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Nonintrusive load disaggregation computer program 

to estimate the energy consumption of major end-uses in residentiai buildings 

Medgar L. Marceau 

The objective of tàis thesis is to deveiop a methodology and the relatecl wmputer 

program for the nonintrusive load disaggregation of total-household electric load into its 

end-uses. The computer program estimates the energy consumption of individual electric 

appliances in a house based on the analysis of the current measured at the house-power- 

source interface using a minimum number of sensors. The program, written in the C 

programming language, is based on the analysis of total-household electric current data 

collected over a period of one year fiom a house in Montréal. The nonintrusive load 

disaggregation computer program cm be incorporated into an Energy Monitoring and 

Management System (EMMS). An EMMS will (i) continuously monitor and q u a n e  the 

real long-term energy impact of renovations, purchases, aging appliances, and changes in 

occupant behaviour, (ü) increase the home owner's awareness of actual energy 

performance, and (iii) provide helpfbi recommendations to the home owner for improving 

the energy performance of the house. 

The program estimates the contribution of selected appliances to the total energy 

co~lsumption of the house. The contribution of an appiiance to the total energy 

iii 



consumption is called the appliance energy &are. The redts show that for most of the 

appliances the clifference between measured and estimated enerw shares is Iess than 5%. 
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INTRODUCTION 

The need to conserve enerw is univmally recognized. The environmental consequences 

of energy production and use c m  no longer be ignored. Cornpetition in the newly 

deregulated energy market is forcing energy utilities to offer their customers new 

services. For example, some electrïc utiiïties have aIready modified th& residential rate- 

structure to reflect the tirne-of-day cost of producing electlicity. However, the cost to the 

consumer will continue its inevitable increase until it actualiy reflects the true cost of 

energy production and use. To cope with these nsing costs, home owners need to be 

aware of the actuai energy performance of their homes, and they need access to 

appropnate advice for implementing energy conservation measures. 

1.1 ENERGY CONSERVATION 

Almost ail houses today were built when energy was cheap and when the environmentai 

consequences of energy production and use were usually overlooked. They were built 

before any regdations on energy efficiency were avaiiabIe or enforced. Consequently, 

today there are many opportunities for reducing energy consumption in the residential 

sector. 

Renovations, aging appliances, newly installed appliances, and changes in occupant 

behaviour affect the energy performance of a house. But home owners are often unaware 

of how these changes wili afTect performance. For example, installing a more-efficient 



fumace will not necessarily reduce energy bills. If the occupants stop turning down the 

thermostat at night because the new h a c e  is cheaper to operate, their energy costs can 

actually increase [Zmeureanu and Marceau, 19981. 

1.2 ENERCY AUDIT 

To make informed decisions about energy conservation, home owners need a detailed 

picture of energy use. An energy audit is an accounting of dl such uses. Although this 

kind of short-term monitoring is cost-effective* it can ody provide energy auditors with 

information about energy performance at a specifïc time. Long-term monitoring, on the 

other hand, is more usefui because it cari provide feedback to the home owner, the utility 

Company, and the energy auditor on energy use and changes in energy use. However, 

because it requires that aii end-uses be monitored for a long tirne* it can be expensive, and 

it can inconvenience the occupants. 

1.3 LOAD DISACCREGATION 

Over the past several years, researchers have deveioped methods of disaggregating the 

total energy consumption of a house into its end-uses. Analyzing the total-household 

energy consumption can provide as detailed a picnire of energy use as does detailed long- 

term monitoring. 

Load disaggregation is a method of extracthg nom the total load its constituent parts. It 

yieids information about the energy co~lsumption of end-uses without having to measure 

the end-uses directly for long perïods of tirne; therefore, fewer sensors are needed, and 



less data is collected. Since there is less data, less analysis is required. Consequently, 

monitoring, storage, and transmission costs are lower. 

Load disaggregation is intrinsidy nonintrusive. Compare this to the conventional and 

intrusive practice of sub-metering. Using load disaggregation, building occupants are not 

inconvenienced by personnel installing devices on appiiances throughout the building, 

and there are no visible devices that contindly remind the occupants that their behaviour 

is somehow being monitored 

1.4 NONINTRUSIVE LOAD DISAGGREGATION COMPUTER PROGRAM 

The objective of this thesis is to develop a methodology and the related computer 

program for the nonintrusive load disaggregation of total-household electric load into its 

end-uses. The computer program estimates the energy consumption of individuai electnc 

appliances in a house based on the aualysis of the current meanired at the house-power- 

source interface using a minimum number of sensors. 

The development of the program was based on data collected fiom a house located in 

Montréal. The total electric demand of the house and of each major appliance was 

obtained from meanirements of electric current over a period of one year. Figure 1 shows 

how variations in the demand of the individual appliances are refiected in the total- 

household demand. Rules that predict which appliance causes a particuiar change in the 

totai demand were idenrified and organized into an algorithm. This aigorithm, called the 

appliance-load recognition aigorithm. forms the core of the computer program. The 

program is coded ùi the C programming language. 
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Figure 1. Variations in the demand of individual appliances are reflected in the total- 
household demand. From M. Marceau and R Zmeureanu. 1998. A non-intrusive appliance 
load recognition algorithm to estimate the energy performance of major end-uses in 
residential buildings. Procdings of Second European Conterence on Energy Performance 
and lodoor Climate in Buildings, November 1998. Lyon, France. 

The cornputer program has two major stages: (1) the sampling mode and (2) the 

evduation mode. In the sampling mode, the operating characteristics of each appliance 

are dehed  using measurements collected over a sampling penod of severd days. At least 

one current sensor per appliançe is required to coilect the appliance cuxxent data during 

the sampling mode. In the evduation mode, the appliance-load recognition algorithm 

andyzes the electric current measured fiom the main supply line using the previously 



identified statistics of each appliance. Two current sensors are required to collect the total 

current data in the evaluation mode, that is, one on each nipply h e .  The computer 

program disaggregates the total-household electricity collsumption into its constituent 

P m *  

The noninirusive load disaggregation computer program described in this thesis can be 

integrated into be the main component of an Energy Monitoring and Management System 

W S ) .  An EMMS wïlI (i) continuousIy monitor and quatltify the r d  long-term energy 

impact of renovations, purchases, aging appliances, and changes in occupant behaviour, 

(ii) increase the home owner's awareness of actual energy performance, and (iü) provide 

helpfid recommendations to the home owner for improving the house's energy 

performance. 

1.5 ORCAN~ZATION OF THESIS 

Load disaggregation and the work done by other researches in this field is described in 

Chapter 2. The methods of disaggregating electric loads are emphasized. 

The data used to develop the nonintrusive ioad disaggregation computer program is 

descnbed in Chapter 3. The data was obtained from an energy audit of a house located in 

Montréal. The audit included detailed monitoring of electricity consumption of the entire 

houe and of the major appliances. 

The nonintrusive load disaggregation computer program is descnbed in Chapter 4. The 

core of the program is the appliance-load recognition algorithm. The program estimates 

the energy consumption of the major household appliances based on short-term 



measurements of the appliances and on the long-term anaiysis of changes in the 

total-household electric demand. 

The computer program is evaluated for 25 scenarios. These scenarios and the redts  of 

the evaluation are summarized in Chapter 5. 

Finally, conclusions and recornmendations for further work are presented in Chapters 6 

and 7, 



The scope of the literature review encompasses the broad area of load disaggregation. 

Although this thesis is specifically about nonintrusive elecûic-load disaggregation, 

investigating a broader area wili show how the thesis fi& into the iarger context 

There are two sections to this literature review- The nrst section contains a summary of 

the methods of load disaggregation developed by other researchers. The second section 

presents the conclusions from the Iiteraiure review. 

2.1 LOAD DISAGGREGATION 

There are several ways of classifying load disaggregation research. For example, Figure 2 

shows a classincation scheme based on load type and appliance signatures. The three 

types are electric, gas, and hot water. The data for Load research cm be collected either 

intrusiveiy or nonintrusively. Researchers d l y  focus on either the residential sector or 

the commercial sector, because each sector has load profiles that are characteristic to it. 

However, aiI methods essentiaiiy rely on the assumption that changes in the operation of 

an end-use produces recognizable and predictable changes in the total load. Sections 2.1.1 

to 2.1.3 discuss each load type. 
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Figure 2. Load disaggregation research classificd according to load type and appliance 
signature. Adapted from Hart, G.W. 1992. Nonintrusive appliance load monitoring. 
Proceedings of the IEEE. VOL 80, No. 12, pp. 1870-1891. 

2. I .  I Elecfrrc loads 

Elecnic-load disaggregation means disaggregating the total electric load into its end-uses. 

The utility-building interface is the utilityrs electriciîy revenue meter. The paper by Hart 

[Ha6 19921 contains an exhaustive bibliography of research in the area of nonintrusive 

appliance-load monitoring up to 1992, and sections 1 to VI are an excellent introducîion 

to the topic of electric-load disaggregation. In this paper, the author advances the concept 

of appliance signatures. He dehes  an appliance signature as a measurable parameter of 

the total load that gives information about the nature or operating state of an individual 

end-use in the load. 



There are two ciasses of appliance signature: nonintrusive and intrusive. These classes 

also characterize two approaches to load disaggregation. I t  is UIlfortunate that the 

modifiers inmaive and nonintrusive mean different things depending on whether they 

refer to a procedure or to a signature. For example, a nonintrusive signature can be 

measured inûusively or nonintmsiveiy; simüarly, an intnisive signature can be measured 

intrusively or nonintnisively. 

"A nonintrusive signature is one fhat can be meewed by pssively observing the 

operution of o 1oad' part,  19921, whereas nonintrusive monitoring means that physical 

inmisions onto the energy consumer's property are minimùed or eliminated. Two types 

of nonintrusive signature are steady-state and transient 

Fundamentai fiequency signatures, such as power, curent, and admittance, consist of the 

complex ordered pair of an in-phase and an out-of-phase component. However, either 

components alone could be used as a signature, aithough it would be Iess informative 

than using both Bart, 19921. 

Steady-state signatures are derived fiom the ciifferences between the steady-state 

propemes of an end-use's operating states. For example, the steady-state power signature 

of a baseboard heater is the power difference between its off state and its on state. Hart 

identifies three advantages to using steady-state signatures: (i) They are continuously 

present; therefore, high resolution data is not needed to detect their presence. (ii) They 

satisQ the constraint that the s u m  of power changes in any end-use's cycle of state 

transitions is zero. This implies that the act of an end-w nirning off is also a signature. 



(iii) They are additive when two or more happen coincidentally. This means it is possible 

to analyze simultaneous events when their sum is received by a processing algorithm. 

Transient signatures, on the other hand, are more difficult to detect and provide less 

information than steady-state signatures. However, transient signatures are worthwhile 

investigating if they provide useful information to augment that nom steady--te 

signatures [Hart, 19921. For example, motors have a characteristic transient signature at 

start-up. Therefore, the presence of nich a signature cm be used to confinn that an 

appliance ~ 6 t h  a motor has turned on. 

An intrusive signature requires some f o m  of active interference at the energy consumer's 

property, while intrusive monitoring requires that each end-use be instmented. Intrusive 

monitoring necessitates entering the energy consumer's premises and inconveniencing the 

occupants. There are two types of inmisive signature: physical and electrical. Both types 

must be generated. 

Physically intrusive signatures can be generated by a smail device attached to the power 

cord of an appiiance. Whenever the appliance is activated, the device sends a signal to a 

data collecter indicating the condition of the appliance's operating state. This kind of 

device could also be used to distinguish between two or more appliances with the same 

electrical signal. 

Electrically i n ~ i v e  signatures are generated at the electricity meter. It involves 

"injecting a signal such es a voltage hmmonic or transient at the utility inteflace. By 

analyrng the change in the mrent  w ~ o r m .  information can be gleaned conceming 



the types of devices active at that moment" part, 19921. This procedure is analogous to 

sonar: a signal is sent out and the echo that comes back is analyzed. However, because of 

concems about interference and power quality, utilities are reluctant to d o w  this form of 

active signature. 

2.1.1.1 Four approaches to elechic load disaggregation 

This section nunmarizes four approaches to electric-load disaggregation. Each approach 

can be characterized by the input required and the output produced, the method of 

disaggregation, the accuracy of the redts ,  and possible applications. 

2.1.1.1.1 Nonintmsive Appliance L o d  Monitor 

Hart Bart, 19921 descnbes the development of a Nonintrusive Appliance Load Monitor 

(NALM). The NALM is a physical device that an electrician installs on the electricity 

meter. The outline of the NALM algorithm is shown in Figure 3. 

The prototype perfomis seps 1 through 3 in the field and steps 4 through 8 are executed 

in the lab. The commercial unit performs steps 1 through 7 in the field and step 8 is 

performed in the lab. 

The inputs are power and voltage. The electricity meter is the oniy point in the entire 

building that is instrumented. Sensors in the NALM measure average power and root 

mean square (RMS) voltage on each of the two legs over 1-second intervals. "Each 

sensor is a digital alternating current monitor contgured to caZculate RMS voltage and 

real and reactive power digrgrtally based on rapid sumples of m e n t  and voltage 

wmeforrm for the two legs. The da~a memred is the orderedpair of real and reactive 



power " Fart, 19921. Each set of data also has an associated tirne value that represents the 

time of the observed measurement. The inputs are used to calculate normalized power for 

each leg. Normalized power is equivalent to admittance. The power is normdized to 

remove the eEects of varying iine voltage. 

The next step is to pass the data through the edge detection algorithm. It identifies the 

location of step-like changes. The location is defmed by the time value. The algorithm 

segments the nonnalized power values into periods in which the power is steady and 

periods in which it is changing. A steady period is dehed  as three or more data sampling 

penods (that is, at least 3 seconds) in which the input does not Vary by more than 15 W 

(or 15 VAR for reactive power). The remaining periods are deked  as periods of change. 

The values within the steady periods are average4 thereby miniminng the effect of 

electrical noise. The difference between steady penods is the step change in power. The 

time of the fbst value in the step change provides the time stamp. The sequence of time- 

stamped step-change vectors (they are caiied vectors because the process of an appliance 

tuming on or off is analogous to a change in direction) is the output. All outputs below a 

certain size threshold are discarded. The magnitude of the size threshold depends on the 

power connimption of the appliances that the user wants the aigorithm to identify. 

Another algorithm groups the observed step changes into clusîers. Ideally, each of these 

clusters represents one kind of state change for one appliance. Groups of ciustes are 

paired to form the appliance models. Pairing clusters involves a number of tolerance 

critena for matching the centroid of each cluster. Every tirne-stamped signature event 

corresponds to an appliance changing state. Each cluster represents an appliance. Now it 



is h p l y  a matter of matching signatures. The statistics are tabulated given that each -te 

change at every time is known. Finaily, the appliances are named The appliances are 

named based on operating power level, the 120-V versus 2 4 0 4  nature, and the duration 

statistics. 

1 .  Mwsurc power and voltage 

I 
I-second RUS data 

2- Normalizc, P- = (I20n32. P 

1 Hz Normalized rd and reactive power on each k g  

3. Edge detection 

List of  stcp changes 
I 1 

( Onloff models or finite-statc-machine rnodels 
v 

6, Track behaviour in terms of rnodels 

On and off urnes of  each appliance 

7. Tabulate statisu'cs 

Energy versus time of day, etc. 
I 1 

I 8- AppIianct naming I 
1 Consumer's namt for each appliance 

Figure 3. Nonintrusive appliance load monitor algorithm. From Hart, G.W. 1992. 
Nonintrusive appliance load monitoring. Proceediags of the IEEE. VOL 80, No. 12, 
pp. 1810-1891. 



Field-testing of the prototype NALM compared the performance of the NALM with data 

coilected conventionally [Carmichael, 19901. The NALM can recognize smail kitchen 

appliances with a high degree of accuracy (-1 -4% average error) but not lights (1 5.3% 

average error). For larger appliances the emr ranged fiom -2.8% for washers to 46.7% 

for electric ranges. The average e m r  for total household energy consumption was -6.5%. 

By 1996, seven utiiities were field-testing NALMs at up to six customer sites each 

raylor, 1 9961. in one evduation period, the difference between the NALM estimates for 

monthiy electricity consumption and data fiom direct measurement was less than 15% for 

ail appliances; and less than 10% for pumps and refrigerators. In addition, the NALM 

aiso aided researchers in identifying about five faulty appliances. An important foomote 

says that nearly-simultaneous events, within 2 to 3 seconds, accounted for 4% of the 

events in one field test where they were carefully counted. But this will Vary 

considerably, depending on the appliance inventory and usage wart, 19921. 

There are some disadvantages to this procedure. The first is the 1-second data sampling 

rate. Although a slower sampling rate would r e d t  in more simultaneous events, it would 

also mean lcwer storage, transmission, and analysis cos&. Perhaps it is possible to 

decrease the sampling rate without loshg critical event information. The second 

disadvantage concerns the data itself. Both the real and the reactive components of 

current and power are used as input Perhaps oniy one of these measuements are needed 

to identify a significant number of events. Then there is the hardware: the NALM device 

itself requires a qualined electrician to instali it. The complexity of the NALM is 

necessitated by the complexity of the data it has to coilect However, if only one 



parameter were needeâ, a simpler device would be suficient to collect the data Another 

draw back to this approach is the huge processing requirements. The algorithm must 

perform sophisticated analyses on aU the data before it begins to attributhg changes in 

the data to specific appliances. It would be more useful, say for a home automation 

system, if the data could be processed in reai-tirne. 

2.1.. 1.1-2 Heuristic End-Use Load Pro fder 

This de-based algorithm has been developed by Quantum Consuithg Inc. [Powers et al., 

199 11. The approach can be classified as nonintrusive because it is unnecessary to enter 

the premises. The program disaggregates end-use load pronles fiom premise-level data. 

Premise-level means the total-household energy consumption as measured at the 

electricity meter. The algorithm d e s  are based on pattern recognition. The input to the 

program is the premise-level load data, appliance information for standard appliances, 

and customer behavioural assumptions obtained through surveys with the customer. For a 

given premise-day, the algorithm scans the premise-level load and records the occurrence, 

the timing, and the magnitude of ail large changes. The algorithm then determines which 

changes correspond to the end-use being considered and adjusts them according to 

consistency checks. It also requires some information about previous and subsequent 

changes at the same premise. The algorithm disaggregates one end-use at a time for each 

day starting with the Iargest and working towards the smaiiest, that is, it removes the 

appliance with the larges opetating load from the total Load, then the next largest, etc. 

The output is heuristic Load profiles and appliance energy consumption. A heuristic load 

profile is a disaggregated end-use Ioad profile specific to the premise, appliance and day 



being andyzed. This procedure is usefbl to utility managers and demand-side program 

evaluators, and its advantage over sub-metering is low CO= 

Renilts of the work an reported in wargossian, 19941, [Powers et al., 19921, and 

powers et al., 199 11. Forty houses were evaluated during four SulLlIJler months. For large 

end-uses, the procedure produces accurate results. The peak values of the disaggregated 

air conditioner Ioad profiles when averaged over al1 households for aU m e r  days 

differs fiom the peak of the average metered profile by Iess than 5%. The average air 

conditioner energy collsumption estimate derived fiom the heuristic load profiles mers 

fiom the actuai energy consumption by less than 10%. The timing of the average air 

conditioner peak is also predicted very accutately. 

The procedure, however, is limited to end-uses with large operating levels, such as, air 

conditioners, HVAC equipment, and domestic water heaters. It is also limited to 

analyzing only one day at a time. Its greatest advantage is that it can use load research 

data that utilities may have already collected. 

2.1.1.1.3 Individuai and Automaîic Diagnostics of Eiecflricd Consumption 

Another approach to monitor end-uses in houses is reported in [Lebot et- al., 19941. The 

Individual and Automatic Diagnostics of ElecixicaI Consumption @LACE in French) 

procedure requires two visits by an electrician. During the first visit the electrician instds 

metering devices and data collectors and an assistant helps the customers fil1 out a 

questionnaire. During the second visit the electrician removes plugs and data coiiectoa. 

The metering devices contain sensors called Ha22 effect sensors, and they are accurate to 



within two percent The sensors m m  voitage, cumnt, and phase angle of the 

electrical energy. They store the energy (Wh), the instantaneous power (W, averaged on 

the last IO ms) and the voltage measurement (V). The system can record data at 10- 

minute or 15-minute intervals or at an interval greater than 15 minutes. There is no need 

to use any wire to connect the system. Communication is through the electricai wiring in 

the house. The researchers claim that customer behaviour is u d e c t e d  during data 

collection, yet the procedure is both physicaliy and electricaily intrusive. But at least no 

user intervention is required on the part of the customer. 

At the time the article was d e n ,  there was not enough data collected fiom a 100- 

household study to ailow the authors to draw any significant conclusions about the 

performance of the system. The article reports that a second phase of the study wiil be a 

nonintrusive analysis of 1 O00 households. The data fiom the DIACE 100-household 

s w e y  will feed the nonintrusive survey. 

Accurate end-use information is important and desirable, but it c m  be expensive to 

collect, This system lacks the efficiency of NALMs and HELP. The data collected is 

sufncient for load forecasting, but the system is very intrusive and large amounts of data 

must be collected. However, because the plugs are so s m d ,  the researchers claim it is 

unobtrusive. It would be useful to have a benchmark with which to compare the 

performance of t d y  nonintrusive load disaggregation procedures. 



2.1. I. 1.4 Transient loaù &tedion Ur co~)lllt~rclol loads 

This procedure is an extension of the NALM descfibed in Section 2.1.1.1.1 and the 

residential nonintrusive load monitor (ES-NiLM) described in [Norford et al., 19921. The 

researchers extended the procedure of residential nonintrusive load monitoring to 

commercial loads and created the commercial non-intrusive load monitor (com-NILM) 

[Norford et al., 19921 and morford et ai., 19963. Load disaggregation in the commercial 

sector presents special challenges, because power quality is more important: especiaily in 

terms of the operating efficiency of mechanical systems. Furthemore, some equipment 

have embedded electronic components that make their steady-state power consumption 

appear to be nearly purely resistive. This creates a special problem for the com-NILM 

because it relies on reactive power as a component of the appliance signature: especially 

because it is common to find more motors, a source of reactive power, in commerciai 

buildings. Classes of commercial equipment have characteristic start-up transient 

signatures. These signatures reflect the physical task the load is performing, for exarnple, 

switching on a bank of fluorescent lights is different fiom tuming on a motor. The com- 

NILM uses sarnpling rates signincantly f a e r  than 1 Hz to record the presence of start-up 

transients. Signal processing is used to analyze the transients and determine which load 

has been activated. The com-NILM has also been integrated with building automation 

systems to provide fault detection, such as loads that draw extremely distorted, non- 

sinusoicial, input current wavefonns. Laboratory tening of the prototype has s h o w  that it 

is capable of identifj5ng electrical loads nom space-conditioning equipment. 



Field-testhg needs to be done to fiirther refine and validate this procedure. The concept 

of combining start-up transient identification with steady-state identification is 

interesting. Whereas either procedures alone may not be accurate enough, both together 

may complement each other. 

2.1.2 Gu lo& 

Gas-load disaggregation means disaggregating the total gas load Urto its end-uses. In 

regions that have direct gas dis tn ion  systems, the volume of gas connimed is 

measured at the utility revenue meter. Sub-metering even a relatively srnail, statistically 

representative, sample of houses can be expensive. And unidce electrïc loads, there is no 

family of signatures for gas loads. So there are less possible methods of performing 

gas-load disaggregation. Gas utïiities have tried to rely on conventional means of 

indirectly inferring end-use consumption based on monthly bills, the end-uses present at a 

particular site, and occupant profiles. However, these methods are not accurate enough to 

allow the utility to reliably forecast changes in demand due to changes in end-use or 

customer profiles. So research based on electric-load disaggregation has been tried for 

gas-load disaggregation. 

In [Yamagarni e t  al., 19961, the authors present the resuits of research into the 

disaggregation of total household gas-demand in Japan. The fiow rate (in fr' per elapsed 

t h e )  of al1 gas appliances in an unspecified number of houses was monitored. Twenry 

pairs of gas-meters and data-loggers were instailed. This represents about five to six 

houses, assuming three to four gas appliances per house. The authors created, tested and 

improved a disaggregation algorithm using this detailed data Then they applied the 



procedure to 600 homes so that they couid develop demand models where the gas 

demand for the various gas appliances is a hc t ion  of occupant demographics and 

household configurations. 

The authors used the disaggregated data of the 600 homes, obtained through conventional 

sub-metering, to validate the demand models. Furthemore, since some homes had been 

monitored for several years, the researchers were able to observe changes in demand due 

to changes in appliances, famiIy demographics, and climate. The algorithm, however, can 

not consistently identify variable-rate gas appliances. The authon suggest that a look 

backward capability might be able to improve identification of variable-rate gas 

appliances. At the time the article was written, the authors were satisfïed with the 

performance of the algorithm (95% accurate). They suggest that m e r  development wili 

be required to adapt their procedure to the Amencan market place. 

The authors' observation that a look backward capability might be able to improve 

identification of variable-rate gas appliances could also be applicable to electric-load 

disaggregation. 

2.1.3 Hot water loah 

Hot urater-load disaggregation means disaggregating the total hot water load into its end- 

uses. Sub-metering all hot water end-uses in a home is too expensive: even to obtain a, 

relatively s m d ,  statisticdy representative sample. U m e  electric loads, there is no 

family of signatures for hot water use. So, like gas load research, there are less possible 

methods for performing hot water load disaggregation. 



In [Lowenstein et al., 19961, the authors present the results of research in which they 

disaggregate hot water use in a house and in the laundry room of an apartment building. It 

must be noted, however, that the data was onginally collected to study the performance of 

heat-pump water heaters, not to pexfonn load research. The data, nom sixteen field test 

sites, represents the flow rate in gallons per 15-seconds on the cold water feed to the hot 

water tanks. By combinïng a pattern recognition approach and a bin analysis approach, 

they are able to disaggregate the total hot water load, However, their method cannot 

separate overlapping events. They conclude that it shouid be possible to develop a signai 

recognition algorithm to disaggregate overlapping events. 

In conjunction with electric load dîsaggregation, this method could give building 

occupants a more detailed picture of their energy consumption. 

2.2 CONCLUSIONS 

Al1 three areas of load disaggregation research present opportunities for M e r  study. 

However, since most household appliances in North Arnerica are electric, there is greater 

potential for electric-load disaggregation in terms of load management, energy 

conservation, and new technologies like building automation and intelligent buildings. 

Furthemore, the volume of research devoted to electrk-load disaggregation shows that 

there is more interest in this type of load research. Therefore, as a result of the literature 

review, the foilowing issues have been identified as deserving of M e r  study. They will 

be considered in developing the nonintrusive load disaggregation computer program. 

1. Can a load disaggregation computer program be developed without using complex 

signal processing algorithms? 



2. 1s electric current alone a sdEcient signature to identify the major appliances in a 

building? 

3. 1s there a simple and inexpensive way to masure and cotlect the data? 

4. Can transient signatures in residential appliances be detected reliably enough to 

consider their signature in an appliance-load recognition algorithm? 

5. What is the lowest data sampling rate before too many events are missed? 

6.  1s it possible to disaggregate a load in real-tirne? 

7. Can a look-backward approach be used to increase the accuracy of a load recognition 

algorithm when an appliance event is missed? 



DATA AND DATA ACQUISITION 

This chapter describes the data that was used to develop the load disaggregation computer 

program. The data was obtained from an energy audit of a house in Montréal. The audit 

included detailed monitoring of electricity consumption of the entire house and of the 

major appfiances. Once the data was collecte& it was manïpdated so that it could be 

handed easily by the computer program described in this thesis. 

3.1 THE MONITORED HOUSE 

3.1.1 Main characterI'sfia 

The house was built in 1947. It has two floon above ground, a ground-level garage, and a 

finished basement, which contains an office, a laundry room, and a bathroom. The total 

heated floor area is 158.6 m2. The house is heated by an oil-fbeled central hot water 

system. There are also two electric baseboard heaters, and each one is instalied in a 

separate room as a bacAcp. AU household appliances are electnc. Four people, two adults 

and wo teenagers, inhabit the house. 

3.1.2 Appiiances 

The major appliances are the domestic water heater, the stove, the two baseboard heaters, 

the dishwasher, the clothes washer, and the renigerator. These appliances consume about 

85% of the total household elecaicity. Lights, d appliances, and the clothes drier 



consume the remaining 15%. The clothes drier was monitored, but, for unknowm reasons, 

the data recovered was unusabIe. Note that there is no air-conditioning system. 

3.1.3 Wking 

Figure 4 shows schematically how the appliances are connected to the utility power 

supply. The utility delivers electricity at a nominai 120 V in each of two legs. The 120-V 

appliances are connected to either one of the wo legs, and the 240-V appliances are 

connected to both legs- 

Figure 4. Applmnce wiring scbematic. 

3.2 MONITORING 

3.2.1 Current probes 

Figure 5 shows the apparatus that is used to measure electric curent. It consists of an 

ACR Systems SmartReader 3 electric-current and temperature logger connected to an 



Amprobe current probe. Depending on the magnitude of the current expected, either the 

A6OFL curent probe or the A70FL currmt probe is used. The probe is clamped around 

one of the wkes  in the building-wire pair that deliver electricity to an end-use. If it is not 

possible to get access to the pair of wires, a line splitter is attached to the plug end of the 

appliance's power cord and the c m n t  probe is instead clamped around the line splitter. 

The data logger records the current at a user-specified rate. Each data Logger, which bas 

three channels, is capable of simultaneously recording current rneasured by three current 

probes. However, in order to use the maximum available memory of the data loggers and 

to minimize the data recovery fiequency, only one cunent probe is connected to each data 

logger. According to the manufacturer's catalogue, the accuracy of the current probe is 

F 4% F.S. t 0.4 A, where F.S. is the full scale that the user selects on the current probe 

(in this case either 25 or 100 A). 

Figure 5. Clamp-oa style current probe and daîa logger apparatus. 

25 



3-22 Location of sensors 

Figure 6 shows the location of the cumnt probes. Each of the two legs supplying the 

house with electricity was monitored individually. Each 1204 appliance was monitored 

with one probe and data Iogger apparatus. A h e  splitter was used on the refiïgerator, the 

dishwasher, and the clothes washer, because it was not possible to monitor them direcdy 

from the electricity panel. The water heater is a balanced 240-V appliance. This means 

that each 120-V Iine draws an equal amalmt of current. Therefore only one probe is 

needed, and the measured current can be multiplied by two to obtain the total current The 

stove and the IWO baseboard heaters, on the other hand, are unbalanced 240-V app!ia.nces. 

So each of their 120-V lines have to be monitored individuaiiy. In total, ten current 

probes and ten data Ioggers were used. 

Figure 6. Location of currcnt probes. 



3.2.3 Durafion and samp Ihg rate 

The appliances were monitored for 12 months. Four sampling rates were useci, each for a 

different period. For example, the sampling rate fiom October 1996 to Jan- 1997 was 

16 seconds. The other sampling rates were 48,32 and 8 seconds. The disaggregation 

algorithm was developed based on the data sampled at 8 and 16 second intervals. 

3.2.4 Constant voltage assumption 

It is asnimed that the voltage suppIied by the utility is constant NominalIy, the voltage is 

120 V in each of the two legs. Although in redity, it can fluctuate within the range of 105 

to 127 V, and the rate of these auctuations cari be as fast as 30 seconds prockman, 

19981. No description of how voltage varies over time was found in the literature. 

Utilities employ voltage taps inside tramformers to provide as near-constant voltage as 

possible. So for the purpose of determinhg energy co~lsumption, a constant voltage is 

assumed. 

3.3 DATA 

3.3.1 Data collection 

One data logger can store 32,767 readings. So the frequency with which the data mut be 

downloaded depends on the desired samphg rate. For example, when the sampling rate 

is set to 16 seconds, one data logger can store six days worth of data. Once the data 

logger is full, the data is dowdoaded to a portable cornputer. The software, TrendReader, 

that cornes with the data loggers is used to save the data as an ASCII nle. TrendReader 

automatically associates a date and time iabel to each curent meastrement Spreadsheet 



software, MicroSoft Excel, is then used to manipulate and format the monitored data so 

that it can be used by the computer program described in this thesis. 

3.3.2 Data mrrnipulutwn 

The individual data files are imported into a spreadsheet The data fiom each appliance 

and the total-household data are aligned so that their date and time labels correspond as 

close as possible. The date and time labels fiom the total-household nle that contains the 

data fiom leg 1 are used a s  the reference. The total-household, the stove and the two 

baseboard heaters were meanired with two current probes each. So each pair of data files 

is added together. Then the demand for ali data files is calculated using the relationship 

P = (V I)/1000, where P is demand in kilowatts, V is voltage in volts and I is current in 

amperes. Finally, appliance demand and total-household demand are saved as individual 

files. The energy consurnption can be obtained by integrating the demand over t h e .  

3.3.3 Data recovery 

Three additional circumstances require that the data be manipulated before the computer 

program can use it. The first two are due to the time required to download and the second 

is due to synchronization. 

The first two circumstances concern the t h e  the data was dowdoaded. During the time it 

takes to download a data logger, the logger is not storing information. So that portion of 

the appliance's operation is not being recorded. However, since it takes less than two 

minutes to download a data logger, and downloading is done every six days (because the 

sampling rate is 16 seconds), less than one one-hundredths of a percent of the data is 



missed. In order to recover as much data as possible, the missing portion (that which can 

be reasonably judged as missing) is inserted between the avaiiable data. Table 1 shows an 

example of missing data in downloaded mes. The boxed-in areas show where missing 

data was recovered, 

The second circumstance has to do with larger gaps during downloading, for example, 

there were instances when the data was not downloaded for seven or eight days, and the 

earliest data was lost (fia-in, fkst-out p~cip le) .  So the input data is re-labeled 

consecutively because of the gaps in the coliected data; othenvise, the program would 

make errors in caiculating operating statistics. For example, if the refiigerator is on at the 

end of December 1 1 and the next two days' data is missing, and if the refkigerator is on 

again at the beginning of December 13, then it wouid appear as if the renigerator is on 

continuously for more than two days. The first day of data, October 15, 1996, is 

re-labeled January 1, 1996. Appendix A shows the original dates with their corresponding 

new dates. Any funne version of the program should be capable of handling 

non-consecutive data. 

The third circumstance concerns the current data for the 2 4 0 4  appliances. Each 1204 

half was stored on a separate data logger. It was not foreseen that the two should be 

synchronized to start recording at the same instant. The r e d t  is that when the two halves 

are added togethet, one-off errors are sometimes created. Figure 7 shows the results of 

one-off errors. The nle that contains the total-household data fiom leg 1 is used as the 

reference, and ali the other files are aligned so that their time labels match as closely as 

possible those of the household leg 1. The two halves of the baseboard heater file, shown 



in Figures 7d and 7e, are aligned accordhg to the best matching times with the reference 

file in Figure 7a However this makes it appear as if the ON signal consist of two distinct 

changes in demand (Figure 7f) when in fact it is only one. A similar situation occurs at 

the OFF signal. In the total-household file, this kind of error rnay result in an event that 

shows apparently two ON ngnals instead of just one. The solution to preventing onesff 

errors in the final appliance files is to align each pair of appliance files so that the start 

and end of each event lines up as close as possible (Figures 7g to 7i). The same solution 

is not practical with the total-hnusehold £iles: There is just too much data to go through, 

and it is not obvious what is causing a change in demand in the total. Sections 4.3.4 and 

4.3.5 descnbe two preprocessing algorithms that are used to m;nimize this kind of error. 

In order to avoid downioading time and syncronization-related problems in the fbture, 

downloadiag time, both in duration and fiequency, should be mhimkd ,  and ail data 

loggers should be synchronized so that they start recording at the same time. 

3.3.4 Input data-frles 

After the monitoring period is over, and the data is coilected and compiled, there are 

seven files: one file for each appliance and one file for the total-household. The values in 

each file consists of demand, in kilowatts, with an associate date and time label. 
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NONINTRUSIVE LOAD DISAGGREGATION COMPUTER PROGRAM 

The purpose of this chaptei is to describe the load disaggregation computer program. The 

program estimates the energy consumption of the major household appliances based on 

short-term measurements of the appliances and on long-tem analysis of the total- 

household electric demand. It is Wntten in the C programmi~ig language, and has four 

principal components. or biocks. The blocks are described in Sections 4.2 to 4.5. 

4.1 PROTOTYPE NONTNTJWSIVE LOAD DISAGGREGATION COMPUTER PROGRAM 

This section gives an o v e ~ e w  of the computer program in general terms. Figure 8 shows 

the outline of the computer program divided into four blocks. 

The input data for the computer program was described in detail in Chapter 3 : Data and 

data acquisition. The input is a set of data files, which contain a series ofelectncity 

demand values in kilowatts and their date and t h e  labels. There is one data file for each 

major household appliance and one data file for the total-household demand. The series 

of demand values obtained fiom the total-household demand is c d e d  the total demand 

signal. The senes of demand values obtained fiom each appliance are caIled the 

appliance demand signals. 

The ha1 output fÎom the computer program is the estimated energy consumption of each 

appliance. This output is summarized and presented as the estimated percentage 

contribution of each appliance to the total electricity consumption of the house. These 



percentage conm%utions are simply r e f d  to as energy shares. The output wili be 

discussed in more detail in Section 4.5- 

Input data-files 1 

Data downloadtd fiom data 
loggcrs. Current (A) 
convcrted to dcmand (kW)- 

CaicuIates appliance opcrating 
characteristics fiom each 
appliance file. 

Filten data in total household- 
demand input fiIe. 

recognition algorithm 

Attributes changes in the total- 
household dcmand to spccific 
apphncts, 

Calculates the energy 
consurnption of major household 
appIiances and saves data 

Figure 8. Four main componcnts of load disaggrcgation computer program. 

Each block of the computer program contains several hctions. These fimctions perform 

specific operations, such as, calculating the standard deviation of a series of values, 

preprocessing the input data, or formathg data so it can be viewed easily on the screea 

But in the descriptions that follow, ody the most signincant functions will be described. 



In the fkst block the user enters the starhg and ending dates of the sampling period; 

then, the program calculates the sarnple statistics for each appliance. In the second block, 

the user enters the starhg and ending dates of the total demand file for which the 

program is to disaggregate. This portion of the original total-househoid electric demand 

data is fïrst treated by a senes of signai processing algorithms. These algorithm are 

cded  preprocessors because they filter the total demand signal before appliance-load 

recognition begins. The third block is the appliance-load recognition algorithm. In the 

fourth block the program calculates the energy co~lsumption of each appliance by 

integrating the estllnated electric demand over tirne. Finally, it calrulates the percentage 

contribution of each appliance to the total electricit/ consumption of the house. The 

details of each of these blocks are described in the following sections. 

4.2 BLOCK 1 : SAMPLE STATISTICS 

This block contains ail the operations required in the sampling mode. The appliance-load 

recognition algorithm and some of the preprocessors require the appliances' operating 

characteristic parameters in order to detect an appliance's ON or OFF signal. These 

parameters are c d e d  sample statistics. They are caiculated nom the appliance demand 

signals. First the user chooses the period of t h e  for which the pro- is to calculate 

sample statistics. Then the program rads each appliance file in tum and perfonns the 

relevant caiculations. The sample statistics will be used by the preprocessors and by the 

appliance load recognition algorithm. 



4.2.1 Choosc somplng perbd stort and end ranges 

The program displays the date and time of the fht and last reading in the total demand 

file. It then prompts the user to enter the starting and ending dates for which sample 

statistics are to be caicuiated h m  the appliance files. For example, the user couid enter 

1996-0 1-01 0O:OO:O 1 and 1996-01-07 2 3 5 9 5 9  to insûuct the program to create 

temporary appliance files containing only the measurements that fd within these starting 

and ending dates. Then the program reads each temporary file in turn and calculates the 

appliance event operating statistics. An event in the appliance mes is defïned as a 

consecutive sequence of non-zero measurernents. In other words, an event is the set of 

data between an appliance's ON signal and OFF signal. The mean and standard deviation 

of al1 the demand values during an event are calculated dong with the eventsr average, 

maximum and minimum duration. 

4.2.2 Standard devÎàtion coeffwient 

The user is prompted to enter a standard deviation coefficient, Then, the program 

estimates the upper and lower operating range limits for each appliance using the formula 

p I a o, where p is the mean, a is the standard deviation coefficient, and o is the 

standard deviation. The implications of this procedure are discussed below in 

Section 4.4.1, which declares all the assumptions necessary to run the program. 

4 3  BLOCK 2: PREPROCESSORS 

The second block contains the seven signai processing algorithms. These algorithms are 

cdled signal preprocessors because they filter the total demand signal before appliance- 

load recognition begins. AU seven preprocessors smooth out small or erratic variation in 



the total demand signai. The first preprocessor adjusts the total signal so that it is never 

less than the sum of the demands of d the monitored appliances. The second 

preprocessor srnooths the signal while variations are within the range of a predetermined 

limit The third preprocessor removes the effect of the data sampling rate while an 

appliance is tuniing on. The fourth preprocessor removes the effect of the data sampiing 

rate while a .  appliance is tuming off. The fZth preprocessor might well be called the 

stove-load recognition algorithm because th is  is essentiaiiy what it does. It is placed here 

because early testing of the appliance-load recognition algorithm showed that the 

presence of the stove signal in the total demand resulted in a large number of events being 

fdsely amibuted to other appliances. The sixth preprocessor removes individuai 

asymmetrical spikes. The seventh preprocessor removes individual symmetncal spikes. 

The h a 1  nItered signal consists of distinct rectanguiar shapes where each increase or 

decrease in demand is more likely to represent a significaut ON or OFF signal. Figure 9 

shows an example of the total demand signal before and after preprocessing. 



Figure 9. Total demand signal befon and after prcprocessing 

4.3.1 Chose evaluafion sturî and end 

The fïrst step in the program is the selection of the period of time for which the user 

wants the total demand signal disaggregated. The program displays the date, time and 

value of the first and last meamernent in the total demand file. The user is asked to enter 

the period of time for which the signal will be disaggregated. For example, if the input 

file contains measurements fkom January 1 to June 30, the user can enter 

1 996-0 1-0 1 0:00:0 1 and 1996-0 1-3 1 23 5959 to get the energy consumption of each 

appliance in January. The program wili only consider the data in this portion of the file. 



4.3.2 Preprocessor 1: ai@sî total w a  rcfngerator 

In Chapter 3, the issue of data recovery was discussed. In some situations, the total signal 

is less than the nim of al l  the meanired appliances. This discrepmcy is noticcd when the 

refiigerator is the only measuffd appliance that is on. So this preprocessorfaces the totai 

signal. The pro- reads the refigerator appliance file (f?-&t-pm) and the total demand 

file @rehzput.prn). It compares the two files with each other, and whenever the value of 

the total signal is less than the value of the refkigerator signal, the ciifference is added to 

the value of the total signal. The program then creates a new file c d e d  (input-prn) which 

becornes the new input signai. 

4.3.3 Preprocessor 2: averuging 

The second preprocessor removes fiuctuations in the total signal while they are within 

2 0.1 kW. Figure 10 illustrates how fluctuations are removed for a smali segment of data 

The minimum value for any signincant ON or OFF signal is set at 0.2 kW because this is 

just slightiy less than the mallest observed demand of any of the measured appiiances in 

this houe. Variations below this level are assumed to be due to smaU household 

appliances, lights and random variations in voltage and cunent This assumption is also 

supported by data assembled by Hart [Hart, 19921. The algorithm for this preprocessor 

compares every two successive demand values. If the difference is within f 0.1 kW, it 

writes the first value to a temporary file. When it encounters a pair of successive values 

whose ciifference is outside these Limits, the program calculates the average of the valws 

in the temporary file and writes this average value for ali the date and time labels of the 

values in the temporary file to new file @rocssdl..prn). The process of checking for 



difTerences in the signal outside the range of t 0.1 k W  and writing the average values to 

the file is repeated until the end of the file is reached. Figure 1 1 shows an example of the 

total signal before and after averaging. The thin Iine is the original total demand and the 

thick line is the demand after averaging with preprocessor 2. 

- Before averaging prcprocessor A A e r  avcraging pqrocessor : 

Figure 10. Deîail of averaging preprocessor. 



- Before avetaging preprocessor - Afier averaging preprocesçor 

Figure 11. Averaging preprocessor 

4.3.4 Preprocessor 3: stepped ON signal 

The third preprocessor fiIls in the gap lefi by an initial stepped inmease i f  it is followed 

by a constant demand Because the data sampiing rate is 16 seconds, an appliance's ON 

signai does not necessarily appear to occur instantaneously. For example, an appliance 

may corne on just before a reading is made. When the reading is made, the appliance May 

be at 50% of its average operating level. At the next instant a reading is made, it may be 

100% of its average operating level. The magnitude of the Merence between two 

demand values is the indicator for an appliance coming on. But if it is only at 50% of its 

average value, it may not be detectable by the appliance-load recognition algorithm. 

Dining early testing of the algorith, it was found that in some situations the third 



preprocessor tended to filter out the baseboard heatds ON signal- Therefore, a checking 

subrouthe was added to the preprocessor. It does not ailow the third preprocessor to filter 

the signal ifeither of the pair of step increases is within the range of the baseboard heater 

operating limits d e s s  the sum of the pair is within the hot water operating limits. 

Figure 12 shows two instances where each of these conditions apply. 

Figure 12. Stcpped ON signal preprocessor 

4.3.5 Preprocessor 4: stepped OFF signal 

Sometimes an appliance's OFF signal spans several tirne-steps and shows a graduai 

decrease in demand. Since this kind of signal is more difflcult for the appiïance-load 

recognition algorithm to detect than a sudden decrease, the fourth preprocessor fUs in the 

gap left by a terrninal stepped decrease if it is preceded by a constant demand. 



4.3. 6 Preprocessor 5: c h u r a c f e r ~  Hove profde 

Early testing of the appliance-load recognition algorithm indicated that the presence of 

the stove signal in the total-howhold signal r ed t ed  in a large number of falsely 

identified events. One of the characteristics of the stove signal is that it has a large 

amplitude and a short penod. In other words, the magnitude of both the amplitude and the 

period varies greatly. Although this behavior is characteristic of only the stove, the stove 

operating range also overlaps that of al l  the other appliances. Therefore, if the stove 

signal is left in the total-household signal, sorne of the fluctuations due to the stove may 

be falsely attributed to other appliances during appliance-load recognition. Therefore, 

preprocessor 5 identifies, isolates and removes the estimated stove signal component of 

the total-household signai. Figure 13 shows the result of this procedure. The top curve 

(thin line) shows the measured total-househoid sigoal, and the middle curve (thick line) 

shows the totai-househoid signal after the estimated stove component has been removed. 

The portions removed are stored in a temporary file, which will be used later in block 4 to 

estimate the stove energy consumption. In order to show how accurate this preprocessor 

is, Figure 13 dso shows the measured stove signal (dashed Iine). In this case, 

preprocessor 5 overestimates the actual energy consumption of the stove. 



Figure 13. Stove signal preprocessor. 

4.3.7 Preprocesstw 6: asyll~~tefricul spikes 

This preprocessor removes asymmetncal spikes from the total signal. Spikes in the total 

demand are occasionaily obsenred when appliances that have a reactive component to 

their voltage corne on. The refiigerator and the washers have reactive components to their 

voltage. The asymmetry indicates the beginning of an event. These spikes may be 

characteristic of these appliances. However, it is not known whether or not these spikes 

always occur when the appiiançe cornes on, because the 16-second data sampling rate is 

sornetimes greater than the duration of these spikes. So if the spike occurs during the 

instant the data is sampled, it will be recorded. However, consider the foilowing two 

cases: In case 1, if the spike occurs between two instances when the current is sampled, 

the spike will not be recorded. In case 2, if no spike occurs between two instances when 

the current is sampled, again, no spike is recorded. There is no way to discem case 1 from 



case 2. Therefore, the program m o t  rely on the presence of these @es as appliance 

event indicaton. So, preprocessor 6 removes asymmetrical spikes by rep1aci.g the spike 

value with the next vaiue in the data stream. Figure 14 shows an example of a refigerator 

ON signal embedded in the total demand signal where the initial spike is identified and 

fïltered out by preprocessor 6. 

T h e  of day on October a 1 9 9 6  (hmnss) 

Figure 14. Asymmetrical spikes. 

4.3.8 Preprocessor 7: symmetricaf spikes 

This preprocessor removes symmetrical spikes nom the total signal. Short duration 

spikes can also occur for reasons not related to the measured appliances. There are a few 

reasons why these spikes exist. They may be caused by appliances that were not 



measured, random m e s  in the current, occupant behaviour, or some unknown reason. 

Their characteristic profile wnsists of a relatively symmeirical spike in a relatively 

constant period of demand. For example, Figure 15 shows an exampie of a symmetrical 

spike. Unlike a .  asymmetrical spike, it does not occurs at the beginning or the end of an 

event. 

Figure 15. Symmetrical spikes removed by preprocessor. 

4.4 BLOCK 3: APPLIANCE-LOAD RECOGNITION ALCORIIInM 

The third block of the load disaggregation cornputer program contains the appliance-load 

recognition algorithm. Tbis block contains aii the operations required in the evaluation 

mode. Its input is the lïltered signal nom the preprocessors and the statistics gathered 



during the samphg mode. This section fht explains the assumptions made during the 

development of the algorith; then, the details of the algorithm are described. 

The aigorithm basically compares each change in the total demand to each appliance 

operathg range. If the value of the change is within an appliance range, the change is 

amibuted to that appliance. A step increase in the total demand signal indicatis that an 

appliance has nirned on. A step decrease indicates that an appiiance has tunied off. 

Developing the basic dgonthm led to the cfeation of a number of checking nibrouthes. 

There are five checking subroutines that check if an ON or OFF signal bas been missed or 

if a consecutive pair of ON signals achially represents one single ON signal. They are 

(i) the average duration check, (ii) the maximum duration checks, (iii) the zero demand 

check, (iv) backtracking, and (v) the cornecutive pair-of-ONsignals check 

4.4.1 Assump fions 

The following assumptions were made during the development of the algorithm. In each 

case, the reasons for making these asnunptions are explained. 

4.4.1.1 Statistical range 

Aiter the original input signal has been preprocessed, the resulting output signal is fiee of 

most anomaious fluctuations. Therefore, al1 the variations in the filtered signal shouid be 

due to an appliance turning on or off. Any particular appliance has a limit to the amount 

of current it draws fiom the main supply lines. Therefore, the variations in total electric 

demand that are caused by a particular appliance shouid fd within a predictable range of 

that appliance's operating level. For data that is approximately nonnaily distributed 



wendenhall and Sincich, I992],95% of the measurernents wiil Lie within two standard 

deviabons of their mean. Therefore, when the variation in electnc demand is compared 

with p ic 2 r c, as obtained for each appliance during the sampling mode, it is anticipated 

that 95% of the ON and OFF signais will be recog-d. 

4.4.1.2 Coincident signalsi 

The appliance load recognition algorithm assumes that there are no coincident ON or 

OFF signais, that is, it assumes that there is never more than one appliance nnning on or 

off during the same tirne interval. When there are coincident signal, one or more of the 

signds may not be recognized, or the combined effect of the coincident events rnay lead 

to a fdsely identified appliance event. This assumption is valid as long as the t h e  

interval is short. The longer the time interval, the greater is the chance that there wilI be 

coincident signals. 

4.4.1.3 Washing machines 

The dishwasher and the clothes washer have similar operating charactenstics. So it is 

ciifncult to distinguish between the two based on their Ioad profiles. But since they both 

perform similar functions, they cm be lumped together as one appliance in the appliance- 

load recognition algorithm. However, this now creates the potential problem of 

sirnuitaneou usage of these two appliances. Therefore, another assumption is that the 

dishwasher and the clothes washer are never used at the same tirne. The data confirms 

that this assumption is vaiid. 



4.4.1.4 OFF signal decreases total demand 

A f i a l  assumption, that at fïrst glance seems obviow, led to the development of the 

average duration checking subroutine. The asnimption is this: whenever there is a 

decrease in the totai demand, an appliance has tumed off. This appliance that has just 

turned off may or may not be one of the monitored appliances. If the appliance-load 

recognition algorithm faiis to recognize that an appliance has tumed off because the 

decrease in total demand does not match any appliance range, then there is a decrease in 

totai demand that is unaccounted for. Although it is possible that this decrease is due to a 

non-monitored appliance tuming off, the actions of the preprocesson make this unlikely. 

Therefore, a decrease in total demand that does not match an appliance range can serve as 

a flag to uidicate a potentiaily missed event. This checking routine is discussed in detail 

in Section 4.4.3.1. 

4.4.2 Core of cornputer program appiiance-Ioad recognition a fgoriîhim 

Figure 16 is a flowchart of the principal elements of the algorithm. Each appliance event 

is characterized by an ON signai, an OFF signal, and a duration. The program reads the 

first set of values from the input file into the variables time,,, datep,, deman&-,. The 

subscnpt n-1 means ar tinze n minus one, in other words, thepreviouî values. Then the 

program reads the next set into the variables time,, date, demand,. The subscnpt n means 

ar time n, that is, the presenf values. These two sets of data are referred to as a successive 

pair of meanirements. So the program compares every successive pair of demand 

measurements. The cliffierence is the change in demand: Ad = demand, - deman&+ There 

are three possibIe outcomes and each will foiiow a different course of action. If Ad is 



positive, there is an in- in demand. If Ad is negative, there is a decrease in demand. 

And if Ad is zero, there is no change in demand. When Ad is positive, the algorithm 

compares the magnitude of the increase to each appliance range in an attempt to 

determine which appliance has turned on. When Ad is negative, the algorithm again 

compares the magnitude of the decrease to each appliance range, but now in an attempt to 

determine which appliance has tumed off- When there is no change in demanci, the 

algorithm perforrns the maximum duration check At every time step, the program keeps 

track of how long each appliance has been identified as being ON by incrementing a 

duration counter by the magnitude of the time interval. Then the set of values are 

incremented so that the newest set becomes the oldest set, that is, demand, becomes 

deman&,. The next set of values are read and they become the newest set. The program 

repeats the complete loop until the end of the file is reached. The details of each course of 

action and the checkhg subroutines are explain next. 
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Figure 16. Flowchart showing the principal elcmcats of the applkncc-load recognition 
algorithm. 



4.4.2.1 Increase in totai demand 

Figure 17 shows the details of the algorithm for the increase-in-demand condition. The 

algorithm compares the magnitude of the increase to each appliance range until a match is 

found. To avoid the complications that would arise if two or more appliance ranges 

overlap, the algonthm compares the increase to each appliance range in the following 

order: water heater 0, baseboard heater (PL), washing machines 0, refngerator 

(FR). For example, if an increase f d s  within both the baseboard heater range and the 

washiag machines range, the increase would be attributed to the baseboard heater because 

it has the higher priority. The order of pnority is arranged in order of decreasing average 

operaMg demand. When an increase is within an appliance range, that applianw is 

marked as turned ON. If the increase does not match the operating range of any appliance 

(obtained during the sampiing period), the increase is assumed to be caused by other 

appliances and the increase is atiributed to a variable called residual. Two components of 

the backtracking subroutine are integrated with the increase-in-demand procedure. They 

will be expiained later in Section 4.4.4. 

4.4.2.2 Decrease in total demand 

Figure 18 shows the details of the algorithm for the decrease-in-demand condition. Just 

like for the increase condition, the algorithm compares the magnitude of the decrease to 

each appiiance range in the same order as before, that is, HW, PL, W, and FR.. When an 

OFF signai matches an appliance range and the appliance is marked as ON, the appliance 

is marked as furned OFF. If an OFF signal matches an appliance range but the appliance 

is not marked as ON, the backtrackhg subroutine is initiated. This procedure is explained 



later in Section 4.4.4. If the decrease does not match any applüuice range, the average 

duration checking subroutine is initiateci. This subroutine is explained in Section 44.3.1. 

I f  the decrease can not be attnbuted to one of the measured appiiances nirning off, it is 

assurned to be caused by an appliance that was not measured. In either case, the residual 

is adjusted by the magnitude of the decrease in demand. Finaily, if a decrease reduces the 

total demand to zero, the zero demand checking subroutine is initiated. This checking 

algorithm is explained in Section 4.4.3 -3. 

4.4.23 No change in total demand 

Figure 19 shows the flow chart for the situation when there is no change in the total 

demand. In this case, when the demand is constant, the maximum duration checking 

subroutine is performed. Then the durations of di appliances that are marked as ON are 

increased by the magnitude of the time step, At. 
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Figure 18. Uecreasc in demand. 
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Figure 19. Maximum duration check when there is no change in demand. 

4.4.3 Duration checks 

There are three duration checking subroutines. The statistics used in the duration checks 

corne from the statistics gathered during the sampling period. 



4.43.1 Average duration check 

The average duration check is performed every tirne there is a decrease in the total 

demand that is not assigned to an appliance. Figure 20 shows the sequence of steps in this 

subroutine. Like the increase-in-demand and decrease-in-demand subroutines, the 

average duration subroutine checks the appliances in a predetermine sequence. The 

sequence was initially ananged in decreasing order of the appliances' average duration. 

But during the eariy stages of development, it was found that the present sequence of 

water heater, washing machines, baseboard heatea, and refkigerator yield the best resuits. 

During subsequent development, it was found that the average duration check resulted in 

an underestimation of energy consumption of the water heater and the refiigerator 

because of erroneous and premature OFF signal recognition- So the average duration 

variable was replaced with the rnaxUnum duration variable for the water heater and 

refiigerator only. If an appliance is marked as ON and it has been marked as ON longer 

than the average duration (or maximum duration if it is the water heater or the 

refngerator) that was observed during the sampling period, it is marked as turned OFF. 

The appliance's operating-state variable and its duration counter are peset to zero, and the 

bacb-ck enabhg variable is reset to one. 

4.4.3.2 Maximum duration check 

When there is no change in total-household demand, the maximum duration checking 

subroutine is pefiormed. It checks the duration of each appliance that is marked as ON. If 

it has been marked as ON longer than the observed maximum duration for that appiiance, 

then it is marked as tumed OFF. The reasoning behind this is: if an OFF signal is missed, 



the next possible OFF signal will corne at the end of the next event If this happeris, the 

appliance would have been marked as ON for a long time. So to avoid large 

overestimates of energy consumption, it is impomt to ensure that if an OFF signal is 

rnissed, the appliance is marked as nimed OFF as soon as possible. Then its duration 

counter is reset to zero and the backtracking enabhg variable is reset to one. 

4.4.3.3 Zero demand check 

If a decrease in total demand reduces the totd demand to zero, the zero demand checking 

subroutine is initiated Figure 21 shows the ou the  of this subroutine. This subrouthe is 

necessary to prevent the possibility that an OFF signal might d l  be missed, even after 

the two duration checks. If the total demand is zero, there cm be no appliance conniming 

energy. So when a step decrease reduces the total demand to zero, al1 appliances are 

marked as OFF, the duration counters are reset to zero, and the backîrack enabling 

variables are reset to one- 
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Figure 21. Zero demand check. 



4.4.4 BockckUrg 

I f  an OFF signal matches an appliance range but that appliance is not marked as ON, the 

program backtracks through the input file and looks for the presumably missed ON signal 

using wider selection critena Backtracking will reposition the £de position pointer in the 

input file back to a tirne no earlier than the current the ,  that is, the time at which 

backtracking is initiated, minus the maximum duration of the appliance that initiaîed 

backtracking. Only three appliances have backtracking components: the water heater, the 

£irst baseboard heater and the refngerator. Unlike the other checking subrouthes, 

backtracking is not a subroutine. Its statements are not clustered in the same block of 

code. Instead, its components occur throughout the algorithm. So the sequence of the 

explanation to follow is based on the sequence of events that occur when backtracking is 

initiated. 

There are three criteria that must be satisfïed before backtracking is initiated. The first is 

that a an appliance ON signal must be missed. This occurs when the decrease in demand 

matches an appliance range but that particular appliance is not marked as ON. The second 

criterion is that backtracking must be allowed; that is, the appliance's backtrack enabling 

variable must be eqwi to one. The third criterion was created to ensure that the program 

does not enter a programming loop that has no logical exit: The program compares the 

time that backtracking was last initiated for the appliance under consideraiion, 
œ 

tirne-bachck-initiated, to the t M e  at the current time step, tirne-now. If 

tirne-bacback-initiated is later than time - now then backtracking is not aliowed. Kit  is 

ailowed, the file position pointer in the input nle is repositioned to the time that 



corresponds to the time now (the time the pointer currendy points to) minus the 

maximum duration of the appliance responsible for invoking backtracking. For example, 

if a water heater ON signal is missed, the file position pointer is repositioned to 

time - now - hw - mm-dwatiion. The output file position pointer is similarly repositioned 

but to one time step before time-now - hw - mm-duration. The operating state and the 

operating duration of each appliance are read fiom the output file at this time sep. These 

vaiues now represent the previour tinze step. Then the water heater's probable operating 

range is increased. For example, the standard deviation coefficient may be increased fiom 

2 to 3 so that the program look for a increase in the range of p + 3 a. The program 

proceeds as before. When it encounters an increase that matches the new water heater 

range, it fun disables backtracking to avoid an infinite loop (which would be created i f  

backtracking is initiated a second time while within the fist loop), and then it marks the 

water heater as ON. In the marking an appliance as ON sequence, a check determines 

whether it is marked as ON because the ON signal matches the new appliance operating 

range or the original operating range. If it is because it matches the new range, the 

appiiance operating range is reset to the default vaiues and the backtrack enabling 

variable is reset to one. Then, when the OFF signai that triggered backtracking is 

encountered for the second t h e ,  the water heater is marked as OFF as usual. The 

duration counter is reset to zero, the backtrack enabling variable is reset to one and the 

backtrack-in-effect variable is reset to zero. If, however, no ON signai was found that 

matches the unpaired OFF signal, when the OFF signal is encountered a second t h e ,  the 



recognition range is reset to the defauit range. Then the program proceeds with the 

average duration checks. From this point onwards, the program proceeds as before. 

4.4.5 Consecutive pair of ONsignah check 

This is the ha1 checkhg subrouthe. It perfonns a function similar to the third 

preprocessor: the one that filis in gaps in a step increase. If the sum of îwo consecutive 

s e p  increase signals is withui the water range and if neither of the signals are attributed to 

an appliance, the m e r  heater is marked as ON. 

4.5 BLOCK 4: ENERGY CONSUMPTION CALCULATIONS 

Finally, the fourth block calculates the energy co~lsumption of each appliance by 

integrating the electric demand over time. There is a lot of data output from the cornputer 

program. For example, an evaluation period of one day results in over 80 000 individual 

data. So in order to evaluate the accuracy of the program, the output data is summarized 

in an ouzput table. Figure 22 shows the general features of the output table. Sections 4.5.1 

to 4.5.6 describe the information contained within each area of the table. 





4.5.1 Energy shares 

The shaded area A in Figure 21 shows the m e a d  and the estimated energy 

consumption. The subarea A, shows the sampiing period and the evaiuation period The 

subarea A, shows the measured and estuaated cumulative demand and energy shares of 

each appliance. The total estimated cumulative demand is the total measured cumulative 

demand after it has been preprocessed. To get the energy co~lsumption, multiply the 

cumulative demand by the size of the time step per hour: 

energy commption [RW - h] = nmrulative d e m a n d [ k ~ ]  x h~?  J * 
The estimated energy shares are conected with a correction factor so that they represent 

energy shares based on the totai measured cumulative demand not the total estimated 

cumulative demand. The correction factor is the measured cumulative demand divided by 

the estimated c d a t i v e  demand: 

measured cumulative demand 
correction factor = 

estimated cumulative demand - 

The subarea A, shows the merence between the measured energy shares and the 

estïmated energy shares. The first meanire of accuracy is the energy shares Merence. 

4.5.2 Measured opetating characteristics 

Area B shows the meanired operating characteristics of the major appliances during the 

user-selected evaiuation penod This information cornes nom the appiiance files. It is 

available now for validation, but it will not be available in the finai version of the 



program, because it will be the actuai output sought For each appliance, the demand 

columns show rnean demand and demand standard deviation, and the duration columns 

show average, minimum and maximum event durations The last column shows total 

number of events for each appliance. 

4.5.3 Sampiing period operating clCaracferLsîics 

Area C shows the measured operating characteristics of the major appliances during the 

user-seiected sampling period. This area contains the same kinds of Sotmation as 

Section B, but unlike Section B, this information w i U  be shown in the final version, 

4. 5.4 Estimaîed o p e d n g  characterktics 

Area D shows the sumnary of the appliance events estimated by the program. Unlike 

areas B and C, the mean and standard deviation are not shown, because they are known: 

The program assumes that each appliance draws a constant current; therefore, once an ON 

signal is detected, it assigns the appropnate appliance mean fiom the sample statistics as 

the edmated operating demand. So the mean is equd to the assigned demand and the 

standard deviation is zero. 

4.5.5 Event cornparison 

Area E shows how many estimated events match measured events. It also shows the 

number of missed and false events. This section is necessary for validation because it 

shows the accuracy of the program in recogniPng appliance events. If the program is one 

hundred percent accurate, the start and end of each estimated event wodd correspond to 

the start and end of each measured event. However, this is rarely the case. When an event 



is estimated, there are two conditions to consider More one can say that the estimated 

event matches a measured event These are the timing of the ON and OFF of each 

estùnated event. 

If the ON of the estimated event corresponds to the ON of a measured event, and if the 

OFF of the estimated event corresponds to the OFF of the same measured event, then the 

program has correctly estimated the occurrence of that event. But what if the OFF events 

do not occur at the same time? Say the estimated event is turned OFF too soon. S h d d  

this mean that the measured event is missed? It depends on the desired use of the 

program. Figures 23 to 25 show the cases representing the possible arrangements of ON 

and OFF event-matching. Essentidy the definition of a match is this: if an ON signal, an 

OFF signal, or a matching pair of ON and OFF signals is detected, then an event match is 

made. If an estimated ON or OFF signal is within five tirne steps (5 x 16 seconds = 80 

seconds) of the actua! sigoal, then it is considered a match. The cases in Figure 23 are 

considered to be matches, because it is some information about the reai event, either the 

ON, the OFF or both, embedded in the total signal that contributes to the identification of 

the estimated event. Figure 24 shows the cases where there are two matches. In 

Figure 24a one measured event is idennfied by two estimated events. In Figure 24b. MO 

measured events are identified by one estimated event. The cases in Figure 25 are 

considered to be false events, because none of the information of the measured event 

embedded in the total signal is used to iden- the estimated event 



Timc 

b. ON rccognited but OFF missai. c ON rrmgnired but iidse OFF. 

- - -  - - - - - - - - -  - - - - -  -;-- - - - -  - - -1 
I 

Timc Timc 

c i  ON misscd but OFF identifiai. c. Ahady ON but OFF idcntif~td 

rit 

g Match wah second baseboard heattr ody. 

Figure 23. Event-matching cases representing one match. 



Figure 24. Event-matching cases representing two matches. 

a ON misscd and f* OFF. 6. Alrrady ON and OFF m m t d  

c A h d y  ON and ESk OFF. 

c. Both ON and OFF mmcd 

1 

Figure 25. No-match c a s e  representing falsc events. 

69 



Area E in the output table also shows the stove's total number of measured, sampled, and 

estimated events should be ignored for now. Preprocessor 5 (described in Section 4.3.6)' 

identifies the component of the total demand signal that is characteristic of the stove and 

removes it fiom the total signai. However, unlike the Ioad disaggregation algorithm, 

which identifies one event at a time, preprocessor 5 identifies a group of events as one 

event. So, for example, the program could estimate ten meanwd events correctly yet 

assign them to just one estimated event; therefore, it would appear as if nine events were 

missed. So to avoid misrepresentation of results, the stove's total number of measured, 

sampled, and estimated events should be ignored in the percentages that foliow; however, 

these statinics are still hcluded because they are useful for coming up with future 

strategies to ident* the stove signal. 

Another apparent discrepancy that arises will not be evident until actual results are 

presented. Figure 24 shows two cases where there are two matches: Figure 24a shows 

two estimated events that match one measured event, and Figure 24b shows one 

estimated event that matches two measured events. These two cases are defined as 

matches because they are each a combination of two simple cases: Figure 24a is a 

combination of Figure 23c and d; and Figure 24b is a combination of Figure 23b and e. 

The apparent discrepancy will arise when the users attempts to check the results by 

adding the nuniber of matched events with the number of missed events to see if they 

equal the number of estimated events, or by adding the number of matched events to the 

number of faise events to see ifthey equal the number of measured events. if the cases 

represented in Figures 24a or 24b occur, this checking wiIi not work. And the total 



number of missed and false events will be off by the number of events that are matched 

according to Figures 24a and 24b. 

4.5.6 Cumulative demand coniparbn 

Although event comparison is usefùi, the large number of d e s  defining a match means 

that it m u t  be done manually. Event rnatching that does not take into account the timing 

of events is cdled cumulative demand rnatching. It is less uiformative than event 

matching, but it has the advantage that it c m  done automatically, that is, it is a component 

of the computer program- 

Area F (Figure 22) shows the amount of matched, missed, and faise cumulative estimated 

demand, and Table 2 shows how the calculations are perfomed Colirmni~ D and E show 

the measured and estimated baseboard heater demand, respectively. Column F shows the 

portion of the measured baseboard heater demand that the program correctly identifieci, 

column G shows the portion of the measured baseboard heater demand that it missed, and 

column H shows the portion of the estimated baseboard heater demand that it falsely 

attributed to the baseboard heater. 

Like the information in Area B, cumulative demand comparison can only be used to 

validate the computer program because appliance demand will not have been measured 

beyond the sampling period. 



Table 2. Comparing measurcd demand with estimatd dcmrnd, 

A 

Time 
223633 
U36:49 
223 ï:O5 
223721 
2237:37 
223 753 
2238:09 
22:3 8 2 5  
2238:4 1 
223 8:S7 
22:39:13 
22:39:29 
22:39:45 
Z:4O:O 1 
22:4O: 17 
22:40:33 
22:40:49 
2 4  1 :O5 
TOTAL: 

B C D E F G H 
km3nd (kW) 1 Compared to Mean Demand 1 

Total- AAer Rc- 1 Baseboard Baseboard 1 Estimated I 
Houschold proctssing 

1.216 1216 
1216 1216 

Heater Heater 
O O 
O O 

Match Missed False , 

O O 
O O 



VALIDATION OF NONINTRUSIVE LOAD DISAGGREGATION 

COMPUTER PROGRAM 

This chapter presents the validation of the nonintrusive load disaggregation computer 

program. There are two measures of accuracy that must be considered in order to validate 

the performance of the computer program: the accuracy in estimating energy 

consumption and the accuracy in identifying appliance events. Both meanires of accuracy 

must also be considered concurrently in order to completely describe the accuracy of the 

program. Since the purpose of the thesis is to develop a working protorype, computer 

processing time will not be discussed. 

5.1 EVALUATION PERIODS 

Table 3 shows twenty-five combinations of sampling period and evaiuation period that 

are used to test the performance of the computer pro"-. Each pair of sarnpling period 

and evaluation period is called a scenario. Running the program for a particdar scenario 

is called a m. The output fiom each run is documented in Appendix B. 

5.2 PRESENTA~ON OF RESULTS 

Tables 4 to 9 summarize the results fiom ail twenty-five nuis and group them by 

appliance. For example, Table 4 shows the results for the water heater. The fint two 

columns (A and B) show the run number and the evaluation scenario- The next three 

columns (C, D, and E) show the measured and estimated energy shares and their 



difference. The next three columns (F, G, and H) show the measured and estirnated 

energy consumption and the percentage error. The last five columns (1 to M) show the 

event detection statistics. 

Table 3. Twenty-fwe scenarios for validation of cornputer progratm, 

Run 
Num ber 
I 

2 
3 
4 - 
3 

6 
7 
8 
9 
1 O 
11 

R 

13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 

7'Ezzi 

Mon, Nov 25,1996 Mon. Nov 25, 19% 1 
Tut, Nov 26,1996 Tue, Nov 26. 1996 1 
Weà, Nov 27,1996 Wcâ, Nov 27, 19% 1 
Thu, Nov 28, 1996 Thy Nov 28, 1996 1 
Fri, Nov 29.19% Fri, Nov 29,1996 1 
Sat, Nov 30.19% Sa!, Nov 30,1996 I 

Mon,NovL5,19% SaI.Nov-IO,lY% 6 

Tut, Jan 7, 1997 Tue, Jan 7, 1997 1 
Wed, Jan 8, 1997 Wcd, Jan 8. 1997 1 
Th& Jan 9, 1997 Thu Jan 9. 1997 1 
Fri, Jan 10,1997 Frï, Jan 10, 1997 1 
Sa&Jan11,1997 Sa&Jan11.1997 1 
Sun,Janlî,l997 Sun,Janlî,1997 1 
1 6 

Tue, Nov 19,1996 Mon, Nov 25.1996 7 
Tue, Nov 19,1996 Mon, Nov 25, 1996 7 
Tue, Nov 19,1996 Mon, Nov 25, 19% 7 
Tue, Nov 19,1996 Mon. Nov 25, 19% 7 
Tue, Nov 19, 1996 Mon, Nov 25, 19% 7 
Tut, Nov 19, 1996 Mon, Nov 25, 19% 7 
ahvays 0:OO:W h and tm end is always 2359-45 h 

Mon, Nov 25, 19% Mon, Nov 25,1996 1 
Tue, Nov 26, 1996 Tut, Nov 26,1996 1 
Wc4 Nov 27, 19% Wed, Nov 27, 19% 1 
Thu, Nov 28, 1996 Th& Nov 28,1996 1 
Fri, Nov 29,1996 Fri, Nov 29, 19% 1 
Sat, Nov 30,1996 Saf Nov 30,1996 1 

Mon, Nov ZS. iVVb Sat. Nov 30, 6 

Tue, Jan 07.1 997 Tuc, Jan Of, 1997 1 
W& Jan 08, 1997 Wed Jan 08, 1997 1 
Thu, Jan 09, 1997 Th& Jan 09, 1997 1 
Frï, Jan 10, 1997 Fri, Jan 10, 1997 1 
Sat,Janll,1997 Sat,Jan11,1997 1 
Sun,JanIL1997 Sun.Jan12.1997 1 
1 ue, Jan v a n  1 r  6 

Tue, Nov 19,1996 Mon, Nov 25,19% 7 
Tue, Nov 19, 1996 Sa!, Nov 30, 19% 14 
TuçNovI9,1996 Mon,Dcc09,1996 21 
Tue, Nov 19, 1996 Wed, Dcc I8,19% 28.. 
Tue, Nov 19, 1996 Fri Jan 24, 1997 54** 
Tue. Oa 1% 1996 Frï, Jan 24,1997 72" 

"Dm do not 





Table 5, Hcsults for the stove fraiii al1 25 runs. 

Run 
Nun~ber 

-4- 
3 Thu* Ott 17, 

An Oci 
---CI- -Mon,moVZS;-lrn'-- 
7 Tue, Nov 26, 1996 ' 7 

8 Hfcd, Nov r 
7 --mu, TGv-nJF 
10 T r i ,  Nov 29, 
1 1  - S l t , m r  - 
1 A l l N o v  
--13- -Tue,iano7,l997-- 
1 4 -  

- 
Wcd, JaiîüûJW'1 

7 Thu, Jan 09,1997 
--m~iûxm7 

1 7 c l r ~ ~ 1 , 1 ! @ 7  
18- Sun, Jan 12, m7 

Ali Jan 
7 u -  7:7 

2 1 7:14 
-22 7:2 1 
- 2 3  7 : 2 7  

2 4 '  
" - 

'-754 - 
1 2 5 - 1 - - - 7 i 7 2  4 K 4 8  

STOVE 

Evaluatioii scenario 
ue, Oct 

4 d ,  Oc< igz- 

Energy Sliares (%) 
Mcasiired Estiiiiated Difference 

(Corrected) E-M 
5.28 
0,m 

Encrgy Usc (kWh) i 

Measured Estiniritcd Perccnt Error 
(E-M)M 

1.532 
T m "  

4.75 
0.00 

0.53 
0.m 

1.386 
0.m 

9.51 



Table 6. Results for the baseboard ticriter frorii a11 25 runs. 

B A m A R D  Encrgy Sliarcs (7'0) Eiicrgy Use (kWh) Eveiit Dctcctioii 
Run f IBATER Mcasiircd M i imtcd  Dinérencc Meastircd Estiinntcd PcrceiitError l'olnl Total 

Number Evaluation scenario (Corrected) E-M (E-M)IM Me~sured Estininted Matchcd M issed Falsc 









5.3 DISCUSSION OF RESULTS 

5.3.1 One-diy resula 

D d y  results refcr to the nuis where the samphg penod and the evaluaîion penod are 

both one day. Daily evaluation was done to fine-tune the computer program. The daily 

resdts show how the computer program perfonns for a particuiar day, because the sarnple 

statistics are calculated for that day and then used to disaggregate that same &y's energy 

consumption. Only when the sampling period is appiied to longer evaluation penods, do 

we start to see how the program works for any group of days. 

5.3.1.1 Sample of one-day to one-day results 

Table 10 shows the results of one particuiar run. Both the sampling perïod and the 

evaluation period are Friday, October 18, 1996. The ciifference between the measured and 

the estimated energy shares is never greater than 6%. Out of 77 meanired events 

(1 1+18;0+6+42), 88% ((1 1+18+3+36)+77) are correctly identified, and 13% 

((0+0+3+7)+77) are rnissed. Out of di estimated events, 24% ({1+8+8+5)+77) are false. 

AI1 of the water heater and the baseboard heater events are recognized, while 86% 

(36-42) of the refkigerator events are recognized. Only 8% (142) of the estimated water 

heater events are false- However, 3 1% (8+26) of the estimated baseboard heater events 

are false. Twelve percent (5+41) of the estimated refiigerator events are fdse and 17% 

(7+42) of the measured refrigerator events are missed. Haif the washer events are 

successfbily identined (34) and haIf are missed ( 3 6 ) .  However, 73% (8+11) of the 

estimated washer events are fdse. 



Table 10. Exaiiiple of tlic rcsiilts of oiic riiii. 

Snii~plc Pcriod: I:ri, Octot~r 18, lY16 lu 14 ,  Ociobcr 18, 1916 
Evalumlion Pcrioû: hi, Octohcr 1 R, 1996 lo hi, Oclober 1 8, 1 996 

Toial (Input) 
Total ( A b  Ptoctssinp) 

Waler llcatcr 
Slow 

Uiscboud Hcalcr I 
Uaseboard llcalcr 2 

Dishwnshcr 
Cloihcs Warher 
Uoth Waslws 
Refrigemtor 

Htsidual (Cdculaicd) 
Rcsidual (Estlinaicd) 

Mcasiircd 
Cuiiiiilntivc Encrgy 

IMEASURED STATISTICS 1 Dcmand (kW) 1 Duration (seconds) 1 

kinnnd (kW) Sliart 
4857.597 na 

nr na 
1927,963 39.69 

73.805 1.52 
84 1 A56 17.32 
84 1.456 17.32 
105.016 2.16 

0.000 0.00 
na na 

1272,595 26.20 
636.762 13.1 1 

118 ibn 

Wattr Ilcakr 
S~OVC 

Daseboard I kaier 
Cloihcs Wulier 

Dishwasher 
Refrigcrator 

ûticr 

Eslinimtcd 
Cuniiilmtivc Eiicrgy Correctcd 

SAMPLB SI'ATISI'ICS 1 lkmand (kW) 

Eiicrgy ESI'IMAI'ISD EVENT Sï'AïïSTICS EVEHT COMPARISON 
' 

Sliarcs Ditration (seconds) 1 Total No. No. of Evcnts 
Demand (kW) Share Encrgy Shaw 

na 118 

4880.495 100,47 100.00 
1990.443 40.96 40.79 

0.000 O 0.00 
749.543 15.43 1536 

0.000 O 0,OO 
na na n~ 
na lin na 

193,141 3,98 3.96 
1030.884 21 -22 21.12 

na II A nn 
916.483 I8,87 18.78 

Waler I lcater 
Siovc 

Daseboard I lcalcr 
Cloîhes Waslrtt 

Ilishwaslrcr 
Rcfrigcrrtor 

Dr icr 

Differcnce 

-1.10 
1 .SI 

' 1.94 ' 
d 

-1.64 
5.08 

-5.61 

Mcnii Sid. Dcv. 
4,463 0.317 

Duratirni (secoiids) 
Average Mslrilnuni Mininiuni 

628 1152 336 
61 240 16 

577 3232 4W 
381 896 96 

O O I) 

1173 3792 544 
O O C 

Average Maximum Mlninium o f  Evenb b Matchcd Mlsscd Fdsc 

1 DEMAND 1 Cumulalivc h m m d  (kW) 1 

Stovc 0,000 73,805 0,000 

Waskrs 87.542 17.474 105,599 

I MATCHING 
Waicr Hcaicr 

Malchcd Missd Filsc 
1905,257 22.706 85.1 86 1 



5.3.1.2 b d ~ d u a ï  a p p h c e  energy consumption and event recognition 

5.3.1.2.1 Waer heplet 

The differences in energy shares of one-day to one-day nuis (Table 4) show that for some 

runs, the program perfonns very well, for example nm 2 on Wednesday, October 16, 

1996, the ciifference is -0.36%. Yet on other days, for example nin 1 1 on Saturday, 

November 30,1996, the merence is 20.03%. On average though, the ciifference in 

percent is 4-25%. Note to that the worst &y in terms of matching consumption is a 

Saturday. And the worst days in terms of matching events is also a Sahuday. Sahuday is 

a day, presumably, when the occupants are home making fkequent use of the hot water. 

However, on weekdays, when they are presumably away most of the day, the activation 

of the water heater is mody to make up for stmdby losses, which foilow a regular cycle. 

5.3.1.2.2 Stove 

The best results for the stove occur when the program is run 2 on Wednesday, October 

16, 1996 (Table 5). The merence between measured and estimated stove energy shares 

is only -0.53%. And even in absolute terms, this represents just a -9.5 1% 

((4.75-5.28)+5.28) em>r in energy consumption. Figure 26 shows that the program 

identifies, but underesrimates, most of the large stove-spikes; and that it misses 

completely most of the smder stove-spikes. Like the water heater, the worst day for 

estimating the stove energy consumption is a Saturday: run 17 on Ji111uary 1 1,1997. The 

energy shares ciifference is 9.54%, which is an absolute error of 149.12% 

({ 15.946.40}+6.40) in energy consumption. But, let us look more closely at two of the 

reasons for this large error and at their consequence. 



Figure 26. Stove demand on October 15,1996. 

Figure 27 shows the stove demand dining a five-minute period on this day. This figure 

hi-ehlights a very important observation: the total household signal does not always 

correspond exactly to the nun of the measured appliances even when the meanired 

appliances are the only ones that are on. In the figure, the thin Iïne with square markers is 

the total household demand, and the thin dashed line is the measured stove demand. In 

this instance, 100% of the total household demand is due to the stove because no other 

rnonitored appliances are ON. The magnitude of the total household spikes suggests that 

indeed not even any of the non-monitored appliances are ON. Yet even in this case, the 

stove consumption is overestimated by 15.87%. So although the numbers may show that 

the program has not performed weU overall, it is clear that for particular periods, it does 

perform exactly as intended. 



Figure 27. Stove consumption on January 11,1997, 

Throughout diis entire day, five hot water events are erroneously attributed to the stove. 

Therefore, of the 8.288 kW-h that should have gone to the water heater, 6.534 kW-h is 

exroneously attributed to the stove. Because the cornputer program follows an appliance 

him-on preference hierarchy when attributhg portions of the total household demand 

load to particular appliances, an enor in rec01;pkh.g one appliance can remit in an error 

in recognizing another appliance. For example, if the program fdseiy identifies a water 

heater event as a stove event, the stove energy consumption is overestimated by the 

magnitude of this event and the water heater is underenimated by the magnitude of this 



event Again, the accuracy in reco-g one appliance's energy consumption can âffkct 

the accmcy in recognizing other appliances' energy consumption. 

5.3.1.2.3 Baseboard heater 

The best &y for energy-shares matching is run 16 on Friday, Januivy 10, 1997 (Table 6). 

The difference is ody 0.49%. In terms of energy consumption, this is an absolute error of 

4.58% ({ 12.54-l2.OS)+I2.05). The best d a y  for matching events is run 6 on Monday. 

November 25,1996 because almost 90% (8-9) of the wents are matched, onIy one is 

missed and only one is false. The worst day for event matchhg is again a SaMday: run 

17 on January 1 I this time. The worst day for energy shares is Tuesday, November 26, 

1996. The difference is 14.37%, representing an absoiute error in energy consumption of 

over 1 00% ({26.3 7- 12.00)+12.00). Therefore, although 80% ( 4 4 )  of the events are 

reco_enized, 82% <23+28) of all recognized events are false. 

5.3.1.2.4 Wmhers 

The energy shares ciifference for the washer is always less than 4% (Table 7). Yet, in 

gened, only about half the events are successfblly matched. Furthemore, the actuai 

energy-consumption absoiute errors can be quite large, as large as 246.22%, in fact (nin 7 

on Tuesday, November 26). However, because the washers' energy shares are relatively 

small, the merence in cost between measured and estimated energy consumption is 

accordingly relatively s m d .  



5.3.1.2.5 Refrigerator 

The best day for estimahg energy shares and consumption is run 9 on Thunday, 

November 28, 1996 (Table 8). The energy-shes merence is only -1 -59% while the 

energy-collsumption absolute em>r is 1.27% The program consïstently recognizes about 

65% of events and of dl enimated events, 23% are generally false. 

5.3-1.2.6 SUI~UII(UY 

Resuits of daily nins show t h  the program accurateiy estimates the energy consumption 

of the water heater, and it correctly identifies most water heater events. The program 

generally overestimates baseboard heater and washer consumption, and it consistentiy 

underestimates refngerator consumption 

Furthemore, any particular day is not representative of all other days. The sample 

çtatistics for a particuls day may be such that the total signal can be success£Ûiiy 

analyzed, or they may not. 'ïherefore, to avoid the partïcular anomalies of a particular 

day, a longer penod should be chosen. The evaiuation for ail days (nins 5,12, and 19) 

shows îhat selecting a larger samphg period can minimize the effect Compared to the 

ail-one-day runs, there is no conciusive difference in energy consumption. However, 

there is equal and better event recognition In other words, the longer the sampling 

penod, the greater the likelihood that it is representative of average conditions. 

5.3.2 MuIf@Ce-dàys resuk 

Multiple-days refer to the nins where the sampling period was kept constant and the 

evaiuation period was extended (runs 20 to 25). The sampling period, as Table 3 shows, 



is Tuesday, November 19 to Monday, November 25,1996; and the evaluation period 

starts with this same week and graduaiiy it is extendeci. The dinmnce in energy-shares, 

except for the baseboard heater and one instance of the stove, is always less than 5% 

(Table 4 to 9). The ciifference in energy-shares is always less than 10% for the baseboard 

heater. The average energy-co~lsumption absolute error for the water heater is 3 -43%. The 

average energy-connimption absolute error for the baseboard heater is 45.16%. The 

energy-co~lsumption absolute error for the refigerator is consistentiy about 30%. The 

energy-consumption absolute enor for the stove and the washers is not consistent. It 

varies fiom 3.24% to 72.09% for the stove and fiom 37.54% to 162.75% for the washers. 

About 25% of the false refngerator events are one minute or less in duration. Because the 

refkigerator demand in relatively mail compared to the other major appliances, it is 

possible that smaller appliances are mistakedy identified as the refngerator. 

S. 3.3 Optimum samp Iirtg-peeriod to eva Iuation-period rorio 

The long evaluation-period results in Tables 4 to 9 indicate that increasing the evaluation 

period while the sampling penod is held constant at one week has no effect on accuracy. 

The significance is that one week is long enough to get a statistically representative 

sample of each appliance's operating characteristics. Of course, the data is fiom the 

colder fa11 and winter rnonths. Furîher research is needed to test the program under 

summer conditions, that is, in the warmer rnonths. The present resdts show that the ideal 

sampling period is seven consecutive days. It has been shown that &y-of-the-week 

occupant behavior has a large effect on appliance fiequency of use and hence energy 

consumption. 



CONCLUSIONS 

The appliance-load disaggregation computer program described in this thesis estimates 

the energy consumption of major household appliances. The foliowing conclusions 

conceni the nuis where the sampling period is one week and evaluation penods is fkom 

one to several weeks. The ciiffmnce in energy-shares, for ail appliances except for the 

baseboard heater and one instance of the stove. is always less than 5%. The difference in 

energy-shares is always less than 10% for the baseboard heater. The average energy- 

consumption absolute error is 3.43% for the water heater, 45.16% for the baseboard 

heater, and consistently about 30% for the refiigerator. The energytonsumption absolute 

error for the stove and the washers varies between less than 5% and more than 100%. 

About 25% of the fdse refiïgerator events are one minute or less in duration. 

Furthemore, one week is long enough to get a statistically representative sample of each 

appliance's operating characteristics. 

Finally, in meeting the stated objective of developing the methodology and related 

computer program for nonintrusive load disaggregation, the foilowing conclusions have 

been dram. 

1. Electric current alone is sufficient a signature to iden te  the major appliances in a 



2. Using the combination of data loggers and current probes descfibed in Chapter 3 is a 

simple and inexpensive way to measure and collect the data. lnstalfation can be done 

in less than an hour, and it does not require an electrician. 

3. The preprocessing algonthms described in this chapter are based on simple 

calculations. Complex equations and transformations from the field of signai 

processing are not necessary. 

4. The look-backward approach (backtracking) is an excellent way of increasing the 

accuracy of the appliance-load recognition algorithm when an appliance event is 

missed. 

5- At the present time, the only hindrance to reai-time load disaggregation is the 

backtracking subroutine. If the accuracy of the program cm be increased without using 

backtracking, rd-tune load disaggregation is possible. 

6. The algorithm is capable of disaggregation load data collected at any rate as long as it 

is consistent. Further research is needed to measure the accuracy of the program at 

longer sampling rates. However, the ldsecond sampling rate is not fast enough to rely 

on transient signatures in residential appiiances as an indicator of appliance activation 



CHAPTER 7 

RECOMMENDATIONS FOR FURTEER RESEARCH 

The foIIowing recommendations are suggestions to other researchers interested in 

M e r i n g  the goals of this research. 

1. The downloading time, both in duration and fiequency, should be mhimïzed, and aIl 

data Ioggers should be synchronized so that they start recording at the same time to 

avoid downloading tirne and synchronization-related problems in the fimire 

2. A post-processing algorithm shouid be added between program biocks 3 and 4 to 

further increase the accuracy of the cornputer program. This algorithm wouid analyze 

the output data and remove short duration events (defined by the minimum durations 

in die samphg mode) nom the disaggregated output file, and add them to the 

res idd-  

3. The program should be tested with data coiiected during the summer months to ensure 

that its performance is consistent with the results obtained using winter data 

4. The program shouid also be tested with data fkom other houses. If any modifications to 

the program are to be undertaken, it should be restructured so that the user can select 

which preprocessors and which checking subrouthes to implement, and the order of 

appliance tum-on and nim-off sequence. 
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APPENDIX A 

LEGEND TO INPUT FILES 

Aaual day Raiamcd Actual dav Kenamcd 

Wcd.Oa16,19% Tuc.SrnOL1996 
Thy Oa 17.1996 Wod. SM 03.19% 
Tri. Oct 18.19% Thy SM M. 1996 

Tue. Oa 22.1996 Sac Jan 06,1996 
Wed. O u  23.1996 Sun. Jan 07.1996 
Thu. Oa 24.1996 Mcm. Jsn 08.1996 
Frii OU 2% f 9% Tut San 09,1996 
Frï. Nov 08.1996 Wcd. Jan 10.1996 
S ~ N w 0 9 . 1 9 9 6  Thu.Jui11.1996 
Sun.Nw10.1996 F1i,Janl2.19% 

Mon. Nov 1 1. 19% SU Jan 13.19% 
Tue,Nov12.I996 Sun.Jui14.1996 

W d  Nov 13. 19% Mon. Jan 15. 1996 
Thy Nov 14. 1996 Tue. Jan 16.1996 
Fe Nov 15.1996 Wcd. Jan 17.1996 
Sa& Nov 16. 1996 Thu. Jan 18.1996 

wcck2 

weck 3 

Missm 
D a  Il and 1 SlfDec14.1996 Sun.Fcb11.1996 

S~hDecIS.1996 Mon,FcbIZl9% W d 4  
MO& Dec 16. 19% Tue. Fcb 13.1996 
Tue. D a  17. 1996 Wed, Fcb 14.1996 

Wcb Dec 25. 19% S a  Feb 17. 1996 
Thu. Dec 26.1996 Sun. Fcb 18.1996 
Frï. Dec 27. 1996 Mon. Feb 19.1996 
Saf D a  28. 1996 Tue. F& 20.1996 

Sun. D a  29. 1996 Wcb Feb 21. 19% 
Tuc.Dec31.1996 ThrFcb22.1996 

Wd.JanO1.1997 FriF&23.19% 
'Th% Jan 02,1997 Su F e  24.1996 
F i  Jan 03.1997 Sun. Fcb 25.1996 
S u  Jan M. 1997 Mm. Frb 26.1996 

Tuc Jan 14,1997 T ~ s  Mx 05.1996 
Wcd. Jrn 15.1997 Wai. Mar 06.19% 
Th& Jan 16. 1997 Th& M8r 07, 1996 
Moh JM 20.1997 Fri Mar 08.1996 
Tue.JanZI.1997 SuMu09.1996 
Wu!. Sui 22.1997 Sam. Mar 10,1996 
Ths Jui 23. 1997 Mon. M u  11. 19% 
Fn Jan 24. 1997 Tue Mar 1 2  1996 



APPENDIX B 

COMPUTER PROGRAM OUTPUT FILE: SUMMARIES FOR 25 RUNS 



Sainptc lBcriod: Tiic, Octobcr 15, 1996 to Tue, Octobcr 15, 1996 
fivalitaiion Pcriod: Tiic. Octobcr t 5, 1996 IO Tm, Octobcr 15, 1996 

- 
T d d  (Input) 

TOI~I (Ana Pioccssiii~) 
Wltrc t lulcr 

S t m  
Bucbwd t luicr I 
bucbwd Ikalcr 2 

Wdiwuhec 
Clorhn Wulw 
Bah Wuhcn 
Refdgeritof 

ReriduJ (Calciillid) 
Raidual (Estimikd) 

kmand (kW) Shaw 
6526.013 na 

Fsiiitialcd 
Ciiniiilative Energy Cancctcd 

ücmand (kW) Slinrc Encrgy Sharo 
na na 

6567.53 1 100.64 100.W 
2402.579 36-82 36.59 
3 1 1.954 4.78 4,7J 
630,059 9.65 9.59 
11 1.927 1.72 1.71 

na na nii 
va na na 

340.37 1 5.22 5,Ig 
891.066 13.65 13.56 

na na nr 
11179,574 28.80 28.61 

1~i~cic1icc - W'fIMAl'fiD EVENT STATISTICS EVENT COMl'ARISON 
in Gcrgy üuration (seconds) Tatnl No. No. ai' Evcnti 

Shnrcs Aveinnc Muiinum Mininium of Evcnts Matchcd Mirscd Fa1 sa 

MEASURU) STATIS'I'ICS 1 h u i d  (kW) 
Mcan Sid. i kv .  - 

4.466 0,379 
0,939 1.013 
1.238 0,091 
0,000 0,000 
0,743 0.088 
0.4 14 0.023 

na na 

h i i o n  (seconds) 
CUMULATlVE Cumulaiive Dmmd (kW) 

FaIsc 
95 Watcr Ilenter 23I4,RJ8 185.%1 17.721 

SI9 912 416 12 1 18.812 225.923 I93.142 
O O O O Ba~boUd Hcutr 339,741 149,466 402,245 

438 8% 96 5 W u h m  75.175 26.639 265,196 
II88 3872 544 41 Rcfrigtrnior 743.576 515.836 147.490 

na na na na 

SAMFLE STATlSllCS 1 ücmnd (kW) 1 üuralion (seconds) 1 TocalNo, 1 
1 Mean Std, Dcv. 1 Avcnge Maxiinwn Mininium 1 ofEvcnts 
1 4.466 0.3791 689 1216 3521 13 1 
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Snmple Pcriod: IIiii, Ociokr 17, 1996 to Ihu, Oclober 17, 1996 
Evaliialion Period: ïliu, Ociokr 17, 1996 Io Viti, Qciokr 17, 1996 

Tdal (Inpl) 
T d d  ( A h  hoccuing) 

Wata I luiu 
s4ow 

Bucbowd licr(ri l 
Burbord llula 2 

MJhw* 
C l d h  Wathcr 
Ddh Wuhm 
Rtfdgmtw 

Rcdihirl (Calculned) 
Rcridud ( Q i m ~ c d )  

o.aO0 0.W 
0.000 O .O0 

na nn 
1232.356 21.13 
1050.134 11.63 

na ng 

Estiinnicd 
Cuniulnliva Euerpy Coircclcd 

lkmrnd (kW) Sliarc Encrgy Shuc 
na 111 

5615,353 100.81 100.W 
2820.281 50.01 49.6 1 

0,000 O 0,W 
764.947 13.56 13.43 

0.000 O 0.w 
na 111 n i  
na 111 na 

0.000 O 0.m 
901.331 15.98 l5,1! 

na na ni 
1 1911.794 2 1.26 21.04 

I)iiTetcnce ESI'IMA'TEU EVENI' S'ïKI'ISTICS 
h Energy Uiirniion (sccondr) 1 Toinl No. 

Sliarcs Avcragc hfnrimuiii Minimum of Evcnis 1 

Mcan Srd. Ucv. 
W l i u  l h t a  4.491 0.281 

Sio\.e 2.343 1.301 
B w b w d  I l c l l n  1.246 0.074 
Clath# wuh« 0.000 0.004 

Dirhwuhcr 0.000 0.w 
Refri#mor 0.4 13 0.023 

Diin na ni 

SAMPU STATISTICS 1 Utmaiid (kW) 1 Duralion (seconds) 1 TdalNo, 1 

EVEN'ï COMI'ARISON 
No. of E\+cnls 

1 CUMULATiV@ 1 Cumullriw Dcnlnd (kW) i PD MATCIIIH 1 Maichcd Misscd 
W8kf I h t ~  1 2058.939 23 1.4 17 161.342 1 







Ssniplc Period: Mon. Novcnikt 25, 1996 Io Mon, Novciiibcr 25, 1996 
Evaluation Pcdod: Mon, Noveinki 25, 1996 Io Mon, Noveinber 25.19% 

ENEROY CONSUMMION 

Toial (Input) 
1 Tdal (Ana Roeessing) 

W l i a  Ilcar« 
Scove 

Ducbord Ilcaicr t 
B u e b d  ikr(cr 2 ' Dirhwuhcr 

Cldha W i h  
00th W d K n  
Rdri8mtor 

, Rcsldwl (Calculaid) 
, Rcsich~al tFstitiia~ed) 

MUSURilD STAïïSTICS 

Wlim HcMcr 

ES'I'IMAIED EVEN I' S'ïATIS'JïCS 1 EVENT COMPARISON 
Dumiion (rcconds) 1 Toial No. 1 No, of Evcnls 

Mensiiicd 
Cumiilaiiw h u g y  

Urmand (kW) Slioic 
5861,659 na 

na na 
2246.307 3 8 3  
43b9S5 7.49 

610.099 1,60 

0.000 0.00 
O .OW 0.00 

na na 
l301,062 22,lO 
1195.236 20.39 

n i  na 

SAMPLE STAflSflCS 

W U a  I Icmu 
Scovo 

Rucborrd Htdn 
Cldhci Wuhcr 

Dirhwuhcr 
Rc fd~mta  

hi« 

Stove 36.961 401,917 13.962 
Binborrd Ikatcr 436.0711 224,021 162,632 

721.961 578.101 IW.735 

tkmand (kW) 
Mcmi Sld, Ik-v. 

4 312 0.350 

F~~iiiiaicd 
Cum\iidivc Bcrgy Conecltd 
Ucinand (kW) Sl~aie I%cigy Sharc 

na na 
5939.483 101.33 100.00 
2429,501 41.45 40.9 I 

110,930 1.119 1.87 
532.042 9.08 11-96 
16.667 \ -48 l A6 

nn na lia 
nn na na 

0.000 O 0.00 
632.695 14.21 14.02 

na na na 
1947.64ii 33.23 32.79 

ü c m d  (kW) 
Mcan Sid, i k v .  

4.362 0.350 
3.885 2,714, 
t ,201 0.095 
0.000 0.000 
0.000 0.000 
0.4011 0.024 
0.000 0.000 

DiiTcicncc 
in Energy 

Shwa 

-239 
S.61 

1,111 

0.M 
&Id 

-12.44 

Lhiiaiion (wconds) 
Avcmge Manitnunt Minimum 

Tdal No. 
of Evcnls 

lhntion (seconds) 
Awrap Muiiiium Miniiiium 

633 1968 320 
139 611 16 

IO04 2976 4% 
O O 

(il1 l WtU 3201 I S  

Td i l  No. 
of Hvcoir 

13 
13 
9 
O 

O O O 
1275 4512 

O O 
,dl O 40 O 



Ssinplc Prriod: Tue, Noveiiibcr 26, 1996 (O Tue, Novcrnkr 26, 1996 
Evalualion Pcriod: Tue, Novcmber 26,1996 to Tue, Noveinber 26, 1996 

ENERGY CONSUMPl'ION 

Total (Input) 
Toial (An« Processin~) 

Wlicr Ilcala 
Slovc 

Rrvboud Ilcrier I 
Hidonrd Ilcatcr 2 

mthwuhcr 
Clolhcs Wnhcr 
00th Wmhm 
R c r d ~ i o c  

Rcddunl (Cilculmcd) 
Rcsidial (Wiinatcd) 

Mcnsurcd Estinirkd I~ill'trciicc ESI'IMAIEU EVENT STATISTICS - EVENT COMPARISON 
Ciiniulalivc Encrgy Cumiilnlivc Encrgy Conccicd in Faergy Dumiion (seconds) I Toial No, No. of Evcnir 

Mcan Std. k v . -  Avcrngc Muiimum Minimiim 1 of Evcnis, 3l 
WH« îlrHer -1 4.377 0.292 IO03 2576 JO4 i 

MEASURED STATlSTlCS 1 ikmand (kW) üurail<nr (xcoiids) ( ïotr l  No, 1 

Slow 
Bucbomd llcatcc 
C l d h ~  WYhcr 

ûishwrhct 
Rcfrigemw 

hier 

1 SAMPLESTAWSTICS 1 b a n d  (kW) 1 Duniion (seconds) 1 TotalNo, 1 

CUMULATIVE Ctimulmivo lkmnd (kW) 

Walcr Ileatcr 3367.538 199.7l11 
Slovo 405.708 653.694 6.712 

Ducbwd Ilcatct 4811,315 443.857 1570.975 
Wuhan 116.3 111 291.M9 

Rcfdgcrrlor 646.686 5115.7% 60.723 

3.053 l ,311 
1.373 0.42 1 
o.Oo0 0 . w  
0.725 0.147 
0.406 0.026 

na na 

4Q1 1952 l6I 12 
2170 3664 4% 5 

Witcr Ileitcr 
Slow 

Baseboard ticaier 
Cldher Wuher 

Dirhwuhtr 
Refri#cmta 

ihia 

O O O 
38 1 896 % 

1156 3920 496 
na na na 

O 
5 

42 
na 

Mcrn Sld. ücv. 
4.377 0.292 
3.053 1.3113 
1.373 0.421 
0.725 0.147 
0.000 0.000 
0,406 0.026 
0.000 0.000 

Average Muriinuin Miniinum 1 OC Evcnts 
LOO3 2576 3041 13 
463 1952 I6l 12 

2170 3664 4% 5 
38 1 8% 5 

O O O 
1156 3920 

O O O 





Smmplc Pcriod: llw, Novembcr 28, 1996 
Evaliiaiion Pmod: Ihu, Novcmber 28, 1996 

ENEROY CONSUMPTION 

Toul (Input) 
Tolrl (Aîtcr Roceming) 

WDtn Hcrin 
siovc 

Biacbord I I W n  l 
Bucbowd lkrln 2 

M l w r s h a  
Cldhes W R ~  
Bah W4l)mr 
Rcfd#erata 

Raiduil (Cilculrlcd) 
R d k i l  (btimiied) 

ücmand (kW) Sliarc 
8908.184 n i  

to Viii, Novcinbcr 28, 1996 
to ïhu, November 28,1996 

Iulimnled 
Ciiiiicilalivc Encrgy Concctcd 

Dcm~iid (kW) Shaw Energy Shirc 
n i  n i  

8950,305 100.47 100.00 
1915,497 21,s 2 1.40 
383,489 4.30 4.21 

2 186.647 2435 24.43 
646.774 7 .26 7 .23 

nn na nn 
111 nn (II 

0.000 O 0.a 
1074,804 1 2.07 12.01 

n i  na ni 
2743.094 30.79 30.63 

UiNcrci~ce ESTlhlAlED EVENT S'I'A'l'ISl'ICS 1 EVENT COMPARISON 
in hcrgy Duntion (seconds) 1 Tolml No, 1 No. of Evcnls 1 

MWSURED STATISïiCS 1 Ikmmd (kW) 1 üuntion (seconds) 
1 CUMULATIVE 1 Cumulrtiw lkmnd (kW) 1 

- -- 

( SAMPLE STAIISI'ICS [ ücmind (kW) 1 Uimtion (seconds) 



S~iiiplc I'ciid: rd, Novcniki 29, 1996 io hi, Novciiil>cr 29, 1996 
Bvaluation Pciiod: Fri, Noveinkr 29, 1996 io hi. Novtnikr 29, 1996 

ücmand (kW) 
9599.259 

na 
4%3.393 
713,934 

1651.373 

101.137 
0.m 

na 
1206,990 
962.432 

na 

ENEHOY CONSUMI'lION Mcrst~rd Fdtimrtcd 
Ciimiilriivc Fhcrgy Ciiinulalivc Encrgy Correctcd 

Difirciicc ESl'IMA1'EO EVEN'I' STATISTICS I EVENT COMPARISON 
in F~erpy Uiirntion (seconds) 1 Toinl No. 1 No. of Eventr 1 

M E A S U W  STATISIICS 

W l i n  I tcatn 
Siove 

Owbowd I l c i ta  
Cloiher Wuhcr 

DiJiwuhci 
Rtfd(lmiu 

Mer 

Avcrngc Maxiiiiunl Minimum ofEvcnii Matchcd 

h n d  (kW) 
Mcan Std, Ucv. 

4.339 O. l 13 
5.900 1,449 
1.211 O. 189 
0.000 0.000 
0,702 0,111 
0.402 0.026 

na M 

üuration (seconds) Toial No. 

571 1616 31 
O O 

384 8% 6 
11 18 38118 41 

na na na ni 

h a n d  (kW) 1 

1 CUMULATIVE 1 Cwnulitivc Dtmand (kW) 1 
UEMAND MATClllN 1 Malchtd M i r d  Fil# 1 Wa!crllcatn 1 4124.732 638.661 4OOP36I 

1 ihicr 1 0.000 0,000 1 O O 0 1 O 1 



Satnplc Period: Snt, Novctnlw 30, 1996 to SnI, Novclllt~r 30, 1996 
Evaluation Pcriod: Sat, Novei~ikr 30, 1996 to Sn!, Novcniber 30, 1996 

ENERGY CONSUMI'I'ION 

Totd (Input) 
T a i l  (Ann Proccrsing) 

WMu IINQ 
~row 

Bucbord H u t n  l 
Barcbowd Hciitr 2 

IXahwMhcr 
Cldb Wuhct 
00th W u h m  
R c î i p a t a  

Rcridwl (Calciilarcd) 
Rnidud (Gtlim~cd) 

Mcnsurcd 
Cumulative Enei~y 

Ikmind (kW) Slinrc 
13900.191 n i  

na na 
6914.7117 49.75 
I 31111.1191 9.99 

477.482 3.44 

0,000 0.00 
375.022 2.70 

na n i  
1320,834 9.50 
3423,175 24.63 

na ni 

btimntcd 
Cumulntive Energy Comctcd 

1 MEASURED STATISUCS 1 h m d  (kW) Ihration (secmdrl 1 Total No. 1 

Utmrnd (kW) Shnrc Eocrgy Stiarc 
na na 

13985.456 100.61 100.00 
4 155.924 29-90 29.72 

193,175 1.39 I .38 
998,372 7,111 7,14 
320,733 2.31 2JO 

na nn 118 

nn na na 
257.649 1.85 l ,a4 

1037,245 7.46 7.41 
na na na 

7022.351 SOS2 50.2 1 

Sld. ücv. 1 Anngc Maximuni Minimum 1 of EvcnIsI5l 
0.1611 1674 6121 356 

t>ilkrcncc 
in Energy 

S A M U  STATISTICS 1 Ikmand (kW) 1 Duniion (seconds) 1 TotalNo. 

ES'I'IMATEU EVENT SI'ATISTICS 1 EVENT COMPARISON 
Diintion (seconds) 1 Total No. 1 No, of Ewnls 

Sharcr 

10.03 
1.61 

4.99 

0,86 
2 

-25.M 

1 Mcui Sld. ikv.  1 Avcragc Mutiaium Minimum 1 
Wu« l lcr tn 1 4.407 0.1641 1674 6128 3361 Of Evm's I S  1 

Cinnulriivs Dtmand (LW) 1 

Awnga Muimiiin Minimitm 

1816 6128 352 
113 352 16 

5 2  1376 32 
709 1072 176 

288 5 44 32 
1312 4624 240 

of EwnR 

11 
17 
24 
6 

20 
31 

Slow 
Bucbwd Hcattr 

Warhm 
Rcfri8cnta 

MnIchcd Mirred F8lw 

8 7 O 

7 3 23 

14 26 6 
24 12 7 

191.086 1 197.MIS 2 .O90 
339,076 138.406 9UI.029 
I59.803 215.219 97.846 
8%.5B1 424.253 140.b65 
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Samplc Fcriod: ïuc, Janiiary 07, 1997 IO l'iic, Janiiory 07, 1997 
Evatualion Perid: Tuc, Janunry 07, 1997 Io l\ic, January 07, 1997 

ENERUY CONSUhlI'l'lON 

Toiil (Input) 
T d i l  (Ana Proccrsing) 

W 8 l ~  k 8 k f  

Stow 
B m b m d  l l e a n  l 
Bi-d Hema 2 

UiJiwuhcr 
Clahci W a h n  
Wh W I J n n  
Refri#nritu 

Residuat (Calculucd) 
Raidual (btimatcd) 

Mcnsuicd i31imsicd Di~c~cr icc 
Ciiinolativc Encrgy Cumiilalivc Encr~y Cowcted in Ener~y 

MEASUREI) STATISTICS l k m n d  (kW) Durnion (seconds) Tdal No, 
M e n  Sld. üev. Average Muiimiim Minimum of Evcntr 

Wuer I lcmn 4,471 0.231 1239 4136 352 II 

1 SAMPtESTATISTICS / Ucmmd (kW) 1 üuraîion (seconds) 1 Total No. ) 

ES1 IMAIED EVENI' STA'I'ISTICS 1 EVENT COMPARISON 

Meut Sld. ikv ,  
4,471 0.231 
2.98 1 0.65 1 
1,312 0,353 
0,ooo 0,000 
0.000 0.000 
0.413 0.024 
0.000 0.000 

. . 

Uiiniioii (seconds) 1 Totnl No. 1 No. of Evmis 
Average hlpxiniiim Miniinum of Evenis hlatchcd Misscd I F a h  

Avrragc Muritnurn Minimum 
1239 4736 352 
117 4411 16 

1226 7280 544 
O O O 
O O O 

IO59 3984 512 

of Bvmts 
1 I 
1 O 
16 
O 
O 

45 
O O 0 l O 



Snmplc Pend: Wcd, Janiinry 08, 1997 to Wetl, Jsiiiinry OR, 1997 
Evnliiniion Fcriod: Wcd, Jsiiiinry OR, 1997 io Wcd, Jaiwnry OS, 1997 

Tolrl (Input) }-I 

1 M a n  Sid. Ulv. 1 A v e r y  Muln~i im hlinl~nurn ( alEwnts 
Watcr I l c a ~  4,460 0.275 12811 5024 3521 14 1 

1 SAMPLESTAnSWS 1 ücrnrnd (kW) 1 h n i i o n  ( ~ e d )  1 Total No. ) 

ESl'IMAlED EVEN î STATISTICS 

W~IW I I-I~ 
Stove 

Brscborrd Ilcata 
Clothes Wmh« 

Dishwuhcr 
Refdgcrator 

Drin 

Dontion (xconds) 1 Tdal No. 
Avtnge Maximum Minimum of Eveiiis ! 

Mcrn Sid. Dcv. 
4.410 0.275 
2.279 0.87 1 
1.216 0.076 
0,721 0.100 
0.000 0.000 
0.4 13 0,025 
0 . m  0.000 

EVENT COMPARISON 
No. of Evtnts 1 

Avcrrgc Maximuin Minimum 1 of Evenls 
lzaa 5024 3521 14 
212 624 161 4 

1860 6064 9121 15 
38 I 8% MI 6 

O O 01 (1 

1035 3008 3611 46 
O O 0 1  a 

( CUMULATIVE 1 ~umu~ntiva ücnad ( k ~ )  1 
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Snniplc Pend:  Siin, Jniiiinty 12, 1997 ta Sun, Jnniiniy 12, 1997 
Evaluaiion Riid: Sun, Janu~ry 12, 1997 to Sun, Jnriuary 12, 1997 

ENERGY CONSUMFl'ION Mciuurcd 
Ciimulrlivc B n g y  

ikinsrid (kW) Sliarc 
15045.630 ni 

na na 
6340,469 42.14 
1475.543 9.8 1 

1619.916 10.17 

1 04 fi07 0.74 
250.512 1.67 

na ni 
1376.369 9,1! 
3878.014 25,ll 

na nt 

ESTIMATIID EVENT S'I'ATISTKS 1 EVENT COMPARISON 
Duralion (seconds) 1 Toial No, 1 No. of Evcnts 

Blii i intcd 
' Ciirniilali\r Eneigy Coircctcd 
Lücmmnd (kW) Slinre Encrgy Shnrc 

na na 
15131.364 100.57 IOQ.00 
6793.042 45.15 44,119 
1913.617 13.18 13,Il 
972,192 6.46 6.42 
467.330 3,tI  3.09 

na na n i  
na nn na 

417.285 2,77 2.75 
769.601 5.12 5 .O9 

na na 
37211.297 24.78 24.64 

Avcrngc Maxiinuin Miniitium of Evcnls Matchcd Miswd FaIw 

Dilkicncc 
In Energy 

Sliares 

4 7 5  
.&NI 

1.25 

-0.311 
4 M  

1.14 

lkrnand (kW) 
Mean Std. Des- 

4.431 0,242 
1,629 0,945 
1.211 0,013 
0.704 0,0119 
0.737 0.141 
0,415 0.022 

ni na 

Stovc 
Bawborrd Iieakr 
Cldhcn W J i c r  

Didiwuk 
Rcîri#eraior 

SAMPtE STATlSTlCS 

Wlcn I lciicr 

.- Avcrngc 
1524 
296 Jllllll 161 49 
972 7632 22 

30 I W  624 
325 8% % 7 

1397 4272 6721 18 
na na na n i  

CUMULATIVE Cumuliiiw Utmwid (kW) 

Wnltr haler 4975.345 1365.124 1817.697 
883.820 591,723 1099,797 

Baseboard Ilcalci 365.543 1254,373 1073.979 
Wuhcn 12l.225 233.894 296.060 

682.386 694.183 87.214 

h l n d  (kW) 
Mcan Sid, Ikv. 

4.W 0.242 

Duraiion (seconds) 
Avcragc Madinuin Miniiiium 

Total No. 
of Evcnis 

1524 6144 352, 15 
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Saniple Period: 'l'ue, Nnvciiikr 19. 1996 Io Mun, Novctiitwr 25, 1996 
Evnliialion Ferid: Tue, Novcinbcr 19, 1996 IO Mon, Novenibcr 25, 1996 

Total (Input) 
Tdal (Mn hoccssiiig) 

Walcr lleitcr 
Siove 

Bucbond l lcain l 
Bauboud Hcarn 2 

Wshwuhn 
Cldhcs W a l n  
Rdh Warhm 
Rdrigerniw 

Residual (Cilculiicd) 
Reslduil (htlmalcd) 

KNERGY CONSUMI'I'ION 

MEASURER STATIS'I'ICS 

hiessurcd 
Ciimiihivc Encrgy 

üemand (kW) 
Mean Sid. Dcv. 

1.396 0.281 
4,290 2.426 
1.273 0.301 
0.720 0,057 
0.730 0.103 
0.407 0.025 

na n i  

fisiinia~ed 
Cuiniilative hcrpy Correctcd 

Sliarc 
na 
nn 

38.15 
8.91 

19.32 

0.59 
0.26 

na 
I4,42 
11.34 

na 

Sliare Eiicrgy Sliare 
nm 

100.80 100.0(1 
40.80 40.48 
2.49 2.47 

22.56 22.311 
6.32 6.21 

nn nn 
rin n i  

2.25 2,23 
10.4 1 10.31 

na ni  
15.96 15.14 

Ueiiiaiid (kW) 
na 

62621.712 
25350.313 

1544,580 
14013.957 
XUl.98 1 

nn 
nn 

1400.253 
6466.972 

nn 
9917.655 

DiKercncc ESTIMATEU EVENT S'I'ATISTICS EVENT COUFARISON 
In Energy Ihiraiion (seconds) Toirl No. No. of  Ewnts 

Shans Average Mmiinum Minimum of Evcnis Maichcd M i d  Fa1 se 

Duration (sccondr) 
Avcragc . Miximiim Miniinriin 

1027 IOCnn, 301 84 
94 1440 16 219 

94 9 10528 256 159 
454 928 32 8 
368 8% 60 22 

13111 5712 16 267 
na na na, I I~  

Siow 
tlucborrd llcrtcr 
CLdk WaJur 

I)lshwuslin 
Rcfrigeniw 

lMcr . 

1 CUMULATIVE I Cutnulrtive Onnand {kW) 1 

SAMPLE STATISTICS 

WU« I l t i icr  

Stave 1142.391 4391.328 402.184 
Diwboard llcalcr 9ô68.63 1 2 136,183 ûO73.307 

Washns 137,433 395.488 1262.820 
Rcfrimmior 5159.839 3699.502 1207,133 

- M n n d  (kW) 
Mean Sid. Dcv. 

4 3% 0.287 

Duration (sccocids) 
Avcrapo Maniiiiuin hliniiniiiii 

1021 IOOOO 304 

Tdal No. 
ofiivcnir 

84 





Sninpk Pcriod: l'tic, Novcinkr 19, 1996 in Mon, Novciiilw 25, 1996 
Evaluniion I'criod: l'tic, Noven~ber 19, 1996 io Mon, I>cccnikr 09, 1996 

Toial (Input) 
Tolnl (Mer Procosing) 

Wrta Hcirn 
Slow 

BiKkwrd Ilealci I 
Dixbonrd I lcala 2 

Diahmshcr 
Clarhcr Wnshcr 
ndh Wuhcrn 
Rcfn'#mtw 

Raiduil (Calcukcd) 
Residud (Enimatcd) 

MEASUREO STATISTICS lkmnnd (kW) hin i ion (seconds) Tdsl No. 
Mcrn Sid. üev. Average Mnxiinrim Mininiiiin of E v 5 -  -- ----- --- 

Waiec llcater 4.412 0,357 II73 IW32 64 269 

hfcnnircd 
C~imulrlivc Encl~y 

krnand (kW) Sliarc - 
193675.921 na 

Store 2.116 
Barcbowd llrrler 0.326 
Clorha W u k  0.074 

Wlwashcr 0,101 
Rcfdg~nlor 0.025 

S A M U  STATISTICS 1 h a n d  (kW) 1 lhmtion (seconds) ( Tobl No. 1 

fsii~i~aicd 
Ciiiniilnlivc llncrey Concctcd 

kniand (kW) Sbiic Enctgy SIiare 
nn na 

CUMULA'IIVB C~imulaîiw h n i d  (kW) 

Watcr Ilcirer 71722.300 IU17.116 17114.945 
3091.997 10299.542 2908.350 

586.719 1457.414 2952.090 
Rcfrlgeralor 16255.355 10704.570 3044.954 

I)ifïcrcncc 
in Fncrgy 

Sha~cs 

Walcr fkalcr 
Slow 

Ducbowd Ifcaler 
Cl~Nhcs W a l a  

D i l w u l m  
Rdiigcrcitw 

lhicr 

M m  Std. Ucv. 
4.3% 0.287 
4.290 2.426 
I .273 0,303 
0.730 0,103 
0.720 0.057 
0.407 0.025 
0 . m  0.000 

EVENr COhlPARISON 
No. of Ewnis 

Mrrclicd MisKd Falx - 
ES1 IMA.160 EVEN'T STATISI'ICS 
Diiralion (seconds) ' 

Avctagc Maximum Minirnii~n 

Avciage Muiniuni Minimum 
1027 IOMHI 301 

94 1440 16 
949 IO528 256 
168 8% 80 

Toid No. 
of Evcnis 

of Evcnts 
84 

219 
159 
22 

454 92R 32 8 
1318 5712 161 261 

O O 0 i O 



Sarnplc R i i d :  Tuc, Novciiibcr 19, 1 996 Io Moii, Novciiikr 25, 1996 
Evalualion Pcriod: Tiic, Novcinbcr 19, 1996 IO Wcd, Deceinber 18, 1996 

ENliRGY CONSUMI'I ION 

T ~ I  (~ f l i&& ing)  
Watn Ileatcr 

Slove 
Daseboard llcatcr I 
f l a h d  llcalcr 2 

Uishwndrrc 
Claita Wndw 
Rarh Wnheo 
RcTdgmta 

Rddual (CaIciiI~cd) 
Roidual (ïhtimrted) 

Nok: iio tlain Tor ücceiiibcr 1 I and 12. 
hlcasuicd 1 1:Jtiiiinied 1 1)iffcrcncc 

Ciiiiiulalivc lincrgy 1 Ciiniulativc Bnergy Coneclcd 1 in Encrgy 
Sharc 131crgy SIiarc 1 Sharcs 

111 I 

I~Sï'IMAI'i!I> EViiNT STNrISTICS EVEN'I' COhlI'AHISON 
Ditniion (seconds) Total No. No. o f  Evrnir 

Average Maaimii~n Miniiniim of  Evints hfalchcd Misscd Fal sa 

M B A S U W  STAï ISTICS 1 lkmand (kW) 1 Ihimlion (rccoids) 1 M a l  No. 1 

1 SAMPLE STATISTICS 1 Utmand (kW) 1 Ulintion (rcconds) 1 Total No, 

WWcr I k a l a  4.4 29 
Siove 2.452 1.999 1 03 3120 

M a n  Sid. Ucv. 1 Average Minimum Minimuni 1 olBvcnls 
0.287 1 1021 IOOOO 304 1 114 1 

Stovo 
B u c b w d  Iiclicr 
Cldhn Washn 

Wshwadier 
R d i i ~ n r i a  

I 
l Ma 

CUMULAIIVE 
I)EhîANI) MATCtlIN 

Witn  tlcrlcr 

Cumiitwiw b a n d  (kW) 
Matchcd Mird  Fdse 
95992.520 20440.971 24171.201 



MFASUREII STAI'ISTICS 1 lkmand (kW) 

Samplc Pcriod: liic, Novciiikr 19, 1996 IO Mon, Novciiibcr 25, 1996 
Evaluaiion Pcriod: Tue, Novetnbei 19, 1996 io Ii, January 24, 1997 

Note: no dala for Dcccinhr I I und 12, 

Menn ' ~ l d :  Dcv.- ---- 
4,440 0.291 
2.107 1.651 
1.286 0.307 
0,714 0,071 
0,736 0.108 
0.412 0.024 

na 1111 

ENERCiY CONSUMIWON 

Total (Input) 
Tocil (Mer Rocessing) 

Witcr Hcatcr 
Stove 

Bixboatd Ileatn I 
Diwhoatd Ileaîer 2 

ûirhwarhn 
Clother W a s h  
Boih W a h  
Retri8m)a 

Rcsidual (Calculalcd) 
Residual (btimitcd) 

lhirntion (weonds) 
Avcrage Maximiim h1ini111111n 

1259 17056 64 
103 388R 16 

1060 35760 16 
22 5 944 16 
370 896 16 

1309 15184 10 
t ~ n  na ni  

Mensiircd 
Ciimelnliw Encrgy 

ikinand (kW) Sharc -- 
531781,637 nn 

n i  na 
242028.086 5 
28272.24 1 5.32 

726110,956 13,67 

2791 .Mi7 0,52 
2253,510 0.42 

na na 
70694.275 13-29 

1 13062.902 21.26 
n i  n i  

SAMPtE STATISTICS 

Walcr Heatcr 
Slovo 

D a ~ b o r d  Iieaicr 
Cldhes Washa 

Dirhwuhrr 
Rcfrigcnlor 

Ihin 

Estiinaicd 
Cumiilat/ve Ikcigy Corrccicd 

Ucinand (kW) Shaic liicigy Shatc 
na na 

5347 1 1.497 100.55 IO.00 
253731.712 47.71 47.45 

19446.146 3 -66 3.64 
79117.907 1 4.99 14.91 
25073.655 4.72 4.69 

RI na na 
na III 118 

9830.566 l .85 I .84 
50008,752 9.40 9,35 

na na nr 
96902.738 18.22 18.12 

EVENT COMPARISON 
No. of Evcnls 

Matchcd M i r d  Falsc 

ES1IMATW EVENT STATISTICS I 

Iktnand (kW) 
Mcan Sid, Ucv, 

4.3% 0.2117 
4.290 2.426 
1.273 0.303 
0.730 0,103 
0.720 0.057 
0.407 0.025 
O .M)O 0.000 

UiflCrcncc 
in F h t ~ y  

Sharcs 

-1.94 
1 . 9  

4,9J 

-0.M 
3.94 

3.14 

Diiralion (rcconds) 
Avcingc Mwiniiiin hhlnium 

1356 15008 32 
263 9216 16 
686 9184 16 
508 9056 16 

631 1312 16 
1147 7321 16 

Total No. 
of Ewnis 

68 l 
428 

1460 
620 

346 
1712 

Uintion (seconds) 
Aveiage Maximiirn Mininiiiin 

1027 IOOQO 304 

Tolal No, 
of Evcnls 

84 
94 1440 16 219 

949 IO528 2561 159 
368 896 80 1 22 
454 928 8 

1318 5712 267 
O O O O 



Saitiplc l'cnd: liie, Novcmbcr 19, 1996 ia Mon, Novciiilw 25, 1996 
I!VR~IIRI/O~ Pcfld: Tiic, Oclobcr 15, 1996 lu hi, knirnry 24, 1997 

Natc: iio tlntn for I)ccciiil~cr I I niid 12. 
INI:X(iY CONSUMI' l'ION Mcasriicd Ikiiii~nied 

Ciiiiiulalivc liiccsy C'iiii~olnlivc Kiicrgy Cwrcclcd 
{ l k~ i tnnd  ( k ~ )  Slia~c 4 ~ n i n n d  ( k ~ )  Shnc E n n ~  Shnrc 

Taal (Inpiit) 15 1399.063 na nn na 
Total (A f i a  pro ces sin^) na 100.45 

Wiicr Hcaicr 304192.162 40.19 40.01 
Slovc 314 18.503 4.82 4.80 

Dascboud I lcaia I 
Oasebowd I lcaict 2 

Wdiwaslier 
Cloll~a Wnsl~c~ 
Doih Washcrr 
RcTripniw 

Residual (Calccilntcd) 
Rcsidwil (btitnntcû) 

1 

Wilcr llcalcr 

B a s h d  Ilcaicr 
Cldhcr Wuhcr 

Refiigcralor 

lkmnnd (kW) 1 I>iiraiion (xconlls) 1 Total No. 1 
Mn ~ t d ,  

UI- 1 Avcrngc ~nxi in i i in  Minimum 
4,4311 0.293 1203 17056 

lis fIMA1 l i U  BVENT S ï A I  ISlïC'S EVEN'I'COMI'ARISDN 
IA~niion (seconds) 1 l'oral No. No. of Ewna 

SAMPLB STATISTICS 

W ~ c r  Henlcr 

1 CUMUIATIVE ( Ciimulntin h n d  (kW) 1 
DEMANU MATCIIIN M i r r d  I--l :;%:6l 75239,101 11M463I 1 

l kmind  (kW) 
Mran Std. ücv ,  

4.3% 0.287 

hin i ion (wonds) 
Avcingc Maxiinum Minimum 

1027 lOOoO 304 

Tolnl No, 
oCEvcnir 

84 




