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Nomenclature

Note that matrices and vectors are in bold print and scalars are in normal print.

d

Op;

a;

logarithmic decrement
angle between link and line to center of gravity of ensuing links

absolute local angular position

absolute local angular velocity

absolute local angular acceleration

absolute angular position

absolute angular velocity

absolute angular acceleration
damping ratio

absolute posture angular position

absolute posture angular velocity

absolute posture angular acceleration
drive torque

natural frequency
Coriolis and centrifugal matrix

length of the link

1X



Cisj

Ci

DOF

FFT

Nomenclature

damping matrix

cosine of the posture angle

cosine of the sum of posture angle Q; and Q;
damping coefficient of the joint
displacement vector

Degree of Freedom

Fast Fourier Transform

gravitational constant

link or joint number

moment of inertia of the link

Jacobian transfer matrix

Jacobian transfer matrix

stiffness matrix

joint stiffness

axial coordinate for the centroid of the link
inertia matrix

mass of the link

component ii of the corresponding matrix

number of links



Nomenclature

joint coordinate

posture coordinate (angular)

posture angular velocity

posture angular acceleration

local coordinate (angular)

local angular velocity

local angular acceleration

Rotation matrix

sine of the posture angle

sine of the sum of posture angle Q; and Q;

transformation matrix
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ABSTRACT

The author investigates the dynamics of very flexible manipulator structures and
studies modes of vibrations for a wide range of manipulator postures. The study includes
postures for which vibration modes become decoupled by the manipulator joints, i.e.
individual modes involve only motion of a single joint. The research originated from a
study of dynamics of large space manipulators that are very flexible and that on earth-
cannot support their own weight. The reported study is based on a theoretical analysis,
but focuses on an experimental verification of the theoretical findings using scaled down
physical models of space manipulators. The models exhibit similar dynamic properties
similar to the space manipulators including very low natural frequencies. The physical
models were designed, fabricated and tested. A low frequency harmonic exciter was also
designed and fabricated. The non-contact lab measurements were based on video image
processing. A photo-geometric method was adapted from Scion Image and ATI Capture.

The experimental data were compared with computer simulated results.
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CHAPTERI 1

INTRODUCTION

1.1 Background

Space manipulators are designed to have a large range of reach and they are used
to execute similar tasks that construction cranes, on earth, perform. Because in space
there are essentially no gravity forces, the manipulators are designed as very long fiexible
objects. Due to the flexibility and length of these manipulators, they exhibit long lasting
free oscillations at very low frequencies especially while handling pavioads. The
manipulators are mounted on space structures or space vehicles that experience constant
vibrations due to attitude and orbit adjustments, crew movements, electric motor motion,
etc. Effective control of the manipulators is necessary, but challenging to obtain due to
the flexibility. Therefore, a detailed knowledge of the dynamics of the space manipulator
structure that is attached to a vibrating base is very important. Understanding the

dynamics will allow for more effective control.

This reported study uses physical and numerical models to simulate flexible

manipulators for practical and economical reasons.

1.2 Physical Methods of Simulating Space Manipulators

Numerous methods have been used to physically model structures that behave as

if they are free of the effects of gravity. The following table includes some of these



methods and their advantages and disadvantages.

Method

Advantages

Disadvantages

Test model placed in liquid

(ex. water) [1]

Long cables that hang from
above and support the
weight of the test model [2]

Test model floating on bed
of air (similar to an air
hockey table) [3]

Passive Constant Force

Mechanism [4]

The liquid helps support the
weight of the model and
allows for low frequency
vibration.

3-D testing is possible.

Easy and inexpensive.

Easy access

Small safety hazards

With long enough cables
3-D motion is possible.
If large enough a full-scale

model could be tested.

The damping is very high.
All equipment must be

submerged.

The cables need to be very
long to limit their effects.
Only 2-D testing possible.
High bay needed.

Expensive.
Added masses of the air
floaters.

Only 2-D testing possible.

Expensive.
Added inertia, stiffness and
damping.

1.3 Flexible Space Manipulators

Most of the work that has been done flexible space structures has centered on the

dynamics of motion of these structures and control issues [5]. Time varying studies [6]

have also been done based on dynamic forces of the manipulator. How adding a payload

to the end of a space manipulator effects attitude controlled satellites [7] and 'free



floating' satellites [8] has also received attention [9]. This thesis studies the effects of
base vibrations on space manipulators in a constant posture. Mobile manipulators

affected by base vibrations have been studied [10], but not expanded to outer space.

1.4 Scope of the Project

The scope of the project involves the following:

e Design, fabrication and testing of a scale model of a space manipulator structure that
would have the 'free space' quality of motion in 2-D i.e. gravity not affecting the
dynamics of the structure. The manipulator is based in the horizontal plane.

¢ Design of a low frequency harmonic exciter for frequencies below 3 Hz.

e Design and integration of an economically feasible optometric system for non-contact
measurements.

¢ Development of mathematical model for vibrating manipulators in a plane.

e Numerical simulation of the dynamic behavior of manipulators for wide ranges of

postures.

1.5 Objectives of the Thesis

The objectives of the thesis are as follows:

1. To study the modes of vibrations of a flexible manipulator that varies their geometric



posture over a very large range.

2. To investigate the possibility of mode separation by the manipulator joints (individual
modes involving only a single joint).

3. To design and fabricate a physical model that represents a space manipulator in planar
motion with minimal damping.

4. To design a low frequency harmonic exciter with a high harmonic fidelity.

5. To develop and fabricate a non-contact method of measuring motion of a very
delicate model

6. To integrate a laboratory setup that' would include sensors, manipulator and software.

7. To develop mathematical models for the study of physical model motion.

8. To investigate experimentally, numerically, and analytically properties of flexible

structures that vary their geometric postures.

1.6 Layout of the Thesis

The main body of the thesis is essentially divided into three parts. The first part is
contained in Chapter 2, which deals with development of the theory. The second part is
contained in Chapters 3 and 4, which deal with design and experimentation of the

physical model. The third part, which is in Chapter 5, deals with numerical simulation.

The thesis ends with Chapter 6, conclusions and recommendations for extending
the research. Figures are found at the end of each chapter. The Appendices contain long

derivations, simulation files, calculations and parameters.



CHAPTER 2

THEORETICAL ANALYSIS

2.1 Introduction

This chapter deals with the derivation of equations of vibratory motion for a
slender manipulator. The derivation is based on separation of coordinates: posture
coordinates for changing the posture and local coordinates for the elastic oscillations. It is

assumed that the elastic motion takes part only in the joints.

2.2 Equations of Motion

The derivation of the inertia and inertia terms in the equations of the motion is
based on a procedure outlined by Spong and Vidyasager [11]. In this study, the motion
coordinates are separated into two parts. The two separated motion coordinates
components are: (1) geometrically large posture motion coordinates Q and (2) smal}
oscillatory motion coordinates q. A total coordinates is a sum of Q and q. The
assignment of coordinates is illustrated in Figure 2.1. The derivation of the equation of
motion was part of this project and details of it are collected in Appendix I. In this study
the oscillation of the arm q is studied when the posture is not changing. The equation of

motion is of the following form:

Mgq+Agq+Cq+Kqg=0 2.1)



M is the inertia matrix, A is the Coriolis and centrifugal effect matrix, C is the damping

matrix and K is the stiffness matrix. The angular accelerations, velocities and

displacements are represented by the vectors q , q and q respectively.

The following list of terms represents the matrix components:

M= myli? + my(a;? + L2 + 22112Cz) + my(I3(1s + 22C3 + 2 Cae3) + 2(13C3 + a2

+a;Cy) + a(13Cas +a:Ca+a)) + 1+ + 13 (2.2)

M2 = My = ma(ly? + a112C2) + my(ls(l3 + 3,C3 + a1Ca43) + 22(13Cs3 + a2 + 21C2))

+L+1; @2-3)
M3 = M3 = ms(l3(ls + 22C;5 + 2,C243)) + I (2.4)
Mz = mol? + m3a? + msbs® + 2mya; bCs + L + I (2.5)
Mz = Ms;= mls® + msap hCs + I3 (2.6)
M3 =msly® + I3 2.7)
A = (-ma1,S; — m3a11sS23 — M3a12282)q; + (-M32213Ss - m3ailyS23)qs (2.8)
A= (-mpai15S; — m3a12;S; — m3a1l3S2)qs + (-m2ail2S; —
m12;25S; - m32;13823)q2 + (-m3azl3S; - m3a113S23)qs3 (2.9)
A3 = (-m3a;138; - mya 1 1S2)q) + (-mM3azl;S3)qs (2.10)
Az = (-m3a11;S; — m3a12,S2 — myailsSx)q + Ya(-miailsS: -
@.11)

m;3a,2;S;)q; + (- m32213S3)q3



A2z = (-m;32a;13S;3)qs3
Az = (-m3a213S3)q + (-m3a213S3)q2 + (-m32213S3)q;3
Aj; = (-m32213S; -m3a;13S23)q + (-m3a21383)q2

As; = (-m3a:13S;3)q; + (-m3a;13S3)q:

A33=0

Cu =25\Mi Ky

Cz; = 28\/M2:K2,

Cs3 = 25\/M33K3;
Ci2=C1=C13=C3;=C23=C5,=0
Kii=K»=Kp=k

Ki2 =Kz =Ki3=K3; =K23 =K3;, =0
Cz2=cos (Q2)

Cs =cos (Q3)

Sz =sin (Q2)

S3 =sin (Q3)

Ca2+3=cos (Q2 + Q3)

S2+3 =5in (Q2 + Q3)

(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)

(2.20)
2.21)
(2.22)
(2.23)
(2.24)
(2.25)
(2.26)
(2.27)

(2.28)

where a; is the length of the link, }; is the axial coordinate for the centroid of the link, ; is
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the central mass moment of inertia, m; is the link's mass, & is the joint damping ratio, and

k is the joint stiffness. A complete derivation can be found in Appendix L.

The force from the motion of the base link is known as the kinematic excitation.
The kinematic excitation is the force of the products of the first link's (1) inertia
parameters and acceleration, (2) Coriolis and centrifugal forces and of (3) the product of
the stiffness parameters and displacement. Moving the kinematic excitation to the driving
force side of the equation leaves a series of 2 x 2 matrices that contain the system
parameters for a two-degree of freedom system. By expanding the Coriolis and

Centrifugal forces and reorganizing back to the original form it is possible to write

Ajz = -2m;a,13S3(qs3) (2.29)
Az =— m32:13S3(q3) (2.30)
A3z = 2m3a;15S3(q2) 231
A3 =0 (2.32)

where A,; from Eq. (2.29) now becomes A;; in the newly formed 2x2 Coriolis and _
Centrifugal matrix. The terms A3, Aj; and A3 similarly become A2, Az and A

respectively in the newly formed 2x2 Coriolis and Centrifugal matrix.
The Coriolis force is now represented by A,; ;. The terms Az; 3 and A3, q2 represent
the centrifugal forces. In 2-DOF terms the Coriolis force is represented by Ay q;. The

terms A2 q2 and Ay q, represent the centrifugal forces.



Andi Anq
Anqn O

A= (2.33)

Note that the equations of motion are dynamically coupled by the inertia matrix M and
the Coriolis and centrifugal matrix A. To decouple the matrix the off-diagonal terms have
to vanish [12]. The matrices C and K are diagonal for the chosen set of coordinates and

therefore they do not couple the equations of motion.

2.3 Decoupled Modal Vibration

Selection of a proper posture of the arm diagonalizes the inertia matrix M in
Equation (2.1). For the system parameters listed in Appendix I this occurs when Q; =
131.38 degrees (see Appendix III for calculations). For most of the range of the
manipulator postures all joints take part in modal motion (resonance). The
diagonalization of the inertia matrix is the major factor in limiting the vibration to only a
single joint for each mode of vibration. The equations of motion are almost decoupl_ed
when diagonalizing the inertia matrix. There is still some coupling caused by the
centrifugal and Coriolis terms. The decoupling posture angle Q; was located using a
spreadsheet and varying Q- until the diagonal terms of the inertia matrix were relatively
negligible. Eigen vectors and mode shapes gave the same results in locating the

decoupling posture angle Q; for the given parameters (see Appendix II).

This suggests that there are two distinct vibration modes in terms of local joint
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coordinates q. In the first mode the lower and upper arm oscillate as a single rigid body
with the lower arm angle q, oscillating and the upper arm angle q; remaining unchanged
(see Figure 2.2 for illustration.). In the second mode the lower arm angle remains
unchanged, therefore the lower arm does not move and the upper arm moves with the

angle q: oscillating (see Figure 2.3 for illustration).

Inserting values for the system parameters, and assuming negligible damping, the

decoupled equations have the following form for free vibration:

-7.46 42 -3.73 Q2

[9.93 0
3.73q 0

v 10 (2.34)
0 3.28] (107)§ + ]q=°°

_4 -
(104 q +0.326[0 X

The equation formed by the top line of Equation-rz.Bi is a function of q, and its
first two time derivatives and q; . The equation formed by the bottom line of Equation

(2.34) is a function of q and its first two time derivatives and q, . Only the joint
velocities couple these two equations. The main coordinate (acceleration, velocity and
displacement) of an equation is the coordinate associated with the diagonal term of the
inertia and stiffness matrices, i.e., for the top line of the equation q, is the main
coordinate. The coriolis matrix A is not constant, but it is a function of velocity products.
The coupling velocity-terms involve other velocities than the main coordinate velocity.
The off diagonal terms of the matrix A still couple the two equations, but have very little

effect on the motion because:
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1. They are proportional to velocities which for very flexible manipulators are small.

2. The velocities of the coupling coordinates become smaller when the inertia and
stiffness matrices are diagonal because the main coordinates significantly
dominate the vibration modes. The inertial forces and Coriolis and centrifugal
forces were plotted to demonstrate the domination of the inertial forces on the

system (see Figure 2.4)

3. When the entries of the matrix A are multiplied by the velocity vector q they
produce squares of the coupling velocities making the results even smaller. The
diagonal terms represent the Coriolis terms and the off-diagonal represent the

centrifugal forces.

Hence an assumption can be made that the terms of matrix A approach zero and the
equation of motion can be linearized. Experimental and simulated results verified this

assumption.

Assuming the matrix A approaches to zero the two equations of motion become

. 2.35
.00993 q; +0.326q; =0 (2.35)

and

. 2.36
.00328 q; +0.326q> =0 (2.36)
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From these equations the two natural frequencies are calculated to be 0.911 Hz

and 1.59 Hz (see Appendix IV for calculations).

All the natural frequencies of the joint angle Q> varying from 0 degrees to 180
degrees were calculated at 1 degree steps (see Figure 2.4 for plot and Appendix II for the

M-File).
2.4 Variations of Derivations

Using energy methods and the same coordinate system Q and q produces the
same equations of motion as Equation (2.1) and its subsequent parameters (Eq. (2.2) —-
Eq. (2.28)). The equations can be found in the Ph.D. thesis "Vibrations of Time-Varying

Mechanical Systems" presented in 1993 [6].

Another derivation was done using absolute coordinates. These coordinates were
transferred into the same coordinates used in the body of this thesis by means of a

Jacobian transfer giving the same results. This derivation is found in Appendix IV.



13

! Link 3

Link 2

Link O X

Figure 2.1: The assignment of coordinates. Motion coordinates q and posture coordinates Q.
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CHAPTER 3

DESIGN OF THE PHYSICAL MODEL

3.1 Design Criteria

To verify the theoretical studies a laboratory experiment was conducted. To facilitate
the experiments a physical model of a space manipulator was developed. The objective was to
build a physical model that is flexible, lightly damped, has adjustable posture and produces

vibratory motion that is not affected by gravitational forces.

The concept of the design was to build a self-supporting structure. The links were to
support the weight of the system. They were to be measurably stiffer than the joints. The joints
were to support the weight as well, but they were to be flexible in the horizontal plane only.
The damping of the joints was to be very light. To meet the criteria of very low damping the

joints were designed with flat springs.

3.2 Joint Design

In order to model the flexibility of a manipulator joint a flat spring joint was used.
The spring was mounted vertically with the edges pointing in the z-direction, i.e. the axis
of rotation (See Figure 3.1). The spring was sufficiently rigid in the edge-on plane (x-z
plane) so that its flexibility could be ignored in this direction. The flexibility of the joint

was only in the x-y plane that was perpendicular to the spring’s surface. This rigidity
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provided the support of the weight of the arms in the vertical planes while allowing
lightly damped motion, in the horizontal planes, free of gravitational forces. In this

fashion, the weightlessness was simulated for motion in the x-y plane.

The flat springs were mounted in specially designed hinges (see Figures 3.2 and
3.3). The main functions of the hinges were the following: (1) to contain the springs, (2)
to join the adjacent arms and (3) to allow alignment of the flat spring surfaces with the
centroids of the arm. The flat springs needed to be aligned with the manipulator centroids
to avoid their twisting. Hence, the first spring, supporting the lower arm was aligned with
the combined centroid of the lower and upper arm. The second spring, supporting the
upper arm, was aligned only with this arm's centroid. The static gravitational loads create

only bending moments in the on-edge planes of the springs, i.e. the direction of their high

rigidity.

The hinges were clamped to the ends of the flat springs using screws. The hinges
were symmetrical along the vertical axis so as to not alter the moments of inertia when

their alignment was changed.

The joint was designed with adjustable stops that would ensure that the
displacements would not become so large that the bending in the springs would cause
permanent deformation or damage. The hinges were made from aluminum, The flat

springs were from rolled steel with a thickness of 0.2286 mm (9/1000 of an inch).
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The spring constant for the flat spring showed little variétion as experimental tests
demonstrated for the ranges of +/- 0.17 radians encountered in this application. The
spring constant was established experimentally, by applying known forces and measuring
the spring displacement (see Figure 3.4). The results gave a spring constant of 0.326 N-

m/rad (see Figure 3.5).
3.3 Design of Links

The links were designed to support the weight of the system and to be more than
800 times stiffer than the joints in the x-y plane. The dimensions of the links are shown in

Figure 3.6. The connection of the links is shown in Figure 3.7.
3.4 Design of Harmonic Exciter

In order to excite the system low frequencies a yoke mechanism was designed. It
was designed to have an adjustable stroke from 20 mm to 80 mm. The yoke mechanism
involved a translational follower attached to a tension spring with a stiffness of 100 N/m

this in turn was attached to the manipulator model's base, the first link (see Figure 3.8).

The yoke frame was made of aluminum. It included a round shaft supported by
ball bearings. The round shaft had a flexible coupling on one end to attach it to a gearbox
and motor. The opposite end of the radial shaft had a radial slot for attachment of a

rectangular arm. The arm had a roller that drove the translational follower (see Figure
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3.9). An old photocopier sliding frame was used as the follower. The yoke mechanism
was clamped to the copier frame. The spring was sufficiently stiff to avoid separation due
to acceleration forces, but flexible enough to ensure that the gearbox and motor provided

enough torque in the yoke to maintain a constant angular velocity.

3.5 Assembly of the Physical Model

The assembly of the physical model involved three links and two joints. The first
link was the base and it was clamped by a vice to a three point leveling board. A point
mass was added to the end of the last link, link 2, to ensure the center of gravity is at the
center of the link. This is due since the mass of the joints is equally divided among the

connecting links. The dimensions of the leveling board are shown in Figure 3.10.
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Figure 3.7: The connecting of links and joints
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CHAPTER 4

EXPERIMENTATION

4.1 Setup of the Experimentation

To verify the theory that modal motion would be limited to a single joint for the
individual modes the physical model of a manipulator was tested. To view the vibration
modes of the physical model the system was excited at the base by a harmonic force at
one of the natural frequencies. The frequency was tuned such that each of the two mode

shapes was clearly observed and separately measured for S to 10 seconds.

The test setup involved the arm attached horizontally to a mounting board by a
vise (See Figure 3.10). The mounting board had three adjustable points for leveling.
Leveling was important to avoid gravity forces in the plane of motion and torsion of the

spring joints.

The arm was excited by means of the yoke mechanism. This setup provided a
harmonic excitation. The force was varied by a variation of the yoke displacement and
the frequency was varied by the drive motor speed. The yoke was driven by an A/C
motor (Fracmo model # 43109088) with a variable speed control (Techequipment, Type
No. E3, Unit No. 126) and a 50 to 1 ratio gearbox. The motor had a speed range from 100

rpm to 5500 rpm.
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4.2 Collection of Data

Another encountered technical challenge was the collection of vibratory data that
would accurately describe the motion of the links. The addition of conventional
accelerometers would change the mass distribution. Connection wires to a central

processing unit would also affect the response of the system.

One possibility was to use strain gages placed on the flat springs of the joints, but
attaching the strain gages to the flat springs presented a complication. The magnitude of

displacements needed to view vibration modes, were too large for the gages.

Laser reflecting was too difficult to implement, as there was a two-dimensional

motion and accurate tracking of the link tips was a far too complicated problem.

Commercial options, such as Optitrac, which used sensored targets and a camera
with three separate lenses to capture 3-D motion, were not financially viable. The

approximate cost would be about $60,000 [13]
Methods used in bio-mechanics involving a special camera and reflectors were
not accurate enough for this application, but led to development of the method that was

eventually used in the project.

The chosen method of motion measurement involved a high quality 8mm analog
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video camera, a PC witha ﬁdm capture card, photo targets and video processing
software. To capture the motion of the linkage without affecting the mass and the inertia
of the system, only very light video targets were placed on the linkage. They added
0.23% of mass and 0.03% of inertia to each link. The center of gravity of the end link
moved by 0.23% since the target on the tip was twice the mass of the added target mass at
the other end of the link. The video camera was placed seven and a half feet directly
above the arm. The view window of the camera was zoomed to allow for maximum arm
view size while ensuring that all the necessary motion was recorded (see Figure 4.1 for

system setup).

An analog video camera (Sony — CCD TVR9S5) and a PC capture card (ATI - All
in Wonder Pro) along with software (ATI Player) were used to record frames at rates of
28 and 29 frames/sec. Due to the limitation of the PC and capture card higher frame rates
could not be used. At a high frame rate the majority of the time, while capturing video of
the motion, frames were dropped; however, if enough runs are done it is possible to
capture a run where no frames are dropped. It was also important to keep the frame size
(the number of pixels) as large as possible without affecting the capture frame rate. This
is why the data was captured at two different rates. These recordings were extracted by a
software package (Microsoft Videdit) and transferred into individual DIB files for each

frame.

Black disks of a light weight bulletin card, with a diameter of an inch, were

mounted on to the model. The centers of the disks (0.3 grams) were aligned with the
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centers of the joints. The disks served as photographic targets (see Figure 4.2).

Using Scion Image software each frame was converted into a black and white
image with no shades of gray (see Figure 4.3). This conversion was done by controlling
the contrast level. Every pixel that had light intensity above the contrast level was white
and every pixel below that level was black. The images of the photographic targets were
extracted by varying the contrast of the recorded frames. At the correct contrast level only
the photographic targets were present in the image. This procedure assured that only the
images of the moving targets were saved to a file. The Scion Image software was used to
analyze the images of the targets as large sets of pixels and the centers of black density
(center of the disk) were computed. This provided an accurate location of the marked
points on the system. Knowing the captured video frame rate and the frame number, the
positions of the targets were plotted versus time. The upper left corner of the picture
frame was used as a reference point since there was no relative motion between the

camera and the mounting platform of the vibrating model.

4.3 Natural Frequencies

The first two modes of a two-link manipulator model were investigated in the
experiment. The system was separately excited at its two natural frequencies and then it
was left free to vibrate. The system was excited and the frequency varied until the first
mode was observed. This occurred at a recorded frequency 5.7 rads/s (0.906 Hz). This

result agrees to within + 0.52% with the expected computed frequency of 5.73 rads/s



(0.911 Hz) of the first mode. The second mode was observed at the frequency of 9.95
rads/s (1.58 Hz) that is within £ 0.20% of the expected result that was a computed
frequency of 9.97 rads/s (1.59 Hz). The displacement of the joints for each corresponding

mode was plotted in angular and tip displacements (see Figures 4.4, 4.5, 4.6 and 4.7).

The input frequencies were measured by counting the number of cycles of the
follower of the excitation yoke for three minutes. For the first mode 163 cycles were
visually counted over three minutes. For the second mode 285 cycles were counted over

three minutes.

The output frequencies in the first mode were o, for joint 2 and 2, for joint 3.
The presence of 2w, suggests there is non-linearity in the system. This is further
discussed later on in the thesis (Chapter 5). The output frequencies for the second mode
were oy for the joint 2 and ©,> for joint 3. The displacement of joint 2 in the second
mode does not appear smooth. This is due to the small size of the displacements of joint
2. The displacements of joint 2 were so small that they could not accurately be measured,

but the measurements still gave a general idea of the motion.

4.4 Damping

For the obtained results it was possible to analyze the decrease of amplitude over
time and determine the damping of the system (see Appendix III). The value for the

damping ratio £ was found to be 0.00175 + 0.00003. The ratio £ was calculated from
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three different numbers of cycles (25, 35 and 50) between measurements and then the
average was taken. These measurements lead to the computation of the damping

coefficients ¢, and c; being 0.000197 and 0.000117 respectively.

4.5 Force Orientation

The forcing function was supplied at different orientations. This only affected the
rate of increase of the amplitude of the system output. Once enough time had passed for a

sufficient displacement in the link was reached, it was left to vibrate freely.

This demonstrated that direction of the forcing function affects the rate at which
the amplitude of displacement increased. The angle of orientation of the forcing function
affects the horizontal and vertical components of the force. As expected the rate of
increase of the amplitude became greater as the orientation of the forcing function
approached being perpendicular to the link in motion for the corresponding mode being

excited.

It was observed that as the orientation of the input excitation approached being
applied in a direction parallel to the link for the corresponding frequency, there was a
decrease in the rate of increase in the amplitude of displacement. There was not an angle
of orientation found that changed from the expected motion of links, namely modal
motion being limited to a single joint. This result was expected and agrees with accepted

vibrational theory [14].
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Figure 4.1: The experimental setup to capture the displacement of the link tips.



Figure 4.2: An actual captured frame. Scale 1:2.

Figure 4.3: An actual captured frame for a set light intensity threshold level displaying
only the black targets.
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Figure 4.6: Trace of the joint motion for the first mode.
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CHAPTER S

NUMERICAL SIMULATION
5.1 Numerical Simulation

Numerical simulation of the system was completed using MATLab and
SIMULINK. An M-file (see Appendix II) was created to compute the system parameters
for each posture using Equations (2.2) — (2.28). By varying the joint angles the mass
matrix was varied thus varying the natural frequencies of the system. The remaining

system parameters: damping, joint stiffness and coriolis were also calculated in this file.

For example using the parameters of the physical model three equations of motion

were attained for configuration of the second joint angle Q, = 131.38°. They are

0.0563q; + 0.0215q; - 0.0032845 - 0.00744q, 2 - 0.0149q, q; - 0.00372(q2 )°

+0.0149q: q3 + 0.00744(q3 )> + 0.326q; =0 G.1)

0.0215 g + 0.00993§; - 0.00774q; ¢ + 0.00774q2 45 + 0.00372(q; )2 +0.00372(qs ) 2

+0.326q2 =0 | (.2)

0.00328q, +0.00328§; + 0.00744(q; )* - 0.00372 (42 ) > + 0.326q; =0. (5.3)
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Using software (SIMULINK) and a block diagram method, a simulated model of

the physical model was created (see Figure 5.1).

5.2 Method of Numerical Simulation and Results

A numerical sinusoidal force input was used to excite the simulated system in
order to calculate the response of the model. The numerical sinusoidal excitation was-
equivalent to the physical excitation used to excite the physical model. The base link was
treated as the other links in the system instead of as cantilever beam. It was treated as a
link connected with a joint that connected to the ground. The joint connected to the
ground was given a stiffness equivalent to the stiffness of the cantilever beam. The
excitation in the numerical model was a sinusoidal torque that was applied to the base
joint. The parameters were calculated for the case where the mass matrix becomes
diagonal. The variations of the first two natural frequencies with changing posture angle
Q- were plotted (see Figure 2.4). The third natural frequency was in the range of 10 to 25
times higher than the second natural frequency. For the decoupling posture of Q2 =
131.38° the third natural frequency was ®,3 = 212 rads/s as compared to @wy2 = 9.97 rad/s.
The numerical model was then excited at the first natural frequency for a limited time.
The input force was stopped and the system was left free to vibrate. The simulation was

then repeated at the second natural frequency.

The computed joint displacements and tip displacements were saved and plotted

(see Figures 5.2, 5.3, 5.4 and 5.5). The numerical results were compared with the free



vibration results of the physical model.

5.3 Comparison between the Physical and Numerical Models

The results of both the numerical simulation and the laboratory experiments were
compared in three different manners. The first comparison was in terms of joint
displacements (see Figures 5.6 and 5.7). The second comparison involved tip
displacements (see Figures 4.6, 4.7, 5.4 and 5.5). The third comparison was done by
taking the Fast Fourier Transform (FFT) of the motion results and comparing the

frequency components (see Figures 5.8, 5.9, 5.10 and 5.11).

When the system was excited at the first natural frequency o, peaks were seen in
the frequency spectrum at @, and 2w, in both the experimental and simulated results.
The spectrum for the first link showed the dominant peak at ®q;. The super harmonic
oscillation at 2wy, is due to the slight non-linearity of the system [15]. The spectrum for
the experimental results for the first link also showed a slight peak at 2wy, but this was
not present in the simulated model. The spectrum for the second link showed a slight

peak at 2w, in both the experimental and simulated results.

When the system was excited at the second natural frequency, w3, the spectrum
of the first link motion demonstrated a slight peak at w,; for both the experimental and
simulated results. The second link spectrum showed the dominant frequency at w,; for

both the experimental and simulated results.
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Two methods were used in order to compare the experimental results with the
numerical results on the same plot. This means that the displacements and phase angles
were equivalent. The displacement equivalency required choosing the correct time to stop
the force input to ensure equivalent amplitudes. The phase of the angular displacement
for the respective links was also chosen such that the initial angular displacements of both
the experimental and simulated results were the same. This allowed for a simpler

comparison of one of the joint angle displacements at a time since they were in phase.

The second method to obtain equivalent initial displacements required using
initial joint displacement as measured from the physical model and being imported for the
numerical simulation. In this case the force input was set to zero and only the initial
displacements excited the system. Both methods gave the same results (see Figure 5.6

and 5.7).

The numerical model experienced the same base excitations as the physical
model. The numerical and physical model demonstrated the same results within an
acceptable tolerance with a maximum of 0.52 % of natural frequencies (see Appendix
III). The numerical and physical results for displacement and frequency demonstrated the
accuracy of the physical model and the motion measurement method. The results also

demonstrated that the simulation is an accurate representation of the physical model.

When starting and stopping the excitation force on the physical and numerical
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models an impe.u:t was felt by the entire system, thus exciting all the vibration modes. In
order to remove this impact the numerical model was excited by initial conditions. This
meant that one of the joints was displaced by a small amount and then allowed to vibrate
freely. The physical model involved much larger displacements in order to obtain
accurate data with the non-contact motion measurement described in Chapter 4 section
4.2. Without the limitation of capturing the motion data using the numerical model, the
initial displacements that excited the system were smaller than the displacements used in
the physical model and aforementioned numerical simulations. The lack of impact and
the relatively smaller initial displacement (approximately S — 10 times smaller) resulted

in the joint motion being almost completely decoupled (see Figures 5.12 and 5.13).
5.4 Natural Frequencies for All Possible Configurations

Another numerical simulation was used to obtain a plot of the system's natural
frequencies for different postures with damping included (see Appendix II). The posture

angle Q. was varied from O to 180 degrees (see Figure 2.5).

To study the eigenvectors the normalized mode shapes were tabulated. The mode
shapes displayed changes in sign at certain configurations (see Figures 5.14 and 5.15).
The sign is determined by the position of the modal displacement with reference to the
actual position (zero displacement). This also suggests that there is a point where the
equations of the motion decouple as the mode component relative value goes from "plus”

to "minus". Going from "plus"” to "minus" suggests that zero must be crossed i.e. no
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modal displacement. This is the point ;vhen the joint motion decouples (equations
describing the joint motion decouples). This change in sign of the mode component
relative value that corresponded to link 2 occurred at 131.4 degrees. The closer the
posture angle value is to the decoupling posture angle, the smaller the magnitude of the

Eigen vector. This agreed to the angle needed to diagonalize the mass matrix.

There was a correspondence between the diagonalizing posture angle and the -
natural frequencies at that posture angle. When the joint posture angle diagonalized the

inertia matrix the second natural frequency was at an absolute minimum value (see Figure

24).
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusions

The thesis dealt with dynamics of a very flexible manipulator structure. A study
of the modes of vibrations for structures that vary their geometric posture was conducted.
This study lead to an investigation of mode separation by the manipulator joints. This
investigation suggested that it was possible to separate the modes of vibration. To further
research the possibilities of mode separation a physical model that represented planar
motion of a space manipulator was successfully designed and fabricated. A low
frequency harmonic exciter was also designed and fabricated. An accurate non-contact
method was employed to measure motion of a delicate model. Then a laboratory setup
was integrated. It included the aforementioned model, exciter and method along with

sensors, computers and software.

Mathematical methods were developed to study modal motion. An investigation
of experimental, numerical and analytical properties of flexible structures that vary their

geometric postures was carried out. The results of this study have been published [16].

This thesis demonstrated that a linear mathematical model could accurately
represent the simple 2-DOF physical model a space manipulator. The larger the off-

diagonal terms of the inertia matrix become the more this linear mathematical model
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degenerates.

The experimentation demonstrated that the flat spring “suspension” of the
manipulator structure proved to be a practical way of simulating scaled planar motion in

space where the elasticity of the joints is much greater than the elasticity of the links.

The simulation demonstrated that the angle that decouples the equations of motion

occurs at the absolute minimum of the second natural frequency.

The experiments verified that at a certain posture the joint motion decouples the
natural vibrational modes of the manipulator structure for a particular posture. For a
planar two-DOF manipulator arm that undergoes small vibrations there exists one posture
angle between the upper and lower arm that leads to uncoupling of the joint oscillations.
The angle between the base and the lower arm can be arbitrary. This study demonstrated
that the modes of vibration largely decoupled when the equations of motion were

decoupled as predicted analytically.

6.2 Results of the Experimentation

The results were as predicted by the theory and numerical simulation and
demonstrated that almost all the flexing motion is located in a single joint when the
system is excited at a natural frequency when the manipulator is in the correct posture. As
expected, there was slight motion recorded in the secondary joint that did not correspond

to the natural frequency input i.e. q; was comparatively small when the first mode is
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excited. This motion is due to a slight cross coupling of very small Coriolis and
centrifugal forces and an impact excitation felt by the system when excitation begins and
ends. Another factor causing this slight motion was that the initial size of displacement
needed to be relatively large as the measurement method would not allow for accurate

measurement of very small displacements.

6.3 Recommendations and Further Study

Recommendations include further study and testing of the physical and numerical
models to include higher orders of degrees of freedom. These higher orders should
consist of more links and increased flexibility of the links themselves. The theory was
also completed for a 3-DOF system (see Appendix V) and verification of that theory is
required. The theory should be expanded to investigate the possibilities of decoupling the

motion in the joints for each mode for more degrees of freedom.

Testing should be expanded to include a variety of different types of input, such
as random vibrations and impact vibrations at various locations. A more in-depth study of
various constant vibration inputs that are not at a natural frequency should also be done.
Representation of a payload by a lump mass added to the tip of the last link should be

added to all the mathematical, numerical and physical models.
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6.4 Major Contributions of this Thesis

Some of the contributions of this thesis are as follow:

Pt
.

Discovery that certain manipulator postures will limit the effects of base vibration to a
single joint.

Proving physically and numerically that decoupling of the equations of motion takes
place for a certain manipulator posture.

Development of a joint that allows accurate physical simulation of planar vibration of
a space manipulator at a fixed posture.

Development of a mechanism that generates low frequency harmonic forces. The
force can ranges from 2 to 8 N and the frequency range from 0.6 rads/sec (0.1 Hz) to
20 rad/s (3 Hz).

Development of an inexpensive and non-contact method of accurately analyzing
motion in the range of 0 Hz to 5 Hz.

A starting point for increase control of space manipulators. By placing the space
manipulator in a certain posture it is necessary to only having to control motion of
one joint caused by base vibrations instead of having to control the motion of two or
more joints whose motions are coupled.

A solid base for further study in the effects of base vibrations on space manipulators.

Note that since the experimentation was conducted the ability to capture larger frames at

a higher rate without dropping frames has improved dramatically. As the hardware

(CPU's, hard drives and capture cards) speeds increase and the demand for free streaming
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video grows for entertainment purposes this method will provide a cost effective non-
contact way of measuring two dimensional motion. In the future with these improvements
it will be possible to measure 3-D motion, by knowing the target size and using the aspect

ratio to calculate depth and rotation by the change in size and shape of the target.
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APPENDIX 1

COMPLETE DERIVATION OF EQUATIONS
Al.l1 Equations of Motion

Spong and Vidyasagar [11] Eq. 6.3.12 provide a rigid robotic procedure for deriving the
equation of motion involving only inertia and Coriolis and centrifugal terms. In this

study, damping and stiffness terms are added. The equation of motion can be written as

Mp + Ap +Cp + Kp =1 (AL.1)

where p and its derivatives include both posture and motion.

The related torques have been divided into 5 categories:

. Inertia Torques Mp

. Coriolis & centrifugal Torques Ap
. Damping Torques Cp

. Stiffness Torques Kp

. Drive Torques T

The right hand side component is the driving torque, T.

For spatial manipulators the symmetric positive definite matrix M has the form

([11] Eq. 6.2.22)
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M = [ mi (el + Dol TR, 15 (R} 1T (a12)

and because [R:) ][R; 1" = unit matrix

for planar manipulators I; is a scalar and therefore

M = [JuGi]" mj [Jvai] + [oil” §i Doil, (Al.3)
where
Juwgi - 3xn Jacobian relating linear velocity of the i-th link centroid to the base

reference frame.

Joi - 3xn Jacobian relating angular velocity of the i-th link to the base reference
frame.

n - number of links ( also number of joints)

m; - i-th link mass

Ij - i-th link inertia 3x3 tensor

I - for planar motion: i-th link inertia scalar

Ri) - rotation matrix of the i-th link with respect to the base reference frame.

The A matrix is composed of derivatives of the entries of the inertia matrix M ([11]

Eq.6.3.13):

Agj=1/2 i(aMkj/api + OMki/dpj - dM;j/apk ) ( Pi) (Al1.9)
i=1

Note: Should the inertia matrix M be configuration independent then A matrix would
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disappear.

Note: The inertia tensor I; is a scalar in plane motion as only one rotary DOF is possible

for a single object.

To solve for the equations of motion the Jacobian matrices have to be formed.

Al.2 Jacobians for Link-1 in Planar Motion

1. The transform matrix relating the position and orientation of the centroid CG| of

the first link to the base reference frame 0 has the following form:

C -S, 0 1,C,
S Ci 0 L' S
Ta= % o 1 o (ALS)
0 0 0 1
Note: C; = Cos(p:), Cz = Cos(p,), S| = Sin(p:) and S; = Sin(p2)
2. Displacement vector d components in (A1.5) are
dx = 1|C| (A16)
dy =15, (AL1.7)

In the plane, the linear motion takes place only along two axes, the x-axis and the y-axis;
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therefore for computation of J,g;only the x and y components are considered.

3. Components of the Jacobian J,g; relating the linear velocity v, of the centroid

CG, of the first link (velocity seen in the base reference frame 0) to the joint velocities:

8dy / 8py =-1;S (A1.8)
ady / dp, =0 (A1.9)
ady / 8p, =1,Cy (A1.10)
ady/ 3p, =0 (AL11)

The Jacobian J.G: has the form:

g s o
vGl — 1,C, 0 (A112)

4. Components of the Jacobian J,, relating the angular velocity o, of the first link

(velocity seen in the base reference frame 0) to the joint velocities:

0 0
Jao = o 0 [ 0 Jet w, =1 for ease of computation (A1.13)
1 0

where r; is the length of the link and ®; is the angular velocity of the link.
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0O O
Jor =] 0 O (Al.14)
1 0

The Jacobian J,, relates the following velocity components

ox 0 0 .
oy | =] 0 0 P (A1.15)
©z 1 0 p:

In plane, however, the angular motion takes place only about the z-axis therefore for

derivation of J,; we consider only the z-component of J,:

Ju=[1 0 ] (Al.16)

Al.3 Jacobians of Link-2 in Planar Motion

1. The transform Tg; relating the position and orientation of the centroid of the

second link to the base reference frame O has the following form:

Ci2 -Si2 0 aC; +1Cy
S + 1,S
Top = (I)Z COIZ (I) ;S 0 2512 (AL.17)
0 0 0 1

where C;2 and S, are COS(p; + p2) and SIN(p, + p2) respectively.
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2. Displacement vector d components in (A1.17) are:

dx =a;1Ci + 1.Cy2 (Al1.18)
dy =a;8; +1S12 (A1.19)
3. Components of the Jacobian J,2 relating the linear velocity v; of the centroid

CGg; of the second link (velocity seen in the base reference frame 0) to the joint

velocities:

adx / ap| =-a,S| - lzslz (A1.20)
odx / 0pz2 = -1:S12 (A1.21)
ady / apl =a2,C, + LCi2 (Al1.22)
6dy / 8p2 = 12C12 (A1.23)

The Jacobian J.g3 is then:
| -aiSi- LSz LS :l Al.24
Jvaz —[ a;C; +1.Cyp2 12Cy; ( )

4. Components of the Jacobian J,, relating the angular velocity o; of the second

link (velocity seen in the base reference frame 0) to the joint velocities:
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0 0
1
sz = rl O 5 2 RO y O T lv W3 = l (A.25)
1 1

where r; is the length of link i and ; is the angular velocity of link i. By setting o; =1 it
is easier to define the Jacobian.
In plane the angular motion takes place only about the z-axis therefore for J,; we

consider only the z-component of J,,
Jo=[ 1 1 ] (A1.26)

Al.4 Matrix Components for 2 DOF

Inertia Matrix M

e [
MZl MZZ

M =l mdc + JolTdo + el mde + [Ju2] T2de (A1.27)
My =m(l)’ + 1 + my((a) +(1)° +2a,Cy) + L (A1.28)
M;; =0 + 0 + ma (1) +alCa) + I (A1.29)
Mz =Mj; (A1.30)
Mz, =0 + 0 +  my (1) + I (A1.31)

where M2 and M, are derived as follows:
Mz =mx(a;SihS2 + (15812)* + a;C11:Ci2 + 1:C1)%) +1;

=my(a1lx(SiSi2 + CiCi2) + L) + I (A1.32)
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Using known trigonometric identities:

Sin(p:+ p2) = Sin(p;)Cos(pz) + Cos(p1)Sin(p2) (A1.33)
and
Cos(pi+ p2) = Cos(p1)Cos(pz) - Sin(p:)Sin(p2) (A1.34)

substituting them into Eq. (A1.32) the following expression is obtained
Mz =my(a;l2(S:°Cz + $1S:C) + C’C,-S1S:C) + L) + I
=mya,,C; + maly? + I (A1.35)

Coriolis and centrifugal effect matrix components
A = 1/2(8M11/8p: + OM,1/0p, - M, 1/8p1 X (p1 )

+1/2 (8M,,/8p; + 8M12/8p1 - IM21/0p1)(P2 )

=0(p1)-mxa S p; ) (A1.36)

Az =172 (oM2/0p; + 3M,1/6p; - EM12/6p1 X P1 )
+1/2 (6M12/6p2 + 6M12/6p2 - 6M22/6p| )( ].)2 )

=-my 3;1,S; (P1 ) ~ my a;1,Sy(p2 ) (A1.37)

Ay = 1/2(8M21/8p) + OMy/Bp, - M, 1/8p2)X P1 )
+1/2 (OM1/0p2 + dMy/dp, - EM1/8p2 ) (P2 )

=m; a;15S; ( [31 ) (A1.38)
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Ay =1/2 (8M32/dp, + OM2,/8p; - M 12/3p2 )( P1 )
+1/2 (6M22/3p; + OM12/8p; - IM2/3p; )( P2 )

=0(B:)+0(p2 ) (A1.39)

Damping components
The damping is located only in the joints therefore the C matrix is diagonal and
the damping of link-1 is

Cn=c¢c (A1.40)

and the damping of link-2 is

Cn=c> (Al1.41)

Stiffness components

The stiffness is located only in the joints therefore the K matrix is diagonal and the

stiffness of link-1 is

K =k (Al.42)

and the stiffness of link-2 is

K; =k> (A1.43)

The total equation of motion is

[Manz] P, +[AHA12] P, +[Cu 0 ] P, +liKn 0 ] |:P|] =[Tl]
M, M,, B, Ay O P, 0 Cyp D, 0 K, P; T2

(A1.44)
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Separating the coordinate p into posture coordinate Q and local (motion) coordinate q the

equation of motion can be written as
M(Q+§)+ A@Q+q)+CQ+q)+ K@Q+q) =7

Where M and A are functions of both Q and q.
M;; = m(h)?+ m; [(a)? +(L)* +2a11,Cos (Q2 + q2)] + 1, + 1
Mz = My = mpa;hCos (Q2 + q) + mala + I

Mz =ml? + I,
An =~ maaSin(Q: + q2) (Q2 + q2)
A =-m; 3,1;Sin(Q: + q2) Qi + Qi+ Q: + Q)

Az = m2 ai;Sin(Qz + 2)(Q: + §))
Using the trigonometric identities
Cos (Q: + q2) = Cos(Q2) Cos(q2) -~ Sin(Q2)Sin(qz)

Sin (Q: + q2) = Sin(Q2) Cos(qz) + Cos(Q2)Sin(q2)

where q; is very small and the following approximations are made

Cos(q) =1
and
Sin (q2) = q2

we obtain:

(A1.45)

(A1.46)
(A1.47)

(A1.48)

(A1.49)

(A1.50)

(AL.51)

(A1.52)

(A1.53)

(A1.54)

(A1.55)
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Cos (Q: + q2) = Cos(Q2) ~ q2Sin(Q2) and (A1.56)

Sin (Q2 + Q)= Sin(Q3) + q2Cos(Q2) (A1.57)

We can linearize the components of M by substituting Eq. (A1.56) intc Equations
(A1.46) to (A1.48) and neglecting the higher order terms, i.e., q2 ('il Sin (Q;2) ~ 0 and

q: 62 Sin (Q2) = 0, giving M as a function of Q only.

My =m(h)? + m; [(a1)? +(12)? +2a11,Cos (Q2)] + L1 + > (A1.58)
M,; = M2, = m»a,1,Cos (QZ )+ mzlzz +1 (A1.59)
M2 =mph? + 1, (A1.60)

We can linearize the components of A by substituting Eq. (A1.57) into Equations (A1.49)

to (A1.51) and neglecting the higher order terms, i.e., @2q2 = 0, q2(q; +q2) ~0 and

q:q: = 0.

An = - mpa,1:8in(Q2) (Q; + ) (A1.61)
Ar2 = - my 211;Sin(Q2) (Q: + i+ Q2 + G2) (A1.62)
Az =m2 a,1LSin(Q.)Q: + qy) (A1.63)

Because in the reported study the vibration q takes place when the posture Q is constant,

the derivatives Q and Q vanish. Secondly because the elasticity and damping are located
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only in the joints the elastic forces depend only on q and K(Q + q) =K q.

Since the angular motion is relatively small the effects of changing posture due to motion

have been neglected. This indicates that thc influence of q, q in the terms of M and A are

neglected. The equation of motion can now be written as
Mg +Aq+Cq+Kq =1 (Al.64)
The inertia matrix M, and the Coriolis & centrifugal matrix A are posture dependent, i.e.

they are functions of the posture coordinates Q.

When Q: is chosen such that the mass matrix decouples and the following equation is the

result:
[Mll 0 :l iil +|:An Alz] ‘il +|:Cu 0 ] dl +[Kn 0 :l {qlil _
0O M e A,, 0O . 0 C . 0 K q
22 i, 21 a 22 4, 22 2d
(A1.65)
giving the following two equations:
Muq: +Auq +Anpq +Cnqy +Kuqi =1, (Al1.66)
and
M»q: +Aaq) +Cnqy +Knqz =1 (A1.67)

Al.6 Parameters of the Experimental Model

The parameters of the physical model are listed in the following table.



82

Table Al — Parameters of the physical model and necessary values for Q, and Q; for

diagonalizing the mass matrix.

aof bar 1&2 0.277 m

1 of bar 1&2 0.1385m

Q any value

Q- (calculated) 131.38 degrees

I of bar 1&2 0.000799776 m*
m of bar 1&2 0.129399 kg

k (experimentally) 0.326 N-m/rad
E 0.0001

link matenial aluminum

These parameters give the following two equations

0.009929 q; +.000745q, %+ .0003725q, q; +0.326q, =1, Al.68a
solving for q,

q: =- 0.0750327q, * - 0.37516q, q2 —32.83311q, + 1,/0.009929 Al1.68b

and
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0.003282 q, - .0003725q; * +0.326q; =1, Al.69a
solving for q;

4z = 1.13497q, 2 -99.3297q; + 1,/0.003282 A1.69%

A1.6 Equations of Motion for Three-Link Manipulator

To represent the physical model the equations of motion need to be expanded to a

three-link manipulator.

In this case the parameters are as follows:

M= m1;%+my(a, >+ +2a;1,Cy)+ms(13(13+a,Ca+a; Cas)+ax(13Ca+arta; Cz))

+ a|(13Ca3+aCa+ay))+ +Hx+; Al.70
M2 = mp(lo*+a)[,Co)+m3(l3(13+a2Ca+a;Cas)+az(13Catarta; Co))+1r+s Al.71
M 3= ms(Iz(I3+a,C3+a; Cy3))+13 Al.72
M) = ma(l’+a11,C2)+m3(l3(I3+a2C3+a, C3) +az(13Catarta; o)) +1o+s Al.73
M3 = m3(li(13+a,Cs+a,Ca3))+1; Al.74
Mz = mal+m3(l3(13+2;Cs)+ax(1:Cs+a))+o+; Al.75
M;; = ma(l3(13+a,C3))+13 Al1.76
M2 = m3(l3(13+2,C3))+3 Al.77

M3 = m;k%+]; Al.78



A = (-ma5S; — m3ail3S23 — m3a12;8;)q; + (-m3a213S3 - m3a;l3S23)q;s

A1z = (-mza,1;S; — m32;2;S2— m3a,13823)q) + (-mzai 1282 — mya1a;S;— m3a;13S23)q;2
+ (-m322138; - m3a13S23)qs

A3 = (-m3az1sS; - mya113823)q + (-m3a;l3S3)qs

Az = (-m2ai1;S; — m3a,2;S>— m3a 1382)q + 1x(-m3a113S; - m3a12,8,)q
+ (- m3a13S3)q;3

Az = (-m3a;1;83)q;s

Az = (-m3a2383)q; + (-m3a213S3)q2 + (-m3a:1383)qs

Az = (-m3a213S; -m3a113S23)q + (-m3ax13S3)q2

A3y = (-m3a:138;5)q; + (-m;3a213S3)q:

A33=0

Ci =ER@NKIMy,
C2 = &N/ KMy
C33 = §(2 )’\‘ K33M33

Ci2=Ci3=C31=C33=C35; =C3,=0
K=K =Ki3=k

Ki2=Ki3=K; =Kz =K3 =K =0
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APPENDIX 11

SIMULATION FILES

A2.1 Block Diagrams

First the equations of motion (Eq. 2.34) were reorganized for q; and g, . With
these equations block diagrams were created using software called SIMULINK, which is
part of MATLab. These block diagrams are found in figure 5.1. The system parameters

for various postures were calculated using a MATLab file named massmatrix.

A2.2 MATLab Files

A2.2.1 System Parameters

This routine file was used to calculate the parameters of the three-link system for
a chosen posture. Typing massmatrix in the MATLab command window ran this file. The
input parameters here are listed in the file. The posture varying parameters are Qldeg,
Q2deg and Q3deg. The mass parameters for each link are m1, m2 and m3 with m1

referring to the base link. The length parameters for each link are al, a2 and a3.

ml=0.129399;
m2=0.129399;
m3=0.129399;
al=0.277;
az2=0.277;
ai=0.277;
l1=a1/2;
12=a2/2;
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13=a3/2;
Qldeg=0;
Q2deg=0;
Q3deg=360-228.61583
Q1=Qldeg*pi/180;
Q2=02deg*pi/180;
Q3=Q3deg*pi/180;
Cl=cos(Ql);
C2=cos(Q2) ;
C3=cos(Q3) ;
Cl2=cos (Q1+Q2) ;
C23=cos (Q2+Q3) ;
Cl23=cos {(Q1+Q2+Q3) ;
S12=sin(Q1+Q2) ;
S23=sin(Q2+Q3) ;
S123=s1in(Q1+Q2+Q3) ;
S1l=sin(Q1l) ;
S2=sin(Q2) ;
S3=s1in(Q3) ;
I1=0.000799776;
I2=0.000799776;
I3=0.000799776;
Mll=ml*11%2+m2* (al1%2+12%2+2%al1*12*C2)+m3* (13* (13+a2*C3+al*C2
3)+a2* (13*C3+a2+al*C2)+al* (13*C23+a2*C2+al) ) +I1+12+1I3;
Ml2=m2* (12"2+al*12*C2)+m3* (13* (13+a2*C3+al*C23) +a2* (13*C3+a2
+al*C2))+I2+1I3;
M13=m3* (13* (13+a2*C3+al*C23))+I3;
M21l=m2* (12%2+al*12*C2) +m3* (13* (13+a2*C3+al*C23) +a2* (13*C3+a2
+al*C2) ) +I2+1I3;
M31=m3* (13* (13+a2*C3+al*C23))+13;
M22=m2*12%2+m3* (13* (13+a2*C3) +a2* (13*C3+a2))+I2+I3;
M23=m3* (13* (13+a2*C3))+I3;
M32=m3* (13* (13+a2*C3))+13;
M33=m3*1372+1I3;
M= [M11 M12 M13;
M21 M22 M23;
M31 M23 M33];
K=[.326*860 0 0;
C .326 0;
0 0 .326];
K11=K(1,1);
K22=K(2,2);
K33=K(3,3);
A=m3*a2*]12*%33;
Alla=0;
Allb=(-al*l2*m2*S2-m3*al*13*S23-m3*al*a2*S2) ;
Allc=(-m3*a2*13*S3-m3*al*13*523);



Al2a=(-m2*al*12*S2-m3*al*a2*S2-m3*al*13*3523) ;
Al2b=-m2*al*]12*S2-m3*13*al*S23-m3*al*a2*S2;
Al2c=-m3*al2*]3*33-m3*al*13*S23;
Al3a={(-m3*a2*13*S3-m3*ql1l*13*S23) ;
Al3b=0;
Al3c=-m3*ga2*]13*33;
A2la=(m2*al*12*S2+m3*al*13*S23+m3*al*a2*S2);
A21b=.5* (m3*13*al1*S2-m3*al*a2*s2) ;
A2lc=-m3*a2*13*33;
A31la=m3*a2*]13*S34+m3*al*13*S23;
A31b=m3*a2*]13*S3;
A3lc=0;
A22a=0;
A22b=0;
A22c=-m3*a2*]13%383;
A23a=-m3*a2*13*S3;
A23b=-m3*a2*]13*383;
A23c=-m3*a2*]13*S3;
A32a=-m3*a2*13*S3;
A32b=-m3*a2*]13*%33;
A32c=0;
A33=0;
C(1,1)=.001*2*ggqrt (K(1,1)*M(1,1));
C(2,2)=.001*2*sgrt (K(2,2)*M(2,2)) ;
C(3,3)=.001*2*sqrt (K(3,3)*M(3,3));
D=eig{inv (M) *K) ;
[V,D]=eig(inv (M) *K) ;
Lamda=[D(1,1)

D(2,2)

D(3,3)]
Lamdal=sort (Lamda)
nat freg=sqrt (Lamdal)

A2.2.2 Natural Frequencies for All Postures and Eigen vectors

87

This file was used to calculate the parameters of the three-link system for a range

of values of the posture angle between 0 and 180°. Application of this file also plotted the

magnitudes of the first two natural frequencies versus the angle of the second joint. The

eigen vectors were calculated and sorted when running this file. Typing allconfig in the
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MATLab command window ran this file. The input data for the application of this file
were the same physical parameters of the physical model namely, each link had a mass of
0.129339 Kg, a length of 0.277 m, a moment of inertia of 0.000799776 kg-m* and a

stiffness of 280. 36 N-m/rad. Each flat spring joint had a stiffness of 0.326 N-m/rad.

natfreql=0;
natfreg2=0;
natfreqg3=0;
D11=0;

D22=0;

D33=0;
ml=0.129399;
m2=0.129399;
m3=0.125399;
al=0.277;
a2=0.277;
a3=0.277;
l1=al/2;
12=a2/2;
13=a3/2;
Qldeg=0;
Q2deg=0;

for n=1:181;
Q3deg=(n-1)
Q1=Q1ldeg*pi/180;
Q2=Q2deg*pi/180;
Q3=Q3deg*pi/180;
Cl=cos (Q1) ;
C2=cos (Q2) ;
C3=cos (Q3) ;
Cl2=cos (Q1+Q2) ;
C23=cos (Q2+Q3) ;
Cl23=cos (Q1+Q2+Q3) ;
S12=s5in(Q1+Q2) ;
S23=s5in(Q2+Q3) ;
S123=s5in(Q1+Q2+Q3) ;
Sl1=sin(Ql) ;
S2=sin(Q2) ;
S3=sin(Q3) ;
I1=0.000799776;
I2=0.000799776;
I3=0.000799776;
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M1ll=ml*11°2+m2* (al“2+12%2+2*%al*12*C2) +m3* (13* (13+a2*C3+al*C2
3) +a2* (13*C3+a2+al*C2)+al* (13*C23+a2*C2+al) ) +I1+I2+1I3;
M12=m2* (12°2+al*12*C2)+m3* (13*(13+a2*C3+al*C23)+a2* (13*C3+a2
+al*C2) ) +I2+1I3;
M13=m3* (13* (13+a2*C3+al*C23))+I3;
M21l=m2* (12%2+al*12*C2)+m3* (13* (13+a2*C3+al*C23)+a2* (13*C3+a2
+al*C2))+I2+1I3;
M31=m3* (13* (13+a2*C3+al*C23))+13;
M22=m2*12"2+m3* (13* (13+a2*C3) +a2* (13*C3+a2))+I2+I3;
M23=m3* (13* (13+a2*C3) ) +I3;
M32=m3* (13* (13+a2*C3))+I3;
M33=m3*13"2+I3;
M=[M11 M12 M13;
M21 M22 M23;
M31 M23 M33];
K=[.326*860 0 0;
0 .326 0;
0 0 .3261;
K11=K(1,1);
K22=K(2,2);
K33=K(3,3);
A=m3*a2*]12*S53;
C(1,1)=.001*2*sgrt (K(1,1)*M(1,1
C(2,2)=.001*2*sgrt (K(2,2)*M(2,2
C(3,3)=.001*2*sqrt (K(3,3)*M(3,3
D=eig(inv (M) *K) ;
{V,D] =eig(inv (M) *K) ;
i=1;
for j=1:3
DD(j)=D(1i,1);
i=1i+1;
end
[SDD, SI]=sort(DD) ;
i=1;
for j=1:3;
TEMP(:,3j)=V(1:3,1);
TD1(j)=D(i,1i);
i=i+1;
end
PSI=TEMP(:,SI)};
TD2=TD1 (ST} ;
for i=1:3;
Lambda (i, i) =TD2(i); % sorted eigenvalue matrix
end
Lamdal={Lambda(1,1) ;
Lambda(2,2) ;
Lambda(3,3)];

));
1)
));

I [4



natfreg=sqrt (Lamdal) ;

V1ii(n)=PSI(1,1);

V12 (n)=PSI(1,2);

V13 (n)=PSI(1,3);

V21 (n)=PSI(2,1);

V22 (n)=PSI(2,2);

V23 (n)=PSI(2,3);

V31l (n)=PSI(3,1);

V32 (n)=PSI(3,2);

V33 (n)=PSI(3,3);

natfreql (n)=natfreqg(1l,1);

natfreq2 (n)=natfreq(2,1);

natfreg3 (n)=natfreqg(3,1);

end

z=0:n-1;

plot (z,natfreql, :, 2z, natfreq2)

ylabel ('Frequency (rads/s)')

xlabel ('Angle of Joint 2 (degrees) ')

title('The First Two Natural Frequencies Versus Joint
Configuration')

Feigenvectors

al=vil'
bli=v21'
cl=V31l'
dl=natfreql’;

az2=vliz';

b2=v22"';

c2=V32';

d2=natfreq2’';

ai3=v1li3i';

b3=v23"';

c3=V33';

d3=natfreq3’;

XX=[al bl cl1 d1 z'};

YY={a2 b2 c2 d2 z'];

ZZ=[a3 b3 c3 d3 z'];

Y=cat (3,XX,YY,Z22)
dampedl=(natfreqgl') *sqgrt (1-(0.001) "2);
damped2=(natfreg2') *sqrt (1-(0.001) *2) ;
damped3=(natfreqg3') *sqrt (1- (0.001) "2);

LU T 1)
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A2.2.3 Frequency Spectrums of Experimental Results

Application of this file calculated and plotted the frequency spectrum of the
experimental results. Taking the Fast Fourier Transform (FFT) of the results and plotting
them versus frequency did this. After loading the experimental results into MATLab and
typing ffttest in the MATLab command window ran this file. The input data used is the

angular position and corresponding time obtained from the experimental results.

t=t1;

x1l=glx;

X2=qQ2X;

X1=fft (x1) ;

X2=fft (x2);

Ts=t(2) -t (1);

Ws=2*pi/Ts;

Wn=Ws/2;
w=linspace (0,Wn, length(t)/2);
Xpl=abs(X1l(l:length(t)/2));
Xp2=abs (X2 (1l:1length(t)/2));
plot (w,Xpl,w,Xp2)

A2.2.4 Conversion of Angular Coordinates to Cartesian Coordinates

This file converted joint angles to tip displacement in Cartesian coordinates. This
file also plotted the tips of links 2 and 3. After loading the joint angle coordinates
(experimental or simulated) into MATLab and typing tip in the MATLab command
window ran this file.

X2=a2*cos (g2) ;

Y2=a2*sin(qg2) ;
F=(180-131.38)*pi/180+Q3;



f=sqrt (a2”2+a3”%2-2*a2*al*cos (F)) ;

A3=asin(a3*sin(F)./£f);
o=- (A3+q2) ;
X3=f.*cos (0) ;
Y3=f.*sin (o) ;

plot (X2,Y2, 'k',X3,Y3, 'k")
axis square

axis ([0 0.35 -.3 .081])
xlabel ('x(m) ')

ylabel ('y(m) ')

92
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" APPENFDIX III

CALCULATIONS

A3.1 Moment of Inertia

Calculations for the moment of inertia I for the links, where a and b are length and height

respectively of the corresponding part, are as follows:

1
Lext = 75 Mbar (3ext” + bex’) A3.1
1 2 2 A3.2
Thinge = 13 M1/2 hinge (ahinge”™ + B172 hinge") ‘
1
o = 75 Mbar (@bar” + brar®) + 2 (et + Mext1?) + 2 Lz hinge + Miingel2” A33

L.x: represents the moment of inertia of the extension.
Ihinge represents the moment of inertia of half of the hinge.
Io represents the moment of inertia of the link, the extension and half of the hinge.

The mass and moment of inertia of the shim (flat spring) was considered negligible.

dext
I .
l< extension
l —»
] ! ] Dext
bar
[ I bhinge
’4 _»
dhinge
]
2 of the hinge

Figure A3.1: Link components for moment of inertia calculations
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A3.2 Angle of Joints to Prevent Torsion

Since the center of gravity of each link was at its geometrical center by design it
was possible to use simple geometry and trigonometry to solve for the position of the
center of gravity of the chain of links. The angle v is the angle which the flat spring must

be in-line with to avoid torsion in the first joint.

Angle A is known since A =q — 180° A34
¢ =b =length/2 A3.S5
therefore, a’ = b? + ¢ ~2bcCosA. A3.6
solve for B =sin™( s_u;_gél ) A3.7
B=180°-B A3.8
d? = (a/2)’ + ¢® —acCosp A3.9
. .1, ~Sin
¥ =sin"( 2—;@) A3.10

Figure A3.2: Location of center of gravity



A3.3 Natural Frequency

326

ksl

®nl = M—“ = 00993 5.73 rads/s
. /& - / 326 _
Ont = . 00328 = 9.97 rads/s

Conversion from rads/s to hertz

5.73 rads/s

Ont = Ix radslcyc 0911 Hz
9.97 rads/s _

®nl = 2xrads/cyc 1.59 Hz

3.4 Error Calculations

o -
n(theo) ~ n(exp) y 100%

error = @n(theo)
5.73-5.70
— ————— 0,
573 x 100%
=0.52%
error = nttheo) - Onexp) 1 6004

n(theo)

_9.97-9.95

9.97 x 100%

=0.20%
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A3.12

A3.13

A3.14
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A3.5 Conversion of Cartesian Coordinates to Angular Coordinates

When given the x and y coordinates of positions 1, 2 and 3 it is possible to find the angle

of the triangle using trigonometry.

a=+[(x1 - x2)" +(y1 - y2)° A3.15
b =1/(x1 - X3)* + (1 - y3)° A3.16
c=1/(x2 - X3)" +(y2- ¥3)° A3.17
2,2 2
A =cos’ (l—’—f—zic—a ) A3.18
B =sin’( ”—’:g‘—) ) A3.19
1
¢ b
2
a
3

Figure A3.3: Conversion of Cartesian coordinates to angular coordinates
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A3.6 Damping

8n = % In 5= (A3.20)

where n is the number of cycles since the original measurement and X is the displacement

of the amplitude.

En =218y (A3.21)

Ci= 25,, \’Mii Ki,' s fori= 1, 2 (A322)

A3.7 Angle for Decoupling the Inertia Matrix

272
Q: = cos’ (@m—gﬁz—b—)J (A3.23)
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APPENDIX IV

TRANSFORMATION FROM ABSOLUTE COORDINATES TO
JOINT COORDINATES AND VISE VERSA

A4.1 Developing the Equations of Motion for Absolute Coordinates

Energy methods are used in this procedure. The absolute coordinates are shown in
Figure A4.1.
First the velocities must be solved for the center of masses of links 1 and 2 [14].

v]Z = (llé l)z Ad.1
sz =[ a;é 1+ lzé 2 cos (0; - Bl)]z + [ lzé 2 sin (0 - 91)]2

= alz é |2 + 2allzcos(92-9|)é 1 é 2+ 1220052(92 - 9,)('3 22 + lzzsinz(ez - Gl)é 22
= (a;zél 24 23;12005(92-91)é| éz + 122 ézz) Ad4.2

Solving for kinetic energy of links 1 and 2

T, = % 1,0 2= % [%m,a,zé, 2] A4.3
T, = -;- I 6 2+ % m; (alzél 2y 2a|12cos(02-61)é1 éz +1,° 622) Ad.4
T= % [%mlaﬁél 2] + % L6, + % m; (2,%0; 2+ 2a,1,c08(6:-01)0; 6, + 1,2 6,2) A4.5
oT/50 1 =% mlalzé 1 + mzalzé 1 + maailacos(6; - 91)é 2 A4.6

% (ar/aé ) =% m1a12.9. 1+ mzalzb. 1 + mya;lcos (0; - 61)6 2

- maa lx(sin (82 - 01)) (0 2- 0 )6 2) A4.7
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aT/aé =1 é 2+ mzallzcos (62-91)é| + mzlzz éz A4.8

d L3 [ 1] [ 1] . [ ] [ ] L
at @T/80 2) =1, 0 2 + myl,* O 2 + maalcos (82 - 81)0 | - mya;lx(sin (82 - 61)) (B 2-61)0

A49
Solving for potential energy of links 1 and 2.
Ul = % k] elz A410
U= % k2 (0; - 6))? A4.11
1
Usout =5 [ki 81 + kz (8, -2616; + 6,)] A4.12
ou/o00, = [k19| - k70, +k;0] A4.13
0dU/06; = [k202 — k0] Ad.14
Forming the inertia matrix
M, M, 9,
M, M, oo A415
2
M =31‘ m1312 + mzalz =L + m1112+m2a12 A4.16
M;; = mzallzcos (92 - 9|) A4.17
Mz =My A4.18
Mg; = I; + myl;? A4.19

Forming the Coriolis and centrifugal forces matrix.

[An AIZ ] 91 A4.20
All Azz é ’

2



A“ =0

A1z =- myaly(sin (82 - 61)) (6 ; -

Az = -mya;ly(sin (02 - 6;)) (é 3 - é 1)

Azz =0

or

Ai; = maly(sin (02-6,)) )
A2 = - myalx(sin (B2 - 6))) (é 2)
Az = maaly(sin (0; - 8))) (6 )

Az, =- maaily(sin (8 - 61)) (6 1)

Forming the stiffness matrix.

[Kn K, ] [91]
K, Ky 0,

K=k +k;
Ki2 =Ky =-k2
K2 =k;

For a manipulator that is in a constant posture it is necessary to define the

coordinates that will allow for small motions. This is done by defining

6=W' 7>

where vy is the configuration coordinate and y is the small motion coordinate.

Since v is small,

100

A4.21
A4.22
A4.23

A4.24

A4.25
A4.25
A4.26

A4.27

A4.28

A4.29
A4.30

A431

A4.32
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By, A4.33

Since v is constant,

® =y and A4.34
0=y. A4.35

A4.2 Jacobian Transformations

The next step is to solve for the Jacobian matrix that will allow a transfer from
absolute coordinates, y (posture coordinate) and y (small motion coordinate), to joint

coordinates, Q (posture coordinate) and q (small motion coordinate).

This is done by writing 6, and 6, in terms of q; and q; and forming a matrix
Y= q A4.36
WZ = qz + q] A4.37

writing the Jacobian Matrix gives

MERSIE

To transfer the Inertia and stiffness matrices they are pre-multiplied by the transpose of

the Jacobian Matrix and post multiplied by the Jacobian Matrix.

[le[l 1 ][Xu X2 ][1 0 ]___[xn+xlz+le+xzz X2 +X22 ] A4.39
01 X1 Xi 11 Xo + X2 X2

For the inertia matrix:



102

Ymu =L + mli? e mya; + 2maaglacos (w2 - yy) + I + moly? A4.40
Ywmiz = meaylycos (w2 - yi) + Lo + moly’ Ad.41
Ym21 = maaglycos (y; - i) + Iz + maly® A4.42
Ymzz = I + myl)? A4.42

For the Coriolis and centrifugal matrix:
This is not possible since a Jacobian transfer is a linear function and the Coriolis and

centrifugal parameters are not linear.

For the stiffness matrix
Yxn =k A4.43
Yki2=Yx21 =0 Ad.44

Yk =ks A4.45
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91&\[J|

N

Figure A4.1: Definition of Absolute Coordinates
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APPENDIX V

PARAMETERS FOR DECOUPLING A 3 DOF LINKAGE

Using Jacobian velocity kinematics and derived Euler-Lagrange equations {11]
the equation of motion for a 2 DOF linkage was found. This method was expanded to a 3

DOF linkage system.

Mathematically speaking, the separating of modal motion occurs because at the
appropriate angles, all the terms that are not along the diagonal in the inertia matrix

become zero.

Using this information and the fact the M2z, Mz3, M3, and M3; for the inertia
matrix of the 3-DOF system correspond respectively to M1, M2, M2, and M;; for the

inertia matrix of the 2-DOF system we are left only having to solve for two equations.

For a 3-DOF

M23 = M3z = m3((13)’ + 221:Cos(Qs)) + 13 =0

when Q3 = 228.65 degrees

M3 = My; = m3((13)? + a213Cos(Q3)) + I3 + m3a;1;Cos(Q; + Q3)
0 =0 + m3a;1;Cos(Q: + Q3)

Therefore Q, =-138.35

M2 = Ma; = M3 + m3(a:1:Cos(Qs) + (az)* + 2,2,Cos(Q3)) + I
0 = 0 + m3(a;13Cos(Qs) + (a2)” + 212;C0s(Q3)) + I

Therefore a; =277 mm
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The top view of necessary configuration for limiting modal response to a single

corresponding joint is found in figure A6.1.

Table A6.1 — Parameters of physical model and necessary values for Q,, Qs and a, for

diagonalizing the inertia matrix.

a of bar 2&3 0277 m

lof bar 2&3 0.1385m

Q: any value

Q: -138.35 degrees
Qs 228.65 degrees
Iofbar1,2 &3 0.000799776 m*
aofbar3 0.277 m

1ofbar 3 0.1385m
Iofbar 3 0.000799776 m*
m of bar 2&3 0.129399 kg

m of bar 1 0.129399 kg
aofbarl 0.277 m

lof bar 1 0.1385m
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link 2

link 1

link 3

AN

link O

Figure A6.1: Configuration for decoupling of a 3-DOF-linkage





