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Abstract 

The dependency of the morphology of the hot gaseous component of clusters of galax- 

ies on the hierarchical nature of the structure formation in our universe is examined. 

The indicators of morphology examined are the universal density profile of Navarro, 

Frenk, and White (1995), the mass-temperature relationship, and the biasing of the 

gas with respect to the dark matter. The study is done using high resolution nu- 

merical simulations of clusters of galaxies. The simulations model the collisionless 

(dark matter) component as well as the baryonic matter using an N-body code with 

smoothed particle hydrodynamics (SP H) parallelised using P t hreads. The clusters 

are evolved from initial conditions smoothed by top-hat filtering and low-pass filter- 

ing of the initial perturbation spectrum. The evolution takes place in a 40h-'Mpc 

volume. 

The mean dark matter density profiles from each of the models is found to be 

fit well by the universal profile. A discontinuous form described in the test finds 

p cc r-la8 in the inner regimes of the clusters, independent of the model. The density 

in the outer regimes is found to depend on the degree of smoothing, becoming more 

shallow with increased smoothing. The mass-temperature relation is found to depend 

on the initial conditions, as  well. All models reproduce the T cc relation, but 

the coefficient of proportionality is found to decrease with increased smoothing of the 

initial conditions. This is traced to an increase in the isothermal radius of the clusters. 

The gas in the clusters is found to be anti-biased with respect to the dark matter. 

This anti-bias is reduced with smoothing of the initial conditions. In particular for the 

clusters formed hierarchically from unsmoothed initial conditions, there is a strong 

positive bias in the outer radii of the clusters. 

A description of the method of parallelisation is given as well as results of tests 



of SPH involving cooling near a steep density gradient and the drag on a cold clump 

moving through a hot media. The tests are done for a variety of implementations of 

SPH which vary both the method of symrnetrising the equations of motion and the 

form of the artificial viscosity. Both of these are found to not have significant effects. 

KEYWORDS: Clusters of Galaxies, Cosmology, Smoothed Particle Hydrodynamics, 

Parallel Programming, Universal Profile, Mass-Temperature Relation, B q o n  Frac- 

tion. 
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Chapter 1 

INTRODUCTION 

1.1 Clusters of Galaxies 
The largest virialised objects in the universe are galaxg. clusters. Larger than this is 

the regime of large scale structure. Optically, these clusters were initially identified 

from maps of galaxies which indicate galaxies tend to be found in clusters. Subse- 

quently, these clusters of galaxies have been found to contain a diffuse intergalactic 

medium composed of hot (lo8 E; = 10 keV) gas. This gas is luminous (-- 10'' La) in 

the x-ray regime and, consequently, observable from above the earth's atmosphere. 

Two such satellites in particular, Einstein and ROSAT, have provided catalogues of 

X-ray luminosities as well as luminosity maps with sufficient resolution to map the 

coarse structure of these clusters. This hot gas constitutes the bulk of the baryonic 

matter in galaxy clusters. 

Satellites with instruments able to take spectral data in the X-ray band, most 

notably the ASCA satellite, have provided observations which have confirmed the high 

temperatures of the gas and are starting to coarsely resolve the spatial temperature 

distribution of this gas (see Markevitch and Vikhlinin (1997a), for references). 

Since these clusters are such large objects, in the standard model of cosmological 



structure formation they are the most recently formed large-scale objects. Conse- 

quently, though they are relaxed, they potentially carry with them information related 

to their formation. Larger-scale structuIe is in a state of linear or quasi-linear evolu- 

tion and, hence, still responding to density perturbations that have existed since early 

times. Smaller virialised objects such as galaxies and stars individually contain little 

or no manifestation of the character of the initial density perturbations from which 

they formed. Having had ample time to dynamically relax, their present evolution is 

dominated by the physics of stellar evolution. 

Being so luminous, galaxy clusters are observable to great distances and, conse- 

quently, at  earlier stages of their evolution. Galaxy clusters are observable in ways 

other than their X-ray signature and population of galaxies. In the microwave spec- 

trum, there is the temperature decrement imposed on the cosmic microwave back- 

ground via the Sunyaev-Zeldovich effect by which electrons in the hot gas alter the 

energy spectrum of the CMB photons. Optical imaging of the clusters also provides 

independent measurements of the tot a1 mass of the clusters via the gravitational 

lensing of background galaxies. 

1.2 A Universal Density Profile 
The work of Navarro, Frenk, and White (1995, 1996) has built a case for a common 

density profile for the dark matter in galaxy clusters. This density profile is found 

to fit clusters spanning a large range of masses. It is contended that this 'universal' 

profile has only one free parameter corresponding to the density at  cluster formation 

(Navarro, Frenk, and Wlite 1997). However, the form of the profile is derived from 

numerical simulations of hierarchically formed clusters. There is evidence that it 

is the hierarchical nature of the cluster formation itself that is responsible for the 

universal profile (Syer and White 1998). Determining the validity of this would be 

valuable to understanding the true breadth of its universality. 



1.3 The Mass-Temperature Scaling Relation 
Estimations of the total mass of the clusters have been made using the observed X- 

ray luminosity (and hence, baryon) distribution and the assumption of hydrostatic 

equilibrium using so-called @-model fits (Fabricant and Gorenstein 1983; Jones and 

Forman 1984). Evrard, Metzler, and Navarro (1996) describes a correlation between 

the total mass of clusters of galaxies and the mass-weighted mean temperature of 

the hot, X-ray emitting gas in the interior of the cluster. This would provide an 

independent method of measuring the total masses of the clusters, requiring only a 

measurement of the temperature of the gas. This relationship is a natural result of 

the hydrostatic state of the gas. However, derivation of this relationship uncovers a 

dependency on both the gas density and temperature profiles. Hence, a sensitivity of 

these profiles to the cosmogony would weaken the relation's utility. Understanding 

the behaviour of the mass-t emperature scaling relation on the cosmogony is essential 

to the confidence level put in the application of the relation to real data. 

1.4 Cluster Baryon Fractions 
Being the largest virialised objects in the universe, galaxy clusters contain matter 

sampled from volumes with radii of 1. 8h-' Mpc. Presuming that the gas and dark 

matter was initially distributed in equal proportions, these samples remain unbiased. 

Since galaxy clusters are the largest objects for which total mass may be measured, 

the baryon fraction of the universe, i.e. the total mass of baryons to the total of all 

mass, predicted by primordial nucleosynthesis calculations may be directly compared 

to that of this large and presumably unbiased sample of matter. However, there is 

an uncertainty in the actual amount of bias. The bias between the universal baryon 

fraction and that found in clusters cannot be measured directly. It must be inferred 

from numerical simulations. The numerical simulations must assume a model for 

the universe. Since the actual cosmogony of the universe is unknown in the details, 



variation among baryon fractions found in different model universes adds uncertainty. 

4 better understanding of how this bias depends on cosmological models would assist 

in understanding the actual baryon fraction of the universe. 

1.5 Numerical Simulations of Galaxy Clusters 
Numerical simulations of galaxy clusters using more than a few hundred particles 

date back to the work of Efstathiou and Eastwood (1981). These simulations, and 

many that followed, traced the evolution of the dark matter component only. Despite 

the omission of the more computationally edxpensive gas component, they still pro- 

vide fertile datasets due to their ability to go to very high spatial resolutions (Moore 

et ai. 1998; T.G. Brainerd 1998; Thomas et al. 1998). Numerical simulations of clus- 

ters incorporating gas were being performed by the late 1980's (Evrard 1988; Ev-rard 

1990). Many of these used the smoothed particle hydrodynamics (SPH) approxima- 

tion. SPH is a Monte Carlo approximation which models the gas as a collection of 

particles with their individual properties taken to be the average of their immedi- 

ate neighbour particles. The early simulations involved small numbers of particles 

(2 x 16~ ,  typically) which poorly resolved the hydrodynamic forces. Higher spatial 

resolutions were achieved by modelling single clusters (Thomas and Couchman 1992; 

Tsai, Katz, and Bertschinger 1994) and then extrapolating to the general case. 

More significantly, improvements in codes and computing power continuously push 

the resolutions to new highs. Improvements benefit both the spatial and temporal 

resolution, with the former being the more important owing to the large dynamic 

range of scales in cosmological scenarios. One of the methods by which codes and 

computing power have increased in step is in the development of algorithms that 

take advantage of particular advancements in architecture. Software that utilises 

the ability of some hardware platforms to concurrently perform multiple tasks is one 

example. Writing code from scratch to do this is possible, but often conversion of 



well-tested codes already in existence is required. For the example given; this is 

referred to as 'parallelisation' of the code. To take advantage of the dual processor 

WltraSPARCs available, the N-body code with hydrodynamics,  couchman, man, 

Thomas, and Pearce l995), was parallelised. 

With improvements in the resolution of numerical simulations has come a need 

to improve the implemented approximations of true physics as well as to incorporate 

new physics. This is particularly true for the evolution of the baryonic component. 

As part of a series of tests of SPH, the cooling rate of the gas around a cold. dense 

object as well as the hydrodynamic drag on a similar object as it passes through a 

hot medium were examined for changes owing to differing implementations of SPH. 

1.6 The Standard Model 
The model of the Universe assumed in this thesis is predicated on the Big Bang. That 

is, a t  early times, the Universe was much denser and hotter. A general expansion of 

the Universe has led to the lower mean-density state of the present. Many excellent 

reviews of this topic exist. See Bertschinger (1994), for example. 

In the Standard Model, the early Universe is assumed to be smooth in both density 

and temperature with small fluctuations on all scales. These small fluctuations owed 

their existence to some unknown process from an even earlier time, such as quantum 

fluctuations during a postulated inflationary period. Before the epoch of recombina- 

tion, during which the density and temperature dropped sufficiently to allow photons 

to travel essentially unimpeded, growth of these density perturbations was inhibited. 

After recombination, these fluctuations grew due to gravitational instability. Initially, 

they grow in a linear or quasi-linear phase, during which the amplitude of the fluc- 

tuations grow a t  a similar rate to the expansion factor of the universe, a. Eventually 

the perturbations reach a non-linear phase in which turbulence, angular momentum, 

or some other factor slows or halts the-growth of these fluctuations. This non-linear 



phase is highly chaotic. Perturbations with different initial amplitudes reach this 

stage a t  different times, with the largest initial perturbations going non-linear first. 

There exists a great deal of evidence for the Standard Model, and the Big Bang, in 

general. This evidence includes the expansion of the Universe as quantified by Hub- 

ble's Law as well as the ability of primordial nucleosynthesis calculations to justify the 

present observed abundances of hydrogen and helium as well as the relative absence 

of the heavier metals. The Cosmic Microwave Background, via its thermal nature as 

well as its small spatial fluctuations, provides strong support for both the higher ini- 

tial temperatures and densities as well as the existence of the initial small-amplitude 

density fluctuations. 

These features are typical of models based on the Big Bang. Added to the Stan- 

dard Model is the assumption that the dominant source of gravitational mass is an 

unseen 'Dark' component. Evidence includes the flat rotation curves of galaxies, 

the dynamics of galaxies in galaxy clusters, as well as the hot intra-cluster medium 

described earlier. 

For both theoretical (e-g. inflation) and aesthetic reasons (e-g. we should not be 

living in a preferred time), the Universe is assumed to have a mean density that is 

critical in the sense that it is just sufficient to halt the expansion of the Universe, 

albeit after an infinitely long time. The ratio of the density to this critical dens it^;, as 

given by the parameter a, is unity with the dark matter contribution, RDM , providing 

the bulk. 

1.7 Hierarchical Clustering 
In hierarchical clustering, the largest structures forming at a given time do so via 

the amalgamation of many smaller structures which have formed a t  an earlier time. 

This is owing to the form of the initial density perturbation spectrum in which small 



scale perturbations have higher initial amplitudes than large-scale. In contrast, non- 

hierarchical clustering involves structure formation from the collapse of large struc- 

tures with smooth density distributions. Though the details are still not clear, the 

results of numerical simulations compared with observations support the theory that 

we live in a universe in which structure is formed hierarchically. The degree to which 

the hierarchical nature affects galaxy clusters is not entirely clear. In this thesis, 

a comparison of the features of galaxy clusters discussed above will be made using 

numerical simulations of galaxy clusters formed hierarchically and non-hierarchically. 

In particular, the issue of whet her the mass-temperature scaling relationship and the 

common density profile are universal among both hierarchical and non-hierarchical 

cluster formation scenarios is explored, as well as the change in baryon biasing within 

the clusters. By using these extreme cases, the significance of hierarchical cluster- 

ing itself will be determined. The analysis will concentrate not on the properties of 

individual clusters, but on the global mean properties of scaled quantities. 

1.8 Layout of Thesis 
The layout of the thesis is as follows. In Chapter 2, the parallelisation of HYDRA is 

described as well as results concerning the performance gain. In Chapter 3, SPH is 

briefly described with emphasis on the differences between the implement ations used 

in the tests. -4n examination of the behaviour of the SPH density estimate in the 

presence of steep density gradients is given, followed by the results of the cooling 

and drag tests. In Chapter 4, the simulations are described. The analysis and, in 

particular, the cluster identification method are described in Chapter 5. Verification 

that the clusters extracted are in hydrostatic equilibrium is made in Chapter 6. The 

results of the examination of the dark matter density profiles are given in Chapter 7. 

The mass-temperature relationship relevant to clusters is derived in Chapter 8 and 

the results are given. Chapter 9 discusses the variation of the biasing of the baryons 



within the clusters. A brief recap of the results is given in Chapter 10. The casual 

reader could skip Chapters 2, 3, 5, and 6. 



Chapter 2 

PARALLELISATION OF HYDRA 

2.1 Introduction 
With the increasing availability of inexpensive symmetric multiprocessor (SMP) com- 

putational resources which use shared memory (Intel x86 machines running Linux or 

Windows-NT, Sun SP.4RC-family computers running Solaris, and machines using 

DEC Alpha CPUs, for example), there is reason to adapt the N-body code, HYDRA 

(Couchman, Thomas, and Pearce 1995) (see Chapter 4), to take advantage of these 

architectures. This is possible by parallelising those parts of the code which are the 

run-time bottlenecks. Parallelisation of code can be done using the propriety libraries 

supplied with many system libraries. SGI provides the MIPSPro FORTR4N 77 in- 

struction set for use with their multiprocessor systems. HYDRA has been ported to 

the SGI Power Challenge and Origin 2000 systems using the parallelisation routines 

provided in the MIPSPro library (Thacker, Couchman, and Pearce 1998) as well as 

to the Cray using CRAFT (Pearce and Couchman l997), a FORTW-l ike  language 

for the Crays. Sun Microsystems provide a similar set, as well. Parallelised code 

written for one system is not transferable to other systems using different operat- 

ing systems and architectures. Though leading to possible performance degradation, 

the versatility provided by a platform-independent method would be most welcome. 



This platform independence is provided by the POSIX threads library (pthreads). 

POSIX (Portable Operating System Interface) provides a set of IEEE standards by 

which writers of system libraries for various architectures may maintain compatibil- 

ity of software written for other architectures. The downside of the pthreads comes 

from it being a C library. HYDRA is mitten in FORTFUN 77, which does not easily 

mesh with C code. There is no cross-platform FORTRAN 77 threads library freely 

available at the moment. There are commercial FORTRAN 77 compilers with li- 

brary extensions for threading, such as APR's FORGExplorer family of FORTR4N 

77 tools. OpenMP, a recently announced shared-memory API standard, is scheduled 

to be available sometime in 1998. 

2.2 An Introduction to Parallelisat ion 
Simply put, a program is parallelised if it can use more than one CPU at a time. The 

CPUs, or in more general terms, the processing elements (PEs), obviously must 

be part of a system in which the processors can be coordinated in some fashion. This 

system is called a multiprocessor system. These processors may be on the same 

motherboard or on different continents. They may communicate and coordinate with 

each other or be coordinated by an extra processor. 

How the PEs communicate with each other and with their memory determines the 

type of multiprocessor system which, in turn, determines the method by which the 

programme is coded and/or compiled t'o take advantage of the multiple processors. 

If the CPUs share the same memory, as they are apt to do if they are on the same 

motherboard, then the system is said to have a shared memory (SM) architecture. 

If each CPU has its own memory, as many super-computers do, the system is said to 

have distributed memory (DM). 

If the processors have equal access to shared memory and are being controlled by 



the same operating system then the system is a symmetric multiprocessor (SMP) 

computer. This is the architecture of interest here. The number of processors on the 

inexpensive systems described earlier is typically 2 to 8. 

Compilers exist which will parallelise code to the best of their ability if they are 

asked to by a compiler directive. This is known as implicit parallelisation. For 

best performance, it is most often the case that the code itself must be modified 

and/or annotated to direct the compiler at compiler time and the scheduler at run 

time how to run the code in parallel. This is explicit parallelisation. 

The minimum requirement for code to be parallelisable is that it have code chunks 

that can occur in any order. Say the code does some sequence of events, A-B-C-D-E. 

Now swap any pair of events, such as A-B-D-C-E. If this operation does not change 

the result of the sequence, then the code may be parallelisable. If no such pair exists, 

then the code is not parallelisable. Of course, it may be possible in this case to rewrite 

the code into a new sequence, G-H-I-J-K, that does fit the criterion. 

From this description, it can be seen that the parallelisability of a code may 

be tested on a serial (one CPU) computer. Noting that the code chunks C-D are 

interchangeable in their sequence, let us rewrite the code in the manner .A-B-(C-D)-E 

where the brackets indicate that the contained code chunks may be processed in any 

order or even incrementally for each. The scheduling of the code execution is left to 

an external source, such as the operating system. It is sometimes beneficial to write 

code for a parallel architecture even if the code is to be run on serial machine. If one 

code chunk is held up by an I/O delay, C for example, it may be suspended while the 

other chunk, D, is processed. 

It is often the case that the code sequences which can occur in any order rnodifv the 

same resource such as a variable in memory. Consider as an example the summation 



of results from a pair of mathematical operations. The summation can occur in any 

order, but the counter variable is common to both mathematical operations. Using 

our previous sequence, suppose C calculates a value XI which it adds to x and D 

calculates a value x2 which it also adds to x. There is no difference to the final value 

of x if x2 is added before XI. A problem can occur, however, if they both increment x 

at the same time. The processor for C grabs the value of z from memory: adds XI to 

it, and returns the new value of x to memory. If the processor for D grabs the value 

of x from memory after the processor for C but before that processor has returned 

the value to  memory, then D will overwrite the memory Iocation for x with the initial 

value for x incremented by xz. The incrementation done by C's CPU and all of C's 

work will have been lost. This simultaneous need to update a memory location in 

shared memory occurs when there is a race condition. .4 race condition does not 

guarantee that the simultaneous accesses will occur. It merely states that i t  could 

occur. Any code written to work in parallel must be prepared to avoid this potential 

problem. 

2.3 Introduction to Threads 
Now we turn our attention to the method to be used here for creating parallel code: 

threads. 

Threads make it possible for a process to be split into subtasks which may be 

executed independently of one another by the operating system's scheduler. Each 

thread has its own stack and set of registers (memory resources) yet maintains access 

to the common memory of the process spawning the thread. -4s well, each thread 

maintains the same process identifier (PID). This is in contrast to the traditional 

UNIX method of spawning separate processes with the fo rk  system call which creates 

identical copies of the parent process, except for the PID and return values. This is 

wasteful of memory and entails expensive overhead. 



In practice, a thread is a subroutine that is called in a fashion that indicates to the 

operating system that the subroutine may be scheduled for processing by an available 

PE independently of the calling process. Mong with this ability, of course, are library 

routines to collect and synchronise the threads. 

The thread may be allowed to run until it terminates quietly on its o m ,  perhaps 

when it has finished some lengthy writing to disk. This is a detached thread. During 

this time, the process can continue on with other things and no further synchronisation 

is required. 

More often, the main programme wishes to get the results of the thread. If the 

routine cannot go on without the results, there is little to be gained by spawning 

a thread for the subroutine. Indeed, there will be a degradation of performance. 

However, if the code is parallelisable (see the previous section) then there will be a 

collection of subroutines for which the calling routine requires results but not in any 

particular order. In this case, the subroutines may be spawned off as threads. The 

calling routine then waits until all the threads have finished, collects the results, and 

continues on. If there is more than one PE, then the threads may run at the same 

time on different PEs, in parallel. In principal, if there are N PEs, l\il x N threads, 

and each thread takes the same length of time to run, then the speed-up through this 

section of the code should be N times. 

However, it is never possible to fully parallelise a code. There always exists a 

certain amount of the code, contributing the fraction s to the total execution time, 

which cannot be parallelised. The speedup of the code is then bounded by 

L - s This is Amdahl's Law. As an example, take the following derivation: -4110~ s to 

be the fraction of total execution time spent doing tasks which must be done serially. 

Similarly, take p to  be the total fraction of time taken on a serial machine doing tasks 

which may be done in parallel. If f is the ratio of the total time spent on a serial 



machine to that spent on a parallel machine with N processors, then f is the speedup 

factor. So, 

states Amdahl's Law. In the limit N + m, the maximum speedup is bound by the 

fkaction of the code that is un-parallelisable, f = f. 

2.4 Threading FORTRAN 77 Code Using Pthreads 
FORTRAN 77 does not support threads. There exist propriety extensions to FOR- 

T U N  which support threads but they are machine-dependant. Pthreads provides a 

machine-independent and inexpensive, if not free, method to thread code, but it does 

not support FORTR4N as Pthreads comes as a Gbased library. 

In order to use Pthreads with FORTRAN, a wrapper function must be created. 

This wrapper hnction is C-based and thus can use the pthreads tools to create threads 

of the FORTR-4N code that is to be run in parallel. 

Consider the example schematically illustrated in Chart 2.1. Here, a programme 

has a section which contains a loop for which the order of indexing is unimportant. 

The loop itself may be isolated as a separate subroutines (Chart 2.2). Once isolated, 

a wrapper function may be created which calls the subroutine more than once. The 

subroutine's parameters may be adjusted on each call to ensure that the successive 

calls to the subroutine span non-overlapping ranges of the index, i, while ensuring 

that the entire span of i=l t o  N is covered (Chart 2.3). Since the order of execution 

is unimportant, the successive calls can be in any order, or the calls can be all at  the 

same time, using threads. 

Let us look at  a less schematic example. Consider the programme fragment in 

Prog. 2.1. It contains just such a parallelisable loop as in Chart 2.1. With our 



Chart 2.1 A programme with a parallelisable section. The section may be a series 
of commands or a loop, as it is here. 

Programme 
parallelisable 

d o i = l , N  - 

Chart 2.2 The parallelisable loop in Chart 2.1 may be turned into a subroutine of 
the main programme. 

parallel- 
isable 

do 
i = I , N  

Chart 2.3 The loop may be called as threads by a wrapper function. Each thread 
loops through a different set of limits. Together, the threads loop through the entire 
range. 

C wrapper 
function 

thread 
do 2 = 
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programme fragment, isolating the loop would lead to a code fragment much like 

Prog. 2.2 which could be called from the main programme as in Prog. 2.3. 

PROGRAM main 
INTEGER N,A(lOO) ,B(lOO) ,C(lOO) 
N=lOO 

END 
Programme 2.1: A code fragment which contains a parallelisable loop. Note the 
absence of any dependence on the ordering of the loop index, i. 

SUBROUTINE loop(start ,finish, A, B , C) 
INTEGER start,f inish,A(iOO) jB(100) ,C(lOO) 
DO i=start ,finish 
C(i)=A(i)+B(i) 

ENDDO 
RETURN 
END 

Programme 2.2: A code kagment for which the parallelisable loop in Prog. 2.1 has 
been isolated as a subroutine. 

Before calling this subroutine using threads, we must look a bit more closely 

a t  how pthreads are called in C. The calling process is performed by the function 

pthread-create. This function requires four pieces of information: 1) the function 

(subroutine) to be called, 2) a structure containing the information to be passed to 

the function, 3) a thread to associate with the specific call, and 4) a set of attributes 

for the thread. Specifically, the function is called by pthread-creat e ( thread, 

attributes, function, structure). 



PROGRAM main 
INTEGER N,A(lOO) ,B(lOO) ,C(100) 
N=lOO 

CALL loop(i,N,A,B,C) 

END 
Programme 2.3: How the main programme would call the isolated loop, Prog. 2.2. 

Let us look at a simple C example by rewriting the subroutine Prog. 2.2 in C 

(Prog. 2.4). The obvious complication is the use of a structure which is passed to 

the function as a void pointer. This inconvenience permits complete freedom in 

choosing what parameters to pass to the function. This void pointer, assigned to in, 

is immediately cast to the proper structure type and assigned to p. Now p contains the 

information stored in the structure. Since p is still a pointer, the structure elements 

are accessed using the point er->element notation. 

typedef struct -Parameters< 
i n t  start,finish,*A,*B,*C; 

) Parameters; 

void* loop(void *in) < 
Parameters *p = (Parameters *) in; //cast ' i n '  
int i; 
for (i=p->start-1; i<p->f inish; i++) < 
p->C [i] =p->A [i] +p->B [i] ; 

I- 
> 
Programme 2.4: A C version of the FORTFUN subroutine, Prog. 2.2 that is suit- 
able for calling by pthread-create. 

The function can then be called as a thread by pthread-create ( thread, a t  tributes,  

loop, structure) . A more complete implementation of this is given in Prog. 2.5. 



#include <pthread.h> 
void* loop-threads-(int *A,  int *B, int *C) ( 
int i; 
int N=lOO ; 
Parameters pC43 ; 

/* declare the threads and the attributes */ 
pthread-t thread [4] ; 
pthread-attr-t attributes ; 

/* Set thread attributes */ 
pthread-attr-init (&attributes) ; 
pthread-attr-setscope(%attributes,PTHREAD-SCOPE-SYSTEM); 

/* set up the parameters to pass to each threaded function */ 
for (i=0 ; 1<4; i++) ( 
p [i] ->start=i*N/4 ; 
p [i] ->finish= (i+l) *N/4-1; 
p [i] ->A=A ; 
p 5 3  ->B=B ; 
p [i] ->C=C ; 

3 

/* start the threads */ 
for (i=0 ; i<4; i++) ( 
pthread-create ( &(thread [i] , &attributes, 

loop, (void *) &(p[i]) 1; 
1 

t 
Programme 2.5: The C wrapper function to call Prog. 2.4 in threads. 

We would also like to synchronise the rest of the programme with the threads. 

What is needed is a place in the code beyond which the code cannot continue until 

all the threads are terminated. Often, this is immediately after the point where they 

have been called. This operation is facilitated by the pthread-join( thread ,  ou tpu t  

pointer) function. The output pointer is similar to the void pointer used to pass 

the structure containing the function data to the function. However, it contains a 



pointer to the structure (or data type) containing the output of the function. In the 

case here, there is no output, so the NULL pointer will suffice. The implementation of 

pthread-join in Prog. 2.5 is given by Prog. 2.6. 

#include <pthread.h> 
void* loop-threads-(int *A, int *B, int *C) { 

/* start the threads */ 
for(i=O;i<4;i++) ( 
pthread-create ( &(thread[i] ) , &attributes, 

loop, (void *) & (p [i] ) 1; 
> 
/* collect the threads */ 
f or(i=O; i<4; i++) ( 
pthread- join( thread [il, NULL) ; 

1 
k 
Programme 2.6: The same as Prog. 2.5 but including the loop to synchronise 
(collect) the threads with the main programme. 

This wrapper function may be called from the original FORTRAN main pro- 

gramme. Note how the function was named: void* loop-threads-(int *A, int 

*B, int *C). It returns a void pointer, which is what FORTRAN expects. It has 

a trailing underscore, , in its name, which is the default for FORTRW objects. 

FORTRAN compilers often automatically append these trailing underscores. Some 

append a pair (g77, for example). Some append none (Cray, for example). The 

function takes pointers as arguments. FORTRAN passes variables by reference, so a 

pointer is to be expected from a FORTRAN call. Given this, the original programme 

(Prog. 2.3) can be easily modified to call the C subroutine (Prog. 2.5) as done in 

Prog. 2.7. 

It would not be convenient to have to rewrite in C the FORTIRAN subroutine 



PROGRAM main 
INTEGER N,A(lOO) ,B(lOO) ,C(lOO) 
N=100 

CALL loop-threads (A,  B , C) 

END 
Programme 2.7: How the main programme would call the C wrapper function: 
Prog. 2.5. 

which we wish to cal l  in a thread. In the example here, it is trivial. However, this 

is not always likely to be the case. So our attention must turn to the method to call 

the FORTRAN subroutine in a thread. 

In the C vernacular, a subroutine in FORTMN returns a void and its arguments 

are passed by reference. To call our example subroutine, Prog. 2.2, from a C code, 

the form given in Prog. 2.8 could be used. 

int start, f i n i s h ,  A [I001 , B [loo] , C El003 ; 
void loop-() ; 

loop, (&start, &fin ish ,  A ,  B ,  C) ; 

Programme 2.8: -4 C code fragment which calls the FORTRkN subroutine 
Prog. 2.2. 

There is a complication when calling loop- as a thread, however. The thread- 

creation routine, pthread-create, expects to pass a structure to the function. FOR- 



TRAN has no support for C structures. In order to circumnavigate this little problem, 

there must be a void (* void) function which can be called by pthreads-create 

which then calls loop- with its arguments supplied by the structure passed via a void 

*. Such a calling function is given by Prog. 2.9. 

void loop-() ; 

void* loop,caller(void *in) { 
/* cast 'in' to be a Parameters.structure */ 
Parameters +p = (Parameters *) in; 
loop- ( & (p->start) , & (p->f inish) , p->A, p->B , p->C ) ; 
return in; 

> 
Programme 2.9: Calling function to call the FORTR4N subroutine loop- from a 
void* (void *) function friendly to pthread-create. 

Now all the parts are in place to have the main FORTRAN programme call the C 

wrapper function which, in turn, calls the FORTRAN loop subroutine in parallel via 

a calling function. The main programme calls the wrapper function in the same form 

already seen (Prog. 2.7). The threading is done as in Prog. 2.5 by loop-threads- but 

modified to use the calling function loop-caller (Prog. 2.9) to give Prog. 2.10. 

There is one little trick that we can use to make the coding of the wrapper function 

a bit easier. Recall that FORTRAN uses call by reference. That is, a pointer to a 

variable is passed to a subroutine instead of a copy of the variable. In our example, 

the addresses of the arrays A, B, and C are passed to the function loop-threads as 

pointers which are stored in integer pointers with the same names. The structure 

elements for these pointers, again of the same name, are then assigned the values of 

these pointers (i. e., they are assigned the memory addresses of the first element of the 

arrays). These structure elements are then used to call the FORTMN subroutine in 

which the memory addresses contained in p+A, p+B, and p->C are typed as integers 

and dimensioned as  arrays. 



void* loop-caller 0 ; 

void* loop-threads-(int *A, int *B, in t  +C) < 
int i; 
int N=lOO; 
Parameters p C41; 

/* declare the threads and the attributes */ 
pthread-t thread [4] ; 
pthread-attr-t attributes ; 

/* Set thread attributes */ 
pthread-attr-init (%attributes) ; 
pthread~attr~setscope(%attributes,PTHREAD~SCOPE~SYSTEM); 

/* set up the parameters to pass to each threaded function */ 
for(i=O;ic4;i++) ( 
p [il +start=i*N/4+1; 
p [i] ->finish= (i+l) *N/4; 
p [i] ->A=A ; 
p [i] ->B=B ; 
p [i] +C=C ; 

> 
/* start the threads */ 
for(i=O;iC4;i++) ( 
pthread-create ( &(threadCi] ) , %attributes, 

loop-caller, (void *) %(p Ci] ) ) ; 

/* collect the threads */ 
for (i=0 ; ic4; i++) ( 
pthread- join( thread [i] ,NULL) ; 

I 
> 
Programme 2.10: The C wrapper function to start the FORTR4N subroutine 
loop- which is called by loop-caller. 



Note that through all of this, the C wrapper function never itself uses the values of 

the pointers. It only uses the pointers as containers to store memory addresses which 

it then passes to the subroutine, loop-. It never knows, for example, that they are 

pointers to the first element of an array. The C wrapper function does not even really 

need to know that they are integers, since they become typed in the subroutine. 

For this reason, we could have just as have easily put the memory addresses into 

float pointers or even character pointers. However, the most generic pointer is a 

void pointer. So we could have written the declaration of loop-threads as void* 

loop-threads-(void *A, void *B, void *C). The same would hold true for any 

variable passed to loop-threads that was not needed in the function itself. Any 

variable passed to the C wrapper function which is not used in the wrapper function 

other than to pass to the FORTRAN subroutine may be stored in a void pointer 

(void *). This is handy to remember and use, since it means the programmer does 

not need to worry about keeping subroutine arguments type-safe while setting up 

threads. Of course, we would have to change the structure Parameters to reflect 

these changes, since the C compiler will wish to maintain types while in C code. Such 

a modified structure is given in Prog. 2.11. 
- -- 

typedef struct -Parameters{ 
int start,finish; 
void *A,*B,*C; 

3 Parameters; 
Programme 2.11: A modified structure to take advantage of the type ambiguity of 
FORTRAN subroutine calls. 

2.5 Dealing With Race Conditions 
Consider Prog. 2.12. If the subroutine loop was called in parallel, there would be 

a definite race condition concerning the variable sum. As each thread attempted to 

update sum, collisions would occur leaving sum missing some updates. Two methods to 

avoid a race condition in such a situation are available. One involves speciaI variables, 



mutex locks, which control access to the variable, sum. The other has the threading 

wrapper function do a bit of work to sum together the separate contributions of each 

thread. 

PROGRAM main 
INTEGER A(1OO) ,B (100) ,C(100) ,sum 

sum=o 
CALL loop(1,100,A,B,C,sum) 

END 

SUBROUTINE loop (start, f inish, A, B , C, sum) 
INTEGER start,finish,A(100),B(lOO),C(100~,sum 
DO i=start,finish 
C (i) =A (i) +B (i) 
sum=sum+C (1) 

ENDDO 
RETURN 
END 

Programme 2.12: A FORTRAN programme and subroutine that, if parallelised in 
the manner shown in Sec. 2-4 would lead to a race condition. 

2.5.1 Mutex locks 

Race conditions may be controlled by the use of special variables, mutex locks (MU- 

Tual EXclusion), which must be accessed prior to the variable for which a race con- 

dition may occur. 

A mutex lock is simply a C structure (pthread-mutex-t) which contains enough 

information to know when it  is in one of two states. These states are referred to  as 

locked and unlocked. 

The implementation of mutex locks is straightforward. For every variable for 

which there may exist a race condition, the programmer associates a lock. There is 



no 'physical' connexion between the variable and the lock. The connexion is usu- 

ally just in the naming. For example, the lock for the variable sum may be called 

sumnutex. There is no way to probe a variable to see if there is a lock associated 

with it. Diligent use of these locks everywhere in the thread where the race vari- 

able is found is the only association. The lock is set in the locked and unlocked 

states with the use of the functions pthreadnutexlock(pthreadslutex-t) and 

pthread~utex-unlock(pthreadnutex-t). Once a mutex variable has been locked 

by a thread, all other attempts to lock that variable by other threads will cause 

those threads to stall until the lock is released. One does not need to worry about 

other threads unlocking the mutex variable since they mould have had to lock it first, 

provided the programmer has implemented the locks in the intended fashion. 

Race conditions on locks are avoided through the library itself, or by hardware 

means in some cases (Sun Technical Support, priv. comm.) . 

In F O R T U N  77, use of mutex locks requires a special modification. Recall that 

FORTRAN expects an implicit trailing underscore on subroutines. -2 call from FOR- 

TRAN code to the pthreadmutex-lo ck (pthreadaut ex-t ) function, for example, 

will require an object of the name pthreadautex-lock- at  the linking stage. We 

must supply it with one, as is done in Prog. 2.13. -4 similar function may be written 

to deal with pthreadautex-unlock. It may be possible, and more elegant, to simply 

alias the pointer to the function to a new variable named the same but with the 

trailing underscore. 

#include Cpthread . h> 
void pthread-mutex-lock-(pthread-mutex-t *lock) -{ 
pthread-mutex-lock (lock) ; 

3 
Programme 2.13: A FORTRAN-compatible pthreadautex-lock function. 

Since it is simply a pointer that we need to pass to pthread-mutex-lock-, that 



FORTRAN does not support the data type pthreadautex-t is unimportant. The 

mutex variables are initialised in the C wrapper function and passed, by reference: 

to the FORTRAN subroutine in which the pointers can be assigned any data type. 

Only the address of each of the variables is passed to pthreadautex-lock-, which 

is all it needs. However, any attempt to assign a value to the mutex variable within 

the FORTRAN subroutine will surely lead to a memory violation. 

The full implementation of mutex locks in a threaded instantiation of Prog. 2.12 

is given by the FORTRAN code of Prog. 2.14 and the C code of Prog. 2.15 and 

Prog. 2.16. 

PROGRAM main 
INTEGER A (LOO) , B (100) , C (100) , sum 

sum=O 
CALL loop-threads (A, B , C , sum) 

END 

SUBROUTINE loop(start ,f inish,A,B ,C, sum, sum-mutex) 
INTEGER start,finish,A(100),B(1OO),C(100~,sum,sum~utex 
DO i=start,finish 
C (i) =A (1) +B (i) 
pthread~mutex~lock(sum_mutex) 
sum=sum+C (i) 
pthread-mut ex-unlock (smmut ex) 

ENDDO 
RETURN 
END 

Programme 2.14: The FORTMN code required for the implementation of mu- 
tex locks in the example given in Prog. 2.12. The C code for the wrapper func- 
tion loop-threads is given in Prog. 2.16 while the intermediate functions for calling 
pthreadautex-unlock and pthreadautex-unlock are given in Prog. 2.15. 



/* Functions to allow the lock and unlock functions */ 
* to be called from FORTRAN */ 
void pthread-mutex-lock-(pthread-mutex-t *lock) ( 
pthread,mutex,lock (lock) ; 

I void pthread-mutex-unlock- (pthread-mutex-t *lock) 1 
/ pthread-mutex-unlock (lock) ; 

/* The structure to be passed to the calling function */ 
typedef struct -Parameters( 
int start,finish; 

I void *A,*B,*C,*sum; 
pthread-mutex-t *sum-mutex; 
Parameters; 

/* The calling function */ 
void* loop-caller(void * in) ( 
/* cast 'inJ to be a Parameters structure */ 
Parameters *p = (Parameters *) in; 
loop, ( &(p->start) , &(p->f inish) , 

p->A, p->B, p->C, p->sum, 
p->sum,mutex 

return in; 
1 
Programme 2.15: The C code containing the auxiliary functions and definitions 
required for the implementation of rnutex locks in the example given in Prog. 2.12. 
The C code for the wrapper function is given in Prog. 2.16. 



void* loop-threads-(void *A ,  void *By void *C, void *sum) C 
int i, N=lOO; 
Parameters p C41; 

/* Declare the summation mutex variable */ 
pthread-rnutex-t sum-mutex; 

/* Declare the threads and the attributes */ 
pthread-t thread [4] ; 
pthread-attr-t attributes ; 

/* Initialise the mutex variable */ 
pthread-mutex-init (&sumummutex , NULt) ; 

/* Set thread attributes */ 
pthread-attr-init (&attributes) ; 

/* set up the parameters to pass to each threaded function */ 
for(i=O;i<4;i++) ( 
p [i] ->start = i*N/4+1; 
p [i] ->finish = (i+l) *N/4; 
p [il ->A = A; 
p [i] ->B = B; 
p Cil ->C = C; 
p Ci] ->sum = sum; 
p Cil ->sum-mutex = %sum-mut ex ; 

3 

/* start the threads */ 
for(i=O;i<4;i++) C 
pthread-create ( %(thread[i] ) , &attributes, 

loop-caller , (void *) %(p [ill ) ; 

/* collect the threads */ 
for(i=O;i<4;i++) ( 
pthread- j oin ( thread [i] , NULL) ; 

3 
t 
Programme 2.16: The C code for the wrapper function required for the implemen- 
tation of mutex locks in the example given in Prog. 2.12. The FORTRAN code which 
calls this function is given in Prog. 2.14. Auxilliary C functions and definitions are 
given in Prog. 2.15. 



The use of mutex locks is straightforward in its implementation. However it has 

a serious drawback in that it stalls threads which are waiting for a mutex variable to 

become free. This can become quite serious a penalty and largely negate the advan- 

tages of threads. This is particularly true of the example given, in which updating a 

race variable constitutes approximately half of the processing involved in the loop. 

2.5.2 Eliminating race conditions by eliminating the race 

An alternative to the use of rnutex locks and a more elegant approach is to avoid the 

race condition entirely. Updates of the sort in our example are easily modified to avoid 

the race condition without modification to either the main FORTRAN programme or 

the FORTRAN loop subroutine. This is accomplished by passing to each instantiation 

of the subroutine a unique address of a variable of the same type. After the threads 

are finished, the wrapper function can then sum up the contributions of each thread to 

the original value passed to the wrapper function. The only modifications required to 

our example programme are in the mapper function, loop-threads-, the parameter 

structure, Parameters, and the calling function loop-caller. Prog. 2.17 contains the 

necessary modifications. In the definition of Parameters, we see that the structure no 

longer contains a pointer to store the memory address of the variable sum but instead 

contains a float variable of the same name. This slight difference establishes the 

unique memory address of each thread's sum. Since we need to pass the address of 

this structure element (as it is no longer a pointer), the calling function, loop-caller 

must also be modified. The pointer was passed via p->sum. The memory address is 

instead passed via &(p->sum). Summation and addition to the original variable sum 

passed to the wrapper function is done after the threads have terminated and have 

been collected. 

Since there is no stalling in the execution of the threads while waiting for the 

locks to become free, the only execution penalty is within the wrapper function in 



/* The structure to be passed to the calling function */ 
typedef struct -Parameters{ 
int start ,finish; 
void *A,*B,*C; 
float sum; 

3 Parameters ; 

1 /* The calling function */ 
void* loop,caller(void * in) { 
/* cast 'in' to be a Parameters structure */ 
Parameters *p = (Parameters *) in; 
loop,( &(p->start) , &(p->f inish) , p->A, p->B, p->C, &(p->sum) ) ; 
return in; 

3 

void *loop,threads, (void *A, void *B ,void *C ,float *sum) E 
int i, N=lOO; 
Parameters p C41; 

/* Declare the threads and the attributes */ 
pthread-t thread C41 ; 
pthread-attr-t attributes; 

/* Set the thread attributes */ 
pthread-attr-init (&attributes) ; 
pthread,attr,setscope(&attributes,PTHREADDSCOPEESYSTEM); 

/* Set up the parameters to pass to each threaded function */ 
for (i=0 ; i<4; i++) C 
p [i] ->start = i*N/4+1; 
p [i] ->finish= (i+l) *N/4; 

= A; 
p pCil-'A Ci] ->B = 3; 
p Ci] ->C = C; 
pcil->sum = 0; /+ Initialise the summation variable */ 

1 
/* Start the threads */ 
for(i=O;i<4;i++) ( 
pthread-create ( &(thread[i] ) , &attributes, 

loop-caller, (void *) B(p Cil) ) ; 
1 
/* Collect the threads */ 
for(i=O;i<4;i++) ( 
pthread, join( threadcil ,NULL) ; 

> 
/* Sum up contributions */ 
for(i=O;i<4;i++) ( 
*sum += * (p CiJ .sum> ; 

1 
3 
Programme 2.17: This code illustrates the use of a local array in the wrapper 
function to remove a race condition. 



the summation of the contributions, *sum += * (p [i] . sum) ;. This penalty is on the 

order of the number of threads, which is much less than the time taken, and saved, 

within the threads. 

2.5.3 Avoiding race conditions by thread scheduling 

It can be the case that a potential race condition may be avoided by the judicial 

synchronisation of the threads. Consider the subroutine in Prog. 2.18. There exists 

the potential for a race condition if two threads representing a continuous span in i are 

initiated a t  the same time. However, if the threads are separated by a span in i of 21  or 

more, there is no chance of a race condition. In our previous examples: each thread 

spanned 25 loops of i. Hence, if the threads spanning i=l, 25 and i=51,75 were 

run together, no race condition could develop. Running these two threads together, 

collecting the threads, and then running the other pair would be the method to 

eliminate all race conditions without resorting to any extra computation, nor the use 

of mutex variables. Running threads in this fashion is an example of interlacing the 

threads. Prog. 2.19 gives a method to call the threads in an interlaced manner from 

within the wrapper function. It replaces the traditional thread creating loops seen 

pre\lously. 

SUBROUTINE loop(start,finish,A,B,C) 
INTEGER start ,f inish,~(100) ,B (100) ,C(100) 
DO i=start ,finish 
DO j=-10,iO 
IF(i+j.gt.l.and.i+j.lt.100) then 
C(i+j)=C(i+j)+A(i)+B(i) 

ENDIF 
ENDDO 

ENDDO 
RETURN 
END 

Programme 2.18: A subroutine for which race conditions may be avoided by inter- 
lacing the threads. 



-- - -  - 

void* loop-threads-(void *A, void *B, void *C) C 

/* start the threads in an interlaced manner */ 
for(offset=0;offset~=l;offset++)( 
for(i=O+offset;i<4;i+=2) ( 
pthread-create ( %(thread [i] ) , &attributes, loop-caller , 

(void *) %(p[ i l )  1; 
> 
/* collect the threads */ 
for(i=O+offset;i<4;i+=2) < 
pthread- jo in ( thread [il , NULL) ; 

3 
3 

3 
Programme 2.19: The code fragment of the wrapper function to call the threads 
in an interlaced manner. 

2.6 Applying Threads to HYDRA 

One may expect that a search for parallelisable loops is the first step in parallelising 

code. However, this may lead to time wasted spent on writing threading code for 

programme sections that are inconsequential to the total execution time. As well, it 

will inevitably overlook code that, with a bit of re-writing or clever threading, may 

become parallelisable. 

Parallelisation of simple loops is the approach used by compilers that support 

automatic parallelisation. The success of such automatic parallelisation varies greatly 

between source codes, and generally will decrease in effectiveness with increasing 

source complexity. For HYDRA, automatic parallelisation provides a negligible (< 1%) 

improvement in execution speed. 

The first step in the parallelisation of a code is the determination of those parts 

of the code in which the bulk of the time is spent. The use of a profiling tool, such as 

g p r o f ,  which provides the amount of time spent in each subroutine makes this task 



easier. Chart 2.5 shows the abbreviated call graph of HYDRA including profile data. 

EWDRA was run for the duration of a cosmological simulation with 2 x 323 particles. 

-4s such, it represents a 'typical' use of the code. The percentage of time spent in 

both the function itself and its children (descendants) is given as in Chart 2.4. The 

function ref f orce and its children, who calculate the forces and accelerations! clearly 

consume the bulk of the execution time. -4 more detailed call graph for refforce is 

given in Chart 2.6. 

Chart 2.4 Key for the HYDRA profile trees, Charts 2.5 and 2.6. 

parent subroutine 
% children I 

Chart 2.5 Top of the profile tree for HYDRA. See Chart 2.6 for a profile of reff  orce 
and its children. 

hydra 

updaterv +I 

force 
0.0 98.6 





HYDRA is an adaptive code. As a region increases in density, a refinement box is 

created around the region and the forces are calculated assuming the box is isolated 

from the larger box, except for the contribution of the global gravitational potential. 

In this refinement, gravitational forces may be calculated on a finer mesh than would 

be possible with the entire box. 

It sounds reasonable to perform the force calculations on these refinements in par- 

allel, one refinement per thread. This is a technique commonly used in the paralleli- 

sation of adaptive codes. However, this assumes that all subroutines are t hread-safe. 

FORTRAN subroutines are not implicitly thread safe; this is compiler dependent. 

Hence, a different approach will be taken in which individual chunks, easy to make 

thread safe, will be parallelised. 

2.6.1 shgravsph 

The bulk of the processing time is spent within the subroutine shgravsph. Here, 

the short-range particle-particle gravity forces are calculated, as well as the SPH 

(hydrodynamic) forces. It consumes 71.1% of the processing time in the test run. 

Clearly, this is the bottleneck and the place to start. 

Briefly, shgravsph takes as input a list containing the particles in each of the grid 

boxes. Each particle in a box can feel forces from every other particle in the box, 

and in every other particle in the surrounding boxes. It can also exert forces on these 

other particles. The subroutine loops over the particles in a box, and for each of these 

particles, loops over the particle in the box and surrounding boxes, accumulating and 

contributing forces. The natural loop to parallelise is the loop over each box, or at 

least the loop over each slab of boxes in, say, the Z direction. 

Since there is overlap between boxes, adjacent boxes should not be processed 

in separate threads a t  the same time. Interlacing of the threads in the form seen in 



Sec. 2.5.3 is required. This is done by having the even number grid slabs (enumerated 

by ibz) executed in one set of threads followed by the set of odd number grid slabs. 

Protection of some diagnostic variables which are summed through all the boxes is 

also required. For this, intermediate summations are performed, akin to the method 

given in Sec. 2.5.2. 

2.6.2 mesh 

The subroutine mesh, called from ref f orce, constitutes the second most significant 

bottleneck. The subroutine calculates the gravitational forces on the particles esti- 

mated from their interpolation on to a grid (not the same grid seen in shgravsph). 

The first step in the procedure is the assignment of the particle masses to the grid, 

or mesh, to form a density field. This is performed by a subroutine extracted from 

the original mesh. F named rneshd3. After this: the density field is convolved with 

the Green's function for the gravitational potential using a call to the routine cnvl to 

produce a gravitational potential mesh. Finally, the forces due to the potential mesh 

are calculated for each particle with each particle's acceleration updated accordingly. 

This final step occurs in the subroutine mesh2 orce, again extracted from the original 

mesh.F file. 

Clearly, there is no simple loop to parallelise. Each of these sections must be 

examined and parallelised individually. 

For the first section, mesh-d3, the approach to parallelisation is straightforward. 

The loop over the N particles is broken up into threads each containing N/Nthreods 

particles. There is a major caveat, however. If separate threads contain objects near 

the same mesh node, there exists a potential for a race condition. Since there is po- 

tentially little correlation between particle positions and particle number, interlacing 

will not help remove this race condition. The use of separate density meshes for each 



thread would be expensive memory-wise and the final summation would be CPU in- 

tensive. Locks would be required for each node, if they were to be used. There would 

also be a significant amount of overhead in locking and unlocking 8 times for each 

particle, irrespective of collisions. For this reason, the race condition is allowed to 

proceed. Tests indicate that this race condition leads to a small, but non-negligible 

error of approximately 1 x The option exists at  compile time to choose not 

to parallelise this section. 

The convolution section, cnvl is not directly parallelisable. The bulk of its ex- 

ecution time is spent in four3rn doing three dimensional Fourier transforms. This 

subroutine is pa.rallelisable. It must be done in two sets of threads. Each of these 

loop over layers of the mesh without any complication. 

The final section, the calculation of the gravitational forces at the mesh nodes 

and their interpolation to each particle'is a two step process. Both are parallelisable, 

however the bulk of the time is taken during interpolation. This loop was parallelised 

relatively easily by breaking up the loop over all particles into separate threads for 

subsets of the particles. 

2.6.3 imesh 

This subroutine provides the same function as mesh, seen above, but performs the task 

assuming non-periodic boundary conditions. It is used during refinements to calculate 

the largescale gravitational forces within the refinement box. Hence, it operates on a 

small fraction of the total number of particles. Because of this, the loops seen in mesh 

over the total number of particles are not nearly as signscant to the total execution 

time. What remains significant is the time spent in the convolution. This is set by 

the mesh resolution which generally remains constant relative to the box size. That 

is, the number of nodes in the mesh is fairly constant. 



The subroutine i cnv l t  performs the convolution for the isolated mesh. It can 

be broken into three separate parallelisable loops. All three loop over mesh layers. 

All are standard in their implementation. The second loop requires the creation of 

a preliminary data table which is normally calculated iteratively within the loops. 

There is minimal overhead in this operation. 

2.6.4 p l r e f  

Called from r e f i n e ,  p l re f  controls the placement of the refinements. The refinements 

are calculated in four passes, of which two are easily parallelisable. Fortunately, this 

pair consumes the most processing time. 

Because p l r e f  calls further subroutines and functions, care was taken to ensure 

that these other codes were thread-safe. 

2.6.5 updaterv 

The updating of each particle's position and velocity are performed by the subroutine 

updaterv. HYDRA uses a Predictor-Evaluation-Corrector (PEC) update algorithm. 

For this reason, the particle attributes are updated twice in this routine. Updating 

values requires a trivial loop over all the particles. It is equally trivial to parallelise. 

Despite the knowledge that they do not consume a great deal of CPU time: these two 

loops were threaded owing to the simplicity of the operation. 

One of the particle attributes updated in the second loop is the thermal energy. 

This requires a call to the cooling function which calls other subroutines. These 

functions have not been yet made thread-safe, so a mutex variable was used to lock 

this function so that only one thread can access the function at  a time. -4 lock was 

also used to protect the seldom-called function l o s tp  which is invoked when a particle 

in an isolated toplevel box (not to be confused with an isolated refinement) spills out 

of the box boundary. 



2.7 Performance 
The effectiveness of the parallelisation described previously can be measured by the 

apparent fraction of the code running in parallel, fp. This can be calculated using 

the time required by a code running in serial, t,, the time required to run the same 

code by a parallelised version of the code, t,, and the number of CPUs, JV. The time 

t, relates to t, by 

where f3 is the unavoidable fraction of the code that does not run in parallel. Since 

f p  + f s  = 1, 

from which it falls that, 

1 - 5  

Through a cosmological simulation, this value changes as the bulk of the processing 

shifts among the subroutines. Table 2.1 demonstrates the changes to fp as a simu- 

lation evolves from a uniform distribution of particles a t  a x 0 to a highly clustered 

state with many refinements at a = 1. Clearly, as the number of refinements increases, 

the effectiveness of the modifications to the code described here decreases. The shift 

in weight among the various subroutines changes as outlined in Fig. 2.1. This figure 

verifies the shift from subroutines that have been parallelised to those that have not. 

However, it does not explain the extent of the drop in performance. The remain- 

ing performance drop is attributable to inefficient balancing of the load among the 

threads. This is a problem for shgravsph in which the particles sent to threads are 

grouped by position among a series of slabs. Under the extreme clustering exhibited 



Measured Corrected 

Table 2.1: The performance of the parallelised code as it changes with the cosmo- 
logical expansion factor for the simulation, a. The execution times of the code (in 
seconds) when run with parallelisations (t,) and without (t,) are corrected for over- 
head in the tests due to data loading (t,). The times are for 10 time steps of a 
cosmological simulation with 2 x 643 particles. The effective fraction of the code run- 
ning in parallel, f, is given as a percentage of the code. This can be compared with 
the number of refinements per time step, nre/inements. 

in the latter stages of the simulation, this leads t o  an imbalance in the number of 

particles dealt each thread. 

The performance of the enhancements decreases with the size of the simulation 

(Table 2.2). This is contrary to the Modified .4mdah17s Law. This states that the 

performance gain from parallelisation is greater than or equal to  that which Am- 

dahl's Law would imply since parailelisation usually permits larger problems to be 

run which, in general, shifts more of the processing to those parts of the code which 

are parallelised. In the case of cosmological simulations with this version of HYDRA, 

a larger problem means higher resolution and, consequently, more refinements. It is 

the unparallelisability (in the present form), of the refinement list creation that is 

again the bottleneck. 

2.8 Port ability 
The use of the pthreads library promises good portability. However, FORTRAN 

itself may be the limiting factor. Since many FORTRAN libraries are created without 



CPU usage at aPO.0 
CPU usage at a=I .O 

Figure 2.1: The dominant subroutines at early and late times. Each plot shows the 
fkaction of CPU time consumed by the dominant subroutines. The left-hand plot is for 
early times (a = 0) and the right-hand plot corresponds to the end of the simulation 
time (a = 1). Segments of the code which are not parallelised are separated from the 
chart. 

Table 2.2: The scaling of the parallelised code. Given is the effective fiaction paral- 
lelised, f,, for simulations with 643 and 323 gas particles a t  different points in the evo- 
lution, denoted by the expansion factor, a. These tests were run on a dual-processor 
i686 Linux box The factors were not corrected for i/o overhead. 



parallelisation in mind, the libraries themselves may not be thread-safe. Limited 

testing of the portability of this code beyond a Solaris environment was done (Linux 

and DEC boxes). In one instance (a dual-processor i686 running Lin~u)  the code 

compiled and ran without any modification. In the case of the DEC box, results 

were not so satisfying. It is essential that a thread-safe FORTFUN library be used. 

Even the label, thread-safe, can be misleading as it was found that the mod function 

of one older "thread-safe" library was found to be corruptible. Debugging threaded 

code is not always easy, so these are serious concerns. However, thread-safe libraries 

are becoming increasing prevalent, often, as in the case of Solaris; to be used with 

propriety threading libraries. 



Chapter 3 

SPH ALGORITHM TESTS 

As part of a series of tests of the N-body hydrodynamical method, smoothed 

particle hydrodynamics (SPH), the cooling behaviour near cold dense clumps and 

the drag these clumps encounter in hot halos were examined. This series of tests 

explored a selection of situations relevant to cosmological simulations and known 

to cause SPH problems (Thacker et al. 1998). The tests were performed using a 

variety of implementations of SPH. Here, a brief description of the implementations 

will be given, followed by an examination of the difficulties encountered by the SPH 

algorithm in the presence of steep density gradients. Finally, results for the cooling 

and drag tests will be presented for the various impkmentations. 

3.0.1 Smoothed Particle Hydrodynamics 

The particle method for modelling fluid flow introduced simultaneously by Gingold 

and Monaghan (1977) and Lucy (1977) is well suited for use in N-body simulation 

codes which model the evolution of the mass distribution using Lagrangian particles. 

In essence, a property at any position is calculated to be the average of that property 

of the surrounding particles. The average is weighted with distance by a kernel that 

is a smoothly varying function of distance. Hence the technique is Labelled 'smoothed 



particle hydrodynamics7. 

The average of any scalar quantity, A(r) , is given simply as 

(A@)) = 1 d I! A(rt)TV(r - rr: h) ,  

where W(r, h) is the kernel function and h is the smoothing length. The kernel func- 

tion is generally, but not necessarily, spherically sjmmetric. As well, it is normalised 

such that 

The smoothing length, h, is generally related to the kernel in that W is compact over 

(goes to zero beyond) 2h. Hence, W = W(x) ,  with x = I r l/h and 0 5 x 5 2. For a 

discrete system of particles, this average becomes 

where nj is the number density around the jth particle. The number density is often 

seen replaced with p j / m j  where mj and pj are the mass and mass density, respectively. 

The number density for each particle, ni, can be calculated similarly as 

This is derived from the discrete form of the normalisation equation, Eq. 3.2. 

In practice, the number density is the only quantity that need be found by the 

SPH summation; mass is invariant while temperature and velocity are set by balancing 

the force and energy equations. The pressure of a gas particle is simply a function 

of density and temperature. However, the gradient of the pressure field is required 

to calculate the hydrodynamic forces. The advantage of the SPH formalism is that 



the gradient of the scalar field can be calculated, according to Monte Carlo theory, 

by simply using the gradient of the kernel function in the manner, 

Clearly it is required that VW(ri - rj ,  h )  = -VW(rj  - ri, h). 

In this formalism, the smoothing length, h, has been taken to be a constant. 

However, in cosmological simulations in which there is a great deal of clustering, this 

would be inappropriate since it would establish a minimum resolution far larger than 

the resolution permitted by the increased number density in the dense regions. The 

smoothing length should decrease as local number density increases to maintain an 

appropriate spatial resolution. For h to  scale the resolution with the number density, 

hi can be taken to be a distance which encompasses some number of neighbouring 

particles, hPH. Indeed, the SPR approximation to hydrodynamics converges to the 

exact solution as N + w and NspX + m, albeit at a slower rate (Lombardi, Sills: 

and Shapiro 1998). 

This modification leads to the question of which particle's smoothing length should 

be used in the SPH summations. There are two interpretations of SPH: the 'gather' 

and the 'scatter'. In the 'gather' interpretation, a local estimate of a property is 

made using that value of the local particles sampled out to some fixed distance and 

weighted by their distance from the location relative to the fixed distance. Hence, 

the smoothing length in the summation would be hi- In the 'scatter' interpretation, 

the estimate is made using the sum of the contributions to that position from all the 

particles for which their smoothing length extends to encompass the position. Hence, 

hj would be used. In practice, neither interpretation is accepted. The appropriate 

smoothing length is, instead, some function of the individual h's, i. e., hij = f (hi, hj)  

such that hij is in the range of hi to hj. This is referred to as the averaging of h since 



the function is generally some averaging technique. This average can be arithmetic, 

harmonic, geometric, or some other form. It need not be symmetric in the general 

case (for example, to calculate densities), but if it is to be used in the calculation of 

force, it must be. As another option, it is the kernels that are averaged, such that 

W(ri - rj, h) is replaced with (W(Q - r j ,  hi) + W ( 9  - r j ,  h j ) )  12 -  

The kernel itself is generally Gaussian in form but goes to zero, as mentioned, 

beyond a distance of 2h. The details of the kernel used here can be found in Thomas 

and Couchman (1992). 

The contributed force, F ,  from hydrodynamics to the acceleration on each particle 

comes from the pressure gradient, VP,  via 

where m and p are the gas particle mass and density, respectively. This form implies 

that we can use Eq. 3.5. However, since V(A)i is not necessarily equal to V(A) j  in 

Eq.  3.5, the force calculation may not be symmetric, which is, of course, unphysical. It 

is necessary to find an SPH approximation of the hydrodynamical force contribution 

such that Fi, = -Fji where Fij is the force felt by particle i due to particle j. Two 

methods are described here which both use the identity 

Using this and Eq. 3.5, Eq. 3.6 expands into, 



This is not yet symmetric since VW(ri -r j ,  hj) # -VW(rj - q, hi) if hi # hj. For 

a spatially varying smoothing length, Monaghan (1992) suggests taking the gradient 

of some average of the kernels calculated going both ways, giving, 

The 'average' kernel, wij, can use the kernel averaging scheme seen above or some 

average of the smoothing Lengths for hij- That is, 

- 
or Wij = V W (ri - rj ,  hij) where hij is an average of the smoothing lengths seen 

previously. This approach is used in Steinmetz and Miiller (1993) (hereafter, SM93). 

A method particularly efficient in its use of memory is used by Thomas and 

Couchman (1992) (hereafter, TC92) . They suggest assuming that V W (ri - rj7 hj) 

-VW(rj - 4, hi) which is however not correct to  order Vh. This gives 

which is the form implemented in the production version of HYDIU. 

Early on, it was realised that a viscosity force term would be necessary to damp 

the flow of gas (see, for example, Lucy (1977)). This is entirely to be expected; the 

gas is represented by simulation particles of macroscopic size, while viscosity is due 

to turbulence on dl scales, including microscopic. The adopted forms of the viscosity 

terms are essentially ad hoc with empirical tweaking. They are all designed to cover 

bulk viscosity and shock front dissipation (Monaghan 1992) as well as shear in some 

cases. The production version of HYDRA, as outlined in TC92, utilises an additional 



term, Puisc, to each particle's pressure term which is activated in the presence of 

convergent flow, 

where ci is the speed of sound, a and p are empirically derived coefficients with values 

of 1 and 2 respectively. 

TO create an artificial viscosity, Monaghan (1992) suggests an extra term, nij, in 

the force equation (Eq. 3.6) which uses a per-particle convergence trigger. It gives for 

this term, 

where 

The (0.1(h)ij)2 term in the denominator of p*j prevents division by zero while remain- 

ing small enough at all number densities to not smooth the viscosity over too many 

particles. Here, (A) i j  is simply the arithmetic average of Ai and -Ajj. 

These forms, particularly the -Monaghan form, damp shear flows. This is not 

always wanted. For example, in disc formation this leads to a transfer of angular 

momentum and a damping of the rotation of the cloud. In shear flows, V v = 0 and 

IV x v I > 0, whereas V - v < 0 and IV x v I = 0 in purely compressional flow. Hence, 

V x v can be used as the 'trigger' in a shear-correction factor to the viscosity term 

so that nij + I I i j ( f ) i i  which was first suggested in Balsara (1995). Steinmetz (1996) 

gives for the factor, 



Version Artificial Viscosity symmetrisat ion 
I TC92 TC92 
2 TC92+shear correction TC92 
3 local TC92 TC92 
4 Monaghan arithmetic hij 
5 Monaghan harmonic hij 
6 Monaghan kernel averaging 
7 Monaghan+shear correction arithmetic hij 
8 Monaghan+shear correction harmonic hij 
9 Monaghan+shear correction kernel averaging 
10 Monaghan TC92 
11 Monaghan ( p ) i j  TC92 
12 Monaghan (p) i j  TC92 + kernel av 

Table 3.1: Summaxy of the implementations examined. The terms are discussed in 
the text. Adapted from Thacker et al. (1998). 

again with a term in the denominator to remove the possibility of a singularity. 

3.0.2 The test implementations of SPH 

Two aspects of the implementation of SPR are varied in these tests: the method of 

symmetrising the force contribution due to the pressure gradient, and the form of 

the artificial viscosity. There are twelve versions of the code, each with a separate 

combination of variations (Table 3.1). Again, details of the coding can be found in 

Thacker et al. (1998) and it was Thacker who coded the implementations. 

The symmetrisation methods tested were either those of TC92 or SM93. In one 

implementation, the TC92 symmetrisation is augmented by kernel averaging. This 

is similar to the symmetrisation of SM.93, but the neighbour search is different. For 

SM93 symmetrisation, there are three variations of the symmetrisation of the ker- 

nel gradient: either arithmetic averaging of h, harmonic averaging of h! or kernel 

averaging. 

The artificial viscosity term was varied in the tests between the V v version of 



TC92 and the vij - rij version of Monaghan. For each, there are implementations 

which include the shear-correction factor. One variant of the V v viscosity was also 

used which traded lower shot noise for higher resolution by calculating B v over 

fewer particles. The v i j  - rij version also had one variant which calculated (pjij in 

Eq. 3.13 by estimating it from pi(l + (hi/hj)3)/2. In this case, the shear-correction 

term was not an average of the factors fi and fj; only fi was used. This trades 

increased accuracy for computational efficiency. 

3.1 SPH Near Steep Density Gradients 
It is known that the SPH estimation of the density for a particle fails near a steep 

density gradient. The density is essentially determined by finding the radius of a 

sphere that encompasses some given number of particles, iVSPH7 which is typically 

20-30. That the particle contributions are weighted by a smoothly-varying kernel 

function is a second-order correction to the estimate. Crudely, in the presence of 

a vasying density gradient, contributions from particles in the higher-density region 

exceed those from the lower-density region, leading to an over-estimate of the local 

density. Non-spherically symmetric kernels alleviate this problem, but are compu- 

tationally expensive both in memory resources and CPU time. In this section, this 

phenomenon will be explored in more detail with the aim to predict those gradients 

that suffer this effect most strongly. 

3.1.1 The density estimate in a medium with no gradient 

In the presence of no density gradient, the density estimate should be without er- 

ror. However, this will be true if and only if every particle 'sees' a uniform density. 

Whether this is true is dependant on the distribution of particles. We will look at 

three density distributions: uniform (regularly spaced), glass, and Poisson. The glass 

distribution was kindly provided by R. Thacker. 

In the SPH formalism, the density at any point can be calculated by the surnma- 



tion of the kernel-weighted contributions of local particles. In practice, the point in 

space for which the density is required is the position of a particle. There are two 

consequences of this. The densities calculated are essentially mass weighted and, as 

such, if there is any degree of clumping then the mean of all the densities calculated 

will be greater than the volume-weighted density (total mass / total volume). The 

second consequence is the presence of a base self-density in every density calculation. 

This base self-density is simply the contribution to the density of a particle at a radius 

of zero from the position. This consequence is intimately related to the first in that it 

implies, again, that the mean of the densities calculated will always be greater than 

the volume-weighted density since there is always a particle very near (in this case: 

at) the position at which the density is being calculated. 

In normal uses of SPH, these aspects of the SPH density calculation are not 

unwanted artifacts. Indeed, the densities required for the force calcu1ations are the 

densities at the particle positions. They do lead to a problem here, however, where 

a comparison of the mean of the densities calculated to the actual mean density 

is required. Of particular interest is the behaviour of the SPH density calculation 

in a Poisson distribution of particles, which is the easiest non-regular distribution 

to create. For density gradients, it is difficult to use regular distributions without 

creating preferred directions beyond the direction of the density gradient. That is, 

the crystalline lattice structure can create unwanted effects. Glasses (distributions of 

particles akin to the distribution of atoms in glass) are difficult to produce since they 

require evolutionary relaxation through an N-body code. In this section we will see 

that this relaxation would need to be done for every different density slice, as well, 

to prevent regular patterns dominating at high densities. That is, we can not simply 

tile one distribution. 

The two point correlation functions for the distributions are plotted in Fig. 3.1. 



Figure 3.1: The two point correlation function for the constant-density distributions. 
The two point correlation hnction, &(r) is plotted for the Poisson (red), uniform 
(green), and glass distributions (blue). These distributions are for volumes with 323 
particles. The distances corresponding to 1/32 and 2/32 are marked. 

This function essentidy plots the excess probability of finding a paxticle at the dis- 

tance r from any given particle cornpaced with a constant density distribution. For 

a Poisson distribution, there is no correlation, which is vedied by the nil excess 

probability at all distances, allowing for scatter horn low-number statistics a t  close 

distances. For the uniform distribution laid out on a mesh, there are peaks represent- 

ing the distances to the mesh nodes. There can be no particles within 1/32 for this 

mesh with 323 nodes. For this reason, there is complete anti-correlation at distances 

less than 1/32. The anti-correlation of the glass distribution at distances less than this 

is also evident, a by-product of the system adopting an amorphous pseud*crystalline 

configuration during the relaxation. 

The effect of the self-density contribution to the estimate of the volume-weighted 

density is illustrated in Fig. 3.2. Clearly demonstrated is the convergence as NspH 

increases, independent of either the presence of the self-density term or the form of 

the distribution. For the glass and uniform distributions, the densities converge from 



either below (under-estimation of the density) or above (over-estimation) , dependant 

on the presence of the self-density term. In contrast, for the Poisson distribution the 

density estimate converges immediately, albeit with large scatter, in the absence of 

the self-density term. In the presence of this term, it converges slowly, always over- 

estimating the density. The absence of correlation at  all scales, as see in Fig. 3.1, 

explains this behaviour as a manifestation of the first of the two consequences of the 

self-term term described above. Though there is no correlation between particles, 

there is still clumping, as when two particles are (randomly) near each other. So it 

should be expected that there would be an over-estimation of the density. In the 

absence of the self-density term, the density summation over particles becomes one of 

summation about a randomly chosen point in space. In the SPH formalism, then, this 

should calculate the volume-weighted density. In the other two distributions, their 

anti-correlation a t  small distances implies that exclusion of the self-density term in 

the summation equates to preferentially sampling voids, which leads to the under- 

estimate of the mean density. 

The same analysis can be done for an SPH calculation of the density that fixes the 

kernel radius, h, instead of the summation number, hPH. This reveals that the mean 

density calculated for the Poisson distribution, without using the self-density term, is 

indistinguishable from that of the glass distribution calculated with the self-density 

term (Fig. 3.3). It is the calculation with the self-density term that consistently 

produces the correct value for the mean density of the glass distribution. 

Since the following analysis compares the mean of the calculated densities with 

the volume-averaged density in a series of slices with Poisson distributions, we will 

be using an SPH summation without the self-density. 

3.1.2 The density estimate in a medium with a gradient 

For any spherically symmetric weighting kernel, the SPH estimate of the density for a 
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Figure 3.2: The error in the SPH density estimate us. NspW for a constant density 
volume. Shown are the mean densities (with errors) over all particles when the value 
for NsPH is k e d .  Density was calculated both including the self-density (asterisk) 
and without (open circles). The densities calculated in the Poisson distribution are 
given in red, while those calculated in the uniform and glass distributions are given in 
green and blue, respectively. The data for the uniform and glass distributions overlap 
for NsPH = 32 and 64. 
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Figure 3.3: The error in the SPH density estimate us. h for a constant density 
volume. Shown are the mean densities (with errors) over all particles when the value 
for h is varied. Density was calculated both including the self-density (asterisk) and 
without (open circles). The densities calculated in the Poisson distribution are given 
in red, while those calculated in the uniform and glass distributions are given in green 
and blue, respectively. The data for the uniform and glass distributions overlap for 
h = 0.04 and 0.08. At the top, the mean values of NspR are given. 



particle in a constant density gradient will produce no error. This requires: of course; 

that the gradient be constant over the span of x - 2h < x < z + 2 h  which implies 

that the gradient is resolved by the particle density. 

The toy model that will aid us in our exploration will be a volume with an in- 

creasing density gradient in one direction. Specifically, the density will behave as 

p cc I-'. This is a similar form to the density profiles found in cosmological objects. 

An iso-density surface for these objects, though spherical in morphology, is locally 

flat. Hence this toy model is relevant to the density gradients found in cosmological 

objects. 

The models were constructed from 100 slices, each with the same number of 

particles but with widths, Wi7 such that FWi-l = Wi = l/FWi+l where F 2 1 

and is set here to 1.1 or 1.5. The particles were distributed randomly. 

In our tests, the mass per particle is unity, giving a number density, n, equivalent 

to the mass density, p. 

Error in the density estimate arises from both statistical variance as well as the 

systematic error due to the density gradient. The former error is reduced by using 

more particles in the estimate of the density. The latter is reduced by kernel averaging 

over a smaller region, and hence using fewer particles. The regime of dominance of 

these effects is illustrated in Fig. 3.4. Near the density cusp on the right, where 

gradients are higher, the density estimate which kernel averages over fewer particles 

(smaller value of NSPR) displays large variance, but no systematic over-estimation 

of the density. In comparison, the estimates using the larger number of particles 

systematically over-estimate the density by a factor of 10 to  20%. Further away fiom 

the cusp, indeed over the bulk of the range, the larger values of NspH allow density 

estimates with smaller amounts of statistical variance and no systematic bias. 
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Figure 3.4: The error in the SPH density estimate as it varies with NSPR- Shown 
are the errors in the density estimate for sets of data as they vary with distance from 
the density cusp. The highest density gradients x e  found near the density cusp. The 
sets of data correspond to differing values of NSPR, the number of particles used for 
the local estimate of density. 

Increasing the number density of particles increases the resolution of the simula- 

tion. This permits steeper gradients to be resolved. For the p a z-L profile of our 

tests, this behaviour is qualitatively verified in Fig. 3.5. 

More useful is a parametrisation of the density gradient that is independent of the 

local number density of particles. Consider the parametrisation based on the change 

of the density over the smoothing distance, 2h, given by p(s - h) /p (x  + h). As seen 

in Fig. 3.6, this parametrisation indicates that SPH fails (at the 20% level) when the 

density across a smoothing length varies by more than a factor, F,, or 3-4 times, for 

the p cc x-I profile used here. 

An estimate of the radial distance from the centre of a dense clump at which SPH 

wil l  begin to calculate erroneous density values can be made using F,. This factor, 
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Figure 3.5: The error in the SPH density estimate as it varies with the number of 
particles per slice. Shown are the errors in the density estimate for sets of data as 
they vary with the gradient. The sets of data correspond to different numbers of 
particles per slice which are given in the legend. 

Figure 3.6: The error in the SPH density estimate vs. the density ratio over 2h. 
Shown are the errors for sets of data with Merent slice density factors, F. On the 
left, F = 1.1 while F = 1.5 on the right. The abscissa gives the ratio of the actual 
gas density a distance h into the higher density regime to the density a distance h 
into the lower density regime. These distances, h, are not the same for the different 
curves but rather decrease with an increasing number of particles per slice (given in 
the legend). 



F: can be defined as 

where n is the number density of particles, or plm. The critical radius, r,; below 

which the density estimates will be in error is reIated as 

The estimate n(r + br) x n(r)  + 6 r g  gives 

If the density profile is assumed to take the form, n(r)  = then d n / d r  = 

leading to  

Using the relation between h, hPH, and n, 

and Eq. 3.17, the value for rc can be derived, 

In these studies, ilrsPH = 32 and, as seen, Fc = 3, giving the approximate equation, 

This allows the derivation of an approximate minimum radius for a given cluster with 

a compression factor (c .  f. overdensity) of 6, at the critical radius, r,. The compression 



factor is defined as the density at  the critical radius compared with the mean density 

in the volume. That is, 

where the notation (A)v refers to the volume-weighted mean of the parameter A. 

Since (n)v = Res3, where Res is the number of nodes per side in the initial density 

distribution (ie., N,, = Res3), 

Recall that n(r)  = nor-, implying no = dcRes3r: giving, 

For the maximum overdensity observed, & = lo6, rc = 40 kpc for simulations with 

643 particles. For 6, = lo3, this increases to rc = 400 kpc. Clearly, rc is enclosing a 

constant number of particles. This minimum number of particle, 1Kin = $ a ~ P 6 ~ R e s ~ ,  

when r, from Eq. 3.25 is substituted, gives, 

This number is the minimum number of gas particles, within r,, required to properly 

resolve the density gradient given by a. For ol = 2, the required number is 250 but 

this number is sensitive to cr and drops to 100 for a! = 1.5 

These numbers, rc and N&, are ' useful for determining minimum smoothing 

lengths (via the minimum softening length in HYDRA) during the simulation and the 

minimum cluster size to be used in the analysis. 



3.2 Cooling Near Steep Density Gradients 
Large density gradients occur in the gas in cosmological simulations as a result of ra- 

diative cooling which leads to cold dense knots of gas within hot haloes. Investigations 

performed with the current HYDRA code have illuminated a disturbing 'supercooling' 

phenomenon associated with these knots of gas that produces an unphysical, dense, 

gaseous object. 

Essentially, this phenomenon is a manifestation of SPH's inability to model ar- 

bitrarily steep density gradients. The density gradient between a cold clump of gas 

and the hot halo should, physically, be sufficient to keep the media from interacting 

with each other. The hot gas should cool according to the temperature and density 

of the hot gas. Only once it is cooled by this slower method should it interact with 

and accrete onto, the cold clump. However, as seen in Sec. 3.1, the density of the hot, 

low density gas is over-estimated in the presence of a dense clump of cold gas. This 

leads to a reduced cooling time (tmd a T ' / * / ~ )  for the hot gas which in turn leads 

to an accelerated accretion rate onto the cold clump and a steeper density gradient. 

The dense cold clump is prevented from further collapse by random motions within 

the resolution-determining gravitational softening length. 

This effect is termed overeoolzng. It should not be confused with the overcooling 

problem (or 'cooling catastrophe') in simulations of galaxy formation. 

In this section, toy models will be used to examine the cooling rates of the hot 

gas in a hot-halo-cold-clump system evolved under the variety of implementations of 

SPH described earlier. First, the halo-clump model system will be described. Then 

the overcooling phenomenon will be described in more detail with the use of variants 

of this toy model. An estimate of the variation in cooling rates due simply to initial 

particle positions is made. Findly, the results of the different implementations will 

be presented. 



Cluster 5 ~ o ~ ~ M ~  5 x 
20 9 

Table 3.2: Cluster parameters. Rdump is the radius of the cold clump, E is the 
gravitational softening length and m,,, and md,,k are the mass of a gas and dark- 
matter particle respectively. 

Cold clump Halo gas Halo dark-matter 

Table 3.3: Cluster parameters in common. N is the number particles, T the temper- 
ature range and p/p, the ratio of the density to the critical density. 

3.2.1 Description of the halo-clump systems 

To examine this phenomenon, core-halo systems were created, each consisting of 

a cold clump of gas surrounded by a hot-gas halo both embedded in a dark-matter 

halo. The dark-matter and hot-gas system was extracted directly from a cosmological 

simulation. The cold clump was created by randomly placing particles inside a sphere 

of size equal to the gravitational softening length and allowing this system to evolve 

to a relaxed state. The cold clump was then placed in the hot-gas and dark-matter 

system. Two core-halo systems - designed to resemble galaxy clusters - were created 

to test the effect of mass and linear scale dependence, with total masses 5 x 1014 Mo 

and 5 x 1015 MQ. The parameters of the systems are listed in Tables 3.2 and 3.3. 

Because the time-step criterion used in all of these versions makes no reference to 

the rate of change of the temperature nor to density changes (Thomas and Couchman 

1992), it is possible that hot halo particles may not cool correctly as they accrete on 



to the cold clump. An in-falling particle approaching the central cold clump is heated 

by the conversion of potential energy into thermal energy. If it cools rapidly enough 

it can accrete onto the central clump, but if the time step is too long it may receive 

too large a temperature jump and become spuriously hot. Hence, the normalisation 

factor, K ,  for the time step affects the accretion rate appreciably. This factor, K ,  

simply scales the 'suggested' time step to the 'adopted' time step via dt = 6dtc 

where dtc is set by the Courant conditions. From a series of tests it was determined 

that, for K. > 0.5, the shorter the time step, the greater the accretion rate, and the 

greater the total amount of accretion- There is convergence for K 5 0.5 so we adopt 

a value of K = 0.5 for these cooling tests. 

3.2.2 Testing the overcooling phenomenon 

The nature of this overcooling problem is revealed by a series of tests involving a dense 

gravitational source in the centre of a halo of hot gas. These clumphalo systems are 

described in more detail below. In the first case, the dense knot onto which the hot 

gas will cool is a clump of cold gas. In the second test, the cold clump is replaced 

with collisionless matter and the hot gas is allowed to cool to form its own cold and 

dense knot. For the find test, all cold matter is turned into collisionless matter after 

it cools below a certain threshold (2 x lo4 K). These tests are denoted as 'standard', 

'collisionless' and 'conversion', respectively. If the hot gas did not interact with cold 

gas then these tests would all give the same result. The number of particles cooled 

over time for these three tests for the 5 x 1014 MQ cluster is shown in Fig. 3.7. 

The behaviour at early times (C 2 x 109yrs) is dominated by a sudden rise in the 

number of cold particles. This is due to the system equilibrating as the hot gas falls 

toward the high central density, increasing its density and cooling rate. The standard 

test clearly shows the fastest increase in cooling, thus displaying the overcooling 

phenomenon. The collisionless test shows a decreased rate of cooling until a sufficient 
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Figure 3.7: The number of cooled particles in the three experiments as a function of 
time. If the hot gas did not interact hydrodynamically with the cold dense clump in 
the simulations, these lines would overlap. 

number of gas particles (approximately 30) have accreted in the central region to 

start the overcooling process. The cooling rate then 'catches up' to the standard case 

at which time both have depleted the local reserve of approximately 200 particles. 

For the conversion test, in which the cold, dense clump of gas required to initiate the 

overcooling phenomenon is never allowed to form, the cooling rate lags dramatically 

behind the other two tests. 

At later times (> 2 x lo9 yrs) , the results of the standard and collisionless tests 

diverge with the standard test displaying an excess amount of cooling due to its 

larger number of cold-clump particles (600 versus 200 for the collisionless test) and, 

consequently, its larger density gradient. As for the conversion test, the increasing 

central mass density of the halo, coupled with the absence of a central gas clump to 

provide pressure support, leads to a progressively increasing cooling rate which is not 

related to the overcooling phenomenon but rather the aphysical nature of the test. 

The description of the overcooling phenomenon given here predicts a jump in the 

calculated SPH gas density for the hot particles at the point where the cold clump 



falls within the limits of the SPH smoothing kernel. The behaviour of the gas density 

a t  the interface between the gas phases is illustrated in Fig. 3.8 and confirms this 

prediction. For the standard test, the smoothing process forces the density to rise 

very abruptly from the halo to the core, while for the conversion test the lack of a 

cold gas core removes this imperative. The slope of the log-log density profile makes 

a jump from about -2 exterior to the SPH kernel limit to about -4 interior to this 

limit. Only once the particles get within the smoothing length for the cold particles 

does the profile plateau. If the hot paitides are not permitted to interact with the 

cold particles, as in the conversion test, then the density profile should flatten out 

within a distance equal to  their kernel softening length, not steepen. Consequently 

in the standard test, particles outside the dense core, but within 2hhOt, have a higher 

density and thus a higher cooling rate. 

Due to the higher cooling rate for the hot gas in the standard test, once particles 

fall within 2 hhOt an abrupt temperature decrease should result. This unphysical drop 

in temperature is clearly illustrated by comparing the temperature profile of the gas 

produced in the standard test with that produced by the conversion test (Figures 3.8 

(a) and (b)) . If the hot gas should not interact hydrodynamically with the cold, dense 

gas, then the test version should most accurately reproduce the temperature profile 

in the core region. For this test the gas is approximately isothermal except in the 

core, where the increased density has caused the gas to cool. This is in contrast to the 

abrupt drop in the temperature of the hot gas in the regular SPH implementation, 

coincident with the cold clump falling within the 2h distance from the hot gas particle. 

This distance marks the limit of the SPH smoothing kernel for these particles. Note 

that, in the conversion test, the central core is more extended than in the standard 

test, but remains within a sphere smaller than the hot gas smoothing radius. 

Not surprisingly, the cooling time for the hot gas takes a sharp drop interior to 
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Figure 3.8: Temperature and density profiles for the standard test (a, c) and conver- 
sion test (b, d). The mean smoothing radii for both the hot and cold particles are 
represented by the vertical lines. The line for h shows the point internal to which the 
bulk of the kernel weighting is accumulated. The 2h line gives the outer limit of the 
smoothing. In panels a) and c), the inner pair of lines (left hand) are for the cold 
gas, while the outer pair are for the hot gas. In the lower panels, the cold particles 
are collisionless, and hence have no smoothing length. For these data, the initial 
conditions of the 5 x 1014 Ma mass cluster were used. In the conversion test, the stars 
are plotted at the temperature to which they had cooled just before conversion to 
star particles. 



the limit of the SPH softening kernel for this gas in the standard test (Fig. 3.9). In 

the conversion test, this is not observed. This is entirely consistent with the other 

evidence for the supercooling phenomenon seen previously. 

The cooling rate of the gas is also afEected by the virial temperature of the halo 

gas and, hence, the mass of the cluster. The overcooling for the two different mass 

clusters is compared in Fig. 3.10. 

3.2.3 Variation due to initial particle positions 

It is useful to  know what is the typical variation in the cooling rate due simply to 

different particle distributions in halos with otherwise the same properties. This 

allows for a proper appreciation of what is a significant variation in the cooling rate. 

Fig. 3.11 indicates a variation of 40 in the number of particles that have cooled at 

any one time after 2 x log yrs. .4 similar test was performed with the collisionless 

model described in the previous section. The cooling rates produced by the various 

test versions of the code are essentially identical. 

3.2.4 Results of the different SPH implementations 

Experiments were run with all 1 2  different SPH implementations. The collisionless 

tests produced cooling rates which were essentially identical. 

The variation in the overcooling rate among the implementations of the viscosity 

is given in Panel a) of Fig. 3.12. The cooling rates are not appreciably affected by 

the viscosity used. The exception is the one-sided implementation of the Monaghan 

viscosity (version 11) which produces 50% more cool particles over the time-span 

examined. This version uses an estimator for the density of the second particle based 

on the smoothing lengths and consequently has larger errors for the density. However, 

version 12 uses this viscosity with the kernel-averaging version of TC92 and it does 

not e-xhibit this behaviour. The inclusion of a shear-correction term in the artificial 



Figure 3.9: The cooling time for the gas particles around the cold clump as it varies 
with distance fkom the centre of the cold clump. The standard test produces the data 
for the upper plot, while the conversion test produces the data for the lower plot. See 
Figure 3.8 for an explanation of the vertical lines. 



Figure 3.10: The amount of overcooled gas for two clusters of different mass- The 
ordinate is the percentage excess of cooled gas for a 'standard' run relative to the 
amount cooled in the corresponding 'collisionless' run. 

Figure 3.11: The number of cold particles (T < 10' K) in four different instantiations 
of the cold clump surrounded by the hot halo as they evolve in time. This reveals 
variation due to the finite number of particles imposed by the simulations. 



viscosity (Fig. 3.12 b) has little effect on the cooling rate - as expected. 

Since the overcooling effect is caused by the large difference in kernel sizes asso- 

ciated with the hot halo particles and the cold clump particles, it might be expected 

that the symmetrisation method has a role to play in determining the cooling rate. 

Consider the h-averaging schemes: the arithmetic mean is limited to having a mini- 

mum value of h1,,,/2, while the harmonic mean is zero if any particle interacts with 

another paxticle having h = 0. In practice, as is shown in Figures 3.12 c )  and d), there 

is Little difference amongst all symmetrisation schemes, with the exception of version 

11. This version combines a pure gather kernel with the single-sided Monaghan arti- 

ficial viscosity. This result is surprising in view of the comparatively 'normal7 results 

for version 10, which differs in terms of the artificial viscosity, and version 12, which 

differs in terms of the symrnetrisation. 

3.2.5 Summary 

All the versions of SPH we have tested exhibit overcooling and this effect should be 

seen as  generic to the method itself. SPH will always experience difficulties mod- 

elling arbitrarily steep density gradients. The only implementation that stands out 

as performing poorly is version 11 which couples a one-sided implementation of Mon- 

aghan artificial viscosity with the TC92 symmetrisation procedure. When the TC92 

symmetrisation is supplemented with kernel averaging, the performance is improved. 

3.3 Drag 
There is concern that the over-merging problem encountered in N-body simulations of 

clusters of galaxies is exacerbated in simulations which use SPH (see Frenk, Evrard, 

White, and Summers 1996). Excessive drag on small knots of gas within a hot halo 

will cause the knots to spiral inward into regions of stronger tidal forces where they 

may be disrupted (e-g., Moore et al. 1996). 
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Figure 3.12: Variation with time in the number of cold particles (T < lo5 K). Panel a) 
compares the different implementations of the artificial viscosity. The viscosities used 
are TC92 in original forms (dashed line) and in the more localised implementation 
(dot-dashed line), and Monaghan in its regular form (dotted line) and its one-sided 
version (upper solid line). Panel b) compares the cooling rate with the Balsara term 
(dot-dashed line) to that without (dashed line). Panel c) varies the syrnmetrisation 
scheme. The dashed line is the mean of those runs using arithmetically averaged 
values of the smoothing lengths. The same for those that use a harmonically averaged 
value of h are given by the dot-dashed line. If the kernels themselves are averaged, 
the dotted line is the result. Panel d) probes the symrnetrisation of TC92 and its 
variant. The mean of the rates given in Panel c) (dashed line) representing the non- 
TC92 forms are compared with the results of the run with TC92 symmetrisation 
(dot-dashed line) and TC92 with kernel averaging (dotted line). These data are for 
the 5 x 1014 Mo cluster. In all panels the amount of cooling produced in the run with 
an initially collisionless dense core is given by the lower solid line. 



In this section, we will conduct a series of tests involving the various implemen- 

tations of SPH on toy model systems involving a cold, dense clump passing through 

a hot medium. First, the toy model systems will be described including estimates of 

the deceleration rates produced independent of the SPH implementation. Then the 

results of the tests using the various implementations will be given. 

3.3.1 Drag test model systems 

To cover a variety of infall speeds, we examine the deceleration of a knot of cold gas 

in three velocity regimes: Mach 2, Mach 1, and Mach 113. The Mach 2 and Mach 

1 tests differ in terms of the speed of the cold knot ('fast' versus 'slow') and not the 

temperature of the hot gas. The Mach 113 test uses the same clump velocity a s  the 

Mach 1 test, but is performed in hotter ('very hot') gas. Table 3.4 gives the details 

of the cold clump and hot gas phases. Clump characteristics are selected to loosely 

emulate a poorly resolved galaxy with no dark matter, while the hot gas media are 

typical of the intra-cluster medium. 

The hot gas was prepared from an initially random placement of particles, and 

then allowed to relax to a stable state. The cold clump was created by randomly 

placing particles within a sphere of radius equal to the gravitational softening length. 

The cold clump was allowed to relax in the same manner as the hot gas, before 

combining the two systems. The cold dump is supported against further collapse by 

random motions of the gas particles within the gravitational softening length. 

The Jeans length, Rj, for the hot gas phases is sufficiently large to ensure sta- 

bility even in the presence of the perturbation born the cold clump. Consequently, 

dynamical friction should not be important. This conclusion was confirmed by pass- 

ing a collisionless cold clump through the hot medium - it experienced negligible 

deceleration. 



Slow cold clump Fast cold clump 

PIP= 1000 1000 
(K) 10" 104 

R &PC) 50 50 
N 100 100 

m (lo9 Ma) 1.7 1.7 
K3 ( h / s )  500 1000 

Hot gas Very hot gas 

Table 3.4: The characteristics of the cold clumps and the hot media used in the drag 
tests. Given are the overdensity, p/pc (hloo = I), the temperature, T, the radius of 
the cold clump, R, the number of particles in the medium, N ,  the mass resolution 
of the medium, m, the initial velocity of the cold clump, V,, the speed of sound in 
the hot medium, V',, and the Jeans length for the hot medium, Rj. The simulation 
volume in all cases is (5 M ~ c ) ~ .  The 'fast cold clump' was used in the Mach 2 runs 
in combination with the 'hot gas'. The Mach 1 runs used the 'slow cold clump' 
embedded in the 'hot gas'. The Mach 113 runs used the 'slow cold clump' in the 
'very hot gas'. 



The box length, 5Mpc, mas chosen so that the cold clump was well separated 

from its images (arising from the periodic boundary conditions employed) and would 

move across the box only once without encountering its own wake. As in Sec. 3.2.1, 

an appropriate value of the time-step normalisation parameter, K ,  was found. For 

these tests, a value of K = 1.0 is used. 

3.3.2 Expected deceleration 

An expected rate of deceleration may be approximated by considering a disc sweeping 

through a hot medium, collecting all matter it encounters. This would represent a 

maximum expected rate of deceleration if dynamical friction is ignored. The gas 

is sufficiently hot to prevent the wake collapse necessary for dynamical friction to 

work. The solution for the velocity, V, of such a system is given by V( t )  = l/(t - tr), 

where I is a characteristic length given by I = M/2xR2pg and tl is a characteristic 

time-scale given by tl = to - l/I/;. Here, M is the mass of the disc at the start, R 

is the radius of the disc, and pg is the density of the gas through which the disc is 

travelling. The clump starts with velocity V, a t  time to. For the tests that use the 

slow clump, this estimate implies the final velocity should be 400 km/s. For the fast 

clump, the final clump velocity should be 670 km/s. These crude estimates indicate 

that hydrodynamical forces should indeed be important for the parameters being 

considered. 

The importance of the artificial viscosity can be estimated by performing a sim- 

ulation with an implementation of SPH for which the artificial viscosity has been 

disabled. Fig. 3.13 compares such a run with the viscosity-enabled implementation 

for the three scenarios: Mach 2, Mach 1, and Mach 113 cold clumps. The imple- 

mentation of viscosity used here is the standard HYDRA viscosity (TC92). -4 striking 

result is apparent. In those cases for which shocks are important, namely the Mach 

1 and 2 cases, the presence of the viscosity term actually decreases the drag. The 



effect is greater for the higher velocity clump. At early times, the drag is greater with 

the viscosity term since an amount of gas must be accumulated ahead of the clump 

before the viscosity-less pressure term can cause an effect. -After this early transi- 

tory phase, however, the lack of a viscosity term, which prevents interpenetration of 

particles through shocks, results in hot gas particles getting closer to the cold clump 

and consequently receiving a bigger momentum boost in the direction of travel of the 

clump. 

Four separate realisat ions of the same initial conditions were evolved with the 

same version of the test code to look for variation due to randomness in the initial 

conditions. There is variation on the order of 10 km/s between the runs for the Mach 

2 and Mach 113 scenarios, 4 km/s for the Mach 1 scenario. 

3.3.3 Results of the SPH variants 

The cold clump varies in final size among the different versions of the code. The 

cold gas in the versions with the artificial viscosity following the form of Monaghan 

collapses to a much denser knot than the other versions (Fig. 3.14 and Table 3.3). 

The mean particle separation for the clump in the runs using Monaghan viscosity is 

on the order of 4 kpc which is a third of the value for the runs using TC92 viscosity. 

Indeed, the localised version of TC92 produces a mean particle separation for the 

cold clump of 33 kpc. However, in all cases the knot size is still much less than the 

smoothing radius, so the total clump size appears to the other gas particles, when 

the gas forces are calculated, to be essentially the same (Table 3.6).  

Compared with V v viscosity, Monaghan viscosity in both the symmetric and 

single-sided forms leads to an increase in the damping of the velocity of the clump 

when used with the TC92 symmetrisation (Table 3.7 and Fig. 3.15). However, when 

Monaghan viscosity is used with TC92 symmetrisation, supplemented by kernel aver- 

aging, the deceleration becomes comparable to the V * v versions. The more localised 



Figure 3.13: The significance of viscosity in the drag studies is demonstrated by a 
comparison of the velocity of the clump when it is evolved via an implementation 
with artificial viscosity enabled (solid line) and with it disabled (dashed line). The 
velocity of the cold clump as it changes with time is given for the Mach 2 runs (top), 
Mach 1 runs (middle), and the Mach 113 runs (bottom). The original version of the 
code was used for this test. 



Figure 3.14: The particle distribution of the cold clump for versions 2 (top) and 3 
(bottom). The circle denotes the smoothing radius, h = 50 kpc. 



Version ( r )  (kpc) (h)  (kpc) 
1 12.76 51.65 

Table 3.5: The sizes of the cold clumps compared with the smoothing lengths, h as 
they vary among versions of the code. The sizes of the clumps are estimated from 
the mean particle distance from the clump centre ( ( r ) ) .  -411 measurements are for the 
final time step taken from the Mach 2 set of runs. 

estimate of the V . v viscosity does little except in the Mach 2 set of runs, for which 

it increases the drag to match that of the Monaghan viscosity. The inclusion of a 

shear-correction term reduces the drag in the Mach 113 case as well as in the Mach 

1 case when the clump velocity has dropped below Mach 0.8. 

Use of either the arithmetic or harmonic average for hij produces less drag then 

any other symmetrisation method (Fig. 3.16) except the version with TC92 sprnetr i -  

sation combined with kernel averaging. On their own, kernel averaging and the TC92 

syrnmetrisation produce marginally higher deceleration, particularly a t  supersonic 

speeds. 

3.3.4 Summary 

All implementations produce more drag than should be expected. Among the sym- 

metrisation methods, the tests favour (but cannot distinguish between) those that use 

the harmonic and arithmetic averages for calculation of hij- The artificial viscosity 



Cross section (kpc2) 
Version o > 1.5 x lo7 Ado / kpc2 o > rnax(cr)/:! 

1 3982 4480 
2 3988 4463 
3 4162 4508 
4 4215 4192 
5 4214 4191 
6 4209 4197 
7 4202 4196 
8 4200 4212 
9 42.1 0 4198 
10 4210 4199 
I1 4210 4199 
12 4210 4198 

Table 3.6: The estimated cross-sections (a) of the cold clumps produced by the dif- 
ferent versions of the code. Projected column densities for the clumps were calculated 
in the direction of their motion. The second column is calculated using a column- 
density cutoff of 1.5 x lo7 Ma / kpc2 which was found to approximate the position 
of the steep edge of the Gaussian-like distribution. The third column tabulates the 
full area with half the maximum. A condensed core is indicated if the cross-section 
from this column is much less than that of the column to the left. This tendency 
is consistent with Table 3.5. Note that a cross-section of 4200 kpc2 corresponds to a 
disk radius of 36 kpc. 



i- 

- - - Version 3 
-.- Version 10 

Version 11 

- - ---- ..- 

Figure 3.15: Variation of the cold-clump velocity with artificial viscosity type (no 
shear-correction term is included). In each pa,nel the different lines distinguish dif- 
ferent viscosity implementations: standard HYDRA viscosity (TC92), solid; localised 
TC92 viscosity, dashed; standard Monaghan viscosity, dash-dot; singre-sided Mon- 
aghan viscosity, dotted. The panels are, horn top to bottom; Mach 2, Mach 1 and 
Mach 113. 



- Version 4 
- - - Version 5 
- - Version 6 

Version 10 

- - 

Figure 3.16: Variation of the cold-clump velocity with h-symmetrisation. The lines 
are: arithmetic average, solid; harmonic, dashed; kernel averaging, dot-dash; TC92 
symmetrisation (version lo) ,  dotted. The panels are, from top to bottom; Mach 2: 
Mach 1 and Mach 1/3. 



Version Mach 2 
1 0.999 z t  0.002 
2 0.991 zt 0.006 
3 0.914 zk 0.006 
4 1.018 z t  0.005 
5 1.025 + 0.009 
6 0.984 AZ 0.008 
7 1.064 z t  0.007 
8 1.045 & 0.00'7 
9 1.028 It 0.006 
10 0.957 & 0.005 
I1 0.956 z t  0.004 
12 1.018 zt 0.003 

Mach 1 
1.004 Az 0.009 
1.003 * 0.012 
1.009 & 0.008 
1.009 & 0.008 
1.004 & 0.009 
0.926 & 0.013 
1.060 4z 0.004 
1.062 Az 0.008 
0.979 2 0.006 
0.951 iz 0.007 
0.955 4~ 0.006 
1.038 dz 0.009 

Mach 1/3 
1.24 IIZ 0.10 
1.29 d~ 0.08 
1.20 & 0.16 
0.78 -+ 0.07 
0.84 3~ 0.07 
0.67 & 0.05 
1.26 zt 0.02 
1.34 & 0.01 
1.12 & 0.05 
0.38 3~ 0.07 
0.62 * 0.06 
1.06 d~ 0.10 

Table 3.7: The relative final velocities of the cold clumps. Given is the mean relative 
velocity of the cold clumps over the final 0.5 x lo9 yrs normalised by the mean velocity 
of all the cold clumps in that velocity regime. 

actually decreases the drag by  reducing the interpenetration of hot gas particles into 

the halo of the cold clump. However, the tests are not sensitive to variations in the 

form of the artificial viscosity. The shear-correction term for the artificial viscosity 

lowers the drag at subsonic speeds but does little at sonic and super-sonic speeds. 

The Monaghan viscosity coupled with the TC92 symmetrisation performs poorly but 

it is not clear why this combination does so. 



Chapter 4 

SIMULATIONS 

4.1 Numerics 
The N-body A P ~ M  - SPH code, H Y D R A ( ~ O U C ~ ~ ~ ,  Thomas, and Pearce 1995) mas 

used for all simulations. This is a multi-level -4daptive Particle-Particle Particle- 

Mesh (AP~M) N-body code with gas dynamics simulated by the Lagrangian Smooth 

Particle Hydrodynamics (SPH) method (Sec. 3.0.1). The gravity is calculated using 

a particle-mesh scheme for the large scale gravitational fields. Short-range forces 

are calculated by summing particle-particle forces. Isolated regicns of high number 

density have sub-grids adaptively placed around them, allowing the efficient particle- 

mesh method to be used locally. As such, it is well suited for the large dynamic range 

of scales involved in cluster studies. -4 comparison of the leading hydrodynamic 

codes, including HYDRA, designed for studying cosrno~ogical scenarios finds general 

consistency among the codes (Frenk and et a1 1998). 

4.2 Cosmology 
All simulations assumed the flat cosmology given in Table 4.1. The matter was evolved 

in a box with 40h-I Mpc sides in co-moving coordinates, with the Hubble expansion 

constant, H, = h100kmls. This permits the formation of a sufficient number of 



HO 65 km S-' Mpc-' 
fl ~ a r k ~ a t t e r  0.9 
a ~ a s  0.1 
A 0 
Power law index -1 
08 -935 

Table 4.1: Properties of the assumed cosmology. 

clusters for statistical purposes. A box of larger dimensions would impose too great 

a penalty on the resolution of the simulation. The simulation had periodic boundary 

conditions. 

Cooling is neglected. The cooling time for the bulk of the cluster gas is estimated 

to be well over the age of the universe. The peak luminosity is on the order of 

lo4' erg s-I. The thermal energy found in the gas of a system containing loL4 Ma 

of gas at 5 keV is on the order of erg giving a cooling time, f ol = 10" s = 
3 x 10" yrs. There is insufficient resolution due to the limit set by the gravitational 

softening parameter to properly model the cooling flows which are inferred in the 

inner 200 kpc of clusters ( M e n  and Fabian 1997). It would require a great deal more 

resolution in order to model these flows correctly owing to the overcooling induced 

by the inability of SPH to properly calculate the gas densities in the cores of clusters 

(see Sec. 3.2). As well, when modelled with sufficient resolution, the cooling flows 

simulated are much greater than those observed, likely due to a lack of feedback 

mechanisms such as supernova energy input which reheats the gas (Suginohara and 

Ostriker 1998). In any case, the amount of gas inferred to have cooled in these flows 

is on the order of 10" Ma, which is not significant to the larger scale distribution of 

gas in the cluster. 



4.3 Initial Conditions 
The initial density perturbations were established by displacing the particle positions 

from a uniform cubic grid using, in the standard way, the Zel'dovich approximation for 

growth of density perturbations in the linear regime (Zel'dovich 1970). This method 

fist creates a representation of the density perturbations in Fourier k-space using 

a supplied power spectrum form supplemented with Gaussian random fluctuations. 

This is then transformed into an initial density field. The gravitational forces felt by 

the set of particles, distributed at  the nodes of the uniform mesh, by this density field 

are calculated. The particles are then displaced in the direction of their respective 

forces an amount proportional to the force. This produces a distribution of particles 

with a density field following the previously calculated density field. 

The initial redshift for the simulations is zinitial = 75. This was chosen to keep 

the maximum displacement incurred during the establishment of the density field to 

less than 112 the initial grid spacing. This keeps negligible the errors incurred in 

using the linear Zel'dovich approximation to a non-linear system. The initial power 

spectrum of the density fluctuations follows a power-law of n = -1, P ( k )  cc k-'. 

In order to ascertain the effects hierarchical clustering has on the matter, runs 

with initial high-spatial-frequency density perturbations were compared to runs in 

which these density perturbations were suppressed. The perturbation suppression was 

accomplished via two methods. In one case, the initial density field was convolved 

with a tophat. This modification to the power spectrum takes the form P1(k)  = 

P(k)W(krmooth) where W(x)  Is the tophat window function given by, 

3 (sin x - x cos x) 
W(x)  = 

x3 

A choice of rsm0& = 7h-I Mpc for the smoothing length was selected to suppress those 

perturbations of spatial size less than the size of a cluster formation region. Conse- 



Figure 4.1: The initial power spectra of the simulations. 

quently, the clusters in this scenario form from the uniform collapse of structures of a 

size on the scale of or larger than those that formed the clusters seen at the present. 

To span the regimes, a set of initial conditions smoothed with T s m ~  = 3h-I Mpc 

was also evolved. The second method for smoothing the initial power spectrum is a 

low-bandpass filter applied to the power spectrum of the density-perturbations before 

the particles are displaced. This filter is of the form 

where n is some positive integer which controls the steepness of the cut-off. A large 

value arbitrarily set to n = 16 was used here. Two sets of initial conditions for which 

rsmWth = 7h-I Mpc and 14h-' Mpc were created using this method. The power 

spectra for the initial conditions created with the tophat  smoothing as well a s  the 

fkequency cut-off are illustrated in Fig. 4.1. 

The first minimum in W(z )  is at k x 5 A .  Hence, tophat smoothing over 
7 rammth 

a radius of 7h-'Mpc removes more power at fkequencies k < 2n/rsmmth than the 

frequency-cutoff filter. The significance of this is made apparent by noting that 

the frequency-cutoff filter is essentially a convolution in real space of the density 



distribution with the window function, W(x) .  The W ( x )  function can crudely be 

thought of as a tophat with a radius given by the position of the first minimum. 

This implies a frequency cut-off of is roughly comparable to smoothing with 

a tophat  of radius 5h-I Mpc. 

Since the top-hat smoothing removes power at all frequencies except 0, the power 

on the scale of 8h-I Mpc mas increased to maintain the same RMS fluctuations ( (33 )  for 

all sets of initial conditions. This was not done for the (14h-' Mpc)-' smoothing, as 

this smooths over a larger radius than 8h-' Mpc nor was it done for the 7h-I Mpc t o p  

hat filter for which first minimum in k-space is too close to the scale of (8h-' Mpc) - ' .  

The effect of two-body interactions is minimised by the gravitational softening 

parameter, E .  These interactions heat the gas via an exchange of energy between the  

dark matter and gas phases during short-range encounters of pairs of these particles 

(Steinmetz and White 1997). If the mean interparticle spacing is on the order of or 

greater than c, then the time, t2-body, required to heat the gas to its temperature, T ?  

via this process is given by, 

where 1nA is the Coulomb Logarithm (3-7 for most simulations), r n ~ ~  and m,,, are 

the respective masses per particle for the dark matter and gas, p o ~  is the dark matter 

mass density, and p, is critical density. Without a softening term in the gravitational 

forces, this process would heat the gas in the centre of simulated clusters to lo7 K 

in 0.5 x log yrs. However, in the dense cores, where this process is most significant 

owing to the dependency, t2-aodg a PEL, there are on the order of 60 particle within 

a softening length, E ,  of any other particle. 

To examine the effects of resolution, the runs were performed at two resolutions. 



# of particles rsmOoth E 

gas dark (h-'Mpc) (h-'kpc) 
unsmoothed 643 643 0 20 

3 Mpc tophat  643 643 3 20 
(7 b1 PC)-' k-cutoff 643 643 7 20 

7 Mpc tophat  643 643 7 20 
(14 Mpc)-' k-cutoff 643 643 14 20 

low-res. unsmoothed 323 323 0 40 
low-res. 7 Mpc top-hat 323 323 7 40 

Table 4.2: Properties of the simulations. Given are the number of each type of 
particle, the effective smoothing radius, r s m o o ~ ,  and the gravitat iond softening length, 
E .  The length of a side of the simulation volume is 40h-' Mpc for all simulations. 

In one set, particles of each of gas and a collisionless dark matter component 

were evolved. In the other set, 323 particles of each were used. The gravitational 

softening was 0.02h-' Mpc and 0.04h-' Mpc for the respective runs. The details of 

the simulations are given in Table 4.2. The difference in structure a t  t = 1 (i-e., the 

present) is clearly illustrated in Fig. 4.2. 



Figure 4.2: The projected densities of the 
simulation boxes at t = 1 ( L  e., present). 
Top left plate is evolved from the un- 
smoothed initial condition (IC); middle left 
from the 3 Mpc top-hat smoothed IC; mid- 
dle right from the (7Mpc)-' cut-off fil- 
tered IC; bottom left from the 7 Mpc t o p  
hat smoothed IC; and bottom right from 
(14 Mpc)-' cut-off filtered IC. 



Chapter 5 

ANALYSIS 

5.1 Cluster Selection 
Clusters were selected by a tomographic deprojection method. The gas distribution, 

extended over its smoothing radius, was projected onto three planes: the x-y, the 

x-z: and the y-z. The resolution of these projections is = 100 kpc. Peaks were found 

in these three planes which were then tornographically deprojected to recover the 

(x,y,z) coordinates of the density maximums. The depro jection met hod involves the 

following steps: 

1. Match the peak positions in the x domain (within some tolerance) for the x-y 

and x-z projections to find a list of possible y-z positions. 

2. Match the y-z positions postulated from the previous step with the y-z positions 

found from the peaks in the y-z projection. 

3. For each of the matches, use the x position from step 1) to get an x-y-z position. 

This method is comparable to projecting the gas densities onto a bdimensional mesh 

of resolution (boxsize)/L, but requires 3 * L2 elements of information instead of L3 



which, beyond the memory requirement savings, speeds up the peak-finding algo- 

rithm. 

Cluster searching using the Mends-of-friends method (FOF ~1.1)  did not give 

satisfactory results. This method links together particles closer than a distance given 

by a linking length and then associates to a particle all its neighbour particles as well 

as their neighbours and so on. The association is then called a cluster. Close clusters 

are often connected by bridges allowing the association to 'percolate' through. -4s 

such, the grouping of cluster members was found to be too sensitive to the linking 

length parameter. For a choice of a linking length suitable for the largest clusters, 

the smallest clusters were not properly recovered. Another popular routine: SKID ' 
(based on DENMAX): was tested. This routine 'freezes' the particles, then allows 

them to gravitate together to form tighter groups, essentially severing the bridges 

between clusters. A f o f  procedure is then allowed to create the list of asociations. 

Though the routine DENMAX performed better than FOF, particularly for the 2 x 323 

simulation, the amount of CPU time required for the high-resolution simulation was 

unacceptable, taking days instead of hours. 

The centres of the density peaks are further refined by cutting out a small sphere 

of particles, centred on the estimated density peak, and finding the mean position of 

the particles with the highest densities calculated previously by the SPH algorithm. 

Overdensity radii, Rz, were calculated for the clusters for overdensities of 6 E -i~ = 
PC 

200 and 500. An overdensity radius is simply the radius from the centre of a cluster 

within which the ratio of the mean density to the critical density of the universe is 

equal to some value, referred to as the overdensity. Though spherical symmetry is 

not required, the derivation holds more relevance for spherically symmetric systems. 

The expected radius of virialization derived from analytic models involving simple 



lvdus ters 
unsmoot hed 100 
3 Mpc topha t  48 
(7 Mpc)-I k-cutoff 48 
7 Mpc topha t  8 
(14 Mpc)-I k-cutoff 6 
low-res. unsmoot hed 3 
low-res. 7 Mpc tophat  5 

Table 5.1: Results of the cluster search. Given for each run is the number of clusters 
found, NduSters, and the range of masses of the clusters, Mmi, and M,,,. 

spherically symmetric collapse corresponds to that of an overdensity of 178 (i. e.: RIT8). 

However, the overdensity radius, RJ, is not particularly sensitive to 8. The overdensity 

within the calculated overdensity radius is accurate to a factor of N-' where N is the 

number of particles. With the overdensity radii, there is a corresponding overdensity 

mass, Mb, which is the mass contained within Rd. 

A lower limit to the size of the clusters was set by the requirement that each 

cluster, within the overdensity radius of R5( )~ ,  have at least 300 gas particles and 

300 dark matter particles. This ensures the densities are calculated correctly (see 

Sec. 3.1.2). 

The details of the sets of clusters found using this method are given in Table 5.1. 

A similar procedure was done using the dark matter mass distribution. The to- 

mographic deprojection step for finding the clusters first required SPH-like density 

estimates be made for the dark matter and appropriate smoothing lengths be calcu- 

lated in order to project the masses onto the x-y, x-z, and y-z planes. Little difference 

was found in the positions or number of the ha1 clusters selected. 

5.2 Cluster Profiles 
Profiles of various parameters were calculated for the clusters by summing the con- 



tributions of the particles falling in radial bins centred on the clusters. The bins were 

separated exponentially. Found for each of the dark matter and gas components were 

the number of particles, the volume-weight ed mean density, and the mass-weight ed 

mean thermal energy. 

The thermal noise of the SPH particles provides a negligible contribution (1%) 

towards the thermal energy of gas particles in the halos. This contribution is ignored 

in all cases. 

Mean profiles were calculated using the radially binned profiles described previ- 

ously. The individual cluster profiles were scaled radially by the overdensity radius, 

R200, as well as weighted by their respective cluster mass. For the density profiles, 

this weighting was found to have only a small effect, however, validating the use of 

mean profiles. 

Density and temperature profile forms were fit to either the mean profiles or to 

the particle distributions of density or temperature us. radius. Details of the fits are 

given in Sections 7.2, 8.3 and 8.4. In all cases, the fits were found by minimizing the 

x2 with the variance derived from the distribution of values in radial bins. Again, the 

distances were scaled by the overdensity radius, R200. A profile fit was made to  all 

the points in a given simulation. 

It is the SPH-calculated density that is used when the particle distribution of 

density us. radius is fit. Both the dark matter and gas particles had their densities 

calculated more precisely by performing an SPH summation over a value for the 

smoothing parameter, h, such that 2h encompasses exactly iVspH = 32 particles. 

For the gas, this primarily affects the low and high density regimes. The densities 

were calculated without the self-density term (see Sec. 3.1.1) to provide a volume- 

weighted average local density at each of the particle positions. A comparison of 



Figure 5.1: The distribution for the gas density calculated explicitly us. that cdcu- 
lated by HYDRA (black line). The explicit calculations used 32 neighbours and were 
done using the self-density term (red) and without the self-density term (blue). 

the densities calculated in this fashion with those that are found by HYDRA is given 

in Fig. 5.1. With the self-density term, the explicit method agrees with HYDRA 

for over two and a half orders of magnitude. HYDRA has limits on the size of h 

which leads to the discrepancies at low and high densities. The lower limit is set 

to improve computational efficiency; large values of h require neighbour searches 

over large volumes of the box even though the low-density gas with which they are 

associated is not relevant to most studies. The discrepancy at low densities is large, 

but the gas affected is found primarily in the voids away from the regions of interest. 

The upper limit is set to prevent over-collapse which is unwanted since both the 

physics at high densities is not complete and, as seen in Sec. 3.1.2, SPH cannot 

calculate densities correctly in large density gradients to arbitrarily small radii. 



Chapter 6 

THE HYDROSTATIC STATE OF THE 

CLUSTERS 

The scaling law analysis in Chapter 8 assumes that the baryonic matter in the 

clusters is in hydrostatic equilibrium. To answer whether or not this is justified, a 

comparison of the actual pressure profiles for the clusters will be compared to the 

calculated pressure profile e-qected for a hydrostatic gas in the cluster's gravitational 

well. 

6.1 A Problem with Binned Data 

Consider the equation of state for a perfect gas, which relates the pressure P? with 

the gas density, pg, and gas temperature, T: 

with k, p, and mu being Boltzmann's constant, the mean-molecular weight, and the 

atomic mass number, respectively. We will use the notation to represent the 

volume-weighted mean of the quantity A, and (A)w to represent the mass-weighted 



mean. In the case presented here, these will always be in a shell centred about the 

cluster, so (A), (where cu = V or M) can be taken to represent ( ) ( r )  Then the 

mean pressure in a shell is given by 

It is instructive to see how ( p g T ) , ,  (p , ) ,  , and (T) ,  are related. Take for the i-th 

of n particles in the shell, pgi = ( p g ) ,  + 6pgi and Ti = (T), + bT,, then 

For n + W, (JpgibT,), = 0 only if pgi and bz are uncorrelated. This is unlikely for 

any gas, let alone gas in a cluster. If the shells themselves are in pressure equilibrium, 

i-e. Pi = (P),, then 6pgi and bT, will be anti-correlated, and ( p , T ) ,  < ( p g ) , ( T ) , .  

If the matter in the shells has reached its state adiabatically, then bpgi and 6Ti will 

be positive-correlated, and (p,T),  > ( p g ) , ( T ) , .  In the case of spherical symmetry, 

clearly 6pgi = 6T, = 0: and ( @ ) ,  = (p,), (T) ,  . 

If there is not spherical symmetry, as in the case of ellipsoidal isobars which 

would be found in an ellipsoidal gravitational potential, then 6p@ = f,(B, 4) and 

bTi = fr(6, 4) .  If the gas is isothermal, then 6z = 0 which gives ( p g T ) ,  = ( p , ) ,  (T),. 

If the gas is not isothermal, i t  is most likely that 6pg= and 6T, mill be correlated, since 

they will both vary proportionally with the inverse of the distance along any radial 

line (6 and 4 held constant). In this case, ( p g T ) ,  > ( p g ) , ( T ) , .  That is to say, the 

use of the radial profiles of pg and T will underestimate the pressure in regions that 

are not isothermal. 



To find ( P , T ) ~ ,  it would be best to use ( p J V  and (T)v. However, from the radial 

profiles we have only (p,) and (T)M.  It is always the case that ( p , )  cr < (p , )  &lf. For 

the temperature, if T increases as pg increases, then (T)v < (T)  w .  The opposite 

inequality holds for the converse case in which T decreases as pg increases. In the 

isothermal case, (+ = (T )M.  Again, it is expected that T and p, will both decrease 

with increasing radius, implying that if the isobars are ellipsoidal, then (T)v  < (T )M.  

By this argument, the use of radial profiles which have volume-weighted bins for the 

gas density and mass-weighted bins for the temperature bins should overestimate the 

pressure in regions that are not isothermal. 

It is not expected that these two sources of error would cancel each other. In- 

deed, since it is found that the clusters studied in this thesis tended to be isothermal 

in the inner 0.6R200 and have a shallow dependency with radius compared with the 

gas density (see Sec. 8.4), the dominant source of error is expected to be the ap- 

proximation of ( p g T ) ,  by ( p g ) , ( T ) , .  However, the analysis demonstrates that in the 

isothermal region, the mean pressure of the gas can be found exactly in a spherical 

shell even if the potential well is ellipsoidal in shape. Outside this region, deviations 

can be expected if the gas distribution is ellipsoidal with the calculated pressure an 

underestimate of the actual gas pressure. 

6.2 A Spherically Symmetric Collapse 
How much of an error is introduced by the approximation, (pJ) = ( p g ) ( T ) ?  Let us 

examine a system that is approximately spherically symmetric. A top-hat collapse 

of gas particles was set up in the following manner. A box of size L5.4Mpc was 

filled with 3z3 particles in a regularly spaced manner. All particles had the same 

mass of 1.3 x 10" Ma = 2.6 x g, leading to a mean density of 7.6 x 

Density perturbations with a spectral index n = -1 were created in the regular 

field by displacement of the positions using the Zel'dovich approximation. Velocities 



were assigned to the particles equating to the kinetic energy gained during their 

displacement into the density perturbations. Those particles within 7.7 Mpc of the 

box centre were compressed radially by a factor of 0.9 to create a spherical overdensity. 

This spherical overdensity will ultimately collapse into one object but not until after 

the smaller-scale features created by the initial density perturbations have collapsed. 

Thus, the structure formation is a hybrid top-hat-hierarchical process. Those same 

particles were changed to collisional particles while the particles beyond 7.7 Mpc were 

changed to dark matter. The initial number of particles participating in the topha t  

collapse was then 17156. The contents of the box were evolved for 3 x 10' yrs. The 

box did not expand (ie., there was no Hubble flow). The gravitational softening 

length was 1.9 x cm = 59 kpc and the minimum SPH softening length was half 

this value. 

After the 3 x 10' yrs iteration, the radial profiles of the density and temperature of 

the cluster were calculated as per Sec. 5.2. From these were calculated radial profiles 

of the mean gas pressure estimate using (pg)(T)  and the expected gas pressure from 

the assumption of hydrostatic equilibrium, P,, 

where M ( r )  is the total mass interior to the shell of radius r. The two curves are 

shown in Fig. 6.1. There is good correspondence between the estimated mean pressure 

calculated using Eq. 6.2 and the expected mean pressure using Eq. 6.4. Either the 

errors in both curves conspire to produce the same offset, the temperature and density 

are uncorrelated, or the assumption of spherical symmetry is appropriate for this 

cluster. Since the tophat was initially approximately spherically symmetric, this is 

the likely answer. 



Figure 6.1: The approximate mean gas pressure profile (blue) compared to that ex- 
pected from the assumption of hydrostatic equilibrium for the cluster formed &om a 
toy tophat  collapse of approximately 17000 gas particles. The outer edge of the ini- 
tial tophat radius is 2.4 x cm. The gravitational softening length is 1.9 x crn 
and the minimum SPH softening length is half that. Between these lower bounds and 
the upper bound of the tophat  radius, the pressure spans approximately 5 orders of 
magnitude over a decade of radii. Over this span, the two curves agree remarkably 
well. 



6.3 The Hydrostatic State of the Cosmological Clus- 
ters 
The analysis described above was performed on the sample of cosmological clusters 

described in Chapter 4. The results for the hierarchically formed clusters, shown in 

Figures 6.2 and 6.3, indicate that the clusters have mean radial pressure profiles that 

are consistent with the condition of hydrostatic equilibrium. This is particularly true 

within the virial radius indicated by R2o0. 

Another indication of this can be gleaned &om the ratio of the gas pressure to 

that pressure expected for the equilibrium situation. Essentially, this is the ratio 

of the blue curve to the red curve in the vicinity of the green line indicating the 

overdensity radius R200 in Figures 6.2, and 6.3. The distribution of these ratios is 

given in Fig. 6.4. The distribution indicates that the gas pressure is within a factor 

of two of the expectation. Interior to this ratio, the profile figures indicate that 

agreement will generally be even better. Note that values covering a short span in 

radius are used for calculating this ratio to reduce the noise. 

The trend is for the more massive clusters to have a ratio of less than unity 

(Fig. 6 -5) consistent with the halos diverging from spherical symmetry towards ellip- 

soidal. Only those clusters with masses less than about 5 x 1013 Ma have a gas pressure 

appreciably greater than that expected in the hydrostatic case. Another explanation 

is that larger clusters are undergoing mergers with smaller objects. This substruc- 

ture has kinetic energy which supports the gas within the substructure, reducing the 

necessary gas pressure and consequently reducing the ratio. The outer halos of the 

low-mass clusters are overheated when in the presence of larger structures. 

For the non-hierarchically formed clusters, the gas pressure of the clusters is gen- 

erally less than that expected if the gas had reached a hydrostatic state (Fig. 6.6) with 

only three of the seven clusters showing good agreement interior to R20(1 and none 



Figure 6.2: Comparison of the gas pressure to the gas pressure expected for a hy- 
drostatic scenario for the hierarchically formed clusters. Plotted are the profiles for 
the clusters with the six highest central pressures (blue). The red line is calculated 
£tom the integration of the equation of hydrostatic equilibrium. The green vertical 
line denotes aO0. 



Figure 6.3: Comparison of the gas pressure to the gas pressure expected for a hydre 
static scenario for the hierarchicdy formed clusters with the lowest central pressures. 
Compare with Fig. 6.2. 



Figure 6.4: The distribution of the ratios of the gas pressure to the pressure expected 
fiom the integration of the equation of hydrostatic equilibrium for the hierarchically 
formed clusters. Given are the ratios taken around the radii R200 and Rsoo. 



Figure 6.5: The ratios of the gas pressure to the pressure expected &om the integration 
of the equation of hydrostatic equilibrium, plotted versus the cluster mass for the 
clusters formed hierarchically. Data for ratios a t  R200 and Rsoo and the masses internal 
to these radii are given. 



of them showing good agreement at R200. The ratio of the gas pressures (Fig. 6.7) 

supports this, particularly in showing that for the smaller radius, Rsao, the agreement 

is much better. The ratio being less than unity for all clusters is consistent with the 

trend for the hierarchically formed clusters since all the clusters are high-mass clus- 

ters. However, since there is no substructure in these runs, the eUipsoidal shapes of 

the clusters must be the cause of the divergence of the calculated and mean pressure 

profiles. 



Figure 6.6: Comparison of the gas pressure to the gas pressure expected for a hy- 
drostatic scenario for the non-hierarchically formed clusters. Plotted are the profiles 
for six of the seven clusters in the sample (blue). The red line is calculated fiom the 
integration of the equation of hydrostatic equilibrium. The green vertical line denotes 
R200 



Figure 6.7: The distribution of the ratios of the gas pressure to the pressure ex- 
pected fiom the integration of the equation of hydrostatic equilibrium for the non- 
hierarchically formed clusters. Given are the ratios taken around the radii Rzoo and 
R500 - 



Chapter 7 

UNIVERSAL PROFILE 

Numerical simulations have indicated that, for a Cold Dark Matter (CDM) model, 

the dark matter density profile of ga l aq  clusters may be fit by a form with only one 

free parameter set by the mean density of the universe at the time of collapse (Navarro, 

Frenk, and White 1996). The existence of such a universal density profile (or NFW 

profile) would be a useful tool as well as a test for theories of cluster formation. The 

applicability of the universal profile to clusters formed in other cosmological models 

would strengthen its use as a tool for observationalists as well as clarify its utililty 

as a test. Expectations for the shape of the density profile have been made which 

can explain the existence of a universal profile and support the NFW form (Evans 

and Collett 1997; Padmanabhan et al. 1996). Some of these depend on hierarchical 

clustering explicitly. 

The dependency of a universal density profile on hierarchical clustering is explored 

in this chapter. First, the possible forms of the density profile will be examined. After 

this, the results of fitting the density profiles to clusters formed hierarchically and 

non-hierarchically will be given. 



7.1 Introduction 
Over the years, a number of forms for 'the density protile of a system of collisionless 

particles has been suggested. Of particular relevance to the dark matter in galaxy 

clusters are the Hernquist profile and the Navarro, Frenk, and White (NFW) profile. 

Both have a limiting form in the near and far field with a smooth transition about 

some characteristic radius. 

The Hernquist profile (Hernquist 1990), suggested from observations of spherical 

galaxies, is given by. 

characterised by a length scale, T,, and an overdensity, 6. 

The work of Navarro, Frenk, and White (1995, 1996, 1997) has built a case for a 

universal density profile of the similar form, 

f hier- Syer and White (1998) (hereafter SW) claims that this form is a byproduct o, 

archical structure formation. They suggest a density profile of the form, 

The exponents, cr and 0, correspond to the exponential dependence of the density on 

radius in the near and far field. That is, for r << r,, p K r-= and equivalently, for 

r >> r,, p cc r-8. 

The forms of Hernquist and NFW are particular cases of the SW density profile. 

For the Hernquist profile, a = 1 and P = 4. Correspondingly for the NFW profile, 

(Y = 1 and ,O = 3. It is the shape of the density profile in the inner radii which 



determines a. The inner radii, however, are affected strongly by the resolution of the 

simulation. Indeed, the cluster profiles generally span only two orders of magnitude 

in radius. Any attempt to fit a smoothly varying curve over this span and then 

glean information about the near-field and far-field dependency of the profile is thus 

problematic. 

In order to circumvent the ambiguity in derived values of cr and due to the limited 

range of the fit, a non-smoothly varying form is required which is discontinuous in the 

first derivative a t  the 'knee' separating the nominal near and far fields. This suggests 

the following functional form should be fit, 

Since the profile must be continuous at r,, 

There are several predictions for the shape of the density cusp. They usually 

involve discussions of the growth of structure from a self-similar initial density dis- 

tribution. An exception to this is the result of Evans and Collett (1997). Looking at 

the stability of clusters to perturbations due to binary encounters, they showwed that 

a = 4/3 is a stable solution of both the Fokker-Planck and collisionless Boltzmann 

equations. 

Hofhan and Shaham (1985) assuines a spherically symmetric halo collapse to 

derive a radial dependency for the dark matter density of the form 

for the inner cusp and p(r)  cc T - ~  in the outer halo. A similar result is found using 

a more detailed analysis in Padmanabhan et al. (1996). Using the assumptions of 



self-similarity and stability in the form of the cluster in the non-linear regime (that 

is, the morphology of a virialised object only scales with time), Padmanabhan et d. 

(1996) derives a relation for the 2-point correlation function in the non-linear stage 

of evolution from an initial linear density perturbation with a spectral index of n, 

Since the 2-point correlation function is simply the excess probability of finding any 

particle at a distance r from a given particle, if most of the matter is already located 

in the high-density regions, it is approximately related to the density profile by 

This predicts cu = 3(n + 5) /n  + 5 for our density profiles. The same result is derived 

in a slightly different form in Padmanabhan (1996). Linear theory for the growth of 

clusters from an initial density fluctuation power spectrum, P ( k )  oc kn predicts for 

p o c r Q  in the case of r << r,. 

3 + n  
a=3(-) .  5 t n  (7-9) 

Extending the previous arguments to hierarchical clustering, Syer and White 

(1998) argues that the initial cusp form found in the first objects formed will be 

maintained despite mergers. Consider a cluster absorbing a smaller satellite. If the 

density cusp in the cluster is steeper than that of the satellite, then the satellite will 

be tidally destroyed, softening the cluster cusp. If the satellite cusp is steeper, it will 

survive tidal disruption and sink to the bottom of the cluster, steepening the cluster 

cusp. 

Based on the self-similar infall model, which excludes hierarchical clustering, Hen- 

riksen and Widrow (1998) finds p cc T-* for the inner dark matter density profile and 

r-3 in the outer limits. 
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Figure 7.1: Dark matter density profiles in the unsmoothed run (left), and smoothed 
run (right) at the time corresponding to the present. The radii have been scaled to 
R200 

7.2 The Density Profiles of The Simulated Clusters 
The density profile for the dark matter scales well between clusters in the run in which 

substructure was present (Fig. 7.1, left). When the radii are scaled to R2Oo for each 

cluster, it is clear that there are three regimes, nominally the near-field, the far-field, 

and the background, each with distinctly different power law dependencies. 

The four forms of density profiles (NFW, Hernquist, SW, and the form suggested 

here, Eq. 7.4) were fit to the scaled SPH-estimated densities of the particles for the 

unsmoothed hierarchical run (Fig. 7.2). The method of fitting minimises X2. TO 

separate the mean background density from the fitting, only the span r < was 

fit. 

All forms fit the data equally well. However, due to the limited range in radii 

over which to fit the profiles (typically only two orders of magnitude), the limiting 

cases of the near and far field are poorly discerned. In particular, the value for a! is 

poorly constrained. It is apparent that the 'knee' position, r,, and either the near- 

field dependency, a, in the hierarchical case or the far-field dependency, 4, are being 

used as free parameters to shape the smooth transition between the two regimes. The 



Figure 7.2: Hierarchical data. Fits to the mean dark matter density profile for the 
forms of Navarro, Frenk, and White (top left), Hernquist (top right), Syer and White 
(lower left), and the form suggested here (lower right). The dashed lines are the fits. 
The solid lines are the mean profiles with 10 variations bound by the dotted lines. 

rs Q P x2IN 
NFW 0.06 & 0-01 1 3 0.98 

Hernquist 0.19 f 0.01 1 4 1.00 
SW 0.0008 d~ 0.003 -7 d~ 3 2.94 -+ 0.02 0.98 
here 0.12 & 0.01 1.84 & 0.03 2.74 & 0.01 0.97 

Table 7.1: Coefficients for fits to the dark matter density profiles for the hierarchical 
case using a variety of profile forms. The SW fit, though free to fit an inner slope, 
fails to converge to a value for cu and fits, instead, a single power law. 



SW fit fails entirely to discern an inner slope. However, for the outer slope, the SW 

fit as well as  the form suggested here agree with the expectation of NFW. 

For these simulations, n = -1 which gives a = 1.5 using the predictions of Eq. 7.7 

and Eq. 7.9. This compares quite well with the results of the fit to the form suggested 

and agrees with the results of fitting to the form suggested by Syer and 'White to the 

non-hierarchical data, for which the near-field is properly fit. However, there is no 

reason that Eq. 7.9 should hold for non-hierarchical growth. 

Other groups find similar results. For a Cold Dark Matter (CDM) initial power 

spectrum, Moore et al. (1997) and Moore et al. (1998) find a = 1.4 in a high- 

resolution (softening of 5 kpc) collisionless simulation. More generally, Fukushige and 

Makino (1997) finds for the core cusp a = 1 to 2, in high-resolution collisionless 

simulations of a CDM model using the GRAPE special-purpose 3-body hardware. 

The authors reported a resolution of 1 kpc in these simulations. 

The results of the fits for all the models (Table 7.2) indicate that the NFW fits 

do as well as the less constrained fit suggested here, even in the non-hierarchical 

cases. The scale radius increases with increased smoothing for the NFW fit in the 

high resolution simulation, but not the low resolution one. The inner profiles, as 

parametrised by a, have no dependency on the degree of smoothing but do exhibit a 

great deal of scatter. The mean value for the high resolution runs is (a) = 1.8 f 0.2. 

The outer profile does tend to become less shallow as the smoothing increases. This 

is qualitatively consistent with Crone, Evrard, and Richstone (1994) who find the 

profile becomes more shallow as the initial power spectrum index, n, is increased in 

a set of pure N-body simulations of clusters. 

Similar to the situation being tested here, Huss, Jain, and Steinmetz (1998) have 

performed a set of N-body only simulations of an isolated cluster in which the amount 



Run Form r s a! 0 z 2 / N  
NFW 0-06dZO101 1 3 0.98 

unsmoothed here 0.12 3~ 0.01 1.84 3~ 0.03 2.74 3~ 0.01 0.97 
3 Mpc F V  0.10 & 0.01 1 3 0.98 
top-hat here 0.07+ 0.01 1.5 k 0.2 2.46 zt 0.01 0.98 
(7 Mpc)-' N F W  0.09 & 0.01 1 3 0.97 
k-cuto ff here 0.3 + 0.2 2.1 k 0.2 2.8 &0.2 0.99 
7 Mpc NFW 0.28 + 0.01 1 3 0.99 
topha t  here 0.23dZ0.01 1.70k0.03 2.23zt0.01 0.98 
(14 Mpc)-' NFW 0.21 dZ 0.01 1 3 0.99 
k-cutoff here 0.18 d~ 0.01 1.78 & 0.03 2.28 d~ 0.01 0.98 
low-res. NFW 0.26 zt 0.03 1 3 1.01 
unsmoothed here 0.23 & 0.01 2.08 & 0.06 2.38 & 0.05 1.01 
low-res. NFW 0.24 & 0.02 1 3 1.00 
7 Mpc here 0.26 d~ 0.1 4 k 2  2.4zt0.1 1.40 
top-hat 

Table 7.2: Coefficients for fits to the dark matter density profiles for all the models. 

of substructure is controlled via manipulation of the velocity dispersion of the parti- 

cles. From this data set, they conclude that the NFW form maintains its universality 

in non-hierarchical scenarios. 

Modelling clusters in a variety of cosmologies at very high resolution ( 2 ~ 6 ~  par- 

ticles) Thomas et al. (1998) found the density profiles of the clusters to follow the 

form of the NFW profile. These simulations were N-body only. 



Chapter 8 

MASS-TEMPERATURE SCALING LAW 

In a hierarchical clustering scenario, the process of merging 'recreates' the cluster 

morphology on a continual basis. Clusters are all being formed at the present from 

structures formed at a variety of ages which are, in turn, formed by the amalgamation 

of many other smaller structures. In a non-hierarchical clustering scenario: the matter 

in the clusters has actually collapsed for the first time only recently. In both cases, if 

hydrostatic equilibrium has been estabiished and there exist density and temperature 

profiles common to all clusters, then it can be expected that there will be a common 

mass-temperature scaling law for the clusters in a given clustering scenario. 

8.1 Derivation of The Mass-Temperat ure Scaling 
Law 
The equation of hydrostatic equilibrium relates the pressure, P(r)  , with the the mass, 

kl (r) , internal to the radius, r ,  via 

where p is the gas density and G retains its normal use as the gravitational constant. 



Combined with the perfect gas law, 

k PT p=-, 
Pmu 

(8.2) 

which relates the pressure to the temperature, T, with p, and mu being Boltzmann's 

constant, the mean molecular weight, and the atomic mass unit, respectively, Eq. 8.1 

gives, 

GM@) - _-- -- 
T P ~ u  " (;f +a$) .  

Since we have the definition of in given by 

the following relation is found: 

+=I. d l n r  

It is shown in Sections 8.3 and 8.4 that both the gas density and temperature 

profiles can be approximated by power laws away from the 'knee' radius. Take the 

exponents of these respective profiles to be n, and nr. This gives, 

In general, n, and n~ are negative. 

The properties of clusters are characterised by a radius, Rz, and mass, Mz, of 

some overdensity. This overdensity is typically taken to be around the value of the 

virial overdensity for a top-hat collapse, i.e. b = 178. However, the characteristic 

radius is not particularly sensitive to the choice of 8. Given this description, we have 

the definition 



which, when combined with Eq. 8.6, gives 

Thus the scaling relationship, T a M * / ~ ,  is found. Recall that the critical density is 

given by, 

-1 2 3(hlOO Ism s-I Mpc ) 
PC = 

8~ G (8-9) 

k m  s with h defined by its relation to the Hub& constant, H, r h100&. On the scales 

of interest, this relation may be written as, 

Significantly, the coefficient of the mass-temperature relation is dependent on the 

forms of the gas density and temperature profiles through the exponents n, and n ~ .  

8.2 The Temperature Parameter: r 
Since the temperatures of the clusters are scaled by the mass of the cluster, it is 

convenient to introduce the parameter 

Thus, the T profile for a cluster will have the same form as T ( T )  but will be scaled. 

Hence, if T ( r )  cx rnT then r(r)  rn rnT as well. 

For ease of comparison, two temperature parameters are defined. The first, 

can have its value found from the distribution of temperature versus mass for the 

clusters. 



Given that Eq. 8.10 gives T(R8)  while T,,, is related to T(r = 0); we can compare 

the two by including a factor for the scaling between r = Rb and r = 8-,,, the radial 

limit of the isothermal core. This gives for the second temperature parameter, 

which will allow us t o  compare the actual central temperatures with the central tem- 

perature to be expected for a duster with density and temperature radial profiles at  

Rs which have power-law dependencies of n, and n~ respectively as well as  isothermal 

radii approximated by R&,. 

8.3 Mean Gas Density Profiles 
The gas densities were recalculated using the SPH density estimator (Eq. 3.4) 

the smoothing lengths set to enclose exactly 1VspH = 32 particles. The distances 

the cluster centres, scaled by the overdensity radius R200 for each of the clusters, 

with 

From 

were 

found for each particle. The sample of particles comprised those that are within 2R200 

but beyond the point interior to which there were 250 particles (see Sec. 3.1). Fig. 8.1 

illustrates the sample for the clusters formed hierarchically. The cluster profiles scale 

remarkably well. Together, these points give a set of data points to  which a density 

profile was fit. The fit used was the discontinuous density profile form given by Eq. 7.4 

introduced in Sec. 7.2. The results are summarised in Table 8.1. 

There is a weak trend in which r, increases with increased smoothing. .A much 

more significant trend is for a to decrease with increased smoothing. That is to say 

the density profile becomes more shallow as smoothing is increased. The outer profile 

changes little with a power-law dependency on radius of x -2.7 which is slightly 

shallower than the density profile for the dark matter (see Sec. 7.2). 

The standard form to which gas density profiles are fit is the "8"-model (Cavaliere 

and Fusco-Femiano 1976) which describes the expected density profile of an isothermal 



Figure 8.1: Gas densities for the hierarchical run. The densities for the sample of 
particles described in the text. The radii have been scaled to R200. The total sampIe 
corresponds to about 30% of all gas particles. 

r s a! 9 xZ /?V 
unsmoothed 0.43 AZ 0.03 2.37 & 0.01 2.45 & 0.01 0.96 

3 Mpc top-hat 0.56 + 0.03 2.27 f 0.01 2.80 f 0.04 0.93 
(7 Mpc)-' k-cutoff 0.54 f 0.01 2.24 f 0.01 2.97 f 0.02 0.94 

7 Mpc top-hat 0.59 & 0.01 1.60 f 0.02 2.99 z t  0.03 1-00 
(14 Mpc)-' k-cutoff 0.23 & 0.01 1.78 i 0.03 2.34 f 0.01 0.94 

low-res. unsmoothed 0.43310.05 3 & 2  2.34 & 0.03 1-00 
low-res. 7 Mpc top-hat 0.73 k 0.03 1.54 * 0.08 3.0 * 0.1 1.01 

Table 8.1: Coefficients for fits to the gas density profiles. All use the discontinuous 
form. 



cloud. This model is used frequently in the interpretation of X-ray observations of 

galaxy clusters (Fabricant and Gorenstein 1983; Jones and Forman 1984). I t  has the 

continuous form 

The significance of ,G in this fit is that it also represents the ratio of the galaxy (or more 

specikally, collisionless baryonic component) kinetic energy to gas thermal energy. 

That  is, 

where a is the one dimensional velocity dispersion. Though there is no collisionless 

baryonic component in these simulations and the gas is well thermalised, it may 

still be interesting to see if the inferred value of P varies among the models. When 

Eq. 8.14 is fit to the mean gas profiles (Table 8.2), it is found that varies little 

among the models with a mean value of 0.82 & 0.03 for the high resolution runs. This 

compares with the value of 0.76 & 0.06 found by Tsai, Katz, and Bertschinger (1994) 

who analysed a single cluster simulated at high resolution in a CDM model. Eke, 

Navarro, and Frenk (1998) simulated clusters in a low-density universe and found a 

mean value of 0.74 + 0.15. 

8.4 Mean r Profile 
Since the cluster temperatures are scaled by the mass, it can be expected that the 

temperature profiles are also accordingly scaled. As such, the profile of the scaled- 

temperature parameter, r defined in Eq. 8.11, should be used to compare temperature 

distributions. 

A data set for the temperature parameter, T ,  was created in a manner similar 

to that of the gas density data set in Sec. 8.3. For the hierarchical case, the mean 



7-3 P x 2 / N  
unsmoo thed 0.020 * 0.001 0.808 + 0.001 0.96 

3 Mpc top-hat 0.044~k0.001 0.840&0.002 0.94 
(7 Mpc)-I k-cutoff 0.056 3~ 0.001 0.868 dZ 0.002 0.95 

7Mpc tophat  0.145 & 0.005 0.811 + 0.001 1.04 
(14 Mpc)-I k-cutoff 0.073 5 0.002 0.791 dZ 0.004 0.94 

low-res. unsmoothed 0.02 AZ 0.02 0.78 3~ 0.02 4.05 
low-res. 7Mpctop-hat 0.42&0.04 1.05 & 0.05 1.02 

Table 8.2: Coefficients for the ,&fit to the gas density profiles. 

scaled r profile is shown in Fig. 8.2. There is a great deal more scatter than for 

the density. Some of this is due to smaller clusters being satellites of larger clusters. 

The halo gas of these smaller clusters gets shocked to high temperatures which then 

are scaled by the mass of the smaller cluster. However, there is an approximately 

isothermal core that extends to = 0.2R200. The outer profile may be crudely fit by 

a power-law dependency on radius. Fits to the profiles with the discontinuous form 

given in Eq. 7.4 which has a free power-law index for the inner regime, a, find values 

of a spanning -0.05 to 0.10. For this reason, an approximate r-profile is fit using a 

form similar to the discontinuous form but with an iso-thermal core: 

where 7, is the scaled temperature (in units of T / M * / ~ )  in the centre of the cluster. 

The results of fitting this to all the temperature profiles are given in Table 8.3. 

The central temperatures are found to generally decrease with increased smooth- 

ing. However, the trend is not clear. The isothermal core radius increases slightly 

with increasing smoothing, in step with the trend found for r, of the gas-density pro- 

files, but marginally interior to r,. The power-law dependency on radius, m, shows 

a trend to steepen slightly with increased smoothing, ranging from -0.4 to -0.6. This 



Figure 8.2: The scaled-temperature parameter, r, for the hierarchical run. The sam- 
ple of particles is the same as in Fig. 8.1. 

70 &so - n ~  X2 / - !  
unsmoot hed 8.5 * 1 0.10 3~ 0.03 0.41 + 0.04 1.02 

3 Mpc top-hat 8 rt 0 1  0.10 & 0.03 0.47 d~ 0.01 1.01 
(7 Mpc)-I k-cutoff 7.52 f 0.04 0.16 f 0.01 0.57 ZIZ 0.01 1.03 

7 Mpc top-hat 4.85 2t 0.04 0.26 d~ 0.01 0.56 ZIZ 0.02 1-01 
(14 Mpc)-I k-cutoff 6.59 f 0.04 0.18 f. 0.01 0.57 d~ 0.01 1.06 

low-res. unsmoothed 9.9 d~ 0.5 0.5 rt 0.1 0.7 + 0.2 1.03 
low-res. 7 Mpc top-hat 4.0 & 0.1 0.58 f 0.02 0.92 d~ 0.07 1.00 

Table 8.3: Coefficients for fits to  the gas temperature profiles. -411 use a discontinuous 
form with an iso-thermal core. 



3 Mpc tophat 
(7 bIpc)-' cut-off 
7 Mpc top-hat 

10' 
(1 4 M~C)-' c u t 4  

Figure 8.3: The temperature vs mass for the clusters. The solid line is the fit T = 
5 . 9 ~ ~ / ~ .  

value has a strong dependency on resolution, with n~ x -0.8 for the lower resolution 

runs. As such, the profile may become even more shallow with a further increase 

in resolution. This may be due to a lack of shock-heating due to the lower particle 

numbers in the outer halos. 

8.5 Mass-Temperature Distribution 
Temperatures within 0.2 Rzoo are essentially constant (see Sec. 8.4). This distance 

was used as the cutoff radius in determining the mean cluster temperature, T,. The 

distribution of temperature versus mass is illustrated in Fig. 8.3. 

The correlation between central cluster temperature, T,, and the mass of the 

cluster is found to obey the relationship, 

where rn,, the coefficient peculiar to a run, is given in Table 8.4. The data points 

were assumed to be independent for the sake of the fit and error estimate. That is, 



Tnum 

unsmoot hed 6.8 k 1.6 
3 Mpc top-hat 6.2 1.1 
(7 Mpc)-' k-cutoff 6.2 & 1.1 
7 Mpc top-hat 4.9 & 0.9 
(14 Mpc)-' k-cutoff 5.5 & 1.1 
low-res. unsmoothed 5.8 & 1.3 
low-res. 7 Mpc top-hat 4.9 + 1.0 

Table 8.4: Mass-temperature scaling law coefficient. The coefficient, A, of Equa- 
tion 8-17 is given for the simulations. It relates the cluster temperature (in keV) with 
the cluster mass (in 1015 Ma). 

the error is, 

0 = std 

There may be a weak (lo) dependence of r,,, on the degree of smoothing in the 

initial conditions. The value of T,,, drops from 7 f 1.6 in the unsmoothed case to 

5 f 1 for the 7 Mpc smoothing. This is consistent with the trend in r, found for the 

fits to  r-profile. 

If the exponent, n = 213, in Eq. 8.17 is allowed to be free, the dependency on 

M ~ / ~  is confirmed (Table 8.5). The free exponent, n = 0.67 f 0.04, is consistent with 

n = 213. Interestingly, the dependency of Tnum on smoothing seems to disappear in 

this case. 

For Table 8.5, errors were estimated using a bootstrap approach. Fits were calcu- 

lated repeatedly using cluster data from a sample of half of the clusters: chosen ran- 

domly. The errors were determined fiom the variance of the coefficients of these fits. 

This method, of course, biases towards the more common small-mass clusters whose 

counterparts in the real world would be less readily observed. When the samples are 

restricted to the more massive clusters, the results do not change significantly. Fits 



Tnum n 
unsmoothed 5.57 & 0.50 0.61 zk 0.03 
3 Mpc top-hat 5.89 & 0.61 0.67 zt 0.04 
(7 Mpc)-' fieq. cut 6.96 & 0.63 0.75 & 0.04 
7 Mpc topha t  4.80 & 0.86 0.67 & 0.12 
(14 iLlpc)-l fieq. cut 6.96 & 0.63 0.75 zt 0.04 
low-res. unsrnoothed 5.7 * 0.5 0.66 zt 0.07 
low-res 7 Mpc top-hat 5.7 dz 1.5 0.68 zt 0.26 

Table 8.5: Mass-temperature scaling law with free coefficients. 

to the data points assume a correlation among clusters and, as such, lead to smaller 

errors than are found assuming independence among clusters (cf. Eq. 8.18). 

The value for the coeEcient, r,,,, is in agreement with the results of Navarro, 

Frenk, and White (1995), and Evrard, Metzler, and Navarro (1996) which report 

values of 5-11 and 5.20 for rmal,. Note that for this Last value, the empirical translation 

n/1200 1.2h/[jo0 has been assumed here. From the data presented here, this ratio is 

found to be 1.17 & 0.11 and a slight trend towards higher values for more massive 

clusters is noted. For the previous assumption, this trend is insignificant. Using a 

Eularian code, Bryan and Norman (1998) found a lower value of 4.7f 0.1 from a variety 

of CDM models. Various authors have. found observational evidence supporting this 

scaling law (Schindler 1996; Tsai, Katz, and Bertschinger 1994) for which they find 

T = 7.8 keV(MT,t/1015 Ma). Recently, Balogh, Babul, and Patton (1998) has shown 

that if the gas is preheated and allowed to collapse adiabatically in to  an isothermal 

potential well, then the mass-temperature scaling relationship overestimates the halo 

masses by up to an order of magnitude. This occurs for halos the size of groups 

of galaxies or less (M < 1014 Ma), which is a t  the low end of the size of the halos 

examined here. Otherwise, it recovers the relationship found here, with a coefficient 

of about 4.5. 



Tanaf Tnum 70 

unsmoot hed 7.7 dZ 0.2 6.8 3Z 1.6 8.3 * 1 
3 Mpc top-hat 6.8 & 0.2 6.2 zk 1.1 8.6 st 0.1 
(7 Mpc)-l k-cutoff 7.1 & 0.3 6.2 + 1.1 7.52 + 0.04 
? Mpc top-hat 6.4 & 0.7 4.9 & 0.9 4.85 & 0.04 
(14 Mpc)-' k-cutoff 7.1 & 0.3 5 & 1 6.59 st 0.04 
low-res-unsmoothed 7.6310.4 5.83Z1.3 9.9+0.5 
low-res. 7Mpctopha t  5.4dZ0.4 4.9*1.0 4.0st0.1 

Table 8.6: -4nalytic and numeric coefficients for the M-T relation. Given are the 
semi-analytic estimates for the scaled temperature parameter, T :  the numerical value 
from fitting to the temperature-mass distribution, and the values derived from fitting 
the mean profiles. 

8.6 Comparison With The Semi-analytic Prediction 
Recall Eq. 8.13 defines, 

We can compare ranal, to that inferred from the numerical simulations using n, = f l  

from Table 8.1 and n~ from Table 8.3. Table 8.6 summarises the results. Within 

error, the values for r from the scaling law fit, rn,,, the T-profile fit, rot and the 

semi-analytic expectation assuming hydrostatic equilibrium, ranaly agree with the 

exception of the values for the 7 Mpc top-hat model. The trend for r to decrease with 

increased smoothing is not as obvoius. In Sections 8.3 and 8.4, it is seen that np is 

invariant and n~ is anly weakly variant among the runs. It is the increase in &,, with 

increased smoothing that leads to the decrease in Tanaly (recalling that n~ is negative). 

The slight increase in n~ with smoothing tends to offset this trend. Consequently, 

within the scatter among clusters, the value for T does not vary appreciably and could 

be considered a constant among cosmologies. 



Chapter 9 

BARYON FRACTION 

Since the early hydrodynamic simulations of galaxy clusters (Evrard 1 990), the 

global distribution of the baryons has been of interest. In particular, the local en- 

hancement or  deficit of the baryons compared with the dark matter has been of 

interest since it has profound implications for inferences of the universal baryon frac- 

tion as pararnetrised by Clb. Recall that R is the ratio of the mass-energy density of 

the universe to  the critical density required to close the universe. nb is the contribu- 

tion of the baryonic component to  a, while Q, is the contribution of all mass. The 

fraction, Rb, is constrained by primordial nucleosqnthesis calculations which are sen- 

sitive to t he cosmological model. Currently, estimates vary between sources with lows 

of Rb = 0.013 & 0.003h-2 (White and Fabian 1995) to  Re = (0.020 + 0.002) h-* (Blud- 

man 1998). Since galaxy clusters are the largest objects in the universe for which 

one can observe the baryon content as well as derive the total mass, they provide the 

most unbiased samples from which to calculate the baryon fraction of the universe. 

These values for f ib  and the baryon fraction, fb, may be combined to derive R,, the 

total contribution of matter t o  a. Observations of this sort find baryon fractions of 

10 to 22% ((White and Fabian 1995; White, Jones, and Forman 1997). This implies 

R, < 0.9 for ( fb) = 0.1 and h = 0.5 while suggesting it is probably closer to  0.3 if we 



take (fa) = 0.15 and h = 0.65. However, this assumes the dark matter and hot gas are 

distributed in const ant proportions in the cluster. Consequently, an understanding of 

the concentration factor of the gas in clusters is required since it represents the degree 

of biasing. As well, this biasing can have consequences in regards to constraining the 

deceleration parameter, qo,  (Rines, Forman, Pen, and Jones 1998). 

Numerical simulations generally agree that the gas is anti-biased in clusters of 

galaxies (Evrard 1990; Thomas and Couchman 1992; Cen and Ostriker 1993; Kang, 

Cen, Ostriker, and Ryu 1994; Metzler and Evrard 1994; Pearce, Thomas, and Couch- 

man 1994; Navarro, Frenk, and White 1995; Anninos and Norman 1996; Lubin; Cen, 

Bahcall, and Ostriker 1996; Pildis, Evrard, and Bergman 1996). Some have produced 

results to the contrary (Owen and Villumsen 1997). Pearce, Thomas, and Couchman 

(1994) explains the phenomenon as a result of the merging process in which gas is 

shocked, permanently removing the energy from the dark matter component. Two- 

body heating, a numerical artifact, can exchange energy between the dark matter 

and the gas (Steinmetz and White 1997) (see Sec. 4.3). This may be a factor in the 

outer halo of these simulations. The mean interparticle separation in the outer radii 

of the halos is greater than the gravitational softening length. Consequently, Eq. 4.3 

applies from which it is apparent that the heating time in the outer radii is on the 

order of the Hubble time. 

In this chapter, the dependency of the degree of biasing on the amount of hier- 

archical clustering and, hence, merging, will be examined. -4s with the other tests 

in this thesis, this will test the robustness of the degree of biasing to extremes in 

cosmology. 

9.1 The Concentration Parameter, T 
If we define ~ ( b )  as the gas fraction in a spherical region of overdensity d normalised 



to the cosmic value, then we have, (White et al. 1993) 

where Q, and Qb are the contributions to R from, respectively, all the matter (dark 

plus gas) and from just the baryons. 

Similarly, we may define T ( r )  as the normalised gas fraction in a shell of radius 

r.  Here, r is replaced by the dimensionless parameter r / R b  since radial profiles of 

both the dark matter and gas densities are characterised by the radius, Rb when d 

approximates the virial overdensity (see Sections 8.3 and 7.2). 

It should be noted that the terms 'baryons' and 'gas' are interchangeable for this 

analysis. 

9.2 Variation of Y on Cluster Mass 
The values of r (b ) ,  when plotted vs. h.1~ (Fig. 9.1, left), firstly support the values 

found in Evrard (1997) and Eke, Navarro, and Frenk (1998) of ~ ( 8  = 200) = 0.85 to 

0.90 if the sample is restricted to the largest clusters. For the lower mass clusters, 

the clusters in the unsmoothed model have values ranging down to 0.73. There is no 

trend with mass for this model other than an increase in dispersion. The mean for 

the hierarchically formed clusters is 0.84 with the standard deviation varying from 

jz0.04 for clusters less massive than 1014 Ma to f 0.01 for clusters more massive than 

1015 Ma. For the smoothed models, the trend is for T to decrease with mass with 

little change in the dispersion. For clusters more massive than 10'' Ma, Y = 0.87 to 

0.97. 

9.3 
Since 

virid 

Below 1014 Ma, this drops down to 0.82 to 0.92. 

Baryon Concentration Profiles 
it is found that both the dark matter and gas density profiles scale with the 

radius (Sections 7.2 and 8.3), it stands to reason that the radial profile of 
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Figure 9.1: The normalised baryon haction as a function of mass. The baryon fraction 
is measured by 'Y (8 = 200) as a function of II/12w - 

the baryon concentration should also scale with radius. Numerical simulations of 

galaxy clusters using a 1-D Lagrangian code indicate that this is not true. Knight 

and Ponman (1997) reports that fb varies by a factor of about two at a given scaled 

radius between clusters that dSer  in mass by two orders of magnitude, with the less 

massive cluster having the smaller baryon fraction. This trend is consistent with the 

variation in 'Y' with the mass of the cluster seen for the clusters formed from smoothed 

initial conditions. However, since this factor is comparable to the cluster to cluster 

variation, it is justified once again to look at the mean radial profile of all the clusters 

in a model. 

The baryon fraction profiles vary considerably for those clusters formed in the 

simulation with hierarchical clustering horn those formed otherwise (Fig. 9.2, left) 

particularly around the virial radius. The baryon fraction is enhanced in a much 

deeper region (0.30 < r/R200 < 30) in the hierachical case than in the case with 

smoothed initial conditions (1 < T / R * ~  < 4) and the enhancement is almost 4 times 

greater. In both cases, the peak in the baryon enrichment occurs just beyond r = R2W. 

Towards the more central regions, the enrichment in the hierarchical clusters drops 
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Figure 9.2: The normalised mean baryon fraction profiles, as measured by T(r/Rzoo), 
for the models. On the left are (T) at the specified radii. On the right are the mean 
cumulative enrichment profiles. 

off slightly more steeply. 

The discrepancies are not so large for the cumulative profde (Fig. 9.2, right). The 

clusters in the hierarchical model are generally more depleted in baryons than those 

in the smoothed models, in agreement with the results in Sec. 9.2. The mean profile 

for the unsmoothed model compares well those of the simulated clusters discussed in 

Eke, Navarro, and Frenk (1998). Those are simulated for a low-density universe. 

It must be noted that there are large deviations in these profiles among the many 

clusters in the hierarchical scenario. These mean profiles represent mainly trends. 

For the clusters formed non-hierarchically, however, the baryon profiles are fairly 

consistent among clusters. 

For the outer radii of the mean Y profile for the unsmoothed model, it is found 

that T(r) = 0.48 & 0.03(1+ 0.7 & O.lr/RzOo), non-cumulative. For all data sets, the 

profiles are together fit by a shallower form, T (r) = 0.58 f 0.02 (1 + 0.24 f 0.1r/R200) 

The determination of baryon fraction ~rofiles of observed clusters via the depro jec- 

tion of the gas density (White, Jones, and Forman 1997) imaged in the X-ray regime 



supports the results here (Markevitch and Vikhlinin 1997b). White and Fabian (1995) 

finds from a sample of 19 clusters that the cumulative measurement of fb increases 

with radius following roughly the locus fb = 0.06(1 + R) with R in Mpc. Similarly, 

White, Jones, and Forman (1997) fits fa = (0.12 & 0 . 0 4 ) R ~ - ~ ' ~ - ~  for a sample of 28 

clusters without cooling flows. The sample of clusters with cooling flows has a higher 

central fb and a shallower profile, as would be expected. The fractional slopes of both 

these fits are steeper than that of the mean 'I' profile of d l  the models. However, 

the fractional slope of Y for the unsmoothed model is comparable with the results of 

White and Fabian (1995). 

9.4 Discussion 
These results indicate that the observed baryon fractions in galaxy clusters are under- 

estimating the universal baryon fraction by a factor of 5 to 20% and this factor is 

dependent on the cosmology. The anti-biasing of the gas is greatest in the hierarchical 

run, consistent with the picture of Pearce, Thomas, and Couchman (1994). Since 

cooling flows are not created in these simulations, this factor is not well established 

here. However, cooling flows will only alter the baryon fractions in the inner radii 

since the total mass cooled is only on the order of lo1* Ma or less. Ultimately, this 

exacerbates the baryon overdensity problem in galaxy clusters. The variation in the 

enrichment of baryons with distance from the cluster centres also makes measurements 

of fb problematic. It is crucial that the cluster be observed to large radii. 



Chapter 10 

CONCLUSIONS 

This thesis finds the overall morphology of the hot, gaseous component of clus- 

ters of galaxies robust to their formation method and relatively independent of the 

hierarchical clustering nature of structure formation. The dark matter profile, the 

mass-temperature relationship, and the baryon fraction of the clusters do not v a q  

substantially among clusters formed in hierarchical structure formation scenarios and 

those formed non-hierarchically. However, these features do vary in ways which may 

be significant to both theory and observations. In short, both the theorists and the 

observers may rest easy. More detailed conclusions foLlow, but first the results of the 

parallelisation of the code used for these simulations as well as the results of the tests 

of the hydrodynamical method used. 

10.1 Parallelisat ion of HYDRA 

A method for parallelising FORTRAN 77 code using Pthreads has been described. It 

requires minimal modification to the algorithms. The method involves using C func- 

tions as intermediaries to the FORTRAN subroutines to be executed in parallel. The 

N-body code with hydrodynamics, HYDRA, was paralIelised using the technique de- 

scribed. The modifications provide > 60% effective parallelisation on a two processor 



UltraSPARC which does not compare well with more machine-dependent implemen- 

tations but is an acceptable return considering the ease of implementation. Moreover, 

the portability of the technique has been demonstrated by the use of the code on an 

i686 platform operating the LinU operating system; the parallelised code compiled 

and ran 'out of the box'. 

10.2 Tests of SPH 
It has been shown that the smoothed particle hydrodynamics (SPH) inference of the 

density of a particle overestimates the density significantly (> 20%) if the true density 

changes across a distance equal to twice the smoothing length of the particle by more 

than 3 times. This allows the derivation of an approximate radius interior to which 

the densities estimated must be considered erroneous. For a given number density 

profile with the dependency n(r) = the critical radius is approximated by 

where & is the central overdensity and N is the number of particles in the simulation. 

Furthermore, this radius corresponds to a minimum number of particles, 

This inability of SPH to model arbitrarily steep density gradients leads to an over- 

cooling phenomenon in cosmological simulations. It is found that this phenomenon 

is endemic to a variety of implementations of SPK. 

Tests examining the drag of a cold particle through a hot gas reveal that this 

is not sensitive to the form of the symmetrisation of the equations of motion in 

the implementation of SPH, nor is it sensitive to the form of the artificial viscosity. 

However, the inclusion of the artificial viscosity reduces the drag due to a reduction in 



the amount of interpenetration of particles that the viscosity provides. The inclusion 

of a shear-correction term enhances beneficially this effect. 

10.3 Hydrostatic State of Clusters 
The clusters of galaxies simulated for this work are shown to be in hydrostatic equi- 

librium to beyond their virial radius as indicated by RZOO. At this radius, the ratio of 

the actual gas pressure to the gas pressure expected, given the mass distribution, is 

found to be within 20% of unity for the majority of the clusters. 

10.4 Universal Density Profile 
The density profile form of Navarro, Frenk, and White is found to fit the mean dark 

matter density profiles of the clusters of all models studied, indicating that the m i -  

versa1 profile is not a by-product of hierarchical clustering. This profile form, however, 

fits only marginally better than the Hernquist profile. Indeed, the discontinuous form 

suggested here generally fits as well, if'not better, than the NFW form. However, it 

has more free parameters. The discontinuous form indicates that the inner regimes 

of the density profile are approximately dependent on radius as p cc r-'v8, and inde- 

pendent of the degree of smoothing of the initial conditions. The outer regimes, in 

contrast, do seem to be dependent on smoothing. The profile becomes more shallow 

as the degree of smoothing is increased. The dependency varies from p cc r-2-7 in 

the case of the hierarchical, unsmoothed case to p oc T - * - ~  for the 7 Mpc top-hat 

smoothed model and the (14Mpc)-' frequency cut-off model. 

10.5 Mass-Temperature Scaling Law 
The mass-temperature scaling law (Eq. 8.17) is dependent on the degree of hierarchical 

cluster formation, albeit at a la level. The temperature parameter T~,, varies from 

7 f 1 in the unsmoothed case to 5 31 1 in case of the 7 Mpc tophat  run with the 

intermediate smoothing models falling in between. The trend is consistent to the 



expectation of hydrostatic equilibrium. The expected value, ranalV, decreases from 

7.7 f 0.2 to 6.4 f 0.7 over the span of smoothing. However, there is a systematic 

discrepancy between the expectation, ranal,, and the numeric, T,,,, which increases 

with the amount of smoothing. The results of the fits to the profiles indicates that it 

is the variation in the isothermal radius that explains the variation with smoothing. 

The isothermal radius increases as the degree of hierarchical clustering is reduced. 

This occurs in step with the gas density profiles which become shallower in the inner 

radii- 

10.6 Baryon Fraction Bias 
It is found that the baryons are anti-biased in clusters of galaxies and this biasing 

is dependent on the presence of smoothing in the initial conditions. The bias pa- 

rameter 'Y = 0.85 for the hierarchically formed clusters. For the clusters formed 

from smoothed initial conditions, T E 0.92, indicating less of an anti-bias. For 

the cluster formed hierarchically, the baryons 'pile up' in a deep region spanning 

0.30 < T / R ~ ~ ~  < 30. This implies that measurements of the baryon haction of clus- 

ters are sensitive to the radius outward to which the baryon content is integrated. 

10.7 Future Work 
Higher resolution studies are always beneficial, if not to fine-tune the results, then to 

give further support. Performing the set of simulations with another code would also 

be educational. 

As suggested in Chapter 9, two-body interactions can transfer energy between the 

dark matter and the gas in the outer halos of the clusters. This numerical heating 

may be affecting the baryon fractions in these regimes. A solution to this problem is 

not obvious, as increasing the gravitational softening length, which suppresses two- 

body interactions, dramatically decreases the efficiency and effective resolution in the 

higher density regions. One could wish for a softening length that varies in space in 



a manner similar to the SPH smoothing Length, but this does not conserve energy. 

More work is required to determine the parameter space in which SPH produces 

the overcooling phenomenon. Similar work needs to be done for the drag experienced 

by a cold clump moving through a hot medium: as well as determining precisely why 

the clump experiences such a drag. In both cases, domains were selected which were 

known to produce the undesirable effects. Little was done to delineate this domain. 

The question of energy transfer between the dark matter and the gas is left un- 

explored. The answer to whether the presence of substructure enhances this transfer 

may explain the variation of the gas profiles, beyond the gas's response to the different 

dark matter distributions which formed hierarchically. 

10.8 What it all means 
The NFW profile has been established to be a robust description of the dark matter 

density profile, independent of hierarchical clustering and, by extension, independent 

of the assumed cosmology. This strongly implies that dark matter in galaxy clusters 

is distributed in this manner. If detailed mass maps of clusters using gravitational 

lensing observations indicate that the mass is not distributed in this fashion, it will 

indicate that either numerical simulations are missing some significant physics or the 

Standard Model is flawed in a fundamental manner. It will be difficult to attribute the 

discrepancy to the assumed initial density perturbation spectrum within the Standard 

Model. Unfortunately, this also implies that the observed mass density profiles of 

clusters will tell us little about this initial perturbation spectrum. 

A similar conclusion can be made for the mass-temperature relation for clusters 

of galaxies. Fortunately, there is already support from the observations of clusters for 

this relation. There is a lack, however, of a calibration between the observed mass- 

temperature relation and that inferred from numerical simulations. The simulations 



may be missing some physics, such as star formation feedback, that can be expected to 

modify the temperature of the cluster gas. The form, itself, is robust, and independent 

of the initial perturbation spectrum. 

Observations of the baryon fraction in clusters will be hampered by the biased 

distribution of gas in clusters reported in this thesis. Measurements must be made 

to more than twice the virial radius, sampling regions for which accurate densities 

of both mass and gas are difficult. This uneven distribution is not as significant if 

there is any degree of smoothing, implying that any attempt to formulate a correction 

factor will be dependent on the cosmology at  the 10% level. Fortunately, this is at 

the present level of measurement error. 
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