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Abstract 
A Multidomaiin Spectral Method 
For Computational Aeroacoustics 

Dan Stanescu, Ph.D. 
Concordia University, 1999 

This thesis presents a method for cornputational aeroacoustics, primarily aimed 

at computing sound propagation in, and radiation from, turbofan inlets. The 

physics of sound propagation is modeled by the system of partial differential equa- 

tions that describe conservation of mass, momentum and energy in inviscid flows. 

The equations are solved numerically in the time domain as an initial and bound- 

ary value problem to obtain the time-dependent acoustic pressure in the flow field, 

from which sound pressure levels are obtained by integration. 

A multidomain spectral method is used to discretize the space terms. Com- 

plex geometries are handled by the use of unstructured grids of non-overlapping 

hexahedra that rnay have curved boundanes. An isoparametric mapping is used to 

transform each hexahedron on the master element, on which an efficient colloca- 

tion spectral approximation c m  be defined by the use of tensor products. Conti- 

nuity of the solution in space is enforced as part of the solution process by the use 

of a set of staggered &ds that do not involve the element corners. 

A set of Runge-Kutta methods optimized for wave propagation and with min- 

imal storage requirements are developed for integration in time. Several radiation 

boundary conditions are implemented and tested, and a way to constmct the spec- 

tral grids within the elements starting frorn given edge descriptions is proposed. A 

iii 



transformation that alleviates the time step restriction while keeping the exponen- 

tial accuracy is also discussed. Numerical results that validate the methodology 

are presented for several test cases representative of the fan noise problem. The 

thesis ends with a brief description of a modification that allows cornputation of 

noise superposed on a mean fi ow known from other sources, such as experiments, 

and its application to turbulent mixing noise from a supersonic jet. 
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Chapter 1 

Introduction 

Soon after the introduction of jet engines, it became clear that their successful 

use on commercial aircraft was Iargely dependent on the possibility of reducing 

the noise associated with the high subsonic Mach number turbulent jets which 

for those early designs were the only source of thrust. Research aimed at under- 

standing the basic mechanisms of jet noise led to the development of the so-called 

'acoustic analogy' by Lighthill [l] and the dawn of a new discipline, aeroacous- 

tics. By applying a dimensional analysis to the turbulent sources in the jet shear 

layer, Lighthill showed in a subsequent paper [2] that the acoustic power radiated 

by a subsonic jet is proportional to the eighth power of the jet exit velocity. This 

rnost important theoretical result contributed to the evohtion of the subsonic jet 

engine from the small area, high exit velocity noisy jets to the modem turbofans 

of large bypass ratio. 

The acoustic analogy, as well as its later generalizations to account for the 

presence of soiid surfaces in the flow, rely on a specification of the acoustic 

sources and as such are not completely deductive methods. If the sources are 



known, from experiments or numerical computations for exarnple, the radiated 

field can be calculated by performing a volume integral over the source domain. 

The recent increases in computer power and advances in computational rnethods 

have opened the way for the computation of sound sources frorn first principles, 

using the fundamental equations of fluid dynarnics. Thus, Iargely relying on ex- 

perience gained from computational fluid dynamics (CFD), computationd aeroa- 

coustics ( C U )  has emerged as a novel approach to aeroacoustics problems, Its 

airn, as stated by Tarn [3] is "the application of computationd methods to aeroa- 

coustics problems for the purpose of understanding the physics of noise generation 

and propagation". 

An algorithm for CAA must take into consideration aspects that are not usually 

encountered in CFD, such as the inherent unsteadiness of the problem, the wide 

range of time and length scdes and the correct propagation of high-frequency 

acoustic waves of very small amplitude over Iarge distances and across the bound- 

aries of the computational domain. It is not hard to appreciate that no single 

method can ever be designed to perfectly suit the whole array of problems encoun- 

tered in aeroacoustics. The object of the present thesis is to design an algorithm 

for the study of noise propagation through fan inlets and their near acoustic field. 

However, it wiI1 be shown that other problems, as for example turbulent mixing 

noise from jets, c m  be addressed with only minor modifications to the proposed 

algorithm. 



1.1 Fan noise mechanisms 

For the large bypass ratio turbofans used on commercial aircraft nowadays, the jet 

is not necessarily the most important source of noise in al1 flight regimes. Instead, 

during an approach flight, and even during take-off for high values of the bypass 

ratio, the fan is usually the dominant source due to the shielding effect of the un- 

heated low-speed secondary jet flow on the core jet noise. Both broadband noise, 

rnainly due to random turbulent disturbances interacting with the fan, and tone 

noise (rotor-alone and rotor-stator interaction noise) at multiples of the blade pas- 

sage frequency characterize the fan acoustic signature. Moreover, multiple pure 

tones, another component of fan noise, occur at supersonic tip speeds due to the 

presence of a rotor-locked shock system [4] and to blade geometry irregularities 

arising from either manufacturing or assembly [SI. As a complete deterministic 

approach to broadband noise cannot be envisaged due to its stochastic nature, the 

present thesis is lirnited to the study of tone noise. This is also motivated by the 

fact that the broadband noise has a relatively low level over most of the frequency 

spectrum, whereas the Orastic increase in noise intensity at the discrete frequen- 

cies invotved in tonal noise represents a main contribution to cornmunity noise 

exposure. 

In a frame of reference that rotates with the fan, when fluid Rows through the 

bypass duct, the perïodicity of the blades generates a pressure distribution that re- 

peats itself B tirnes around the circumference, B being the number of fan blades. 

This pressure distribution, which c m  be thought of as a B-lobed pattern, rotates 

with the fan generating periodic flow disturbances superposed on the mean duct 

fiow. As opposed to propellers, for which the pressure disturbances propagate in 

free space, in the case of the fan the duct acts as a waveguide within which the 



sound field is made up of a discrete series of acoustic eigenmodes. The propaga- 

tion characteristics of these modes depend on the driving frequency, and a land- 

mark paper by Tyler and Sofrin [6] showed how this cm be restated in tems of 

the rotor tip speed. As long as the tip speed is subsonic with respect to the ambient 

speed of sound, the generated modes are evanescent and decay exponentially with 

axial distance frorn the source, or equivdently they are cut-off by the duct. How- 

ever, when the tip speed is supersonic, which is usually the case at high power 

settings (take-off and climb), the generated modes can propagate through the duct 

without decay if no acoustic treatrnent is applied to the walls. The resulting sound 

field is known as 'rotor-alone noise' and the Iobed pressure patterns that sweep the 

duct wdls dong helical curves while propagating axiaily are commonly termed 

'spinning modes'. Since the tip speed is supersonic, the spinning pattern may aiso 

contain in this case a rotor-locked shock system which can produce very intense 

acoustic radiation. The far-field noise spectrum has in this case discrete peaks at 

al1 the multiples of the shaft frequencies [4]. 

For an approach flight the engines usually run at a Iower power setting, such 

that the fan tip speed is in the subsonic range and the rotor-alone noise is cut-off. 

The rotating pressure field and the fan viscous wakes impinge, however, on the 

nearby stator, while the stator potentid flow field is periodically disturbed by the 

rotor blades. These are the main mechanisms generating rotor-stator interaction 

noise. A completely similar interaction takes pface between the rotor and the 

struts. The theory developed by Tyler and Sofrin [6] aIso provides a quditative 

description of the interaction noise when the number of vanes of the stator, V, and 

the number of blades of the rotor, B, are given. The basic interaction mechanisms 

cm only generate patterns with s = nB + kV lobes, where k and n are arbitrary 



integers. Depending on the particular combination of k and 92, these patterns may 

spin with higher speed than the rotor and hence can become cut-on. In practice, B 

and V can be chosen such that the fundamental frequency (also called the blade 

passage frequency, BN/60) is cut-off. Higher harmonies usually are not, since 

this would require impractically large values for B and V. Due to the much longer 

time of exposure of the environment to approach noise than to take-off noise which 

results frorn the srna11 dope of the glide path, a better control of the rotor-stator 

and rotor-strut interaction noise is an essential factor for modem turbofan design 

to meet increasingly stringent noise regulations. 

1.2 Fan noise prediction methods 

In principle one can use the fluid dynarnics equations to solve for the disturbances 

generated by the rotor, their interaction with the nearby components, and their 

propagation to the far field as noise, simultaneously. As turbulence should be ac- 

counted for and the geometries involved are quite complicated, such an approach 

is obviously impractical. It is therefore useful to consider the two components 

of the problem, source modeling and duct propagation and radiation, separately, 

with the understanding that various simplifying assumptions allow in some cases 

their simultaneous resolution. 

Most source models currently in use for the fan are based on two-dimensional 

(2D) analyses, and have been developed soon after the Tyler-Sofrin [6] theory. 

Blades are usually considered cascades of Bat plates, and the Iinearïzed equations 

for conservation of mass and momentum in compressible flows are used to de- 

scribe the acoustic field. The disturbances corresponding to the fan blade wakes 



are considered to be in the f o m  of gusts convected downstream by the mean Bow, 

usually given by empirical correlations. Solutions can be obtained under these 

conditions for the unsteady pressure jump across the blades [7], which is equiva- 

lent to specifying a chord-wise distribution of acoustic dipole sources. Couphg 

with the duct of the unsteady distributions of both the rotor and the stator deter- 

mined with proper phase and amplitude easily allows calculation of the propagat- 

ing modes. 

Three-dimensional(3D) effects play an important role on the sound penerated 

by a blade row, in particular when it interacts with disturbances that have large 

radial variations. A model for the interaction of a rotating annular cascade in an 

uniform subsonic fiow with circumferentially periodic distortions was developed 

by Namba [8]. He found that, as a rule, under the assumptions of the method, the 

2D model is not adequate for low frequencies but its predictions improve as the 

frequency of the incident distortions increases. 

An extension of Lighthill's acoustic analogy by Ffowcs Williams and Hawk- 

ings [9] through the use of generdized functions allowed researchers to take into 

account the effects of blade geometry such as thickness and planform. A method 

developed by Schulten [IO, 1 11 computes both the field generated by the blade 

geometry and that resulting from interaction of the blades with an incident field. 

The solution is given in terms of Green's functions that incorporate such details 

as the presence of a hub and the acoustic treatment of the duct wall with liners. 

The method allows for the study of stagger angle, carnber and vane sweep effects 

on the resulting noise. 

Al1 preceding theories c m  model both the sources and the propagation of 

sound in simple duct geometries, but are valid only for unifonn subsonic flow. 



When the blade row has supersonic tip speeds, the generated noise characteristics 

can change drastically. Recent studies [12] show that the response of an airfoil in 

realistic non-uniform transonic fiow is considerably larger than that of a flat plate. 

As analytical solutions in this case are excluded, researchers are now considering 

numerical approaches that solve the goveming equations for the stator and rotor 

simultaneously while taking into account their relative motion [13]. 

Radiation of specified acoustic modes was first predicted using analytical meth- 

ods based on Wiener-Hopf techniques, both for two-dirnensional[14] and axisym- 

metric [15] infinitely thin ducts. A numerical method using-finite elements in the 

near acoustic field and wave envelope eIements in the far field in order to reduce 

the number of grid points has been developed mainly by Eversman [16, 171. The 

computed variable is the complex spatial acoustic pressure amplitude, or equiva- 

lently the acoustic velocity potential, and a weighted residual formulation allows 

an axisymrnetric mode1 to be used even for the higher order spinning modes. This 

is appropriate for most fan inlet geometries and helps reduce the needed computer 

resources. Since wave elements incorporate the proper decay of the spherical field 

with radius from the source, good results have been obtained for the amplitude, 

but not for the phase of the solution. More recently, Camthers 1181 employed free 

space Green functions to obtain very accurate discretizations, for both phase and 

amplitude, of the Helmholtz equation with minimal requirements for the number 

of points. 



1.3 Computational Aeroacoustics approach 

The methods presented above have a number of advantages. In particular, they 

allow easy parametrïc study in the design process, since the influence of a number 

of factors (row spacing, blade cross section, etc.) on the generated sound can be 

easily calculated. These advantages rely however on heavy assurnptions such as 

the existence of a uniform flow field and the very small Ievel of the perturbations 

(linearity). In the inlet and exhaust ducts of the fan the mean flow is in reality very 

complex and, in particular for high power settings, the level of the pressure pertur- 

bations is extremely high. In this case, the nonlinear effects become important, as 

energy transfers appear between different frequencies. These facts recently lead 

researchers [19, 201 to consider the nonlinear EuIerNavier-Stokes equations for 

modeling acoustic propagation in fan inlets. 

The approach considered in this thesis as a first step towards the development 

of a system for fan noise prediction supposes the simultaneous use of CFD and 

CAA for a complete specification of the sources of noise and the computation of 

their sound field. The flow field through the rotor can be determined if a steady 

analysis in a rotating frarne is performed. The results can be used to generate the 

disturbances that are associated with the rotor alone (in the form of a function 

of time and space) as seen on a plane a certain distance upstrearn of the rotor, 

hereafter called the source plane. A more complete CFD analysis of the unsteady 

interaction between the rotor and the stator can specify the disturbances corre- 

sponding to both the rotor-alone and rotor-stator interaction sources. For reasons 

of accuracy and cost, this analysis must be however limited to small regions sur- 

rounding the sources. Beyond the source plane, the use of the same CFD solver is 

still possible but would incur either large errors or else impractically large num- 



bers of grid points. Therefore, the cornputation of the acoustic field propagated 

beyond the source plane is to be done using a CAA algorithm, as suggested also 

in [19, 201. Such an algorithm is developed in this thesis. 

As far as sound propagation is concemed, the molecular viscosity is unimpor- 

tant unless very large propagation distances are involved. However, the refrac- 

tion effects caused by the large gradients of the mean flow in the region of the 

boundary layers may be important and ultimately should not be neglected. Hence, 

the physical mode1 must describe the possibly nonlinear propagation of acoustic 

waves superposed on the existing mean flow. To this end, the time-dependent Eu- 

ler equations are used here. For convenience, the tem 'Euler equations' is used 

henceforth to refer to the syatem of conservation laws for mass, momentum and 

energy in inviscid fluid flow. 

For the flow in the fem inlet, in the case other solutions are not available or 

for large engines when the boundary layer flow occupies a relatively small region, 

the mean flow can be considered in a first approximation inviscid. In this case, 

the algorithm developed in the thesis allows the computation of both the mean 

flow and the sound field. First the mean flow is computed, as a steady solution 

of the equations subject to time-averaged boundary conditions. Afterwards, the 

boundary conditions are imposed as a function of time, reflecting the incidence of 

the acoustic perturbation on the mean flow, and the acoustic variables are obtained 

as the difference between the unsteady flow variables and the mean flow, once a 

periodic state has been obtained over the flow field. In the case of a fan exhaust, or 

for small engines, the rnean flow must incorporate viscous effects. In this case, a 

rninor modification of the algorithm allows calcülating the nonlinear propagation 

of disturbances on a given mean flow provided by other means. 



1.4 The need for spectral methods 

When the rnean flow and the acoustic perturbations are computed together as the 

solution of the same system of partial differential equations, a very important 

problem related to accuracy e s e s .  It is due to the fact that the perturbations 

can be many orders of magnitude smaller than the mean Bow, at Ieast at some 

distance from the source. Minor errors in the computation can therefore affect 

the computed sound field to the point of rendering the solution rneaningless. It 

makes sense therefore to use nurnencal methods that can offer a very high level 

of accuracy at a reasonable cost. 

After the introduction of the dispersion-relation-preserving schemes by Tarn 

and Webb [2 11 and the compact schemes with spectral-like resolution by Lele [22], 

finite difference methods started to be widely used for CAA. They offer a num- 

ber of advantages, such as ease of analysis and prograrnming and computational 

efficiency. Their use ranged from computing propagation of both Iinear [2 11 and 

nonlinear [23] acoustic waves to computation of sound radiation from fans [19] 

and rnodeling of jet screech noise [24]. The use of finite difference methods be- 

comes however difficult when the grids have a multiblock structure, which is al- 

most always the case for industnal applications. In this case, methods that offer a 

Iarger geometrical ff exibility are a good alternative- 

The initial effort of this research was focused on finite volume methods of 

very high order of accuracy. Structured mesh essentially non-oscillatory finite 

volume methods had been developed by Casper [25] and used for aeroacoustic 

computations [26]. Finite volume methods show clear advantages over finite 

difference methods in complex geometries. To fully exploit their potential, one 

should however be able to use unstructured meshes. A long time has therefore 



been spent on unstructured grid finite volume methods, of the essentially non- 

oscillatory type [27] and of central differencing type under a least-squares ap- 

proach. Although very high accuracy was findly obtained (@d refinements on a 

plane wave propagation problem in 2D showed up to fourth order for the essen- 

tially non-oscillatory and sixth order for the least-squares methods, respectively), 

this accuracy proved stiIl insufficient for acoustic modeling. In addition, the CPU 

time requirements of the methods were prohibitive. 

It is well known from numerical analysis that approximations based on partial 

sums of Fourier (or Chebyshev, for the non periodic case) series have exponential 

convergence (or spectral accuracy) properties. That is, given an infinitely differ- 

entiable function q, the error between the approximate q~ based on N terms in 

the senes the real function is bounded as limlv+m N n )  lqN - q) 1 = O ,  for any 

positive value of n. From a practical point of view, this means that very high accu- 

racy c m  be obtained with a small number of grid points. A plot of the error n o m  

obtained from both spectral and finite difference discretizations (equivalent to the 

finite volume methods above for this case) of the unidimensional (ID) Iinear wave 

equation versus the total number of points is given in figure 1.1. It is obvious that 

for 3D cornputations of high frequency waves, when the number of grid points 

might reach several millions even for spectral methods, most finite volume/finite 

difference methods might need many more points and would henceforth be ex- 

cluded. These results, although obtained at an arduous cost, definitely tumed the 

course of this research, albeit late, towards spectral methods. 

For the computation of propagating waves, an important requirement, as un- 

derlined by Tarn [2 11, is that the numencal scheme must reproduce the dispersion 

relation of the goveming partial differential equations. The quality of a given spa- 



L I I 1 I I 
MDS - ' 

FD6 - ' 
---- -*--..-* 

--..-'.4 
=--=., -',, 

Z 

--. ---- --. --._ 
--._ --_ --._ --- --- 

O - _ .  

----_ 
-._ --.. 

r 

Figure 1.1 : Norm of the error versus total number of points for the convection 
of a Gaussian pulse using the 1D linear wave equation and multidomain spec- 
tral (MD-S, 20 elernents), 6th order (FD6) and 8th order (FD8) finite difference 
spatial discretizations. The same time integration method is used for al1 spatial 
discretizations. 

t i d  discretization is assessed by studying it in wavenumber space. The numerical 

wavenumber generally differs very little from the exact one for smail frequency 

waves but increasingly deviates from it as the frequency is larger than a certain 

limit. In other words, given a certain numerical discretization of the spatial terms 

in the goveming equations, only the waves with the wavelength above a certain 

threshold can be represented properly. For classical fourth-order finite difference 

discretizations, for example, the wavelength must be larger than about 12Ax, and 

larger than 6Ax for the optimized fourth-order methods devised in [2 11. Spectral 

methods offer again the best alternative, with wavelengths as small as 2Ax (the 



Nyquist frequency) being correctly represented by Fourier methods, and TAX by 

Chebyshev methods [28]. Here 42- is the grid spacing, uniform for the finite 

difference and Fourier case and in an average sense for the Chebyshev case. 

Spectral methods, yet, have a number of drawbacks. For nonlinear prob- 

lems, the naniral approach is to use the so-called 'pseudospectral' methods [29], 

wherein the nonlinear tems are evaluated in physical space. This, however, leads 

to diasing errors in the computation of the convolution surns. Aliasing errors are 

usually removed by the use of techniques such as padding or phase shifts [29]. 

Another disadvantage when using spectral methods for the space t e m s  is that im- 

pticit methods for the discretization of the time derivative are very difficult to con- 

struct. For explicit methods on the other hand, the time step, being proportional to 

the smallest grid spacing, can be severely limited due to the quadratic clustering 

of the grid points towards the end of the domain in the Chebyshev case. Stability 

problems as well as slow convergence in computing steady state solutions also 

characterize spectral methods. 

The use of spectral methods has usually been restncted to simple geometries 

and, in the Fourier case, to periodic boundary conditions. This is due to the fact 

that a multidimensional spectral approximation is built using tensor products of 

ID approximations in order to remain efficient [29]. Hence, the computational 

domain has to be either a cube or a domain that c m  be mapped on the unit cube 

by a coordinate transformation. To account for more complicated shapes, mul- 

tidomain (patching) methods and spectral element methods have been developed 

only relatively recently. In this case, the computational domain is divided into 

smaller non-overlapping pieces, henceforth called elements, each of which has 

a stand-alone spectral approximation. In general, spectral element methods are 



considered to be those that use a variational or a weighted residual form of the 

equations over each element, as the Galerkin method that is d s o  very much in 

use for finite element techniques, while multidomain methods are usually based 

on collocation. Continuity of the function and al1 its derivatives up to an order 

lower than those appearing in the goveming equations must be enforced expticitly 

in multidomain rnethods. 

The first successful spectral element method was introduced by Patera [30] for 

the incompressible Navier-Stokes equations. For compressible flow, Cai et al. [3 11 

have shown, for a gIobal spectral approximation, how to modify the spectral sums 

to account for the presence of discontinuities. Spectral element methods using the 

same principle have been developed by Sidilkover and Karniadakis 1321. The main 

difficulty that a ises  in this case is upwinding when several element corners meet 

together, the methods becoming unstable if it is not done properly. Elegant solu- 

tions have been found recently for this problem, for example the use of staggered 

grids proposed by Kopriva and Kolias [33] and the penalty method developed by 

Hesthaven 1341. 

Multidomain spectral methods have, however, distinct advantages over a global 

spectral approximation once this difficulty is solved. The first one is that a local 

approximation might be preferred to a global one due to the character of the gov- 

eming equations, as is actually the case for the hyperbolic Euler system. The 

second one is that, the computational domain being already subdivided, an al- 

gorithm based on these methods can be implemented in a very natural way on 

parallel machines simply by assigning a number of elements to each processor. 

Also, the time step for explicit time marching methods can be much larger for a 

muttidomain method using several elements with a smaller number of *d points 



inside each of them, than for a global discretization using only one domain with 

a very large number of points. A multidomain spectral method has therefore been 

considered appropriate in this work for the discretization of the spatial terms in 

the goveming equations. 

1.5 Thesis outline 

This thesis describes an algorithm for computationai aeroacoustics, mainly aimed 

at accurately describing noise propagation in fan inlets and its radiation in the near 

acoustic field. It also presents its application to a set of standard acoustic prob- 

lems for the purpose of validation, as well as to several aeroacoustics problems of 

interest in gas turbine engineering. 

The algorithm can be thought of as being made of several parts. First, it con- 

tains a highly accurate (spectral) discretization of the spatial terms in the partial 

differentid equations. Second, for unsteady problems, it offers the possibility of 

using a discretization of the time derivative that is optimized for wave propagation. 

Findly, the aigonthm is enhanced with the capability of treating acoustic propa- 

gation, which includes calculating the acoustic variables from the time-dependent 

flow variables as well as imposing proper boundary conditions for them. The 

compter code thus obtained can be used either as a steady state solver for the 

purpose of computing a mean flow or as an unsteady soiver for computing acous- 

tic propagation superposed on this mean flow. 

The second chapter of this thesis shortly presents the Euler equations used as 

the mathematical expression of the physical laws governing sound propagation. 

The approximation of the spatial terms by a Chebyshev spectral sum is then de- 



scribed, using both a formalism based on Lagrange interpolants and the actual 

matrix-vector multiplication operations actually implemented in the code. The 

staggered grid initially proposed by Kopriva and Kolias 1331 is used to transfer 

information between elements without involving element corners. 

The third chapter focuses on the issues related to the time discretization. The 

properties of the Runge-Kutta methods for solving ordinary differential equations 

are discussed, and a way to construct methods optimized for wave propagation 

and using only a minimum amount of storage even for nonlinear problems is in- 

troduced. The accuracy of the new methods is tested on mode1 problems. 

The fourth chapter is devoted to the boundary conditions used for the compu- 

tation of the mean flow as well as those for the computation of acoustic waves. Al- 

though at the source plane the approach allows specification of a general function 

of time and space for incorning waves, a single incoming duct mode is specified 

for the calculations considered in this thesis. 

The fifth chapter discusses the relative advantages and the actual methodology 

for generating the needed 3D grids inside each elernent within the sarne computer 

code, from given geometrical information about its edges and faces. A technique 

for increasing the time step by mapping the grid points inside the elements is also 

described. 

The sixth chapter presents numerical results obtained with the computer im- 

plementation of the algorithm. Comparisons of the obtained solutions with analyt- 

ical ones are first performed for linear cases which f o m  a subset of the goveming 

equations. This is a necessary step for the validation of any nonlinear solver. Re- 

sults are then given for several cases where analytical solutions are not possible 

but where the full capabilities of the algorithm are tested. Some of these cases 



are studies of acoustic radiation from a fan inlet currently under production at 

Pratt&Whitney Canada The algorithm described herein is in further development 

under a joint effort from both the CFD Labontory of Concordia University and 

the CFD Group at Pratt&Whitney Canada, the final goal being an industrial envi- 

ronment code for the study of nonlinear aeroacoustics of turbofans. 

The seventh chapter shows how the method can be modified to account for 

mean flows that are not obtained as a solution of the Euler equations by the sarne 

solver and with the sarne spectral discretization, and applies it for simulating the 

turbulence rnixing noise from a perfectly expanded supersonic jet. Conclusions 

and possible directions for future work are presented in the eighth chapter. 



Chapter 2 

Numerical model and space 

discretization 

2.1 Physical model and gover~ng equations 

The sensation of sound is produced by pressure disturbances reaching the eardrum. 

Their propagation through the surrounding medium is governed by the Navier- 

Stokes equations, which fluid flow is considered to obey. For frequencies of most 

practical interest, however, molecular viscosity effects on sound propagation can 

be neglected, the pressure representing a much more important stress field than 

the viscous shear stresses. The ratio of the two stresses is given by the relevant 

Reynolds number R = uX2/v ,  which is around log for sound at most audible 

frequency in usual arnbient conditions. For viscous effects to become important, 

sound must travel R wavelengths [35,36]. Since regions of much smaller size are 

studied herein, viscosity is negIected in the Navier-Stokes equations. The resuIt- 

ing system of first order partial differential equations, denoted here as the Euler 



equations, describes the conservation of mas, momentum and energy in an in- 

viscid fluid flow. It accounts for any refraction effects due to non-uniform rnean 

flow on the propagation of sound, as well as possible nonlinear effects due to large 

source amplitude. 

The Euler equations can be written under an unified notation, for both the 

Cartesian coordinates and the axisyrnrnetric case, by the use of an integer switch 

that takes two discrete values. Considering the cornputational domain of interest 

2) c Etd with its boundary r, the vectoriai form of the equations is: 

For Cartesian coordinates v = O and d is the number of spatial dimensions. Set- 

ting v = 1 and d = 2 recovers the case of axisyrnmetric flows, which are actudly 

three-dimensional flows but can be studied using a planar grid due to their sym- 

metry. To ease the presentation, the position vector 5 is considered to have either 

the cornponents (xl , x2, x3) or equivaiently (x, y, z )  for the Cartesian coordinate 

system and (x, r) for axial symrnetry. The notation 6, denotes the Kronecker 

symbol while Q is the vector of conserved state variables and F ( F ~ ,  F2, F3) and 

H are the flux tensor and the source terrn vector, respectively. Their explicit form 

is: 



The primitive flow variables appearing in the above equation are the density 

p, the three components vi of the velocity vector 9 and the pressure p, while E 

denotes the total energy per unit mas.  Altemately, the ve loc i~  cornponents will 

be denoted by (a, v, w). The equation of state for an ideal gas 

where is the ratio of the specific heats, is used to relate the total specific energy 

to the primitive variables and close the system. Both the flux vector components 

and the source term are functions of the state vector Q, i.e. F = F(Q)  and 

H = H ( Q ) .  

The system of equations (2.1) has a hyperbolic character in time and any of the 

space variables [37]. An initial and boundary value problem (IBVP) is obtained 

when solutions to (2.1) are sought that satisfy initial conditions of the f o m  

with Qo a given function, as well as appropriate boundary conditions written here 

in operator form 

B[Q(Z , t ) ]  = O  for%€ I'. 

2.2 Non-dimensional form of governing equations 

In the Euler equations (2.1), the variables have their usual dimensions. This is 

not appropriate for a numerical algorithm, since the disparity in the magnitude of 

the physical variables can generate undesirable errors. Therefore the dependent 



variables in the equations as well as the time and space coordinates are set in a 

non-dimensional form denoted by an asterkk superscript as follows: 

where L is a characteristic length properly chosen for each case, cm is the ambient 

speed of sound and p, is the ambient density. 

Unlike the Navier-Stokes equations for which the non-dimensional form brings 

forth the Reynolds number, the non-dimensional Euler equations keep the sarne 

form given by (2.1 ). Therefore, the asterisk superscripts will be henceforth omit- 

ted, with the understanding that ai1 the variables are nondimensional. 

2.3 Curvilinear coordinates 

In view of a multidomain approach, the computational domain V is divided into 

E non-overlapping simply connected domains (caIled elements for convenience) 

De, e = 1,. . . , E such that D = U;,D,. A representative element denoted by 

D is a general quadrilateral for d = 2 and a general hexahedron for d = 3. The 

B V P  is solved on each element separately, with continuity of the state vector Q 

(patching) enforced explicitly at element boundaries as part of the solution pro- 

cess. 

Chebyshev polynomial approximations of functions are defined naturally on 

the interval [-1,1], with efficient extension to multiple dimensions through the 

use of tensor products on what will be cailed the 'master element', D = 1-1, lId. 



On the genenc element D the approximation c m  be obtained by the use of a 

one-to-one transformation ((5) with ci E [-1,l], i = 1, . . . , d which maps D 

ont0 D, and of its inverse I(& A way to obtain such a mapping is described 

in chapter 5. The correspondence between D and D is shown schematicaily in 

figure 2.1, from which it can be seen that constant ci planes become curvilinear 

surfaces in physical space. As for 5, the components of < will be considered to be 

(G, &, &) or (cl q ,  C) interchangeably, while will be used generically for any of 

the cornponents. 

Figure 2.1 : Mapping of a generic element D ont0 the master element ID. 

Using the cornponent form of the transformation, = c(x, y, z) ,  11 = q(x ,  y; z),  

C = C(x, y, z) ,  infinitesimally small displacements in the two coordinate systems 



can be related by: 

Denoting by 3 the first Jacobian of the transformation, 

(2.8) 

and using the chain rule of differentiation, the goveming equations on the master 

element can be shown [38] to become: 

where the transformed components of the state and flux vectors are obtained using 

the Jacobian and the cornponents of the metric tensor: 

The spatial derivatives that appear in equation (2.9) c m  now be conveniently 

cdculated within the master element. 



2.4 Staggered grid approximation 

It is advantageous to enforce the continuity of Q required by the multidomain ap- 

proximation as part of the evaluation of the derivatives by the use of a set of stag- 

gered @ds first introduced by Kopriva and Kolias [33]. One of the advantages of 

the staggered grid approximation is that it is fully conservative, as demonstrated 

in [33], hence shock capturing techniques can be used. The most important ad- 

vantage however resides in the fact that element corners are not included in the 

approximation, such that no matter how many elements meet together at a corner, 

continuity of solution needs only be enforced between any two neighboring ele- 

ments at their common points dong a face. This greatly simplifies the upwinding 

process which is necessary for the stability of the method. Standard upwinding 

techniques such as flux-vector or flux-difference splitting [37] can be used to this 

end. 

The staggered grids are constructed using two discrete sets of points over 

which the Chebyshev polynomids are orthogonal, the Gauss-Chebyshev points 

(6 and the Gauss-Chebyshev-Lobatto points L Denoting by N the maximum 

polynomial degree present in the approximation, they are defined as follows: 

Notice that only the set IL includes the endpoints of the interval, i.e. <O = -1, 

cN = 1. 

The state vector Q and the source vector H ,  if present, are defined only at 



points that belong to Gd = 6 x (G x Gd-2, the tensor product of the one- 

dimensional sets of Gauss-Chebyshev points. It is at the same points that the 

partial differential equations (2.9) are satisfied in a coIlocation sense since values 

of the spatial derivatives of the fluxes are also computed there. The components of 

the ff ux are defined however on different gnds obtained by replacing the Gauss- 

Chebyshev points with the Gauss-Chebyshev-Lobatto points for the correspond- 

ing flux direction in the above tensor product, i.e. Fl is collocated at IL x Gd-', F; 
at (6 x IL x 6-2, and F3 at Gd-' x IL- Figure 2.2(a) shows the distribution of the 

flux collocation points on the surface of the master element for the case N = 3, 

and figure 2.2(b) shows a cut in a &=cst plane that goes through the state vector 

definition points. 

Figure 2.2: Distribution of flux and state vector collocation points (O : FI,  0 : F2, 
A : F3, . : Q)-  (a) Surface of the master element (b) C3=cst plane. 



2.5 Spatial derivatives and patching 

At the beginning of a tirne step, the initial data are the state vector values Q at the 

points Gd. From these values one c m  create a multi-dimensional interpolant of 

the form: 

where the interpolating Lagrange polynomials h(<) corresponding to the set of 

Gauss-Chebyshev points 6, 

are introduced. From this interpolant the values of the state vector at the flux 

definition points can be readily obtained. For example, at the points where the 

flux is needed, Q can be computed as: 

Due to the properties of the Lagrange interpolants that ili(<') = aij7 this becornes 

in fact a one-dimensional operation, 



- 
along a G-line defined by & = ci, Q = $. A sketch of this interpolation, within 

a &=constant plane Say, is presented in figure 2.3. To define the solution at al1 the 

flux points, the interpolation is performed along d l  &, &-, and &-lines within 

the master element. 

Figure 2.3: Interpolation: solution at Gd points is interpolated to Lobatto points. 
Only two lines are explicitly shown. 

Upon perfomiing the interpolation, Q is known at dl the flux definition points. 

As c m  be noticed from figure 2.3, element corners do not have flux definition 

points, but at element interfaces there will be two values for the state vector, from 

the two neighboring elements that share the face. These values are not necessar- 

ily equal. Patching together of the elements, or correspondingly imposition of 

the physical boundary conditions of the problem when element boundaries CO- 

incide with r, is done at this stage. A continuous state vector across element 

boundaries is created by the solution of a Riemann problem projected on the nor- 



mals to the interface at each interface point. The solution is assigned to both 

neighboring elements. The process is represented in figure 2.4 and discussed in 

more detail in section 2.7. Considering the initial interpolated solution dong a 

<-line to be (QO, Q',  . . . , QN), corresponding to the points (<O, cl,. . - , eN), the 

solution of the Riemann problem (or the physical boundary conditions) leads to 

different values for Q at the end points, such that the line values now become 

Figure 2.4: Patching: a continuous solution is created by solving a Riemann prob- 
lem between the Ieft and right states interpolated from elements on each side of 
an interface and assigning it to both of thern. 

From the solution Q at the flux definition points, the fluxes dong a <-line 

(Po ,  F1, . . . , FN) cm be obtained through the functional relation F = F(Q). 
These values can be used to compute the derivatives at the initial set of points Gd. 

Indeed, a multidimensional interpolant for FI for example can be constructed in a 



simiiar way as for Q 

N N N  

where h(E) is the Lagrange interpolant based on the Lobatto set of points, IL: 

The needed differential is obtained by differentiating the Lagrange interpolating 

polynomials: 

aF, N N N  
hn 

C i 7  (3) = CCCE(E;~ g7 f ~ > - ( ~ > ~ ~ ( < ~ > i 1 k ( ~ ~ ) ,  i = 1,. . . IV. 
Xl n=O j=l k=L XI 

which can be seen to be again a one-dimensional operation along a (& = ci, 
6 = F [ )  iine: 

The sketch in figure 2.5 represents the differentiation operation. The fact that both 

interpolation and differentiation are performed only along one c-line at a time 

makes the method at least as efficient as other spectral discretizations [32,34] for 

d 2 2. 

To summarize, spatial derivatives are computed in three main steps: 

Interpolation The solution vector Q is interpolated to flux vector definition points. 



Figure 2.5: Differentiation: values of the derivatives at the set of points (6 are 
created from flux values at the Lobatto points. 

Patching Continuity of the solution between elements, as well as physicd bound- 

ary conditions on l?, are enforced on the interpolated Q values. 

DifTerentiation Flux values are computed at the flux vector definition points 

through the use of the functional relation F = P(Q), and differentiated 

to obtain the E-denvatives at the collocation points Gd - 

2.6 Matrix multiplication implementation 

Due to the particular choice of the gnd points G and IL, the Lagrange interpolants 

and their derivatives c m  be easily expressed in tems of Chebyshev polynornials. 

Using, for example, the discrete orthogonality relation between these polynomials 



over the set of points G, the interpolant &(c) c m  be found to be: 

where Cl = 2 for 1 = O, N and Cc = 1 otherwise. On a generic <-line such as cl 
in equation (2.16), omitting for ease of presentation the two coordinates that are 

constant, the interpoIation 

can then be written in matrix forrn: 

T 
where QG = [Q(<'), . - . , Q ( ~ N ) ]  is the vector of known solution values at the 

T 
Gauss-Chebyshev points, QL = [ ~ ( p ) ,  . . . , Q ( ~ N ) ]  is the solution interpolated 

to the Lobatto points, and 1 is a ( N  + 1) x N matrix, the elements of which can 

be found to be: 

2 1 (22 - 1)a = - - cos 0 -  ( s ( ) ) ] cos [l cos-1 (- cos (T) ) ] 
N [=O Cl 
N-1 

2 
= &COS (lx (1 - F)) cos (1T (1 - $)) . 

l=O 

Differentiation of the flux values on a E-line can also be put in a rnatrix-vector 



multiplication form using either the direct differential of the Lagrange interpolants 

or in the same way as above by expressing them through the use of Chebyshev 

polynomials. In the first alternative, for exarnple, writing the differentiated fiux 

interpolant equation (2.20) on a genenc 5-line on which the other two components 

of J are constant as 

the corresponding matrix form c m  be found to be 

where, taking into consideration equation (2.18), the elements of the N x (N + 1) 

differentiation matrix are: 

A stable and efficient way to compute differentiation matrices based on the La- 

grange interpolants as above was developed by Fomberg [28]. 

2.7 The Riemann problem 

The interaction of the two states interpolated from the neighboring elements at an 

interface cm be thought of as a Riemann problem if the time step is sufficiently 

smail such that wave propagation effects in a non-uniform flow cm be neglected. 



A 1D Riemann problem is the initial value problem defined by the hyperbolic 

system of equations 

subject to the particular initial conditions 

Figure 2.6: Riemann problern solution. The state Q* at the interface < = O is 
computed frorn given values of Q left (QL) and right (QR) of it- The shock wave 
(thick line), the contact discontinuity (dashed line) and the rarefaction fan are d s o  
shown. 

In the case of the 1D Euler equations, the Riemann problem (2.28) descnbes 

the flow in a shock tube (tildes on Q and F have been omitted). The resulting 



flow is self-similar, the flow variables being constant dong any </t =constant 

line going through E = O in the (E ,  t) plane. To obtain the resulting flow that con- 

stitutes the solution to the Riemann problem, an iterative process is necessary due 

to the nonlinear nature of the equations. Such a solution has first been presented 

by Godunov 1391. The solution consists of three waves, a shock wave, a contact 

discontinuity and a rarefaction fan, moving from the initial discontinuity at = O 

with different speeds as  represented in figure 2.6. Given the initial data Qr. and 

Q R  obtained by interpolation, the state Q* at the interface E = O can be obtained 

for any t 2 O. This is the common state that is assigned to both neighboring eIe- 

ments at the interface. Approxirnate soIvers which keep desired properties of the 

solutions have been introduced first by Engquist and Osher [40,41] and Roe [42], 

and numerous others have been developed aftenvards. An algorithm based on Go- 

dunov's method was developed in the present author's master thesis [43] and has 

been used for some of the computations presented herein. The remaining corn- 

putations were done using an implementation of Roe's approximate solver [42] 

suggested by LeVeque w ] .  

For multidimensional flows, the Riemann problem is complicated by the fact 

that there can now be an infinite number of possible directions for the resulting 

waves. Although some work has been done towards the solution of multidimen- 

sional Riemann problems [45,46], such techniques are still in their development 

stage and are not feasible enough to be used with spectral discretizations. To pro- 

vide proper upwinding at interfaces, an ad-hoc solution consists then to solve a 1D 

Riemann problem in a direction that is normal to the interface. Consider for exam- 

ple an interface that corresponds to a = surface for one of the neighboring 

('lefi') elements and a G = <! for the other ('right') one. Let the interpolated 



primitive variables be ( p L ,  VL, pL)  and ( p R i  PR, respecûvely, and let the nor- 

mal to the surface, n' = V&, be defined such that it points out of the left element 

and into the right element. The initial conditions for the 1D Riemann problem 

in equation (2.29) are then considered to be (pL, vh - 5, pL) and ( p R ,  FR - 5, pR) -  

The tangentid velocity components are defined using the solution for the contact 

discontinuity, such that the values at the interface are the same with the values of 

the left state if the speed of the contact discontinuity is positive or equd to the 

right values in the contrary case. This completely determines the interface state, 

from which the flux values c m  be computed. 

This way of solving the interface problem, while being the basic dissipative 

mechanism of the method, necessarily introduces an error in the approximation. 

As has been however shown by Powell et al. [47], this error decreases when the 

interface states are accurately computed, as can be expected with the spectral ap- 

proximation. 

2.8 Parallel processing 

For the algorithm to take advantage of parallel cornputers, a convenient data struc- 

ture has to be defined. It can be seen that both interpolation and differentiation can 

be performed element by element, since no interaction between elements is nec- 

essary. The involved variables are the state vector values at the Gd points and the 

flux values at the d sets of flux definition points, hence for easy parallel process- 

ing they should be stored in a data structure with its outmost index the elernent 

number. On the other hand, the resolution of the Riemann problem is done dong 

faces, such that the interpolated interface values should also be written in a data 



structure with the last varying index indicating the face. 

Since for generality the element mesh can be unstructured and is given only 

as an array of nodal coordinates and a table of connectivity for the nodes of each 

eIement, a proper connection between the element-indexed structure and the face- 

indexed structure must be built within the algorithm in order to correctly transfer 

the values between them. For ease of presentation such a connection is considered 

to be known in the form of a mapping between the face-indexed structure and 

the element-indexed one, as represented in figure 2.7 for d = 2. The parallel 

algorithm for one tirne step can then be surnrnarized as follows: 

for e=l to number-of-elements dosarallel 
interpolation (Q, e) 

endf or; 
for f=l to number-of-faces dosarallel 

if( interface) then 
(L,R,f) := inversemap(Q,e) ; 
Riemann-solve ( L , R , f )  ; 

( Q , d  := map(L,R,f) 
else 

impose~boundary~conditions(f) 
endi f 

endf or; 
for e=l to number-ofelements do-pawallel 

cornpute-fluxes (Q, e) ; 
differentiation(F,e) 

endf or; 



element 1 

Face 

Right 

element 

Figure 2.7: Mapping from element to face data structure. Upper side of the figure 
shows the neighborïng elements in physical space. Bottom part shows correspon- 
dence of indices between the two data structures. 



Chapter 3 

Time discretization 

3.1 Introduction 

For physical problems that require accurate time-dependent numerical wave prop- 

agation in their simulation, as is the case in acoustics, the usual requirement of a 

low truncation error is not enough to guarantee that a numencal method yields 

accurate results. Indeed, as has been pointed out mainly in 1211, the dissipation 

and dispersion properties of the numerical method are very important for comput- 

ing wave solutions of systems of partial differential equations. This is vdid for 

both the spatial and the time discretization methods. The explicit Runge-Kutta 

(RK) methods are widely used to discretize the time denvative because of their 

advantages that include Rexibility, large stability lirnits and ease of programming. 

The properties of the RK methods have been studied extensively, in particular by 

Butcher [48]. He found the generd forrn of the relations that the coefficients have 

to obey such that a given RK method has a certain order of accuracy, usually called 

the 'order conditions'. He fûrther demonstrated that more stages than the order 



of accuracy are needed for fifth or higher order RK methods. Recently, Hu and 

coworkers [49] showed that the dissipation and dispersion properties of the RK 

methods depend on their coefficients and optirnized h e m  for the convective wave 

equation, obtaining so-called low dissipation and dispersion Runge-Kutta (LD- 

DFK) methods. These methods are more efficient for wave propagation problems 

than classical ones, when the work required for a given accuracy is considered. 

Solutions of three-dimensional aeroacoustics problems may easily need mil- 

lions of @d points, in particular when high frequencies are involved. For such 

large size problems, in-core memory requirements may become exhaustive. They 

can be decreased using special RK methods that can be written such that only 2N- 

storage is required, where N is the number of degrees of freedom of the system 

(Le. number of grid points x number of variables). To design such RK methods, 

enough free coefficients must exist such that additional constraints hold between 

them, together with the order conditions. Williarnson [50] first showed that al1 

second-order and some third-order methods can be written in 2N-storage form. 

He aIso showed that the fourth-order four-stage methods cannot be written in this 

way. By allowing additional stages and using the resulting new free coefficients to 

impose the 2N-storage constraints, Carpenter and Kennedy [5 1 ] devised a fourth 

order, five-stages RK method that is competitive with the classical fourth order 

method which however requires at least 3 N  storage. 

Hu et al. [49] provide JU-storage implementations of the LDDRK schemes. 

These are valid for linear problems only, in the sense that they turn to second order 

accuracy when applied to nonlinear problems. A fourth order 2N-storage method 

has also been developed by Zingg and Chisholm [52], under the same linearity re- 

striction. Since most LDDRK schemes have a number of stages that exceeds their 



order of accuracy, they can however be written in 2N-storage format even for non- 

linear probIems. The following sections present the necessary theory and develop 

the 2N-storage conditions that the coefficients of the RK method have to obey in 

such a case. The explicit imposition of the order conditions, the 2N-storage con- 

straints, and the low-dissipatioddispersion conditions lead to nonlinear systems 

of equations that are solved numerically. Such systems generally have multiple 

solutions. For each case a full set of coefficients is given, chosen among the mul- 

tiple solutions available. The chapter ends with numerical results that show that 

the methods developed herein keep their order of accuracy for nonlinear prob- 

Iems as well, and have clear advantages over other methods for wave-propagation 

problems. 

3.2 General theory 

The general case of a non-autonomous system of ordinary differential equations 

of the forrn: 

-- dQ - F(t,Q(t)); QW = Qo 
d t  (3-1) 

is considered here. Such a system can be seen to arise from the Euler equa- 

tions (2.1) upon the discretization of the space derivatives, which will form the 

right-hand side of equation (3.1). The function F is supposed to be a general, 

nonlinear function of its arguments. These arguments also contain the time be- 

cause in the generai case the boundary conditions (2.5) cm depend on time. 

The general form of an explicit, O-th order of accuracy s-stage RK method for 



computing the numerical approximation qn to Q(tn = tn-' + At) is: 

where ci = C a i j ,  i = 1.. .S. 
j=l 

For the method in equation (3.2) to have the required order of accuracy, the 

coefficients must obey certain order conditions [48]. These are obtained by equat- 

ing coefficients of the Taylor senes developments of Q. The explicit form of these 

conditions, up to fourth order of accuracy, is: 

In these relations, sums on al1 indices extend from 1 to S. On the left side of each 

condition the order of accuracy that the condition governs is indicated between 

parentheses, with the understanding that for a certain order al1 the conditions up to 

that order must be obeyed. For example, the coefficients of a second order method 

must obey only the two conditions marked with (O = 1) and (O = 2), while those 

for a fourth order method must obey al1 the eight conditions in equation (3.3). 

To obtain low-storage rnethods, the principle is to leave useful information 



in the storage locations, by wnting each successive stage on the sarne register 

without zeroing the previously held values. Instead of cornputing the s coefficients 

Ki, the algorithm then becomes (with w f 4 t  an approximation to dQ/dt): 

with ai = O for the algorithm to be self-starting. Here qo = qn-l, qn = q, and 

ti = tn-l + qat. Since only the w and q values must be stored for each degree of 

freedom, this results in a 2N-storage algorithm. 

Using equations (3.2) and (3.4), one can express the usual RK coefficients 

a,, bi in terms of <Yi7 D i  Since these relations depend on the number of stages 

s, they are presented in detail in the next sections. One c m  then, in principle, 

solve the order conditions in terms of the ZN-storage coefficients ai and f i ,  and 

obtain vaiid low-storage RK schemes. For o = 3, s = 3 (classical 3rd order 

RK schernes), it can be seen that there are 5 such constants (a2, ~ 3 ,  Pl, P2, ,&) 

and four order conditions to be satisfied. It seems hence plausible, and this has 

been confirmed by Williamson [50], that such schemes c m  be constructed. For 

O = 4, s = 4 there are eight order conditions and only seven free coefficients. 

Therefore, as has also been shown in [50], such schemes do not exist. 

The dissipation and dispersion properties of the RK methods are closely re- 

lated to their stability. They are usually studied using the mode1 linear equation 

dQ/dt = q5Q, Q(0)  = 1, with $, an eigenvalue of the linearized operator of 

F, being possibly complex [48]. Using equation (3.2), it can be found that the 



amplification factor of a RK method is given by: 

where z = 44t. In this equation, A is the matrix having the RK coefficients 

aij as its entries, with a, = O for j 2 i for an explicit method. Also, b = 

[bl ,  b 2 , .  . . , bJT,  I is the s x s unit rnatrix, and lT = [1,1,. . . , 1IT. In order to 

use the expression for r ( z )  to build LDDRK schemes, it is convenient to write it 

explicitly as: 

r(z )  = 1 +$Jiz +. . . +li,zS (3.6) 

where the constants Qi are finction of the coefficients of the method and are given 

for s < 6 by: 

It is important to note that some of the sums in (3.7) also appear in the order 

conditions, equations (3.3), and hence are specified by the order of the method. 

The method wil1 be stable for al1 values of z that satisS Ir(z)l 5 1. This defines 

the stability region in the complex z = +At plane. Ifs  = O, which is possible [48] 

only for O 5 4, d l  coefficients ll>i are determined by the order conditions. This is 

the reason why al1 classicd RK methods, which have the number of stages s equal 

to the order o of the method, have the sarne stability region. 



Since the exact amplification factor is r,(z) = eZ7 expressing the ratio: 

gives the dissipation error 1 - Y and the phase (dispersion) error Q. One can then 

minirnize the dissipation and dispersion errors using different criteria depending 

on the problem, since they become functions of only the RK coefficients and z. 

For the linear wave equation aQ/& + aaQ/ax = O, for example, it has been 

shown by Hu et al. [49] that the eigenvalue is t$ = -iak*, with k* the modi- 

fied wavenumber of the spatial discretization scheme. Requiring that the coeffi- 
C 

cients & be such that the integral [ Ir(z) -re(z) 12d(ak*&) has a minimal value 
J O  

(where L: specifies the lirnit of the optimization range), while still maintaining a 

certain order of accuracy, leads to optimal values for those coefficients S>i that 

are not determined by the order conditions. The LDDRK methods obtained in 

this way by Hu et aï. [49], and that have enough free coefficients to be put in the 

ZN-storage format, are the following: 

Second-order, five-stage scheme (LDD25) with the following parameters: 

$3 = 0.166358, $4 = 0.0395041 and $3 = 0.00781071, stable up to 

S(4At) = 3.54. 

Fourth-order, six-stage scheme (LDD46) with $3 = 0.0078105 and $6 = 

0.00132141, stable up to $@At) = 1.65. 

,. Two-step fourth-order scheme (LDD56) for which the first step is a five- 

stage scheme with -& = 0.0036105, and the second step is a six-stage 

scheme with i., = 0.0121101 and 1C>6 = 0.00285919, stable up to S(#At) = 

2.85. 



A clear picture of the effect of the optimization can be obtained using the 

plots of the phase error !P (which should be as close to zero as possible) and the 

amplitude ratio Y (which should be equal to one in the ideal case) versus ak* At. 

For the classical fourth order RK methods, these plots are given in figure 3.1. 

It may be noticed that both XP and Y depart from their desirable values for very 

low values of ak'4t .  Between the optimized methods, LDD46 is chosen here for 

exemplification, and the corresponding plots are s h o w  in figure 3.2. Notice that 

the plots have another scde than those in figure 3.1. Both the phase error and 

amplitude ratio are much closer in this case to their optimal value over a wider 

range of ak*At.  In particular, it can be found that for values of ak'4t  for which 

the methods are al1 stable (Y 5 i.), the optimized LDDRK methods have lower 

error levels than usual RK methods. This also means that, under the sarne spatial 

discretization (hence with a fixed k*), Iarger time steps can be taken for the sarne 

error with the LDDRK methods, so that they may become very efficient. 

To obtain the 2N-storage form of the optimized methods, the usual RK co- 

efficients a,, bi, in terms of which the order conditions are given, have to be 

expressed in terms of the 23'-storage coefficients ai, pi. These relations depend 

on the number of stages of the method and are given in the subsequent sections. 



F i e  3.1: Amplitude ratio Y and phase error Q for the classical fourth order 
Runge-Kutta methods. 



Figure 3.2: Amplitude ratio Y and phase error Q for the optirnized LDD46 
method. 



3.3 Five-stage methods 

In this case, using equations (3.2) and (3.4), the relationships between the usual 

and the 2N-storage RK coefficients are found to be: 

To obtain the second-order five-stage LDDRK scheme, the above relations are 

used to express the two order conditions that must be obeyed, denoted by ( O  = 1) 

and ( O  = 2) in equation (3.3), and the three additional constraints obtained by 

specifying $9, G4 and $5- in terrns of ~ 2 , .  . . , a s  and pl,. . . , ,&. This Ieads to a 

nonlinear system of five equations with nine unknowns, hence a four-parameter 

family of solutions may exist. To choose a sohtion one may, for example, impose 

the values for severai variables and/or use additional equations. A solution thus 

obtained is presented in table 3.1. 



Table 3.1 : 23'-s torage second order five-stage (LDD25) scheme 

3.4 Six-stage methods 

For six-stage methods, the coefficients a2r7 - . . , a=, b l ,  . . . , b4 are still given by 

the relations in equation (3.9). The remaining coefficients are: 

There are now eleven free coefficients û 2 ,  . . . ,q, . . . , p6. TO obtain the fa 

order six-stage LDDRK scherne the coefficients must obey the eight order condi- 

tions in equation (3.3) and the additional optimization constraints resulting from 

the specification of 3b5, $J~. The resulting nonlinear system has been solved upon 

imposing the value of one of the coefficients. One such solution is aven in ta- 

ble 3-2. 



Table 3.2: 2N-storage fourth order six-stage (LDD46) scheme 

3.5 Two-step methods 

The two-step LDD56 scheme devised in [49] c m  be also put in SN-storage format. 

The scheme has fourth order accuracy in both steps, and fivehix stages in the 

firsthecond step. For the first step, the five stages imply nine free coefficients 

which are completely determined by the eight order conditions and the additional 

constraint $3 = 0.0036105. The second step is completely similar to LDD46, 

except for the values of the constants & and &. Tables 3.3 and 3.4 Iist one set of 

coefficients for the first and second step, respectively. 

Table 3.3: LN-storage form for the first step of LDD56 



Table 3.4: SN-storage fom for the second step of LDD56 

3.6 Numerical validation 

In order to test the accuracy of the proposed methods for nonlinear problems, a 

system of nonlinear and non-autonomous first order differential equations, 

is solved here, with the initial conditions specified as Q1(l) = 1, Q2(1) = e-'. 

The exact solution of this system is Qi(t)  = llt ,  Q2(t) = e-? The system is 

solved numerically in double precision over the range t E [l, 1-41 using several 

step sizes At. In the limit At + ca a decrease of At by a factor of two should 

decrease the error by a factor O = 16 for a fourth order method, and O = 4 for a 

second order method. The global error noms (computed as IQ1 -q, 1 + IQ2 -q2 1) at 

t = 1.4 and their ratios, Iisted in table 3.5, clearly show that LDD46 and LDD56 

are fourth order accurate for nonlinear systems, while LDD25 is second order 

accurate. 

The performance of the rnethods for wave propagation problems is tested us- 



Table 3.5: Error noms and their ratios for various step sizes for the nonlinear 
system (3.1 1). 

ing the convective wave equation, for which they have been optimized, 

with a = 1 (convection of a Gaussian pulse). The domain extends from x = -50 

to x = 450, and two spatial discretizations have been used in order to show the 

importance of the time integration method. The first discretization is obtained 

using eighth order central differences with Ax = 1, while the second is the stag- 

gered grid method presented in chapter 2, using twenty elements. For the central 

finite difference discretization, two cases have been considered. In a first case the 

time step for al1 schemes has been chosen close to the stability limit of the fourth 

order six-stage scheme. For the second case, the time step is larger than the sta- 

bility limit of LDD46 and close to the stability Iimit of LDD56. The maximum 

nom of the error L, = max Iq - QI at time t = 400 for the 2N-storage schemes 

devised above in the two cases is given in table 3.6. Also given is the error for 

the fourth order 2N-storage scheme developed by Carpenter (CAR) [51] and the 

classical fourth order four-stage RK (RK4) method which needs at least 3N stor- 

age. It tums out that for At < 1.54 the error for LDD56 is govemed by the spatial 



discretization, no further decrease of the error being possible upon decreasing At. 

Figure 3.3 presents graphically the results for the first case (RK4 not shown), with 

the exact solution sarnpled at the same data points. 

Method 
RK4 
CAR 

LDD25 
LDD46 
LDD56 

Table 3.6: Lm error norms for the linear convection equation discretized with 
eighth order central differences (40 1 points). 

TabIe 3.7: L, error noms for the Iinear convection equation discretized with the 
staggered grid method, 20 elements. 

For the staggered grid spectral discretization, only the case of the highest time 

step allowed by LDD46 has been considered. Due to the better resolution prop- 

erties of this spatial discretization, a lower number of points (240 and 260 points, 

corresponding to N = 12 and !V = 13) is used than for the central differences 

discretization, such that the phase and amplitude errors can still manifest hem- 

selves. The corresponding error norms are given in table 3.7, and the results are 



represented graphically in figure 3.4. 

Different ways can be used to compare the relative efficiency of the methods. 

Arnong thern, RK4 c m  be considered the most efficient if accuracy is not a con- 

Cern, since it needs the smallest number of function evaluations to reach t = 400. 

When one compares the work needed to obtain a certain accuracy, however, the 

cornparison favors the optimized methods. For an error n o m  Lm=2.8e-2 for ex- 

ample, where one is limited by the stability of LDD46 when using the centrai 

differences discretization, LDD25 needs a totaI of 2070 function evaluations (414 

steps), LDD46 1914, CAR 3530 and RK4 3600, while the error for LDD56, at 

its stability limit where 1430 stages are needed, is lower than the asked-for value. 

Considering the work required by RK4 as a reference, it follows that LDD25 is 

1.74 times, LDD46 1.88 times, and LDD56 at least 2.52 times more efficient for 

this problem. It becornes thus clear that the optimized rnethods should be pre- 

fened for the computation of propagating waves. 

Time step size for the Euler equations 

For the Euler equations the stability of the time integration method has to be stud- 

ied on their matrix form 

where is supposed to incorporate the effects of the spatial operator acting on 

Q as well as any boundary conditions. Under the assumption that @ is diago- 

nalizable, the time step At has to be chosen such that 6At is within the stability 

region for any eigenvalue q!~ of <P. The stability regions for two RK methods used 

in this thesis are given in figure 3.5. In general, they extend more dong the imag- 



inary axis than dong the negative real axis, which is advantageous since wave 

dorninated problems tend to have complex eigenvalues. 

The matrix @ can be constructed only in very particular cases. For exarnple, 

for the case of the linear wave equation, if Q is uniform and no boundary condi- 

tions are taken into account, the spectral discretization presented in chapter 2 leads 

to @ = aDI, and Q becomes the vector of the Gauss-Chebyshev point values QG 

which are advanced in time using equation (3.4) or equivalentIy (3.13). It is obvi- 

ously impractical to form the matrix and study its eigenvalues for cornputing the 

maximum time step for stability. It is known, however, that the eigenvaiues of the 

matrices that appear when a spectrd discretization is used for the space terms are 

complex numbers, with the real part negative, and satisfying I#l = Cî(N2) in the 

limit N + m. To maintain the stability, the time step has to decrease with an 

order (3(1/N2), as does also the minimal grid spacing A& = - between 

the end Lobatto points. In practice, this grid spacing is used to compute the time 

step that ensures stability. Hence, for the linear wave equation, the limit on ak 'h t  

leads to an approximate formula for computing the time step, 

Here, C is a constant (a Courant-Friedrichs-Lewy nurnber) that is chosen for a 

particular method to be smaller than the extension of its stability region on the 

imaginary axis, and Ax, is the distance in the physical plane corresponding to 

4 C m .  

For the Euler equations, the wave speed must be replaced with the maximum 

wave propagation speed which the equations support, which is I?I + c, and the 

computation has to be done at each point since it varies within the flow field. A 



formula which has been found to give good results in this case is: 

where the wave speeds dong each <-axis are the contravariant components 

and the maximum is searched across ail Gd points in the flow field. 

3.8 Implementation details 

It can be seen from equation (3.4) that the 2N-storage Runge-Kutta methods are 

in fact easier to implement than methods that use the form (3.2). The algorithm 

c m  use an integer switch, that is input as data at the start of the program, and 

selects the number of stages s and the coefficients ai7 ,Oi of the desired scheme. 

This is very useful since a different scheme c m  be used for steady state compu- 

tations than for acoustic computations. Indeed, the higher dissipation properties 

of non-optimized schemes, such as the scheme of Carpenter and Kennedy [51] 

or Williamson [50] are desirable for steady state cornputations, since they tend to 

reduce the time needed for eIimination of the transients. 



Figure 3.3: Results obtained with 2N-storage Runge-Kutta schemes for the lin- 
ear convection equation, central difference discretization: (a) Carpenter's 5-stage 
scheme (b) LDD25 2nd order 5-stage scherne (c) LDD46 4th order 6-stage scheme 
(d) LDD56 two-step scheme. 



Figure 3.4: Results obtained with ZN-storage Runge-Kutta schemes for the Iinear 
convection equation, staggered grid spectral discretization, N = 12: (a) Carpen- 
ter's 5-stage scheme (b) LDD25 2nd order 5-stage scheme (c)  LDD46 4th order 
6-stage scheme (d) LDD56 two-step scheme. 



Figure 3.5: Stability regions; RK methods are stable for q5h inside the region 
closed by the curved contour. Top: classical fourth order RK method, stability 
limit dong irnaginary axis 2.82. Bottom: LDD46, stability limit dong imaginary 
a i s  1.65. 



Chapter 4 

Boundary conditions 

4.1 Solid surfaces 

Since the Euler equations descnbe the flow of inviscid Ruids, the proper boundary 

condition at the solid surfaces present in the flow field is the flow tangency condi- 

tion. This boundary condition is valid for both steady state and unsteady acoustic 

computations. It is straightfonvard to enforce this boundary condition using the 

Riemann solver. In this case, one set of pointwise values for the Riemann problern 

is obtained through interpolation from the element that has a solid boundary face, 

while the other set is obtained by 'reflecting' the first set such that the resulting 

normal velocity on the solid surface is zero. Let interpolated variables from inside 

the dornain be (pdt Vdi p d ) ,  and let the local unit vector normal to the solid surface 

at the flux definition point under consideration be 5. The States that define the 

Riemann problern are then (pdr a - Z, pd)  and ( p d r  -6 - 5) pd) ,  as this results in a 

solution with - 6 = O. This solution is then used to obtain the boundary Ruxes. 

The velocity components that are tangent to the surface are left unchanged. 



4.2 Steady-state boundary conditions 

4.2.1 Fan face outlet boundary 

The treatment of the boundary condition at the fan face is based on an analysis 

of the flow in a frame normal to the boundary using the theory of characteris- 

tics [37]. To describe it, suppose the boundary is a x=constant plane, and the 

ff ow cornes from right to Ieft (the computationai dornain is to the right of the fan), 

hence u 5 O. The case of supersonic flow, lu1 > c, is trivial, the boundary fluxes 

being computed in this case from the state variables interpolated from the element 

next to the boundary. For subsonic flow, the analysis shows that one of the char- 

acteristics (Cc) has a positive slope (dx/dt = u + c) in the (x, t )  plane, hence the 

information pertaining to this characteristic has to be provided from the exterior 

of the domain. The remaining characteristics for d = 1 (Co and C-) have the neg- 

ative slopes dxldt = u and dxldt = u - c, respectively, and the corresponding 

information m u t  be provided from the interior of the domain by interpolation, as 

well as for the d - 1 additiond characteristics that appear for d > 1, and have the 

slope d x l d t  = u. 

The flow being locally isentropic, the characteristic variables can be integrated 

to give the Riemann invariants that should be Ieft unchanged dong these character- 

istics. The corresponding Riemann invariants are R+ = u + 2c/(y - l), = p/pY 

(the entropy) and R- = u - 2c/(7 - l ) ,  plus the tangentid velocity components for 

the additional characteristics. WhiIe the invariants can be readily obtained from 

the intenor, it is not common to specify the boundary condition at the outlet by 

the value of R+. Instead, the value of the outlet pressure p, is usudly known, and 

this information has to replace the one from R+. Letting values interpolated from 



the interior domain be denoted by the subscript 'd' and the searched-for boundary 

values be denoted by the subscript 'b', the following relations cm then be found: 

The computed boundary values can then be used directly to compute the bound- 

ary fiuxes. The alternative used in this thesis is however to compute the boundary 

fluxes using the solution of the Riemann problem between the boundary variables 

(subscript b) and the interior variables (subscript 4. Thus, only rninor modifi- 

cations are needed to use the same part of the code for specifying the incoming 

acoustic modes at the fan face. 

4.2.2 Far-field boundaries 

Boundary conditions at fa.-field boundaries are imposed by computing boundary 

fluxes using the solution of the Riemann problem between the infinity state, de- 

noted by subscript 'w' and the state interpolated from the intenor of the domain. 

This has the advantage that there is no need to distinguish between outlet bound- 

aries (where the fluid leaves the domain) and inlet boundaries (where the fluid 

enters the domain), since the correct direction of wave propagation is ensured by 

the Riemann solution. Taking into account the reference quantities used to ob- 

tain the non-dimensional equations, and considering the flow from right to left as 

previously discussed and aligned with the x-mis, the infinity state variables are 



pm = l,pm = l / ~ , u ,  = -Mm and v, = UJ, = O, where M, is the infinity 

Mach number that must be specified. The boundary fluxes are then defined by the 

solution of the Riemann problem between (pd, Vd . Z r  pd) and (p,, vm - 6, p,), 

where fi is the unit vector normaI to the boundary surface. 

4.3 Boundary conditions for acoustic modeling 

4.3.1 Incoming duct modes 

At the source plane a general function of time and space can be specified as the 

acoustic perturbation in the present time domain approach. However, the present 

work is restncted to speci@ing a single duct acoustic mode at the source plane. 

For the case without mean flow, this is done by solving a Riemann problem with 

flow variables extrapolated from the interior on one side of the interface, and the 

mean state perturbed with the incoming acoustic mode on the other side. The in- 

corning modes that have been used correspond to rectangular and to axisymrnetric 

and 3D circular duct geometries, for which the duct eigenfunctions are cosine 

functions [36] and combinations of Bessel functions [6] ,  respectiveIy. 

For the first case, when the medium is quiescent, a 2D duct acoustic mode has 

the form 



In this equation the overbar denotes the mean flow variables, y is the cross sec- 

tion coordinate non-dimensionalized by the duct 'cross dimension, w is the dnving 

frequency, and the axial wave number is kx = ,/(w/c)* - ki, with k, determined 

such that the boundary condition u2 = O is satisfied at the duct walls. 

For circular geometries, when there is no flow, a spinning mode with azimuthal 

order rn and radial order p, usually denoted by (m, p) ,  is specified by 

E,(k,,r) cos(kzx + me - w t )  
1 

k m ~  -% (km,r) sin(kzx + me - w t )  
uP 

Here r is the radius non-dimensionalized by the duct radius &, and Em(km,r) = 

Jm(km,r) + îlYm(km,r) is the duct eigenfunction, with Jm and Y, the Bessel 

functions of first and second kind, respectively. The axial wave number is kx = 

~ ( w / c ) *  - kLP, and v,, u, and ue are the axial, radial and circumferential corn- 

ponents of the velocity, respectively, frorn which the Cartesian components u* can 

be determined easily. The waviness of the Bessel functions, km,, and the factor 8 

are determined by the boundary conditions at the casing and hub, with 29 = O in 

the case there is no center body. 

For non-uniform flow cases, the source plane is treated as a subsonic outlet 

boundary where the pressure p, is obtained as above, while the other variables are 

computed using the solution from inside the domain as in equation (4.1). 



4.3.2 Radiation boundary conditions 

At the far-field boundaries where the computational domain V is tmncated from 

infinity, the acoustic perturbations corning from the interior of the domain must 

propagate as if this boundary did not exist and the computational dornain extended 

to infinity. Waves propagating from the boundary towards the interior should be 

excluded because they violate the causality principle 1351. However, in a numer- 

ical computation, such waves are usually generated when acoustic perturbations 

irnpinge on the boundary, either because of the boundary condition itself or be- 

cause of discretization errors inherent to the numerical method. The amplitude 

of these reflected waves must be kept of the order of the truncation error, other- 

wise the computed acoustic field can become meaningless. The term 'radiation 

boundary conditions' is used hereafter for the boundary conditions used to this 

end. 

Severai radiation boundary conditions have been used in this thesis. They can 

be considered to belong to three distinct types, namely characteristic, asymptotic 

form and buffer region boundary conditions. In the first group, a method that is 

equivalent to the characteristic boundary conditions developed by Thompson 153 1, 

with the difference that the equations are not linearized, is to treat the far-field 

boundary as in section 4.2.2. This is the first rnethod that has been implemented 

in the algorithm. It works reasonably well for waves impinging with normal inci- 

dence on the boundary, as bas been also reported by Hixon et al. [54]. However, 

large reflections appear if the boundary is not far enough from the source, in par- 

ticulâr from the corners of the dornain. 

Excellent results cm, however, be obtained with this type of rnethod if the Rie- 

mann problem is projected on the ray path, instead of on the normal at the exterior 



boundary. The direction of the ray path is computed using the position (xs, yS, zS) 

of the source, which can be considered at the point where the fan axis of symmetry 

intersects the leading edge plane of the inlet duct- Then one can construct, at the 

point (zb, zb) on the boundary, the unit vector b with components 

xi" - xs 
bi = ; r ~ =  

Tb i=l 

The boundary Ruxis then defined by the solution of the Riemann problem between 

the boundary state interpolated frorn the interior, ( p d ,  - b, pd) and the infinity 

state ( p ,  , vm q p,) . This boundary condition is denoted here as the 'finite wave 

rnodel' (FWM), and is similar to the one proposed by Atkins and Casper [55]. In 

their study, these authors replaced however the full Riemann problem by a sim- 

plified problem which considers only isentropic waves, thus excluding the case 

when shock waves impinge on the boundary. While this is a reasonable assump- 

tion, since the radiation boundaries should always be placed far enough from the 

region with high hydrodynamic disturbances, it was found that the savings in corn- 

puter time it brought about were minimal. Therefore, for the sake of simplicity, 

the same Riemann solver was used at the radiation boundary as within the domain. 

The FWM has been used to obtain most of the results in the case of a quiescent 

fluid. As c m  be noticed, the same method should also allow, in principle, steady- 

state computations. Indeed, the only difference from the method in section 4.2.2 is 

to use the vectors bin place of the normal vectors 5, which were chosen sornewhat 

arbitrarily in order to make the Riemann probtem unidimensional, as discussed in 

section 2.7. However, the application of the FWM to steady-state problems proved 

in some cases to be unstable. For this reason, it was not used for acoustic problems 



with non-uniform rnean flow. 

The second type of boundary conditions uses the asymptotic fom of the acous- 

tic wave, valid at large distances from the source, to obtain a partial differential 

equation that the boundary values must obey. To discretize this partial differential 

equation, which is different from the Euler equations, the solution and its spatial 

derivatives must be computed frorn the interior field. Such boundary conditions 

have been developed by Bayliss and Turkel [56,57] to arbitrary order of accuracy 

and, from a different perspective, by T m  and Webb [21]. The partial differen- 

tial equation proposed by Tarn and Webb to update the boundary values has been 

implemented in the d = 2 version of the algorithm. It has the form: 

with K = 2 for slab symmetry and K, = 1 for axisymmetry. In this equation, 

V (6) = ü1 cos 8 + ü2 sin 6 + ,/CL - (üi sin 6 - COS 8) is the group velocity 

of the acoustic waves in the mean flow of velocity (ci, ü2), and rb and 6 are the 

radial distance from the source and the angle made by the direction of the main 

flow with the radius from the source, respectively. The spatial derivative 

d 8 d 
- = cos 8- + sin 8- 
a ~ b  dx dy  

is computed by spectral differentiation in the first layer of elements next to the 

boundary. 



Taking into account the theory of characteristics, imposition of al1 the bound- 

ary values computed from equation (4.5) would not correspond to the physics. 

Therefore, to obtain the correct direction of wave propagation, boundary fluxes are 

again defined using the Riemann solution between these boundary values and the 

state interpolated from the interior. Without any form of dissipation, this boundary 

condition showed instability for large values of N for several of the test cases that 

involved long time integration. Stability was achieved in al1 cases by filtering the 

flux values before computing the denvatives. The filter, descnbed in section 4.4, 

was applied only to the elements in the layer next to the boundary for efficiency 

reasons. However, even with filtenng, the results for the FWM were slightly better 

than those obtained with this method, as will be shown in chapter 6. The method 

is denoted hereafter as Tarn and Webb (m. 
The third category of boundary conditions uses a buffer region near the bound- 

ary, where the equations are rnodified in such a way as to either damp the waves, 

or force them to be convected towards the boundary, or both. Such boundary con- 

ditions have been developed by Ta'asan and Nark [58], who add an additional con- 

vection velocity, Colonius at al. [59], who use characteristic variables and a buffer 

region with temporal damping, grid stretching and filtenng, and Freund [60], who 

also uses a fonn of temporal damping applied to the conservative variables in the 

buffer region. In the same category cm be included the perfectly matched layer 

(PML) method first developed for the linearized Euler equations by Hu [61]. It 

uses a directional splitting of the Euler equations for temporal damping of the 

waves. While it seems to offer excellent results [62], the splitting increases the 

cost of the solution, and the method has been shown to be unstable [63,64] unless 

a form of dissipation is added to the solver. This rnakes its use for spectral solvers 



less desirable. It is, however, useful to modie  the equations with lower order 

darnping t e m s  that do not change the stability properties, and without splitting. 

This temporal darnping tries to make the solution of the system of Euler equations 

mimic the behavior of the solution Q = e-At of the ordinary differential equation 

dQ/dt = -4Q. With A a positive constant, Q decreases exponentidly in time. 

To this end, a modified system of equations of the f o m :  

is considered in this thesis in a Iayer of elements next to the boundary. Obviously, 

since the goveming equations are modified, the solution in this layer has no more 

physical meaning. The positive value of a varies from zero to a~ according to a 

power law 

within these elements ( x y t  and x r t  are the coordinates of the interior and exterior 

limits of the absorbing layer, limits that lie dong planes on which one coordinate 

is constant). The mean flow Q is used on the right hand side such that only the per- 

turbations, which are the quantities that actually appear in the time derivative, are 

damped, and the solution Q tends towards Q for large t. Hence, acoustic, entropy 

and vorticity waves will decrease exponentially with tirne upon their penetration 

in this layer as they propagate towards the boundaries. The most important ad- 

vantage of this method, hereafter denoted as 'damping layer' (DL), is that it can 

handle uniform flow fields as wel1 as non-uniform flows (after steady compiitation 

of the rnean flow, the mean values Q are known) without any differences in the 



implementation. The implementation is also very simple, and steady state corn- 

putations for Q can be made with the sarne method, using o~ = O. In both cases, 

boundary fluxes can be computed as in the F\nrM or using the grïd nomals as in 

section 4.2.2. 

4.4 Spurious waves and filtering 

The replacement of the values of the solution Q at the end of a E-line in an ele- 

ment as shown in figure 2.4 has the global aim of enforcing the continuity of the 

solution across elements. Locally however, supposing the interpolated data were 

smooth within an element before the replacement, this smoothness may disappear 

afierwards, even if the function to be approximated is globally smooth, due to 

tnincation and round-off errors of the interpolation process. Although these errors 

decrease exponentially fast, they c m  lead to undesirable oscillations near element 

boundaries, as can be seen from figure 4.1 for the case of an approximation of the 

linear wave equation. These oscillations manifest themselves as high-frequency 

(above the resolved frequencies of the discretization) spurious waves which travel 

at their own speed [65] and are obviously undesirable. 

These waves are one of the causes of the numerical instability that has been 

observed when discretizing equation (4.9, since they lead to wrong values of 

the time derivative when long time integrations are performed. In the context of 

spectral methods, such waves are controlled using filters. The filter modifies the 

coefficients of the higher degree Chebyshev polynomials in the spectral sum, thus 

reducing the amplitude of the high frequency modes. The filter is applied here 



Figure 4.1 : Spurious oscillations generated near element boundaries. The exact 
soiution is virtually zero in this region. The inter-element boundary is at x = 170. 

before differentiation, such that equation (2.26) is replaced by 

where the smoothing mauix S represents the action of the filter, and FE the vector 

of filtered flux values at the Lobatto points. 

The matrix S is constructed using the Chebyshev spectral sum for the flux 

values, based on the set of Lobatto points dong a c-line. Ornitting constant < 



cornponents, the interpolant of the flux can be wntten in two alternative ways, 

where the Chebyshev coefficients are given by 

the value of the constants CL being the same as in section 2.6. A O > 1 order 

filter function e(x) can be defined following Don and Gottlieb [66] as a Cm [O, 11 

function satisfying 

e ( j )  denoting here the j-th derivative. The interpolant in equation (4.10) is re- 

placed by the filtered interpolant 

which, replacing the Chebyshev coefficients by their values in equation (4.2 l), 

becomes: 

Rearranging and interchanging the order of surnmation, the filtered interpolant 



can be written as 

or, in matrix form 

where the entries of the smoothing matrix S are given by 

Although several types of filters have been implemented in the algorithm, the 

results have been obtained using either the sharpened raised cosine filter or the ex- 

ponential filter. The sharpened raised cosine filter, which is eighth order accurate, 

is given by [29]: 

The exponeritial fiIter offers the advantage that it c m  keep the spectral accuracy 

of the method. Such a filter can be defined as 

where o j  is the order of the filter, E is the machine precision (around le- 16 on the 

cornputers that have been used) and n, is the filter cut-off frequency. hcreasing 

01 with .N keeps the method exponentially accurate. In practice, both n, and OJ 



have been chosen around N - 3. 

The filtering process does not necessarily increase the cost of the computa- 

tion. Indeed, once the type of the filter is chosen, the smoothing matrix S can be 

constructed in the sarne time with the differentiation rnatrix D, and equation (4.9) 

can actualIy be irnplemented as 

Fk = (DS) - F ' = = D ' - F ~  (4.20) 

where the product matrix DS incorporates the effect of the filter and can be stored 

in place of, and used in the same way as, the differentiation matrix D. 



Chapter 5 

Mapping techniques 

5.1 Grid generation 

5.11 Introduction 

To define the spectral approximation on the generic element D, the mapping F(z) 
andor its inverse m u t  be defined. There are several criteria that this mapping 

rnust satisfy. First, it must keep the spectral convergence properties of the spatial 

discretization. In other words, the geometry of the domain must d s o  be approx- 

imated with spectral accuracy when the boundaries are curved surfaces. This is 

particularly important for the present method, since the elements c m  be much 

larger then those used for a finite element method Say, and boundary approxima- 

tion errors can become in this case important, as has been demonstrated numeri- 

cdly by Atkins [67]. Second, the map must be simple enough and cost effective, 

such that it can be constmcted in only a fraction of the time needed by the solver 

itself. Third, it is useful if the mapping for any number of Gauss points N can be 



automatically generated by the aigorithm itself using only the underlying element 

mesh. The element mesh can then be read in typical finite element format, which 

specifies the total number of 'nodes' (in this case the element corners), the total 

number of elements, and the connectivity table that associates to each element its 

respective corners (four for d = 2, eight for d = 3) in a prescribed order. The 

element mesh does not need to have any structure, any number of elements being 

allowed to join together at a corner. This aliows the use of a single element mesh 

to be used to study severd different frequencies, since the proper number of grid 

points per wavelength cm be obtained by changing only N in the data file. 

To obtain such a mapping, it is reasonable to consider that the element mesh 

is such that element edges are smooth curves, and eIement faces are smooth sur- 

faces. Then, the Chebyshev spectral approximation developed in chapter 2, which 

satisfies the above criteria, cm be used to obtain interpolants of these manifolds as 

will be descnbed hereafter. A complete isoparametric map within the element c m  

then be obtained from these interpolants using Boolean surns [68]. It specifies the 

position of the state vector and flux definition points inside and on the boundaries 

of the element, as well as the metrics terrns at these points. The main aspects of 

this process are described below. 

5.1.2 Edge grids 

To keep the spectral accuracy of the method, the geometry of the edge is supposed 

to be known exactly. In this case, it can be specified in the usual parametrk form 



and its length is given by 

Noting that the interval [- 1,1] can be  transformed into the interval [O, L] by 

the linear application E = 2l/L - 1, where t' is the arc length dong  the edge, a 

one-to-one mapping from the unit interval ont0 the edge can be defined as 

and the image of the Lobatto points set IL on the edge c m  be found as 

To have a sufficiently general algorithm, these points are used to define the 

N-th degree Chebyshev interpolant of the edge as 

It is this interpolant that is actually used in the computations, and not the mapping 

in equation (5.3). The reason for this is twofold. First, there may be instances 

when the edge is not known in the pararnetric form (5.1). Instead, and this is 

the case in usual engineering applications, a set of points on the edge are usuaily 

given in the form (xl , x2 (xl ) , x3 (xI)) - Here xl can be, by extension, any of the 

three space coordinates, and it is supposed that xi E [-1,1] which is always 

possible by a linear transformation as above. Then, the parametric mapping in 



equation (5.3) is replaced by a spline interpolant $), frorn which the Chebyshev 

interpolant follows from equation (5.5). Second, the Chebyshev interpolant can 

be differentiated easily to obtain the needed metrics, using the formulas developed 

in chapter 2. 

Several parametric forms have been implemented in the algorithm to provide 

edge descriptions. For both d = 2 and d = 3, straight lines and circles can be 

defined, in the first case by specifjhg the end points (which are also the edge 

corners) and in the second by speciQing also the position of the center. A general 

pararnetric form can also be specified for the case d = 2, as a functional expres- 

sion of the parameter T ,  which is parsed using a parser developed by hof.  D.A. 

Kopriva at Florida State University and translated into the comesponding com- 

puter instructions. When only discrete point sets are known on the edges, splines 

under tension are the last alternative provided for d = 2. Obviously, in this case, 

the mapping is not truly isopararnetric, and spectral accuracy can no longer be 

obtained due to the lack of physical information. It should be also noticed that for 

d = 1 the edge is actually the element itself. 

5.1.3 Facegrids 

Following Gordon and Hall [68], the edge Chebyshev interpolants are used to 

build a multidimensional surface interpolant for the face. This face interpolant is 

required to coincide with the edge interpolants dong face boundaries. Consider 

that the two coordinates that Vary dong the face are E and q, such that its bounding 

edges are E l ( <  = c0 = -1), E2(E = tN = l), &(î) = q0 = -1) and E r ( q  = 

9N = 1). The edge interpolants &y), i = 1, . . . ,4, are then obtained as describecl 

in the previous section. 



A continuous mapping i$(d that coincides with the end edges E l  and E2 

for < = <O and < = eN, respectively, cm be defined by interpolating the edge 

mappings in the J direction 

where the A's are two univariate functions such that &(ci) = 6,- In this thesis, 

they have been chosen such that the interpolant is linear, 

This mapping will not coincide, however, with the edge mappings on E3 and E4- 

A sirnilar interpoIant in the v-direction cm be used to match these two edges, 

w here 

A product of the two mappings c m  be constructed that matches the edge map- 

pings only at the four corners of the face (CO, vo), (<O, vN), (tN, 77') and (cN, 17N) 
by : 

~ C V  KT i l )  = zc (<, 77) - % (L 7)) (5.10) 

To match the edge mappings dong d l  the face boundary, the face interpolant is 



then defined as the Boolean sum 

This is the basic construction for transfinite interpolation [68]. Following FIetcher, 

equation (5.1 1) is implemented in two stages. In the first stage, the interpola- 

tion in equation (5.6) is perfomed. In the second stage, the face interpolant is 

constructed as 

To compute grid metrics, or equivalently the face normais, it is again useh1 to 

express &(<, 9) using the Lagrange interpolants. Based upon the tensor product 

of Lobatto points 22 = &(c, b), the numencal form of the interpolant actually 

used to define the face geometry is: 

For most situations encountered in practice, computing the position of the face 

Lobatto points from the edge mappings using transfinite interpolation as above is 

appropriate. In situations when this is not the case (as for example when the face, 

although smooth, contains local humps well within its boundaries) the algorithm 

provides the possibility that the complete set of Lobatto points 32 be sspecified in 

a data file, from which the face interpolant (5.13) is obtained directly. 



Domain mappings can be constmcted from face mappings using three dimensional 

transfinite interpolation. Consider the genenc element D with faces FI, F2> . . . F6 

corresponding to c = 9, E = cN7 . . . , C = cN, respectively. Taking into ac- 

count the respective local coordinates, the numerical face rnappings are Z$$) (7, C), 

(O, C) , $&) (5 ,  Ç) (E ,  C) . gg' (E ,  il) and $!$? (L il) - The nahird extension 

of equation (5.1 1) to three dimensions is then [68] the Boolean sum 

The corresponding uni-dimensional interpolants for the faces (face projectors) are 

where, sirnilar to 11 and O, 

The reason for subtracting the edge interpolants ZE, (E,  r) ,  C), etc., from the Boolean 

sum is that each face interpolant will bring its own image of its bounding edges. 

Therefore, two edge images will otherwise appear in equation (5.14) from the two 

faces that have the edge in common. A similar reasoning applies for Zc,&, 7, C)  



which interpolates the dornain corners. 

Equation (5.14) is implemented in three steps. In the first step, the interpolant 

3CI (ci 7, C) = Zc (c7 q7 <) is constructed. In the second step, this interpolant is used 

to define 

in a similar way to equation (5.12). The last step is to obtain the domain mapping 

as 

From this mapping, the Lobatto point locations within the element D can be com- 
-i jn - puted as the image x, - ifD (c, $, Cn). The corresponding numerical mapping 

constructed with this set of points, 

N N N  

is used to compute the denvatives needed in the computation of the first Jaco- 

bian (2.81, as well as to obtain the position of the set of state vector collocation 

points within an element. 



5.2 Increasing the tirne step by mapping 

5.2.1 New interpolation and differentiation operators 

The differentiation matrix D has eigenvalues that grow like 0 ( N 2 ) ,  being pro- 

portional to the reciprocd of the minimum grid spacing, as discussed in sec- 

tion 3.7. The quadratic clustering of the grid points near the end of the interval 

is required to avoid the oscillations that occur when high degree polynornials are 

used to approximate smooth functions (the Runge phenornenon). However, the 

time step size that also decreases quadratically with N rnight be smdler than the 

one dictated by the physics of the problem. To increase the minimum spacing, and 

hence the time step, one possibility is to work with non-pofynomial bases. Such 

a method has been developed by Kosloff and Tal-Ezer [70]. They introduced a 

mapping of the interval [-1,1] on itself that tends to equi-distribute the Lobatto 

points within the interval. Derivatives are computed in transformed space using 

standard Chebyshev polynomials, which is equivalent to using a non-polynomial 

basis in the physical space. The grid size in physical space, and hence the time 

step, decrease however as  O ( N ) .  The Kosloff-Tal-Ezer mapping has been used 

in the context of the staggered grid approximation by Bismuti and Kopnva [71], 

They perform the transformation on the goveming equations themselves. A dis- 

tinct possibility, easier to implement in the algorithm since it only requires the 

modification of the differentiation matnx D and the interpolation matnx 1, which 

are computed only once, is described below. 

The Kosloff-Tal-Ezer transformation from E E [- 1,1] to X-space (x E [- 1, l]), 



where the derivatives are acnially computed in this case, is given by 

arcsin (mx) c =  arcsin(w) ' = S(X; 

with a a parameter that will be discussed subsequently. For a given function f ,  

the chain rule of differentiation gives 

If the Lobatto points are now chosen in X-space as 

the position of the corresponding images will depend on the value of the pa- 

rameter r ~ .  The two limit cases are m = 1, which corresponds to equi-distant 

nodes as for Fourier methods, and w = O, in which case will be the Lobatto 

points. Hence, a value of w larger than zero will bring about an increase of the 

minimal spacing in c-space, and consequently a larger time step. In this section, 

ej will be used henceforth to denote the position of the points obtained from 

for a fixed value of a. 

For the staggered grid approximation, the initiai data are the values of the 

state vector at the set of Gauss-Chebyshev points $. The first step of the Spa- 

tial discretization is to interpolate the data to the points p. To accomplish this, 

the interpolation matrix 1 in equation (2.23) must be modified to reflect the new 



position of these points, its entries being given now by 

2 lV-' 1 
= c c, COS (1" (1 - $$) ) cos (1 aiecos(r))  

[=O 

where n = O, .. . , iV and i = 1,. . . : N. 

For differentiation, values of the derivatives at the points 9 are needed. They 

must be cornputed using the function values at the points { j .  When considered in 

the X-space, denvatives based on function values at the points Xj are needed at 

the image of the Gauss-Chebyshev points 9. These images are given by 

- sin (@ arcsin(w) ) 
x j  = 

w 

Supposing now that the differentiation matrix in X-space is Dx,  such that the 

denvative of a generic function can be written as 

then the needed denvative, taking into consideration equation (5.2 I ) ,  is given by 

The differentiation matnx D X  can be constructed similar to matrix D in chapter 2. 

The above relation then shows how it must be modified to act directly on the values 

at J" and thus replace matnx D in equation (2.26). 



Working with a non-polynomial b a i s  in < bnngs dong a decrease in accuracy. 

Kosloff and Tal-Ezer [70] show that this is however compensated by an increase 

in the resolution of the high modes. This may be beneficial for wave propagation 

problems because it reduces the requirements of number of points per wavelength, 

which decrease from s points per wavelength in the case m = O (Chebyshev ap- 

proximation) to two points per wavelength when m = 1 (Fourier approximation). 

A way to choose the value of E such that the loss in accuracy inherent in the 

transformation is of the order of the machine precision is also presented in [70]. 

This corresponds to setting 

and is the forrn that has been implemented in the algonthm. In this formula, E 

c m  be chosen to be the machine precision when there are sufficient points per 

wavelength to resolve the highest modes with the Chebyshev approximation. This 

can still lead to an increase in the time step for large enough values of N .  As an 

alternative, when this proves too expensive, E can be given a slightly higher value, 

such that the transformation reduces the number of necessary gnd points. 

5.2.2 Numerical experiments 

To test the performance of the staggered grid spectral method with the use of the 

Kosloff-Tal-Ezer transformation, the linear convection equation (3.12) is solved 

in the domain x E [-30,110] with several values of E in (5.27). Two separate 

discretizations have been considered. In the first case, the domain is divided into 

E = 8 elements, with N = 20 Gauss-Chebyshev points per element. In the 



second case, E = 16 and AT = 10. Integration in time is performed up to t = 60. 

Results for the accuracy and the relative computer time (with the Chebyshev case 

taken as reference) in the two cases are given in tables 5.1 and 5.2. 

1 Chebyshev 1 0.W / 3.46e-4 1 
1.e-16 0.309 4.48e-4 0.97 

Table 5.1 : L, error n o m s  and relative computer time for various mappings. Dis- 
cretization: E = 8 and N = 20. 

Table 5.2: L, error norrns and relative computer time for various mappings. Dis- 
cretization: E = 16 and N = 10. 

E 

Chebyshev 

It foIlows from these resufts that the method becomes more advantageous as 

the value of N increases. For three dimensional computations, however, the sav- 

- 

a 
0.000 

ings in computer time can become important even for values around N = 10, 

which are expected to be comrnonly used. 

- - -  

L,  
2.14e-3 

CPU time 
1 .O00 



Chapter 6 

Numerical results 

6.1 Subsonic flow in a 2D channel 

The first computation performed with the algorithm was aimed at testing the grid 

generation routines and the convergence of the method when computing steady 

flows. To this end, the flow over a circular bump in a channel that has been d s o  

used in the paper that introduced the staggered grid approximation [33] was com- 

puted on two different grids. For both grids, the circular bump is described using a 

parameterization of the circle that is obtained within the algorithm from the given 

position of the center and the arc endpoints. For the first grid, al1 other edges are 

straight lines, while for the second grid several interna1 edges are specified using 

splines under tension. The inflow Mach number is h1, = 0.3, and the number of 

Gauss points per element has been varied between N = 7 and N = 9. Spectral 

accuracy with increasing N has been reported for this case in [33]. In general, 

less accurate Euler solutions on this geometry fail to provide a symmetnc solution 

over the burnp [43], and a horseshoe vortex appears at the trailing edge due to the 



numericaily generated entropy. The grids obtained with the transfinite interpola- 

tion routines for N = 8, together with the corresponding solutions, are shown 

in figures 6.1 and 6.2. The convergence history for C = 2 on the second grid is 

given in figure 6.3 for iV = 7. As can be seen, the residual could be decreased by 

fourteen orders of magnitude, although the required number of time steps is rela- 

tively high. No technique for increasing the time step has been used in this case. 

No horseshoe vortex appears at the trailing edge, and to the resolution ailowed by 

the plotting prograrn (which considers variables varying only linearly between the 

grid points) the solution can be considered perfectly syrnmetric. 

6.2 Acoustic pulse in a 2D quiescent medium 

This type of problem has been proposed by Tarn and Webb [21] as a test of the 

isotropic properties of numerical algorithms for computational aeroacoustics and 

of the boundary conditions. The pulse is initialized at t = O at the point (x = 

O,Y = O) in the computational domain (x, Y) E [-50; 5012, the coordinates being 

non-dimensionalized such that the width of the pulse is $ = 3. The acoustic 

variables have a Gaussian distribution of the forrn: 

P - F  

P - P  

Ul - Vl 

V2 - ü2 



There is no mean flow in the computational domain, such that vl = V2 = M, = 0. 

The pulse spreads like a cylindrical wave, propagating with the non-dimensional 

sound speed c, = 1, such that at time t = 47 it starts impinging on the domain 

boundaries, and leaves the domain cornpletely at approximately t = 75. The 

computation is accomplished on a grid made of 100 elements, with N = 7 Gauss 

points per element. Both the FWM and TW have been used as radiation boundary 

conditions. In this case, no filter was necessary for stability for the TW method. 

Figure 6.4 shows the pulse immediately afier its initialization, at time t = 5. 

A comparison of the computed acoustic pressure dong the Iine y = 7.169 at 

time t = 30 with the exact solution obtained from the linearïzed Euler equations 

is given in figure 6.5. Figures 6.6 and 6.7 show the acoustic pulse at time t = 

55, computed with the FWM and TW, respectively. In both these figures, 10 

contours of the acoustic pressure in the interval [-4-  IO-^, 8.10-~] are plotted. The 

circular form of the contours and the Iack of oscillations near the boundaries are 

an indication that the boundary conditions dlow the puIse to cross the boundaries 

without reflections. It can be noticed however that there are srnall deviations from 

the circular shape of the contours near the corners of the domain in the results 

obtained with TW. Although the reflections are very srnall, this is an evidence of 

the fact that the FWM is more adequate for use with the staggered grid method 

than TW. 

6.3 Two-dimensional flat ducts 

One of the most important requirements for a nonlinear acoustic solver is that 

it must reproduce correctly results obtained from the linearized version of the 



equations when the amplitude of the perturbations is sufficiently small. A very 

useful test problem, featuring al1 the difficulties encountered in the computation 

of fan noise radiation, is therefore the flat duct radiation problem. The flat duct 

is a semi-infinite duct with zero thickness, completely rigid, walls. For the cases 

considered here, there is no flow in the computational domain, &lm = O. A 

duct acoustic mode propagates in the positive x direction (to the right) from x = 

-W. Upon reaching the duct aperture, situated at x = O, a part of the acoustic 

energy is reflected back within the duct, the rest radiôting to free space in a way 

that depends on the incident mode and its driving frequency. The problem is 

represented schernatically in figure 6.8. 

Andytical results for the Iinearized problem have been obtained by Mani [14], 

who solved the Helmholtz equation using a Wiener-Hopf technique. To match the 

andyticd results, the numerical algorithm must correctly reproduce the acoustic 

scattering from the aperture. Due to the finite size of the computational domain, 

the infinite extension of the duct to the Ieft is modeled by the boundary condition 

at the source plane. The left-propagating waves scattered from the aperture rnust 

exit the domain at this location without reflection. Since this is only ensured by 

the Riemann problem solution, without other special treatment, the resutts also 

validate this approach. The radiation boundary conditions are also tested by com- 

paring the directivity on the radiation boundary with the far-field analytical results. 

The cornputational domain for this case is (x, y) E [-3,5] x [-5,6], the ref- 

erence length L being the duct cross dimension. The duct walls are sihlated at 

y = O and y = 1. The amplitude of the incorning waves in equation (4.2) was 

specified as A = 10-~, and the non-dimensional driving frequency w = 15 is the 

sarne that has been considered by Dong et al. [72]. The computational domain is 



subdivided into 88 quadnlateral eiements of size 1 x 1, with 13 Gauss-Chebyshev 

points within each element. This domain discretization gives an average of 5.4 

points per wavelength, with a total of 14872 points within the domain. 

Figure 6.9(a) shows the cornputationd domain and the Gauss-Chebyshev points 

grids for the elernents inside the duct. To achieve a periodic flow field, the solu- 

tion has been marched for 2000 time steps with a four stages Runge-Kutta scheme. 

This required about 13 minutes on one Rlûûûû CPU with 195 MHz dock speed of 

a Silicon Graphics Origin 2000 machine, which gives 24ps per grid point per time 

step. Since the domain boundary is not a circle, the two-dimensional spreading of 

the wave must be compensated for by multiplying the root mean square pressure 

3' on the boundary of the domain with the factor r1I2. Hence, the directivity pat- 

tern is obtained by normalizing Y x rl/* such that the maximum corresponds to 

100dB. The root mean square pressure is obtained as 

where T = 2 r / w  is the period of the wave, the integral being approximated nu- 

merically. Figures 6.9(b)-(d) display directivity patterns thus obtained for the 

plane wave and the first two cross modes, compared to the andytical solutions 

by Mani [14]. The radiation boundary condition used to obtain these results is 

the FWM, with the location of the source specified at the middle of the duct aper- 

ture. As can be seen, the agreement is very good, aithough some small reflections 

c m  be observed at the left hand side comers of the domain. Figure 6.10 presents 

acoustic pressure contours for the first two cross modes. 

The results obtained with characteristic boundary conditions for this problem, 

although meaningful, feature much larger reflections at the comers of the domain. 



They are compared with those obtained with FWM in figure 6.1 1. The TW bound- 

ary condition was unstable unless a filter was used for the layer of elements next to 

the boundary. The results with filtering were in general slightly less accurate than 

those obtained with the FWM, as can be seen in figure 6.12. Both the sharpened 

raised cosine filter and the exponential filter (order ten) led to identical results. 

To demonstrate the efficiency of the absorbing layer when used with the FWM, 

directivity patterns for the first cross mode calculated with very srnall damping 

(darnping pararneters: c r ~  = 2.5 and /3 = 1) and without darnping are compared 

in figure 6.13. Practically no more reflections from the boundaries can be no- 

ticed, and the agreement with the exact solution becomes excellent. The effect of 

the absorption can be seen better on figure 6.14, where contour plots of the RMS 

pressure are drawn using the data at Gauss-Chebyshev points. The acoustic signal 

decreases rapidly in magnitude inside the darnping layer, such that the amplitude 

of the waves that reach the boundary, as well as that of the eventual reflections, is 

negligible. 

6.4 Axisyrnmetric flat ducts 

The axisyrnmetric flat duct duct problem has been used in the second cornputa- 

tional aeroacoustics workshop on benchmark problems [73] to test the capability 

of numerical algorithms to compute radiation from cylindrical ducts. The prob- 

lem, sirnilar to the 2D case, is however more difficult to solve numerically, in the 

sense that it requires larger computationd domains to avoid boundary refiections 

when the FWM and TW are used as radiation boundary conditions. AnalyticaI 

results also exist for this case, obtained by Savkar [15]. They have not been used 



for comparison in this thesis because some of the complex integrals involved are 

particularly difficult to compute and require special numencal treatment. Instead, 

analytical results for the directivity of a plane circular piston vibrating in the same 

radial mode as given by Tyler and Sofrin [6] are used for cornparison with the 

computed directivity pattern, obtained in this case using Y x r on the boundary 

of the computational domain, due to the spherical spreading of the wave. This 

quantity is normalized to peak at 1ûûdB. Since the results for the circular piston 

do not take into consideration the existence of the duct walls and the reflections 

from the duct aperture, agreement is expected to be less perfect, as can be noticed 

in figure 6.15 for the plane wave, mode (0,0), and the first radial mode (0,l). For 

this case, the duct radius is taken as the reference length, and the non-dimensional 

angular frequency is w = 10.3. The computational domain extends 9 radii from 

the duct exit in the axial direction and 9 radii from the axis in the radial direction, 

and is made up of 162 elements on which 10 Gauss-Chebyshev points have been 

used. Acoustic pressure contours for the two modes are shown in figures 6.16 

and 6.17. The TW boundary condition has been used for these results, with the 

sharpened raised cosine filter in the boundary elements. 

6.5 Fan flight inlet 

To test the full capabilities of the d = 2 algorithm, the geometry of a turbofan 

inlet currently under production at Pratt & Whitney Canada has been considered. 

Cornputations have been performed only for axisymmetric modes, at the blade 

passage frequency (BPI?), both with (1W- = 0.2) and without (Ad, = 0) flow. 

The source plane within the inlet was located before the end of the center body, 



at a position where the inlet shroud radius is 13.7in (taken as the reference length 

for non-dimensionalization) and the hub-to-tip ratio is 0.423. The angular speed 

N = 12000rpm leads to a BPF of 3800 Hz (the number of blades is B = 19) and a 

reduced frequency w = 24.4. The acoustic pressure amplitude at the source plane 

was set to A = 0.01, which is 1.4 percent of the absolute pressure at infinity, 

p, = l ly .  The computation is therefore close to the limit of validity of Iinear 

results. The element mesh contains 358 nodes and 3 14 eIements, and the number 

of Gauss points used was between N = 10 and N = 13. Based on the largest 

element size and taking the convection effect into account when there is a mean 

flow, this leads to an average number of points per wavelength varying between 

three and six. A view of the spectral rnesh in the region of the inlet, obtained 

from a splines under tension description of the hub and casing, is provided in 

figure 6.18. 

For the case without flow, the plane wave and the first three radial modes have 

been studied. To achieve a periodic solution, the solver has been marched in time 

until t = 30, which needed about 11,000 time steps. A snapshot of the acoustic 

pressure for the BPF(0,L) mode is displayed in figure 6.19. The interior limits of 

the darnping layer are also displayed in this figure, such that the evanescent pres- 

sure amplitude can be noticed. A relatively large value for the darnping parameter, 

ofil = 120 has been used for the computations. The acoustic energy is mostly ra- 

diated sideways, the main lobe being directed away from the duct axis. Using a 

Wiener-Hopf technique, Rice [74] showed that, for cylindrical Rat ducts, the angle 

of the far-field peak radiation, QR, depends mainly on the proximity of the mode 

to cut-off, and provided a formula to compute it. Denoting by c = wlk,, the 



cut-off ratio, the formula established by Rice is 

Although the geometry of the inlet is significantly different from the ideal case 

considered by Rice, this formula was found to predict the main lateral lobe angle 

quite accurately. The result obtained from equation (6.3) is compared with the 

angle obtained from the numerical computation in tabIe 6.1. The analytical result 

can be seen to constantly over-predict the numerical result by about one degree, an 

eKect that cm be anticipated because of the converging shape of the inlet towards 

the leading edge of the casing. 

1 Present method 1 O 1 10.7 1 22.6 1 35.8 1 

Mode 
Formula (6.3) 

Table 6.1 : Main lateral lobe angles for BPF, M, = 0. 

A mesh refinement study has been performed for the BPF(0,l) mode by chang- 

ing the number of Gauss-Chebyshev points, N. As the root mean square pressure 

P can be very small in certain regions of the computational domain, reaching val- 

ues of the order of the tmncation error of the cornputed value which is the total 

pressure p, an effect similar to that in figure 4.1 c m  be expected to appear at el- 

ement interfaces. This is actually the case, as can be seen in figure 6.20. These 

discontinuities at interfaces decrease exponentidly with N ,  but it cm be appreci- 

ated that the results for the lowest value N = 10 already provide a correct picture 

of the radiated field. The convergence of the results with the number of mesh 

(Om 
O 

0 ,  1 ( 2 )  
1 1.9 1 23.6 

@,3) 
37.0 



points can also be noticed in figure 6.2 1, which displays the corresponding far 

field directivity. 

For the fonvard flight case, the rnean flow was computed using an imposed 

outlet pressure at the source plane equal to O.%. Only N = 10 points have been 

used for this computation. The solution was marched in time until the residual de- 

creased fourteen orders of magnitude. The computed mean flow Mach contours in 

the inlet region are displayed in figure 6.22. This steady state, saved to a file, con- 

stitutes the initial condition for the computation of acoustic propagation. The sarne 

BPF(0,l) mode is used here to exemplify the effects of the non-uniforrn mean fiow 

on the far-field radiation. The major radiation lobe shifts towards the axis for the 

fonvard flight case, for the BPF(0,l) mode the peak radiation taking place now 

exactly dong the inlet axis. Acoustic pressure contours for this case are displayed 

in figure 6.23. The effect of the flow is clearly visible in this figure, the wavelength 

of the sound wave being shorter when it propagates against the flow (to the nght) 

and larger when it propagates downstrearn with the flow. At infinity upstrearn, the 

ratio between the wavelength with and without flow is 1 - M , ,  = 0.8, while at 

infinity downstrearn this ratio is 1 + Mm = 1.2. The scale of wavelengths present 

in the flow-field is however larger, due to the higher Mach number (close to 0.4) 

in the region of the leading edge of the casing, such that for this number of Gauss 

points it cm  be expected that the wave-field is slightly under-resoived, and the 

inter-element discontinuities discussed previously are more obvious. This can be 

noticed in figure 6.24, where root mean square pressure contours on a logarithmic 

scale (proportiond to the sound pressure level) are presented. Due to the loga- 

rithmic scale, the effect of the damping layer can be observed clearly. Inside this 

layer, largest reflections are seen to occur frorn the corners, but are many orders 



of magnitude lower in amplitude than the incident waves. 

The obtained far-field directivity pattern is shown in figure 6.25 in cornpari- 

son with the no flow case, both relative to the source amplitude. Qualitatively, 

the main effects of forward flight are the same as observed in experiments [75], 

narnely lower sound pressure level for the flight case, and a shifi of the main lobe 

angle towards the axis. A quantitative study implies a 3D solution because exper- 

imental results pertain to higher order modes, as for example BPF(13,0), which 

can not be modeled with the present method in a 2D setting. 

6.6 Generic turboshaft engine inlet 

This section presents results for the 3D propagation of spinning modes inside a 

simplified mode1 of a helicopter turboshaft engine inlet, for which both experi- 

ments and computations using a boundary integral method have been carried on 

at ONERA [76]. The curved duct used to mode1 the geornetry is made up of three 

parts. Using the duct radius & for non-dimensionalization, the source plane is 

located at the beginning of a straight circular duct 11.76 units long. The axis of 

symmetry of this cylinder is taken as the x axis. The cylinder continues with a 

toms of intemal radius 0.6 and extemal radius 2.6, and another straight duct 0.66 

units long, from the exit plane of which sound is radiated into free space. 

A frequency of 1000 Hz is considered, which corresponds to a non-dimensional 

angular frequency, wRo/c, of 2.772. Both the propagation of mode (0,O) (plane 

waves) and mode(l ,O) (first azimuthal mode) are analyzed. The mesh used for the 

computation is illustrated in figure 6.26. It is made up of 71 elements, with 25 

elements within the pipe. The mesh within the elements is obtained using only 



a description of the edges in tems of circular arcs. The number of points per 

wavelength was varied between five and six (iV = 9 to N = Il), without any 

noticeable changes in the results. Figure 6.27 shows snapshots of the acoustic 

pressure for the considered modes. 

For this computation, characteristics boundary conditions have been used at 

radiation boundarïes. The primary interest was in the RMS pressure distribution 

in the duct exit plane, contour plots of which are presented in figure 6.28 for the 

plane wave and figure 6.29 for the first azimuthal mode, respectively. For the 

plane wave case, the RMS pressure field is symmetric with respect to the xz plane 

(the plane of symmetry of the duct), and there are only slight variations in sound 

pressure level on the duct exit plane. For the first azimuthal mode, the symmetry 

no longer exists, and the variations in RMS pressure on the duct exit plane are 

rnuch larger. These results, as well as the shape of the RMS pressure contours, 

agree well quditatively with those obtained by Malbéqui et al [76]. For a quan- 

titative cornparison, the root mean square pressure directivity data computed by 

Malbéqui et al using a boundary integral ( B I ' )  method, as wetl as experimen- 

ta1 data presented by the sarne authors have been digitized and are presented in 

figure 6.30 together with the results of the present computation. The latter have 

been computed on a sphere with radius 5&, in the x = 13.36 plane (which goes 

through the center of the disc at the duct exit). As can be seen, the agreement is 

very good, especially when considering that the root rnean square pressure is a 

much more sensitive quantity than the sound pressure level. 

To a first approximation, the operation count is asymptotically proportional to 

?V" in three dimensions, and varies linearly with the number of elements. How- 

ever, this does not accurately account for the transmission of data between the 



element-indexed data structure and the face-indexed one. An estimate about the 

needed computational resources can be obtained using the CPU time per time 

step per grid point, which for exarnple for the present grid with N = 11 Gauss 

points was 64.5 ps on the same R10000/195MHz processor as above, when a five- 

stage Runge-Kutta scheme was used. The whole computation lasted about fifteen 

minutes on four processors on an Origin 2000 machine. The speed-up obtained 

by using several processors was, however, dependent on machine architecture, as 

can be noticed from figure 6.3 1. Speed-ups closer to the ideal could be obtained 

on bus architectures, such as the Power Challenge. On S2MP architectures, as 

the Ongin 2000, the large multi-dimensional arrays used to store element values 

caused many cache misses, and the speed-up was visibly under the ideal value. 

When considering the results in figure 6.3 1, it must be, however, appreciated that 

the problem size is very small, and this is a primary cause why the performance 

detenorates rapidly. For example, the loop over the acoustic source faces cannot 

be efficiently run in parallel since there are only five faces of this kind. Increas- 

ing the nurnber of Gauss points N ,  as well as the size of the problem (number of 

elements and faces), should bring about a better parallel performance by allowing 

more work to be executed concurrently. 



Figure 6.1: Mach number contours and first &d for the channel with a circular 
bump. 

Figure 6.2: Mach number contours and second grid for the channel with a circular 
bump. 
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Figure 6.3: Convergence history for the second grid, N = 7. 



Figure 6.4: milse at time t = 5 (acoustic pressure contours). 

Figure 6.5: Cornparison of the numerical solution for the propagation of the acous- 
tic pulse at time t = 30 dong the line y = 7.169 with the exact solution obtained 
from the linearized Euler equations. 



Figure 6.6: Acoustic pressure at time t = 55, computed with the FWM. 

Figure 6.7: Acoustic pressure at time t = 55, computed with TW. 
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Figure 6.8: Schematic representation of the flat duct radiation problem. 



Figure 6.9: Radiation from slab-symmetry Bat duct, (a) Computational domain, 
grids shown in the domains inside the duct (b) Plane wave directivity pattern (c) 
First cross mode (d) Second cross mode. 



Figure 6.10: Acoustic pressure contours for the two-dimensional flat duct: first 
cross mode (left) and second cross mode (right). 

Figure 6.1 1: Directivity for the first cross mode computed with FWM and charac- 
teristic boundary conditions. 



Figure 6.12: Directivity for the second cross mode computed with FWM and TW. 

Figure 6.13: Directivity for the first cross mode computed with FWM, with and 
without the darnping layer: cornparison to the anaiytical solution. 



Figure 6.14: RMS pressure contours for the first cross mode: FWM (left); FWM 
pIus an absorbing Iayer (shown) with a~ = 2.5 (right). 

Figure 6.15: Direc 
analytical solution 
mode (0,O). Right: 

:tivity pattern for axisymrnetric duct radiation, compared to the 
for radiation from a plane circular piston. Left: plane wave, 
first radial mode (0,O). 



Figure 6.16: Acoustic pressure contours, axisyrnmetric (0,O) mode. 

Figure 6.17: Acoustic pressure contours, axisyrnmetric (0,l) mode. 



Figure 6.18: Multidomain spectral rnesh for the fan flight inlet in the inlet region. 

Figure 6.19: Acoustic pressure contours for the fan inlet, BPF(0,l) mode, 
& =o. 



Figure 6.20: Root rnean square pressure contours for the fan inlet, BPF(0,l) mode, 
1M, = O: (a) iV = 10; (b) N = 11; (c) N = 12; (d) N = 13. 



Figure 6.2 1: Far field directivity for the fan inlet in the BPF(0,l) mode, A&, = 0, 
as a function of the number of Gauss-Chebyshev points. 



Figure 6.22: 
case. 

.Mach number. forward ( M = 0 - 2 .  p-in'0.7-p-infinity) flight 

16 contours. max=O.6005. min=O.OO;? 

Mach number contours for the fan inlet, M = 0.2 forward Right 

1 Acoustic oressure contours. BPF, Y-0.2 

1 10 contours Zrom - 9 . 1 ~ - 7  to 9.c-6 

Figure 6.23: Acoustic pressure contours for the fan inlet, M = 0.2 forward flight 
case. 
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Figure 6.24: Sound pressure levels contours for the fan idet, M = 0.2 forward 
flight case- 

125 ( 
i I I I 1 1 

M=O (no flow) - 
M=02 flow - - 

Figure 6.25: Far field directivity for the fan inlet in the M = 0.2 forward flight 
case and in the no mean flow ( M  = 0) case. 



Figure 6.26: Wire frame of the mesh used for the turboshaft inlet model. 

(a) Plane wave (b) First azimuthal mode 

Figure 6.27: Snapshots of the acousric pressure for the turboshaft inlet model. 



Figure 6.28: RMS pressure contours in the duct exit plane for the turboshaft en- 
gine model, plane wave. 

Figure 6.29: RMS pressure contours in the duct exit plane for the turboshaft en- 
gine model, first azimuthal mode. 



Figure 6.30: RMS pressure directivity in the x = 13.36 plane for (a) plane wave 
@) first azimuthal mode. Full line, present solution; squares, BIM computation 
(Malbéqui); asterisks, experiments (Malbéqui). 
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processors 

Figure 6.3 1: Speed-up obtained from parallelization on different architectures for 
the turboshaft engine inlet, N = 11. 



Chapter 7 

Accounting for known mean flow 

7.1 Introduction 

The method previously developed can be used to compute sound propagation 

when the mean flow itself is a solution of the steady-state Euler equations ob- 

tained by the sarne solver, and with the same discretization (number of elements, 

E, and Gauss points, N). This is not always practical, for different reasons. For 

example, it may be desirable to compute the mean flow by another Euler solver, 

which could converge faster than a spectrd method, or on a different grid, since 

the rnean flow needs not be computed to the sarne high precision as the sound 

field. Also, the mean flow can be governed by viscous effects which, while not 

largely affecting sound propagation, rnay stiIl make a Navier-Stokes solver more 

appropriate. Another such situation arises when the mean flow is known from ex- 

perirnents. It is considered here that a mean flow provided by one of these means 

cm be interpolated ont0 the grid used for aeroacoustic cornputations. This inter- 

polated solution, designated here as the 'known mean flow7, must be accounted 



for when solving for noise propagation. 

One of the most straightforward ways to account for a known mean flow is to 

linearize the governing equations around it, considering the acoustic perturbations 

small enough that second and higher order terms in these quantities are negligible. 

Such an approach has many advantages and is valid for most aeroacoustic prob- 

lems. There are, however, situations when the nonlinear terrns must be accounted 

for. This chapter descnbes an algorithm, obtained by a slight modification of the 

one presented in chapter 2, that allows the computation of nonlinear acoustic per- 

turbations on a known rnean flow. This aigorithm is tested on a jet noise problern, 

for which the mean flow is known from experiments. 

7.2 Equations and algorithm 

To obtain an appropriate set of equations for the acoustic quantities, a necessary 

condition is for the known mean flow to yield the steady-state solution of the 

goveming equations. In general, there is no reason why this should happen, and 

the steady state equations discretized by the spectral algorithm will give: 

with the residud 3 different from zero. 

When this equation is discretized using the spectral method described in chap- 

ter 2, Q is the known mean flow at the Gauss points, and 4 are the corresponding 

flux cornponents, cornputed at the Gauss-Lobatto points by the interpolation pro- 



cedure. Considering now a set of goveming equations modified as 

it is easy to see that, when the steady solution is obtained (a/% = O), they become 

which is satisfied by the known mean fiow, conforming to equation (7.1). This 

shows that the known mean flow is a steady state solution to equation (7.2), which 

is equivalent to 

and shows that the perturbations of interest, Q - Q, satisQ an equation of the 

same form as the Euler equations (2.1), with the exception that a source term 

coming from the spatial derivatives of the known mean flow fluxes is present on 

the right-hand side. 

The source term can be easily computed, using the staggered grid method, 

from the known mean flow at the start of the computation. Since the vector Q is 

not the vector of primitive variables, but the conserved quantities, acoustic per- 

turbations, as for example p - p, must be computed from Q - Q at each time 

step. The parailel algorithm presented in section 2.8 can then be adapted to solve 

equation (7.2) as follows: 



for e=l to number-ofelements dosaralie1 
interpolation (Lmean, e) ; 
F m e a n  := cornpute-fluxes(O..mean,e) 

end£ or; 

for t=l to Max-Tirne-Steps do 
f o r  e=l to nlumber-of -elements do-parallel 

interpolation(Q,e) 
endf or; 
for f=l to number-of-faces do-parallel 

if ( interface) then 
( L , R , f )  := inversemap(Q,e) ; 
Riemann-solve ( L , R , f ) ;  

(Q, e) : = map (L, R, f 
else 

impose~boundary~conditions(f) 
endif 

endf or; 
for e=l to number-of-elements dosarallel 

F := cornpute-fluxes(Q,e) - Fmean; 
dif£erentiation(F,e) 

end£ or ; 
computeacoustic_pressure(Q-Q-mean) ; 

endf or ; 

7.3 Supersonic jet mixing noise problem 

An ideally expanded supersonic circular jet is considered here to demonstrate the 

validity of the approach of the previous section. Since the shock ce11 structure is 

absent, the radiated sound field has only one main component, turbulent mixing 

noise. It is well known that the free shear layer jet Aow is characterized by large- 

scale coherent turbulent structures shedding from the jet lip. The perturbations of 



the mean jet flow that generate the mixing noise cm therefore be considered as the 

sum of the coherent structures and a random perturbation. Both experimental[77] 

and theoretical [78] results show that the major part of this noise is produced by the 

large-scale turbulent structures of the jet flow, which are convected at supersonic 

Mach numbers relative to the arnbient speed of sound. The generated sound field, 

similar to the one created by a wavy wall traveling supersonically, is very intense, 

and is known as Mach wave radiation since it tends to propagate primarily at the 

Mach angle. 

In the rnixing layer of the jet the mean turbulent flow is self-similar and, since 

the spreading rate of the jet is very srnaII, the turbulence statistics change very 

slowly in the downstream direction [79]. This implies that the mean turbulent flow 

is in a state of local equilibrium, and its large-scale fluctuations cm be represented 

as a linear superposition of the eigenmodes of its linear stability equationsl. In- 

deed, the jet mean flow velocity profile has an inflexion point, a situation usually 

conducive [80] to the large-scale (Kelvin-Helmholtz) type of instability. More- 

over, the influence of the viscosity on the solution of the Iinear stability equations 

c m  be neglected for the large Reynolds numbers invoived, hence the large-scale 

turbulent fluctuations and the instability wave modes of the Euler equations lin- 

earized about the jet mean flow are practically sirnilar. The latter can be regarded 

as a mathematical representation of the former, according to Tarn and Chen [79]. 

Several models for supersonic jet rnixing noise have been developed recently. 

Mankbadi et al. [8 11 and Baysal and Idres [82] solve the Euler equations Iinearized 

about the jet mean flow and use a time-harmonic excitation of the jet flow in the 

'They can be put in the form of a single equation for the pressure or the vorticity disturbance, 
known as either the Rayleigh (in the inviscid case) or the Orr-Sommerfeld (in the viscous case) 
equation. 



form of instability waves, the latter computed as solutions of the Rayleigh equa- 

tion. A more direct approach that does not need the computation of the instability 

waves was used by Fenno et al [83]. The jet flow is excited by an acoustic pulse, 

as a result of which instability waves are generated. Due to the basic instability 

of the jet flow, the instability waves manifest themselves over tirne scales rnuch 

longer than those required for the initial acoustic excitation to Ieave the domain, 

thus allowing the computation of the radiated sound. This approach is also fol- 

lowed in this thesis. Two types of excitation have been considered, the first one 

being an acoustic pulse, as in equation (6.1), and the second one an incorning duct 

mode similar to equation (4.3) but of a finite duration. Both cases led to identical 

results for the root mean square pressure. 

To perform the study, coordinates have been non-dimensionalized using the 

jet exit diarneter, and flow variables using the density and the speed of sound 

in the ambient flow. The equations are solved in axisyrnmetric mode. The exit 

of the jet is considered at x = 0, its axis at r = 0, and the grid covers the 

domain (x, r) E [-5,501 x [O, 251, with 5500 elements. The flow in the duct 

(x < O, r < 0.5), which does not influence the radiated noise, is considered to be 

a supersonic inviscid flow with M = Mj = 2.1, rlIj being the jet exit Mach num- 

ber. The presence of the duct is necessary to construct the damping layen. The 

DL boundary condition is the only one that is acceptable for this study, because 

it also darnps the vorticity waves generated within the rnixing layer. It was found 

that the best combination of darnping parameters in equation (4.8) for this case 

was o~ = 0.5 and = 3, with a darnping layer width of about 5. No filtering or 

any kind of artificial dissipation has been used for the computation. The nurnber 

of Gauss points was varied between N = 3 to N = 5. This is more than sufficient 



to resolve the acoustic field. In fact, for this case the resolution is mainly dictated 

by the large gradients present in the shear layer, especially in the initial region near 

the duct exit. The mean flow in the jet region corresponds to a Gaussian profile 

that has been found by Troutt and McLaughlin [77] to fit well the experimental 

results for a moderate Reynolds number (R=7000) jet, 

where Uj is the velocity at the center line of the jet and the non-dimensional 

coordinate qj = (r - rOd)/ts, with ro.5 the radial location where the velocity is 

O.5Uj, and t, the local shear-layer thickness. The variation of Uj,  ro.5 and t, as 

obtained from experiments is provided in 1773 for x L 16. Since the emphasis here 

is on demonstrating the methodology, and not obtaining quantitative evaluations 

of jet noise, a very simple linear fit to the data has been used, as follows: 

In addition, the radial velocity component is considered zero throughout the flow 

field, and the pressure across the jet is considered constant by the boundary layer 



approximation. For an isothermal jet, it follows that the density is also constant. 

Figure 7.1 presents a snapshot of the disturbance pressure just after the initial 

excitation completely left the domain. The instability waves c m  be clearly noticed 

in the figure. They initidly grow until they reach the end of the potential core of 

the jet (approximately x = 7), and decay afterwards. The end of the potential core 

is also the region mainly responsible for the generation of the acoustic field. This 

has the characteristics genedly observed for such jets, the main radiation lobe 

rnctking an angle of about 42 degrees with the jet axis. This angle is slightly larger 

than the one observed experimentally in 1771, a phenomenon that has also been 

noticed by other researchers [82] when only axisymrnetric modes are considered. 

A secondary lobe can be noticed at about 30 degrees, which is the Mach angle for 

this jet. The root mean square pressure is displayed in figure 7.2. The boundary 

conditions can be seen to perform very well, with no noticeable reflections from 

the boundaries. The FWM boundary condition has been used at the end of the 

damping layer without stability problems. Thus, overall the results dernonstrate 

that the method can also be used to compute nonlinear sound propagation on a 

known mean flow. 



Figure 7.1 : Snapshot of acoustic pressure contours for the turbulent jet. 

Figure 7.2: Root mean square pressure contours for the turbulent jet. 
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Chapter 8 

Conclusions and recommendations 

for future work 

A multidomain collocation spectral method has been developed in this thesis for 

the solution of the three-dimensional nonlinear Euler equations of fluid dynam- 

ics. The algorithm has been supplemented with al1 the necessary extensions 

required to mode1 acoustic phenomena. These extensions include a set of low- 

storage Runge-Kutta schernes for integration in time, that keep their forma1 order 

of accuracy when applied to nonlinear systems of equations and are optimized for 

wave propagation. They also include boundary conditions for the specification 

of incoming duct acoustic modes and treatment of the far-field boundaries, and 

specific modules for the computation of the unsteady acoustic pressure as well as 

the root mean square pressure from the time-dependent flow variables. In addi- 

tion, numencd filters, tbat prove useîùl to ensure stability of the solution when 

using some particular boundary conditions, have ais0 been incorporated into the 

algorithm. 



The numerical results obtained with this method, which most probably include 

the first applications of spectral rnethods to complex three-dimensional geome- 

tries, are quite encouraging. Even though the number of points per wavelength 

was very small in most cases, the results match the analytical solutions extremely 

well in the linear cases for which these exist. Grid refinement studies show that 

the smail discontinuities between the elements, which are of the order of the trun- 

cation error in the computed quantities, decrease very fast when the number of 

Gauss-Chebyshev points is increased. These results suggest that multidomain 

spectral methods are a very viable alternative for solution of aeroacoustics prob- 

lems (or equivalent wave propagation problems. such as elecîromagnetics) in three 

dimensions. 

Of considerable help for the discretization of complex geometries in this case 

is the fact that the algorithm can use an unstructured grid of hexahedra. AIthough 

in three dimensions the element grids are usually generated as stmctured multi- 

block grids, they become unstmctured when seen as a single grid. For the present 

method, there is no longer need to keep a particular index structure for each block, 

and the connection between the elements, either within the same block or belong- 

ing to different ones, is constructed completely within the code. This makes the 

method as general as any finite element method that uses hexahedral grids. 

8.1 Automatic grid generation 

In chapter 5, a way to construct the spectral grids by transfinite interpolation, 

which provides a fast isopararnetric mapping, has been developed. AIthough there 

are advantages to this methodology, it is probably not appropriate to use in an in- 



dustrial environment, where geornetries are usually defined using CAD prograrns. 

A further development, undertaken at Pratt & Whitney Canada in collaboration 

with the CFD Laboratory, is to build the face grids using the projection on the 

CAD surfaces of the grids obtained through transfinite interpolation. In this way, 

the spectral grids can be constnicted by widely-used commercial mesh generation 

software, such as ICEM-CFD. 

8.2 Physical modeling extensions 

There are aspects that have not been touched upon in this thesis, for example the 

treatment of shock and contact discontinuities. The treatment of such phenom- 

ena with multidomain spectral methods is not straightforward, although sorne re- 

searchers consider that this problem has been solved at the mathematical level for 

the global (one-domain) spectral discretization. Possible directions to extend the 

rnethod for discontinuous fi ows include the spectral viscosity method, first intro- 

duced by Tadmor [84,85], the use of Gegenbauer polynornials advocated by Got- 

tlieb and Shu [86], or the Chebyshev-Legendre super spectral viscosity rnethod 

studied in detail by Ma [87]. The main difficulty in the multidomain case is prop- 

agating discontinuities through domain interfaces without generating oscillations. 

In many situations, the noise produced by turbulence is the interesting phe- 

nornenon. In order to compute it directly from the basic equations of fluid dynarn- 

ics the viscous terms must be discretized, with the possible use of a turbulence 

model. While the viscous terms can be computed relatively easily in the multido- 

main approach, the turbulence mode1 has to be chosen with extreme care, to avoid 

stability problems when coupled with a spectral discretization. As the fan blades 



rotate with respect to the stnits and stator vanes, the additional incorporation of a 

moving grid strategy would allow the direct prediction of rotor-stator interaction 

noise sources. Another important issue that must be addressed in order to develop 

an useful tool for fan acoustic andysis is the development of a time-domain mode1 

for possible acoustic Iiners along the walls. The issues above constitute as many 

directions of future development of the multidomain spectral method presented 

herein, 



Basic properties of Chebyshev 

polynomials 

The Chebyshev polynornid of degree j, T j ( x ) ,  -1 5 x 5 1, is defined by 

q ( x )  = cos (j arccos(x)) . (A- 1) 

Chebyshev polynomials are solutions of the differential equation 

that are bounded at x = f 1, and satisQ an orthogondity relation of the forrn 



where Co = 2, Cj = 1 otherwise. niey satisfy the recurrence relation 

hence the first polynomials are To (z) = 1, Tl (x) = x, T2(x) = 2x2 - 1, T3 (z) = 

4x3 - 32, and so on. 

The Chebyshev polynomials also satisfy orthogonality relations over discrete 

sets of points. To define these sets, it is useful to let x = - cos(6), such that 

when 19 varies from O to n, x varies from -1 to 1. A first set of points, known as 

Gauss-Chebyshev-Lobatto points, is defined by the N + 1 equally spaced 0 values 

over which the following orthogonality relation holds: 

where x, = - cos(&), n = O, 1,. . . , iV. 

The other set of points is obtained as rnid-points in 6 of the Gauss-Chebyshev- 

Lobatto points. Hence the set contains N points, denoted as Gauss-Chebyshev 

points, and defined by 



with the corresponding orthogonality relation for i5m = - cos(8,), m = 1, . . . , N :  

Although the points in the two sets are equispaced in 8, they are not equally 

spaced in x. In fact, the distance between the two Gauss-Chebyshev-Lobatto 

points nearest of one extremity of the interval in x is 

It follows from the fact that Chebyshev polynornials are actually cosines in 

disguise that they have an equi-ripple behaviour in [-1,1]. A consequence of this 

is that interpolation of arbitrary functions f (x) based upon the Gauss-Chebyshev- 

Lobatto nodes gives polynornials that are always within a very small factor from 

the optimal polynomial interpolation of f in the maximum nom. Indeed, M i n g  

P; be the Chebyshev interpolant and P&, be the optimal polynomial interpolant 

of f ,  one has 

I l f  - ~C1103 I (1 + k)llf  - ~ & t l l m  (A-@ 

where Ac is the Lebesgue constant for Chebyshev interpolation, that depends 

only on the order of the interpolant as Ac = O(1nN). For comparison, for equi- 

spaced interpolation (as in finite difference rnethods), the Lebesgue constant is 

A,, = ~ [ 2 ~ / ( ~ l n N ) ] .  
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