to the energy loss of the jets in dead material in front
of the calorimeter (see section 4.2.1). A standard and unified method for correcting
this effect has yet to be determined in ZEUS. A number of ZEUS notes exist on the
subject(see [116], {117], [118], [119] and [120] for a non-exhaustive list), but it is
not the object of the present research to perform a comparative study of the various
methods which have been tested so far. The method presented here (the same will
be used in the next analysis “forward jets in DIS”) has the advantage of providing
corrections which are little affected by the statistical fluctuations.

These corrections are known to be dependent on the geometry of the detector, so they
are determined in various regions of pseudorapidity. Five regions have been selected,
with approximately the same amount of statistics and dead material: -2 < < —-1.2,
-12<7<-05,-05<9<10,10<n<15,1.5<n<2and 2< <22

In each one of these regions, the correction factors C(Eg.')’) are averaged over the
polar and azimuthal angle of the jets, which is reasonable as the physics is symmetric
in . The corrections are computed independently for E and E7 in different bins
of E and Er. The (transverse) energy of the detector level jets was then g%r'ected
using the general formula: EG®® = C(ERY) x Ef, where C(EGS) = Egé_:},— At
the detector level, the sample used for the correction is obtained by applying all the
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selection cuts to the events except the energy and transverse energy cuts which are
to be a little bit looser. The latter is important in order not to bias the correction by
effects which are due to jets which will not end up in the final sample. The hadron jet
is then selected within some loose cuts and matched to the acceptable detector jet by
applying a distance criteria in the (7,4) space: the hadron jet which has the smaller
distance R = \/An? + A¢? with respect to the detector jet is chosen to compute the
correction factor. An additional cut is performed to reject events where the closest
hadron jet is still too far from the detector jet:T 5 < 1. In order not to bias the sample,
a gaussian distribution is fitted to the ratio ELEZQ; in each E("}“) and nP*t bin, so that
the hadron jets which are wrongly matched tout.)he detector jets are sitting on the tail
of the distributions and thus do not contribute to the overall correction factor. In
fig. 7.6, the values of these correction factors are shown as a function of the transverse
energy in several bins of pseudorapidity (as the shape of the correction was flat as
a function of the energy, the raw data were simply multiplied by a single number in
the various 7 bins to account for the total energy loss). The correction is applied by
multiplying bin by bin the energy (or transverse energy) of the jet observed in the
detector by the result of the fit.
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Figure 7.5: Relative difference between the true and the observed (transverse) energy
in the ARIADNE 4.08 model. The systematic shift detween true and observed energy
distribution is due to energy loss in dead material.
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7.3.2 Resolution of the Kinematic Variables

Before looking at the final value of the acceptance correction which will be applied
to the data, it is important to evaluate the various contributions to this acceptance.
The main one is the resolution of the various kinematic variables which are used in
the cuts. These resolutions limit the purity and efficiency of the sample and can lead
to large acceptance corrections.

The estimation of these resolutions is also important in order to determine the bin
width of the final distributions. This bin width should be chosen large enough as
to minimize migrations from bin to bin (so that the final acceptance looks flat). In
figure 7.7, we show the relative resolutions for the two variables z and z,. The relative
resolution for an observable X is defined as:

§X XDet - XHcd
X T Xbe

The z resolution is discontinuous in the two largest x bins. This is a feature of the

(7.1)

electron reconstruction method: the resolution on the the reconstruction of the value
of = depends on the value of y [121]. At small y, the z resolution diverges with the
electron method. At large z, smaller values of y are sampled and therefore the z
resolution worsens a lot. The average resolution is around 16%. The z, resolution
is much worse (around 23 %), because z, is a combination of event and jet variables
- which all have a large resolution. In figures 7.8 and 7.9, the resolution of the azimuthal
angle A¢HCM hetween the two highest 7€M jets, is shown. The resolution is defined
by:

§A¢ = AppEa — Adiem: (7.2)

In figure 7.8, all the cuts have been applied except the one on AnCM (the difference
between the pseudorapidity of the two jets in the HCM). The striking feature of this
plot is that a second peak appears to the left of the main one, in the low §¢H°M
bins. This means that in most of the events, the two selected detector jets are not
identified as the two hadron level jets. In these bins, the two detector jets are very
close to each other, separated only in pseudorapidity in the HCM. When two jets are
close in pseudorapidity and in azimuth, their distance in the (7,4) plane is small and,
providing that this distance is also small in the laboratory frame (which is the case
for the cone algorithm as it is longitudinally invariant), it might happen that they

merge to give one jet once reconstructed at detector level. In figure 7.8, the second
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Figure 7.7: Relative resolution for two variables z and z,. All the cuts listed in
table 7.1 have been applied. These values were obtained by fitting a gaussian to the
distribution in each bin. The error quoted is the error on the fit.

peak appears for negative values of §A¢, so the azimuthal angle between the two
jets at detector level is much smaller than the one for the two jets at hadron level.
What actually happens is pictured in figure 7.10. Most of the leading order jets are
emitted back to back. After reconstruction, it might happen that a generated jet is
reconstructed as two smaller jets. In the limit where the azimuth between the two
reconstructed jets is small, the configuration presented in figure 7.10 might dominate
and give rise to a large amount of di-jets at detector level unrelated to the two hadron
level jets. The only solution to this problem is to make sure that the two jets are
far enough in pseudorapidity, so that these “broken” jets do not contribute. This
is achieved by applying a cut on the difference on the pseudorapidity between the
two jets at detector and hadron level as in figure 7.9. In this plot, the second peak
is much reduced (although not completely suppressed). Most of the jets found at
detector level are there effectively related to the hadron level jets.

Finally, it must be added that cutting on a minimum Az in the HCM might not be a
correct thing to do. As a matter of fact, the wider the gap in pseudorapidity between
the jets becomes, the larger is the probability for a BFKL-type evolution between the
two jets. The two jets would therefore not be any more at the top of the gluon ladder
and the difference of azimuthal angle would not reflect the parton evolution. This is
however the only viable solution from an experimental point of view with this type
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order jets before the cut in An. §A¢ = (Ap)Pet — (Ag)Hd, All the cuts listed in
table 7.1 have been applied ezcept the cut on ApfCM,

of algorithm. With another choice of radius (for instance R=0.7, as in DO {38]), the
situation is similar, although the number of uncorrelated jets is a little bit smaller.
Nevertheless, in any case, the cut on Ap#°M is mandatory. We must add that the
analysis was also performed with the k7 algorithm but the resolutions of the jet vari-
ables were even worse.

All these considerations, together with the requirement that there should be a reason-
able amount of statistics in each bin, lead to the selected bin size displayed in table 7.2.
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table 7.1 have been applied.

As we are mainly interested in studying the properties of the di-jet system in each
one of the z and =z, bins, it is important to check that these properties do not vary
from bin to bin due to the detector resolution. In tables 7.3 and 7.4, the relative or
absolute resolutions for various jet kinematic variables is shown in the three bins of
z and z, (this is the result of a gaussian fit applied in each one of the distributions).
As expected from the detector specifications, the transverse energy resolutions are
around 15% while the 7 and ¢ resolutions vary from 5 to 10% over the whole detector
range. It is important to stress that the variation of the resolution of a given variable

z range | 0.0001-0.0006 | 0.0006-0.0020 | 0.0020-0.0100
¢, range | 0.0010-0.0075 { 0.0075-0.0200 | 0.0200-0.1000

[A range | 0.0-0.78 | 0.78-1.18 | 1.18-1.57 | 1.57-1.96 | 1.96-2.35 | 2.35-2.75 | 2.15-3.14 |

Table 7.2: Final bin size for z, z, and A¢ after resolution considerations.
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Figure 7.10: Ezample of di-jet configuration in which the two hadron level jets 1 and
2 do not match the detector level jets 1 and 2. The latter come from hadron jet I
which “breaks up” at the reconstruction level.

from one z (z,) bin to another is quite small (maximum 2-3%), so that the detector
response does not influence too much the behavior of the di-jet system from one bin
to another.

z range 0.0001 < z < 0.0006 | 0.0006 < z < 0.002 | 0.002 < z < 0.01
SERS /B 0.150 + 0.003 0.150 + 0.003 0.145 + 0.004
SEECM [EHT 0.160 + 0.003 0.160 + 0.003 0.170 £ 0.004
5’ 0.063 =+ 0.001 0.058 £ 0.001 0.051 + 0.002
snHcH 0.096 + 0.002 0.120 * 0.003 0.120 + 0.004
s¢CH 0.098 £ 0.002 0.110 =+ 0.003 0.140 + 0.005

Table 7.3: (Relative) resolution for five jet variables Eit®, EECM plab nHCM 4HCM
as a function of z.

7.3.3 Acceptance correction, Purity, Efficiency

Finally, an acceptance correction is performed and the events are corrected for effi-
ciencies and purities. The final cross section is expressed in bins of z, z, and A¢,
therefore the correction factors are expressed in these bins.

In order to correct the data, a bin-by-bin method has been applied: the acceptance
correction factor in each bin is the ratio of generated over the reconstructed number
of events in this bin (Ng_je,, means number of di-jets):

127



T, range 0.001 < z, < 0.0075 | 0.0075 < 2z, < 0.02 | 0.02 < z, < 0.1
SERE/E® 0.150 + 0.003 0.150 + 0.003 0.150 + 0.002
SEFCM EACM 0.150 + 0.002 0.160 + 0.003 0.160 + 0.002
§nlab 0.061 + 0.005 0.065 + 0.002 0.055 + 0.001
snHCH 0.084 + 0.009 0.110 + 0.002 0.120 £ 0.002
spHCH 0.080 + 0.009 0.120 + 0.003 0.110 + 0.003

Table 7.4: (Relative) resolution for five jet variables Ei®, EFCM plab HHCM 4HCM
as a function of z,.

Nii_jets at hadron level in true variables in the relevant phase space

Nii_jets at detector level in reconstructed variables after all the cuts’
(7.3)

In this method, the number of jets in one bin is assumed to be independent from the

acceptance =

number of jets in the other bins when comparing hadron and detector levels. How-
ever, this is not rigorously true as a jet generated in one bin can be reconstructed in
another bin because of the finite resolution of the detector. This migration effect has
been taken care of by taking the size of the z, z, and A¢ bins at least twice as large
as the resolution of each one of these variables (see previous section).

The correction factors, purities and efficiencies are shown (in bins of = and z;) in
fig. 7.11 and 7.12 are defined on an event-by-event basis and with the ARIADNE
simulation in the following way:

Purity is the ratio of events generated and detected in one bin over the total number
of detected events in this bin:

Nii_jets found at detector level AND at hadron level after all cuts

iy =
puTsty Nii—jets found at detector level after all cuts

(1.4)

Efficiency is the ratio of events generated and detected in one bin over the total
number of generated events in this bin:

Nii_jets found at detector level AND at hadron level after all cuts
Nii—jets found at hadron level after all cuts ’

ef ficiency =
(7.5)
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Therefore, a jet which is found at detector level is called an impurity if there is no
corresponding jet at hadron level, within the set of cuts of the analysis and inside the
same = and & bin. Similarly, if there is no jet in the detector, although there is one
fulfilling all the selection criteria at the generator level, this will reduce the efficiency
of the di-jet detection. Both quantities are calculated after energy and transverse
energy correction. They reflect the experimental limits of the di-jet detection.
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Figure 7.11: Acceptance correction for the di-jet system as a function of z and z,.

In figure 7.12, we also show the effect of the migration on the correction factors,
efficiencies and purities: the black dots represent the values of these quantities when
no migration between the bins is considered either in A¢ or in z, the open dots show
these same values when migration between A¢ bins is considered and the full squares
show these values when migrations are allowed both in z and in A¢. Although the
values of the bins are consistent with the resolution of the displayed variable, the
correction due to bin-by-bin migration is quite large, especially in A¢. This means
that the tails of the gaussian distributions are large and ultimately, the resolution of
the variable is not gaussian. Figure 7.12 also shows that the effect of migration in
the variable z, is extremely large. This indicates that the z, resolution is very coarse
and once again, the resolution distribution is barely a gaussian. The first bins of
the 2, distributions show no purity or efficiency. This means that no event has been
generated in this z, bin and reconstructed in the same bin. Applying a bin-by-bin
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correction to these events is meaningless as the value of the corrected cross section
would only reflect the way the Monte Carlo simulation is handling the bin-to-bin

migration rather than the behaviour of the experimental data. Because of that, we
decided not to present the z, distributions.
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Figure 7.12: Purity and efficiency for the di-jet system as a function of z and z,.
The various symbols correspond to the constraint on the migration: with full dots, no
migration is allowed between the bins, in open dots, migration is allowed between A¢
bins and in full square, migration is allowed between z and A¢ bins.
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. 7.4 Azimuthal Correlation between the two Lead-
ing Order Jets

7.4.1 Detector and Hadron Level Comparison
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Figure 7.13: Uncorrected di-jet cross section as @ function of A¢ in three z bins
in data and Monte Carlo. The data are shown as full dots and the Monte Carlo
simulations as histograms: ARIADNE is shown as a full line, LEPTO as a dashed
line and HERWIG as a dotted line. For all plots, statistical errors are shown as thick
error bars, and statistical and systematic errors added in quadrature as thin error
bars.

The azimuthal correlation between the two leading order jets in the data compared
to the Monte Carlo predictions at detector level is shown in figure 7.13. The binning
in z and in A¢ was defined in the previous section. The detector level cross section
is defined as:

doDet _ Nevents
dAgdz ~ LandzA(BP)

Ldata i8 the luminosity in the sample, Az the bin size in the variable z and A(A¢),
the bin size in A¢.

(7.6)

As in section 7.2, no Monte Carlo simulation can describe the data. ARIADNE leads
to a cross section larger than the data’s in the largest A¢, while the MEPS models,
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LEPTO and HERWIG predict too small cross sections.

To get rid of the under-determination due to the detector effects, the hadron level
cross section of the di-jet system in bins of £ and A¢ is defined as:

da"“d _ Nwmu
dA¢dz - EdamAcorrAZA(Aqs).

Lygta; Az and A¢ are defined above. A,. is the acceptance correction which is
shown in figure 7.11, using the ARIADNE simulation.

(7.7)

The corrected cross section is shown in figure 7.14 for the three z bins considered.
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Figure 7.14: Di-jet cross section corrected for detector effects (hadron level) as a
function of A in three z bins in data and Monte Carlo. The data are shown as
full dots and the Monte Carlo simulations as histograms: ARIADNE is shown as
a full line, LEPTO as a dashed line and HERWIG as a dotted line. The shaded
area corresponds to the systematic error due the energy scale uncertainty. Statistical
errors are shown as thick error bars, and statistical and systematic errors added in
quadrature as thin error bars.

The conclusions are the same than for the uncorrected results: no Monte Carlo sim-
ulation describes the absolute value of the data cross section over the full z range.
From this figure, it is also difficult to judge on the amount of correlation between the
two jets and compare it in different z bins. For a clearer analysis of the effect, the
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distributions are normalized to the highest A¢ bin in the data and in the Monte Carlo
simulations. The results are shown in figure 7.15. The A¢ distribution in LEPTO in
the highest z bin is broader than in ARIADNE. However, in this bin, no weakening
of the azimuthal correlation between jets is expected, as the evolution length, in the
DGLAP picture as well as in the BFKL scheme, is small. Therefore, this effect can
only be due to the combined effects of hadronization smearing and angular resolu-
tion of the jets. In the highest z bin, the data points lie in between ARIADNE and
LEPTO predictions, so no conclusion can be drawn here. In the lowest two z bins,
the A¢ distributions stay the same within the error bars. It is therefore impossible
to make a statement on a possible weakening of the correlation between the two jets,
either in the data or in the Monte Carlo simulations.
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Figure 7.15: Di-jet cross section corrected for detector effects (hadron level) as a
function of A¢ in three z bins in data and Monte Carlo. All the histograms have
been normalized to the highest A¢ bin. The data are shown as full dots and the
Monte Carlo simulations as histograms: ARIADNE is shoun as a full line, LEPTO
as a dashed line and HERWIG as a dotted line. The shaded area corresponds to
the systematic error due the energy scale uncertainty. Statistical errors are shoun
as thick error bars, and statistical and systematic errors added in quadrature as thin
error bars.

In figure 7.16, the distribution of the mean A¢ at hadron level is plotted in bins of
z. The mean value is defined here as:
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Figure 7.16: a) Mean value of A¢ plotted versus z. b) Mean value of A¢ normalized
to the largest z bin. The data are shown as full dots and the Monte Carlo simulations
are shown as histograms: ARIADNE is shoun as a full line and LEPTO as a dashed
line. Errors shown are statistical only.

i Adiwi

<A¢>= >
where w; is the weight of the distribution in the bin A¢ (that is the number of events
in this bin) where 7 runs over all the A¢ bins. The error quoted is the variance of the
mean sample, taken as the variance of the A¢ distribution divided by the sample size,
that is the number of entries in the distribution (for a demonstration of this general
result, see {123]). In figure a), the mean value is plotted as a function of z, while in
figure b) the distributions of the mean has been normalized to the largest z bin. As
observed in figure 7.15, the distribution seems to fall down faster in ARIADNE than
in LEPTO, however the effect is not significant as it lies within the error bars.

(1.8)

7.4.2 Parton Level Comparison

To be able to relate the results of the analysis to the theoretical predictions, we
must correct for the hadronization uncertainties. In practice however, correcting
for hadronization effects is not as easy as correcting for detector effects. Every event
generator has its own way of treating the parton shower evolution and the fundamental
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concept of parton can vary from one generator to another. As an attempt, the data
have been corrected to parton level using the ARIADNE model as it describes the
data somewhat better than LEPTO (see figure 7.13). The corrected cross section is
then defined as:

dcparton

= rlo{Ym" ) (79)
dzdA¢  Lia Alorr™ Acors AzA(AD)

where APS7" is the amount of hadronization correction. The corrected cross sections
can also be compared to NLO programs like MEPJET, DISENT or DISTASTER++.
However, it is known that in the NLO calculations, there are divergences which appear
mostly when the two leading order jets are correlated back-to-back. When plotting
the di-jet cross section as a function of any variable other than A¢, the divergencies
are not visible as they are smeared out in each bin. They are however well apparent
in the A¢ bins as shown in figure 7.17. A negative cross section is even found around
A¢ ~ =. This is due to infra-red divergences inherent in the theoretical calculations.
In order to be able to include the largest A¢ bin, we must then use a binning large
enough, so that the divergences cancel out. In practice, one can achieve this by taking
the largest A¢ bin such that the number of events entering this bin is at least equal
to the sum of all the events in the distribution, excluding this bin [124]. This is the
case for our plots, so normalizing all the distributions to the last bin in the NLO
calculations is safe. This problem is believed to be the cause of the bad description of
the di-jet rate by the various NLO packages (see the previous chapter). Recently, the
H1 collaboration showed that taking asymmetric transverse energy cuts for the di-jet
system reduces significantly these divergencies [125]. The use of these asymmetric
cuts has indeed lead to a good description of the di-jet rate in the data by the NLO
calculations. This is why the two jets have been selected with different transverse
momentum cuts (see table 7.1).

The final cross sections corrected with ARIADNE 4.08 are shown in figure 7.18.
Together with the data cross sections and the Monte Carlo predictions, the NLO
calculations as produced by the MEPJET package are shown. The values of the NLO
cross sections agree with the data in the last bins of A¢ (for A¢ ~ ) but disagree
at small A¢ values. The small bump in the MEPJET in the smallest z bin is simply
due to poor Monte Carlo statistics and should not be taken too seriously.

In figure 7.19, all the cross sections have been normalized to the highest A¢ bin.
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Figure 7.17: Di-jet cross section as a function of A¢ in the NLO calculations (MEP-
JET package) in the back-to-back range. All the cuts listed in table 7.1 have been
applied.

No sizable difference is observed between the various Monte Carlo simulations and
the data. The A¢ distribution in the data is broader and wider than the MEPJET
predictions in the low z bins, which is a sign that the jets are more correlated in
MEPJET. However, the dependence on the model and the similarity of the behav-
iors of LEPTO and ARIADNE at hadron and parton levels prevent us from drawing
strong conclusions from this effect.

7.4.3 Systematic Uncertainties

A detailed explanation of the calculation and the size of the systematic uncertainties
can be found later in chapter 8. We try here to determine the main contributions to
these errors of this analysis. Four main types of systematics are studied and included
in the evaluation of the hadron and parton level cross sections:

o the dependence of the corrections on the model: to study this systematic ef-
fect, all the corrections have been performed using the LEPTO model (versus
ARIADNE).

o the energy scale of the calorimeter: the energy scale has been changed by +£5%
to account for the uncertainty of the correction (see section 4.2.1).
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Figure 7.18: Di-jet cross section corrected for detector and hadronization effects (par-
ton level) as a function of A¢ in three z bins in data and Monte Carlo. The data
are shown as full dots and the Monte Carlo simulations as histograms: ARIADNE is
shown as a full line, LEPTO as a dashed line and HERWIG as a dotted line. MEP-
JET is shown as a full line. The shaded area corresponds to the systematic error
due the energy scale uncertainty. Statistical errors are shown as thick error bars, and
statistical and systematic errors added in quadrature as thin error bars.

e Systematics on the boost: as the analysis is performed in the HCM frame,
it is important to check the influence of the boost. The error on the boost
from the laboratory frame to the HCM frame depends mainly on the error
of the determination of the energy of the positron. To study this error, we
computed the positron energy in a different way, using the double-angle method
(see appendix A). The value of the energy of the positron, using the Q% , method
is: Eg = ﬁ.—(—l-’fc‘oT.)’ where F, is the value of the positron beam and 8, is the
scattering polar angle of the positron.

® The resolution on the jet variables was tested by adding or subtracting the value
of each jet cut by one standard deviation from the resolution (one sigma) of the
variable considered. The summary of these changes is in table 7.5.

All the systematic effects but the ones related to the energy scale have been added
in quadrature to the statistical errors. The energy scale systematic, being correlated
with the other systematic uncertainties, is shown as a shaded band. In all the bins,
the dominant systematic effects are the dependences on the model and on the boost.
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Figure 7.19: Di-jet cross section corrected for detector and hadronization effects (par-
ton level) as a function of A¢ in three  bins in data and Monte Carlo. All the
histograms have been normalized to the highest A¢p bin. The data are shown as full
dots and the Monte Carlo simulations as histograms: ARIADNE is shown as a full
line, LEPTO as a dashed line and HERWIG as a dotted line. MEPJET is shoun
as a full line. The shaded area corresponds to the systematic error due the energy
scale uncertainty. Statistical errors are shown as thick error bars, and statistical and
systematic errors added in quadrature as thin error bars.

The value of the systematics, together with the value of the data cross section cor-
rected to hadron level is shown in table 7.6.

Jet variable | Nominal cuts Changed cuts
Ef¢,p | min4 (6)GeV | min 4.6/3.4(6.9/5.1) GeV
EP% ., | min 4 (6) GeV | min 4.64/3.36 (6.95/5.05) GeV

anﬁ, max 2.2 max 2.26/2.13
MRS min 0. min 0.1/ — 0.1

Table 7.5: Systematic checks on the jet variables. In parenthesis are shown the values
of the transverse energy cut for the second jet (asymmetric cuts).
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A¢-range 35%33 + stat. & syst. [nb]
0.0001 < z < 0.0006 | 0.0006 < z < 0.002 | 0.002 < z < 0.010

0-0.78| 19.4+4.1%180 48+1.2%8, 0.63 +£0.2%31
0.78 - 1.18 18.4 + 52133 7.8 +£2.3%2?2 0.70 £0.3*39
1.18 - 1.57 30.1+£7.9%] 7.08 £2.0%18 1.15+ 0.4 +22
1.57 - 1.96 53.6 £ 10*3 21.2 +4.2%12 2.45+0.6%33
1.96 - 2.36 103 £ 14} 29.1 +£4.27%5 3.05 £ 0.6%33
2.36 - 2.75 351 +26%7, 109 +8.5%51 125+1.1%23
2.75 - 3.14 1000 £ 4112 408 £ 16+ 1% 55.4 £2.8%73

Table 7.6: Cross section values and errors for the corrected data (hadron level).

7.5 Summary

The azimuthal correlation between the two leading order jets has been evaluated and
corrected to the hadron and parton levels in three bins of z. The cross section is
however affected by large migrations in the A¢ bins. Moreover, because of the in-
ternal resolution of the jet (that is the jet radius), a cut must be applied in ApfcM
which can hide the weakening of the azimuthal correlation between the leading order
jets in the data when reaching small value of z. No major difference between the
DGLAP-based models as in LEPTO, and ARIADNE, which implements a BFKL-

like, non-ordered parton evolution, has been observed.

At hadron level, the data are consistent with both models within the error bars. HER-
WIG, however exhibits a much more correlated di-jet system. But this model does
not reproduce properly the detector level distributions in the data and must therefore
be rejected in our kinematic range. As HERWIG and LEPTO implement the same
kind of DGLAP-based mechanism in the parton shower, this is a hint that the non-
perturbative effects are dominant in this analysis. The interpretation of the results is
therefore quite model-dependent. Moreover, because the DGLAP-based models and
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the ARTIADNE simulation are consistent with each other and with the experimental
data, testing new models like LDC or RAPGAP is not necessary for this analysis.

The data have been corrected to parton level, and compared to NLO calculations.
In general, the experimental di-jet system seems to exhibit a smaller amount of az-
imuthal correlation than the one obtained with the NLO calculations, for the low
values of z. This is consistent with the predictions of BFKL. However, the model
dependence, included into the correction to the parton level and the agreement of the
data with LEPTO at hadron level prevent a strong conclusion to be made out of this
observation.

The main obstacle to this analysis is the fact that the azimuthal resolution of the
jet is of the same order as the size of the expected effect. The measurement is
therefore bound by a fundamental uncertainty, as to whether the effect observed is
due to the dynamics of the partonic process or to a feature of the reconstruction of
the di-jet system. Moreover, the choice of the cuts does not enable us to isolate a
phase space region small enough to distinguish between the contribution from a non-
ordered parton evolution, and the contribution from the standard picture, ordered in
transverse momentum.
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Chapter 8

Forward Jet Cross Section

8.1 Introduction

The previous chapter showed that an indirect measurement of the parton evolution,
through the study of the azimuthal correlation between the two leading order jets, did
not give a positive BFKL signal. The main problem was that the resolution of the jet
(its cone radius) was of the order of the resolution of the effect, that is the azimuthal
correlation between the jets. In this chapter, a second attempt is performed to study
the parton dynamics by looking directly at the outcome of the parton evolution, i.e.
following a parton arising from the evolution process rather than the effects of this
parton evolution on the leading order jets.

The strategy of the analysis was explained in section 6.2.2. The aim is to study
the forward jet cross section and compare it to various evolution models. If the jet,
emitted in the forward direction, has a transverse energy comparable to the four-
momentum of the exchange boson, the jet cross section must be suppressed in the
low z limit in the usual DGLAP picture. In the BFKL scheme, however, the cross
section is expected to rise as a power of %, and therefore a clear signal might be
expected. We saw in chapter 6 that the rise of the forward jet cross section, in the
BFKL picture, is weakened by NLO corrections. However, no prediction on the size of
these corrections has been made yet and it is interesting to evaluate the cross section
in the data.

The cuts for the forward jet analysis have been explained in section 6.2.2. They are
summarized in table 8.1. The final purpose is to evaluate the forward jet cross section
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in bins of z, and probe in particular the low z region. The plan of this chapter is
essentially the same than the previous one: the cross sections at detector level are
first compared to the various Monte Carlo predictions. Then the various corrections
are applied to the data: energy corrections, acceptance, purity and efficiency. The
various systematic errors are then discussed. Finally the cross sections are obtained
at hadron and parton level, to be discussed and interpreted in the light of the Monte
Carlo predictions and the various theoretical calculations.

Ee' > 10 GeV
y>0.1
MNee < 2.6
Er e > 5 GeV
Zge > 0.036
05 < BL /@ < 2

pzJee(Breit) > 0 GeV/c
4.5-107" <z <4.5-1072

Table 8.1: Selected phase space region for the cross section measurement.

8.2 Comparison between the Data and the Monte
| Carlo Simulations

In this analysis, we are mostly interested in the absolute value of the jet cross sec-
tion in the selected phase space. In figure 8.1, some general kinematic variables (Q?,
ys8, Eo and E — Pz) are compared to three Monte Carlo predictions: ARIADNE
4.08, LEPTO 6.5 and HERWIG 5.9. To obtain these plots, all the cuts presented in
table 8.1 have been applied. Contrary to what was shown in the previous chapter,
ARIADNE describes fairly well the data. Both the shape and the absolute normal-
ization are well reproduced. On the other hand, the MEPS-based models, LEPTO
and HERWIG, exhibits a cross section which is in average 40% too small compared
to the data. This is a first hint that the physics implemented in these Monte Carlo
models does not yield a good description of the hard process in the phase space under
consideration.
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Figure 8.1: Shape comparison between the data (shown as full dots) and Monte Carlo
simulations for four variables: a) Q2, b) E., c) ysp, d) E — Pz. The data are
displayed as full dots. ARIADNE is shown as a full line, LEPTO as a dashed line
and HERWIG as a dotted line. Statistical errors only.

In figure 8.2, the jet variables, which are used in the cuts (i.e. Er, 5, 2. and E}/Q?),
are compared to the Monte Carlo predictions. In these plots, all the cuts defined in
table 8.1 have been applied to the selection procedure, except the one on the plotted
variable. This allows a study of the cross section outside the region where the con-
tributions due to a BFKL-type dynamic are expected to dominate. The shaded area
corresponds to the region outside the kinematic limits of the phase space defined by
table 8.1.

Once again, the variables are fairly well described by ARIADNE, whereas LEPTO and
HERWIG yield a cross section too small by around 40%. The last plot of figure 8.2,
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d), is particularly revealing. The variable E%/Q? is plotted in an extended range and
compared to the various Monte Carlo predictions. In section 6.2.2, the importance
of this variable was stressed: for the forward jets, it gives an indication on the type
of ordering which is considered. One can basically distinguish three regions in this
plots, which correspond to three types of evolution mechanism:

¢ Q2 >> E%: in this region, the scale of the process is set by the four momentum
of the exchange boson. This is consistent with the DGLAP picture. The forward
jet has there a low Er with respect to Q2 and the models and the experimental
data converge to the same value. This corresponds to the high Q? limit where
the DGLAP scheme is known to give correct results.

o Q2 ~ EZ: this is the region we are interested in. There, the DGLAP mechanism
is suppressed due to the requirement of strong ordering and the two MEPS
models exhibit much smaller cross sections than the data, while ARIADNE,
which has not implemented the requirement of strong ordering, describes the
data correctly.

e Q? << E%: this is the most intriguing phase space region. The scale of the
process is set by the transverse momentum of the forward jet. A backward
evolution is possible, from the quark box to the virtual boson, which is similar
to the photoproduction case. In this region, none of the Monte Carlo models
describes the data.

As ARIADNE describes the data best, this Monte Carlo simulation is used to perform
the detector corrections.

8.3 Detector Correction

8.3.1 Energy Correction

As for the previous analysis, an energy correction is applied to the data as well as to
the detector level of the Monte Carlo simulation. The method is very similar to the
one presented in the section 7.3.1 so we refer the reader to it for more details. The
difference is that the energy correction, here, is averaged over all the pseudorapidity
range of the jets, rather than dividing the sample on different 5 bins. This is justified
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as the n range of the jets is small and limited to the forward calorimeter (cf. fig-
ure 8.2). The value of the energy corrections is shown in figure 8.3. Once again, the
(transverse) energy of the jet found in the detector is multiplied by the corresponding
value from the fit.

8.3.2 Resolution of the Kinematic Variables

The phase space of this analysis is constrained by a variety of cuts which are deter-
mined by the performance of the detector. Each cut can indeed be associated with a
certain purity and efficiency which depends on the resolution of the variable on which
this cut is applied. Therefore, when all the cuts are applied to get the final sample,
the overall purity and efficiency are reduced by a certain amount which depends on
the number of cuts applied and the resolution of each variable used in the cuts.

As the final distribution is investigated in bins of z, it is very important to determine
its resolution, in order to obtain the bin size of the final distribution. In table 8.2,
the resolution of z in each selected bin is shown. The width of the bins is set to be
at least twice the resolution in z in order to account for migrations from bin to bin.
The last bins are larger in order to have a reasonable amount of statistics.

z range (x10-°) | 0.45-0.8 | 0.8-1.4 | 1.4-2.5 | 2.5-4.5 | 4.5-8 | 8-14 | 14-25 | 25-45
#(z) (x10-%) | 0.07 | 0.16 | 041 | 0.78 | 1.5 | 3.6 | 47 | 12

Table 8.2: Size of the bins in z and resolution of z in each of the bins.

The resolution of four jet variables is shown in figure 8.4: Er, 7, = and E3/Q?. As
in chapter 7, the absolute and relative resolution on the variable X are defined as:

AX = XPet _ xHad, (8.1)
AX XDtt - Xﬂad
X _  XHad (8.2)

The typical relative Er resolution of the jet is 11 % whereas the 5y, resolution
is around 0.1. The zJ. resolution is around 6.5 - 10~3. The worst resolution is in
E}/Q?: it is around 25%. Asall these variables are included in the analysis cuts, these
resolutions strongly affect the purities and efficiencies of the final sample, especially
the E2/Q? resolution (see below).
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Figure 8.2: Shape comparison between the date (shown as full dots) and Monte Carlo
simulations for four jet variables: a) Er, b) n, c) zje, d) E3/Q*. The data are
displayed as full dots. ARIADNE is shown as a full line, LEPTO as a dashed line
and HERWIG as a dotted line. Statistical errors only. The shaded region corresponds
to the value of the variable outside the kinematic domain defined by the cuts of table
8.1.
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8.3.3 Acceptance Correction, Purity, Efficiency

The bin-by-bin correction procedure, similar to the one used in the azimuthal cor-
relation analysis, is performed here. We refer the reader to section 7.3.3 for more
information. The value of the purities, efficiencies and acceptance correction factors
are shown in figure 8.5. The purities and efficiencies are typically on the order of 20-
30%. These values are limited by the resolution of the cuts which are applied on the
jet variables, in particular the cut on E}/Q?. When this cut is removed, the values
of the purity and efficiency increases by 30-50%,depending on the z bin (see figure 8.6).

As a consistency check, the same values are computed using the LEPTO model. They
are shown in figure 8.7. Both efficiency and purity are slightly smaller than the values
obtained with ARIADNE but the value of the correction factors remain fairly consis-
tent showing that the choice of the model has only a small influence on the detector

corrections.
08 o I 4
[ a) purity . b) efficiency L5 :+. - I
0.6 L o i - -
I i 1 L e o
-
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Figure 8.5: Hadron to detector purities, efficiencies and (bin by bin) correction factors
of the event sample for the analysis based on the cone algorithm. These values have

been obtatned with the ARIADNE model.
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Figure 8.6: Hadron to detector purities, efficiencies and (bin by bin) correction factors
of the event sample for the analysis based on the cone algorithm. The cut on the
variable E%/Q%s removed. These values have been obtained with the ARIADNE
model.
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Figure 8.7: Hadron to detector purities, efficiencies and (bin by bin) correction factors
of the event sample for the analysis based on the cone algorithm. These values have
been obtained with the LEPTO Monte Carlo.
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8.4 Forward jet Cross Sections

Before turning towards the final aim of the study, the comparison of the corrected
results to the theoretical calculations, we shall have a brief look at the uncorrected
distributions. In section 8.2, some uncorrected distributions were presented and com-
pared to various Monte Carlo distributions. The behavior of the E2/Q? distribution
turned out to be quite meaningful on the behavior of the parton evolution at various

values of Q2.

The uncorrected differential jet cross section is calculated as:

é_{ _ Nevmta
de ~ Lz’

where L4, is the integrated luminosity of the sample, Az is the bin size in the vari-
able z and N.yents, the number of events in the Az bin.

(8.3)

In figure 8.8, the uncorrected differential forward jet cross section in the data is com-
pared to the three Monte Carlo predictions obtained with ARIADNE, LEPTO and
HERWIG. The trend which appears in the plots shown in the previous section is
confirmed: ARIADNE describes the data best, while LEPTO and HERWIG, the two
Monte Carlo models based on the DGLAP equations, exhibit significantly smaller
cross sections.

Figure 8.9 pictures a typical event containing a forward jet in the ZEUS detector. A
large amount of transverse energy is seen in the forward calorimeter, corresponding
to the forward jet, together with a fraction of energy in the barrel calorimeter (which
can be attributed to the leading order parton or current jet). A positron is clearly
reconstructed in the rear calorimeter.

8.4.1 Hadron Level Comparison

The cross section corrected to hadron level is calculated in the following way:

E’_ — Nevmta
dz B EdntdAco"Az'

L4ata and Az have been defined above and A, is the acceptance correction which
is shown in figure 8.5. The values of the cross section corrected to the hadron level

(8.4)

151



= i
= 140 - e ZEUS Data
= 120 [ . —L_ ARIADNE 4.08
\ [
%) k .. .
S ol LEPTO 6.5
S HERWIG 5.9
80 ‘.._.._.,_.._‘,_.i
60 :'_;'L'L'L'.’- :
L [
40 -
20 F

Figure 8.8: Differential cross section as a function of z for the uncorrected data
(CONE algorithm and all cuts applied). Data are shown as full dots and Monte
Carlo as histograms. Only statistical errors are shown.

are displayed in table 8.3, together with the statistical and systematic errors.

The data corrected to hadron level are compared to the Monte Carlo simulations in
figure 8.10a). There, four Monte Carlo simulations are plotted together with the
data: ARIADNE 4.08, LEPTO 6.5, HERWIG 5.9 and the new model LDC 1.0 de-

scribed in section 3.2.3.

As in the previous section, ARIADNE is the only model which reproduces the data
in absolute cross section, including the low-z limit. The two MEPS-based models
exhibit a smaller cross section. This is expected as these Monte Carlo simulations do
not implement the type of hard physics which is probed here. The larger value of the
cross section measured in the data is a first clear experimental hint that higher order
contributions to the leading order DGLAP equations contribute significantly to the
partonic processes.

The figure 8.10 b) shows the same differential cross section but with a logarithmic
y scale. This is made in order to emphasize on the high-z region. LEPTO, ARI-
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Figure 8.9: Picture of an event found in the ZEUS detector and containing a forward
jet. The display ts divided in three parts corresponding to three different views in the
ZEUS detector: the XZ plane is the largest one, the top right one is the transverse
cross section containing the track pattern in the CTD and energy deposited in the
BCAL and on the bottom right side, the amount of transverse energy deposited in the
calorimeter is shown in the (1,0) plane.

ADNE and the corrected data converge, while HERWIG does not. In this region,
the convergence is indeed expected between the data and the DGLAP-based models
given that the evolution parameter for BFKL, that is the evolution length in which
the BFKL-type dynamics can contribute, is suppressed by a factor [nZi), where =
is on the same order as ;.. HERWIG however still does not agree with the data. A
tentative explanation is given below.

The LDC model, which implements the CCFM equation, does not describe the data
either at low z. This is a puzzle since this Monte Carlo simulation implements the
type of hard physics expected to give rise to the BFKL-like eftects. The comparison
between LDC and the data in other analyses (jet rates, transverse energy flow) shows
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the same kind of results: LDC predicts a cross section (or absolute rate) which
generally lies between ARIADNE and LEPTO (cf. [125]). As the structure function
used to generate the LDC events is different from the other simulations (¢f. chapter 3),
an attempt was performed to compare the jet rates only. The forward jet rate is
defined by:

a5
R . —
fi Utoz’

where o, is the total cross section determined in the phase space under consider-
ation and oyj, the cross section for the events containing a forward jet. As both
cross sections depend on the structure function F; of the proton, the ratio must be
independent of F; in the first order. The forward jet rate in the data is plotted in
figure 8.11 and compared to ARIADNE, LEPTO and LDC. Here, it can be seen that
the forward jet rate in the LDC model lies in between ARIADNE and LEPTO. The
previous result (for the total cross section) is therefore confirmed and LDC does not
describe the data results.

In the high-x region of figure 8.10 a), LDC does not converge to the value of the data
cross section but to HERWIG’s predictions. This might result from the requirement
of strong ordering in the emission angle of the partons along the gluon ladder, require-
ment which is similar to the implementation of the colour coherence in HERWIG. In
this case also, the emitted parton is supposed to lie within a cone around the parent
parton. At high-z, both features of HERWIG and LDC must be similar [126].
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z-range %g- + stat. & syst. [nb] | syst. (Er e -scale) [nb]
45.10"% - 8.0- 1074 114.0 £ 9.7+ 29 (=59, +18)
8.0-1074-1.4-10"3 96.2 +6.5132 (-8.1, +17.8)
1.4-10-%-2.5-1073 77.8 £4.7+52 (-4.2, +7.0)
2.5-107% - 4.5-107° 34.4 £2.2%33 (-2.1, +2.6)
4.5-10~% - 8.0- 10~° 14.1 £ 1.0%25 (-1.2, +1.3)
8.0-10~3 - 1.4-107? 6.53 + 0.54 £330 (-0.7, +0.2)
1.4-107% - 2.5 - 102 2.65 +0.25% 339 (—0.03, +0.20)
2.5-1072 - 4.5- 1072 0.65 + 0.09 210 (-0.00, +0.05)

Table 8.3: Cross section values and errors for the corrected data after all the cuts
defined in table 8.1. The last column shows the systematic error due to the energy
scale uncertainty of the calorimeter, which is not included in the central column. It
corresponds to the shaded band in figure 8.10.
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Figure 8.10: a) Differential hadron level forward cross section as a function of z.
b) Same as a) but in double logarithmic scale. The cross section is measured in the
region: nye< 2.8, 27> 0.036, 0.5 < EF 4,,/Q* < 2, Ergee > 5 GeV, E. > 10 GeV,
y > 0.1. Statistical errors are shown as thick error bars, and statistical and systematic
errors added in quadrature as thin error bars. The errors due to the uncertainly of
the jet energy scale are correlated for the different z bins and therefore not included
in the error bars but given as the shaded band.
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Figure 8.11: Corrected forward jet rate in the data compared to three Monte Carlo
simulations. The data are shown as full dots. Errors shown are statistical only.
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8.4.2 Comparison at Parton Level and Discussion of the Re-
sults

Parton level

s B ARIADNE 4.08
=ses  LEPTO6S

....... ;  HERWIG 5.3

doc/dx [nb]

~ L. LbCLO

= BFKLLO
No jet algorithm

-------- BFKL 1* term
No Jet algorithm

MEPJET NLO

- .,
2 .
. sonay .'t

L
o .
e .,

sesssceliniNeyy:
0 & N . i voesEers ‘
3 :

10 10 X

Figure 8.12: Predictions of the NLO and the BFKL calculations together with the
Monte Carlo predictions at parton level. The theory predictions are shown as smooth
curves, while the Monte Carlo cross sections are shown as histogram: ARIADNE is
shown as a thick line, LEPTO as a dashed line, HERWIG as a dotted line and LDC
as a thin line. The band shown for the NLO predictions corresponds to the possible
range on the renormalization and factorization scales.

The ultimate goal of this study is to probe the perturbative expansion of the partonic
evolution. The BFKL calculations, as well as the MEPJET NLO predictions, only
take into account this perturbative region, ignoring the hadronization phase.

In the Monte Carlo simulation, the parton level, as defined in chapter 3 is not such
a well defined quantity. The partons are taken at the end of the parton shower (or
dipole radiation in the case of ARIADNE), at a scale where non-perturbative effects
can be large. The comparison between the parton level in the various Monte Carlo
used and the theoretical calculations is shown in figure 8.12 within the set of cuts
defined in table 8.1. The NLO predictions within the factorization (renormalization)
scale 0.25K% < BE@) < 2K} are in good agreement with the parton level of the
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DGLAP-based Monte Carlo simulations’, meaning that in this kinematical domain,
the parton showers discussed in section 3.2.1 reproduce correctly the NLO effects in
terms of shapes and total cross sections. These cross sections are however strongly
suppressed with respect to the full BFKL calculations. The predictions using only
the first term of the BFKL calculations comes closer to the DGLAP and NLO pre-
dictions. This corresponds to the term in In(z/z;e) in the BFKL resummation, and
is therefore the equivalent to the NLO corrections to the DGLAP equations. The
slight discrepancy which is observed between the BFKL first term and the MEPJET
predictions can be due to a normalization uncertainty in the BFKL picture and is
currently under investigation (one can show that the absence of jet algorithm in the
NLO prediction does not change significantly the value of the forward jet cross sec-
tion [114]). ARIADNE lies in between the DGLAP-based predictions and the BFKL
predictions. The LDC Monte Carlo exhibits a larger cross section than the MEPS
Monte Carlo simulations, but still much smaller than ARIADNE. It is indeed con-
sistent with the NLO predictions. Efforts are currently performed to understand the
reasons for this discrepancy with the BFKL predictions.

Before comparing these predictions to the data, care must be taken of the hadroniza-
tion corrections. To this end, a bin-by-bin correction is used and the partonic cross
section in the data is defined by:

d_d - Nwmu
A2 Lgaea AR Acors Az

(8.5)
Aparton is the correction from the hadron to the parton level. These corrections are
however model dependent. In figure 8.13, the hadronization corrections are plotted
for the four Monte Carlo simulations we compared to the data. The striking feature
of the plot is the disagreement between the corrections for the DGLAP-based models
(HERWIG and LEPTO) and the BFKL-like models (ARIADNE and LDC). The lat-
ter present small and flat corrections over the full z range, whereas the former have
very large corrections at small z. This does not really come as a surprise, as the
DGLAP-based models do not have the kind of hard physics which can describe the
topology of the event within the selected phase space. In order to generate a jet of
order a? or higher with a transverse energy comparable to the Q? of the event, the
DGLAP-based simulations would need to implement NLO corrections. Without that,

1K3 is the sum of the transverse momenta of the partons in the Breit frame. The choice of the
scale K3 is performed in accordance with the minimal sensitivity criteria, see [127].
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the jets which are generated in the parton shower have a small transverse momentum
by construction.

The correct procedure would require to take into account the model dependence of
the hadron-to-parton correction factors into the calculation of the systematic errors.
Lacking two models which describe correctly the data at hadron level, we are bound
to estimate this error with one of the MEPS model. The difference between the data
corrected to parton level with ARIADNE and with LEPTO is shown in figure 8.14.
In case a), the data corrected with ARIADNE, agree fairly well with this Monte
Carlo and are much above the DGLAP-based predictions. In the second case (b), the
correction factors are calculated with LEPTO and the data cross sections lie much
below the ARIADNE predictions (but are still larger than the LEPTO predictions
by a factor 1.5 to 2).

Of course, correcting the data cross sections with a Monte Carlo which does not de-
scribe them is not quite a valuable procedure. However, so far, only one Monte Carlo
could match the data, so that a large uncertainty remains in the interpretation of the
data corrected to parton level.

[ @ ARIADNE 408 ' O HERWIG 8.9

L5 r O LDC1Ll® - @ LEPTOG.S

0.5 E -

Hadron to parton corrections
[

T 77 I'll"'ll

Pll ‘l"l'lll'

0 Lls lz k.lLLls. P Au,lz
10 10 x 10 10 x

Figure 8.13: AP Hadron to parton correction factors for the phase space region

defined by the cuts listed in table 8.1, for four different Monte Carlo simulations:
ARIADNE 4.08, LEPTO 6.5, HERWIG 5.9 and LDC 1.0.

The above results yield finally another puzzling fact: from the hadron-to-parton cor-
rection factors, it is seen that LEPTO and HERWIG predict a large amount of jets
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Figure 8.14: Parton level differential cross section as @ function of z for the data
corrected for detector and hadronization effects. Data are shown as full dots and
Monte Carlos as histograms (the cuts listed in table 8.1 have been applied. The thick
error bars on the data points are the statistical errors and the full error bar (in thin
line) is the systematic + statistical error added in quadrature. The energy scale error

is represented as a hashed area around the data points. a) Data corrected with the
ARIADNE Monte Carlo. b) Data corrected with the LEPTO Monte Carlo.

at the hadron level which do not have a corresponding partner at the parton level.
That is, most of the jets predicted by LEPTO at hadron level and at low z arise from

_some “energy fluctuation” of non-perturbative nature. To estimate the origin more

exactly, we try to compare LEPTO generated jets with and without the Soft Colour
Interactions described in section 3.3.3. The comparison with the data cross sections
corrected with LEPTO (with the flag SCI turned on) and the LEPTO predictions
with and without SCI is shown in figure 8.15. At hadron level (a), the absence of SCI
makes a big difference (almost a factor two in the lowest z bins), whereas at parton
level (b), the discrepancy is hardly noticeable (but this is expected as the SCI is a long
range effect, taking place after the parton shower). Thus, a large number of the jets
that are predicted by LEPTO at hadron level arise from a purely non-perturbative
phenomenon, as a consequence of an excess of energy in the forward region produced
by a different string topology (see section 3.3.3). This is confirmed by the comparison
of the hadronization corrections shown in figure 8.16. The hadron-to-parton correc-
tions are shown for ARIADNE, LEPTO with SCI and LEPTO without SCI. There
again, the hadronization corrections are much larger when the SCI flag is turned on
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instead of off.
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Figure 8.15: Forward jet cross section (corrected with LEPTO including soft colour
interactions) compared to LEPTO with and without SCI at hadron level (a) and parton
level(b). All the cuts defined on table 8.1 have been applied. The data are shown as
full dots and the Monte Carlo simulations as histograms: LEPTQ with SCI is shown

_ as a full line histogram and LEPTO without SCI is shown as a dashed line histogram.
The statistical errors are shown as thick error bars. The systematic error added in
quadrature with the statistical errors are shown as thin lines.
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Figure 8.16: Hadron to parton corrections for the phase space region defined by the
cuts listed in table 8.1 for ARIADNE 4.08, LEPTO 6.5 with and without SCI.
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8.4.3 General Systematic Checks

Some systematic checks are performed in order to test the stability of the results
against fluctuations arising from an inaccurate description of the data from the model.
In order to evaluate the amplitude of these fluctuations, the Monte Carlo simulation
with which the detector corrections have been performed, ARIADNE, is used. The
systematic checks are then added in quadrature as they are expected to be indepen-
dent from each other (except for the energy scale determination, see below). The
value of the systematic error for each cut (if this error is significant) is shown in fig-
ure 8.17 and 8.18.

o A first category of checks deals with the “cleaning cuts” described in section
5.3 (i.e. the event selection cuts which are corrected for at hadron level), in
order to test their influence on the hadron level cross sections. As these cuts
are corrected for, their value should not matter. But because of the small
deviations of the model from the data, the change in the correction factors does
not always compensate the change in the data cross section. The list of these
checks is given in table 8.4. All these changes prove to have a very insignificant
effect and are therefore not displayed in the summary figure 8.17 (except for
the E — Pz cut which also tests the photoproduction background).

o The reconstruction of the vertex by the CTD is checked by moving the Z position
of the reconstructed vertex by a value equal to the resolution (in the beam
direction) of the CTD (£0.4 cm). The position of the cells is then a little bit
shifted, which leads to different value on the position of the positron and the
jets. The effect of this change is shown in figure 8.17.

¢ The uncertainty on the energy scale of the calorimeter was taken into account by
adding +5% of energy of the jets; this corresponds in average to the uncertainty
on the total energy scale in the ZEUS calorimeter (see section 7.3.1). This yields
a systematic error of about 1 to 15 %. As this error is expected to be correlated
with the others, in particular, with the checks on the jet variables, it is not
added in quadrature as the other but represented as a band around the jet
cross sections.

o The uncertainty on the positron energy scale is checked by increasing and de-
creasing the positron energy by +1%. This is negligible in the lowest x bins but
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yields an error of 2 to 10% in the highest ones.

o To test the jet reconstruction, all the jet variables used in the determination
of the final cross section are changed at detector level (in the data and in the
Monte Carlo simulation) by one standard deviation of the mean. The summary
of these changes is shown in table 8.5 and the result of the changes are displayed
in figure 8.18.

e A special treatment on radiative corrections is also performed. It will be detailed
in the next subsection.

o Finally, to test the dependence on the model itself, the correction to hadron
level is performed with the LEPTO model instead of ARIADNE. But we face
a problem here: LEPTO does not describe the behavior of all the jet variables,
in particular EZ/Q?. Using this model to correct the data would result on an
overestimate of the systematic error. In order to turn around the difficulty,
LEPTO has been reweighted according to the EZ/Q? distribution obtained
in ARIADNE. The weight (which corresponds to the ratio of cross sections
normalized to the shape, between LEPTO and ARIADNE) has been applied
at both hadron and detector levels in LEPTO. If no hadron level jet was found
in the event (within the set of cuts presented in table 8.1), the hadron level jet
which was the closest to the detector level jet in the (7,¢) plane was used to
get the weight. This yields a systematic error much smaller than the one which
is obtained without reweighting.

Nominal cuts Changed cuts
35 < E — P; <65GeV [ 40 < E — Pz < 65GeV
[VTXz| < 50 cm VT Xz| < 60(40) cm
Y < 0.8 Y < 0.95
Box cut (13cm,8cm) | Box cut (14cm,ldcm)

Table 8.4: List of systematic checks on the cleaning cuts. On the last row, the boz
cut corresponds to the cut performed on the positron position as measured by the
calorimeter or the SRTD.
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Nominal cuts Changed cuts
EF® > 5 GeV | ER® > 5.5/4.5 GeV
X7sh >0.036 | X7t > 0.042/0.03

JET
nP* < 2.6 7P <2.7/2.5

E3/Q*"" <2 | E2/Q*"* < 2.4/1.6
E2/Q*"% > 0.5 | E2/Q*"* > 0.6/0.4

Table 8.5: List of systematic checks on the jet variables.
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Figure 8.17: Relative systematic error for each of the general checks done in each of
the z bins. In the last z bin, the error on the model dependence is around -30% and
does not appear on this plot.
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Figure 8.18: Relative systematic error for each of the checks on the jets selection cuts
done in each of the z bins.
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8.4.4 Radiative Corrections

Most theoretical calculations and Monte Carlo predictions in Deep Inelastic Scatter-
ing are performed at the Born level of QED. This means that, in these calculations,
the scattering lepton does not emit a Bremsstrahlung photon before (initial state) or
after (final state) the collision with the proton. This is justified by the fact that QED
radiations are suppressed by an order a.,, and are not expected to contribute much
in the total cross section.

In practice however, the Bremsstrahlung radiations can have sizable effects on both
the value of the kinematic parameters and the total cross section. Although initial
and final state radiations are undistinguishable from a theoretical point of view, their
effects are different on the correction factors: the photon emitted after the collision
between the lepton and the proton is often emitted collinear to the scattered lepton
and therefore the measured leptonic energy in the calorimeter includes both the en-
ergy of the scattered lepton and the energy of the radiated photon. On the other hand
the initial state radiation have a more dramatic effects on the kinematical variables
than the final state Bremsstrahlung.

The implementation of QED effects in a Monte Carlo package is used to correct data
and Monte Carlo for the distortions of the kinematic variables Q?, z and y created by
_ a radiative photon. These radiations also affect the absolute value of the cross section
of the events in the generator. To estimate the size of such a variation at generator
level, two samples were generated, one with QED radiations and one without. This
check has been performed with the HERACLES package [128], on events generated
with ARIADNE. HERACLES generates QED radiations to the order a.m. No NLO
QED radiations are implemented, but these ones are known to have a very small
effect. The relative difference between the two sample cross sections is shown in
figure 8.19. All the cuts listed in table 8.1 have been applied. The two cross sections,
with and without radiative corrections, are very similar. There is no systematic shift
between these cross sections and the relative difference is £10% or less. Therefore,
the QED effects on the forward jet cross section can be neglected.
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Figure 8.19: Cross section comparison between the forward jets generated with radia-
tive corrections (cqgp) and without(opon). The upper plot pictures the differential
cross section, while the bottom plot is the relative difference between the cross sections.

8.4.5 Dependence of the Results on the Jet Algorithm Used

Although the value of the jet cross sections at detector and hadron levels depend
on a large number of factors, an inclusive study of all the parameters involved in
the determination of the forward jet cross section would be a long and tedious task
beyond the scope of the present study. The aim of this section is just to present two
of the factors which may change, if not the physics message of the analysis, at least
the absolute meaning that one could give to it.

One of the crucial problems of this analysis is that, in order to evaluate a parton
level effect, we make use of an algorithm which is supposed to improve the agreement

170



between the parton and the hadron levels. As we saw in section 8.4, this was not
a trivial, one-to-one correspondence, so that different algorithms may give different
answers. In figure 8.20, the data cross sections {obtained with the algorithm PU-
CELL) are compared to the predictions af ARIADNE performed with three different
jet algorithm: PUCELL (which was used all over the analysis) and two algorithms
frequently used at ZEUS: EUCELL and PXCONE. The difference between the algo-
rithms lies mainly in the way they treat the energy shared between two overlapping
jets. For instance, the minimum fraction of energy shared required for merging two
jets is different from one algorithm to another. In figure 8.20 a), all the algorithms
are used with the same cone radius 1. There is about a 30% spread on the value
of the cross section. When the jets are generated with different radii, all the results
can match as in figure 8.20 b), leading to the following correspondence: PUCELL
(R=1) = PXCONE (R=1.2) = EUCELL (R=0.9). It must be added here that the
radius of the jets were properly tuned to some well known distributions, but as we
saw in chapter 6, the internal structure of the jets is different in the forward region.
Finally, the parton level calculations (either BFKL or CCFM) are also subject to to
theoretical uncertainties which can lead to comparable discrepancies.

Similarly, varying the cone radius of the PUCELL algorithm by £ 20% can lead to a
30% spread of the cross section, as can be seen in figure 8.21. There is no definitive
“best choice” for the determination of the cone radius or the algorithm used. The
~ most natural criteria is the correspondence between hadron and parton level jets.
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Figure 8.20: Hadron level jet cross sections in the data (obtained with the PUCELL
algorithm) compared to the predictions of ARIADNE 4.08 obtained with three different
jet algorithms: PUCELL, PXCONE and EUCELL. o) All the algorithms use the same
radius. b) Different radii are used.
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Figure 8.21: Hadron level jet cross sections in the data (obtained with the PUCELL
algorithm) compared with the predictions by ARIADNE 4.08 obtained with PUCELL
and three cone radii: 0.8, 1 and 1.2.
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8.4.6 An Alternative Explanation: the Equivalent Photon
Approximation (EPA)

Recently, another attempt to explain the excess in the forward jet cross section with
respect to the standard DGLAP model predictions (and the NLO calculations) has
been presented [129]. The evolution mechanism that it involves is based upon the
equivalent photon approximation (EPA): if the scale which is probed by the hadron
jet is larger than the four-momentum squared @? of the photon, one might then be
able to resolve the structure of the photon, even at moderate Q2 (Q? > 10 GeV?). In
this case, Q? ceases to be the natural scale of the process and a DGLAP-like process
can take place, picturing an evolution from the hard jet (which sets the scale) to the
photon side. This backward evolution is pictured in figure 8.22.

e /Q/E.P.A.
pdf from the ph:t?'ﬁ~<

3
FevvvrY

Matrix Element

-
ey

pdf from t= e proton

Figure 8.22: Schematic description of the equivalent photon approzimation. The fac-
torization scale on the proton side being larger than Q?, one can resolve the structure
of the photon. Here PDF means Parton Distribution Function.

In order to generate this kind of events, a new Monte Carlo simulation has been pre-
sented, RAPGAP [56], which uses the “Schiiler-Sjéstrand”, SaSgam, parameteriza-
tion [130] for the structure function of the photon at high Q2. Within this framework,
two samples must be added (as in photoproduction): a direct part, which pictures
the standard DGLAP evolution, as in LEPTO and HERWIG, and the resolved part,
which implements the EPA. In figure 8.23, the comparison between the data cross
sections corrected at hadron level and the predictions obtained by RAPGAP and
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LEPTO is presented. The direct process is consistent with LEPTQ’s prediction,
while the sum of direct and resolved processes describes well the data (at least, as
good as ARIADNE). There is however some nuance to bring to this result: in order
to have any contribution from the photon structure, the factorization scale for the
photon side, 2, has to be much larger than the Q2 of the photon (in figure 8.23, the
scale is taken to be p? +Q?, p? being the sum squared of the transverse momenta of the
leading order partons). Similarly, the “amount of resolved photon” which contributes
to the forward jet cross section changes when the scale is changed: in figure 8.24,
the same process is considered with three different scales: Q%/2 + p?, Q% + p? and
4 -Q%+ p?. Whereas the direct component of the process does not change much, the
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Figure 8.23: Differential hadron level jet cross sections in the data (obtained with the
PUCELL algorithm) compared with the predictions by RAPGAP 2.06 implementing
direct and resolved processes.

resolved cross section depends considerably on the scale. Indeed there is no resolved
part when the scale is set to Q2, while the resolved component dominates over the
direct one when the scale is set to 4 - Q% + p?. The phenomenological input to the
model is therefore very important and this makes the predictive power uncertain.
However, a resolved component in the photon is certainly a possible explanation for
the forward jet excess and NLO corrections for the resolved part of the process are
expected and could improve the accuracy of the predictions.
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Figure 8.24: Hadron level jet cross sections obtained with RAPGAP 2.06 (resolved
and direct processes) for three different choices of scale.
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8.5 Extending the Kinematic Region of Interest

In section 8.1 of this chapter, the E2/Q? distribution of the forward jet was shown to
be a good estimator for the various parton evolution mechanisms which can take place
in DIS. Three kinematic regimes have been determined, when comparing the various
data points to the models at detector level: the region where the DGLAP picture is
valid, Q2 > E2, the region where the contributions from higher order processes and
BFKL-type processes dominate, Q> ~ E7 and the region where the hard scale is set
by the transverse energy of the jets EZ > Q2.

For a better understanding of these various regimes, the E2/Q? distribution of figure
8.2 has been corrected to hadron level. As the resolution of the variable B}/Q? is
quite large in the forward jet analysis, the bin size has been doubled. The correction
factors are shown in figure 8.25. The average efficiencies and purities are 40%. The
maximum values of the purities and efficiencies lie in the high E7 limit, which is
expected as the high Er jets are easy to measure and provide a clean sample. The
minimum value of the purities and efficiencies is found in the region EZ ~ @2, which
corresponds to the phase space under investigation in the rest of this chapter. This is
due to the fact that both Er and Q? have relatively low values. In this plot are also
shown the values for efficiencies and purities where the events are not required to be
generated and reconstructed in the same bin (see section 7.3.3). This is equivalent
to say that the the migration from bin to bin of E%/Q? between generated and
reconstructed level is not included in the definition of purity and efficiency. From
the difference between the two values (with and without the requirement of being
generated and reconstructed in the same bin), one can infer the average amount of
bin-to-bin migration of the sample, which is typically between 10% and 20%.

Once the data have been corrected, they are compared to some Monte Carlo models
in figure 8.26. The same simulations as for the z distribution are shown: ARIADNE
4.08, LEPTO 6.5, HERWIG 5.9 and LDC 1.0 (the systematics checks are similar to
those which were performed for the previous distribution). The same trend as at
the detector level is observed: the same three kinematic regimes shows up in the
corrected E2/Q? distribution. The DGLAP-based models, as well as ARIADNE and
LDC are valid for Q* > E%, while only ARIADNE describes the data at E} ~ Q2.
In the third region, the LDC model describes the data best, although it exhibits a
smaller cross section over the full range. LDC is the only model which treats forward
evolution (from the on-shell parton at the proton side to the virtual photon) and

177



ZEUS Preliminary
2

e : , H
[ ~0l |
: 6"C &
08 - e r -
29 ail: 1S 4
0L T o - i ——o
S P 000 e -
C _+ --O_‘_ - . -e- 1 -
04 [ o y _‘_+ - g
02 _l a) purity : | i b) efficiency | 05
“ Fe 'T ¢) correction factor
] 1
10° 1 , 1070 1 1 , 0 10’ t ) 10’
2 2 2
E,./Q E,/Q E,/Q

Figure 8.25: Efficiency, purity and correction factors for the E%/Q? distribution of the
forward jets. All the cuts listed in table 8.1, but the one on E%/Q? have been applied.
The black dots correspond to the real purity and efficiency. The open dots correspond
to the values of purities and efficiencies when bin-to-bin migration is allowed.

backward evolution (from the hard, virtual jet to the “softer” photon) on a similar
footing, as the evolution properties are symmetric with respect to the photon-proton
axis. However, since LDC does not reproduce the data cross section in a region where
it should (E2/Q? ~ 1), to conclude on an eventual backward evolution towards the
photon side is still too premature. Similarly, the comparison with the RAPGAP
model (see section 8.4.6) is made in figure 8.27. There also, the additional resolved
contribution from the photon improves the description of the data. As in the case
of LDC, the data exhibits smaller cross sections than the model. Once again, the
predicted cross section depends on the scale selected and no strong conclusion can be
drawn.

8.6 The kr Analysis

This analysis has also been performed with the kr algorithm (see [131]), but the
experimental results have proven to be disappointing. In the analysis, the resolution
parameter, ¥ is set equal to 0.5 (see section 6.1.2). The absolute scale used during
the clustering process is Q2p, at the reconstructed level and Q?r,,. at the generator
level. The jet clustering is done in the Breit frame (the four momenta of the particles
are boosted to the Breit frame where the clustering is done, the jets are then boosted
back to the laboratory frame where the cuts are applied and the cross sections are
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Figure 8.26: Differential hadron level forward cross section as ¢ function of E3/Q%.
All the cuts listed in table 8.1 , but the one on E%/Q? have been applied. The two
vertical lines show the limits of each kinematical regime (see tezxt). The statistical
errors are shown as thick error bars, and statistical and systematic errors added in
quadrature as thin error bars. The correlated errors due to the uncertainty of the jet
energy scale are given as the shaded band.

evaluated). The exact cuts listed on table 8.1 are applied to the jet.

I

The comparison between the jet cross sections at various level of the reconstruction
process (detector level, hadron level and parton level) is shown in figure 8.28. The
difference between hadron and parton level cross sections indicates that the objects
found at hadron level are mostly not coming from hard processes (as in the case of

LEPTO, with the cone algorithm).

The cross section at detector level is much larger than at hadron level, especially in
the smallest z bins, indicating that most of the objects found after clustering the cells
of the calorimeter not only do not correspond to any hard physics, but are not even
related to any generator level quantity. This translates into the values of purities and
efficiencies of the jets, shown in figure 8.29. At low z, they are typically of the order of
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Figure 8.27: Differential hadron level forward cross section as a function of E}/Q?,
compared to the RAPGAP predictions (scale p* = P} +Q?). The statistical errors are
shown as thick error bars, and statistical and systematic errors added in quadrature
as thin error bars. The errors due to the uncertainty of the jet energy scale are given

as the shaded band.

10% or less and the correction factor is about 2. This time, not only the resolution of
“each variable used in the cuts enters into account in the determination of the purities
and efficiencies, but the nature of the jet found in the calorimeter is not related to
the hadron level. This can be shown when comparing quantities found at hadron and
detector level. In figure 8.30, the correlation between the pseudorapidity of the “true”
jet, found at generator level is plotted versus the pseudorapidity of the detected jet.
For n > 2.2, the kr algorithm finds after the reconstruction a large amount of jets
which are not correlated with the jets found at the generator level. The jets at hadron
level are in average more forward than the detector jets and therefore do not survive
the maximum 7 cut of 2.6. These hadron level jets are actually receiving contributions
from the forward region, possibly from the proton remnant, which shift the overall
pseudorapidity to the forward region. Other evidences exist which make us think that
the kr algorithm, in this implementation, can not make a clear distinction between
the forward jet and the remnant in the forward region of rapidity (cf. [131]). One of
the explanations which can be advanced is that the Q2 scale used by the algorithm
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Figure 8.28: Differential parton, hadron and detector level forward jet cross sections
obtained with the ARIADNE 4.08 simulations, using the kr algorithm.

to perform the clustering in the Breit frame is not suited in this kinematic region.
As a matter of fact, in the phase space region probed, one does not expect that Q?
sets the scale of the hard process (in fact this should not be the case by construction,
as the analysis is performed in the region where the transverse energy squared of the
jet is on the order of Q?). The behavior of the correction factors suggests a similar
explanation, as they come closer to one at high z, where Q? is larger and might be
- the correct scale of the process.

The determination of the real scale of the process and its implementation into the kr
algorithm, to find forward jets in DIS, is therefore not straightforward and then no
strong conclusion can be drawn from this analysis.
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Figure 8.29: Purity, efficiency and correction factors for the forward jets obtained
with the kr algorithm.
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Figure 8.30: Correlation belween the pseudorapidity of the hadron and the detector
level jets with the kr algorithm. All the cuts listed in table 8.1, but the one on nje
are applied. The dashed lines show the value of the pseudorapidity cuts.
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8.7 Summary

The forward jet cross section has been measured in the 1995 data with the cone
algorithm, using the ZEUS detector. The internal structure of the jets has been
studied and the data cross sections have been corrected for detector effects using
standard Monte Carlo simulations. The comparison between the corrected data and
the Monte Carlo simulation for E}/Q? ~ 1 shows that the DGLAP-based MEPS
models, LEPTO and HERWIG, fail to describe the absolute jet cross section in the
data, while the ARIADNE model, which does not implement the same type of parton
evolution, strongly ordered in Fr, describes the data accurately. This strong dis-
crepancy is a hint that in the low z limit, there are hard processes not implemented
in the MEPS models. The nature of these hard processes can only be determined
when the hadronization effects are subtracted from the measurements. The LDC
model, which implements literally the CCFM equation and should therefore match
the BFKL predictions at low z, is unable to reproduce the experimental cross sections.

At high z, the LEPTO and ARIADNE model converge and reproduce the exper-
imental cross sections, but LDC and HERWIG still exhibit smaller cross sections.
One explanation could be the requirement of strong angular ordering which is imple-
mented in both latter models.

The NLO calculation, as implemented in MEPJET, are in good agreement with the
predictions of the DGLAP-based processes, LEPTO and HERWIG, and show much
smaller cross sections than ARIADNE. For the comparison to the data, a hadroniza-
tion correction has been applied, but it has been found very model dependent, as the
correction factors are very different between LEPTO and ARIADNE. The existence
of large correction factors in LEPTO at low z is again an evidence that the hard
processes which are probed are not implemented in this model. The Soft Colour In-
teraction is an example of a non-perturbative process which contributes significantly
to the forward jet rate in LEPTO.

An attempt to use a contribution of the resolved photon into the determination of
the cross section successfully describes the value of the forward jet cross section but
is bound to a large scale dependence, which make the conclusions uncertain.
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The study of the forward jet cross section in an extended range of E2/Q? revealed
three kinematic regions, depending on the scale of the process: I) E2/Q? <« 1: the
scale is set by @* and all the predictions converge to the experimental distributions,
IT) E2/Q* ~ 1: the DGLAP approximation is not valid any more and ARIADNE
is the only model describing the data, III) E2/Q? >> 1, the hard scale is set by the
transverse energy of the jet, as in photoproduction, and no model reproduces the
data, except the RAPGAP model, very dependent on the factorization scale.

The measurement of the forward jet cross section is bound by several uncertainties,
such as the dependence of the result on phenomenological parameters (e.g. the radius
of the cone) or the uncertainty on the corrections to parton level which currently
makes the comparison with theoretical calculations performed at the parton level
valid only within to about + 30%. The ideal method of comparison would be to use
the exact same algorithm in the theoretical calculations as in the data, but the BFKL
calculations do not implement this scheme yet. This present level of accuracy is also
expected in the calculations, so that the results are still meaningful in terms of hard
physics processes.
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Chapter 9

Conclusions

Low-z physics in Deep Inelastic Scattering has long been known as one of the best
place to study the dynamic of parton evolution. In this region of the phase space,
the parton emissions, which can be treated perturbatively thanks to the property of
asymptotic freedom, are extremely sensitive to the approximations which are per-
formed in the various parton evolution schemes. The standard DGLAP evolution,
which resums log Q2 terms only and then predicts parton emissions strongly ordered
in transverse momentum, is expected to fail in this region, while the new pictures,
based either on the summation of logarithms of  (BFKL scheme) or on the an-
gular ordering of the parton emissions (CCFM scheme) are both expected to yield
good results. The theoretical studies which have been performed on the comparison
. between the various schemes predict that at low values of z, the difterence is dramatic.

However, this phase space region is also extremely sensitive to the long-range physics,
dominated by the property of confinement and non-calculable through the stan-
dard methods, so that the extraction of the proper QCD effect from the huge non-
perturbative background is the main challenge of all analyses whose goal is to study
the parton dynamic at low z. The choice of the variable used in order to probe the
parton dynamic is then of a crucial importance and the effects of non-perturbative
physics on this variable must be checked carefully. As a matter of fact, the influence
of long-range physics on inclusive quantities like the proton structure function and
the transverse energy flow can not be dissntangled from the perturbative evolution.
Therefore no conclusion on which type of parton evolution takes place and which set
of approximations is valid can be drawn from such inclusive variables.
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Jet variables are sensitive to QCD effects and less influenced by non-perturbative
physics. However the experimental definition of a jet is dependent on a certain al-
gorithm. Up to now, the jets were used at HERA only in the high Q? range and
with fairly large transverse momenta, so that the systematics of the jet algorithm
were reduced by the fact that the jets probed were very collimated. At low z, these
effects are not so well known. Although a lower cut on the transverse momentum is
supposed to reduce the effects of soft physics on the final cross sections or angular
distributions, this problem might bounce back through the dependence on the algo-
rithm. However, jets are closely related to the details of the parton evolutions as their
four momenta are supposed to reproduce those of the hard partons through the prop-
erty of local parton-hadron duality and are therefore privileged objects to probe them.

In this work, the study of the parton dynamics at low z has been performed with
two methods using the jets observables. The first method is an attempt to probe
indirectly the underlying parton evolution by measuring their effects on the angular
correlation of the two leading order jets. As the analysis focuses on the tail of the
azimuthal correlation, in the region where both jets are very close to each other in
the transverse plane, the uncertainties due to the cone jet algorithm must however be
removed by a cut which reduces the sensitivity to the various modes of parton evo-
lutions. When comparing the measured distributions to the DGLAP-based Monte
Carlo simulations, LEPTO or HERWIG, no large discrepancy is found, and the ARI-
ADNE model which implements some of the features of a BFKL-like evolution, is
“also consistent with the former Monte Carlo models.

The second measurement aims at looking directly at the partonic emissions by fo-
cusing on a single parton, at a higher stage of the evolution (and for this reason,
named forward jet). The emission rate of this type of parton is largely suppressed in
a DGLAP-based picture, so that the value of the forward jet cross section can give an
indication of the validity range of this model. Indeed, the measured hadron level jet
cross sections exhibit a clear excess with respect to LEPTO and HERWIG in the low-
z limit, even with all the non-perturbative effects turned on. This cross section agrees
moreover with the predictions of the ARIADNE simulation, which is attributed to the
effects of a parton evolution, non-ordered in transverse momenta. The disagreement
with a first release of a CCFM-based simulation like the LDC model is still a puzzle,
as this picture implements the kind of physics which is expected in this kinematic
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region. The answer may come from the high z limit, where both LDC and HERWIG
converge in cross sections and lie much below the data cross sections. One hypothesis
is that the coherence effects, strictly implemented in each one of these models and
handled by the angular ordering of the parton emissions, are restricting the available
phase space for emission, leading to too small cross sections.

An alternative explanation of this excess of forward jets with respect to the DGLAP
predictions was provided by the RAPGAP model, which predicts that, when probing
high Er jets, one can resolve the structure of the photon. The forward jets would
then be the consequence of the existence of a “photon remnant” which has yet to be
studied in detail in DIS. The attractive feature of this model is that it reproduces
the data cross sections over the full E3/Q? range, while all the other models fail for
E%2/Q* > 2. This is indeed the region where the effects of a resolved photon are
expected to appear as Er is the hardest scale of the process which makes this case
similar to photoproduction. On the other hand, for E3/Q? < 0.5, Q? is the hard
scale and all the models converge.

Ideally, the study of the parton dynamic should involve a parton level comparison
between the data and the theoretical predictions (for all the models). In practice,
this comparison is bound to very large uncertainties due to the model dependence
of the hadronization correction. This is once again the consequence of the influence
of the large non-perturbative effects at low z, which affect the jets properties. A
better understanding of these effects is mandatory for a more conclusive study of this
kinematic region.

In summary, as expected, the jets are less sensitive to hadronization effects than
the other observables and more sensitive to the perturbative evolution, so that the
forward jet analysis provides us with the evidence that HERA reaches the region
where the standard DGLAP models are no longer valid. The next generation of event
generators, with a more accurate implementation of non-perturbative effects such as
soft colour interaction and colour coherence should improve the interpretation of these
results in terms of hard physics and reduce the uncertainty due to the hadronization
phase.
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Appendix A

Reconstruction of the Kinematic
Variables

In chapter 2, the main variables which are determining the kinematics of the event
were presented: the virtuality of the scattered photon Q?, the scaling variables z
(which corresponds to the momentum fraction of the struck quark in the QPM) and
y, the energy transfer from the leptonic to the hadronic system (in the rest frame of
the target hadron). These variables are defined by the set of equations:

@ =(k-K) =(-p+p) =7, (A1)
_ @

= 2—1,—.5, (A2)
_ar

= (A.3)

Here, the variables & and k' correspond respectively to the positron momenta before
and after the collision p and p’ are likewise the proton momenta before and after the
collision while ¢ is the momentum of the scattered photon in the laboratory frame.
These variables are displayed in figure A.1, together with 6., the angle of the scattered
positron and 4, the angle of the ‘current’ jet, namely the struck parton in the QPM.
To determine these variables from a HERA event, the three most common methods
are: the electron method, which uses only the information given by the scattered
positron, the Jacquet-Blondel method, which uses only the hadronic energy informa-
tion of the event and the double angle method, which reduces the energy fluctuations
by considering only the angles of the two systems.
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Figure A.1: Deep inelastic scattering between the virtual photon and the proton in the
QPM.

The conservation of energy and momentum, which enables the determination of the
kinematic variables reads:

( E B\ (B
0 _ | E'sin8.cosg, 9=
k 0 | k E'siné, sing, ta qy (A-4)
\ -E —E'cosb, ) \ q: J
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k E, Encosyn  / \ ¢: /

A.1 The Electron Method

This is the easiest method to obtain z, y and @?. By simply identifying the positron
variables with the variables presented in equations A.1, A.2 and A.3, we obtain the
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following set of equations:

Q% =2EE'(1 + cosb.) (A.6)
El
Yo =1— ﬁ(l — cosé.) (A.7)

E( E'(1 + cosb,) )

T =P \2E- E’(1 — cosb.)

Here P is the momentum of the incoming proton. The method gives the best results

(A.8)

for y ~ 1, where the energy fluctuations do not affect too much the values of z and Q?
(see [121]). Usually, a cut on y {y > 0.01) is needed in order to have good resolutions
for the kinematic variables. Overall, the electron method gives the best resolution of
z and Q2 over all the kinematic range considered in this analysis and is therefore the
one we chose to use in this thesis.

A.2 The Jacquet-Blondel Method

This method uses exclusively the information from the hadronic system to determine
the kinematic variables. It is useful in Charged Current events (CC) where the scat-
tered neutrino can not be measured. Otherwise, this method is dependent on the
hadronic energy fluctuations and usually gives a poor resolution for z and @2, as it
relies on the resolution of the hadronic energy which is in all cases poorer than the
positron resolution.

The variables are determined by identifying the variables on equations A.l, A.2
and A.3 with the hadronic variables:

_ En(1 — cosmn)

YJB oF (A.9)
A Y AL
Qip = E p"'l) _Zf i) (A.10)
2
zsp = f;jz (A.11)

Although the Jacquet-Blondel method is rarely used to determine z and Q?, the
variable y;p is often identified with y.
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A.3 The Double Angle Method

The third reconstruction method relies only on the angles of the leptonic and hadronic
system after the collision. The purpose is to have a reconstruction method very little
dependent of the energy fluctuations of each one of the systems, and therefore, of the
calibration of the calorimeter.

In the QPM, the conservation equations listed in A.4 and A.5 can be written:

Energy conservation: E,+E=FE+E, > zP+E=FE+E,.
Longitudinal momentum conservation: zP — E = E'cosf, + Epcosys.
Transverse momentum conservation: E'sinf, = Epsinys.

Therefore, the energy of the scattered positron can be expressed as a function of v,
6. and E:

SR
sinf, + siny, — sin(6. + 5)
Substituting the positron energy in the equations given by the electron method, one

(A.12)

obtains the various kinematic variables as a function of 6, and ~:

sinb (1 — cosyn)

_ Al
Y4 sinyn + sinb, — sin(6. + ) (A-13)
2 o2 sinyn(1 + cosf.)

@by =4E sinyn + sinb, — sin(6. + ) (A.14)

Zpa = E sinvyy + sinb, + sin(f. + 1) (A.15)

E, sinyy + sinf, — sin(f, + )
The main problem with this method is to determine the angle 4,. The calculation
uses the integrated energy and position of the hadronic system:

_ (2; Pz.i)z + (E. Pv,i)z - (E. Ei - Ez.i)z
T = (T Paa)? + (5 Pa)? + (2 Bi — E.)?

Here P; and E; are the momentum and energy of the hadronic cell ¢ (the positron
cells are removed from this calculation). This can be shown to be in first order
independent of the energy fluctuations. However, at low z, the determination of
the position of the hadronic system becomes inaccurate and the method gives poor
resolution. In figure A.2, the relative resolution of z and Q? is shown for the two
reconstruction methods ‘electron’ and ‘double angle’ using the Monte Carlo “True”
value. The resolutions are plotted in the kinematic region of the forward jet analysis,
namely Q2 > 12.5 GeV?,4.5-10"* < 2 < 4.5-107%, E > 10 GeV and y > 0.1.

(A.16)
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Figure A.2: Relative resolution for the variables ¢ and Q? with the two reconstruction
methods ‘electron’ (EL) and ‘double angle’ (DA). The cuts applied are Q* > 12.5
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Appendix B
The PUCELL Jet Algorithm

The jet finding performed in the two analyses presented here is based on the cone
algorithm, implementing the standard Snowmass convention (see section 6.1.2). The
jets are found either by applying the algorithm on calorimeter cells or on the four
momenta of the particle generated in the Monte Carlo simulation.

This algorithm, PUCELL [132] is one of the most commonly used within the ZEUS

collaboration. It proceeds via the following steps:

Step 1: The cells (particles) are sorted out according to their transverse energy. A
pointer is set to all cells which have a transverse energy larger than a certain
seed energy ( Ercen > Ef (=0.5 GeV)). These are the seed cells.

Step 2: Around each seed cell, the distance to each other cell,
R= \/(1)"“‘ — qeell)2 4 (goeed — geell)2 is computed. if R < 1, then the cell is
merged into an new object, a “pre-cluster”, whose transverse energy, pseudora-
pidity and azimuthal angle are defined by the equations 6.2, 6.3, 6.4, yielding the
quantities: 77, ¢’**, Er ;. The list of all cells contributing to the pre-cluster

is kept in an array.
Step 3: The seed is then reset with % = pi¢ and ¢***? = ¢J*t.

Step 4: The cells are merged as in step 2 with the new seed. The list of cells thus
obtained is compared to the one obtained in step 2. If the lists are the same,
the merging procedure is stopped and the algorithm moves to step 5. If the list
differs, the algorithm goes back to step 3. A maximum number of iterations
(75) is given above which the jet finding is stopped.

193



Step 5: Once step 3 is complete, some of the cells might be common to several cluster.
The energy of the overlapping region is estimated by summing up the energies
of the cells in the overlap region. If the sum of the energies is larger than a
fraction (usually set to 75%) of the energy of the smallest cluster, the two jets
are merged. If it is smaller, each cell is assigned to its closest cluster.

Step 6: The cluster is now formed and its position and energy are now re-evaluated
according to equations 6.2, 6.3 and 6.4. The jet is then formed by taking only
cells within a radius of 1 from the center.

Step 7: All the remaining jets are re-ordered according to increasing transverse en-
ergy.
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Appendix C

Reference Frames

In the various analyses presented in this study, different reference frames were used
to describe the various variables involved. The phase space which is probed is mainly
defined by Lorentz invariant parameters, Q% and z, so that the total inclusive DIS
cross section is frame independent (this is true for F, as well). However, in jet studies,
the phase space is of particular importance as the kinematic variables used to define
jets are usually not Lorentz invariant.

The three frames appearing in this work are: the laboratory frame, the photon-proton
Center of Mass frame (or Hadronic Center of Mass frame or HCM frame) and the
Breit frame. They are described below and the correspondence between them is given.

C.1 The Laboratory Frame

The most natural frame to perform an operation in an analysis (like jet finding) is
the laboratory frame, that is the frame of the ZEUS detector. The Z direction is set
by the direction of the proton beam, Y points upwards (in the vertical plane) and X
lies in the horizontal plane, pointing towards the center of the HERA ring.

In this frame, the momenta of the proton and of the positron are:

820.0 27.52
0 0
Foroton = 0 s Ppositron = 0 (C.1)
820.0 —27.52
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The four momentum of the photon is defined as the difference between the momentum
of the scattered positron and Ppositron. In order to conserve energy and momentum,
the transverse momentum of the hadronic system must balance the transverse mo-
mentum of the scattered positron.

In both studies performed here, the jets are found in this frame. This means that
the clustering algorithm is performed on four-momenta defined by the cells of the
detector. This is more natural from an experimental point of view as the cell con-
figuration in another frame might be very different from the one in the detector.
Besides, the reconstruction of the jets in the laboratory frame is independent from
the reconstruction of the scattered positron, which is not the case in the other frames.

C.2 The Center of Mass Frame (HCM)

In general, from the theoretical point of view, it is easier to perform calculations
without taking into account the boost due to the difference of momentum between
the two particles taking part in the collision. This problem does not exist in the LEP
ete” environment, but it is crucial in the ep collisions.

'The hadronic center of mass system accounts for this. If P is the momentum of the
proton and ¢, the momentum of the exchanged boson in the laboratory frame, P’ and
¢ their momenta in the HCM frame, it is defined by the condition:

P +¢ =0, (C.2)
So the boost is defined by the 3:
- P+§
= ——— C.3
ﬁ Eprotan + Eq ( )

The transformations are defined as usual, with the v parameter: v = 713_-?, using

the following set of equations !:
E'=+(E-§-7) (C4)

7 = (- BE) (C.5)
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Photon Proton

P2

Figure C.1: The Hadronic Center of Mass (HCM) system.

The Z axis is usually defined by the position of the exchanged boson.

In the HCM frame, the total hadronic transverse momentum is 0 by construction.
The total invariant mass of the system is W? = (P + ¢)%. In the HCM frame, the
current hemisphere is defined by the direction of the struck quark and the target
(fragmentation) hemisphere is defined by the direction of the proton remnant. Both
are not necessary collinear to each other. This would be only true in the QPM, where
the struck quark does not carry an intrinsic transverse energy within the proton.

C.3 The Breit Frame

The Breit frame has been defined by analogy with the e*e~ experiments, where the

quark-antiquark pair is created back-to-back, with the same overall momentum (see
figure C.2).

Figure C.2: e*e™ scattering.

In an ep scattering process, the Breit frame is defined so that the current and target
hemisphere (in the QPM) are collinear and carry the same momentum. It can be
shown that this condition is fulfilled if the exchanged boson is completely space-like,

! the prime(’) indices refer to the coordinate system in the frame of tzansformation
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that is with no energy and a momentum —@Q (so that Q> = —g¢?), so that we can
write its four-momentum as: (0,0,0,—Q). In this case, if the proton comes with
a four momentum (E,,0,0, E;). and the struck quark as a four momentum zP (in
the QPM) so that zP = (Q/2,0,0,Q/2), then because of momentum and energy
conservation, the outgoing quark momentum will be zP = (Q/2,0,0, —Q/2) (see
figure C.3), according the equation:

Q/2 0 Q/2
o1+l 2 =] (C.6)
Q/2 -Q -Q/2

In this case, the outgoing quark is reverted, reminding of the back-to-back correla-
tion of the e*e~. Assuming that the rest of the proton is not affected by the collision
(which is a good approximation in the QPM), the Breit frame defines two hemispheres
in the ep collision: the “target” (or fragmentation) hemisphere, which is defined for
Pz.Breit > 0 and is oriented along the proton direction in the Breit Frame, and the
“current” hemisphere (for pz gseic < 0), which is defined along the struck (leading
order) quark. This distinction between target and current is only exact in the QPM
and is approximative at leading order of a,. Nevertheless, the frame is useful in prac-
tice to identify the jets which are probed (either LO jets or part of the gluon ladder).

Y (0,0,0,-Q)

(Q200-Q2) _

—-
_>

Proton, P
Figure C.3: The Breit frame (in the QPM).
In order to perform the transformation to the Breit frame, the photon direction has
first to be rotated to lie in the negative Z’ direction. The positron scattering plane

usually defines the (X’,Z’). The Lorentz transformation to the Breit frame is defined
by the 8 vector:
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> dt2zp
f= E, 4+ 2zEpoton’

where E, is the energy of the photon in the laboratory frame. The boost to the

HCM or to the Breit frame have many theoretical advantages, as the calculations

(C.7)

are easier in these frames and the interpretation in terms of hard and soft physics
are more straight forward. Some jet algorithms (for instance the kr [86]) cluster the
four momenta of the particles found in the Breit frame as the comparison between
the transverse momentum of the jet and the scale of the process is easier there (cf.
chapter 6). Nevertheless, the experimental uncertainty due to the boost, and in
particular the large dependence of the results on the reconstruction of the positron,
is often the dominant contribution of the inaccuracy of the measurement (see for
instance [133]). This is why this study has been performed in the laboratory frame.
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Appendix D

Glossary

Epression Meaning Page

—QED Quantum Chromodynamics; theory of the strong interaction 2
DIS Deep Inelastic Scattering 2
QED Quantum Electrodynamics; theory of the electroweak interaction | 7
NLO Next-to-Leading Order corrections 10
QPM Quark-Parton Model; lowest order in DIS 11
QCDC QCD Compton; first order in a, in DIS 16
BGF Boson Gluon Fusion; first order in a, in DIS 16

1 DGLAP Dokshitzer-Gribov-Lipatov-Altarelli- Parisi; evolution equations 21
LLA Leading Logarithm Approximation 21
DLLA Double Leading Logarithm Approximation 23
CTEQ Coordinated Theoretical Experimental project on QCD; 24

set of structure functions

MRS Martin-Roberts-Stirling; set of structure functions 24
GRV Gliick-Reya-Vogt; set of structure functions 24
BFKL Balitzki-Fadin-Kuraev-Lipatov; evolution equation 27
CCFM Ciafaloni-Catani-Fiorani-Marchesini; evolution equation 32
HCM Hadronic Center of Mass frame 34
LEPTO Monte Carlo simulation based on the MEPS model 35
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Expression

Meaning

ARIADNE
MEPS
MEPJET
DISENT
DISASTER
ISR

FSR
HERWIG

CDM
LDC
SCI
FCAL
BCAL
RCAL
EMC
HAC
SRTD
CTD
GFLT
GSLT
TLT
PUCELL
PDF

Page

Monte Carlo simulation based on the colour dipole model
Matrix Element-Parton Shower model (LEPTO and HERWIG)
Next-to-Leading order calculation package by Mirkes et al.
Next-to-Leading order calculation package by Seymour et al.
Next-to-Leading order calculation package by D. Graudenz
Initial State Radiations

Final State Radiations

Monte Carlo simulation based on the MEPS model
and using the CLUSTER model for hadronization

Colour Dipole Model (ARIADNE)

Linked Dipole Chain model

Soft Colour Interactions in the LEPTO simulation
Forward Calorimeter

Barrel Calorimeter

Rear Calorimeter

Electromagnetic cells in the calorimeter
Hadronic cells in the calorimeter

Small Rear Tracking Detector

Central Tracking Detector

Global First Level Trigger

Global Second Level Trigger

Third Level Trigger

Type of Cone algorithm used to define a jet

Parton Distribution Function

35
44
45
45
45
47
47
47

47
49
52
60
60
60
62
62
64
65
69
69
71
83
174
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