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Abstract 

Epileptic seizures correspond to episodes of increased rhythmici. of the chaotic neuronal 

activity in the healthy brain. It is beIieved that through the suppression of the rhythmic 

dynamics. seizures may be eliminated. This is the objective of the chaosmaker. 

The chaosmaker employs a Radial Basis Function (RBF) model to leam the chaotic 

dynamics froni the time series. The strategy is to detect the transition to rhythmic activiw, 

then ernplq nonlinear system theory in a control strategy to return the system to chaotic 

dynamics. The detection algorithm compares the chaotic dynamics, represented by the RBF 

model. to the d ~ a m i c s  of the system under observation. Once a change toward rhythmicity 

is detected the chaosmaker perturbs the measured system variable such that the next state 

vector is placed on the unstable manifold of the rhythmic cycle. We illustrate the approach 

with applications to trvo examples of chaotic systems: the Henon map and the mapped clock 

oscillator (?VICO) model- The chaosrnaker was successful at  restoring chaotic dynamics in 

periods of rhythmic activity in both systems. 
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Chapter 1 

Introduction 

1.1 A Perspective on Epilepsy 

This thesis is an exploration of a no\-el approach to therapy for individuals Nith epilepsy. 

Our strategy is based on recent esperimental findings that suggest epilepsy arises from 

qualitative changes in the dynarnics of brain activity. In the healthy brain, the pattern of 

electrical activity is complex and chaotic. The onset of an epileptic seizure is characterized 

by rhythmic activity of lower comple'uty. If neuronal dynamics are controlled to ensure 

that high coniplesiw activity is maintained then we can achieve suppression of seizures. 

Just as the pacemaker acts to regulate the activity of the heart to avoid cardiac arrest, 

our cbaosmaker would act to break the rhythmic activity of the brain and thereby suppress 

epileptic seizures. 

One motivation for the development of this strategy is to assist ~ h e  20% of the epileptic 

populations for whom anticonvulsive dmg t herapies are ineffective. For these individuals, 

the only recourse currently available is surgery. This involves cutting or removing the area 

of the brain thought to be the physicd source of the seizure, known as the epileptic focus. 

Surgery can only be considered in cases where the focus is localized away from the major 

motor and speech centers of the brain. Even in such cases, impairment of language or motor 

functions can result. It is clear that a need for alternative therapy esists. Our chaosmaker, 

with its radically different approach to the treatment of epilepsy, could fil1 this need. 



1.2 Objectives 

Our objective is to develop a seizure suppression strategy that is applicable to the control 

of biological neural networks. In order for the chaosmaker to be relevant, its function must 

not rely on knowledge of the system equations, as these equations are not available for 

biological neuronal networks. The strategy must be based soiely on information provided by 

a measured time series of the brain's electncal activity. Thus we must begin our development 

of these strategies ni th the development of a time series mode1 capable of learning chaotic 

dynamics. 

Before the control strategy can suppress seizures, they must be detected. As a resuk, 

n-e add the development of a detection strategy to our objectives. The method of detection 

must be able to distinguish the onset of rhythmicity in the dynamics under observation. The 

algorithm must be capable of reliably detecting al1 forms of rhphmic activity from the fdly 

developed chaos of the healthy system. 

The control strategy must be capable of restoring the chaotic pattern of activity with- 

out access to any intemal system parameters. .ln optimal control strategy would quickly 

restore the chaotic neuronal activity using minimal stimulation. The use of escessive control 

activi ty is discouraged because i t w-ould result in increased interference wit h the autonomous 

functioning of the brain. Our goal is to employ an algorithm which uses the inherent dy- 

namics of the biological neuronal nekvork to maintain chaos. 

The long-tem objective of this research is to develop a device which is capable of 

learning the healthy chaotic dynamics of a s m d  part of the brain and detect a change to 

a rhythmic pattern of activity. Once rhythmicity is detected the device would deliver an 

electrical stimulus mhich would restore chaotic activity. Such a device would Iikely have 

electrodes implanted in the region of the brain corresponding to the epileptic focus. 

1.3 Scope 

The work presented here constitutes an early step on the road to realizing the potential of 

nonlinear system theory to combat epilepsy. As an e,uploration, we leave many questions 

unanswered and many avenues of research untraveled. Some of these prospects d l  be 



addrcssed in the section on Future Work concluding this document. 

In this thesis, we develop detection and control strategies to detect and eliminate 

rhythmic dynamics in systems near a transition to chaotic dynamics. These systems represent 

models of dynamics similar to those observed in the epileptic brain. We also develop the 

radial basis function (RBF) model as the time series model upon mhich the detection and 

control algorithms are based. The effectiveness of t hese algorit hms is demonstrated in their 

application to two examples of chaotic systems, the Henon map and the Sfapped Clock 

Oscillator ('VICO) model. 

The first four chapters of this thesis are dedicated to the introduction of background 

concepts. Chapter 2 provides a brief introduction to a number of concepts d i c h  will be 

irsed in the development of the detection and control strategies. Chapter 3 contains a review 

of the literature supporting our claims that the dynamics of epileptic electrical activity may 

be considered stabilizations of one or more of the infinite unstable periodic orbits located 

within healthy chaotic activiw. Chapter 4 reviews recent work in techniques of controlling 

chaos that lead to the work of Schiff et al. [l] and their attempt to apply these techniques 

to the brain slice. 

Chapters 5 ,  6 and 7 contain the original research contributions of this thesis. Chapter 

5 presents an application of the radial basis function netit-ork to learning and modelling 

chaotic systems. In this chapter, we show the results of leaming the chaotic dynamics of 

two chaotic systems: the Henon map and the mapped clock oscillator (hICO) model of 

hippocampal CA3 cells. In chapter 6, we describe the rhythmicity detection algorithm and 

demonstrate its abiliw to detect spontaneous transitions to periodic activity in the two 

systems. Chapter 7 contains a description of the control strategy and its application to the 

Henon map and the M C 0  model. 

1.4 Hypot hesis 

It is our hypothesis that the RBF model mil1 effectively capture the chaotic dynamics of 

both the Henon niap and the MC0 model through access to a time series done. W-e further 

believe that the detection strategy d l  quickly identify a transition to rhythmic activity with 

high specificity and sensitivity. Finally it is hypothesized that the control strategy Ml1 be 

3 



effective in restoring chaos during the rhythmic episodes of the tnio systems. 

1.5 Assumpt ions 

AS is inevitable in scientific research, the work in this thesis is based on certain assumptions 

about the natural world. In the development of the detection and control strategies, we 

make two key assurnptions conceming the electrical activity of biologicd neuronal networks, 

in both healthy and epileptic brain states 

1. HeaIthy brain dynamics are chaotic. X basic premise of this thesis is that brain 

dynarnis are chaotic. in the sense that they exhibit local instability and are globdy bounded 

to a strange attractor. We assume that the dynamics of the electrical activity of the brain is 

not critically dependent on any random process and that there is a structure to the patterns 

of this activïty. 

2. Epilepsy is rhyt hmicity fkom chaos. Epileptic seizures are the physical manifesta- 

tion of the spont-aneous stabilization of unstable patterns of activity in the healthy chaotic 

brain dynamics. We assume that the stablization of this pattern is the cause of the increased 

rhythmicity observed in EEG recordings at  the onset of epileptic seizures. 



Chapter 2 

Chaotic Systems 

This work draws on a number of basic concepts of nonlinear dynamics. In this chapter 

we present a bnef review of the concepts relevant to the development of the detection and 

control strategies. CVe begin by defining chaos and introducing the Lyapunov exponent 

and the invariant manifold. Next, n-e describe a number of nonlinear time series analysis 

techniques that n-e use throughout the thesis. The final two sections introduce the subject 

systems to which the learning strategies are applied. 

2.1 Chaotic Systems 

Wliile there remains no universally accepted definition of chaos, there is some consensus on 

the characteristics common to chaos. These characteristics are summarized in the following 

working definition: 

Chaos is longterm aperiodic behaviour in a nonlinear deterministic system that 

exhibits sensitive dependence on  initial conditions [2]. 

In this definition, we introduce three separate ideas that are critical to our under- 

standing of chaos, which warrant a little explanation. 

Long-term aperiodic behaviour Chaotic systems can e-xhibit behaviour whi& never 

repeats exactly (see Figure 2.2 for an example of a chaotic time series). 



Deterrninistic System Chaotic systems are deterministic meaning that the evolution of 

trajectories are not dependent on random or noisy inputs or parameters. The irregular 

behaviour arises solely from the nonlinear dependence of the evolution of trajectories on the 

system variables. 

Sensitive Dependence on Initial Conditions When a chaotic system is evolved £kom 

nearby initial conditions, the resulting trajectories NiIl, on average, diverge exponentially 

fast. Of all deterministic systems? chaotic systems are the on- ones to display sensitive 

dependence on initial conditions (SDIC) (see Figure 2.4 for an esample of SDIC). 

2.2 Lyapunov Exponents 

SDIC and the aperiodic behaviour of chaotic systems are both consequences of the local expo- 

nential divergence of trajectories. This local divergence of trajectories may be quantit.ative1y 

characterized by the Lyapunov esponents. 

Consider, for an n-dimensional system, the evolution of trajectories covering an in- 

finitesimal sphere in the n-dimensional state space. During its evolution, the sphere will 

become distorted into an infinitesimal ellipsoid. Let &(t), k = l2 . . . : nl denote the length of 

the kth principle avis of the ellipsoid. Then &(t)  a &(0)ekt  where the X k  are the Lyapunov 

esponents. There are n distinct Lyapunov esponents for an n-dimensional systems. 

Trajectories are diverging exponentially in the direction associated with the positive 

Lyapunov exponents and converging exponentially in the directions associated with the neg- 

ative Lyapunov exponents. A Lyapunov exponent of zero indicates that the divergence or 

convergence is not exponential, but says nothing to indicate if the trajectories are diverging 

or converging. 

2.3 Invariant Manifolds 

A k-dimensional manifold in Rn (1 5 k < n) may be thought of as the solution of the 

equation 



where T ]  : Rn + Rn-* is sufficiently smooth (that is, sufficiently many times continuously 

differentiable). For example, the unit circle 

is a one dimensional manifold in R'. Similady, the unit sphere 

is an ( n  - 1 )-dimensional manifold in Rn. 

Consider the autonomous system 

-4 manifold {~(x) = 0) is s d d  to be an invariant manifold for the autonomous -stem if 

q(x(0)) = O ct q(z(t))  0.W E [O. ti) c R. (2.5) 

mhere [O. t l )  is any time interval over which the solution x( t )  is defined. Essentially once a 

trajectory is on an invariant manifold it will remain on that invariant manifold for al1 tirne 

over which the solution is defined. 

There are two types of invariant manifolds that are important to our discussion: 

stable invariant manifolds and unstable invariant manifolds. Stable invariant manifolds direct 

trajectories towards a fked point mhere x = O. W E [O' t 1) C R. Unstable invariant mainfolds 

direct trajectories anray from a fked point. Eigenvectors are specific cases of invariant 

manifolds in Iinear systems. 

The deterministic dynamics of chaotic systems evolve along a cornples entity in state 

space knonn as a strange attractor (see Figure 2.1). The shape of the attractor is determined 

by the structure and position of the invariant manifolds. The concept of the invariant 

manifold mil1 become important in the development of the chaos preservation strategy. 

2.4 Tirne Series Analysis 

Very often when studying biological systems, accurate mathematical models are not available 

and one has to study the system from an observed time series alone. This is exactly the 



case for the brain, our system of interest. While relatively good models of the electrical 

activity of individual neurons exist; the interactions of the countless number of cells that 

form the organization of the brain is well beyond our ability to mode1 at  the ceUu1a.r ievel. 

Yet. there is significant evidence for structure in the recording of the electrical activiw of 

neurons embedded in networks. This evidence is reviewed in Chapter 3. Here we shall review 

some of the tools we use to analyze nonlinear time series data. 

2.4.1 State Space Reconstruction 

In sections 2.1 to 2.3, we described the properties of chaotic systems. Through this descrip 

tion we reliecl heavily on the concept of the state space. Unfortunately, n7e measure results 

in a time series and not a state space. In order to bring to bear our tools and intuitions 

concerning deterrninistic systems, we require a representation of the time series data in the 

f o m  of a state space. This is the problem of state space reconstruction and it is solved by 

the method of delays. 

Let us refer to the "true" continuous time state vector as ZR. The time series is a 

sequence of scalar measurements of zR( t ) ,  taken a t  multiples of some Exed sampling time, 

n-here s is some measurement function, n is an integer and C, is the measurement noise. -4 

delay reconstruction in rn dimensions may be constructed as a set of vectors sn given as 

where v is the delay time between adjacent components of the delay vectors. The dimension 

rn is often referred to as the embedding dimension. 

Taken's theorem of embedding [3] confirms the equivalency between the vector recon- 

struction and the original trajectory zR( t )  in the sense that there esists a mapping onto each 

other by a uniquely invertible smooth map. The theorem are primarily concerned with the 

situation where the dimension of the original system is u n h o m .  In this work, we 611 be 

dealing with a system of knom dimension. The embedding dimension d l  sirnply be made 

equal to the hnom system dimension. 



Embedding of interspike intervals: In certain types of time series. the measured signal 

is relatively uninterest ing and the information is encoded in the time between characteristic 

events within the time series. The measured trammembrane voltage of a neuron is such a 

time series, where the information is contained in the time between action potentials. Thus, 

a nem senes series is defined as the time behieen action potential [4]. This time series is 

peculiar in that the "time" becomes the event (or action potential) number and no longer 

corresponds to a true measure of tirne, 

The question of whether such a transformation of the measured time series preserves 

the ecpivalence between the reconstmcted phase space and the original phase space topolo- 

gies was addressed by Sauer in 1994 and 1993 [5] [6]. Sauer showed that if a) the spikes 

are generated by an integmte-and-fie process and b) the underlying signal is deterministic: 

then the embedding is valid and the time delay interspike interval embedding yields a faithful 

reconstruction of the state space. It is generally supposed that the integrate-and-fire process 

holds for the creation of action potentials in the neuron [.II. 

2 -4.2 Maximal Lyapunov Exponents 

In section 2.2 we introduced the concept of the Lyapunov es~onent .  Here we shall discuss 

how one might measure Lyapunov eqonents  from time series. Measuring the fil1 spectrum 

of Lyapunov esponents is an estremely difficult task nithout a good mode1 of the system. 

Fortunately, we can calculate the largest Lyapunov exponent relatively easily from the time 

series. The largest Lyapunov esponent represents a measure of the average esponential 

divergence of nearby trajectories? and is given by the slope of the linear portion of the plot 

of S(&), where 

The enibedding vectors s,, are reference points; A i  is the number of points in the time 

series: U(s,,) is the neighbourhood of s,, with diameter E. The term s,, is the last element 

of Sn , :  thus Sno+hn is outside the time span covered by the delay vector s,, [4], [ï]. 

In the calculation of S ( h ) ,  one lias to choose a vector S., in the reconstructed 

state space and select al1 neighbours wïthin a distance E and compute the average over the 
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distances of d l  neighbours to the reference part of the trajectory as a function of the relative 

time (An). The maximal Lyapunov exponent is estimated by the slope of the linear region. 

The curve saturates a t  the mean distance between two arbitrary embedding vectors on the 

attractor. 

2-4.3 Correlation Dimension 

The correlation dimension measurement is a nonlinear analysis tool that measures the com- 

plesity of the attractor in state space. In Chapter 3 Rie use the correlation dimension mea- 

surements 3f neuronal activity published over the last 15 p a r s  to support our assumptions 

regarding the presence of deterministic chaos in the brain and in epilepsy. 

Following the algorithm introduced by Grassberger and Procaccia [SI' one constmcts 

rn-dimensional spheres of radius r centered on each point of the m-dimensional embedded 

attractor. The radius is decreased while the number of points inside each sphere is counted. 

-4 log-log plot is made of the number of points inside the spheres as a function of radius size 

for various embedding dimensions. If one observes no change in the slope of the log number 

of points over a region of radius values or with increasing embedding dimension, then the 

slope is an estimate of the correlation dimension, D2. 

The correlation dimension measures the degree to mhich the state space is filled for 

a given embedding dimension, m. In this way, it provides a measure of the complexity of 

the dynamics by measuring the degrees of freedom available to the system. If. for a given 

embedding dimension. the embedded attractor fius the space then the dynamics have equal 

or greater degrees of freedom than are represented by the embedding dimension. In this way. 

we can potentially separate deterministic signals from noise by searching for a saturation of 

the correlation dimension with increasing m. For noise, the dope of the log number of points 

inside each sphere will always continue to change as m increases. 

2.5 Subject System 1: The Henon Map 

The Henon map is a classic elcample of a two dimensional map with a strange attractor. 

Originally devised by Michel Henon (1976) to eq lo re  the microstructure of strange attrac- 

tors, we shall use it as our first subject system [2]. We apply the detection and control 
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dgorithms th the subject systems, 3, in an effort to promote chaotic activity through pen- 

ods of rhythmic activity. In both subject systems, the rhythmic dynamics arise from small 

parame ter changes away fiom the chao tic regime. 

The Henon map is typically described by the two dimensional difference equation: 

where a and b are parameters. As a two dimensional system the Henori map has two 

variables: x and y. &As we discussed in section 2.4. time series are in scalar form which must 

be converted to vectors through the method of debys. If we imagine placing an observer on 

only one variable of the Henon map. say x, then we can re-express the Henon map in a form 

compatible with the method of delays, 

In this form, nie see that the state is represented by a vector of delays: [ zn-, xn 1. Through- 

out this thesis, when we refer to the Henon map, me are referring to the delayed variable 

form given in equation 2.1 1. 

2.5.1 The Chaotic Henon Map 

If we choose the parameter values a = 1.4 and b = 0.3. the resulting dynamin are chaotic. 

These are the classical values of a and b which Henon chose to study. Figure 2.1 illustrates 

the strange attractor of the chaotic Henon map with a = 1.4 and b = 0.3. 

The time series of the chaotic Henon map, given in Figure 2.2, illustrates the aperiodic 

character of chaotic systems. There is never an exact repeat of a previous pattern. A slightly 

different representation of the chaotic Henon map time series is shom-n in Figure 2.3. In this 

formJ the discrete nature of the Henon map is accurately illustrated as disconnected dots. 

Both time series representations are used interchangeably throughout the thesis to better 

illustrate the various aspects of interest. 

Figure 2.4 illustrates the sensitive dependence on initial conditions (SDIC) character- 

istic of chaotic systems in the Henon map. The figure shows the time series that corresponds 

to tn;o nearby trajectories. Initially, the ttvo time series seem to follow each other closely, 
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Figure 2.1: The strange attractor of the Henon rnap &th a = 1.4 and b = 0.3, The 

attractor is foned by 5000 iteration of the Henon rnap. 

Figure 2.2: The times series of the Henon map with a = 1.4 and b = 0.3. 



Figure 2.3: A Discrete time representation of the chaotic Henon rnap time series. 

then quickly diverge. The pattern of divergence represented in Figure 2.4 is indicative of 

local esponential divergence. As discussed previously in this chapter, the local mean diver- 

gence is measured by the Lyapunov e-xponents. The result of the calculation of s(&), of 

equation 2.8. from the time series of the Henon map is given in Figure 2.5. The straight 

line at the beginning of the curve reflects the exponential divergence of nearby trajectories 

within chaotic systems. The slope of the line is an estimate of the maximal Lyapunov ex- 

ponent. n-hich in the case of the Henon map is 0.4169 [ i l .  The cume eventually saturates 

as the originally nearby trajectories separate to the average distance between points on the 

attractor. 



Figure 2.4: The time series of the evolutzon of two nearby trajectories of the Henon map 

with a = 1.4 and b = 0.3. SDIC is euident in the divergence of these signals. 

Figure 2.5: The results from the compzltation of S ( h )  from a time series of the Henon 

map  with a = 1.4 and b = 0.3. The slope of the fittecl line represents an estimate of the 

maximal Lyapunou exponent of 0.4169. 



Figure 2.6: The periodic orbit of the Henon rnap with a = 1.42207 and b = 0.3 (open 

circles) supen'mposed on the strange attractor of the Henon rnap with a = 1.4 and b = 0.3 

(solid dots). 

2.5.2 The Periodic Henon rnap and Chaotic Transients 

If Ive change parameter a slightly to a kalue of a = 1.42207 mhile keeping b = 0.3, the Henon 

map enters a narrow region of periodic activity. The dynamics are period-30, meaning that 

the periodic cycle repeats exactly after every 30 time steps. As illustrated in Figure 2.6, the 

penod-30 orbit appears directly on the strange attractor which exists for a = 1.4, suggesting 

that  the srnall change in a has stabiiized one of the unstable periodic orbits of the chaotic 

Henon map. This bnngs to mind our perspective that epilepsy arises from the stabilization 

of the higher complesity activity present in normal brain activity. 

Figures 2.7 and 2.8 show the time series of the Henon map with a = 1.42207 and, 

as always, b = 0.3. The time series begins with a nonperiodic signal that is qualitatively 

different from the period-30 pattern that follows. This aperiodic segment of the time senes is 

termed a chaotic transient because it demonstrates the properties of aperiodicity and SDIC; 



Figure 2.7: The t imes senes  of the Henon map with a = 1.42207 and b = 0.3. Note the 

cheot~c tmnsient present in the earby stages of the tirne series 

hon-ever its t e m p o r q  nature excludes it from being considered true chaos. 

Chaotic transient behaviour is ubiquitous in systems near the transition from chaos 

to periodicity- From a state space perspective. the transient arises from the influence of the 

invariant manifolds which, outside the immediate neighbourhood of the stable penodic orbit, 

resemble their structure in the chaotic regime- Trajectories evolve dong the %hado+ of 

the chaotic attractor until they enter the region in state space for which the periodic orbit 

is the attractor. Once inside the attracting region of the periodic orbit, the unperturbed 

trajectories mil1 remain indefinitely. In general? a larger attracting region of the penodic 

orbit increases the likelihood that each trajectory iteration will appear inside the attracting 

region. Once inside, the chaotic transient ends. 

The presence of chaotic transients is an important characteristic to those attempting 

to revive chaos in chaotic systems that have drifted into penodic activity. We mi11 use chaotic 

transients to Our advantage in our control strategy developed in Chapter 7. 



Figure 2.8: A Discrete tzme representation of the periodic Henon map time series. Note 

the chaotic transient (represented by the disordered array of dots) before the periodic steady 

state (represented by the bands of dots) is reached. 



2.6 Subject System II: The Mapped Clock Oscillator 

The second system to which we apply our detection and control strategies is the coupled 

mapped clock oscillator (MCO) model [9] [IO]. The MC0 model m-as developed by Berj L. 

Ba rda i an ,  Nith his students and colleagues, to descnbe phenomena observed in the trans- 

membrane voltage activity of excitable cells. The model describes cellular transmembrane 

voltage arising fkom a mapping of an intracellular clock. In the form applied in this thesis, 

the MC0 model describes the transmembrane voltages of interacting cells in the CA3 region 

of the rat hippocampal slice preparation. Given the attempt by Schiff et al. to implement 

control chaos in the rat hippocampd slice [l], this seems an appropriate rnodel nith which 

to apply our chaos making strategy. 

In the M C 0  model, a cell is represented by two components: the clock and the 

transformer. The clock is described by a system of two first order nonlinear differential 

eqiiations. Within the clock are al1 the dynamics elements of the model. The transformer 

is a static nonlinearity that maps the state variables of the clock onto the observed output 

that represents the transmembrane voltage of the cell. In this thesis, we use an arrangement 

of two symmetrically coupled MC0 model cells, previously explored in our lab by Richard 

Aschenbrenner-Scheibe [9]. MC0 model cells are coupled together through portals emulating 

various forms of physical interactions. Figure 2.9 shows a schematic representation of the 

sÿmmetrically coupled, two cell M C 0  model. 

The Clock: The system of nonlinear differential equations describing the dock of the nth 

coupled ce11 is given by [9]. 

where .uin and upn axe the state variables of the nth coupled ce11 and w, is its intrinsic 

frequency. The quanti@ San represents a stimulus that changes the amplitude of the nth 

cell. The stimulus Sa, is applied to the ce11 through the so called portal Pa. Similady, the 

frequency stimulus Sdn is applied through the portal P4. The quantities Syln and S'yzn are 

stimuli applied through the gamma portal PT. The portals are the entry points into the 
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Figure 2.9: Schernatic representation of the MC0 rnodel. Input portals,P4, Pa and P, 

receive the stimuli portions dejîned by the coupling factors cd, c, and q. c is the common 

coupling factor [9]. 

dynamics of the MC0 ce11 mode1 representing electric field and electronic (gap junctional) 

coupling pat,hways. 

In the case of two symmetrically coupled oscillators, the input stimuli for the n th ce11 

originate from the rnth ce11 and are given by 

where cd, c, and c, are the symmetric coupling factors and c is the common coupling factor 

and is set as c = 1 for this thesis. The parameters +, and & are nonnalization factors with 

values of 6.5881 and 0.1 respectively [9]. The variable ym represents the transformer of the 

mth ceII. 



Table 2.1: The parameter uahes for the M C 0  model with chaotic dynamics. 

The Transformer: The transformer is a mapping of the state variables of the clock onto 

the observable output n-hich represents the transmembrane voltage of a CA3 neuron s h o w  

in Figure 2.10. For the nth tell- the transformer is given by the equation [9]: 

where p, = d-, k is the harmonic index. ao, is the average intrinsic level of the 

waveform of the nth cell, a h  and bA% are the Fourier coefficients of the time series representing 

intrinsic oscillation of the transmembrane voltage. The terrns Tk(.) and UA-(-) represent the 

kth Tchebychev pol_vnomials of the first and second types respectit-el- 

2.6.1 The Chaotic MC0 mode1 

For the values of the parameters s h o n  in Table 2.1, the symmetrically coupled tnio ceU 

MC0 model displays chaotic dynamics. The values presented in Table 2.1 were taken from 

[9]. As indicated in the schematic of the M C 0  model (Figure 2.9), we measure the output 

of the transformer of Oscillator 1. Figure 2.11 illustrates the output of Oscillator 1: yll 

that represents the transmembrane voltage. The plot of 31 clearly shows the aperiodic 

characteristic of chaotic systems. -4 closer view of the evolution of y1 tvith time, t ,  is shown 

in Figure 2.12. 

Following the interspike interval embedding technique described in section 2.4.1, we 

convert the continuous time dynamics from the differential equations 2.12 and 2.13 into a 
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(a) Intraceilular recording form CA3 puramidal ceil. 

1 2 3 4 5 6 
Angle (radians) 

(b) The wavefonn of the transformer. 

Figure 2.10: The intrinsic waueforn (b) to which the state variables are mapped through the 

transfomer. The wavefom is deriwed from an ensemble of action potentials fiom a recording 

of the trunsrnembrane voltage of a CA3 neuon  in the rat hippocampal slice, as shown in (a) 

[9]. The bottom trace of (a) is a typical burst from the transmembrane recording. 



Figure 2.11: The chaotic output of the M C 0  model with the parameters given in Table 

time series with discrete time dynamics. Figure 2.13 shows the interspike interval (1) time 

series taken from the MC0 mode1 output shown in Figure 2.11. 

The two oscillator M C 0  model has îxo sets of the clock variables. making it a four 

dimensiond dynarnic system. Therefore. we must embed the interspike interval time series 

in a four dimensiond state space in order to fuUy unfold the ddvnamics. Four dimensional 

systems do not lend themselves easily to visual representations; however, a plot of the first 

return map, given in Figure 2-16? reveals a two dimensional projection of the four dimensional 

strange attractor. 

Finally, to confirm that the interspike interval time series taken from the M C 0  model 

reflects the chaotic nature of the original output variable y, (which itself was confirmed to be 

chaotic in [9])' we calculate the maximal Lyapunov esponent. Figure 2.15 shows that S ( h )  

has a linear region, with a positive dope a t  the beginning of the curve confirming that the 

interspike interval time series is chaotic. The maximal Lyapunov ex~onent  was estimated 

from the slope to be 0.48. 





Figure 2.14: The First r e t u n  map of a MC0 interspike intenial tirne series wïth 25000 

points. 



Figure 2.15: The plot of S ( h )  for the interspike interval of the MC0 rnodel. The dope 

estimates the maximal Lyapunov exponent at 0.48. 



Figure 2.16: The transition to rhythmic activity of the intermittent M C 0  model (aol = 

-54.1126)- 

2.6.2 The Intermittent MC0 Mode1 

Just as in the case of the Henon map, m-e seek a region of rhythmic dynamics in the MCOo 

present mithin a small change in a parameter value from the chaotic system. Maintaining 

parameters values as shonn in Table 2.1. Mth the exception of a01 mhich we decrease by 

0.46% to -54.7726 results in rhythmic behaviour intermittent with bursts of chaos of variable 

duration. As is the case with chaotic traiisients, intermittency is common in systerns near a 

transition from penodic to chaotic activity. 

Figure 2.16 illustrates the transition to the rhythmic dynamics of the MC0 output, 

y1 (t). At time t = O seconds, the ialue of a01 is changed from a01 = -54.5226 (the value cor- 

responding to the chaotic MC0 model) to a01 = -54.7726. After some time, the time series 

shows the M C 0  model slipping into rhythmic activity close to a period-1 orbit. In recording 

of rat hippocampal neurons in the slice, a similar pattern of intermittent stabilization of a 

near period-1 cycle was observed (private communication with J. L. Perez Velazquez). 



Figure 2.1 7= The interspike interual time series of the intermittent M C 0  model. 

Applying the interspike interval encoding of y1 from the intermittent MC0 model 

results in the discrete time series s h o m  in Figure 2.17. In this time series, the intermittent 

character of the model is reflected in the brief burst between n = 200 and n = 250. 

Similar to the periodic orbit in the Henon map, Figure 2.18 shows that the rhythmic 

orbit of the interspike interial of the intermittent M C 0  model (Nith a01 = -54.7726) appears 

to land directly on the image of the chaotic attractor which esists for a01 = -54.5226. 

From the perspective of a control strate= the intermittent behaviour of the MC0 

model is not substantially different from the chaotic transient activity of the Henon map. 

In both systems, there exists a region of state space n-here: once inside, the trajectories 

enter into rhythmic orbits. In the case of the intermittent MC0 model, the trajectory Nil1 

repeatedly escape to temporary chaotic activity between periods of rhythmicity. 



Figure 2.18: The first retvrn map of the rhythmic region of the time series of the intermit- 

tent M C 0  model (open c i r ~ l e s ) ~  s-uperintposed on the first return map of the chaotic M C 0  

model (solid dots). 



Chapter 3 

Literature Review 1: 

Chaos, Brain and Epilepsy 

In t his chap ter we review the li terature addressing the possibility of chaos and deterministic 

dynamics in the electrical activity of the brain and neurons. We will also present a review 

of the experimental evidence in support of our claim that epileptic seizures correspond to 

instances of increased rhythmicity and lowered comple'ù@ in cornparison with healthy brain 

activity. In addition, we ni11 offer evidence in support of our assumption that the d ~ a m i c s  

associated wit h epileptic seizures are accurately described as periodic orbits embedded wit hin 

the highly comple,u, chaotic attractor of the nonepileptic brain activity. 

3.1 Chaot ic Neurodynamics 

Before we review the literature pertaining to chaos in whole brain activity, we provide a 

surnmaxy of the body of knowledge regarding the characterization of chaos from time senes 

t aken from transmembrane voltage recordings. 

The search for deterministic nonlinear dynamics in neuronal system became popular 

in the mid-80s with the development of an effective algorithm to compute the pointwise cor- 

relation dimension [8]. In 1985, Rapp et al. [Il] used the correlation dimension algonthm of 

Grassberger and Procaccia to anaiyze the spontaneous act ivie of neurons in the precentral 

and postcentral gyri of an anesthetized squirrel monkey. Single ce11 action potentials were 

recorded extracellularly and encoded in an interspike i n t e d  time series from mhich the 
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correlation dimension  ras computed. Of the 10 cells kom which they report measuring the 

correlation dimension, 3 cells demonstrated resolvable correlation dimensions (postcentral: 

3.5 f: 0.1, 2.2 f: 0.1 and precentral: 2.9 & 0.1). The remaining 7 cells did not produce inter- 

spike interval time series with resolvable correlation dimensions. The fractional correlation 

dimension recorded from those 3 cells provides evidence for the presence of deterministic dy- 

namics forming a strange attractor in a reconstructed state space, a common characteristic 

of chaotic systems. 

Since the first studies that indicated low dimensional neurodynamics as measured by 

the correlation dimension algorithm. several researchers have reported spurious detections of 

low-dimensional deterministic dpamics  from the correlation dimension algontbms appiied 

to simple coloured noise [12] [13]. In reaction to these findings, many researchers have turned 

to the method of surrogate data [14] [l5] where the analysis of the time series is compared 

with that of a fabricated random time series having identical statistical properties as the 

original data. If the correlation dimension of the original time series is indistinguishable 

from the correlation dimension computed from the fabricated time series then the system 

does not eshibit determinism. 

In 1994, Schiff et al. used several methods to evduate whether there was a statis- 

tically significant degree of determinism both in the dynamics of the monosynaptic spinal 

cord reflexes of the cat [16] and in the dynamics of the rat hippocampal slice recorded from 

the CA1 region [li]. The methods used to investigate determinism included a nonlinear 

prediction method and a method of e~dua t i ng  the local divergence of trajectories within the 

reconstructed state space. They found that, although most samples failed to produce statis- 

tically significant evidence for determinism, there were instances of significant determinism 

in both the monosynaptic spinal cord refles (2/4 samples in the decerebrate state) and in 

the rat hippocarnpal slice (116 samples in the autonomously bursting high [KC] state). 

In recent years new techniques for the characterizat ion of deterministic dynamics have 

been developed which center on the existence of an infinite number of unstable periodic orbits 

(UPOs) embedded wi thin chaotic attractors [la]. These techniques generdy search the time 

series for rare events characteristic of UPO dynamics, such as certain nearby trajectories 

having predictable short term behavior. The statisticd significance of the frequency of these 

rare event may be tested by comparison with a surrogate time series. The technique x~as  
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applied by Pei et al. [19] who used it to find evidence for determinism in the dynamics of 

the craSrfish caudal photoreceptor subject to stimuli representative of the animals natural 

habitat. Pei et al. found statistically significant (p < 0.05) evidence for UPOs over a range of 

stimulus frequency and intensity. Their results suggest the exktence of deterministic chaos. 

So et al. [20] have recently applied a UPO detection technique to the recording of 

the CA1 region of transversely and longitudinally cut in vitro rat hippocampal slices. Their 

UPO detection technique employs a periodic orbit transform nihich acts to concentrate the 

transformed data about distinct UPOs [21] [22]. So et al. report statistically significant 

evidence for the presence of UPOs ' from the interspike interval time series obtained from 

both estracelhlar recordings of ensemble burst firing and intracellular patch-clamp recording 

of single cells in the CA1 region. Every intracellular esperiment revealed a t  least one instance 

of a detectable UPO. Roughly half of the extracellular experiments revealed significant UPOs. 

3.2 Brain dynamics 

The electroencephalograph (EEG) measures the temporal and spatial fluctuations in the 

electric field arising from the electrical activity of large populations of neurons in the brain. 

The EEG has been in use for decades and yet remains the tool of choice for most neurosci- 

entists seeking to study brain activity. Thus it should corne as no surprise that the EEG is 

favoured by neuroscientists interested in the possibility of nonlinear deterministic dynamics 

in the electrical activiw of the brain. 

One of the earlier attempts to search for deterministic dynamics in the EEG was 

made by Babloyantz et al. (1986) [23]. They investigated the dynamics of brain activity 

during the sleep cycle by caiculating the pointwise correlation dimension for time series taken 

from EEG recordings of sleep stages two and four (deep sleep) as well as during REM sleep. 

They report measuring correlation dimensions for both stage two sleep (D2 = 6.03 31 0.07 

and D2 = 4.99 0.11) and stage four sleep (D2 = 4.05 zk 0.5, D2 = 4.08 f 0.05 and 

D2 = 4.37 f 0.1). They conclude that they have provided convincing evidence for chaotic, 

deterministic dynamics in the brain during sleep. 

More recently, Cerf et al. (1997) [24] applied the method of surrogate data to the 

' UTOs are an indication of deterministic dynamics 



calculation of the correlation dimension during EEG recordings of unusudy long episodes 

of cortical a-rhythms. They found that whik EEG recording of more than a minute did 

not yield elidence for low-dimensional ddynarnics, there was evidence for low-dimensional a- 

dynamics Iasting for up to 10 seconds. Cerf et al. suggest that their resdts indicate that the 

model of an autonomous d ~ a r n i c  system in steady state is an inappropriate description of 

brain dynamics as recorded fiom the EEG. They hypothesize that the dynamics are ruled by 

a shadow-attractor where episodes of attractor-ruled dynamics fade smoothly in and out with 

tirne. They also propose that enslaving and escaping a time-dependent number of neural 

sub-systems could be the the mechanism behind the appearance of the shadow-attractor. 

Freeman and his colleagues are investigating the dynamics of the activity present in 

the rabbit olfactory system [25] [26]. He has developed a rather compler computer model 

which closely emulates the EEG recording from the olfactory bulb and the prepyriform 

cortex of the rabbit, both in autonomous activity and under the influence of certain stimuli. 

h1athematica.i analysis of the mode1 reveds that it is chaotic in the true sense described in 

section 2.1. Through his research, Freeman has accumulated evidence in support of a theory 

regarding the function of chaotic dynamics. He reports that when the rabbit is stimulated 

with a familiar odour. the normally high-dimensional chaotic activity suddenly bursts in a 

regularized pattern. The transition is abrupt: akin to a phase transition in a physical system. 

Under the same conditions. the computer model also esperiences an abrupt transition into 

a regularized mode of the chaotic d ~ a m i c s  reflected in a lon-er correlation dimension than 

t hat measured in the nonstimulated system. 

Several researchers, including Kelso et al. [27] have chosen to use superconducting 

quantum interference devices (SQUIDs). Like the EEG, SQUIDs use a collection of sensors 

distributed over the surface of the brain or scalp: however? unlike the EEG which measures 

electric fields, SQUID sensors mesure  the small magnetic fields generated by neuronal activ- 

ity. Kelso et al. used 37 SQUIDs to record the neuronally generated magnetic fields over the 

left parieto-temporal cortex of a human subject while the subject performed cognitive taslrs. 

They found that there was a clear chaotic attractor visible in the state space reconstruction 

of the SQUID recordings and similar to the results of Freeman, Kelso et al. noticed that the 

dynamics changed suddenly in response to changes in the environment. Kelso et al. suggest 

that the changes in brain dynamics resemble those present in ~il'nikov chaos [27] where a 
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change in a system parameter qualitatively changes the shape of the chaotic attractor. 

The literature regarding the dynamics of brain activiw presented in this section point 

to a couple of iutriguing possibilities. First, there is substantial evidence for chaotic dynamics 

in the n o m &  operations of the marnmalian brain. Second, the research, particularly that of 

Freeman and Kelso et al., points to the possibility that the natural state of brain dynamics 

exists as a critically unstable system capable of bo th spontaneous and provoked transitions 

to qualitatively different behaviours such as regularization. 

3.3 Brain Chaos and Epilepsy 

.A central assumption of this thesis, stated in the introductory chapter, section 1.5, is that 

epileptic seizures correspond to instances of increased rhythmicity and reduced complelaly 

in neuronal activity [28] [29]. In this section we present a bnef summary of the experimental 

evidence in support of this theory of epilepsy. 

One of the earliest and best knom investigations into the dynamics of epileptic ac- 

tivity was done by Babloyantz et al. (1986) [30]. Studying EEG recordings of a human 

petit mal epileptic seizure, They found that the there was an attractor apparent in the state 

space reconstruction of the time series. In addition, they measured a correlation dimension 

of D2 = 2.05 f 0.09, significantly lower than what the same group measured during the sleep 

cycle of healt hy brain activity[23]. 

The correlation dimension reflects the complesity of the system producing the time 

series by measuring the degrees of freedom inherent in the system. The more degrees of 

freedorn available to the dynamics of a system, the greater will be the system complexi~. 

Thus the result of Babloyantz et al. [30] provides evidence in favour of the theory that 

epilepsy corresponds to system activity of lowered complexity in cornparison Mth healthy 

neuronal activity. 

In 1991, Pijn et al. [14] were among the first to apply the method of surmgate data in 

the investigation of epileptic seizure dynamics as measured from the EEG. They computed 

the correlation dimension of EEG signals recorded from different sites of the limbic cortex of 

the rat during a number of different states. These states consisted of wakeful rest, locomotion 

and an epileptic seizure state induced by kindling. They used the method of surrogate data 
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t O determine whether the EEG signals are deterministic in the sense of being distinguishable 

from noise with the same power spectra. Pijn et al. [l4] found that the correlation dimension 

during wakefd rest and locomotion were high and could not be distinguished from random 

noise. In contrast, the EEG signal corresponding to the epileptic seizure were of significantly 

lower dimension (D2 = 2 to D2 = 4) thag the other two states and were distinguishable fkom 

the surrogate version of the signals. 

Casdagli et al. (1997) [31] searched for evidence of nonlinear dynamics in the EEG 

recordings from tnro patients with temporal lobe epilepsy EEG recordings of seizure activity 

were taken from bilateral depth and subdural electrodes and analyzed nith the method of 

sumgate data to compute the correlation integrai. The correlation integral represents the 

probability that two vectors chosen a t  random lie within a small distance of each other. 

Generally, a less random time series wiU have a larger correlation integral. For regions of 

the brain know to be involved in the epileptic seizure, Casdagli et al. computed correlation 

integrals which were distinguishable from the surrogate data. This result indicates the 

presence of deterministic "nonlinearities" present in the epileptic a c t i v i .  Regarding regions 

of the brain which were not thought to be involved in the epileptic activim They reported 

t hat "less prominent nonlinearities were present" . They arrived a t  t his conclusion by noting 

that there was less of a distinction between the correlation integral computed from these 

signals and their respective surrogate signals. 

Xlso in 199'7, Le Van Quyen et al. [32] published an article on their analysis of a 

subdural EEG signal from a patient with an epileptic focal seizure. The focal seizure was 

unusual in the ongoing nature of the discharges and in the absence of cognitive impairment. 

Gsing the method of false nearest neighbows ', they established that the EEG signal is 

well represented in a state space of four dimensions. Le Van Quyen et al. implemented the 

penodic orbit transform, developed by So et al. [22] and 1211 ; and the method of surrogate 

datz to establish the presence of unstable penodic orbits (UPOs) . 
Le Van Quyen et al. [32] also used the EEG to record the electrical activity of the sub- 

ject ~ L i l e  performing visual and audio discrimination tasks during the ongoing epileptic focal 

2The method of false nearest neighbours 

until there is no longer any large changes 

vectors. 

involves increasing the dimension of the reconstructed attractor 

in the distances between nearest neighbours of the trajectory 



seizure. In agreement wïth the results of Freeman [26], Le Van Quyen et al. observed that 

the reconstructed EEG signal trajecto~es approached particular periodic orbits immediately 

following the perceptual ta&. 

The analysis of Le Van Quyen regarding the presence of UPOs in epileptiform activity 

is supported by So et al. [20] who used the same transformation technique to demonstrate 

the presence of UPOs in human cortical EEG recordings taken in the hour before the omet 

of the seizure. So et al. found that 2 of the 4 epileptic patients' interictal spike sequences 

shon-ed statistically significant period-l UPOs. 

Velazquez et al. [33] have recently found evidence for intermittency in human partial 

epilepsy. They constructed a histogram of the duration of the thythmic phases and found 

the shape of the distribution to be characteristic of type III intermittency. Intermittency 

anses in system with one or more UPOs which are nearly stable. 



Chapter 4 

Lit erat ure Review II: 

Chaos Control Techniques 

In this chapter, we present a review of the literature regarding the application of chaos theory 

to controlling systems. We begin by describing the techniques which have been developed 

over the past ten years. Then we discuss the recent attempts to apply the chaos control 

strategies to biologicd systems and finally to the neuronal tissue. 

4.1 Controlling Chaos 

In 1990. Ott' Grebogi and korke (OGY) introduced the concept of controlling chaos [34]. 

Theÿ noted that a chaotic attractor can be thought of as being made up of an infinite nurnber 

of unstable periodic orbits (UPOs). From this perspective a trajectory moving on the chaotic 

attrâctor would slip from one UPO to another. The amount of time spent near a UPO is 

in\-ersely related to its degree of instability. The movement of trajectories between the UPOs 

manifests itself in the output as the obsewed aperiodicity characteristic of chaos. 

Follonring the esample of Ott et al., we introduce the concept of controlling chaos 

through an application to a general 2-dimensiond system. Consider the map, 

mhere xT = [ x2 ] forms a two dimensionai state space and p, is a system parameter 

which may be adjusted at each time step. This map has a fived point a t  X F  which, a t  each 
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time step, is dependent on the value of p,. The dependence of a on pn rnay be estimated 

for srnall perturbations to p, away kom sone  nominal value of the parameter. po by the 

linearized equation, 

n-here sh is the shij? vector, [35], and is d e h e d  as: 

Linearizing the map in 4.1 in the neighbourhood of X F ,  we get 

In chaotic systems, there always eiusts a saddle point. If we assume X F  to be such a saddle 

point then the matris M has one stable eigenvector, es, and one unstable eigenvector,~. 

The eigenvectors es and eu have eigendues A, and A, respectively. Let us define a nenr basis 

vector set { f ,, f ,} such that f :es = f TeU = 1 and f Ter = f Te, = 0. 

If we shift the fked point, xF(pO) e xF(pn) :  just before applying the mapping, 

xn t, xn+l, then me may approlcimate the mapping close to the fked point as 

Combining equations 4.2 and 4.5, we get 

\Ve are interested in the component of 4.6 in the direction, f ,, orthogonal to the stable 

eigenvector of Ad. Taking the projection of 4.6 on f, results in 

Let kn p,  - po and &, m 5 - xF(p,).  Now we are ready to detennine what @, should be 

to ensure that rve stay close to IF. If we force = x ~ ( p ~ )  along the f ,  direction: then 

Ive get the formula of Ott, Grebogi and Yorke [34]: 



The development of this equation was based on a two dimensional discrete-time system 

with a saddle point. This is not as restrictive as it may appear. The map s, H x,+l couid 

be the evolution of a continuous time chaotic system as o b s e ~ e d  from a Poincaré section. If 

we take every second or third Poincaré section, then the corresponding period-2 or period-3 

UPOs would appear as saddle points. From this perspective, there is a great variety of UPOs 

which may be stabilized by the OGY method. 

Subsequent to the original work of Ott, Grebogi and Yorlce [34], there has been nu- 

merous extensions of the OGY method to higher dimensions, [36]: [37], [38] and [39]. Grebogi 

et al. [39] generalized the OGY method to any size system and demonstrated that it is a 

particular case of the pole placement technique knonn to system control esperts. They argue 

that i t  is optimal in the sense that it is the pole placement with the fastest decay of the 

transient. 

Ditto et  al. [.LOI gave the first e'rperimental demonstration of the OGY control of 

chaos technique. They were able to stabilize penod-l and penod-2 orbits in the chaotically 

oscillating magnetoelastic nbbon t hrough small changes to the vertical direct current (dc) 

magnetic field. ,An impressive result of this work nras that control riras achieved without the 

need for esplicit equations of motion. The linearized mapping M and shift vector sh were 

estimated from the time series before the control action n-as applied. Hunt [dl] showed that 

through a modification of the OGY method high-period orbits in experimental systems were 

able to be stabilized. In a diode resonator, he nias able to stabilize as high as a period-87 

orbit [35]. 

4.2 Targeting 

Concurrent to the development of the OGY control of chaos technique to stabilize UPOs, 

Shinbrot et al. [42] [43] [44] explored the possibility of using the sensitive dependence on 

initial conditions (SDIC) characteristic of chaos to allow one to target specific regions of 

a chaotic attractor in state space. They demonstrated that, by making smal1 changes to 

a system parameter, they were able to deiiberately steer trajectories of chaotic systems to 

desired target regions [&]. The targeting strategy of Shinbrot et al. is heavily dependent on 

having an equat ion representing the system under control. 
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Targeting is perfonned by a numerical algorithm which iterates the equations of the 

chaotic system both foma.rds from the starting point and bachvards fiom the target region. 

Intersections of these two iterates determine the parameter adjustments required to send the 

chaotic system to the target region of state space. 

Sirnilar to our development of the OGY control of chaos technique, m-e shall begin 

n-ith the map, 

n-here xT = [ f l  x.> . . . ZN ] foms  an 3-dimensional vector and p is an adjustable system 

parameter. 

Let the parameter p be nominally at  some value po and it c m  be perturbed away 

from po by an amount @ = p - po where we restrict C$I to the range -4 C - $ 5 4. The 

quantity Ap is the maximum allowed size of the perturbation. 

The equations of motion are iterated once from the starting point of the targeting 

algorithm, xs, for a population of values for @ distributed throughout the range -& 5 

c$ 5 4. -4 variation in the the state vector, xi, results from the mapping xs e xi though 

the various values of &. If the parameter perturbations are small the variation in XI is given 

by. 

-4fter the initial parameter perturbation: the parameter is typically returned to its nominal 

value of po.The population of iterations XI f o m  an interval, AE defined by equation 4.10 

and the limiting values of &, f &. In a chaotic system, this i n t e d  will wical ly  gron: 

esponentially with each successive iteration. For esample, in the subsequent mapping xl e 

22, the interval ha = eJuAzl , where on average X, > O. These iterations continue until the 

interval La, is about the size of the attractor. 

The next step in the targeting algonthm is sirnilar to the first, though done in reverse. 

A second population of points is placed within an e-neighbourhood of the target vector, xr. 

The value of E is determined by the tolerance on how close one must corne to the target vector. 

These points are iterated bacb~ards  in time at  the nominal parameter value, po [44]. Just 

as fortvard i terations evolve along the unstable manifold, backwards i terations evolve along 
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the stable manifold. Thus the second population of points evolve dong the stable manifold 

of the target point, xr. The length of the surface or c w e ,  formed by the population of 

points evolving bachnards in tirne, grows exponentially in time at a rate proportional to the 

most negative Lyapunov exponent measured in fomard time. Once again, the population 

of points is evolved until the size of the surface they form is on the order of the size of the 

attractor- 

Finally, the two populations of points are compared and searched for intersections. 

Typically the manifolds formed by the two population of points do intersect, meaning that 

points from the kvo populations will lie within some E-neighbourhood of each other. Wken 

an intersection is found, the values of the parameter perturbations which correspond to the 

points intersecting wit h the stable manifold, $' are determined. Perturbing the paramenter 

by $' at  xs steers the trajectory onto the stable manifold of the target point x ~ .  Once on 

the stable manifold. the trajectory is drawn to the XT through the dpamics of the system 

and without any further control energy. 

There are a number of limitations of the targeting technique of Shinbrot et al. which 

are of relevance to us. By steering the trajectory on the stable manifold of 21. we ut 

relying on the system to take the trajectory to the target region through the action of the 

stable manifold. If the trajectory is not esactly on the stable manifold then the action 

of the unstable manifold will tend to force the trajectory away from the stable manifold. 

The attempt is analogous to trying to roll a ball dom% from the top of a saddle to reach 

the middle. If the ball is a little off of the center line then the slope will tend to lead 

the ball away from the middle and donn one side. The presence of noise and the finite 

accuracy of any measure ensures that we can never steer the trajectory esactly on the stable 

manifold. Therefore, it becomes an issue of how fast the trajectol  is diverging from the 

stable manifold. If the trajectory reaches the t arget region before significan~ esponential 

growth of any discrepancy betn-een the trajectory path and the stable manifold. then the 

technique is feasible. Othenvise, an improvement suggested by Kostelich et al. [45] to 

provide multiple parameter perturbations may be able to act against the instability of the 

stable manifold of the target region. 

The limited applicability to higher dimensions constitutes a second limitation of tar- 

geting. In higher dimensions the target region becomes an increasingly smaller area of the 
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searchable space. The number of itorations between the starting point and the final target 

region may be prohibitive. Kostelich et al. [45] have proposed increasing the effective area 

of the target region by pre-computing a tree of paths to the taxget. The tree could be con- 

structed using reverse time iterations or, in the case of an e.qerimenta1 system, by observing 

the system and noting mhich areas of the attractor tend to evolve to the target region. Once 

the tree is constructed. the targeting problem is reduced to targeting any of the branches of 

the tree of regions leading to the target. effectively increasing the target area. 

The final limitation of taxgeting which we shall consider is the large computational 

burden of iterating a large number of vectors required to cover an attractor in higher di- 

mensions. The suggestions proposed by Kostelich et al. provide a streamlined procedure 

for targeting in higher dimensions. Precomputing a tree of paths to the target region and 

don-ing multiple parameter perturbations reduces the number of iterations required to find 

a path to the target. 

4.3 Control of Chaos in Biological Systems 

The control of chaos technique of Ott, Grebogi and Yorke [34] only requires that the local 

dynamics to some Lued point be known. When these local dynamics are able to be modeled 

by linear eigenvectors, the dynamics may be easily estimated fiom the time series alone. The 

removal of the requirement for an accurate model of the system opens the door to controlling 

biological systems. 

In 1992, an early attempt to control chaos in a biological system was made by Garfinkel 

et al. [46]. They applied the OGY method to stabilized penodic orbits in an in vitro model 

of cardiac arrhythmia. -As a model they used the interventricuiar septum of a rabbit heart 

esposed to a tosic concentration of the cardiac glycoside ouabain to induce intracellular Cal- 

cium (ca2+) overload. Rather than perturbing a system parameter to change the position of 

the fised point, they perturbed the system &able to position it on the stable manifold of 

the fised point. The system variable they chose was the interspike intemal between cardiac 

action potentials. Perturbations of the variable consisted of eliciting an action potential, 

through stimulation, at the appropriate time. Chaos control of the ouabain-induced ventric- 

ular tachycardia was successful in stabilizing period-2, period-3 and period-4 patterns in the 
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interspike interval (1) time series [47]. 

Hall et al. [48] also made efforts to control the dynamics of cardiac tissue. They 

applied their control algonthm to control cardiac alternans rhythm in the rabbit heart. 

Their control algorithm is a much simplified form of the modified OGY method implemented 

by Garfinkel e t  al. [48]. They assume the dynamics are governed by a flipsaddle fked 

point. The simplification eliminates the need for the learning phase required by the method 

implemented by Garfinkel et al. The algorithm of Hall et al. adaptively estirnates the kxed 

point as 

The algonthm is able to adapt to nonstationarities of the location of the fked point location. 

This feature makes the algorithm potentially well suited to controlling physiological systems 

which are k n o m  to change over time. 

In 1997. Christini e t  al. [49] introduced an alternative to the OGY method to control 

c l i a~s  in excitable physiological systems. In the development of their stable manifold place- 

ment (SMP) algorithm, they recognized that in the first return map. plotted as xn versus 

x,-l. the stable eigenvector is entirely given by the location of the fked point, XF. and by 

the stable e igent~lue~ A,. The SMP algorithm determines the intervention tirne as 

The SMP technique is limited to the local linear region of fked points in systems which 

can be described in two dimensions l .  The advantage of the SMP technique is the reduced 

number of estimations required for successful control. The OGY method requires that the 

cornplete local linear dynamics in the region of the fixed point be known, whereas the SMP 

algorithm requires knonrledge of only the stable eigenvector. 

In addition to the presentation of the SMP algorithm, Christini e t  al. raise some 

important issues regarding the application of dynamic control strategies to excitable physio- 

logical systems [49]. The first question is whether excitable physiological systems are actually 

characterized by UPOs with one stable manifold and one unstable manifold, as has been as- 

sumed in the physiological applications of the variants on the OGY method including the 

'Physiological systems have been controlled from similar tnro dimensional representations, [46] and [l] 
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SMP technique [46], [48], [49] and [l]. -4 second issue raised by Chrïstini et  al. is whether 

the control stimulus significantly modifies the UPO dpamks rather than simply placing the 

state point onto the stable manifold. A pervasive assumption in this area of research is that 

stimulation has no residual effects and that the state point responds as if it arrived on the 

stable manifold naturally. Although a suprathreshold stimulus may be a s m d  perturbation 

to the interspike interval variable 1, the stimulus is a large perturbation to the physiolog- 

ical system dynamics. Christini et  al. suggest that further investigation is necessary to 

c la r i l  whether or not the system dynamics will retum to those of the autonomous system 

immediately &ter the stimulation. 

Christini et  al. also suggest that from a physiological perspective a desirable goal 

is the minimization of intervention by the control algorithm. They suggest that since the 

perturbation size is fked by the requirement to be suprathreshold, the emphasis should be 

placed on reducing the frequency of stimulation [49]. 

A11 of the applications of dynamic control in physiological systems described above use 

an interspike interval, In, state space reconstruction. The control action attempts to force 

the state point toward the UPO by placing it directly onto the stable manifold. This goal 

is accomplished by inducing premature action potentials through suprathreshold electrîcal 

stimulation. As a result of the type of stimulation commonly employed in these systems, the 

control stimuli cannot lengthen In it can only shorten it. 

The dynamic control strategies described above have the goal of stabilizing a partic- 

ular UPO nithin a naturally chaotic system. Yang et  al. [SOI offer a different perspective on 

the subject of chaos and biology. They suggest, as we do, that in a mide varieV of biological 

systems. chaos is the natural and preferred system behaviour. In [5O]. Yang et al. present 

a control strategy to preserve chaotic dUv11arnics in systems which, in the absence of inter- 

vention, would become periodic as a result of a drift of a system parameter. Their strategy 

is to perturb the system back to a chaotic mode when a system parameter, pt drifts into 

periodiciw, for p > p,. The perturbation is designed to steer the trajectory out of the path 

to the loss region, L, defined such that after the system falls in L, it is rapidly drawn to the 

periodic orbit. The approach is to compute successive preiterates of L: 



such that Lm is the set of points that map to the loss region, L in m iterates. As m 

increases, the wïdth of Lm in the unstable direction d l  typically shrink exponentidy and 

consequently the size of the control perturbation to place the system outside the path to L 

shrinks. Yang et al. demonstrated the preservation of chaos in low dimensional numerical 

models. They used the dynamic equations to compute the preiterates and the size of the 

appropriate control action. 

4.4 Control of Chaos in the Brain 

in 1994, Schiff et al. applied a modified OGY control of chaos technique to a high [Kc] mode1 

of epilepsy in a rat hippocampus slice preparation [l]. It is believed to be the first attempt 

to emploi- such a technique to control the electrical activiw of brain tissue. Their approach 

was similar to the technique employed by Garfinkel et al. [46] to control chaos in rabbit heart 

tissue. Gtass microelectrodes in the CA1 and CA3 regions of the hippocampus were used to 

record neuronal electrical activity. -4 computer algorithm received the electrical activiv time 

series and performed an action potential detection in real time. The algorithm reconstructs 

a tn-O dimensional interspike interval state space, then searches for candidate unstable fked 

points to be stabilized. The candidates were required to meet four criteria: 1) A sequence 

of points must approach the unstable k e d  point candidate along the stable direction and 

diverge from it along an unstable direction. 2) The departing trajectory must be linear 

mithin some neighbourhood of the fixed point candidate. 3) Multiple approaches along the 

same stable direction with corresponding departures dong the same unstable direction must 

be detected. 4) The depart ing trajectory must diverge e-xponentially from the the fked point 

candidate. This final criteria e'cists to ensure that the trajectories exhibit SDIC, a hallmark 

of chaos as was previously discussed. 

The chaos control strategy of Schiff et al. begins with a learning phase in which 

the unstable fixed points are identified and linear approximations of the local stable and 

unstable manifolds are determined by least-square Iinear regression of the approaching and 

departing trajectories. The control phase consists of waiting until a trajectory approaches 

the identified unstable k e d  point (within a srnall radius E )  along the stable direction. At 

which time an intervention stimulus is given which modifies the timing of the next action 
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potential in order to place x, back onto the stable manifold. As is the common strategy 

of d l  OGY-type chaos control techniques in two dimensions, Schiff et al. use saddle point 

dynamics to hold the system close to the unstable fived point. 

In an effort to decrease the periodicity of the neuronal electrical activity, Schiff et 

al. implemented what they term anticontrol. This was achieved by chosing an intervention 

stimuli which placed In+L on a line completely off the manifolds. They somewhat arbitrarily 

chose to place the trajectories on the mirror image of the unstable manifold about the line 

of identity, InUr = In. 

Schiff et  al. achieved moderate success at controlling and anticontrolling the neuronal 

electfical activiw. They report roughly half of their attempts at stabilizing an unstable fked 

point as being successful. Anticontrol achieved less success Nit h approximately a qua te r  of 

the attempts resulting in what they determine to be a success. 

In their discussion, they state: 

"The obseruation of small-scale structure and the identification of stable and 

unstable manifolds near unstable f i e d  points for many of these burst-firing slices 

demonstrated the presence of deterministic chaos in this simple neuronal system 

[l]. " 

With regard to the application of chaos control techniques to epilepsy therapies, they suggest 

that since the neuronal preparation used in their esperiment shares similar characteristics 

n-ith epileptic interictal spike foci, that perhaps these methods may be applied to such foci. 

They also offer, 

.'Although i t  is impossible to predict what eflect increasing the periodicity of 

epileptic foci will have, the opposite eflect of breaking up hed-point  periodic be- 

hauiour with anticontrol could be a more usefil interuention.[l]. " 

Since the 1994 publication of [l] in Nature, the effort to apply chaos control techniques 

to brain tissue has focused on developing more robust methods to identify unstable periodic 

orbits [22]. 

In response to the claims of Schiff e t  al. [Il, with respect to their demonstration of 

deterministic chaos, Christini et al. [XI applied the modified-OGY chaos control method to 
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a nonchaotic neuronal model. The neuronal rnodel was a stochastically driven version of the 

FitzHugh-Nagumo model as given by, 

where v ( t )  is the voltage variable, w(t )  is the recovery variable, I/'A represents a tonic acti- 

vation of 0.2 V, <(t) is a Gaussian random variable with zero mean and standard deviation 

= 6-325 x 10-" and E = 0.005. 

Chnstini et al. constmcted an interspike interval h t  retutn map and applied the 

same criteria as Schiff et al. for the identification of unstable fked points, They found that 

occasionally there existed sequences of points which satisfied d l  four criteria of Schiff et al. 

and a location of an apparent unstable fked point could be found, when, in fact? there are 

no unstable fked points in the equations 4.14 and 4.15. Furthemore. They dernonstrated 

that the application of the modified OGY chaos control strategy to the stochastic system 

resulted in stablizations of the apparent fked points. 



Chapter 5 

Modelling Chaos with RBFs 

This chapter is concerned with the problem of capturing the dpamics of a chaotic system 

from the time series. We begin Nit h a discussion of the available time series models and argue 

that Radial Basis Function (RBF) models are well suited for modelling chaotic dynamics. 

Nex%, the details of the RBF model and the learning algorithms are presented. Ive conclude 

with the appIication of the RBF model to learning the chaotic dynamics of the two subject 

systems, the Henon map and the M C 0  model. 

5.1 Time Series Modelling 

In our attempt to maintain chaotic activity in a system mhich drifts into rhythmicity, n e  

must begin by developing some sort of model of the systern behaviour. The function of 

the rnodel is twofold. First: n-e require some quantification of the healthy behaviour of the 

chaotic system to facilitate detection of a transition to a more rhythmic activity. Second, 

the model is to provide a description of the attractor of the chaotic system to facilitate the 

action of a control strategy to reintroduce the chaotic activity. Whatever model is used, the 

model parameters must be able to be completely determined from a time series of a measured 

system variable, In the case of the neuronal network, the system variable could be the the 

interspike interval of the transmembrane voltage of one of the neurons in the network. 

The requirement that the model should be identified from a time series rests on two 

important observations: 



1. Neuronal networks are dynamic and highiy plastic in nature. The dynamics of these 

networks wili change significantly over time. The time series would reflect the changing 

dynamics, thus the possibiiity exists to incorporate the plasticity of the network in the time 

series based model. 

2.  The observed dpamics nrill be a function of the position of the points of measurement 

and the connections between the large number of neurons in the population. If we were to at- 

tempt to construct a detailed model of the neural organization, we would require knowledge 

of al1 the interactions between neurons as weU as mhere the electrode would be placed. The 

cornplesity of such a model is beyond the horizon of current modelling techniques- Neverthe- 

less the time series measured from cornplex neuronal nekvorks often displays deterministic 

characteristics at  relatively Iow dimensions of the state space reconstruction [Z]. Herein 

lies the potential of time series modelling techniques. If the multitude of neurons in the 

neuronal assembly work together to support activity of relatively low dimension, then the 

possibility elcists that a model, of relatively few degrees of freedom, n-ould be able to capture 

the dynamics. 

Once we have decided on the use of a time series based model, nie must consider which 

of the multitude of models is best for our application. Our goal is to develop a model of 

chaotic dynamics capturing both the Iocal instability and global boundedness of the chaotic 

attractor. The type of model we choose must be capable of capturing these fundamentally 

nonlinear characteristics of the system without requiring escessive amounts of da ta  in the 

learning process. Kantz et ai. [4] reviewed a number of time series based models on their 

ability to capture chaotic dynamics. The models they reviewed include artificial neural 

networks? RBF models, locally linear models, locally constant models, polynomial models, 

and autoregressive (AR) models. They trained each on a time series and evaluated the 

performance of each model by comparing the one step prediction errors on a test set which 

\vas not included in the training set. ICantz et ai. found that the locally linear, polynomid 

and RBF models gave the best performance of one step prediction. 

The locally linear mode1 fits a nonlinear attractor through a collection of linear neigh- 

bourhoods. If a neighbourhood is large compared to the inverse curvature of the true surface, 

then the approximation will be poor [dl. it follows that, in order to ensure a good fit with 



a locally 1inear model, tve require many s m d  neighbourhoods in regions of significant cur- 

vature. This requires a large amount of data. Thus the locally linear model does not seem 

appropriate for our application. 

The polynomial model may be regarded as a effort to fit the parameters of a truncated 

Taylor series esqmnsion to the time series. The polynornial model is capable of capturing 

nonlinearities without excessive numbers of data points. -4 problern &ses: however, when tve 

consider that polynomial basis functions diverge for large arguments [4]. Our control strategy 

will require recurrent iterations of the time series model. With polynomial basis functions, 

small errors in the recurrent iterations n-ould tend to compound and result in unbounded 

outputs. In these situations. the polynomial model would cease to be an adequate model of 

the chaotic d_vnamics. 

The RBF model is capable of modelling nonlinear dynamics with a reasonable number 

of points. The forrn of the mode1 we Ml1 be considering is guaranteed to be bounded for 

al1 finite values of its parameters (521. RBF models have been demonstrated to be endowed 

n-ith the universal approximation capability [53] implying the possibility of approximating a 

function to any degree of accuracy. A final aspect of RBF models that make them appeal- 

ing for modelling dynamical systems is that, unlike other artificial neural nekvorks they are 

naturally representable in the state space of the system being modelled. Model visualiza- 

tion aids in their development by allowing for the correlation of model characteristics with 

performance. 

The RBF model has beea applied to model the dynamics of well Ernomn chaotic 

systems such as the Lorenz differential equations [54] and the Mackey-Glas delay-differential 

equations [55]. It has also been applied to chaotic NMR laser data [4]. 

5.2 The RBF Model 

The radial basis function model (RBF) expresses an output, y,, as a linear expansion dong  

radial functions of an input vector x,: as given by 



where &(x,) is the activity of the ith radial basis function given the input. x,. The term wi 

represents the expansion coefficient of the ith RBF. There are a number of different radial 

basis functions used in RBF models, we have chosen the Gaussian h c t i o n s  as our radial 

basis functions because of extensive literature regarding the Gaussian hnctions as RBFs. 

The Gaussian RBFs are e-xpressed as, 

n-here p i  = [ pil pi2 . . . p, ] is a vector representing the mean or center of the ith 

Gaussian function in an m dimensional state space. The variance of the i th  Gaussian function 

is given by 0;. The i = O basis function is given by a vector of ones and together with the 

coefficient. w o  represents the mean of the time series. 

In our application, we are interes ted in predicting xn+l , the ne-xt iterate of the dynarnic 

system. based on a vector of previous iterates, 2,. In an rn-dimensional subject system, 7, 

x, is an m-dimensional delay coordinate vector, x. = [ x ~ - ( , - ~ )  . . . x,-l x, 1. Thus 

our RBF rnodel is given by the equation: 

where In+1 is the output of the RBF model at  time n and represents the estirnate of the 

xntl. the nest iterate of 3. 

5.3 Parameter Estimation 

In order for the RBF model to predict the activity of the subject systern, 3, we must 

first estimate appropriate values for the model parameters, pi, oi and the coefficients, w;. 

Parameter estimation is accomplished through an iterative process where the parameters 

are chosen to minimize an error function reflecting the difference between the RBF rnodel 

prediction, and the nest iterate of 7, xn+l, over a training set of data formed from a 

time series of duration D. The typical error function is the sum-of-squares error function 

given by 



One of the aspects of RBF models which makes them more desirable than models such 

as the multilayered perceptron network is that RBF models are linear in the e-vansion 

coefficients, w;. Thus we may employ fast linear optimization techniques to determine their 

values. The result is a two step learning process where the parameters wi are determined 

by linear optimization, followed by a iteration of a nonlinear gradient descent algorithm to 

update the values of pi and ai. The process is re-iterated for a number of epochs, with the 

parameters wi evolving at  a fast time scale (within a single epoch), and the parameters pi 

and ai evolving a t  a slow time scale (over a number of epochs). 

If we substitute equation 5.3 into equation 5.4 and set the derivative with respect to w; to 

zero we get an espression describing the minimum of the error hinction: E, Nit h respect to 

'Wi .  

Converthg equation 5.5 to matrix notation ive get, 

where w = [ wo url - . ] and XT = [ x,+~ rm+2 ... rD  IT is the vector of target 

values of the prediction on the data set. The matris is give by 

We are interested in solving this linear system of equations. 5.6, for the u h o n l i  W. 

Taking the inverse we arrive at  , 

The inverse, is taken using singular value decomposition (SVD) to avoid problems 

due to potential ill-conditioning of the matrix [56]. ' 
'In SVD, m-e use an domable range of 1 x 10' for the singular values. 
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5.3.2 Determining pi and ci 

The parameters pi and ai are optirnized by a gradient descent method. Differentiating the 

error function, E,  given in equation 5.4 with respect to the basis function parameters, pi 

and cri. we obtain 

n-here p, denotes the j t h  component of pi. 

The path down the error surface in the directions indicated by the gradients of E 

wi th respect to ai and pu proceeds in discrete steps. These steps are given by the equations, 

n-here 6 is the learning rate constant, t represents time in epochs and E, ( t )  is an adaptive gain 

on the learning rate for either q = oi or q = pij. The terms aAoi(t - 1) and crApG(t - 1) 

represent momentum, m-here a indicates the amount of acceleration. Momentum has the 

effect of increasing the speed of Iearning by increasing the size of steps in directions where 

the gradient is srnall but constant in sign. 

The adaptive gains, e q ( t ) .  are increased arithmetically if the gradients remain in the 

same direction and decreased geoluetricaily if they change direction. More precisely, 

and 



The current gradient 6 t h  respect to q, g,(t), is compared to a series of previous gradients, 

crg, ( t  - 1) + a2gq (t - 2)  + . . . . The incorporation of the momentum in the adaptation of the 

learning rate gains' E, ( t)  is h o w n  as  the delta-bar-delta rule. Momentum and adaptive gaui 

are ad hoc methods used to increase the speed of learning. They have been s h o m  to work 

well in practice on a number of problems [57]. 

5.3.3 Initializing the Optimization Algorit hm 

Gradient descent methods require an initiai selection of parameters before the optimization 

may begin. In this application, we require initial \dues of pi and ai. Typicdly , these initial 

values are chosen at random from a reasonable set of possibilities. For example, the variance 

parameters, ai, are often selected to be identical at a value such that there is some overlap 

between neighbourïng Gaussians. The centers are typicdly chosen to be a subset of input 

vectors. This is often a satisfactory choice of initial parameter values resulting in suitable 

solutions for the final parameter values by gradient descert. However, in instances where the 

error surface is particularly convoluted, simple gradient descent methods can have difficulty 

finding good Iocd optima. The problem is. in part, due to the initial conditioning of the 

gradient descent problem. If we were able to find a better starting position for the gradient 

descent algorithm, with better local minima nearby and a smoother error surface, then we 

would be able to use gradient descent more effectivel. Using an algorithm developed by 

Chen et al. [58]. lcnon-n as the orthogonal least squares (OLS) leaming algorithm, we are 

able to find a set of initial Gaussian centers, pi. which are optimal with respect to a set of 

candidates. 

The OLS method involves the formation of a set of orthogonal basis vectors which 

span the set of {di), where 

4% = 

The parameter DoLs denotes the size of the time series used to construct the vectors which 

form the set of candidate Gaussian centers. Taking the set of 4; as the set of candidate 
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centers, we have i = 1 to i = (Di - m - 1). The orthogonalization procedure pennits the 

calculation of the individual contribution to the reduction of the prediction error, E from 

5.3, from each candidate Gaussian basis function. The OLS method allows one to find an 

optimal set of basis functions to minimize the error. 

Following the classical Gram-Schmidt method of orthogonalization, we begin by 

choosing an initial basis vector, with respect to which, all other basis vectors d l  be or- 

thogonal. We must choose the initial basis vector from the set of candidates for the initial 

vector, the set of input vectors {a,: x,+l, . . . , x ~ , , - i }  form the centers of the candidate 

basis functions. 

P(i)  1 = +. 

For each candidate basis vector, the expansion coefficient is detennined by 

n-here the vector d is the target output vector after its meao has been removed, 

(5.19) 

For each candidate b a i s  vector, we compute an error reduction ratio, [erïIi? whkh provides a 

measure of the extent to mhich the prediction error of x,+l is decreased by adding candidate 

basis function i. The error reduction ratio is given by 

From the set of [err]:) for al1 the candidate basis functions, for i = 1 to i = (Di - m - l), 

n-e find 

We choose the corresponding candidate basis function as the initial basis function, 

Once we have deterrnined which of the candidate vectors Ri11 become the initial basis 

function, we repeat the OLS procedure to evaluate each set of candidate set of basis vectors 
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until the best N basis function centers are detennined. Using the Gram-Schmidt method, 

we orthogonalize the candidates for basis function k with respect to the previous k - 1 

best basis functions. Thus, to evaluate the candidates for basis function k we compute, for 

Just as for the initial vector candidate set, the RBF expansion coefficient is determined from 

the equat.ion 

Once again we compute the error reduction ratio of each candidate basis vector at each step 

k in the mode1 building process, 

From each set of candidate vectors, ive determine the greatest reduction in the error, 

and select the corresponding basis vector, 

At the completion of the determination of the 1V Gaussian basis functions, the 2 step 

gradient descent optimization strategy described in sections 5.3.1 and 5.3.2 is implemented 

to improve on the solution obtained through the OLS learning strategy. The gradient descent 

has the potential to seek a better solution by removing the restriction that the basis functions 

must be positioned on an input vector, x,, and by allowing the Gaussian variance to change. 



5.4 The Recurrent RBF Mode1 

Once the RBF parameters are estimated, the RBF rnodel is recurrently connected such that 

the output a t  time n becomes the mode1 input at  time n + 1. Thus the recurrent RBF Model 

(rRBF model) is @-en by, 
?V 

nrhere 5, = [ in-(m-l) 3Sn-(m-~)  . . . 5, IT is a vector of the RBF mode1 output fiom 

times n - m to n - 1. 

5.5 Application to the Henon Map 

In this section, we demonstrate the ability of the RBF network to capture the ddvnamics of 

the 2 dimensional Henon map. Introduced in section 2.5: the Henon map has a squared term 

as the solitary nonlinear element and thus constitutes a relatively simple. though nontrivial, 

application of the RBF model. 

5.5.1 Learning the Henon Map 

-4s a relatively simple difference equation, adequate results are obtained n-ithout the use of 

the OLS method to initialize the gradient descent algorithm. Instead, we choose a sequence 

of input vectors as the initial values for the Gaussian centers. The variances of the Gaussian 

basis functions being identical and large enough to allow overlap of one standard deviate 

between neighbouring RBFs. Table 5.1 provides the values of the parameters used in the 

learning procedure for the Henon map investigation. The missing parameters are the number 

of Gaussian ba i s  functionstN; the number of data points used for training, D; and the 

number of iterations or epochs of the 2 step learning algorithm. These three parameters will 

be specified for each investigation. 

5.5.2 Investigation 1: RBF model of Henon map 

The first investigation into the ability of the RBF network to learn and reproduce the dy- 

namics of the Henon map is straight fomxd.  Mie seek to l e m  how well the RBF model 
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performs under ideal circumstances. 

IVe f o m  an RBF mode1 with 20 Gaussian basis functions and train the network for 

100 epochs of the 2 step leaming procedure. X time series of 5000 points of the chaotic Henon 

map (b = 0.3, a = 1.4) rvas used as the training set. Figure 5.1 illustrates the nonnalized 

training error. E / ( D  - rn - 1) over the 100 epochs. The plot reveals that the training 

error. norrnalized with respect to the number of training vectors, before the beginning of the 

gradient descent algonthm (epoch = O ) ,  is remarkably 10%- a t  -1.293 x This is the result 

of the least-squares optimization of the expansion coefficients, roi. It is very cornmon for users 

of RBF rnodels to stop at the fast linear optimization of the coefficients and to do without 

the slower nonlinear optimization of the basis function parameters. Despite the effectiveness 

of the linear optimization of the coefficients, the gradient descent 2-step optimization which 

estimates both the basis function parameters. pi and a;, and the espansion coefficients, wi, 

is able to improve upon the initial error by over a factor of 100 to a final error a t  epoch 

100 of E / ( D  - m - 1) = 2.6 x 10-~ .  The RBF model of the Henon mapo after 100 training 

epochs, is represented in Figure 5.2. 

The most severe test of a model's ability to capture the dynamics of the learned 

system is to continually iterate the model from a starting point from the time series [4]. 

Figure 5.3 illustrates the attractor formed by the output of the rRBF model, iterated 5000 

- 

Value 

0.25 

xi for 1 < i 5 N 

0.002 

0.0 for t < 10 

0.8 fo r t  2 10 

O. 1 

0.5 

Parame t er 

Table 5.1: The parameter values for the RBF learning of the Henon map. Listed here 

are the parameters vlhich remain constant throughout the investigations of the RBF network 

application to the Henon map. 

Symbol 

initial value of the Gaussian variance 1 ( d o ) ) '  
initial value of the Gaussian centers 

Ieaming rate 

momentum 

adap tive learning rate increase (additive) 

adaptive learning rate decrease (multiplicative) 

pi(0) 

E 

QI 

K 

P 



Figure 5.1 : Paining Error euoZution through 1 O0 epochs. The Training Error is  normalized 

with respect to the nurnber of training uectors. 

Figure  5.2: Henon attmctor (points) and the RBF mode1 (circles). The circles represent 

one standard deuiation, ai, about the center, pi. 



Figure 5.3: The arttractor formed by 5000 iterations of the the rRBF model of the Henon 

map. 

times. Comparing Figures 5.3 and 2.1, see that the rRBF model attractor is dmost 

identical to that of the Henon map. The corresponding rRBF mode1 time series: shown in 

Figure 5.4 is, once more, virtually indistinguishable from the Henon map time series. 

Depicted in Figure 5.5 is a cornparison bekveen the short term evolution of the rRBF 

mode1 from its initial condition and that of the Henon map from the same starting point. 

\lie see good initial agreement between the rRBF and Henon time series, after some time the 

two series diverge until they appear unrelated. The rate of divergence between the rRBF 

model time series and the Henon map time series is similar to that observed between h o  

nearby trajectories of the Henon map itself (shown in Figure 2.4). It is evident that any 

detection and control strategies nie wish to ernptoy cannot be critically dependent on the 

long-term prediction capabilities of the model. No model of chaos will ever achieve success 

in t his regard. 

Based on the results of the rRBF model performance in reproducing the Henon at- 

tractor, we suggest that the RBF model is successful in capturing the dynamics of the Henon 
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Figure 5.4: The time series of the rRBF mode1 of the Henon map. 
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Figure 5.5: The time series of both the rRBF mode1 and the Henon map orïginatirtg fi-om 

the same initial conditions. 



Figure  5.6: Henon attractor corrupted with Gaussian noise at S N R  = l7.ldB (points) and 

the trained RBF model (circ1es)- The circles mpresent one standard deuiation, q, about the 

center, pi. 

5.5.3 Investigation 2: RBF learning on noisy Henon time series 

The previous investigation illustrated the potential of the RBF mode1 under ideal conditions. 

In real world applications, the circumstances are often suboptirnal, measurement noise often 

corrupts real time series data. In this investigation, we e-plore the capabilities of the RBF 

model to leam dynarnics in the presence of additive noise. The RBF model leams from a 

time series of the Henon map corrupted with Gaussian white noise to a signal to noise ratio 

(SNR) of 17.7dB. 

As before we use an RBF mode1 with 20 Gaussian basis ( N  = 20), trained for 100 

epochs. The training set consists of 10000 input/output vector pairs (D = 10002). Figure 

5.6 illustrates the trained RBF model with the noisy Henon map time series. The Iarge 

difference between the variances of the Gaussian basis functions is a product of gradient 

descent optimization on the degraded training set. 



Figure 5.7: The attractor formed by 5000 iterations of the rRBF model trained on the 

Henon map tirne series compted with noise. 

The result of the continual iteration of the rRBF model trained on the noisy time 

series is revealed in Figure 5.7. Despite the corruption of the training set, the rRBF model 

is still able to capture the original Henon attractor in some detail. Figure 5.8 illustrates the 

corresponding time series of this rRBF model. 

With this investigation, we demonstrate the ability of the RBF model to es?ract the 

underlying dynamics from a time series corrupted with noise. IVhiIe the rRBF attractor is 

by no means a perfect recreation of the original Henon attractor, a comparison between the 

noisy Henon attractor (as shown in Figure 5.6) nith the attractor fonned by the iteration 

of the rRBF mode1 reveals a surprising ability of the RBF model to capture details not 

apparent in the corrupted attractor. 



Figure 5.8: The time series of the rRBF mode1 trazned on the Henon map time series 

c o m p t e d  with noise. 



Figure 5.9: Henon attractor formed by 25 points of the Henon map (points) and the cor- 

responding RBF model (circles). The circles represent one standard deviation. a;, about the 

center, pi. 

5.5.4 Investigation 3: RBF learning on a small time series 

In addition to noise, another problem commonly faced by individuals dealing with time series 

modeling and analysis is a deficiency in the arnount of data. Often good data (large sets of 

-clean" esperimentd data) is very difficult to corne by and is usually eirpensive to obtain. 

Thus it would be a signifiant asset if the RBF model was able to learn the subject system 

dynamics from a limited number of data points. 

In this experiment. we limit the number of input/output training pairs to 25 instead 

of the 5000 used in Investigation 1. The RBF model used in this investigation consists of 

only 5 Gaussian basis functions, in order to avoid an overdetermined estimation of the model 

parameters. The 5 Gaussian basis function model is trained for 1000 epochs resdting in the 

model represented in Figure 5.9. 

Once again we iterate the rRBF mode1 starting from an initial condition taken £Yom 



Figure 5.10: The attractor fonned by 5000 iterations of the rRBF mode1 trained on 25 

points from the Henon map.  

the training set. The rFü3F model attractor formed by the iterations is shown in Figure 

3-10. Figure 5.11 depicts the corresponding time series. A remarkable amount of detail in 

agreement with the original Henon map, is visible in these figures. 

Comparing the image of the 25 point attractor (in Figure 5.9) with the attractor 

formed by the continual iteration of the rRBF model trained on those 25 points (in Figure 

5.10) and we see that the RBF model has captured the Henon dynamics which do not appear 

to be contained within the 23 point training set. 

It is not k n o m  exactly how the RBF model managed to extract that level of detail 

from the 25 point time series. We propose that the explanation of this puzzle rests in the 

relative simplicity of the analytical fonn of the Henon map. The RBF model may corne close 

to realizing an approximation to the analytical model itself which naturdly fits the data 

and thus is able to capture topological features of the Henon attractor which are simply not 

represented by the 25 point time series. One looks a t  the Henon attractor and sees a rather 

comples shape, on the other hand the equation from which the complexity arises, is itself 
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Figure 5. il: The time series of the rRBF model trcrined on the small tzme senes of the 

Henon map. 

quite simple. 

From the results presented here, we propose that the RBF model is well suited to 

situations where a limited amount of data is amilable. We rnust bear in mind that before 

much can be said about the ability of the RBF model to capture dynamics from srnali data 

sets, subsequent investigation is required into its performance on other systems with limited 

training data. 



5.6 Application to the MC0 model 

In this section, we apply the RBF model to the problem of learning the dynamics of the 

interspike interval (1) dynamics of the chaotic MC0  model. The MC0 model interspike 

interval dynamics represents a significantly more challenging task for the RBF model than 

learning the Henon map. There are a number of reasons why. First: the dynamics must 

be leamed in four dimensions which, when cornpared to the problem of Iearning in tnio 

dimensions, substantidy increases the number of parameters to be estimated and reduces 

the density of training data in state space. Second, the M C 0  model, as described in section 

3 -6: cont ains considerably more nonlinear elements which tend to make the optimization error 

surface more convoluted a d ,  as a result, more difficult to navigate. Finally, the interspike 

interval, while arising from an encoding of a well defined system, lacks explicit description 

in the form of an equation. The cornplesity of the dynamics to be rnodelled is not entirely 

knom.  

5.6.1 Learning the MC0 model 

In order to achieve reasonable learning we require that the OLS learning algorithm be applied 

to initialize the gradient descent algorithm. Through repeated trials, we found that the best 

results were obtained when we set the Gaussian ~ctriances to be a function of the local density 

of data vectors in state space. One standard deviation of the Gaussian is set equal to the 

distance to the 250th closest vector. I ~ " .  This allows state space regions of higher vector 

density to be modelled in greater detail. Table 5-1 provides the values of the parameters 

used in leaming the MC0 model. 

The Figure 5.12 shows the nonnalized training error? E / ( D  - m - 1) : as a function of 

epoch number. The sharp fluctuations visible in the plot correspond to steps taken by the 

gradient optimization method which have increased the error. The presence of these fluctu- 

ations is an indication of a highly convoluted search space for the optimization algorithm. 

-4 state space representation of the final version of the RBF model of the M C 0  interspike 

interval dynamics is given in Figure 5.13. It is evident that the majority of the Gaussian 

centers are concentrated around the region close to 1, = = 1. Thus reflecting the 

concentration of data in that region. 
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I Parameter Value 

1 initial value of the Gaussian centers 1 p i ( 0 )  I p i f o r l < i < i ~  

1 learning rate 1 E 1 O . O O O ~ C T ~ ( O )  

1 0.8 for t 2 10 

1 adapt ive learning rate increase (additive) 

1 adaptive learning rate decrease (multiplicative) 1 p 1 
number of Gaussian b a i s  functions 250 

number of candidate EU3F centers for OLS DOLS 5000 

1 number of training vectors 

1 number of epochs 
-- - --- 

Table 5.2: The RBF learning algorithm parameters for the MC0  model. 

Figure 5.12: The training error evolution through 1600 epochs while learning the MC0 

dynamics. The training error is  nomalized with respect to the number of training 

uectors,E/(D - m - 1). 



Figure 5.13: M C 0  interspike interual data (points) and the trained RBF mode1 (circles). 

The circles represent one standard deuiation, a;, about the center, pi .  



Figure 5.14: The attractor forrned by 5000 iterations of the the rRBF model of the MC0  

interspike interual dynamics. 

5.6.2 The trained RBF mode1 

Just ES n-as done for the RBF models of the Henon map, we evaluate the learned dynamics 

of the RBF model by continualIy iterating the RBF model from a starting point in the 

training data. Figure 5.14 illustrates the attractor fomed by the output of the rRBF model 

iterated 5000 times. Comparing Figures 5.14 Mth 2.14, we see that the rRBF model attractor 

captures many of the features of the M C 0  interspike interval attractor: however; the attractor 

of the RBF model of the MC0 interspike interval is not as similar to the original attractor, 

as was the case for the RBF model of the Henon map. 

Figure 5.15 shows the time series representation of the rRBF mode1 interspike inter- 

vals. Cornparison berneen the rRBF mode1 1, time series and the M C 0  model In time series 

(Figure 2.13) reveals many similar characteristics. An example of such a characteristic is the 

brief near period-1 oscillation in the neighbourhood of In = 1. 

The results show that, despite the difficulties surrounding the learning of the M C 0  



Figure 5-15: The tirne series of the rRBF model of the M C 0  interspike interval dynamics. 

In data, the RBF model is capable of capturing the higher dimensional, highly nonlinear 

d ~ a m i c s  represented in the interspike intemal data of the MCO. 



Chapter 6 

Detection of Rhythmicity 

In this chapter n-e wïll discuss the development of the algorithm for the detection of rhyth- 

micity in systems which spontaneously switch to rh-ythmic activity either as a result of 

intermittent activity or through the action of a parameter drift. The eventual goal is to de- 

tect the transition to epileptic seizure through the detection of rhythmic, reduced cornplexity 

neurodynamics. 

\Ve begin by describing the qualities of the ideal detector . In section 6.2, we de- 

scribe the detection algorithm in some detail. Then, the algorithm is applied to detecting 

rhythmicity in the two subject systems. the Henon map and the MCO. 

6.1 The Ideal Detector 

What do n-e require in our detection algorithm? We require it to identify sudden increases 

in rhythmicity as fast as possible. The sooner rhythmic activity is detected, the sooner a 

control action may be ini tiated to restore the chao tic activity. Whatever detection algorithm 

is developed must be capable of fast detection. It must also be sensitive, in the sense that 

it must be able to repeatedly detect every instance of increased rhythmicity of the subject 

system dynamics. Undetected rhyt hmicity would result in untreated seizures, and thus must 

be minimized. The detection algorithm must be specific, only signaiing a positive detection 

of rhythmicity when the activity has indeed become more rhythmic. Fdse positives of our 

detection algorithm would result in unwarranted stimulation of the neural tissue. This is in 

direct opposition of our goal to minimize the amount of stimulation. The final requîrement 



of the system is that it be capable of detecting any rhythmic pattern of activity, as there 

may be more than one rhythmic mode of the neural dynamics, or the rh-ythmic pattern may 

change over tirne, therefore the detection algonthm must be flexible. 

6.2 Detection Algorithm 

Our detection algorithm is structured around a straight fornrard statistical tool, the t-test 

141. We use the rRBF model of the chaotic activi- as a model of healthy system behaviour 

which we compare through the t-test to the current state of the subject system, F1 which a t  

some point we expect to slip into rhythmic activity. 

6.2.1 The Statistic 

Ive require a test statistic, r, which will differentiate a rhythmic signal from a chaotic signal 

with relatively few data points. To determine an appropriate statistic we must first reviem 

some of the differences between chaotic and periodic signals. On average, nearby trajectories 

in a chaotic system evolve away from one another at an exponential rate until the distance 

between them matches the mean distance between pairs of points on the attractor. In the 

case of rhythmic trajectoriest nearby trajectories will tend to stay close to each other. Thus 

comparing a quantity proportional to the long-term evolution of the distance between initially 

nearby trajectories n-ould act as a discriminator between chaotic and periodic signals. This 

concept fonns the basis of the test statistic. 

Turning briefiy to the computation used in the determination of the maximum Lya- 

punov exponent descnbed in section 2-42? we see that the function S(&) is calculating 

something very similar to our desired test statistic. After a period of esponential expansion, 

S(iL2) saturates to the log of the mean distance between two arbitrary trajectories on the 

attractor. Thus we may assign our test statistic to be 

where & covers the range of the "8at line" values of S(&) for whkh the dope of S ( h )  is 

near zero. Statistical considerations motivate the choice of the "fiat line " region of S(An). 
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Figure 6.1: S(&) of the Henon Map. Note that r is the set of S(&) over the saturated 

region of the czsrue for 20 < &. 5 30. 

Figure 6.1 il1ustrat.e~ S ( h )  for the Henon map and shows the set T.  

The function S(&) is computed over a moving window of size N .  from n - N,  in the 

p s t ,  to the current step,n. Every vector, en, is reconstructed from the set {n - N, . . . , n - 

M } .  where M is the nuniber of elements in An. In order to use this as our test statistic we 

must interpret the set of points { T }  as independent samples from a population of measure- 

ments of the mean of the log separation between pairs of trajectories originally within an 

eneighbourhood of each other. In this interpretation the saturated region of S ( h ) :  An = &z: 

constitutes a series of uncorrelated, independent measurernents. This is an approsimation; 

often there is a shallow trend toward increasing S with increasing &. 

Xow that n7e have a test statistic, r. we need to apply the statistic to healthy dy- 

namics of the subject system, F and to the current state of F. We can gauge the degree 

of rhythmicity in the current state of 3 by comparing it to chaotic dynamics of the system 

healthy system dynamics are represented by the recurrent RBF (rRBF) mode1 trained on 

the chaotic dynamics of 3. Therefore we compare the population T&BF to the population 

r3. 

Quantities such as the correlation dimension and the maximal Lyapunov esponent 

are averaged quantities of measurements made over the entire attractor. There is often 

considerable variabiiity between the local or instantaneous measures- Our statistic T is not 

an esception. In order to ensure that the cornparison between T' and T&BF is valid: we 

iterate the rRBF mode1 from the identical E-neighbourhood pairs as identified in the moving 



window of size N. 

6.2.2 Comparing r r=~  to TF 

In comparing the two measurement sets, T ~ R B F  and TF, we make use of a well honni statisti- 

cal methodology, the t-test [59]. We are interested in determining if TF is significantly smaller 

than T r m ~ ,  indicating that the nearby trajectories are nom- remaining nearbx in contrast to 

the healthy chaotic activity, where nearby trajectories diverge. We interpret a significant dif- 

ference between our two populations as 3 standard deviations, where the standard deviation 

used in the cornparison is pooled From the two populations and is given by, 

where r is the mean of T and C the number of elements in each of the sets T r ~ ~ ~  and TF. 

We are looliing for instances n-here 7' is significantly smaller than TRBF. An appro- 

priate test for this situation is the one-sided t-test with a the nul1 hypothesis that T r R ~ ~  is 

not 3cp larger than TF< given by, 

If we wish to interpret the results of the t-test in a statistically significant way there 

are a nurnber of implicit assumptions regarding the nature of our statistics, T r ~ ~ ~  and TF, 

which must be considered. The first assumption is that the populations, T, are assumed 

to be nomally distributed. The populations T ~ R B F  and TF consist of samples of average 

distances between trajectories pairs which were initially E-neighbours. If the average was 

taken over a large number of pairs of trajectories (say, L(& E U(&)) > 201, then we may 

apply the Central Limit Theorem to ensure that the populations T are normally distributed. 

In this application the length of the observer window needed to satisQ the Central Limit 

Theorenl requirement of a large number of trajectory pairs could result in unnecessary delays 

in detecting rhythmicity, which the statistic interpretability does not warrant. The second 

assumption is that the populations T r ~ ~ p  and TF have equal variance. It should be obvious 

that dunng the chaotic operation of the system, F, the variances of our statistics should 

be very close, provided the rRBF mode1 faithfully captured the chaotic dynamics of 3. 
-- 
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However, when F slips into rhythmic or penodic activiw, the variance in the separation of 

trajectory pairs reduces dramatically as the trajectones begin to stay close together over 

long periods of time. 

Although the hypothesis testing on our statistics r does not appear to be statistically 

interpretable as a tme t-test, the mesure does provide a reliable and flesible method of 

detecting rhythmicity, as we shall see. The consequence is that relatively little meaning may 

be attributed to the significance level of the test. The value of t ,  simply provides a threshold 

above which we claim to have detected rhythmici@. 

6.3 Application to the Henon Map 

To illustrate how our rhythmicity detection strategy works, we apply it to the problem of 

detecting periodicity in the Henon map. As discussed in section 2.5: the Henon map is chaotic 

n-hen the parameters have the values a = 1.4 and b = 0.3; howet-er, when the parameter a 

is changed slightly to a = 1.42207 a period-30 orbit is stabilized in the midst of the chaotic 

attractor of the Henon map. 

6.3.1 Initialking the Detection Algorit hm 

There are a number of parameters which define the action of the detection algorithm. In 

order to achieve adequate performance. these parameters must be appropriately selected for 

the system under observation. Table 6.1 displays the values of the parameters selected for 

the Henon map. The window size of N = 80 is chosen to ensure that, within the chaotic 

dynamics, there is always at least one pair of trajectories within a bos of side E = 0.05. We 

use a detection threshold of t ,  = 15. 

6.3.2 Investigation 1: Single Event Detection 

The first experïment involves the tracking of the Henon map iterations through a single 

switch from the chaotic mode (a = 1.4) to the pexiodic mode (a = 1.42207). Using the 

RBF mode1 demonstrated in section 5.5.2 Rrith 20 Caussian basis functions, we initiate the 

detection algorithm. 



Paramet er 1 Symbol 1 Vdue 

1 side of s m d  box in state space 1 E / 0.05 1 
size of moving windom 

number of elements in dit 

Table 6.1: The parameter values for the detection algorithm applied to  the Henon map. 

number of elernents in An 

t hreshold 

Figure 6.2: The Henon map time series JTom n = 80 to n = 320. The parameter a changes 

h/ 

L(&) 

fiom a = 1.4 to a = 1.42207 ut n = 70. The periodic dynamics begin at n = 165 and are 

detected by  the detection algorithm ut n = 220. 

80 

10 

M 

te 

Figures 6.2 and 6.3 iIlustrate the time series from n = 80 to n = 320. At n = 70 the 

30 

15 

value of a is switched from a = 1.4 to a = 1.42207. As expected, the Henon map remains in 

a chaotic transient for some time before it slips into the periodic dynamics at n = 163. 

The tn-O statistics, 7Henon and T r ~ ~ ~  are compared in Figure 6.4. Shortly after the 

Henon dpamics  lock into periodic motion,  TH^^^^ clrops dramatically as nearby trajectories 

no longer diverge. Using these tnro populations in equation 6.3 results in the evolution of t 

shown in Figure 6.5. 

The the evolution of the comparator t is depicted in Figure 6.5. The value of t 

rises dramatically during the periodic behaviour of the Henon map. This indicates that the 

measure t provides a reliable method of detecting rhythmiciv. In a short number of time 

steps, t reaches it's maximum of 189. 



Figure 6.3: Disconnected plot of the Henon map time series /rom n = 80 to n = 320. The 

parameter a changes /rom a = 1.4 to a = 1.42207 ut n = 70. The periodic dynamics begin 

at n = 165 and are detected by the detection aigorithm at n = 220. 



figure 6.4: Cornparison of the two populations w,,, and T~-,RSF for the time series shown 

in Figure 6.2. 



Figure 6.5: The evolution of t calculated /rom TH,,, and T,.RBF giuen in Figure 6.4. 



6.3.3 Frequency Domain Detection 

Before we continue with further exploration of the detection strategy, we should compare 

its performance with that of a more obvious approach: frequency domain detection. Rhyth- 

micity implies the visible distinction of one group of frequencies in the time series. Thus it 

seems an appropriate method of detection to look for pealcs in the Fourier transfonn of the 

time series. 

Figure 6.6 (a) depicts the discrete Fourier transform (DFT) of a segment of the 

time series from which our detection algorithm determined a true positive for detection of 

rhythrnicity. The segment of the time series corresponds to the windom over which the 

detection algorithm computes the statistic T. Figure 6.6 (b) shows the discrete Fourier 

transforms (DFT) of the chaotic Henon map (a = 1.4) over four unrelated segments of the 

same size as s h o w  in Figure 6.6. Comparing the discrete Fourier transforms presented in 

the two figures, it is not obvious how one might go about distinguishing the rhythmic signal 

from the chaotic signais. 

The detection algorithm developed as part of this thesis appears able to detect rhyth- 

micity before it becomes apparent in the frequency domain. With a larger window size the 

chaotic and periodic Henon map time series look noticeably different and detection from the 

frequency domain would become feasible. Hon-ever? the larger nindow size would have the 

effect of delaying the detection of rhythmicity by requiring more samples of the rhythmic 

activity. 
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(b) DFT of segments of the chaotic Henon map 

Figure 6.6: Cornparison of the DFT of a penodic Henon map (a = 1.42207) time senes 

from which the detection algorithm accurately detected periodicity vith four chaotic time 

series DFTs of the Henon map (a = 1.4). 



6.3.4 Investigation 2: An extended test of the detection algorithm 

We have seen how the detection algorithm worh in the detection of a single incidence 

of rhythmiciw in the Henon map. It remains to be shonni that this detection strategy is 

applicable to situations where the system, 3 repeatedly slips into and out of periodic activiw 

Using the t = 15 detection threshold, we nrn the Henon map with the detection 

algorithm for 1 x 104 time steps. In that time, the parameter a is alternated between the 

chaotic value of a = 1.4 (120 time steps) and the periodic value of a = 1.42207 (360 time 

steps). 

Figure 6.7 illustrates the time series of the extended test of the detection algorithm. 

Et is interesting to note that the Henon map slipped into the penodic ac t iv i s  a t  irregular 

in tends  from the moment a was switched from a = 1.4 t o  a = 1.42207. On occasion, the 

dynamics remain chaotic throughout the entire a = 1.42207 interval. 

Figure 6.8 shows the evolution of t with time over the 1 x 104 time steps of the 

extended test. The pealis of t correspond weil with the moments of periodic activity of the 

Henon map. 

The extended test reveals that the detection algonthm is able to detect rhythmicity 

nith a fair amount of reliabilify Throughout the course of the 1 x IO4 step computation, no 

fdse positives and no undetected periodicities are observed. 



Figure 6.7: Extended test of the detection algorithm on the Henon map. The parameter 

a = 1.42207 during segments of time 360 time steps long (the time between the arrows) and 

a = 1.4 at all other times. The thick vertical lines indicate the times at which the detection 

algorithm signals rhythmicity. Note the variability in the time between the switching to the 

penodic value of a (a = 1.42207) and the pen'odic behaviour of the Henon map. 



Figure 6.8: Plot of t as a fvnction of time for the time series depicted in Figure 6.7. The 

dotted line illustrates the t = 15 threshold for detection. The parameter a = 1.42207 during 

segments of time 360 time steps long (the time between the arrows) and n = 1.4 at al1 other 

tirnes. 
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Table 6.2: The detection algorithm parameter values for the application to the M C 0  model. 
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6.4 Application to the MC0 model 

2.5 

We demonstrate the application of the detection algonthm to the problem of detecting 

rhythmicity in the mapped clock oscillator model. We will attempt to detect the rhythmic 

activity associated with the srna11 parameter change from a01 = -04.5226 to a01 = -54.7726. 

6 -4.1 Initializing the Detection Algorit hm 

Table 6.2 shows the values of the detection algorithm parameters selected for the application 
-- to the MC0 rnodel. As nith the Henon map. the choice of window size? N = r a?  is motivated 

by a desire to ensure that there is dways at least one pair of E-neighbours. For the MC0 

model, we use a detection threshold of t ,  = 2.5. 

6.4.2 Detecting Rhythmicity in the MC0 

Here we investigate the ability of the detection algorithm to resolve instances of rhythmic 

dynamics in the interspike interval of the intermittent MC0 model. We switch to the in- 

termittent dynamic of the M C 0  model a t  n = 66: when a01 is switched to a01 = -54.7726. 

The RBF model of section 5.6 trained on the M C 0  model is used in this application of the 

detection algorithm. 

Figure 6.9 depicts the time senes of the intermittent MC0 interspike i n t e d .  The 

figure shows that the rhythmic activity dominates the intermittent dynamics of the MC0 

model. The two large periods of rhythmiciv which were both detected. The last brief penod 

of rhythmic dynamics (at n = 900) was not detected. 



Figure 6.9: The M C 0  interspike interual (1) time series- The intermittent dynamics begin 

nt n = 66 (denoted: A). There were two detections of rhythmicity (dotted Line). 

Corresponding to the the time series of Figure 6.9, Figure 6.10 illustrates the evolution 

of t with time, n. Rhythmicity detection occurs at the point where t crosses the threshold 

t ,  = 2.5. 



Figure 6.1 0: The euolzltion of t corresponding to the time series of the intermittent M C 0  

mode1 (Figure 6.9). The intermittent dynamics begzn at n = 66 (denoted: A) 



Chapter 7 

Making Chaos 

In this chapter we will develop the strategy by which chaotic ac t iv i l  will be restored to the 

subject system. .F where rhythmic activity has been detected. 

We require an algorithm capable of detennining the precise timing of a stimulus which 

will throw the system, .F' back to a chaotic mode of operation. Following the arguments of 

Christini et  al. [49], our goal is to design a control algorithm to interact with physiological 

systems with emphasis on reducing the number of stimuli given to the physiological system. 

7.1 Control Algorit hm 

Our control algorit hm takes inspiration from the targeting algori t hm developed by Shinbrot 

et al. [QI. Their targeting technique perturbs the trajectory of a chaotic system onto the 

stable manifold of some target position in state space. By placing the trajectory on the 

stable manifold, the targeting algorithm uses the system's omn dynamics to reach the target. 

Our approach is to do the opposite, we wish to perturb the trajectory of our system, F, on 

to the unstable manifold of the periodic orbit in which the trajectory is stuck and thereby 

restore the chaotic a c t i w  through the natural autonomous dynamics of the system. 

7.1.1 Estimating The Unstable Manifold 

We estimate the unstable manifold of the periodic orbit of 3 by iterating the rRBF mode1 

of 3 for a population of trajectories from a region of state space on the periodic orbit of 



7. In practice, we start the iteration procedure with a population of trajectories positioned 

within an c-neighbourhood of the point in state space where rhythmicity was detected. 

The population of trajectories is iterated through the rRBF model until they from 

an image of the entire chaotic attractor. Figure 7.1 illustrates the first few iterations of the 

rRBF model of the unstable manifold of the Henon map- The SDIC property of chaotic 

systems spreads the population of points until they cover the entire attractor. 

Our approximation of the unstable manifold of the periodic orbit of 3, is described 

by a series of vectors whose elements have been individually iterated from the rRBF model 

of 3. The set representing the approximation of the unstable manifold. qF, is given by 

where Yn = [ jjn-(,-l) - -  - - in ]* corresponds to a vector of the RBF model 

output from times n - rn to n - 1. ?V,; - (rn - 1) is the number of interactions in the 

unstable manifold estimate and Ur; refers to a set of n-dimensional vectors within an c- 

neighbourhood of the periodic orbit. 

7.1.2 Timing The Stimulus 

Once the approximation of the unstable manifold, of;-, is determined according to equation 

7.1, the trajectory of 3, must be perturbed in order to intercept the manifold. Since we have 

no access to the system parameters, the perturbation must take the form of placement of 

the systeni variable, Zn. In applications to biological neuronal networks with an interspike 

intenal embedding: the variable placement n-ould correspond to an appropriately timed. 

stimulus induced, action potential. 

In the absence of stimulation: neurons fire action potentials spontaneously. If we 

assume that we cannot suppress the spontaneous neuronal activity, then m-e are limited by the 

time of the nest spontaneous action potential. We encorporate this limitation into the control 

strategy by speciwng that the perturbed variable must be iess than the predicted value. This 

restriction corresponds to illiciting an action potential which shortens the interspike interval 

when compared to that of the predicted spontaneous activiw. 

The control strategy is to wait until we are able to place the trajectory of 7 on iI+. 
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with a single variable placement. This opportuniSr presents itself when two cntena are 

satisfied. The first critena is that the curent state of F,, xn, and all the past values back 

to xn-(,-2, are al1 nithin an eneighbourhood of the m - 1 consecutive values of one of the 

vectors comprising an estimate of the unstable manifold. say Yi, 

ivhere jjj = [ pj-(m-2, - -. pj IT. The second criteria is that remaining eiement 

of the vector Y j ,  Le. element ij,, satis& 

The last element in the unstable manifold vector' y,' must be less than the next step of 7 

predicted by the RBF model by an amount greater than some E.  

When the two criteria are satisfied, the control algorithm enables the placement of 

the discrete time variable x,+l on the unstable manifold of the periodic orbit of F. 

7.2 Application to the Henon Map 

In Chapter 6, n-e saw that the detection algorithm n;as successful a t  detecting instances of 

rhythmicity in the Henon map. Here, we determine if the control strategy is equally effective 

a t  eliminating rhythmicity. 

7.2.1 Met hods 

In applying the control algorithm to the Henon map we folow the procedure described in 

section 7.1 first, to estimate the unstable manifold of the periodic orbit that occurs in the 

Henon map when a = 1.42201, and then to determine the appropriate value for x,+l to 

ensure that the next state vector, z,, lands on the unstable manifold. 

The unstable manifold estimation of the period-30 orbit is constructed using the 20 

Gaussian basis function RBF model described in section 5.5.2. The unstable manifold was 



Figure 7.1 : The first 1 O iterations of the rRBF rnodel approximation of the unstable man- 

ifold of the Henon rnap (points) and the period-30 orbit of the Henon map with a = 1.43207 

(open circles). Each iteration of the rRBF rnodel contains 500 vectors. Note the growth of 

the manifold with each successive iteration? starting ut the group of points labeled 1. 

estimated by iterating a population of 500 vectors from an E-neighbourhood, E = 0.01, of 

the position along the periodic orbit that corresponds to the instant of detection. The 

population is iterated 25 times, a t  which point the 500 points are dispersed over the entire 

Chaotic Henon attractor. Figure 7.1 illustrates the first 10 iterations of the RBF model in 

estimating the unstable manifold of the Henon map periodic orbit. The iterations start from 

the position labeled 1, in Figure 7.1, within a bos of side 0.01 centered around one iteration 

of the periodic orbit represented by the circle surrounding the concentrated population of 

vectors. 

Once we obtain an estimate of the unstable manifold, we wait until the placement of 

the variable x,+l results in the next state vector, x,, landing on the unstable manifold. When 

an appropriate moment arises the value of xn+l is simply set to the value corresponding to the 

unstable manifold placement. After the perturbation of x,+l, the control algorithm enters a 
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refractory period lasting 20 iterations of the Henon map, in which time the control algorithm 

does not respond to a positive detection of rhythmicity. The refractory period allows the 

detection algorithm to respond to the effect of the control action. If the detection algorithm 

indicates a positive detection of rhythmicity after the refractory penod has espired, then the 

control algorithm begins the process anew, including re-estimating the unstable manifold of 

the periodic orbit. 

7.2.2 Results 

Ive apply the control algorithm to the situation illustrated in Figure 7.2 (a). Figure 7.2 

(b) shows the result of the control action mhich occurred immediately after detection. Until 

the instant of detection, the time series of Figure 7.2 (a) and (b) are identical. Figure 7.2 

clearly shows that the application of the control algorit hm successfully restores the chaotic 

transient. Figure 7.3 offers an alternative representation of the Henon map under control. 

In this figure. the lines connecting the individual points in the time senes are removed, 

allon-ing one to more easily see the incidences of periodicity in the Henon map. Not s h o m  

in either Figures 7.2 or 7.3 is the time when the chaotic transient ends and the penodic orbit 

is re-est ablislied. 

Figure 7.4 shows the evolution of the detection variable t. corresponding to the time 

series shonn in Figures 7.2 and 7.3. The figure illustrates the response of the quantity t to 

the control action. As expected. once the chaotic transient is se-established, t drops rapidly 

to values comparable to those before the onset of periodic activity. 

We have seen how the control algorithm is effective at  restores the chaotic transient in 

a single execution of the control algorithms. The question remains: how effective are they a t  

reducing the amount of time spent in the periodic orbit of the Henon map with a = 1.42207? 

To address this question, we extend the simulation of the Henon map s h o w  in Figures 7.2 

and 7.3, t o n  = 1 x 104. 

The results the extended test of the control algorithm are depicted in the time senes 

in Figure 7.5. This figure shows that over the 1 x 104 iterations of the periodic Henon map, 

the d ~ a r n i c s  slipped into periodic activity 20 times. Each tirne, the control algorithm acted 

to re-establish the chaotic trasient by placing the next state vector, x,, on to the unstabk 
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Figune 7.2: Time sefies of the Henon map from n = 80 to n = 320. Rhythmicity was de- 

tected ut n = 220 (dotted line). In (b) r,+~ placement wus initiated immediately (triangular 

marker) . The parameter a w«s switched from a = 1.4 (chaotic) to a = 1.42207 (pehodic) ut 

n = 70. 



(a) Without control 

(b) With coritrol 

Figum 7.3: Disconnected Time series of the Henon map from n = 80 to n = 320. Rhyth- 

micity was detected at n = 220 (dotted line). In (b)  x,+l placement tuas initiated immediately 

(triangular marker) . The pammeter a was switched frBm a = 1.4 (chaotic) to a = 1.42207 

(pen'odic) ut n = IO. 95 



n 

(a) Without control 

(b) With control 

Figure 7.4: The evolution of t of the Henon mup from n = 80 to n = 320. t past the t = 15 

threshold (dotted honz0nta.l line) at n = 220, indicates a positiue detection of rhythmicity. 

As illustrated in  ( b )  , once control is  successfilly initiated ut n = 220, t returns to subth.reshold 

values. 
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manifold 6 t h  va.rying degrees of success. Several of the control actions are very successful 

in the sense that they induce chaotic transients mhich remain over a long period of time 

before the penodic activity retirt-ns. Other control actions, such as those occumng betnieen 

n = 3500 and n = 3750 and between n = 6500 and n = 6750: evoke relativeiy short lived 

transients before the restoration of the periodic activity. The varies in the duration of 

transients observed in Figure 7.5 is reminiscent of the variability in the times of entry into 

the periodic orbit after switching a from a = 1.4 to a = 1.42207, illustrated in Figure 6.7. 

Figure 7.6 presents the evolution of t during the extended nin of the Henon rnap 

given in Figure 7.5. The plot of t shows that the t = 15 detection threshold is quiclcly met 

and surpassed at corresponding instances of periodicie (shown in Figure 7.5). Folloning 

the control action, the value of t rapidly drops below threshold where it remains until the 

periodic orbit is regained. 

X careful study of Figure 7.5 reveds an interesting occurrence between n = 900 and 

n = 1000. For a brief moment, it seems as though the Henon rnap has, once again, slipped 

into periodicil but then suddenly returns to the chaotic transient behaviour spontaneously 

wi t hout the detection algorithm ever indicating rhythrnicity. Figure 7.7 presents a closer 

look a t  this event. From the time series given in Figure 7.7 (a) the Henon rnap seems quite 

clearly stuck in the periodic mode, yet our comparator t remains unconvinced as shown in 

(b) of Figure 7.7. Events such as this, where the trajectory skirts the outside of the periodic 

orbit before leaving it? motivated the use of the consewative t = 15 threshold for detection. 

In line with our policy of minimal interference. our consenative detection criteria initiates 

a control action as a last resort. 

-4s a final Iook a t  the maintenance of chaos in the penodic Henon map, Figure 7.8 

present a comparison of the identical simulation with and without control. The dramatic 

difference between the plots given in (a) and (b) is the result of 20 control actions over the 

entire 10000 time steps. Here we see the combined efforts of the detection and controi dgo- 

rithms to break the periodicity of the autonomous mnning Henon rnap over and over again 

through an almost insignificant amount of control action. Under control, the Henon rnap 

ran autonomously for 99.8% of the simulation. Despite the srnall control effort, influencing 

the Henon rnap only 0.2% of the time, the control algorithm achieved significant increase in 

the chaotic activity of the Henon map. 
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Figure 7.5: Extended The series of the Henon rnap with control from a = O to n = 10000. 

The parameter a is  changed from a = 1.4 to a = 1.42207 ut n = 70 (marked: A).  When the 

Henon rnap slips into periodic actiuity, it is detected shortly afier (solid vertical line) and 

X,+I placement ensues (triangular marker). 



Figure 7.6: The evolution of t of the Henon map urith control Rom n = O to n = 10000. 

When t is above the t = 15 threshold (dotted line), the detection algorithm indicates a 

positive detection of rhythrnicity. The parameter a is changed from a = 1.4 to a = 1.42207 

at n = 70 (markd:  A). 



. - -  
m . .  

(a) Time Series 

(b) Evolution of t 

Figure 7.7: A segment of the time series of the Henon rnap (a)  under control and corre- 

sponding values of t ( b )  . Note the rhythmic Zooking sequence between n = 930 and n = 970. 



(a) Without control 

(b) With control 

Figure 7.8: Cornparison of identical Henon map time series (a)  urithout control and (b) 

with control. At n = 70 the parameter a switches Rom a = 1.4 to a = 1.42207 where it 

remains until n = 10000. 



7.3 Application to the MC0 model 

In this section, the control strategy is applied to the mapped clock oscillator (MCO) model. 

The intermittent MC0 dynamics are dominated by a near period-1 orbit. We nlsh to 

determine to what extent the control algonthm is successful at  restorïng chaotic dynamics 

in the intermittent subject system. 

7.3.1 Met hods 

The application of the control algorithm to the MC0 model, once again, follonis the procedure 

described in section 7.1. The unstable manifold is estimated by iterating the rRBF model 

of the MC0 model (described in section 5.6) from the point of rhythmiciw detection. The 

estimate consists of 30 iterations of 700 vectors within a an eneighbourhood ( E  = 0.01) of 

the state vector corresponding to the detection of rhythmicity. 

After obtaining an estimate of the unstable manifold, the control strategy is to wait 

until the placement of the variable In+1 results in the next state vector, In,  landing on 

the unstable manifold. The application of the variable placement to the MC0 model is 

not as simple as setting the next variable equal to the value corresponding to the unstable 

manifold. The interspike in tend  encoding of the MC0 dynamics is o d y  mapping fiom 

continuous time to a discrete time representation, so the control action must act on the 

continuous time dynamics. In the MC0 model. the control action is initiated by blocking 

al1 stimulation from oscillator 2 to oscillator 1 (see Figure 2.9) for one penod of oscillation 

and setting the intrinsic frequency parameter of oscillator 1. wi such that one period (peak 

to peak) is equal to interspike interval (1) corresponding to a placement on the unstable 

manifold, 

The term r:+l represents the desired placement of the interspike i n t e d  at the next time 

step, n + 1. After the perturbation of In+ l ,  control actions are blocked for a refractory period 

Iasting 30 interspike intervals of the MC0 model. 



7.3.2 Results 

The appIication of the control algorithm to the intermittent M C 0  mode1 is given in Figure 

7.9. The figure shows that the majority of the control actions were able to restore chaotic 

activity albeit briefly. The evolution of the detection algorithm comparator, t is given in 

Figure 7.10. The value of t seems to follow the action of the dynamics of the MC0 model 

as they change through the action of the control algorithm. At approximately n = 450 the 

detection algonthm signals a detection of rhythmicity during activity which is not the nearly 

period-1 activity that dominates the MC0 intermittent dynamic. -4s a result, the control 

algorithm initiates a perturbation soon after detection. 

Towards the end of the time series, in the range of n = 690 to n = 830, there is 

an estended period of rhythmic activim over which no control action is given. -4 positive 

detect ion was indicated relatively early in the sequence; however, the control algorithm 

waited for over 100 time steps before initiating a control action. The algorithm waits until 

a single placement of In+1 results in the placement of the state vector on the estimate of the 

unstable manifold. In this case, that criteria was difficult to match. 

Just before n = 200 a control action was given to the MC0 model which had little 

effect. Figure 7.11 shows the MC0 output for the ineffective control action. These resdts 

are simifar to those of the ex?ended test of the control algorithm on the Henon map where 

we saw a number of variable placement attempts fail to initial a substantial chaotic transient 

Figure 7.12 shows the M C 0  output for a control action which successfully initiated chaotic 

activity. 

The results from applying the control strate= to the intermittent M C 0  model in- 

dicate that, similar the penodic Henon map, we were able to restore temporary chaotic 

activity. Though the duration of the individual chaotic burst was typically small, the action 

of the control algorithm shortened the length of the longest rh-ythmic region from 650 time 

steps to appro'cimately 150 time steps, 



(a) Without control 

(b) With control 

Figure 7.9: The interspike interual of the M C 0  rnodel in  intermittent activity (a)  and 

with the application of the control strategy (6). The dotted lines indicate the point where the 

detection algorithm signals a positive detection of rhythmicity. The solid triangles conespond 

to control actions. The MC0 rnodel enters the internittent mode ut n = 66 (point A) when 

a01 is chunged from -54.5226 to 54.7726. 



Figure 7.1 0: The evolution of t for the intermittent MC0 model under control. The M C 0  

model enters the intermittent mode a t  n = 66 (point A) when a01 is changed from -54.5226 

to 54.7726. 

Figure 7.11: The output of the M C 0  model for a failed control attempt. 



Figure 7.12: The output of the M C 0  mode1 for a successfil control attempt. 



Chapter 8 

Discussion and Future Work 

In this concluding chapter: we discuss the results and implications of the thesis as a whole 

and revisit the key points which have emerged. We also compare the approach developed in 

the thesis to the those reviewed in Chapter 4. Nest: the contributions of the thesis to the 

research community are summarized. Finally, we provide our conclusions and offer a brief 

discussion of directions for future w r k .  

8.1 Discussion 

8 .l. 1 RBF modelling of Chaotic dynarnics 

In Chapter 5, we investigated the possibility of learning chaotic d ~ a m i c s  from time series 

using radial basis function (RBF) models. We demonstrated the ability of the RBF mode1 to 

learn chaotic dynamics in three versions of the Henon map time series: under ideal conditions, 

with noisy training data and with a small training set. The RBF model trained on noisy data 

and on few data points was able to capture details of the state space attractor that were not 

apparent from the training data. We also showed that the RBF model is able to capture the 

main features of the interspike interval dynamics from the four dimensional mapped clock 

oscillator (MCO) model. 

Our approach to RBF parameter estimation includes both linear least squared opti- 

mization of the expansion coefficient, wi, and a nonlinear optimization of the RBF parame- 

ters. The typical approach to parameter estimation is restricted to the linear optimization of 



the expansion coefficient, wi [4] [54]. .As the plots in Figures 5 -1 and 5.12 reveal, the inclusion 

of nonlinear optimization of the RBF parameters results in a substantial increase in the per- 

formance of the RBF model prediction- Even after the OLS algorithm chose an "optimal" 

choice of basis function centers for modelling the MC0 dynamicst nonlinear optimization 

improved the prediction error by almost an order of magnitude. These results support our 

intuition that an optimization strategy which estimates al1 the model parameters is preferred 

over strategies which estimate a subset of these parameters. 

The consequence of employing nonlinear optimization techniques is that we are faced 

with complex error surfaces d c h  can be prohibitive to navigate to an adequate solution. 

Following the progress of the gradient descent algonthm in learning the MC0 model djmam- 

ics (Figure 5.12). ive see that often the prediction error would suddenly increase with the 

next epoch. These incidents are indications that the algorithm may not be able to follow 

the convolutions of the error surface. The gradient descent algonthm used in optimizing 

the radial basis function parameters is a relatively unsophisticated nonlinear optimization 

strategy. While it sufficed for application to our subject systems, we suggest that proceeding 

to applications of greater complexity would require a more principled approach to nonlinear 

optirnization. 

8.1.2 Detecting Transitions to Rhyt hmicity 

In Chapter 6. we demonstrated the application of the detection algorithm to detect instances 

of rhythmicity in the Henon map and the >ICO model. The value of t displayed significant 

changes in amplitude between the chaotic and periodic dynamics. allowing a simple threshold 

method to distinguish between the two dynamic modes. 

The detection algorithm was developed to detect a transition from chaotic dynamics 

to rhythmicity. The strategy was to detect any periodicity and not depend on information 

regarding the location of the loss region in state space '. In a plastic system such as the 

brain the region of the loss region may change with time or there may be stable regions in 

the state space which were previously undiscovered. In these cases the loss region approach 

would not signal a detection of rhythmic activity and no control action would be initiated. 

lThe concept of the loss regton n x  introduced by Yang et al. [50] and is described in section 4.3. 



The benefit of our approach is that the algorithm rneasures the degree of rhythmicity directly 

by o b s e ~ n g  a window of previous values of the time series. 

The disadvantage of the strategy of direct observation of rhythmicity is that to observe 

the behaviour it must be in progress. This problem was particularly acute in application 

to the MC0 rnodel. Given our objective of re-establishing chaotic activity as quickly as 

possible' it is desirab!e to minimize the duration of the rhythmic activity before the detection 

occurs. The duration of the o b s e ~ n g  window, N,  is one of the factors affecting the delay 

in detection. The detection algorithm determines the divergence statistic, r. as an average 

across the entire mindom-. If the subject system slips into rh-ythmic activity, we then have 

to wait until the rhythmiciw dominates the obsewer divergence 0%-er the window. Thus, 

the larger the nindow, the larger the delay in detection of the rh-ythrnic activity. However, 

reducing the size of the observer wïndow risks having the longer penod rhythmicities go 

undetected. For example, in detecting the period-30 Henon map dynamicst choosing a 

nindom- size of less than 30 + M would result in no E-neighbours by which to evaluate the 

divergence. 

A solution to the competing objective of speed and reliability may be to encorporate 

the concept of the loss region ofYang et al. [50] in the detection algorithmof Chapter 6. The 

loss region could be dehed  by the location in state space of the E-neighbours who resulted 

in a positive detection of rhythmicity. In this wax the loss region could be constructed while 

not interfering with the function of the detection algorithm. Then the control algonthm 

would be initiate either by the regular detection algorithm or by the trajectory entering 

the loss region. The compromise could eliminate both disadvantages of using a loss region. 

The detection algorithm would find the rhythmicities for which there is no identified loss 

region eliminating the problem of undetected rhythmicities. The plastic character of brain 

dynamics could be represented by having a finite memory for each toss region. We can 

envision this hybrid detection algorithm in a process of continually creating and destroying 

individual loss regions as the neurodynamics change over time. 

%ee section 6.2 for details 



8.1.3 Making Chaos fkom Rhythmicity 

Chapter 7 concerned the development of a strategy for the restoration of chaotic dpamics  

in systems which have drifted into the periodic regime. We showed that by appropriately 

timing a variable perturbation such that the state trajectory lands on the unstable manifold 

of the periodic or rh-ythrnic orbit, we can initial temporary chaotic activity in the subject 

systems. 

The duration of the induced chaotic activity in both the Henon map and the M C 0  

model was variable. In both systerns, some variable placements resulted in chaotic activity 

of afmost no duration. Still others result in significant periods of chaotic a c t i v i r  This is 

particularly true for the application to the Henon map where one transient endured for over 

1000 time steps. Previously, we mentioned that the SDIC characteristic of chaotic systems 

made it impossible to distinguish a priori the quality of the various control actions. m i l e  

this is largely true, the possibility exists that? in the case of the very short chaotic transients. 

the perturbed variabIe is placed on a region of the unstable manifold corresponding to a low 

order preiterate of the Zoss region 3. In such a situation, a control algorithm should be capable 

of resolving the low order preiterates and avoid placing the state trajectory in these regions. 

The control algorithm developed in Chapter T placed priority on initiating the control action 

as soon as possible and risked potentially placing the trajectory on a preiterate of the loss 

region. The approach was appropriate for a system such as the Henon map where the average 

duration of the induced chaotic transient was large (500 time steps). In the case of the M C 0  

dynamics, the induced intermittent chaotic activity was generally quite short and possibly 

could have benefit from a determination of the preiterates. 

The strategy to repeat detection and control in each incidence of rh-fihmicity results 

in a control algorithm which is able to match the required degree of control interference with 

the autonomous action of the subject systems. The periodic Henon map dynamics exhibited 

typically long chaotic transients and; therefore. was given relatively few control actions. On 

the other hand, the intermittent M C 0  model, dispIayed ratlier short chaotic burst when 

stimulated and thus required more fiequent control activity. In essence, the strategy uses 

the natural dynamics of the subject systems to the extent that it is able. 

3See section 4.3 and [50] for details 



Figure 7.9, of the control algorithm applied to the intermittent MC0 mode1 interspike 

intenml dynamicso illustrates a significant variety in the time between the time of detection 

of rhythmicity and the initiation of a control action. The last control action occurred after 

more than a 100 time steps from the time of rhythmicity detection. The source of the 

variability is not obvious. The type of rhythmicity occurring in this system is nearly penod- 

1, implying that each iteration of the state vector, I,, is found in approximately the same 

region of state space. Uliy should it be that one of these seemingly identical vectors finds 

itself in a position amendable to placement on the unstable manifold? We speculate that the 

answer lies in the estimation of the unstable manifold rather that in some inherent property 

of the subject system. In the estimation of the unstable manifold we iterate a population of 

vectors originating from a random distribution within an eneighbourhood of a point in the 

rhythmic orbit. Perhaps the number of iterations of the RBF model is insac ien t  to cover 

the entire four dimensional strange attractor of the chaotic MC0 model. If this is the case, 

then i t  is possible that the region corresponding to the part of the unstable manifold in the 

accessible region of state space (defined by the two critena of section 7.1.2) is frequently not 

represented in the estimation of the unstable manifold and as a result no control action is 

taken. If this proposed situation is truc: then the suggests of Kostelich et al. [G] to improve 

targeting in higher dimensional systems could be applied to improve our manifold estimation 

niit hou t excessive comput ational burden. 

8.1.4 Cornparison to Current Research 

In Chapter 4, we present hvo contrasting perspectives on the problem of maintaining chaos 

in biological systems. The first perspective is that of Schiff et al. [l], who attempted to 

anticontrol chaos in the rat hippocampal slice. They used linear regression to fit eigenvectors 

and find an unstable saddle point in the first return map of the interspilie i n t e d .  Their 

efforts to maintain chaos in the neuronal tissue was limited to eliciting action potentials, 

through stimulation: such that the interspike interval landed off the eigenvectors. Their 

perspective was one of increasing the vaziability in the neuronal activity over that observed 

by their model. 

The second perspective on the subject of preserving chaos in biological systems, offered 



by Yang et al. [50], is centered around systems which transition fkom healthy chaotic activity 

to "pathologicdn periodicities. Their demonstrations of maintaining the chaotic dynamics 

involved using the system equations to calculate perturbations of a control parameter which 

n-ould counter the parameter drift into periodicity. 

We believe our approach to the problem rests somewhere between these two diverse 

perspectives. The approach of Yang et al. seems critically dependent on the presence of 

system equations and, in particular, a control parameter. We suggest that no equations exists 

to appropriately describe the target application: the brain. Without system equations, using 

a corit rol parameter would require exploratory parameter manipulations to learn the systern 

response. Experimentd manipulations may not be considered exceptable in a therapeutic 

application. IVhile sharing Yang et al.'s focus on the transition from chaotic to rhythmic 

dynamics, we believe that the ability of our strategy to learn the necessary dynamics by 

passively obseMng the system actit'iv is a considerable advantage. 

Comparing our approach to that of Schiff et al., we see that both strategies employ 

model estimation from time series and make perturbations directly to the system variable. 

However. unlike our strategy and that of Yang et al., Schiff et al. do not consider the system 

as having gone through a transition. They focus their efforts on leaming the Lon: dirnen- 

sional epileptic dynamics, whereas we focus on learning the higher complexity dynamics of 

the healthy activity. Our advantage is that once a transition to rhythmicity is detected, 

the initiation of a control action may begin immediately without a Lengthy learning stage 

during the seizure activity. The approach of Schiff et al- has the advantage of learning 

the less comples dynamics which could be a considerabl easier task than learning the high 

comple.sity dynamics. 

The choice of time series model is a second point of comparison between our approach 

and that of Schiff et al.. The algorithm of Schiff et al. learn the local dynamics of a 

unstable periodic orbit (UPO) by fitting linear eigenvectors in the two dimensional first 

return map. The goal of our RBF model is to learn the global dynamics of the chaotic system 

representable in any dimension. The literature regarding the detection of nonlinearities in 

neuronal activim reviewed in Chapter 3, largely suggests that embedding the interspike 

interval in a two dimensional state space will result in a significant number of false nearest 

neighbours, complicating the learning of deterministic dynamics. In the applications of chaos 

112 



control algorithms, the local dynamics may be well described by the two dimensional Iinear 

model; however in instances of anticontrol, the dynamics of interest are those of the greater 

chaotic attractor and not the local dynamics estimated by the rnodel of Schiff et al. 

A third distinction between our approach and that of Schiff et al. may be dram 

between the two control strategies. We have attempted to implement a strategy which, by 

using the estirnate of the unstable manifold of the higher comple'city manifold, we r~ould 

use the natural dynamics of the system to maintain chaotic a c t i v i l  through instances of 

rhythmicity. SchiE et al. do not model the d-mamics outside the low dimensional epileptic 

activity and. as a result, are left wïth a somewhat arbitras. choice of variable placement 

soniewhere outside the modeled dynamics. 

8.1.5 Contributions 

In regard to the RBF model parameter estimation. we believe this to be the first application 

of the OLS basis function selection algorithm as the front end of a nonlinear optimization 

strategy. OrÏginally, the algorithm n-as presented as the entire parameter estimation algo- 

rithm. In the learning of MC0 model parameters, we show that the gradient descent is 

able to substantially improve on the performance of the system provided to it from the OLS 

learning algorithm. Mie also believe that this is the first application of nonlinear optimization 

methods to RBF models of chaotic systems. 

The detection strategy developed in this thesis is novel. The detection statistic, T 

from 6.1, was defined to combine consecutive dynamics in an effort to involve as much of 

the time series as possible in the determination of a mean in order to increase statistical 

sipificance. 

We believe the control algorithm to be the first application of a modified targeting 

algorithm to target the unstable manifold, rather than the stable manifold. This is also 

believed to be the first application of the targeting algorithm which is not dependent on 

having access to accurate system equations or control parameters. 

The general approach to the problem of detection and controi is unique. Learning 

the healthy act ivis  and using that knowledge to both detect and suppress the rhythmic 

dynamics when they occur has not been proposed before as a therapeutic strategy against 



epilepsy- 

8.1.6 Conclusions 

In conclusion, we have developed a novel approach to a potential therapy for individuals with 

epilepsy. The strategy is to l e m  the global dynamics of the healthy chaotic system using 

a RBF model of the time series and to use this rnodel to detect a transition to rhythmiciw. 

Once rhythmicity is detected, the control strategy employs the RBF model to estimate the 

unstable manifold of the rhythmic orbit upon which it Ml1 place the state vector. This has 

the effect of restoring transient chaotic activity. If and when the rhythmic dynamics return, 

the detection and control process is repeated. 

We applied the chaosmaker to two systems: the Henon map and the mapped clock 

oscillator (MCO) model. The strategy was successfd both at detecting the transition to 

rhythmicity. and at  restoring chaos through a control action. From our initial success we 

feel that this w r k  should be continued with the goal of clinical application. 

8.2 Future Work 

This thesis is an esploration of a novel approach to therapy for epilepsy. and as such leads to 

a great deal of potential for future work. There is much to be done, both theoretically and 

experimentally, before we are in a position to seriously consider the control of neurodpamics 

a s  a therapy for individuals mith epilepsy. We begin with what could be done to extend this 

work in the short term and then conclude nith a discussion of more involved projects- 

The three most pressing concerns for future development of the chaosmaker are those 

raised in the Discussion. First, we require a better nonlinear optimization scheme than the 

gradient descent algorithm if we wish to attempt the learning of more comples dynamics. 

Second, the concept of the loss region should be encorporated into the detection algorithm 

to speed the detection of recurrent rhythmicities. Finally, the possibility of checkhg for 

preiterate of the loss region of a prospective variable placement should be esplored. 

A slightly more involved project, which is certainly required to show tme viability of 

the chaosmaker, is the development of the time vafying version, whose parameters change 

with time. 
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In the longer term, a comparison should be made of a number of different time senes 

models. They should be evaluated on their suitability to  application in the chaosmaker. &O 

a probablistic version of the chaosmaker, the noisemaker, should be developed and compared 

with the chaosmaker in an application to neuronal tissue control. 
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