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Nomenclature 

Note that matrices and vectors are in bold pnnt and scalars are in normal print. 

logarithmic decrement 

angle between link and line to center of gravity of ensuing links 

absolute local angular position 

absolute local angular velocity 

absolute local angular acceleration 

absolute angular position 

absolute angular velocity 

absolute angular acceleration 

damping ratio 

absolute posture angular position 

absolute posture angular velocity 

absolute posture angular acceleration 

drive torque 

natural frequency 

Coriolis and centrifuga1 matrix 

length of the link 



Nomenclature 

C 

Ci 

Ci+j 

Ci 

d 

DOF 

FFT 

damping matrix 

cosine of the posture angle 

cosine of the sum of posture angle Qi and Qj 

darnping coefficient of the joint 

displacement vector 

Degree of Freedom 

Fast Fourier Transform 

gravitational constant 

link or joint nurnber 

moment of inertia of the link 

Jacobian transfer matnx 

Jacobian transfer matnx 

stiffness matrix 

joint stiffhess 

axial coordinate for the centroid of the link 

inertia matrix 

mass of the link 

component ii of the corresponding matnx 

number of links 



Nomenclature 

joint coordinate 

posture coordinate (angular) 

posture angular velocity 

posture angular acceleration 

local coordinate (angular) 

local angular velocity 

local angular acceleration 

Rotation matrix 

sine of the posture angle 

sine of the sum of posture angle Qi and Qj 

transformation matrix 
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ABSTRACT 

The author investigates the dynamics of very flexible manipulator structures and 

studies modes of vibrations for a wide range of manipulator postures. The study includes 

postures for which vibration modes become decoupled by the manipulator joints, i.e. 

individual modes involve only motion of a single joint. The research originated corn a 

study of dynamics of large space manipulators that are very flexible and that on earth- 

cannot support their own weight. The reported study is based on a theoretical analysis, 

but focuses on an experimental verification of the theoretical findings using scaled down 

physical models of space manipulators. The models exhibit similar dynarnic properties 

similar to the space manipulators including very low natural fkequencies. The physical 

models were designeâ, fabncated and tested. A low fiequency harmonic exciter was also 

designed and fabricated. The non-contact lab measurements were based on video image 

processing. A photo-geometric method was adapted f?om Scion Image and ATI Capture. 

The experimental data were compared with cornputer simulated results. 

xiii 



CHAPTER 1 

LNTRODUCTION 

1 . 1  Background 

Space manipulators are desipned to have a large range of reach and they are used 

to execute similar tasks that construction cranes, on earth, perform. Because in space 

there are essentially no gravity forces, the manipulators are desiçned as very long flexible 

objects. Due to the flexibility and length of these manipulators, they exhibit long lasting 

free oscillations at very low frequencies especially while handling payloads. The 

manipulators are mounted on space structures or space vehicles that esperience constant 

vibrations due to attitude and orbit adjustments, crew movements, electric motor motion, 

etc. Effective control of the manipulators is necessary, but challenging to obtain due to 

the flexibility. Therefore, a detailed knowledge of the dynamics of the space manipulator 

structure that is attached to a vibrating base is very important. Understanding the 

dynamics will allow for more effective control. 

This reported study uses physical and numerical models to simulate flesible 

manipulators for practical and economical reasons. 

1.2 Physical Metbods of Simulating Space Maniputators 

Numerous methods have been used to physically model structures that behave as 

if they are free of the effects of gravity. The following table includes some of these 



methods and their advantages and disadvantages. 

Method Advantages Disadvantages 

Test model placed in liquid 

(ex. water) [l ] 

Long cables that hang fiom 

above and support the 

weight of the test model [Z] 

Test model floating on bed 

of air (similar to an air 

hockey table) [3] 

Passive Constant Force 

Mechanism 141 

The liquid helps support the 

weight of the model and 

allows for low fiequency 

vibration. 

3-D testing is possible. 

Easy and inexpensive. 

Easy access 

Small safety hazards 

With long enough cables 

3-D motion is possible. 

If large enough a fiill-scale 

model could be tested. 

The damping is very high. 

Al1 equipment must be 

submerged. 

The cables need to be very 

long to limit their effects. 

Only 2-D testing possible. 

High bay needed. 

Expensive. 

Added masses of the air 

floaters. 

Only 2-D testing possible. 

Expensive. 

Added inertia, stiffness and 

damping. 

1.3 Flexible Space Manipulators 

Most of the work that has been done flexible space structures has centered on the 

dynamics of motion of these structures and control issues [ 5 ] .  Time varying studies [6] 

have also been done based on dparnic forces of the manipulator. How adding a payload 

to the end of a space manipulator effects attitude controlled satellites [7] and 'fiee 



floating' satellites [8] has also received attention 191. This thesis studies the effects of 

base vibrations on space manipulators in a constant posture. Mobile manipulators 

affected by base vibrations have been studied [IO], but not expanded to outer space. 

1.4 Scope of the Project 

The scope of the project involves the following: 

Design, fabrication and testing of a scale model of a space manipulator structure that 

would have the 'fiee space' quality of motion in 2-D i.e. gravity not affecting the 

dynarnics of the structure. The manipulator is based in the horizontal plane. 

Design of a low fkequency harmonic exciter for fiequencies below 3 Hz. 

Design and integration of an economically feasible optometric system for non-contact 

measurements. 

Development of mathematical model for vibrating manipulators in a plane. 

Numerical simulation of the dynarnic behavior of manipulators for wide rangesof 

postures. 

1.5 Objectives of the Thesis 

The objectives of the thesis are as follows: 

1. To study the modes of vibrations of a flexible manipulator that varies their geometric 



posture over a very large range. 

2. To investigate the possibility of mode separation by the manipulator joints (individual 

modes involving only a single joint). 

3. To design and fabncate a physical mode1 that represents a space manipulator in planar 

motion with minimal darnping. 

4. To design a low fiequency harmonic exciter with a high harmonic fidelity. 

5. To develop and fabricate a non-contact method of measuring motion of a very 
- 

delicate model 

6. To integrate a laboratory setup that.would include sensors, manipulator and software. 

7. To develop mathematical models for the study of physical model motion. 

8. To investigate experimentally, numencally, and analytically properties of flexible 

structures that Vary their geometric postures. 

1.6 Layout of the Thesis 

The main body of the thesis is essentially divided into three parts. The first part is 

contained in Chapter 2, which deals with development of the theory. The second part is 

contained in Chapters 3 and 4, which deal with design and experimentation of the 

physical model. The third part, which is in Chapter 5, deals with numerical simulation. 

The thesis ends with Chapter 6, conclusions and recommendations for extending 

the research. Figures are found at the end of  each chapter. The Appendices contain long 

derivations, simulation files, calculations and parameters. 



CHAPTER 2 

THEORETICAL ANALYSIS 

2.1 Introduction 

This chapter deals with the derivation of equations of vibratory motion for a 

slender manipulator. The derivation is based on sepration of coordinates: posture - 

coordinates for changing the posture and local coordinates fcr the elastic oscillations. It is 

assumed that the elastic motion takes part only in the joints. 

2.2 Equations of Motion 

The derivation of the inertia and inertia terms in the equations of the motion is 

based on a procedure outlined by Spong and Vidyasager [Il]. In this study, the motion 

coordinates are separated into two parts. The two separated motion coordinates 

components are: (1) geometncally large posture motion coordinates Q and (2) small 

oscillatory motion coordinates q. A total coordinates is a sum of Q and q. The 

assignrnent of coordinates is illustrated in Figure 2.1. The derivation of the equation of 

motion was part of this project and details of it are collected in Appendix 1. In this study 

the oscillation of the arm q is studied when the posture is not changing. The equation of 

motion is of the following foxm: 
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M is the inertia matrix, A is the Coriolis and centrifuga1 effect matnx, C is the damping 

ma& and K is the stimiess matrix. The angular accelerations, velocities and 

displacements are represented by the vectors q , q and q respectively. 

The following list of terms represents the matrix components: 



where is the length of the link, li is the axial coordinate for the centroid of the link, Ii is 



the central mass moment of inertia, mi is the link's mass, 5 is the joint darnping ratio, and 

k is the joint stifiess. A complete derivation c m  be found in Appendix 1. 

The force fiom the motion of the base link is known as the kinematic excitation. 

The kinematic excitation is the force of the products of the f h t  link's (1) inertia 

parameters and acceleration, (2) Coriolis and centrifuga1 forces and of (3) the product of 

the stifhess parameters and displacement. Moving the kinematic excitation to the dnving 

force side of the equation leaves a senes of 2 x 2 matrices that contain the systern 

parameters for a two-degree of freedom system. By expanding the Coriolis and 

Centrifugal forces and reorganizing back to the original form it is possible to write 

A23 = - m3azl,S3(q3) (2.30) 

A32 = 2m3a213S3(q2) (2.3 1) 

A33 = O (2.32) 

where AZ2 h m  Eq. (2.29) now becomes Ail in the newly formed 2x2 Coriolis and 

Centrifuga1 matrix. The terms A23, A32 and A3> similarly become Al& A21 and A22 

respectively in the newly formed 2x2 Coriolis and Centrifuga1 matrix. 

The Coriolis force is now represented by A22 q2. The terms A23 q3 and A32 q2 represent 

the centrifbgal forces. In 2-DOF terms the Conolis force is represented by Ai 1 q l .  The 

tems Ai2 4 2  and Azi ql represent the centrifuga1 forces. 



Note that the equations of motion are dynamically coupled by the inertia matrix M and 

the Coriolis and centrifuga1 matrix A. To decouple the matrix the off-diagonal terms have 

to vanish [12]. The matrices C and K are diagonal for the chosen set of coordinates and 

therefore they do not couple the equations of motion. 

2.3 Decoupled Modal Vibration 

Selection of a proper posture of the ami diagonalizes the inertia matrix M in 

Eguation (2.1). For the system parameters listed in Appendix 1 this occurs when Qr = 

13 1.38 degrees (see Appendix III for calculations). For most of the range of the 

manipulator postures al1 joints take part in modal motion (resonance). The 

diagonalization of the inertia matrix is the major factor in limiting the vibration to only a 

single joint for each mode of vibration. The equations of motion are almost decoupled 

when diagonalizing the inertia matrix. There is still some coupling caused by the 

centrifuga1 and Coriolis tems. The decoupling posture angle Q2 W= located using a 

spreadsheet and varying Q2 until the diagonal tems of the inertia matrix were relatively 

negligible. Eigen vectors and mode shapes gave the same results in locating the 

decoupling posture angle Q2 for the given parameters (see Appendix II). 

This suggests that there are two distinct vibration modes in tems of local joint 



coordinates q. In the first mode the lower and upper arm oscillate as a single rigid body 

with the lower arm angle ql oscillating and the upper a m  angle qt remaining unchanged 

(see Figure 2.2 for illustration.). In the second mode the lower a m  angle remains 

unchanged, therefore the lower arm does not move and the upper arm moves with the 

angle q* oscillating (see Figure 2.3 for illustration). 

Inserting values for the system parameters, and assuming negligible damping,-the 

decoupled equations have the following form for fiee vibration: 

r 1 

nie equation foxmed by the top line of ~ ~ u a t i o d 2 . 3 i  is a function of ql and its 

first two tirne derivatives and q2 . The equation formed by the bottom line of Equation 

(2.34) is a function of q2 and its first two time derivatives and q l  . Only the joint 

velocities couple these two equations. The main coordinate (acceleration, velocity and 

displacement) of an equation is the coordinate associated with the diagonal term of the 

inertia and stifniess matrices, i.e., for the top line of the equation qi is the main 

coordinate. The conolis matrix A is not constant, but it is a function of velocity products. 

The coupling velocity-terms involve other velocities than the main coordinate velocity. 

The off diagonal ternis of the matrix A still couple the two equations, but have very little 

effect on the motion because: 



1. They are proportional to velocities which for very flexible manipulators are small. 

2. The velocities of the coupling coordinates become smaller when the inertia and 

stiffhess matrices are diagonal because the main coordinates significantly 

dominate the vibration modes. The inertial forces and Coriolis and centrifugai 

forces were plotted to demonstrate the domination of the inertial forces on the 

system (see Figure 2.4) 

3. When the entries of the matrix A are multiplied by the velocity vector q they 

produce squares of the coupling velocities making the results even smalter. The 

diagonal texms represent the Coriolis terms and the off-diagonal represent the 

centrifuga1 forces. 

Hence an assumption can be made that the texms of matrix A approach zero and the 

equation of motion can be linearized. Experimental and simulated results verified this 

assumption. 

Assuming the matrix A approaches to zero the two equations of motion become 

and 
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From these equations the two natural fiequemies are calculated to be 0.91 1 Hz 

and 1.59 Hz (see Appendix N for calculations). 

Al1 the natural fiequencies of the joint angle Qz varying fiom O degrees to 180 

degrees were calculated at 1 degree steps (see Figure 2.4 for plot and Appendix II for the 

M-File). 

2.4 Variations of Derivations 

Uçing energy methods and the same coordinate systern Q and q produces the 

same equations of motion as Equation (2.1) and its subsequent parameters (Eq. (2.2) - 

Eq. (2.28)). The equations can be found in the Ph.D. thesis "Vibrations of Time-Varying 

Mechanical Systems" presented in 1993 16 1. 

Another derivation was done using absolute coordinates. These coordinates were 

transferred into the same coordinates used in the body of this thesis by means of a 

Iacobian transfer giving the same results. This denvation is found in Appendix IV. 



1 
1 

1 
1 
I Link 3 

Link O x 

Figure 2.1 : The assignment of coordinates. Motion coordinates q and posture coordinates Q. 



joint 2 

Figure 2.2: The first decoupled mode: only joint 1 flexes. 

joint 2 

joint 1 

Figure 2.3: The second decoupled mode: only joint 2 flexes. 
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Figure 2.4: Comparison of acceleration forces and velocity forces. 



Figure 2.5: Variation of natural fiequecies for varying posture angle Q2. Where 13 1.4' is 
the angle of posture which decouples the inertia matnx. 
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CHAPTER 3 

DESIGN OF TEE PHYSICAL MODEL 

3.1 Design Criteria 

To vexie the theoretical studies a laboratory experiment was conducted. To facilitate 

the experiments a physical mode1 of a space manipulator was developed. The objective was to 

build a physical model that is flexible, lightly darnped, has adjustable posture and produces 

vibratory motion that is not affectecl by gravitational forces. 

The concept of the design was to build a self-supporthg structure. The links were to 

support the weight of the system. They were to be measurably stiffer than the joints. The joints 

were to support the weight as well, but they were to be flexible in the horizontal plane only. 

The darnping of the joints was to be very light. To meet the cnteria of very low damping the 

joints were designed with flat springs. 

3.2 Joint Design 

In order to model the flexibility of a manipulator joint a flat spring joint was used. 

The spring was mounted vertically with the edges pointing in the z-direction, i.e. the axis 

of rotation (See Figure 3.1). The spnng was sufficiently rigid in the edge-on plane (x-z 

plane) so that its flexibility could be ignored in this direction. The flexibility of the joint 

was only in the x-y plane that was perpendicular to the spring's surface. This ngidity 



provided the support of the weight of the amis in the vertical planes while allowing 

lightly darnped motion, in the horizontal planes, &ee of gravitational forces. in this 

fashion, the weightlessness was simulated for motion in the x-y plane. 

The flat springs were mounted in specially designed hinges (see Figures 3.2 and 

3 -3). The main hct ions  of the hinges were the following: (1) to contain the springs, (2) 

to join the adjacent arms and (3) to allow alignment of the flat spring surfaces with the 

centroids of the arm. The flat s p ~ g s  needed to be aligned with the manipulator centroids 

to avoid their twisting. Hence, the first spring, supporting the lower arm was aligned with 

the combined centroid of the lower and upper m. The second spring, supporting the 

upper a m ,  was aligned only with this ami's centroid. The static gravitational loads create 

only bending moments in the on-edge planes of the springs, Le. the direction of their high 

rigidity . 

The hinges were clamped to the ends of the flat springs using screws. The hinges 

were symmetrical along the vertical axis so as to not alter the moments of inertia when 

their alignment was changed. 

The joint was designed with adjustable stops that would ensure that the 

displacements would not become so large that the bending in the springs would cause 

permanent deformation or damage. The hinges were made Born aluminum. The flat 

springs were from rolled steel with a thickness of 0.2286 mm (9/1000 of an inch). 



The spring constant for the flat spring showed little variation as experirnental tests 

demonstrated for the ranges of +/- 0.17 radians encountered in this application. The 

spring constant was established experimentally, by applying known forces and measuring 

the spring displacement (see Figure 3.4). The results gave a spring constant of 0.326 N- 

m/rad (see Figure 3.5). 

3.3 Design of Links 

The links were designed to support the weight of the system and to be more than 

800 times stiffer than the joints in the x-y plane. The dimensions of the links are shown in 

Figure 3.6. The connection of the links is shown in Figure 3.7. 

3.4 Design of Harmonic Exciter 

In order to excite the system low fiequencies a yoke mechanism was designed. It 

was designed to have an adjustable stroke from 20 mm to 80 mm. The yoke mechanism 

involved a translational follower attached to a tension spring with a stifiess of 100 N/m 

this in tum was attached to the manipulator model's base, the first link (see Figure 3.8). 

The yoke fkarne was made of alurninum. It included a round shaft supported by 

bal1 bearings. The round shaft had a flexible coupling on one end to attach it to a gearbox 

and motor. The opposite end of the radial shaft had a radial slot for attachrnent of a 

rectangular am. The a m  had a roller that &ove the translational follower (see Figure 



3.9). An old photocopier sliding frame was used as the follower. The yoke mechanism 

was clamped to the copier M e .  The spring was sufficiently stiff to avoid separation due 

to acceleration forces, but flexible enough to ensure that the gearbox and motor provided 

enough torque in the yoke to maintain a constant angular velocity. 

3.5 Assembly of the Physical Mode1 

The assembly of the physical mode1 involved three links and two joints. The first 

link was the base and it was clamped by a vice to a three point leveling board. A point 

mass was added to the end of the last link, link 2, to ensure the center of gravity is at the 

center of the link. This is due since the mass of the joints is equally divided among the 

connecting links. The dimensions of the leveling board are shown in Figure 3.10. 





Front View Side View 

clarnping screw 

safety stop 
screw hole 

link c&ecting screw hole 

Top View 

Figure 3.2: The design of the hinge joint. 



Figure 3.3: The dimensions of the hinge joint. 



initial position 

Figure 3.4: The setup for measuring the stiffhess of a flat spnng. 

0.00 0.05 0.09 0.13 0.19 

Disp lacement (rads) 

Figure 3.5: The stifiess of a flat spnng vs. angle of displacement 



Front View 

screw 
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Figure 3.6: The Design of the links. 



Figure 3.7: The connecting of links and joints 



Figure 3.8: Haxmonic excitor 
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Figure 3.9: Yoke with variable stroke of 2 0 m  to 80mm 
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Figure 3.10: Setup of physical mode1 on leveling board 



CaAPTER 4 

EXPERIMENTATION 

4.1 Setup of the Experimentation 

To v e w  the theory that modal motion would be limited to a single joint for the 

individual modes the physicd model of a manipulator was tested. To view the vibration 

modes of the physical model the system was excited at the base by a harmonic force at 

one of the natural fiequemies. The hquency was tuned such that each of the two mode 

shapes was clearly observed and separately rneasured for 5 to 10 seconds. 

The test setup involved the ami attached horizontally to a mounting board by a 

vise (See Figure 3.10). The mounting board had three adjustable points for leveling. 

Leveling was important to avoid gravity forces in the plant 

spring joints. 

of motion and torsion of the 

The a m  was excited by means of the yoke mechanism. This setup provided a 

hannonic excitation. The force was varied by a variation of the yoke displacement and 

the fiequency was varied by the drive motor speed. The yoke was drivcn by an A/C 

motor (Fracmo model # 43 109088) with a variable speed control (Techequipment, Type 

No. E3, Unit No. 126) and a 50 to 1 ratio gearbox. The motor had a speed range fiom 100 

rpm to 5500 rpm. 



4.2 Collection of Data 

Another encountered technical challenge was the collection of vibratory data that 

would accurately describe the motion of the links. The addition of conventional 

accelerorneters would change the mass distribution. Conneetion wires to a central 

processing unit would also affect the response of the system. 

One possibility was to use strain gages placed on the flat springs of the joints, but 

attaching the strain gages to the flat springs presented a complication. The magnitude of 

displacements needed to view vibration modes, were too large for the gages. 

Laser reflecting was too difficult to implement, as there was a two-dimensional 

motion and accurate tracking of the link tips was a far too complicated problem. 

Commercial options, such as ûptitrac, which used sensored targets and a carnera 

with three separate lenses to capture 3-D motion, were not financially viable. The 

approximate cost would be about $60,000 [13] 

Methods used in bio-mechanics involving a special camera and reflecton were 

not accurate enough for this application, but led to development of the method that was 

eventually used in the project. 

The chosen method of motion measurement involved a high quality 8mm analog 



video camera, a PC with a video capture card, photo targets and video processing 

software. To capture the motion of the linkage without affecthg the mass and the inertia 

of the system, only very light video targets were placed on the linkage. They added 

0.23% of m a s  and 0.03% of Uiertia to each link. The center of gravity of the end link 

moved by 0.23% since the target on the tip was twice the mass of the added target mass at 

the other end of the link. The video camera was placed seven and a half feet directly 

above the am. The view window of the camera was zoomed to allow for maximum ann 

view size while ensuring that al1 the necessary motion was recorded (see Figure 4.1 for 

system setup). 

An analog video camera (Sony - CCD TVR95) and a PC capture card (AT1 - Al1 

in Wonder Pro) dong with software (AT1 Player) were used to record frames at rates of 

28 and 29 h e s / s e c .  Due to the limitation of the PC and capture card higher kame rates 

could not be used. At a high h e  rate the majority of the t h e ,  while caphinng video of 

the motion, frames were dropped; however, if enough runs are done it is possible to 

capture a run where no fiames are dropped. It was also important to keep the fiame size 

(the number of pixels) as large as possible without afbt ing the capture frame rate. This 

is why the data was captured at two different rates. These recordings were extracted by a 

software package (Microsof€ Videdit) and transferred into individual DIB files for each 

fiame. 

Black disks of a light weight bulletin card with a diameter of an inch, were 

mounted on to the modei. The centers of the disks (0.3 gram) were aligned with the 



centers of the joints. The disks served as photographic targets (see Figure 4.2). 

Ushg Scion Image software each h e  was converted h to  a black and white 

image with no shades of gray (see Figure 4.3). This conversion was done by controlling 

the contrast level. Every pixel that had light intensity above the contrast level was white 

and every pixel below that level was black. The images of the photographic targets were 

extracted by varying the contrast of the recorded fiames. At the correct contrast level only 

the photographic targets were present in the image. This procedure assured that only the 

images of the moving targets were saved to a file. The Scion Image s o h a r e  was used to 

analyze the images of the targets as large sets of pixels and the centers of black density 

(center of the disk) were computed. This provided an accurate location of the marked 

points on the system. Knowing the captured video h e  rate and the fiame number, the 

positions of the targets were plotted versus time. The upper lefl corner of the picture 

fiame was used as a reference point since there was no relative motion between the 

camera and the mounting platform of the vibrating model. 

4.3 Natural Frequencies 

The first two modes of a two-link manipulator model were investigated in the 

experiment. The system was separately excited at its two natural fiequencies and then it 

was left fkee to vibrate. The system was excited and the frequency varied until the first 

mode was observed. This occurred at a recorded fiequency 5.7 rad& (0.906 Hz). This 

result agrees to within i 0.52% with the expected computed frequency of 5.73 radsls 



(0.9 1 1 Hz) of the first mode. The second mode was observed at the frequency of 9.95 

rads/s (1.58 Hz) that is within ? 0.20% of the expected result that was a computed 

frequency of 9.97 rads/s ( 1.59 Hz). The displacement of the joints for each correspondin!: 

mode \vas plotted in angular and tip displacements (see Figures 4.4, 4.5,3.6 and 4.7). 

The input frequencies were measured by counting the number of cycles of the 

follower of the excitation yoke for three minutes. For the first mode 163 cycles were 

visual ly counted over three minutes. For the second mode 285 cycles were counted over 

three minutes. 

The output frequencies in the first mode were onl for joint 2 and 2 0 , ,  for joint 3. 

The presence of 2wd suggests there is non-linearity in the system. This is further 

discussed later on in the thesis (Chapter 5). The output frequencies for the second mode 

were o., for the joint 2 and ad for joint 3. The displacement ofjoint 2 in the second 

mode does not appear smooth. This is due to the small size of the displacements ofjoint 

2. The displacements ofjoint 2 were so small that they could not accurately be measured, 

but the measurements still gave a general idea of the motion. 

4.4 Damping 

For the obtained results it \vas possible to analyze the decrease of ampli tude over 

time and determine the damping of the system (see Appendix III). The value for the 

damping ratio was found to be 0.00 175 f 0.00003. The ratio 5 was calculated from 



three different numbers of cycles (25,35 and 50) between measurements and then the 

average was taken. These measurements lead to the computation of the damping 

coefficients ci and cz being 0.000197 and 0.0001 17 respectively. 

4.5 Force Orientation 

The forcing function was suppliai at different orientations. This only affected-the 

rate of increase of the amplitude of the system output. Once enough time had passed for a 

sufficient displacement in the link was reached, it was left to vibrate fkeely. 

This dernonstrated that direction of the forcing function affects the rate at which 

the amplitude of displacement increased. The angle of orientation of the forcing fiinction 

a e c t s  the horizontal and vertical components of the force. As expected the rate of 

Uicrease of the amplitude becarne greater as the orientation of the forcing function 

approached being perpendicular to the link in motion for the corresponding mode being 

excited. 

It was observed that as the orientation of the input excitation approached being 

applied in a direction parallel to the link for the corresponding fiequency, there was a 

decrease in the rate of increase in the amplitude of displacement. There was not an angle 

of orientation found that changed fiom the expected motion of links, namely modal 

motion being lhnited to a single joint. This result was expected and agrees with accepted 

vibrational theory [ 14 1. 



view cone 

vise view window 

Figure 4.1 : The experimental setup to capture the displacement of the link tips. 



Figure 4.2: An actual captured frame. Scale 1 :2. 

Figure 4.3: An actual captured frame for a set light intensity threshold level displaying 
only the black targets. 
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Figure 4.4: Joint angles qz (-) and q 3  (- - -) for the first mode plotted versus time 
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Figure 4.5: Joint angles q z  (-) and q~ (- - - ) for the second mode plotted versus tirne. 



link 2 tip 

link 3 tip 

Figure 4.6: Trace of the joint motion for the first mode. 
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Figure 4.7Trace of  joint motion for the second mode. 



CHAPTER 5 

NUMERICAL SIMULATION 

5.1 Numerical Simulation 

Numerical simulation of the system was completed using MATLab and 

SIMULINK. An M-file (see Appendix II) was created to compute the system parameters 

for each posture using Equations (2.2) - (2.28). By varying the joint angles the mass 

matrix was varied thus varying the natural fiequencies of the system. The remaining 

system parameters: damping, joint stiffness and conolis were also calculated in this file. 

For example using the parameters of the physical model three equations of motion 

were attained for configuration of the second joint angle Q2 = 13 1.38'. niey are 



Using software (SIMULINK) and a block diagram method, a simulated model of 

the physical model was created (see Figure 5.1). 

5.2 Method of Numerical Simulation and Results 

A numerical sinusoidal force input was used to excite the simulated system in 

order to calculate the response of the model. The numencal sinusoidal excitation was- 

equivalent to the physical excitation used to excite the physical model. The base link was 

treated as the other links in the system instead of as cantilever beam. It was treated as a 

Link C O M ~ C ~ ~  with a joint that connected to the ground. The joint connected to the 

ground was given a stiffhess equivalent to the stimiess of the cantilever beam. The 

excitation in the numerical model was a sinusoidal torque that was applied to the base 

joint. The parameters were calculated for the case where the mass matrk becomes 

diagonal. The variations of the first two natural fkequencies with changing posture angle 

Qz were plotted (see Figure 2.4). The third natural eequency was in the range of 10 to 25 

times higher than the second natural fiequency. For the decoupling posture of Qz = 

1 3 1.38' the third natural frequency was o,3 = 2 1 2 rad& as compared to 0 .2  = 9.97 radis. 

The numerical model was then excited at the first natural frequency for a limited time. 

The input force was stopped and the system was left free to vibrate. The simulation was 

then repeated at the second natural frequency. 

The computed joint displacements and tip displacements were saved and plotted 

(see Figures 5.2,5.3,5.4 and 5.5). The numerical results were compared with the fiee 



vibration results of the physical model. 

5.3 Cornparison between the Physical and Numerical Models 

The results of both the numencal simulation and the laboratory expenments were 

compared in three di fferent manners. The first comparison was in terms of j oint 

displacements (see Figures 5.6 and 5.7). The second comparison involved tip 

displacements (see Figures 4.6,4.7,5.4 and 5 S). The third comparison was done by 

taking the Fast Fourier Transform (FFT) of the motion results and comparing the 

fkquency components (see Figures 5.8,5.9, 5.1 0 and 5.1 1). 

When the system was excited at the first natural fkequency o.1 peaks were seen in 

the fiequency spectnim at on, and 2anl in both the expenmental and simulated results. 

The spectnim for the first link showed the dominant peak at uni. The super harmonic 

oscillation at Sanl is due to the slight non-linearity of the system [15]. The spectnun for 

the experimental results for the h t  link also showed a slight peak at 2an1, but this was 

not present in the simulated model. The spectnim for the second link showed a slight 

peak at Sani  in both the experimental and simulated results. 

When the system was excited at the second natural fiequency, 0 .2 ,  the spectnim 

of the first link motion demonstrated a slight peak at onl for both the experimental and 

simulated results. The second link spectrum showed the dominant fiequency at 0.2 for 

both the experimental and simulated results. 



Two methods were used in order to compare the experimental results with the 

numerical results on the sarne plot. This means that the displacements and phase angles 

were equivalent. The displacement equivalency required choosing the correct t h e  to stop 

the force input to ensure quivalent amplitudes. The phase of the angular displacement 

for the respective Links was also chosen such that the initial aogular displacements of both 

the experimental and simulated resuits were the same. This allowed for a sirnpler 

cornparison of one of the joint angle displacements at a tirne since they were in phase. 

The second method to obtain equivalent initial displacements required using 

initial joint displacement as measured h m  the physical model and being imported for the 

numencal simulation. In this case the force input was set to zero and only the initial 

displacements excited the system. Both methods gave the same results (see Figure 5.6 

and 5.7). 

The nurnerical rnodel experienced the same base excitations as the physical 

model. The numerical and physical model demonstrated the same results within an 

acceptable tolerance with a maximum of 0.52 % of natura1 muencies (see Appendix 

III). The nurnerical and physical results for displacernent and fkequency demonstrated the 

accuracy of the physical model and the motion measurement method. The results also 

demonstrated that the simulation is an accurate representation of the physical model. 

When starting and stopping the excitation force on the physical and nurnencal 



models an impact was felt by the entire system, thus exciting al1 the vibration modes. In 

order to remove this impact the numerical model was excited by initial conditions. This 

meant that one of the joints was displacecl by a small amount and then allowed to vibrate 

fieely. The physical model involved much larger displacements in order to obtain 

accurate data with the nonsontact motion measurement describeci in Chapter 4 section 

4.2. Without the limitation of capturing the motion data using the numencal model, the 

initial displacements that excited the system were smaller than the displacements used in 

the physical model and aforementioned numerical simulations. The lack of impact and 

the relatively smaller initial displacement (approximately 5 - 10 times smaller) resulted 

in the joint motion being almost completely decoupled (see Figures 5.12 and 5.13). 

5.4 Natural Frequencies for AU Possible Configurations 

Another numerical simulation was used to obtain a plot of the system's natural 

frequencies for different postures with darnping included (see Appendix II). The posture 

angle Qz was varied fiom O to 180 degrees (see Figure 2.5). 

To study the eigenvectors the normalized mode shapes were tabulated. The mode 

shapes displayed changes in sign at certain configurations (see Figures 5.14 and 5.15). 

The sign is determined by the position of the modal displacement with reference to the 

actual position (zero displacement). This also suggests that there is a point where the 

equations of the motion decouple as the mode component relative value goes fiorn "plus" 

to "minus". Going f?om "plus" to "minus" suggests that zero must be crossed i.e. no 



modal displacement. This is the point whm the jouit motion deeouples (equations 

describing the joint motion decouples). This change in sign of the mode component 

relative value that corresponded to link 2 occurred at 13 1.4 degrees. The closer the 

posture angle value is to the decoupling posture angle, the smaller the magnitude of the 

Eigen vector. This agreed to the angle needed to diagonalize the mass matrix. 

There was a correspondence between the diagonalizing posture angle and t& - 

natural Gequencies at that posture angle. When the joint posture angle diagonalized the 

inertia matrix the second natural fiequency was at an absolute minimum value (see Figure 

2A). 



Figure 5.1 : Block diagram for simulation of the equation of motion o f  the system that 
represents the physical mode1 
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Figure 5.2: Simulated results ofjoint displacements for the first mode plotted versus 
tirne. The system was excited from rest. 
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Figure 5.3: Simulated results of joint displacements for the second mode plotted venus 
time. The system was excited from rest. 
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Figure 5.4: Simulated results of link tip displacements for the first mode. 
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Figure 5.5: Simulated results of link tip displacements for the second mode. 
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Figure 5.6: Cornpanson of experimental and simulaied results of joint displacements for 
the first mode plotted versus time. 
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Figure 5.7: Cornparison of experimental and simulated results of  joint displacements for 
the second mode plotted versus tirnc. 
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Figure 5.10: Frequency spectrum of simulated results from the first mode. 
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Figure 5.1 1 : Frequency spectrum of simulated results from the second mode. 
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Figure 5.13: Joint displacements fiom initial displacement of joint 3 
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Figure 5.1 5 : Mode Shape (++ - ). 



CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusions 

The thesis dealt with dynarnics of a very flexible manipulator structure. A study 

of the modes of vibrations for structures that Vary their geometric posture was conducted. 

This study lead to an investigation of mode separation by the rnanipulator joints. This 

investigation suggested that it was possible to separate the modes of vibration. To further 

research the possibilities o f  mode separation a physical model that represented planar 

motion of a space manipulator was successfûlly designed and fabricated. A low 

fiequency harmonic exciter was also designed and fabricated. An accurate non-contact 

method was employed to m e s u r e  motion of a delicate model. Then a laboratory setup 

was integrated. It included the aforementioned model, exciter and method along with 

sensors, cornputers and software. 

Mathematical methods were developed to study modal motion. An investigation 

of experimental, numencal and analytical properties of flexible structures that V a r y  their 

geometric postures was camed out. The results of this study have been published [16]. 

This thesis dernonstrated that a linear mathernatical model could accurately 

represent the simple 2-DOF physical model a space manipulator. The larger the off- 

diagonal terms of the inertia matrix become the more this linear mathematical model 



degenerates. 

The expenmentation demonstrated that the flat spring "suspension" of the 

manipulator structure proved to be a practical way of simulating scaled planar motion in 

space where the elasticity of the joints is much greater than the elasticity of the links. 

The simulation demonstrated that the angle that decouples the equations of motion 

occurs at the absolute minimum of the second natural fiequency. 

The experiments verified that at a certain posture the joint motion decouples the 

natural vibrational modes of the manipulator structure for a particular posture. For a 

planar two-DOF manipulator ami that undergoes small vibrations there exists one posture 

angle between the upper and lower a m  that leads to uncoupling of the joint oscillations. 

The angle between the base and the lower a m  can be arbitraxy. This study demonstrated 

that the modes of vibration largely decoupled when the equations of motion were 

decoupled as predicted analytically. 

6.2 Results of the Experimentation 

The results were as predicted by the theory and numerical simulation and 

demonstrated that almost al1 the flexing motion is located in a single joint when the 

system is excited at a natural frequency when the manipulator is in the correct posture. As 

expected, there was slight motion recorded in the secondary joint that did not correspond 

to the natural frequency input i.e. ql was comparatively small when the first mode is 



excited. This motion is due to a slight cross coupling of very srna11 Coriolis and 

centrihgal forces and an impact excitation felt by the system when excitation begins and 

ends. Another factor causing this slight motion was that the initial size of displacement 

needed to be relatively large as the rneasurement method would not allow for accurate 

measurement of very small displacements. 

6.3 Recommendations and Further Study 

Recommendations include m e r  study and testing of the physical and numerical 

models to include higher orders of degrees of fieedom. These higher orders should 

consist of more links and increased flexibility of the links themselves. The theory was 

also completed for a 3-DOF system (see Appendix V) and verification of that theory is 

required. The theory should be expanded to investigate the possibilities of decoupling the 

motion in the joints for each mode for more degrees of fieedom. 

Testing should be expanded to include a variety of different types of input, such 

as random vibrations and impact vibrations at various locations. A more in-depth study of 

various constant vibration inputs that are not at a natural frequency should also be done. 

Representation of a payload by a lump mass added to the tip of the last link should be 

added to al1 the mathematical, numencal and physical models. 



6.4 Major Contributions of this Thesis 

Some of the contributions of this thesis are as follow: 

Discovery that certain rnanipuIator postures will limit the effects of  base vibration to a 

single joint. 

Proving physically and numencally that decoupling of the equations of motion takes 

place for a certain manipulator posture. 

Development o f a  joint that allows accurate physical simulation o f  planar vibration of 

a space manipulator at a fixed posture. 

Development of a mechanism that generates low fiequency harmonic forces. The 

force can ranges fiom 2 to 8 N and the fiequency range fiom 0.6 rads/sec (0.1 Hz) to 

20 rads  (3 Hz). 

Development of an inexpensive and non-contact method of accurately analyzing 

motion in the range of O Hz to 5 Hz. 

A starting point for increase control of  space manipulators. By placing the space 

manipulator in a certain posture it is necessary to only having to control motion of 

one joint caused by base vibrations instead of having to control the motion of two or 

more joints whose motions are coupled. 

A solid base for further study in the effects of base vibrations o n  space manipulators. 

Note that since the expenmentation was conducted the ability to capture larger frames at 

a higher rate without dropping fiames has improved dramatically. As the hardware 

(CPU's, hard drives and capture cards) speeds increase and the demand for free streaming 



video grows for entertainment purposes this method will provide a cost effective non- 

contact way of measuring two dimensional motion. in the future with these improvements 

it will be possible to measure 3-D motion, by knowing the target size and using the aspect 

ratio to calculate depth and rotation by the change in size and shape of the target. 
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APPENDIX 1 

COMPLETE DERIVATION OF EQUATIONS 

Al .  1 Equations of Motion 

Spong and Vidyasagar 1111 Eq. 6.3.12 provide a rigid robotic procedure for deriving the 

equation of motion involving only inertia and Coriolis and centrifuga1 tenns. In this 

study, darnping and stiffness terms are added. The equation of motion can be wntten as 

~p + ~p + ~ p  + K p  = T  (AI. 1) 

where p and its denvatives include both posture and motion. 

The related torques have been divided into 5 categones: 

Inertia Torques ~p 

Coriolis & centrifuga1 Torques Ai> 

Damping Torques C p 

Stiffhess Torques K p 

Drive Torques 5 

The nght hand side component is the driving torque, T. 

For spatial manipulators the syrnmetric positive definite matrix M has the form 

( [ i l ]  Eq. 6.2.22) 



for planar manipulators Ii is a scdar and therefore 

w here 

J v ~ i  

Jd 

n 

mi 

Ii 

Ii 

R' 
O 

- 3xn Jacobian relating linear velocity of the i-th link centroid to the base 

reference frarne. 

- 3xn Jacobian relating angular velocity of the i-th link to the base reference 

fiame. 

- nurnber of links ( also number of joints) 

- i-th link mass 

- i-th link inertia 3x3 tensor 

- for planar motion: i-th link inertia scalar 

- rotation matrix of the i-th link with respect to the base reference frame. 

The A matrix is composed of denvatives of the entnes of the inertia matrix M ( [ I l ]  

Note: Should the inertia matrix M be configuration independent then A matrix would 



disappear. 

Note: The inertia tensor Ii is a scalar in plane motion as only one rotary DOF is possible 

for a single object. 

To solve for the equations of motion the Jacobian matrices have to be fomed. 

AI -2 Jacobians for Link-1 in Planar Motion 

1. The transfonn matrix relating the position and orientation of the centroid CG1 of 

the first link to the base reference frame O has the following form: 

Note: Ci = Cos(p~), C2 = Cos(p2), Si = Sin(pi) and S2 = Sin(p2) 

2. Displacement vector d components in (AIS) are 

In the plane, the linear motion takes place only along two axes, the x-axis and the y-axis; 



therefore for computation of JVcionly the x and y components are considered. 

3. Components of the Jacobian J v G l  relating the linear velocity vl of the centroid 

CGl of the first link (velocity seen in the base reference frarne O) to the joint velocities: 

4. Components of the Jacobian Jal relating the angular velocity o 1 of the first link 

(velocity seen in the base reference fiame 0) to the joint velocities: 

where rl is the length of the link and ol is the angular velocity of the link. 



(Al. 14) 

The Jacobian J, relates the following velocity components 

(Al. 15) 

In plane, however, the angular motion takes place only about the z-axis therefore for 

derivation of Jd we consider only the z-component of J,: 

L i = [  1 0 1 

A1.3 Jacobians of Link-2 in Planar Motion 

(Al. 16) 

1. The transform TG2 relating the position and orientation of the centroid of the 

second link to the base reference fiame O has the following form: 

where C i t  and Si2 are COS(pl + pz) and SiN(pl+ p2) respectively. 



2. Displacement vector d components in (Al. 17) are: 

(A1.18) 

(Al.  19) 

3. Components of the Jacobian J v ~ 2  relating the linear velocity vz of the centroid 

CG2 of the second link (velocity seen in the base reference fiarne 0) to the joint 

veloci ties: 

The Jacobian JvG2 is then: 

4. Components of the Jacobian Jo2 relating the angular velocity 0 2  of the second 

link (velocity seen in the base reference h e  O) to the joint velocities: 



where ri is the length of link i and is the angular velocity of link i. By setting o; = 1 it 

is easier to define the Jacobian. 

In plane the angular motion takes place only about the z-axis therefore for J,2 we 

consider only the z-component of J, 

A1.4 Matrix Components for 2 DOF 

Inertia Matrix M 

where M12 and Mzl are denved as follows: 

MI* = rnz(alSil2Slz + (12~12)~ + aiCllzC12 + (12~12)~) + 12 



Using known trigonometric identities: 

Sin(p1+ p2) = Sin(p1 )Cos(pd + Cos(p 1 )Sin(p2) 

and 

Cos(p1+ pz) = Cos(p1)Cos(p2) - Sin(p1)Sin(pt) 

substituting them into Eq. (A1.32) the following expression is obtained 

Ml2 = ~ ~ ( ~ I ~ z ( s I ~ c ~ + S I S ~ C I  + C ~ ~ C ~ - S I S Z C ~ ) + I ? ) + I ~  

= m2a1 12C2 + rn21z2 + 12 

Coriolis and centrifuga1 effect matrix components 

(Al .35) 



Damping components 

The damping is located only in the joints therefore the C matnx is diagonal and 

the damping of link- 1 is 

Cil =ci  

and the damping of link-2 is 

c 2 2  = c2 

Stiffness components 

The stiffness is located only in the joints therefore the K matrix is diagonal and the 

stiffness of link-1 is 

KI1 = kl 

and the stiffness of link-2 is 

K22 = k2 

The total equation of motion is 



A1.5 Separation of Coordinates 

Separating the coordinate p into posture coordinate Q and local (motion) coordinate q the 

equation of motion can be written as 

Where M and A are îùnctions of both Q and q. 

MI I = mi(ld2+ m2 [( ai)' + (12)~ +2ailzCos (Qz + Q)] + II + 1 2  

Ml2 = MZI = m~all2Cos (Q2 + q2) + rn21z2 + 12 

Mz2 = m21z2 + I2 

Azi = ail2SintQ2 + q 2 ) ( ~ 1  + q ~ )  (A1 -5 1) 

Using the trigonometx-ic identities 

Cos (Q2 + q2) = Cos(Q2) Cos(q2) - Sin(QWn(q2) (AI -52) 

Sin (Qz + q2) = Sin(Q2) Cos(q2) + Cos(Q2)Wqd (A1.53) 

where q2 is very small and the following approximations are made 

Cos (q2) = 1 (A1.54) 

and 

Sin (q2) = Q2 (A1.55) 

we obtain: 



We can linearize the components of M by substituting Eq. (A1 -56) into Equations 

(A1.46) to (A1.48) and neglecting the higher order terms, Le., q 2  & Sin (Q2) = O and 

q2 4 2  Sin (Qz) = O, giving M as a hinction of Q only. 

MI = m ~ ( l l ) ~  + m 2  [( a l ) 2  + (1212 +2a&Cos (Q2 )] + II + IZ 

Ml2 = M21 = m~all2Cos (Q2 ) + m21z2 + Iz 

M22 = ~ n 2 1 2 ~  + I2 

We can linearize the components of A by substituting Eq. (A1.57) into Equations (A1.49) 

to (A1.5 1) and neglecting the higher order terms, Le., q2 q 2  = O, q 2  ( q1 + q z )  = O and 

Because in the reported study the vibration q takes place when the posture Q is constant, 

the derivatives Q and Q vanish. Secondly because the elasticity and damping are located 



only in the joints the elastic forces depend only on q and K(Q + q) = K q. 

Since the angular motion is relatively small the effects of changing posture due to motion 

have been neglected. This indicates that thc influence of q, q in the terms of M and A are 

neglected. The equation of motion can now be written as 

M q  + ~q +Cq + K q  = r  (A 1.64) 

The inertia matrix M, and the Coriolis & centrifbgal matrix A are posture dependent, i.e. 

they are functions of the posture coordinates Q. 

When Q2 is chosen such that the mass matrix decouples 

result: 

and the following equation is the 

giving the following two equations: 

A1.6 Parameters of the Experimental Model 

The parameters of the physical mode1 are listed in the following table. 



Table Al - Parameters of the physical mode1 and necessary values for QI and Q2 for 

diagonalizing the mass matnx. 

1 aafbar 1&2 1 0.277 m 

any value 

k (experimentally) 

These parameters give the following two equations 

0.326 N-mlrad 

link material 

0.009929 q l  + .000745q2 + .0003725qi q2 + 0.326ql = rl 

solving for qi  

qi =- 0.0750327q2 - 0.375 16qI q2 -32.833 1 lq l  + r1/0.009929 

aluminum 
A 

and 



0.003282 q2 - .0003725q1 + 0.326q2 = ~2 

solving for ii2 

q2 = 1.1 3497q1 -99.3297q2 + ~~/0.003282 

A1 -6 Equations of Motion for Three-Link Manipulator 

To represent the physical mode1 the equations of  motion need to be expanded to a 

three-link manipulator. 

In this case the parameters are as folIows: 





APPENDIX II 

SIMULATION FILES 

A 2 1  Block Diagrams 

First the equations of motion (Eq. 2.34) were reorganized for ql and q2 . With 

these equations block diagrams were created using software called SIMULINK, which is 

part of MATLab. These block diagrams are found in figure 5.1. The system parameters 

for various postures were calculated using a MATLab file named massniatrix. 

A2.2 MATLab Files 

A2.2.1 System Parameters 

This routine file was used to calculate the parameters of the three-link system for 

a chosen posture. Typing massrnatrix in the MATLab comrnand window ran this file. The 

input parameters here are listed in the file. The posture varying parameters are Qldeg, 

Q2deg and Q3deg. The mass parameters for each link are m 1, m2 and m3 with m 1 

refening to the base link. The length parameters for each link are a l ,  a2 and a3. 



13=a3/2; 
Qldeg=O ; 
Q2deg=O ; 
Q3deg=360-228.61583 
Ql=Qldeg*pi/l80; 
~2=~2deg*pi/l80; 
Q3=Q3deg*pi/180; 
C1=cos (QI) ; 
C2=cos (Q2 ) ; 
C3=cos (Q3 ) ; 
C12=cos (Ql+Q2) ; 
C23=cos (Q2+Q3 ) ; 
C123=cos (Ql+Q2+Q3) ; 
S12=sin (Ql+Q2) ; 
S23=sin(Q2+Q3) ; 
S123=sin (Ql+Q2+Q3) ; 
Sl=sin (QI) ; 
SS=sin(Q2) ; 
S3=sin (Q3) ; 
11=0.000799776; 
12=0.000799776; 
13=0.000799776; 
~11=ml*11~2+m2* (alA2+12A2+2*al*12*~2) +m3* (13* (13+a2*C3+al*C2 
3) +a2* (13*~3+a2+al*~2) +al* (13*~23+a2*C2+al) ) +Il+IS+I3; 
~12=m2* (12^2+a1*12*~2) +m3* (l3* (13+a2*~3+al*C23) +a2* (l3*~3+a2 
+al*C2) ) +I2+1:3; 
Ml3=rn3* (13" (13+a2*C3+al*C23) ) +I3; 
~21=m2* (12A2+al*12*~2) +m3* (13" (13+a2*~3+al*~23) +a2* (13*~3+a2 
+al*C2) ) +I2+I3; 
M3l=m3* (13" (13+a2*C3+al*C23) ) +I3; 
~22=rn2*12~2+rn3* (l3* (l3+a2*~3) +a2* (l3*~3+a2) ) +I2+13; 
M23=rn3* (13" (13+a2*C3) ) +I3; 
M32=m3* (13* (13+a2*C3) ) +I3; 
~33=m3*13^2+13; 
M=[M11 Ml2 M13; 

M21 M22 M23; 
M31 M23 M33]; 

K= [.326*860 O 0; 
G .326 O; 
O O .326] ; 

Kll=K(l, 1) ; 
K22=K(2,2) ; 
K33=K(3,3) ; 
A=m3*a2*12*S3; 
Alla=O; 
Allb=(-al*12*m2*S2-m3*a1*13*~23-m3*al*a2*S2); 
Allc=(-rn3*a2*13*~3-m3*a1*~3*S23); 



A12a= (-m2*al*12*~2-m3 *al*a2*S2-m3 *al*l3*S23) ; 
Al2b=-rn2*al*12*S2-m3*13*al*S23-m3*al*a2*S2; 
Al2c=-rn3*a2*13*S3-m3*aI*13*S23; 
Al3a= (-m3*a2*13*S3-m3*al*13*S23) ; 
Al3b=O ; 
Al3c=-m3*a2*13*S3; 
A2la= (m2*al*12*S2+rn3*al*13*S23+m3*al*a2*S2) ; 
A21b=. 5* (rn3*13*al*S2-m3*al*a2*SS) ; 
A2lc=-m3*a2*13*S3; 
A31a=m3*a2*13+S3+m3*a1*13*S23; 
A3lb=m3*a2*13*S3; 
A3 lc=O ; 
A22a=O ; 
A22b=0 ; 
A22c=-m3*a2*13*S3 ; 
A23a=-rn3*a2*13*S3; 
A23b=-m3*a2*13*S3; 
A23c=-m3*a2*13*S3; 
A32a=-rn3*a2*13*S3; 
A32b=-m3*a2*13*S3; 
A32c=O ; 
A33=O; 
C(l,l)=.OOl*2*sqrt (K(l,l)*M(I, 1) ) ; 
C(2,2)=.00i*2*sqrt (K(2,2)*M(2,2) 1 ; 
C(3,3)=.001*2*sqrt(K(3,3)*M(3,3)) ; 
D=eig (inv (M) *K) ; 
[V,D] =eig (inv(M) *K) ; 
Lamda=[D(l,l) 

D(2,2) 
D(3,3) 1 

Lamdal=sort (Larnda) 
nat freq=sqrt (Lamdal) 

A2.2.2 Natural Frequencies for Al1 Postures and Eigen vectors 

This file was used to calculate the parameters of the three-link system for a range 

of values of the posture angle between O and 180'. Application of this file also plotted the 

magnitudes of the first hivo natural frequencies versus the angle of the second joint. The 

eigen vectors were calculated and sorted when ruming this file. Typing allconfig in the 



MATLab command window ran this file. The input data for the application o f  this file 

were the sarne physical parameters of the physical mode1 namely, each link had a mass of 

0.129339 Kg, a length of 0.277 m, a moment of inertia of 0.000799776 kg-m2 and a 

stiffness of 280. 36 N-&rad. Each flat spnng joint had a stiffness of 0.326 N-m/rad. 

nat freql=O ; 
natfreq2=0 ; 
nat freq3 =O ; 
Dll=O; 
D22=0; 
D33=0; 
m1=0.129399; 
m2=0.129399; 
m3=0.123399; 
al=0 -277; 
a2=0.277; 
a3=O ,277; 
ll=a1/2 ; 
12=a2/2; 
l3=a3/2 ; 
Qldeg=O ; 
Q2deg=O ; 
for n=1:181; 
Q3deg= (n-1) 
~l=Qldeg*pi/l80; 
~2=~2deg*pi/180 ; 

~3=~3deg*pi/180; 
Cl=cos (QI) ; 
C2=cos (Q2) ; 
C3 =cos (43 ) ; 
C12=cos (Ql+Q2) ; 
C23=cos (Q2+Q3)  ; 
C123=cos (Ql+Q2+Q3) ; 
S12-sin (Ql+Q2) ; 
S23=sin (Q2+Q3) ; 
S123-sin (Ql+Q2+Q3) ; 
Sl=sin (QI) ; 
S2=sin(Q2) ; 
S3=sin(Q3) ; 
I1=0.000799776; 
12=0.000799776; 
13=0,000799776; 



~11=rnl*11~2+m2* (alA2+12*2+2*al*12*~2) +m3* (13* (13+a2*C3+al*C2 
3) +a2* (13*~3+a2+al*CS) +al* (13*C23+a2*C2+al) ) +Il+I2+I3; 
~12=m2* (12*2+al*12*~2) +m3* (13* (13+a2*C3+al*C23) +a2* (l3*C3+a2 
+al*C2) ) +I2+I3; 
Ml3=rn3* (13* (13+aZ*C3+al*C23) ) +I3; 
~21=m2* (12^2+al*12*~2) +m3* (13"  (13+aS*C3+al*C23) +a2* (l3*C3+a2 
+al*C2) ) +I2+I3; 
M3l=m3* (13* (13+a2*C3+al*C23) ) +I3 ; 
~22=rn2*12*2+rn3* (l3* (l3+a2*~3) +a2* (I3*~3+a2) ) +12+13; 
M23=m3* (13" (13+aZfC3) ) +I3; 
M32=rn3* (l3* (13+aS*C3) ) +I3; 
~33=m3*13^2+13; 
M= [Ml1 Ml2 M13; 

M21 M22 M23; 
M31 M23 M331; 

K=[.326*860 O 0; 
O .326 O; 
O O .326] ; 

Kll=K(l,l) ; 
K22=K(2,2) ; 
K33=K(3,3) ; 
A=m3*a2*12*S3 ; 
C(l,l)=.OO1*2*sqrt (K(1,l) *M(1,1)) ; 
C(2,2)=.001*2*sqrt (K(2,2)*M(2,2)) ; 
C(3,3)=.001*2*sqrt(K(3,3)*M(3,3)) ; 
D=eig (inv (M) *KI ; 
[V, Dl =eig (inv(M) *K) ; 
i=l; 
fo r  j=I:3 

DD(j)=D(i,i); 
i=i+l; 

end 
[SDD, SI] =sort (DD) ; 
i=l; 
fo r  j=1:3; 

TEMP(:, j)=V(1:3,i) ; 
TDl(j)=D(i,i); 
i=i+l; 

end 
PSI=TEMP ( : ,SI) ; 
TD2=TD1 (SI) ; 
for i=1:3; 

Lambda(i,i)=TDL(i) ; % sorted eigenvalue matrix 
end 

Lamdal= [Lambda ( l,1 ) ; 
Lambda (2,2) ; 
Lambda(3,3) 1 ; 



natfreq=sqrt (Lamdal) ; 
Vll (n) =PSI (1, 1) ; 
Vl2 (n) =PSI (1,2) ; 
VI3 (n) =PSI (1,3) ; 
V21 (n) =PSI (2,1) ; 
V22 (n) =PSI (2,2) ; 
V23 (n)=PSI(2,3); 
V31(n)=PSI(3,1) ; 
V32 (n) =PSI (3,2) ; 
V33 (n)=PSI (3,3) ; 
natfreql (n) =natfreq(l,l) ; 
natfreq2 (n)=natfreq(2,1) ; 
nat f req3 (n) =nat f req ( 3,l) ; 
end 
z=O:n-1; 
plot (z,natfreql, :, z, natfreq2) 
ylabel ( l Frequency (rads/s) ' ) 
xlabel ( 'Angle of Joint 2 (degrees) ' ) 
title(IThe First Two Natural Frequencies Versus Joint 
Configuration1) 
%eigenvectors 
al=V11 l ; 
bl=V211 ; 
cl=V311 ; 
dl =nat f reql l ; 
a2 =VI2 l ; 
b2=V22 l ; 
c2=V32 l ; 
d2 =nat f req2 l ; 
a3=V13 l ; 
b3=V23' ; 
c3=v33 l ; 
d3 =nat f req3 ' ; 
XX= [al bl cl dl z l ] ; 
YY=[a2 b2 c2 d2 z l ] ;  
ZZ= (a3 b3 c3 d3 z l ]  ; 
Y=cat (3 ,XX,YY, Z Z )  
dampedl= (natfreqll) *sqrt (1- (O -001) '2) ; 
damped2= (natfreq2 ) *sqrt (1- (O. 001) ̂2) ; 
damped3= (natfreq3 ' ) *sqrt (1- (O -001) *2) ; 



A2.2.3 Frequency Spectrums of Experimental Results 

Application of this file calculated and plotted the frequency spectrum of the 

experimental results. Taking the Fast Fourier Transform (FFT) of the results and plotting 

them versus fiequency did this. After loading the experimental results into MATLab and 

typing ffttest in the MATLab cornrnand window ran this file. The input data used is the 

angular position and corresponding time obtained from the experimental results. 

t=tl; 
xl=qlx; 
x2 =q2x; 
Xl=f f t (xl) ; 
X2=f ft (x2) ; 
Ts=t (2) -t (1) ; 
Ws=S*pi/Ts; 
~ n = ~ s / 2  ; 

w=linspace (0,Wn, length(t) / 2 )  ; 
~pl=abs (XI (1: length (t) /2) ) ; 
~ p 2 = a b s ( ~ 2  (l:length(t) /2) ; 
plot (w,Xpl,w,XpS) 

A2.2.4 Conversion of Angular Coordinates to Cartesian Coordinates 

This file converted joint angles to tip displacement in Cartesian coordinates. This 

file also plotted the tips of links 2 and 3. After loading the joint angle coordinates 

(experimental or simulated) into MATLab and typing tip in the MATLab cornmand 

window ran this file. 



axis square 
axis ( [O 0 . 3 5  - .  3 . O S ]  ) 
xlabel ( ' x (m) ' ) 
ylabel ( ' y (m) ' ) 



APPENFDIX III 

CALCULATIONS 

A3.1 Moment of Inertia 

Calculations for the moment of inertia 1 for the links, where a and b are length and height 

respectively of the corresponding part, are as follows: 

Zxt represents the moment of hertia of the extension. 

Ihingc repre~enfS the moment of inertia of half of the hinge. 

Io represents the moment of inertia of the link, the extension and half of the hinge. 

The mass and moment of inertia of the shim (flat spring) was considered negligible. 

extension 

I 

!4 of the hinge 

Figure A3.1: Link components for moment of inertia calculations 



A3.2 Angle of Joints to Prevent Torsion 

Since the center of gravity of each link was at its geometrical center by design it 

was possible to use simple geometry and ûigonometry to solve for the position of the 

center of m t y  of the chah of links. The angle y is the angle which the flat spring must 

be in-line with to avoid torsion in the first joint. 

Angle A is known since A = q - 180' 

c = b = length/2 

therefore, a2 = b2 + c2 -2bcCosA. 

sin(A) 
soive for B = sin-'( 7 1 

Figure A3.2: Location of center of gravity 



A3.3 Natural Frequency 

an, =ds =dx .O0993 =5.73 racids 

a,,, = dg = dE .O0328 = 9.97 radsis 

Conversion fiom radsls to hertz 

5.73 radds 
On' = 2ir raddcyc = 0.911 Hz 

9.97 rad& 
an1 = 27t raddcyc = 1.59 Hz 

3.4 Error Calculations 



A3.5 Conversion of Cartesian Coordinates to Angular Coordinates 

When given the x and y coordinates of positions 1 ,2  and 3 it is possible to find the angle 

of the triangle using trigonornetry. 

sin(A) 
B = sin- ( - ab 1 

Figure A3.3: Conversion of Cartesian coordinates to angular coordinates 



A3.6 Damping 

where n is the nurnber of cycles since the original measurement and X is the displacement 

of the amplitude. 

A3.7 Angle for Decoupling the Inertia Matrix 



TRANSFORMATION FROM ABSOLUTE COORDINATES TO 
JOINT COORDINATES AND VISE VERSA 

A4.1 Developing the Equations of Motion for Absolute Coordinates 

Energy methods are used in this procedure. The absolute coordinates are s h o w  in 

Figure A4.1. 

First the velocities must be solved for the center of masses of links 1 and 2 1141. 

v12 = (116 1)2 A4.1 

v22 = [ aie 1 + 126 2 COS (02 - + [ 126 2 sin (82 - &)12 

= al2 6 l2 + 2a112cos(82-01)6 1 6 2 + 122cos2(02 - ei)6 22 + 122~in2(02 - &)6 22 

= (a12QI + 2a1 itcos(~2-~l)èl  é2 + 1; 622) 

Solving for kinetic energy of links 1 and 2 

1 
T~ =+e 



d - 2) = I2 5 2 + m2h2 .8.2 + m2al l2cos (02 - 91 )8 1 - m2al 12(sin (02 - 81)) (6 2 - 6 1)6 1 dt 

A4.9 

Solving for potential energy of links 1 and 2. 

M 12 = m2ai 12cos (82 - 81) 

M21 = M21 

M22 = I2 + rn21z2 

Forming the Coriolis and centrifuga1 forces rnahix. 



Forming the stifhess matrix. 

For a manipulator that is in a constant posture it is necessary to define the 

coordinates that will allow for small motions. This is done by defining 

0 ' ~ -  Y, A4.32 

where yr is  the configuration coordinate and y is the small motion coordinate. 

Since y is small, 



Since \y is constant, 

6 = ; and 

A4.2 Jacobian Transformations 

The next step is to solve for the Jacobian matrix that will allow a transfer fkom 

absolute coordinates, (posture coordinate) and y (small motion coordinate), to joint 

coordinates, Q (posture coordinate) and q (small motion coordinate). 

This is done by writing el and O2 in terms of ql and q 2  and forming a matrix 

writing the Jacobian Matrix gives 

To transfer the Inertia and stiffiess matrices they are pre-multiplied by the transpose of 

the Jacobian Matrix and post multiplied by the Jacobian Matrix. 

For the inertia matrix: 



For the Coriolis and centrifuga1 matrix: 

This is not possible since a Jacobian transfer is a linear fùnction and the Coriolis and 

centrifuga1 parameters are not linear. 



Figure A4.1: Definition of Absolute Coordinates 



APPENDIX V 

PARAMETERS FOR DECOUPLING A 3 DOF LINKAGE 

Using Jacobian velocity kinematics and denved Euler-Lagrange equations [ 1 11 

the equation of motion for a 2 DOF linkage was found. This method was expanded to a 3 

DOF linkage system. 

Mathematically speaking, the separating of modal motion occurs because at the 

appropriate angles, al1 the terms that are not along the diagonal in the inertia matrix 

become zero. 

Using this information and the fact the Mu, Mu, Mt2 and M33 for the inertia 

matrix of the 3-DOF system correspond respectively to Mils Ml2, M21 and M22 for the 

inertia matrix of the 2-DOF system we are left only having to solve for two equations. 

For a 3-DOF 

M2) = M32 = m3((1312 + at13Cos(Q3)) + I3 = O 

when Q3 = 228.65 degrees 

Ml3 = MN = m3((13)~ + a213Cos(Q3)) + 13 + ~ ~ ~ I L C O S ( Q I  + Q3) 

O = O + rn3a113Cos(Qz + Q3) 

Therefore Q2 = - 138.35 

Mi2 = MI, = MI) + m3(ar13Cos(Q,) + (a212 + aiazCos(Q3)) + Iz 

O = O + m3(azl3Cos(Q3) + (a212 + a~atCos(Q~)) + 12 

Therefore al = 277 mm 



The top view of necessary configuration for lirniting modal response to a single 

corresponding joint is found in figure A6.1. 

Table A6.1- Parameters of physical mode1 and necessary values for Q2, Q3 and ai for 

diagonalizing the inertia matrix. 

-- - 

a of bar 2&3 

1 of bar 2&3 

1 -138.3 5 degrees 

1 228.65 degrees 

a of bar 3 
-- 

1 of bar 3 
- 

1 of bar 3 

m of bar 2&3 

m of bar 1 

a of bar 1 

1 o f  bar t 



link 1 

Figure A6.1: Configuration for decoupling of a 3-DOF-linkage 




