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ABSTRACT

A three dimensional, automatic, anatomy-based system for portal verification has
been developed based on an FFT implementation of Pearson’s correlation coefficient
(PCC). The PCC requires no anatomy or point-pair identification, is robust when
encountering changes in scaling and shifts in image amplitudes and requires no priori
knowledge of the anatomy, which makes it an ideal candidate for portal-to-DRR image
registration. Features for matching are selected from orthogonal portal images and
compared to the corresponding megavoltage DRR. The position of the highest correlation
value is then converted into beam-to-patient geometry and compared with the actual
patient setup. By continuously generating DRRs, the system is capable of verifying
translation errors, in-plane rotation and out-of-plane rotation errors. The mean accuracy
of translation and rotation registrations tests were 0.58 mm and 0.79° respectively for

DRR-to-DRR matching, and 1.22 mm and 1.31° respectively for portal-to-DRR matching.



RESUME

Une méthode automatique, tri-dimensionnelle, basée sur la position relative de
traits anatomiques, pour la vérification du positionement a l'aide d'images portales a été
developée. Le coéfficient de correlation Pearson (PCC) a été utilis€é comme engin de
correlation, car ce dernier ne requiert pas d'identification anatomique, est indépendant des
déplacements et des changements d'amplitudes de l'intensité des images, et n'exige aucune
connaissance antérieure de l'anatomie. Ce tout rend le PCC un candidat idéal pour la
comparaison des images portales avec des radiographies reconstruites digitalement
(DRR). A partir de deux images portales orthogonales, un trait anatomique de chaque
projection est selectionné et comparé au DRR megavoltage correspondant. La position du
coéfficient de correlation maximum révele les paramétres qui simulent la paire de DRR
ressemblant le plus aux images portales orthogonales et permet d'identifier des erreurs
dans le positionnement du patient. En générant continuellement de nouveaux DRRs, la
méthode présentée est capable de vérifier les erreurs de translations et de rotations hors-
plan et dans le plan de l'image. L'erreur moyenne obtenue pour dépister les erreurs de
translations et de rotations est de 0.58 mm et 0.79° respectivement pour les essaies DRR-

a-DRR et de 1.22 mm et 1.31° respectivement lors des essaies portale-a-DRR.
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1.1 PORTAL IMAGING

The aim of radiotherapy is to deliver a lethal dose to a treatment volume while

minimizing the dose to the surrounding healthy tissue. In order for the treatment to be

successful, the dose must be properly delivered to the treatment volume. To verify the

accuracy of the dose delivery, a detector, positioned on the opposite side of the patient, is

exposed to the treatment beam. The resulting image, similar to a diagnostic image, is

referred to as a portal image. By examining portal images acquired prior to the treatment,

errors in the radiation field positioning with respect to the patient can be detected. The
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simplest way to acquire a portal image is to position a port film behind the patient for a
short period during the beginning of the treatment or during the complete treatment
depending on the film speed. Portal imaging was first reported by Hare et al who had
adopted film for supervoltage rotational therapy verification.!  The portal image
acquisition process is identical to that used in diagnostic radiology. During exposure,
photons are scattered and attenuated as they traverse the patient's body, modifying the
number of photons that hit the detector along any given ray path. At any point on the
portal image, the pixel intensity is dependent of the photon density impinging on the
detector. Patient thickness and poor radiographic techniques do limit the quality of the
portal images. Since portal images are acquired at megavoltage energies, Compton
scattering is the major factor for causing poor quality radiographic images. Portal images,
do however, allow one to see the treatment field shape and size along with bony
anatomical features. At megavoltage energies, the mass attenuation coefficient of bone
and brain matter are almost identical because of Compton interactions, which explains why
portal images usually display smaller differences in contrast between soft tissue and bone

than what’s observed in diagnostic images.

Film remains the most common detector for portal imaging. Various film cassettes
have been developed in an attempt to improve the resulting image quality. These cassettes
usually consist of a metal screen that provides build-up and converts the incoming photons

to electrons, which increases the films sensitivity.
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On-line electronic portal imaging devices (EPID) are commercially available.
These devices detect incoming photons and translate the information to a computer. Since
the images are digital, the image can easily be enhanced to provide an image with superior
contrast than that obtained with film detectors. Fluoroscopy-based systems, solid state
devices, and scanmng liquid ionization chambers represent the different types of EPIDs
currently available. Fluoroscopy-based systems are essentially composed of a phosphor
detector bound to a metal plate, a mirror and a video camera. Most of the incident high-
energy photons transfer energy to electrons in the plate, which in tumn, transfer their
energy to the phosphor detector. This transfer of energy results in the emission of
photons, which are reflected by the mirror and detected by the video camera and sent to a
computer or video monitor for viewing. Solid state EPID systems consist of a phosphor
detector and metal plate pair coupled to a matrix of photodiode-field effect transistors.
The light produced in the phosphor/metal plate creates electron-hole pairs in the
photodiode. The photodiode then behaves like a capacitor. The stored charge is read
from each photodiode and digitized to form an image. Scanning liquid ionization
chambers are based on the principle of the ionization chamber, except the sensitive volume
is filled with iso-octane liquid instead of air. Two series of parallel wires perpendicularly
cross the plane forming an ionization matrix. The resulting currents produced in each wire
are read sequentially in a raster fashion and the signals are processed and displayed by a

computer.
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1.2 ACCURACY IN RADIOTHERAPY

Over the years, several developments in external beam radiotherapy have aimed to
reduce the treatment margin of healthy tissue around the tumor. Refinement in treatment
techniques allow sparing of healthy tissue, thus reducing the risk of complications, and
even allows an escalation of the tumor dose to increase the probability of eradication. As
the radiation fields become more conform to the shape of the target volume, it becomes
apparent that one could miss the target volume without the ability to verify the position
prior to treatment, thus damaging healthy tissue and allowing the disease to progress. In
radiotherapy, studies show that the standard deviation in treatment-to-treatment variation
in patient set-up position is 3 mm when portal films acquired prior to each treatment are
compared.? This deviation does not vary significantly for different treatment sites.
However, when the brain is the treatment site, the average discrepancy between portal
films and simulator films is 5 mm. Although, immobilization devices, such as stereotactic
frames, reduce treatment set-up positioning errors, a report on stereotactic radiosurgery
reveals that the total uncertainty in treatment delivery and target localization is 2.4 mm.’
However, this uncertainty quickly rises to 3.7 mm when a CT slice of 3 mm, instead of 2
mm slice, is employed. This is clearly unacceptable in radiosurgery where the accepted
error in target volume determination is £ 1 mm and the accepted error in spatial accuracy

in dose delivery is + | mm.*

To obtain a certain level of accuracy in the treatment delivery and to avoid any
discrepancies in positioning, position verification methods should be implemented in the

treatment process. Portal films and EPIDs are still currently used to provide an easy and

4
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practical way of obtaining a view of the treatment beam boundaries and some anatomical
landmarks. However, it becomes debatable whether a simple visual analysis of portal
images is sufficient. Techniques were also developed to provide registration of treatment
field boundaries in radiotherapy.®® Although they provide efficient means to verify the
consistency of the radiation field edges, they do not allow verification of the actual
treatment set-up. Any positioning errors would not be detected. To provide an accurate
method for treatment set-up verification, the optimal choice is a method for verifying the
position anatomical features with respect to a reference coordinate system or with a

reference image.

1.3 ANATOMY-BASED, TREATMENT SET-UP
VERIFICATION METHODS

1.3.1 Two-dimensional (2-D), anatomy-based, position verification methods

A number of groups have investigated, anatomy-based, position verification
methods based on the comparison of two 2-D images. Bijhold developed a method for
determining set-up errors during radiotherapy by aligning features in simulator and portal
images.” Patient placement deviations are quantified as a three-dimensional translation
and, in-plane and out-of-plane rotations of the patient from the intended position and
orientation. Portal and simulator images are digitized and manually converted to digital
line graphs of the relevant features, such as field edges, bony structures, match points and
markers. Using a mouse-driven interface, the user can interactively align the digital line

graph images and quantify any patient set-up errors. However, the technique produces
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erroneous results for of out-of-plane rotations larger than 2° or translations larger than 1
cm and is incapable of determining the rotation axis of an out-of-plane rotation, i.e. gantry
or couch rotation. Since the alignment is interactive and the line graphs are manually
created, inter-observer variability is non-negligible. Also, because portal and simulator
images do not give complete information about the three-dimensional position of
anatomical structures in the patient, comparing these images can only yield limited

information.

Balter et al developed a method for patient position verification in radiotherapy
capable of determining differences between projection radiographs.® A user interface
allows identification of points or curves seen on both images. The algorithm matches one
or more sets of corresponding open curves and point pairs to determine a global geometric
transformation between the radiographs. This technique, however, cannot assess out-of-
plane rotations of the patient. [n addition, it is difficult to select the same starting and

ending points on corresponding curve segments from two different images.

Gilhuijs and van Herk developed a method for automatic inspection of patient set-
up from portal image pairs.” The method utilizes chamfer matching'® as the matching
algorithm and it essentially performs pattern recognition during matching. From the portal
image, extraction images are created by automatically enhancing anatomical structures
using an edge—extraction filter. The reference image is created after the user has directly
drawn anatomical features into the simulator image. A cost function assesses the

goodness of the fit between the extraction image and the reference image. When the cost
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is minimal, it generally implies that the drawing is aligned with its corresponding feature in
the image. Once again, this method requires delineation of bony details and outlining the
reference anatomy. The performance of the anatomy matching is heavily dependent of the

quality of the anatomy extraction and, in some cases, some bone edges do not appear.

Moseley and Munro developed a semi-automated method for registering
anatomical features on corresponding pairs of portal images using a cross-correlation
approach.!’ The registration process is divided into two steps. During the first step, the
cross-correlation operator registers user-selected anatomical features obtained from both
corresponding portal images. During the second step, the technique registers the portal
image pair by using the centre of the correlated regions as match points. Although the
technique proved to produce accurate results and utilizes two different imaging planes for
image registration, it is still limited by the 2-D nature of the portal images, thus it is only

capable of detecting translations and in-plane rotations of the patient.

Hristov and Fallone developed a method for registering anatomical features on
portal images and corresponding digitally reconstructed radiographs (DRR) using an Fast-
Fourier Transform (FFT) implementation of Pearson’s correlation coefficient.'> The
DRR, discussed in detail in Sec. 3.1.1.3 of Chapter 3, is meant to simulate a conventional
radiograph using the three-dimensional CT data. It is obtained when a CT-volume, which
can be visualized as a block of cubic voxels, is transformed into a 2-D image using ray
tracing, thus mimicking a regular radiograph. A region of interest, containing anatomical

features, is selected from a DRR reference image and registered with a portal test image
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that might contain in-plane rotations or translations. The algorithm proved to be more
robust for image registration when compared with similar techniques based on the
normalized correlation coefficient”® since it is invariant under differences in scaling and
shifts in pixel intensities. However, the method was only implemented for 2-D registration

and the algorithm was not tested tor detecting out-of-plane rotations.

The two-dimensional verification of position provide relatively accurate results
under controlled situations. However, quantification of patient rotations in planes other
than the imaging plane (out-of-plane rotations) is difficult. Because portal and simulator
images do not give complete information about the three-dimensional position of
anatomical structures in the patient, the comparison of portal to simulator images can only
yield limited information. In addition, with 2-D position verification techniques, an out-of-
plane rotation can be interpreted as a translation, resulting in erroneous registration.™"*
The accurate determination of patient set-up in three dimensions could also allow a better

estimation of the dose."*

1.3.2 Three-dimensional (3-D), anatomy-based, position verification methods

The limitations imposed by many of the 2-D position verification methods led to
developments of new techniques capable of 3-D position verification techniques. The
need to determine out-of-plane rotations led to the development of 3-D position
verification methods that involve registration of portal or simulator images with DRRs.
Lemieux et al developed an automatic, image correlation-based, method to verify the

patient’s position prior to radiosurgery using orthogonal diagnostic radiographs and
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DRRs."® DRRs are generated for various projection parameters and iteratively compared
with two diagnostic radiographs until the best match is found. Mean translation and
rotation alignments are typically within 1 mm and 5° respectively. The system was

however not used to match DRRs to portal images for "beam-on" verification.

Gilhuijs et al developed an automatic, three-dimensional, method for quantifying
positioning errors using one set of CT data and two transmission images.'’ The
technique uses chamfer matching for image registration and is basically a continuance of
the 2-D method developed by Gilhuijs and van Herk.” This method extraction and
enhancement of bony details of anatomy in the transmission images. [n addition, the
performance of the anatomy matching is heavily dependent of the quality of the anatomy
extraction and the accuracy of the method decreases with smaller field sizes. The authors
utilize a series of filters and edge enhancement tools, but provides no assurance that these
tools are position independent and robust under different image acquisition conditions. In
addition, the method's accuracy also decreases with smaller fields in the portal image.'""

The accuracy of the system is approximately | mm and 1° along each axis for translation

and rotation axis

Murphy developed an image registration method for frameless radiosurgery based
on chi-square statistic algorithm. '® However, this method was developed for use with a
Cyberknife and employs diagnostic level images and has not been used with portal images

for "beam-on" verification.
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Otto and Fallone developed an interactive 3-D method for position verification
prior to stereotactic radiosurgery by comparing an orthogonal pair of portal images with
corresponding DRRs.'># An histogram-shift edge detection algorithm® is applied to the
DRRs to delineate bony structures. Using a mouse driven interface, the DRR can be
manipulated in either the anterior-posterior or lateral view to match with the portal image.
As the user manipulates one DRR, the DRR in the orthogonal view is transformed
accordingly. When the user judges that the DRRs in both views are correctly matched to
the portal images, the DRR projection parameters are compared with the actual beam-to-
patient geometry to reveal any positioning errors. Although this interactive method
provides accurate resuits, inter-user variability is responsible for over 0.8 mm of the
system error, which could be eliminated by automating the system. The reported mean

radial error of this technique is 1.9 mm, but no rotation alignment analysis is offered.

Lujan et al recently developed a technique for two-dimensional portal to DRR
registration.”! Portal images, containing known rotation and translation errors, are
acquired and prominent anatomical features are manually delineated. DRRs are then
generated at different orientations from which anatomical features are manually delineated
on each DRR. The portal contours are then compared to each contoured DRR using the
open curve-matching algorithm developed by Balter et al.* The open curve matching
algorithm determines the best matching delineated DRR by determining the minimum
root-mean-square residual distance between points on user-defined curves. However, the
technique requires the user to manually delineate each DRR contained in the DRR

database. This task is very time consuming when considering that the method requires at

10
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least 50 delineated DRRs per view. Inter-user variability generates a certain degree of
error in the final registration results. In addition, the method was only tested with images
from one view only. An accuracy of 2° and about 1 mm for rotation and translation
alignment was obtained in the anterior-posterior view, but one cannot conclude that it will

be comparable in the lateral view.

1.4 THESIS OBJECTIVES

A technique for automatically verifying the location of the target with respect to
the patient’s anatomy in three dimensions is required to detect any positioning errors prior
to radiotherapy. Many different 3-D approaches have been attempted and two main

deficiencies appear:

e requires manual user delineation of anatomical feature,

e depends on the quality of the extraction of the anatomy.

The aim of this study was to develop a 3-D, image-correlation-based, method to
automatically match digitally reconstructed radiographs (DRRs) to a pair of orthogonal
portal images. It is a continuance of previous work done at our institution by Otto and
Fallone,'*? who developed an interactive 3-D, anatomy-based, verification method for
stereotactic radiosurgery and also incorporates work done at our institution on
correlation-based matching by Hristov and Fallone.'? The method verifies of the target

position by matching a CT-volume to orthogonal pair of portal images acquired prior to

11
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the treatment. By using an FFT implementation of Pearson's correlation coefficient. Our
method does not require user-delineation or automatic extraction of anatomical features

and will not be hindered by varying field sizes.

The work detailed in this thesis aims to provide a description of our 3-D, anatomy-
based, image registration method. In addition, a series of matching test results are
presented to validate our method and to reveal its accuracy and performance for various

anatomical features.

1.5 THESIS OUTLINE

Chapter 2 describes the engine of our image registration method, i.e. Pearson's
correlation coefficient. This single element is the core of our automatic image registration
method and dictates the level of attainable accuracy. An overview of the correlation and
normalized correlation is first presented followed by the transformation of Pearson's

correlation coefficient from the spatial to the frequency domain.

The experimental set-up and the overall registration procedure is discussed in

Chapter 3. Each component of the procedure is then described in detail.

Chapter 4 provides an analysis of the accuracy of our system for determining
translation, in-plane and out-of-plane rotation errors in DRR-to-DRR and Portal-to-DRR

matching. Various anatomical features are used for matching and an analysis of each

12
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feature’s accuracy for DRR-to-DRR matching is presented. Using the features best suited
for DRR-to-DRR matching, results of portal-to-DRR image registration are presented to

illustrate the accuracy and feasibility of our method in simulated clinical situations.

Finally, Chapter 5 summarizes our findings and presents our overall analysis of our

method. A discussion of techniques for improving the accuracy of our current method is

given with final remarks regarding our image registration technique.

13
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2.1 INTRODUCTION

At McGill University, we have developed a technique for 3-D, anatomy-based,
portal verification. Qur method relies on the successful comparison of portal and
megavoltage DRR images. To compare both portal and DRR images, it is necessary to
perform a pixel-by-pixel comparison of two images of the same object. Such a
comparison will reveal any relative translation shifts, rotational differences and even scale
differences. The task of measuring the similarity between regions in two images is
performed using a correlation technique. This chapter first presents basic correlation
theory followed by a thorough description of the Pearson correlation coefficient, which we
used. The engine of our technique, the FFT implementation of Pearson’s correlation

coefficient, is finally discussed along with particularities that are specific to our approach.
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2.2 THE CORRELATION

The correlation technique consists of searching for regions in a search image where
the image's grey-levels regionally coincide with the grey-levels of a search mask selected
from a reference image. When measuring the similarity between regions in two images, it
is important to obtain a2 measure of how well these image regions coincide. The search
mask is compared with all possible locations throughout the search image and a measure

of similarity is computed at each of these locations.
Let f(x.y) be a search image of size M x N and w(¥x,y) a search mask of size / x K

selected from a reference image g(x,y). It is possible to measure the degree of similarity

between the search mask and the search image at a given location using
simn) =Y 3 (f(x.y)-w(x-my-m), @.n

where s(m,n) is the measure of similarity between the search mask and the search image, m
=0,1,2,.,M+J-1landn=0,1,2,.. . N+K-1"' By expanding the right term in Eq.

2.1, we obtain

s(m,n) = Z:nyz(x,y) - erzyf(x,y)w(x—m,y-n)«{-zxzy wi(x—m,y—n).(2.2)
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From Eq. 2.2, it is clear that the intensities of f{x,)) and w(x,y) contribute individually to

s(m,n) through the first and last term of the equation, i.e. Zny f*(x,y) and

szywz(x—m, y—n) respectively. The last term remains constant for a given search

mask throughout the matching process but, the first term varies continuously throughout

the matching process as the search mask travels throughout the search image. However, it

is the central term, i.e. szy f(x,ymw(x—m,y—n), that is of interest. When the

magnitude of the central term, which has a negative coefficient, is large, sfm,n) will be
small. For this reason, whereas s(m,n) provides a good measure of mismatch, the central
term provides a reasonable measure of match. This operation is referred to as the
unnormalized correlation of f and w over the region described by m and n. The correlation

can be written as
c(m,n),, = [f®w]m = Zrzyf(x,y)w(x -m,y—ny, (2.3)

where c(m,n) is the correlation value at a given location (m,n) .

From Eq. 2.3, it is possible to visualize that as m and n are varied, the search mask
moves over the search image. At each location (m,n), a correlation value is calculated.
The maximum value of the correlation function identifies the position where the search

mask best matches the search image.

Although Eq. 2.3 provides a measure of similarity between two images, it does not

account for zero intensity values within the search mask or search image and depends
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strongly on the grey-level of the images. For example, if the search mask and search
image contain a significant number of pixels with zero intensity, the correlation does not
reveal the true best match. Normalizing the correlation would allow it to adjust to the

characteristics of different images.

It is possible to normalize the correlation by dividing it by the maximum
correlation value from the correlation of two exact image features. The normalized
correlation will give values of up to unity, where the unity value represents a perfect
match between a search mask and a search image. According to the Cauchy-Schwartz

inequality,

c(m,n) < \/szyfz(x,y) : szywz(x—m,y-n) . (2.4)

As Eq. 2.4 reveals, the equality holds only when w(x,y) = C x fix.y), where C is a
constant. Therefore, the right-hand term in Eq. 2.4 provides the maximum value of the

correlation distribution. The normalized correlation coefficient can be written as

2.2, S ywix-my—n)
V22, S ) [T 3 W e =m,y~n) ’

cy(m,n) = (2.5)

where cym,n) is the normalized correlation function for a given location (m,n), aiso

referred to as the normalized cross-correlation.> The normalized cross-correlation can aiso
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be carried out in the frequency domain using the Fourier transform and the correlation
theorem. An FFT based implementation of the normalized correlation coefficient

increases the calculation speed significantly. >

2.3 PEARSON'’S CORRELATION COEFFICIENT

Pearson’s linear correlation coefficient is very similar to the normalized correlation
in the sense that both are normalized to vary between -1 and |, thus accounting for the
differences in image grey-levels. I[n addition, Pearson's correlation coefficient accounts for
changes in scaling and shifting in image intensities. Following the convention described by

Hristov and Fallone," it is generally defined as

2.2 LSy - fCe ] [wx—m,y - n) - w]

_ —. 26
V2. X w=my—my=wF - [3 3 [f(x,3)- Flxp)F

r(m,n) =

wherem=0,1,2,...M+J-1,n=0,1,2,..., N+ K- 1, f(x.y) is the average value of

the search window ffx,y) in the region coinciding with the search mask w(,y) and w is the
average intensity of the mask.’ The summations are carried over the coordinates common
to both the search mask and search window. By subtracting the average intensity of the
search mask and the search image from their corresponding image intensities, Pearson's
correlation becomes invariant under shifts, in addition to scale changes in image

intensities.

21



Chapter 2

The Correlation Algorithm

As described by Hristov and Fallone,' a search mask wx,y) of size J x K,

containing anatomical features appropriate for matching, is selected from the reference

image g(x,y). As illustrated in Fig. 2.1, the search mask is then compared throughout the

search window f(x,y) of size M x N larger than J x K, for every position (m,n) within the

search window. A feature is judged appropriate for matching when it is sufficiently visible

in both the reference image and search window. The search window is comprised of a test

image that may have been translated and rotated with respect to the reference image. As

the search mask is compared with the search window, a correlation value is calculated,

which represents the closeness of the match between the two.

Y

v

/"
i

Sear‘ch mask w(x,y) J

Reference image g(x,y)

v

';f\—g
/

Search mask w(x,y)

|
(
|
i
i
i
J

—
' Search image f(x,y)

Figure 2.1: The search mask is compared for every position m and n within

the search window. As the search mask sweeps through the search image, a

correlation is calculated, representing the degree of similarity between the

search mask at the search image at the position (m,n).
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2.4 FFT IMPLEMENTATION OF PEARSON’S

CORRELATION COEFFICIENT

Hristov and Fallone developed an FFT implementation of Pearson’s correlation
coefficient.’ The FFT implementation can be derived using general correlation and
Fourier transform theorems. The Fourier transforms of the search window ffx,y) and the
search mask w(x,y) may be defined as F(5,8) =*f(x.))] and W(s.y) =Flwix,y)]
respectively, where &# [ ] is the Fourier transform. Using the correlation theorem,’ the

cross-correlation matrix may be written as

f®w= f(x,y)-w(x-—m,y-n), (o)

or as a function of the Fourier transforms of the functions, i.e.

FOw=F"[F(s,1)-W'(s,1)]. (2.8)

where W*(s,¢) is the complex conjugate of W(s,t) and c# "[ ] represents the inverse

Fourier transform. It is possible to expand the numerator in Eq. 2.6 to obtain:

Y fxy) w(x—my-m=3 f(x,y)-w=3 f(x,y)ywix—my-n)+3 f(x,yp (2.9)
y .y Xy x. ¥
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where terms 2 and 4 cancel each other. We finally obtain:

Y f(x,y)-wx—my-nm-Y f(x,y)w(x-m,y-n).  (2.10)
Xy .y

The two terms in Eq. 2.10 lead to the following equalities:

Y f(xy)wx—my-n)=[f®w],, @2.11)
and
=Y f(xy)- W= —;(m,n){z S (x,y)} - (2.12)
%Y x,y m.n

It is important to note that the subscript (m, n) indicates that the calculations are

done pixel by pixel throughout the search window.

The search mask over the area common to the search mask and the search window

can be defined as

w(m,n) = 3@1’—”)[2 w(x, y)] . (2.13)

m.n
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where S(m,n) is defined as the area of the overlap and is given by

Stmmy=[g®pl,, =[F (Qs.0) P*(s,0]),, . (2.14)

where
1, if (x,y)is within the search mask
plxy) = ( Y). (2.15)
0, otherwise
and
qx,y)=Lx=1-My=1[--N, (2.16)
with their respective Fourier transforms
P(s,t) = F [p(x.y)] @2.17)
and
Q(s,0)=F [q(x. y)]. (2.18)

where P*(s,t} is the complex conjugate of £(s,4).

The sums over the common area of the search mask and the search window can be

rewritten as
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[Z w(x, y)} =[g®w],, and (2.19)

m.,n

[Z fx, y)] =[repl.. (2.20)

The numerator of Eq. 2.6 can be rewritten as

(q ® WXf ® w) . (2.21)
99 p o

[f@w—

The denominator of Eq. 2.6 can be analyzed in a similar manner. The first term of

the denominator becomes

JZ[w(x-m,y —n)—;r = Zw’(x—m,y—n)—2;Zw(x—m,y—n)+z:v-z(m,n)

= [Zw e m,y - m)= S(mm)-w (m,n)

_ w:_(q@w)2
_[\/q; q@p

and similarly, the second term of the denominator becomes

(2.22)

m.n
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Slren-7f = [ e -2Fmny fen+ S 7 omm

, (/®py
-— ® — e
{\F SFTY:

Using Eqs. 2.21, 2.22 and 2.23, Pearson’s linear correlation coefficient can be

(2.23)

mn

rewritten in frequency space as

rm.m) = __(/ew)e®p)-g@wI/ ®p) (2.24)

JaowYeep)-@owi(rrerlaer)-Urop) |,

High correlation values will be obtained at the boundary regions of the search image.
Therefore, the correlation r(m,n) has to be cropped accordingly to avoid detection of an

erroneous maximum correlation value in the correlation distribution.

For situations where the search mask remains completely within the search image,

Eq. 2.24 can be simplified by setting

q® p=JKI. (2.25)
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J K
q® wt = ]Z sz(x,y) (2.26)
x=l y=l
and
J K
q®w=1y Y wx.y). (2.27)
x=l y=l

where 7 is a unitary matrix of size [M —~J + 1, N - K + 1]. These substitutions will save

computing time.

It is important to note that when using the FFT implementation of Pearson’s
correlation coefficient, the feature selected for matching is usually positioned near the
centre of the search window. This is to maximize the probability of a successful match
during registration. This also explains why the search window is not to be cropped at the
same size as the search mask since after any displacement, the matching feature might not
be fully included in the search window, resulting in a drop in the correlation at the correct

location.

2.5 SUMMARY

Although other correlation algorithms, such as the normalized correlation
coefficient,”> are available for image registration, Pearson’s correlation coefficient is more
robust for our purposes. As Hristov and Fallone* describe, the normalized correlation
coefficient is invariant under scaling of the image intensities [g(x,y) — C; x g(x.y)], but
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Pearson’s correlation coefficient is invariant under scaling and shifting of image intensities
[gixy) > Ci x gxy) + C.l, where C, and C; are constants. Pearson’s correlation
coefficient is more robust in cases where image might have undergone intensity changes
due to variation in detector response or variations in dose delivery. from one treatment to
another. Pearson’s correlation coefficient is also very robust when encountering in-

phantom scatter in portal images.*

Our technique does not require any anatomy delineation, edge enhancements or
point pair matching in the search mask or search image. This eliminates most of the user
error and inter-user variability encountered in many other anatomy-based, image
registration methods detailed in Chapter 1. These features thus make Pearson’s

correlation coefficient well suited for automatic, anatomy-based, image registration.
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3.1 3-DAUTOMATIC, ANATOMY-BASED, IMAGE
REGISTRATION

As previously discussed in Chapter 1, many anatomy-based position verification

systems for radiotherapy have been developed. Several methods require anatomy
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identification, point pair matching, or some level of user interaction in the matching
process. Other methods are not suited for 3-D registration because they cannot determine
in-plane and/or out-of-plane rotations. At McGill University, we have developed an
automatic, three-dimensional, method for image registration prior to the radiosurgical
process. This work essentially combines the interactive, three-dimensional, anatomy-
based, position verification technique developed by Otto and Fallone' with the image
correlation algorithm developed by Hristov and Fallone.? The result is an automatic, 3-D,
anatomy-based, position verification for radiosurgery. Numerous steps are involved for
registering orthogonal pairs of portal images with corresponding DRRs reconstructed
from CT-data. Figure 3.1 schematically illustrates our 3-D image registration method and
shows the interactions between each component. This chapter discusses each component

of the image registration process individuaily.

Input AP and LAT Input AP and LAT
portal images region // megavoltage DRR
of interests ddmbase

Correlate AP and LAT

portal region of interests with
corresponding DRRs

.
Determune position of
overall maximum
correlation coefficient

)
Qutput alignment
errors

Figure 3.1: Schematic illustration of the various steps involved in our 3-D

automatic image registration method.
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3.1.1 Image acquisition and processing
The first step in our image registration method requires the input of an orthogonal

pair of portal images (AP and LAT) and one CT-volume for a given patient or phantom.

3.1.1.1 Portal image acquisition

A diagnostic head phantom’ is selected as our test object. A Leksell stereotactic
frame®, in combination with a portal localization box® affixed to the stereotactic frame, is
fastened to the head phantom to confirm the exact position of the phantom in 3-D space.
Using the etched grid on each face of the portal localizer box, the head phantom is
positioned on the treatment table and aligned with the wall and ceiling lasers. Anterior-
posterior (AP) and lateral (LAT) orthogonal portal image pairs of a diagnostic head
phantom are acquired using a Clinac 18, 10 MV linac.® At least two 2D planar images are
required to obtain a 3D localization of any point appearing in both images. The simplest
approach is to acquire two orthogonal images of the region of interest. Using any
arbitrary 3D coordinate system, the first planar image allows a preliminary 2D localization
of the point of interest in the imaging plane. From the same coordinate system, the second
image directly provides the third coordinate, which is located in the imaging plane, thus
completing the 3D localization from the 2D images. For the linac used, the source-to-axis
distance (SAD) is 100 cm. Kodak RP fiim in a Kodak X-Omatic L Radiation Therapy
Cassette’ are used as our detector. For each film, a first exposure of S monitor units is
acquired with the surgical collimator in place and a field size of 4 x 4 cm®>. A second
exposure of 2 monitor units is then made with the surgical collimator removed and an

open beam exposing the entire head and frame attachment. From the projected image of
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the stereotactic frame and portal localization box assembly, the coordinates of the beam
central axis is determined in stereotactic coordinates. Figure 3.2 illustrates our portal
image acquisition set-up. The fiducial markers serve as a tool to determine the position of
the beam isocentre relative to the stereotactic frame. The portal films are then digitized
using a DuPont Lynx digitizer® at 844 x 1024 pixels with a pixel resolution of 0.43 mm.
The digitized images are then cropped to 768 x 768 using the central beam axis image as

the centre of our cropped image.

Stereotactic frame

Linac head

Figure 3.2: With the localizer box in place, the beam's central position may
be determined in stereolactic coordinates using the fiducial markers
appearing on each film. Two films are required to localize the beam in three-

dimensions.
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3.1.1.2 CT-data acquisition

As CT data set of the diagnostic head phantom, with the stereotactic frame and
localization box assembly, is acquired with a Picker PQ-2000 CT-simulator at 130kV,
with a 2 mm slice thickness and no gap between slices. The head phantom is positioned
using the CT-lasers and the localization box. Each transverse slice comprises 512 x 512
pixels of 0.5469 mm in size. In order to maintain the correct image proportions, the CT-
data is interpolated to 1 x 1 x 1 mm’. To ensure that the image registration procedure is
completely frame independent, the stereotactic frame image and fiducial markers are

erased from the CT-data and does not appear on the AP and LAT DRRs.

3.1.1.3 Digitally Reconstructed Radiographs

The DRR is meant to simulate a conventional radiograph using the three-
dimensional CT data. A DRR is obtained when a volume, which can be visualized as a
block of cubic voxels, is transformed into a 2-D image using ray tracing, thus mimicking a
regular radiograph. Goitein et al (1983) were among the first to use DRRs for use in

radiotherapy.’

The ray tracing method is as follows. For each pixel in the output image, a ray is
sent through the volume. Each voxel the ray passes through makes a contribution to the
intensity of the pixel in the output image. A voxel’s contribution depends on its opacity.

This is defined as an additive light mode! because the rays accumulate voxel intensity

35



Chapter 3 Materials and Methods

contributions as they travel through the volume. For example, as illustrated in Fig. 3.3, a
ray passing through a very opaque voxel will produce a DRR pixel with a higher intensity

than the same ray passing through a translucent voxel.

Simulated source

) =1 voxel

Figure 3.3. A CT data set can be visualized as an ensemble of individual
voxels. The opacity of each voxel determines its intensity contribution to the

DRR corresponding pixel.

When creating DRRs, one must ensure that the ray-tracing procedure is analogous
to photons passing through matter and impinging on a detector. When a photon beam
passes through matter, some photons are scattered or absorbed in the medium, but others
will pass through and be detected at the detector, thus forming a radiographic image. As

described by Johns and Cunningham, photon attenuation may be described by
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[=1,-e"* (3.1)

where u is the linear absorption coefficient of the medium, x is the thickness of the
medium traversed by the photon beam, / and /, are the final and initial photon intensities

respectively. '

The previous expression can be rewritten for a slab of non-uniform material

containing various linear attenuation coefficients:

I = 10 . e("m‘A-‘) ‘e("ﬂr‘\‘) . e(-ﬂs'M)m‘_e(-#.'“)‘ (32)

which can be simplified to become

[=1,.% ™%, (3.3)
=l

where y, is the attenuation coefficient of the medium at the i position along a given ray

path and n is the number of arbitrary small ray paths of length Ax.
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In the most general case, the previous expression is satisfactory to express the
physical absorption of the photon beam, but one must not neglect the detector response
when considering the image formation process. Detector response depends on the type of
detector used and will greatly influence the resulting image. For film-based detectors, the

optical density of the pixels on the final image can be expressed as

D= r-1og(1i]. (3.4)

o

where D is the optical density of the pixels in the image and [~ is a proportionality

constant characteristic of the detector used.

Substituting Eq. 3.3 into Eq. 3.4 yields

D=~F-Ax-i,u, (3.9)

1=l

and from this relation, it is possible to conclude that

DxY u,, (3.6)
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which shows that the pixel intensity of the image is directly proportional to the sum of the

linear attenuation coefficients through the ray path.

Voxels within a CT volume are individually represented by a CT number, in
Houndsfield units (HU), which is related to the linear attenuation coefficient at that

position in the volume in the following manner

CTnumber:K.w' 3.7

! ¢ waler

where K is a magnification factor equal to 1000 in most modern CT scanners, fuqer is the
linear attenuation coefficient of water and u. is the linear attenuation coefficient of the

given voxel. If we add the CT numbers along a ray path, the previous expression becomes

iCT number(i) = K iw (3.8)

Hovater

Manipulating Eq. 3.8, one can obtain

iCTnumber(i)=K-( ! ]-z":p,—K.n, 3.9)

1=l water
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which clearly shows the relation between the sum of the CT numbers and the linear

attenuation coefficients along a ray path. One can conclude that

ZH:CT number (i) < iy, (3.10)

=]

and intuitively

Doczn:CTmlmber(i). 3.1

The pixel intensity of the DRR is thus proportional to the sum of the CT numbers
along the corresponding ray path. The brightness and contrast of a DRR can easily be

modified to simulate various radiographic techniques.

To automatically match a DRR to a portal image successfully, it is preferable to
have DRRs that simulate the contrast obtained in a typical portal radiograph. This can
easily be done using lookup tables relating the CT number to the linear attenuation
coefficient for the desired beam energy. Previous studies indicate that one can linearly

relate the relative electron density o, with the CT number for a given beam energy."'

The CT number for a given material will depend on the individual CT scanner

used, the image reconstruction algorithm, the kVp used, the size of the field of view and
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the location of the material in the phantom.'*"* For these reasons, it is important to verify
the relationship between the electron density and the CT numbers for an individual scanner

at a given beam energy.

Orfaii determined the relationships linking the electron density to CT numbers for
the Picker PQ-2000 CT-simulator used at the Montreal General Hospital by using a CT
calibration phantom containing inserts of known compositions."* The CT numbers were
measured directly from the CT scan of the calibration phantom and plotted against the

corresponding electron densities p.. The relationships are given by two equations:

p, =1.00090 +0.00101-CT number (for CT numbers <100)  (3.12)

p, =1.00080 +0.00041-CT number (for CT numbers > 100)  (3.13)

In general, one can express the linear attenuation coefficient as

photoeffec

N, Z¢. ) ‘
M= P AA-——(O'W;..,.".(E,Z) +o (E,Z)+ O pmpion E)) (.14)

where 6°cnerent, G Photocticct ANd G compion are the coherent (Rayleigh) scattering, photoelectric
effect and Compton effect electronic cross sections, £ is the effective beam energy, Z is
the atomic number of the material, 4 is the atomic mass, p is the mass density and N, is

Avogadro’s number. The product (oV.,Z/4) is defined as the electron density. From Eqs.
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3.12, 3.13 and 3.14, a valid relation between the linear attenuation coefficient and the CT
number can be calculated for various materials. At megavoltage energies of approximately
10 MV, the relative electron density is almost identical to the relative linear attenuation
coefficient because the Compton interaction is dominant at this energy level and is

proportional to the electron density.

384 x 384 pixel digitally reconstructed radiographs (DRRs) are computed by
projection of the CT data using a summing ray tracing algorithm."’ Interpolating the DRR
to 768 x 768 provides an image that accurately simulates the portal image dimensions with

the isocentre position at the centre of our cropped image.

Megavoltage DRR pairs, representing rotated anatomy in the AP and LAT views,
are pre-calculated to form our DRR database. Phantom rotations were simulated in steps
of 1.5° between -4.5 to 4.5° about the in-plane rotation (4P) axis and each out-of-plane
rotation axis (superior-inferior (S/) and right-left (RL)) resulting in 343 megavoltage DRR
pairs per simulated isocentre position. The successive rotation matrices adopted in our
method are based on the Euler angles to describe rotations from one coordinate system to
another, thus ensuring that our DRR data set is complete for any combination of rotation
angles. The initial rotation can be taken about any of the three Cartesian axes, and the

only limitation is that no two successive rotations can be about the same axis.

The pre-calculated DRR database was used when rotation matching was desired.

Since the same DRRs were used throughout rotation matching, and our technique steps
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through a series of DRRs generated with different in-plane and out-of-plane rotations, the
use of a pre-calculated DRR database for rotation matching reduced the computing time

by approximately one half, i.e. to approximately 90 minutes.

For translation matching only, DRRs were not pre-calculated because only one
DRR is required per view to complete a 3-D translation alignment verification. Using a
pre-calculated DRR database for translation matching would save only thirty seconds of
computing time per translation alignment verification. For this reason, DRRs for

translational matching were calculated only as needed.

3.1.1.4 Image processing environment

The image registration method is implemented using the AVS (Advanced Visual
Systems) image processing software'® running on an Hewlett-Packard 9000 Model
735/125 Unix Workstation.'” DRRs of 384 x 384 pixels typically require 10 seconds of

computing time.

3.1.2 Volume transformation matrix and DRRs
In order to compare DRRs and portal image quantitatively, a common coordinate
system must be determined. Two coordinate systems are involved in our image

registration process:

1. The world coordinate system or portal image coordinate system

2. The CT-coordinate system
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Figure 3.4 schematically illustrates both coordinate systems and show that it is
possible to transform the CT-data from the CT-coordinate system to the world coordinate

system using a volume transformation matrix (VTM).

CTl-to-world

Source

-

N

Localizer box

CT-Volume

Source . .
CT-Coordinate system World coordinate system

Figure 3.4: In order to compare the data from two different coordinate
systems, a common coordinate system must be determined. Using a volume
transformation matrix (VIM), it is possible to transform our CT-data from

the CT-coordinate system to the world coordinate system.

In order to simulate DRRs that correspond to portal images acquired at various
beam-to-patient geometries, the CT-data must be manipulated to simulate head

displacements in world coordinates.
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In general, a vector in one coordinate system can easily be transformed into an
equivalent vector in another coordinate system. Such a transformation can be expressed

as:

x'= x{[A] 3.1

where x is a vector in a coordinate system and x’ is the corresponding vector in the second
coordinate system. The matrix fA4/ is defined as the transformation matrix. The reverse
process can also be done, i.e. the vector x’ can be expressed in terms of the first
coordinate system by simply multiplying x’ by the inverse of the transformation matrix.
Using this simple transformation analogy, it is possible to determine a VTM capable of
transforming the CT-data into world coordinates. In order to simulate DRRs that
correspond to portal images obtained in the world coordinate system, the complete CT-
volume must be transformed to the world coordinate system, where the world coordinate
is defined as the patient position on the linac treatment couch. To determine the world
coordinates used to create the best matching DRRs, the CT-to-world VTM must be
quantified in terms of translations in the x, y and z Cartesian planes, gantry rotation angle,
couch tilt angle and couch rotation angle. Sherouse et al developed a method for relating
any displacements in world coordinates to a series of transformation matrices defining all

possible translations and rotations.”” The overall transformation in world coordinates is

defined as
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F=SI-AP-RL-T,, (3.2)

where F is the overall transformation matrix, T is the x, y, and z translation matrix and
SI. AP and RL are the superior-inferior, anterior-posterior and right-left rotation matrices

respectively:

1 00 T,
01 0 7
T = ! 3.3
¥ 001 T, (3-3)
0 0 0 1
cos(@) 0 -sin(6) O
0 1 0 0
SI = 34
si(d) O cos(@) O (34)
0 0 0 1
cos(#) sin(¢) 0 O
_ -sin(g) cos(p) 0 O (3.5)
0 0 1 0
0 0 0 1
1 0 0 0
_|0 CO.S(¢J) sin(p) O (3.6)
0 -sin(¢) cos(p) 0
0 0 0 1
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where Tx, 7y and 7 are the x, y and z translations, respectively, and 6 ¢ and ¢ are the
rotation angles around the S/, AP and RL rotation axes respectively. The transformation

from the CT-coordinate system to the world coordinate system may be expressed as:

x=xF 3.7

where x is of the form

x = [x,%,x,]] (3.8)

The successive rotation matrices adopted in our method are based on the Euler
angles to describe rotations from one coordinate system to another. This approach
ensures that our DRR data set is complete for any combination of rotation angles. It is
important to note that the sequence of rotations used to define the final orientation of the
coordinate system is, to some extent, arbitrary. The initial rotation can be taken about any
of the three Cartesian axes. In the subsequent two rotations, the only limitation is that no

two successive rotations can be about the same axis.
The DRR calculation algorithm uses the overall transformation matrix £ to

position the CT-data in the world coordinate simulating the patient’s head at a given

orientation in world coordinates. The summing ray tracing process is applied to the CT-
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data to create AP and LAT DRRs. DRRs can be created to simulate any desired

orientation of the patient’s head in world coordinates.

3.1.3 Selecting the region of interest

As discussed in Chapter 2, the correlation algorithm requires a search mask and a
search image. A 64 x 64 region of interest is selected from the AP and LAT portal
images. To obtain an accurate match, the search mask must contain a noticeable
anatomical feature that appears in both the portal image and the corresponding DRR. The
DRR search image is then cropped to a 256 x 256 search window centered at the selected

anatomical feature in order to maximize the probability of a successful match.

3.1.4 Image correlation

When the portal search mask and the DRR search window are properly selected in
the AP and LAT views, the image correlation algorithm is applied using the FFT
implementation of Pearson’s correlation coefficient that we described in Chapter 2. The
search mask is compared throughout the corresponding DRR search window. As the
search masks sweeps the search image, a correlation value is outputted for every position
(m,n), thus forming a 2-D correlation matrix for the AP and LAT views. Two typical
correlation matrices are displayed in Figs. 3.5 and 3.6 resulting from correlating the search
mask and search image in AP and LAT views respectively. From these figures, one can
see that the maximum correlation coefficient reveals the position (in pixels) of the best

match between the search mask and search window.
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Figure 3.5: 2-D correlation matrix resulting from correlating the AP portal
search mask with the AP DRR search window. The location where the search
mask best matches the search window is represented by the location of the
maximum correlation coefficient. The intensity of each pixel represents the

correlation value at that point.
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Figure 3.6: 2-D correlation matrix resulting from correlating the LAT portal
search mask with the LAT DRR search window. The location where the
search mask best matches the search window is represented by the location of
the maximum correlation coefficient. The intensity of each pixel represents

the correlation value at that point.
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To appreciate the response of the correlation algorithm when it correlates the
search mask with the search window, 3-D representations of Figs. 3.5 and 3.6 are shown
in Figs. 3.7 and 3.8 respectively. The 3-D representations clearly show that even though
several local minima and maxima are present, the overall maximum correlation value can
easily be determined. This particular aspect renders Pearson’s correlation coefficient ideal

for image registration purposes.

Correlation value

X-axis (pixels)

1 axis (pinals)

Figure 3.7: 3-D representation of the correlation matrix resulting from
correlating the AP portal search mask with the AP DRR search window.
Although several local minima and maxima are typically observed in the
correlation matrix, the overall maximum correlation value clearly stands out

and enables us to detect it's position in the 2-D matrix.
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Figure 3.8: 3-D representation of the correlation matrix resulting from
correlating the LAT portal search mask with the LAT DRR search window.
Although several local minima and maxima are typically observed in the
correlation matrix, the overall maximum correlation value clearly stands out

and enables us to detect it's position in the 2-D matrix.
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3.1.5 Interpretation of maximum correlation coefficient

Each time a portal image search mask is compared throughout a corresponding
DRR search window, the output is a correlation matrix where each correlation value
describes how well the portal image region of interest resembled the DRR at a given
position (mn,1). The highest correlation value is indicative of the position of the best match

of the portal image search mask within the DRR search image.

3.1.5.1 Detecting translation positioning errors

A translation positioning error is quantified by counting the number of pixels
between the position of the expected position and the position of the highest correlation
value along the x, y and z axes. The expected matching position is obtained during the
search mask selection. Theoretically, the position of the maximum correlation coefficient
obtained after correlating the search mask with the search image should be identical to the
location of the centre of the search mask in the reference image (in pixels). Any
discrepancies reveal translation positioning errors. Multiplying the error in pixels by the
pixel size of the DRR search image will give us the error in units of distance, usually in
millimeters. However, one must consider that this translation positioning error is
determined at the imaging plane. We wish to obtain the translation positioning error
relative to the isocentre. As illustrated in Fig. 3.9, any displacement along the axis
perpendicular to the imaging plane will change the projection of any displacement parallel

to the imaging plane. This 2-D example can be expressed in the following relations:
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Figure 3.9: Schematic illustration of the orthogonal imaging acquisition set-
up. It becomes evident that a displacement along Ty will affect the projected

magnification of the Tx displacement and vice versa.
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_Tlc: _ source - to - deteclor distance
Tx SAD + Ty

(3.9)

Ty' _ source - to - detector distance
Ty SAD + Tx

(3.10)

where Tx an Ty are the translations incurred at the isocentre by the target along the x and y
axes respectively, and Tx' and 7y’ are the respective projections of the 7x and Ty
displacements at the imaging plane. After the image registration procedure, we obtain 7x’
and 7y’ in pixels, from which we can determine 7x and 7y. However, a careful inspection
of the Egs. 3.9 and 3.10 reveal that no significant error is introduced when neglecting the
displacement along the axis perpendicular to the imaging plane. For example, with typical
values of SAD = 100 cm, source-to-detector distance = 140 cm, 7x'=1 cmand 7y’ = |
cm, we obtain a difference of 0.010 mm between the 7x and 7y values calculated with
those calculated without correction for the displacement along the axis perpendicular to
the imaging plane. Therefore, one can safely assume that negligeable error is introduced
by neglecting the magnification effects of displacements along the axis perpendicular to

the imaging plane, thus simplifying the direct calculation of translation errors.
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3.1.5.2 Detecting rotation positioning errors

Rotation positioning errors can also be detected with the FFT implementation of
Pearson's correlation coefficient. DRRs are generated for a series of different
combinations of in-plane and out-of-plane orientations. Each DRR search window is
correlated with the portal image search mask, outputting a 2-D correlation matrix for each
DRR in each view. For the AP and LAT views, the maximum correlation coefficient from
each 2-D correlation matrix is determined. In-plane and out-of-plane rotation positioning
errors are revealed by comparing the actual treatment set-up angles (gantry rotation angle,
table rotation angle and table tilt rotation angle) with the DRR rotation parameters that
produce the correlation matrices with the maximum overall correlation coefficient in the

AP and LAT views.
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4.1.1 Translation error registration

DRR-to-DRR matching serves as validation for our method. The first DRR-to-

DRR matching test steps through a series of matching tests where the search image that

have been translated along the x, y and z axes by known amounts are registered with a

zero displacement reference image. A total of eight different 64 x 64 search masks, four

in the AP view and four in the LAT view, were chosen to include four anatomical features

from each view from zero displacement DRR reference images. To obtain an accurate

match, the search mask must contain a noticeable anatomical feature that appears in both

the portal image and the corresponding DRR. Figures 4.1 and 4.2 illustrate typical
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anatomical features, each of which was used for matching. For the AP view, they are the
upper-left bony orbit, the sagital suture, the upper-right bony orbit and the nasal bone,
which are features 1, 2, 3, and 4, respectively. Similarly, for the LAT view, they are the
right bony orbit, the petrous bone, the external occipital protuberance and the upper
coronal suture, which are features 5, 6, 7 and 8 respectively. Each search mask was
compared with 1331 pairs of test images generated with the following parameters: 7x, Ty,
Tz=-15 mm to +15 mm (in steps of 3 mm), AP, S/, RL = 0 degrees. We defined 7x, 7y
and 7% as the translation errors introduced along the x, y and z axes respectively, and AP,
SI, RL as the rotation errors introduced around the anterior-posterior, superior-inferior
and right-left rotation axes, respectively. The test was repeated for each of the search
masks and revealed the sensitivity of our method to variations in transiations along each
translation axis. Experimental results are presented in Fig. 4.3. The points in the figure
represent the mean deviation between the correct position and the one given by the
registration algorithm during DRR-to-DRR matching for each of the eight features. The
error bars show the standard deviation obtained with the data set for each feature. As
shown in Fig. 4.3, for DRR-to-DRR translation registration, the image registration process
is capable of determining the transiation dewiations to well within 0.8 mm of the correct

value with an average of 0.58 mm and a mean radial registration error of 0.97 mm.
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Figure 4.1: AP DRR illustrating the four search masks selected for DRR-to-

DRR image registration.
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Figure 4.2: LAT DRR illustrating the four search masks selected for DRR-to-

DRR image registration.
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Figure 4.3: Results of DRR-to-DRR translation registration tests. Plotted
are the mean and standard deviations between the actual positions and the
ones given by the registration algorithm during registration along the Tx, Ty
and Tz translation components. Fach point is the result of the registration of

a zero displacement DRR and 1331 randomly generated DRRs not exceeding

£ 15 mm from the actual position.
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4.1.2 Combined rotation and translation error registration

Although all eight features may provide relatively accurate results for translation
matching, they do not all allow our algorithm to discriminate between combined rotations
and translations or even between the different rotation axes. The same eight search masks
used for translation matching were then compared with 15 AP and LAT test images
generated at: AP, SI, RL = -4.5° to 4.5° in steps of 1.5° at 15 arbitrary 7x, 7y and 7=
values. Only features 2, S and 6 allowed discrimination between rotations. Figure 4.4
shows the mean differences between the correct translation and rotation parameters, and
those provided by our registration algorithm using the feature pairs 2 and 5, and 2 and 6.
Figure 4.4 allows a comparison of the alignment errors obtained with each feature pairs,
from which we can conclude that features 2 and 6 are better suited for determining
translation alignment errors while features 2 and 5 are be better suited for determining
rotation alignment errors. A direct comparison of the mean differences between the
correct rotation alignment and the one provided by the registration algorithm using
features 2, 5 and 6 is presented in Fig. 4.5, and reveals that feature 5 proves to be more
accurate for detecting in-plane and out-of-plane rotations. However, feature 6 proved to
be better for transiation registration (see Fig. 4.3). In-plane and out-of-plane rotation

errors are detected with an average accuracy of 0.79°.

To quantitatively compare these results and to determine which pairs of features is
better for overall position verification, we introduced a method that enables us to directly
compare the effects of combined rotations and translations. For this purpose, 4000 points
were randomly selected throughout a simulated spherical tumor volume with a 2 c¢cm
radius. The points were then subjected to the same rotations and translations of the best

matching DRRs given by the image registration results using the features pairs. Since the
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actual orientation of the DRR is known, the radial distance r between the correct position
of each point and the position of each point in the tumor at the orientation given by the
registration algorithm can be determined. Smaller radial translation errors are obtained

with feature 2 and 6 than with features 2 and 5 (» = 1.64 mm versus 7 = 1.88 mm).

| i A 1
| ® Features2and5 |-
O Features 2 and 6
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Figure 4.4: Results of DRR-to-DRR translation and rotation registration
tests. Plotted are the mean and standard deviations between the actual
alignment and the one given by the registration algorithm during registration
along the Tx, Ty and T: translation axes and AP, SI and RL rotwation axes.
Each point is the result of the registration of a zero displacement DRR and
343 randomly generated DRRs not exceeding # 15 mm for translation and *

4.5° for rotations from the actual alignment.
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Figure 4.5: Results of DRR-to-DRR translation and rotation registration
tests. Plotted are the mean differences and standard deviations between the
correct rolation alignment and the rotation alignment given by the
registration algorithm using features 2, 5 and 6 along the AP, SI and RL

rotation axes.
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4.1.3 Correlation coefficient behavior

Figures 4.6 and 4.7 show the typical behavior of the maximum correlation
coefficient as a function of translation displacements along the imaging plane for features 2
and 6. The overall maximum correlation coefficient of unity is, as expected, obtained
when the search image is identical to the reference image. As the CT-volume is displaced,
the search image's isocentre is displaced accordingly and the new DRR image is slightly
changed because of the beam divergence. As expected, the maximum correlation
coefficient does drop slightly. In general, we noticed that the drop in the maximum
correlation coefficient is more pronounced for displacements along the z-axis, probably

caused by the gap between slices during the acquisition of the CT-volume.

To analyze the effect of magnification on the maximum correlation coefficient, the
behavior of the maximum correlation coefficient was monitored for different
displacements along the axis perpendicular to the imaging plane. Figures 4.8, 4.9, 4.10
and 4.11 illustrate magnification effects for features 2 and 6 in the AP and LAT views
respectively using magnification factors of 0.85, 1.0 and 1.15. As expected, the maximum
correlation coefficient does drop slightly when magnification is introduced in the search

image.

Even though changes in beam divergence and magnification affect the maximum

correlation value, we expect our method to be able to discriminate between translation and

rotation alignment errors.
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along the y and z axes for feature 6 (LAT view).
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Figure 4.8: Maximum correlation coefficient as a function of in-plane
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y-axis (perpendicular to the imaging plane) for feature 2 in the AP view.

—— Y=23uwmn ;
=Y =1001m |

1 Y=18mm |

Maximum correlation cocflicient

L] L3 L3 L] L)
B % 9 100 108 10 1s
Duplacement along Z-axis (mm) - AP view

Figure 4.9: Maximum correlation coefficient as a function of in-plane
displacements along the z-axis measured at different displacements along the

y-axis (perpendicular to the imaging plane) for feature 2 in the AP view.

69



. Chapter 4 Results

1.000
i X =85 mm
0.99$ ) e—eX o (WOmm |
[ - XeliSmm |

ol
]
]
Q
1

z
N

Maximum comrclation cocfficient
s e
8 8
‘\‘

i

T T T ™ -
90 9 100 10$ o L

2

Dusplacement along Y-axis (mm) - LAT view

Figure 4.10: Maximum correlation coefficient as a function of in-plane
displacements along the y-axis measured at different displacements along the
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Figure 4.11: Maximum correlation coefficient as a function of in-plane
displacements along the z-axis measured at different displacements along the

. x-axis (perpendicular to the imaging plane) for feature 6 in the LAT view.
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4.2 PORTAL-TO-DRR MATCHING

4.2.1 Translation error registration

Portal-to-DRR matching serves as a feasibility test for our method in clinical
conditions. Three portal images of the head phantom were acquired and digitized.
Because they were deemed best for matching in Sec. 4.1. two search masks, containing
features 2 and 6, were selected from each AP and LAT portal image. The portal image
search masks were compared with a series of DRRs generated at 375 random 7, 7y and
T displacements between -15 mm and +15 mm in steps of 5 mm along each axis. The
maximum correlation allowed us to determine the accuracy with which the portal-to-DRR
matching process is able to determine the transiations given to the DRR. This is repeated
for a series of 375 DRR displacements in the AP and LAT views and results are presented
in Fig. 4.12. For translations only, the mean translation registration error is 1.22 mm, and

the mean radial registration error is 2.14 mm.

4.2.2 Combined rotation and translation error registration

To verify the accuracy of the method for determining total errors combining
translations with in-plane and out-of plane rotation errors in the portal image, DRRs were
created at different combinations of in-plane and out-of-plane rotations at 15 random T,
Ty and T: isocentre position. The same portal image search masks from the previous
section were compared with the pre-calculated megavoltage DRR database. The
following rotation parameters were used to generate the pair of orthogonal AP and LAT
DRRs: AP, ST and RL = -4.5° to 4.5° in steps of 1.5°. Figure 4.13 shows the mean
differences between the expected translation and rotation alignment parameters and those
provided by our registration algorithm using features 2 and 6. In-plane and out-of-plane

rotation errors are detected with an average accuracy of 1.31°.
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Figure 4.12: Results of portal-to-DRR translation registration tests. Plotted

are the maximum, mean and median alignment errors between the correct

alignment and the alignment given by the registration algorithm with 3 pairs

of orthogonal portal images and 375 DRR pairs simulated at random Tx, Ty

and Tz isocentre positions within + 15 mm of the correct position. The error

bars represent the standard deviation.
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Using the same 2 cm radius spherical tumor simulations, described in Sec. 5.1, we
evaluated the total radial displacement for the portal-to-DRR registration data set. Results
are presented in Fig. 4.13. For portal-to-DRR registration, the mean radial registration

error, which included transiation and rotation errors, is 2.74 mm.
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Figure 4.13: Results of portal-to-DRR translation and rotation registration
tests. Plotted are the maximum, mean and median alignment errors between
the correct alignment and the alignment given by the registration algorithm
with 3 pairs of orthogonal portal images and 15 DRR pairs simulated at
random Tx, Ty and Tz within £ 15 mm of the correct position. The error bars

represent the standard deviation
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5.1 SUMMARY

We developed an automatic, anatomy-based, image registration method for
detecting translation, in-plane and out-of-plane rotation errors using a correlation-based
approach. The advantages of this technique is that it requires no user-delineation of
anatomical features, it is robust for cases where the images have undergone intensity
changes, it does not require identification or delineation of fiducial landmarks and requires

no user-intervention other than image acquisition and processing.
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As Hristov and Fallone describe, the normalized correlation coefficient is invariant
under scaling of the image intensities, but Pearson’s correlation coefficient is invariant
under scaling and shifting of image intensities.' Insensitivity to image variations is an
important factor because detector response and dose delivery can vary significantly from
one treatment to another. Pearson’s correlation coefficient is robust when encountering
in-phantom scatter in portal images.'! No anatomy delineation, edge enhancements or
point pair matching is required in the search mask or search image when using a
correlation approach. This eliminates most of the user error and inter-user variability

encountered in many other anatomy-based, image registration methods.

The algorithm was very efficient for determining any translation errors (typically 7
seconds per view on our system). For DRR-to-DRR registration, the mean translation
registration error is 0.58 mm.  For translations only, the mean radial registration error is
0.97 mm. In-plane and out-of-plane rotation errors are detected with an average accuracy
of 0.79°. For DRR-to-DRR registration, which include both rotational and translational

errors, the mean radial registration error is 1.55 mm.

For portal-to-DRR registration, the mean translation registration error is 1.22 mm.
For translations only, the mean radial registration error is 2.14 mm, which is comparable
to the level of accuracy obtained with 3-D methods that involve manual intervention,**
inconsistent anatomy extraction, or diagnostic images.”® In-plane and out-of-plane
rotation errors are detected with an average accuracy of 1.31°. For portal-to-DRR

registration, which include both rotational and translational errors, the mean radial
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registration error is 2.74 mm. In its present form, the correlation algorithm requires 7
seconds per angle combination per view with pre-calculated DRRs, thus requiring

approximately 90 minutes for one clinical case.

The performance of the algorithm depends on the ability of the operator to select a
valid anatomical feature. This is especially true for portal-to-DRR matching considering
the quality of the portal images. The portal-to-DRR experimental results are higher than
what we obtained during DRR-to-DRR trials, which was expected because of the poor
quality of portal images. The surgical collimator, the head fixation device and stereotactic
frame increase the level of scatter in the image and leads to certain artifacts than can affect
the quality of the registration. Portal image quality could be improved by employing
improved electronic portal images or better portal films, such as the Kodak ECL portal
film. Better quality portal images would also produce more accurate results during image

registration.

Studies with portal films show that the standard deviation in treatment-to-
treatment variation in patient set-up position is 3 mm.” This deviation does not vary
significantly for different treatment sites. However, for brain, the average discrepancy
between portal and simulator films is S mm. Although immobilization devices, such as
stereotactic frames, reduce treatment set-up positioning errors, a stereotactic radiosurgery
report reveals that the total uncertainty in treatment delivery and target localization is from
24 mm to 3.7 mm® The accuracy of our 3-D anatomy-based automatic image

registration method lies within these values. Although our method was not tested for the
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pelvic region, it could easily be implemented since it uses constant size search masks,

which makes it independent of field sizes.

5.2 FUTURE WORK

A potential improvement to the technique would be to incorporate a minimization
algorithm that maximizes the correlation value during registration to ensure convergence
of the correlation peek during in-plane and out-of-plane rotation registration. This would
reduce the number of iterations involved, thus reducing the computing time. In addition, it
would improve the accuracy of the system for rotation registration. Presently, DRRs are
generated at pre-determined intervals of in-plane and out-of-plane rotations, thus probably
missing the actual overall maximum correlation coefficient. The algorithm may be
detecting local maxima that may be significantly different from the actual orientation of
the portal image. A minimization algorithm would assure convergence to the overall
maximum correlation coefficient. Fast Annealing and Genetic Algorithms’ search
thoroughly for the overall maximum in order to guarantee convergence, but the amount of
iterations involved render these algorithms impractical."® Numerous authors describe
implementations Brent's method' and Powell's multidimensional direction set method® for
assuring convergence of image registration cost-functions. Implementing such algorithms
during rotational registration would maximize the convergence and reduce the number of

time-consuming portai-to-DRR registrations involved.
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In addition to a minimization algorithm, we propose incorporating the histogram-
shifting algorithm (HS) developed at our institution.' This particular algorithm is based
on local histogram modification resulting in the detection and/or enhancement of edges
within the image while minimizing the artifact creation and noise amplification
encountered in most edge enhancement algorithms. In addition, the HS algorithm requires
only a few lines of computer code, which makes it very simple to implement on any
computer platform and enables a fast mean for enhancing edges. Performing an edge
enhancement of our portal images and DRRs would improve the accuracy and speed of
the rotation registration. Preliminary tests, illustrated in Fig. 5.1, reveal that during image
registration, the full width half maximum (FWHM) of our cost function is reduced when
we enhance the edges of a portal reference image and the corresponding portal test image,
which contains both translational and rotational errors. A smaller FWHM is desirable
when using a minimization algorithm because it will converge faster to the overall
maximum correlation coefficient, thus making rotation registration faster and more

accurate, since the peak of the cost-function will be sharper and easily detected.

We suggest an analysis of our method when using non-orthogonal portal images.
Our method, in its present form is theoretically capable of functioning even with non-
orthogonal portal images. For the simple example illustrated in Fig. 5.2 we have two non-
orthogonal portal images. During registration, the algorithm should be capable of
determining the rotation angle 8, which corresponds to the gantry angle used to acquire

the oblique image, if we allow it to iterate up to that angle value. Once the gantry angle

78



. Chapter 5 Discussion and Conclusion

—O— With edge detection
—@—- Without edge detection |

g
'S 0.8+
D o]
2 074
§ 064
g 5l
£ +
S 044
1
g 033”
. S 02 - ;
0.1 — | T T T T
-6 -4 2 0 2 4 6

Deviation from correct alignment (°)

Figure 5.1: Maximum correlation coefficient as a function of rotational
alignment deviations introduced in the test image using images with and
without enhanced edges. We selected the histogram edge
detection/enhancement algorithm for our purposes. The FWHM of the cost

Junction is clearly wider when no edge enhancement is performed.
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’
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Figure 5.2: Graphical example of the implications of using non-orthogonal

images.

used to acquire the oblique image is known, any translational positioning error detected
within this image can be determined and decomposed into corresponding x, y and =
positioning values using simple geometry. The Tz translational error is determined directly

and the 7x and 7y decompositions of the vector r are

Tx = rcosé@ (5.1
Ty = rsiné (5.2)

where Tx, Ty and 7z are the translational positioning errors along the x, y and = axes of a

reference coordinate system.

An investigation of an non-orthogonal portal film approach should provide
experimental results that test the accuracy of such an approach for determining
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translations, in-plane rotations and out-of-plane rotations. Because of the difficulty
involved in obtained perfectly orthogonal portal films, a non-orthogonal film method

would allow more flexibility during image acquisition.

Another approach to single film portal-to-DRR registration is to use the behavior
of the cost-function as a tool for detecting changes in the magnification of the DRR. In an
ideal situation, where the search image is identical to the reference image, the overall
maximum correlation coefficient will be obtained when the magnification factors of both
images are identical. Since the position of the detector is usually well known, differences
in magnification can enable the user to determine translational errors along the plane
perpendicular to the imaging plane by simply generating DRRs with varying source-to-axis
distances until the overall maximum correlation value is found. However, this approach
would require that the position of the portal detector from the source be known with great
accuracy, that the DRRs be generated with high details and that the cost-function peak be
very well defined. Once again, the HS edge detection/enhancement algorithm would
prove to be ideal for such a task. Implementing a minimization algorithm with this
technique would reduce the number of iterations involved and assure convergence of the

cost function at the overall maximum correlation coefficient.

Finally although our technique was thoroughly tested for the head region only, it is
as effective for other typical treatment regions. As a preliminary investigation, we
registered a portal image of a pelvic region and matched it with a version of the same

region that contained translations, in-plane rotations and both translations and in-plane
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rotations alignment errors. From the 20 matching tests performed, the algorithm was able
to determine all the errors introduced in the test image. No deviations from the correct
alignments were observed during registration. We suggest a thorough investigation of the
feasibility of our method for registering images from various regions of the body and

determining translations, in-plane rotations and out-of-plane rotation alignment errors.
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Figure 2.1: The search mask is compared for every position m and n within the search
window. As the search mask sweeps through the search image, a correlation is calculated,
representing the degree of similarity between the search mask at the search image at the

position (m,n).

Figure 3.1: Schematic illustration of the various steps involved in our 3-D automatic

image registration method.

Figure 3.2: With the localizer box in place, the beam’s central position may be determined
in stereotactic coordinates using the fiducial markers appearing on each film. Two films

are required to localize the beam in three-dimensions.

Figure 3.3: A CT data set can be visualized as an ensemble of individual voxels. The
opacity of each voxel determines its intensity contribution to the DRR corresponding

pixel.
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Figure 3.4: In order to compare the data from two different coordinate systems, a
common coordinate system must be determined. Using a volume transformation matrix
(VTM), it is possible to transform our CT-data from the CT-coordinate system to the

world coordinate system.

Figure 3.5: 2-D correlation matrix resulting from correlating the AP portal search mask
with the AP DRR search window. The location where the search mask best matches the
search window is represented by the location of the maximum correlation coefficient. The

intensity of each pixel represents the correlation value at that point.

Figure 3.6: 2-D correlation matrix resulting from correlating the LAT portal search mask
with the LAT DRR search window. The location where the search mask best matches the
search window is represented by the location of the maximum correlation coefficient. The

intensity of each pixel represents the correlation value at that point.

Figure 3.7: 3-D representation of the correlation matrix resulting from correlating the AP
portal search mask with the AP DRR search window. Although several local minima and
maxima are typically observed in the correlation matrix, the overall maximum correlation

value clearly stands out and enables us it’s position in the 2-D matrix.
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Figure 3.8: 3-D representation of the correlation mairix resulting from correlating the
LAT portal search mask with the LAT DRR search window. Alithough several local
minima and maxima are typically observed in the correlation matrix, the overall maximum

correlation value clearly stands out and enables us it’s position in the 2-D matrix.

Figure 3.9: Schematic illustration of the orthogonal imaging acquisition set-up. It
becomes evident that a displacement along Ty will affect the projected magnification of

the Tx displacement and vice versa.

Figure 4.1: AP DRR illustrating the four search masks selected for DRR-to-DRR image

registration.

Figure 4.2: LAT DRR illustrating the four search masks selected for DRR-to-DRR image

registration.

Figure 4.3: Results of DRR-to-DRR translation tests. Plotted are the mean and standard
deviations between the actual positions and the ones given by the registration algorithm
during registration along the 7Tx, Ty and 7z translation components. Each point is the
result of the registration of a zero displacement DRR and 1331 randomly generated DRRs

not exceeding + 15 mm from the actual position.
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Figure 4.4: Results of DRR-to-DRR translation and rotation registration tests. Plotted
are the mean and standard deviations between the actual alignment and the one given by
the registration algorithm during registration along the Tx, 7y and 7= translation axes and
AP, SI and RL rotation axes. Each point is the result of the registration of a zero
displacement DRR and 343 randomly generated DRRs not exceeding + 15 mm for

translation and * 4.5° for rotations from the actual alignment.

Figure 4.5: Results of DRR-to-DRR translation and rotation registration tests. Plotted
are the mean differences and standard deviations between the correct rotation alignment
and the rotation alignment given by the registration algorithm using features 2, 5 and 6

along the AP, ST and RL rotation axes.

Figure 4.6: Maximum correlation coefficient as a function of translations along the X and

Z stereotactic axes for feature 2 (AP view).

Figure 4.7: Maximum correlation coefficient as a function of translations along the Y and

Z axes for feature 6 (LAT view).
Figure 4.8: Maximum correlation coefficient as a function of in-plane displacements along

the X-axis measured at different displacements along the Y-axis (perpendicular to the

imaging plane) for feature 2 in the AP view.
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Figure 4.9: Maximum correlation coefficient as a function of in-plane displacements along
the Z-axis measured at different displacements along the Y-axis (perpendicular to the

imaging plane) for feature 2 in the AP view.

Figure 4.10: Maximum correlation coefficient as a function of in-plane displacements
along the Y-axis measured at different displacements along the X-axis (perpendicular to

the imaging plane) for feature 6 in the LAT view.

Figure 4.11: Maximum correlation coefficient as a function of in-plane dispiacements
along the Z-axis measured at different displacements along the X-axis (perpendicular to

the imaging plane) for feature 6 in the LAT view.

Figure 4.12: Results of portal-to-DRR translation registration tests. Plotted are the
maximum, mean and median alignment errors between the correct alignment and the
alignment given by the registration algorithm with 3 pairs of orthogonal portal images and
375 DRR pairs simulated at random T7x, Ty and 7= isocentre positions within + 15 mm of

the correct position. The error bars represent the standard deviation.

Figure 4.13: Results of portal-to-DRR translation and rotation registration tests. Plotted
are the maximum, mean and median alignment errors between the correct alignment and
the alignment given by the registration algorithm with 3 pairs of orthogonal portal images
and 15 DRR pairs simulated at random 7x, 7y and 7z within + 15 mm of the correct

position. The error bars represent the standard deviation.
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Figure S5.1: Maximum correlation coefficient as a function of rotational alignment
deviations introduced in the test image using images with and without enhanced edges.
We selected the histogram edge detection/enhancement algorithm for our purposes. The

FWHM of the cost function is ciearly wider when no edge enhancement is performed.

Figure 5.2: Graphical example of the implications of using non-orthogonal images.
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