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Abstract

DATA STRUCTURES
BINARY SEARCH TREES
A STUDY OF RANDOM WEYL TREES
BY
AMAR GOUDJIL
This thesis covers the study of a particular class of binary search
trees, the Weyl trees formed by consecutive insertion of numbers {6}.
{20}. {36}. .... where @ is an irrational number from (0.1). and {x}
denotes the fractional part of x. Various properties of the structure of
these trees are explored and a relationship with the continued fraction
expansion of 8 is shown. Among these properties, an approximation
of the height H, of a Weyl tree with n nodes is given when 6 is chosen
at random and uniformly on (0. 1). The main result of this work is

that in probability. H, ~ (12/7%)lognlog logn.
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STRUCTURES DE DONNEES
ARBRES DE RECHERCHE BINAIRE
UNE ETUDE DES ARBRES ALEATOIRES DE WEYL
PAR
AMAR GOUDIJIL

Résumé

Cette thése est une contribution a l'important travail de recherche
sur les structures de données du Prof. Luc Devroye. Elle couvre une
classe particuliere d'arbres de recherche binaire : Les arbres de Weyl
construits & partir d'insertions consécutives des éléments de la suite
{8}, {20}. {36}. .... ol 6 est un nombre irrationnel de l'intervalle
[0.1], et on {x} désigne la partie fractionnaire de x. Différentes pro-
priétés de la structure de ces arbres sont cxplorées et une relation
avec 'expansion cn fractions continues de € est exhibée. Parmi ces
propriétés. une approximation de la hauteur H, de l'arbre de Weyl
A n noeuds est donnée lorsque ¢ est choisi de facon aléatoire selon la
loi uniforme de [0. 1] . Le résultat principal de ce travail est qu'en

probabilité, H, ~ (12/72) logn log log n.
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1 Introduction.

This thesis is based essentially on a work published' with my advisor. Prof. Luc
Devrove. [t is a study of binary search trees formed by consecutive insertions
of numbers r; = {8}. 25 = {20},r3 = {36}, .... where # € (0.1) is an irra-
tional number. and {} denotes *mod 1”7 which is the fractional part of the

number x. The sequence in question is called the Weyl sequence for 6. after

Wevl. who showed that for all irrational  the sequence is equidistributed
g forall0<a<b< 1.

l n
lim — Z [ clap) =b~u

n—x fl
1=1

which means that the average number of , that fall into [a. b] is equal to the

measure of the interval when n goes to infinity. (see [12]. [14] or [18]).

The equidistribution property makes Wevl sequences. or suitable gener-
alizations of them. prime candidates for pseudo-random number generation.
Of course. various regularities in the sequence make them rather unsuitable
for most purposes. Knuth ([17a] and Sds ([31]) have interesting accounts of
this. Let 7,(6) be the binary search tree based upon the first » numbers in
the Weyl sequence for . This tree. called the Wevl tree. captures a lot of re-
fined information regarding the permutation structure of the Wey| sequence,
and is a fundamental tool for the analysis of algorithms involving Weyl se-
quences in the input stream. Computer scientists are mostly concerned with

the following structural quantities:

'Random Structures and Algorithms. Vol 12. Issue 3 1998-John Wiley & Sons. Inc.
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e The average depth of a node (the depth is the path distance from a

node to the root).
e The height (the maximal depth).

e The number of leaves (the number of nodes with no children).

[n this thesis we will focus on these quantities. The following notation

borrowed from Prof. Luc Devroye's course notes {8b] will be used:

e The height of T,(8) is H,(0).
e The set of leaves of 7, (6) is L, (8).

e The collection of n + 1 possible positions for a new node to be added

to T,.(8) is called the set of external nodes. and is denoted by £, (4).

When 8 is understood. the suffix (#) will be dropped from the notation. The
collection &, may be split into £F and &F. where £F has those nodes that

are right children. and £F collects all left children in &,.
In this thesis we consider two cases of Wevl trees:
o Wevl trees for fixed 6.

o Weyl trees when # is a random variable.

[n the first case important connections with the continued fractions are set-

tled and then some algebraic theory of numbers properties are used to deduce



easily results about H, and |£,]. In the latter case we are in presence of ran-
dom Weyl trees. In fact we consider that § = L. where U is a uniform [0, 1]
random variable. This study allows us to make statements that are true for
almost all 8. The probabilistic setting comes in handy for the purpose of

analysis. The main result. in this thesis, shows that

H, 12

9]

—_— in probability.
logn loglogn T
This shows that the random Weyl tree differs greatly from the standard
random binary search tree. R,. obtained by insertion of an i.i.d. uniform
[0.1] sequence X,. .... \,. The height A} of R, satisfies
H,
log n

— 4.31107 ... almost surely

(Robson [28. 28a]. Devroye (8. 8a]. Mahmoud [24]).

2 Random binary search trees

Let us consider an iid sequence of random variables X'}, ... ..\, defined on
a probability space (2. A. P) — R. and let’s suppose that there are no ties

which means that
P{w € Q such that \(«) = Xj(«) for some i # j} =0

[t is sufficient to have a density for the law of \\; to avoid ties since that
kind of measures doesn't charge points. Now. brieflv we explain how the
tree is built. For anv w € Q let’s put X,(w) on the root of the tree. For

{ > 1 all X;{w) that are lower(resp. greater) than .\'; (w) are nodes of the left

9



subtree(resp. right subtree). With the index representing the time of insertion
we repeat this operation recursively for each subtree until all elements of the
sequence have been processed. Nodes have two possible children. There are
actual children (which are nodes) and potential children (places for future
placement of nodes). Potential children are called external nodes. A binary
tree with n nodes has n+ 1 external nodes. Nodes without children are called
leaves. Standard insertion of r proceeds by finding the unique external node
that could accept r. given the binary search tree property. and placing x
there. A tree constructed in this manner from an i.i.d. sequence X,. ... ..\,
(drawn from a uniform distribution on [0: 1]). or from a random permutation

of {1..... n} is called a random binary search tree. and will be denoted by

R.. Mostly everything is known about the behaviour of R,, (see [24]). For
example. the depth D, of X, (that is. the path distance to the root) satisfies

D,
2logn

— 1 in probability

. . = . ¢ - "oy rr (Du—'.!lol(ﬂ) L R . L
(Lvnch. 1965. and Knuth. 1973). In tdct.—vﬁ—:nornml((}. 1). where =

denotes convergence in distribution(Devrove 1988).
Before starting study of Wey| trees. we need to define what is a record.
Given and iid sequence X,...... \,, we say that X, for / > 1 is an
up-record (resp. a down-record) if \; = max{X,.... .. \;} (resp. .\, = min{ ..

..... \;}) and that .X; is a record if it is either an up-record or a down-record.

If .V is the number of up-records. we know from [8b] that E[.N] = H, where

n
=1

H, stands for the n-th harmonic e.g. 3, + and that

log(n + 1) < E[N] < 1 + log(n).

10



i .X: | Up Record | Down Record
1 8.5 Yes Yes
2 | 13.2 Yes —
3 5.1 — Yes
! 9.0 — —
5 | 11.1 - —
6 | 10.9 — -
T o172 Yes —
8 6.5 — —
9 5.0 — Yes
10 | 18.3 Yes —

At time ¢ = L. \\| is both an up and down record. At time ! = 2. \), =
13.2 > X, = 8.3. Su. we have an up-record at that time.
The records for this very small sample happen at times 1.2.3.7.9.10. The
binary search tree for this sample is obtained by first putting .X\'; = 8.5 at the
root. The second value X'y = 13.2 is greater than .\ so it is a right children.
The third value .X3 = 5.1 is lower than \'; so it is a left children. The fourth
value .\'; = 9.0 is greater than .|, so it is a node of the right subtree of the
tree rooted a .\'|. [t is also inserted immediately after \\'; = 13.2 which is
greater so .X; is a left children of X3. The process is continued until all the

nodes have been introduced. The result is shown by fig. 1.

11



5.0

18.3

figure 1: Tree obtained by consecutive insertion of data from the sample

above.

We also need some inequalities to understand the technical part where
. . . T, . -
we will use Devrove's demonstration to show that ==Lt — | in probability

nlog. n

when # is Gauss-Kusmin distributed. a result due originally to Khintchine.

e Bonferroni's inequalities: Let A = {4,. 1 < i < n} be a set of events

in some probability space (Q. A. P). and define S as

Se = P(Q)

Sk Y Pldg A Ay

1< <<...<ix<n

12



€1

:A11edoad [ejuswepuny 3uUmol|o}
A3 dARY oM Aosald a10]y "sedIpul §p1oda1 umop pue dn snoiaead jo wns
a1 01 [Rubo 9dIPUT YA JUBUIBS B[] SI 3dUSNDAS (A9} © Ul PIOIAT IXSU 313

JJurviIsul 104 ‘saouanbos asa(]] Ul 2INIONIIS JO 10] v ST 2137 "IN0 SUIng 31 8y

wnumun e Sy adeyl Yz e (1Yy V7))
(1) ="y ""7)
SWINUIXRUW ® ST alayl M7 2w 1 (¥ "1-¥7)
ISMOT0] S® €17 3 YIlm poaziu
-0IYIUAS oIt sanuanbas 0saTyl Jo sadIpul oYy puw My puv Y7 Aq pajousp oiw

WINWIXRUL IO WD R JO 02Ua1IN00 Jo soully oy 1 M - *Lr Juowe uni

-IXeul 10 wnmiuiia s1 *Q:* =Ur AT 3R Salldl] o] "'a’l "Sallll] PI0IAd al] oy

...VN.HV_..N.HA

197 "POXY SI g [RUOIIRLIT UR "UO1IDAS SIY) U]

'S991) [A9AA JO aInjdnI)g ¢

A 31> < Ixlld

:A71[enbaul § A9YIAGaY) e

USYST 02 [Sd1-)" X+ (F'FHU] qay(1-)

uS¥S1°02 [Sd1-)'5X + (SN 41-)

sonfenbaut Funeusalje ayl ssysnIes «.m,T«SI%nm“w wns 3yl uayl




Lemma 3.1 (Ellis and Steele, 1981 [10]) . We have

(Lnoy Loy + Ra_y)  if at T, there is a mazimum:
(Lru Rn) =

(Ln-y + Rn-1. Ra_y) if at T, there is a minimum.

Let & be the smallest integer such that n < Ly + Ri. Then. if r(y) < ... <y
denotes the ordered sequence for ry. ... . r,. then the indices (1). ... . (n)

coincide with
{i* Ly (mod Ly + Ry) fori>1}Nn{l.... . .n}.

Also. (L,. R,) are relatively prime for all n.

A quick verification: if n = L, + R, — 1. then the index of the maximum
is (Ly + R = 1)Ly (mod (L + Re)) = =L (mod (L + Ri)) = Ry, as was
expected. This Lemma says that at n = L + R — 1. the shape of the binary
search tree for ;. .... r, is entirely determined by the two numbers Ly
and Ry. [n fact. then. there are only O(n*) possible Wevl search trees with n
elements. even though there are - (*") = ©(4"/n/?) possible binary scarch
trees on n nodes. As the simplest. example. of the five binary search trees on 3
nodes, two are impossible to obtain as Weyvl trees (the ones in which the root
has one child and the child has one child but of different polarity). Indeed.
let’s suppose that one of these trees is a Weyl tree. We have L, + Ry = 3
which implies that time T is time for an extrema but for these two trees the
nodes are ordered either as X'} < X3 < .\, or X\, < X3 < X| which means

that .\'; is not an extrema.

14



EATE

L. 2. 3. 4. 5.

figure 2: Trees 4 and 5 are impossible to obtain as Wey! trees.

This fact was used by Ellis and Steele to derive a method that would
sort any Weyl sequence using comparisons only (thus, without heing capable
of numerically inspecting entries) in O(logn) comparisons. We refer to the

subsection on sorting later on in the paper.

There is a natural way of looking at the growth of the Weyl search tree in
layers. The (i+1) — st layer consists of all ) with T, < j < Toyy — 1. A special
role is played also bv the ancestor tree Tr_,. A layer can be considered as
a new coat of leaves painted on the ancestor tree. Each layer adds one and

just one coat. as the next new result explains.

Lemma 3.2 All nodes in the (¢ + 1)-st layer are leaves. and all leaves of
Tr.. -1 are in the (i+ 1)-st layer. All nodes in the (i + 1) — st layer are either

right children or left children. but not both. In fact.

EF -l = R JEE, =L,

L

15



and

|Tr.+l-l| = Ti+l -1= L,’ +R,’ -1.

Proof.

Recall that Lr,_, is the collection of leaves of the ancestor tree. and that the
left and right external nodes of the ancestor tree are collected in sets £f _,
and Ef,’%_l respectivelv. Fix j € {T;. T, + 1. .... T;., — l}. so that j is an
index of a point in the current (i + 1)-st layer. Without loss of generality.

assume 1, = R, (the last record was a maximum). Thus.
R <j<L, +R .

To determine the place r, occupies in the search tree. it is important to find

out which points are the immediate predecessors and successors of r,.

Cousider first the immediate predecessor of ., in {r. .... r,_}. By

lemma 3.1 on page 14 the index of this node is
j—Li+kR +L)
for some integer £ > 0. But
J+ R >j+L 2R +L,.

so & must be 0. and thus. the index of the immediate predecessor is j — L,.

which is in the ancestor tree. as j > L, and j— L, < R,.

Similarly, the immediate successor of j has index
j+ Li— k(R + L))

16



for some k& > 0. [t cannot have index j + L; as

Thus, it must have index j + L; — (R; + L;) or smaller, i.e., j — R, or smaller.
But
j—Ri<L1+Ri—Rg=L,<R,.

so that j — R; belongs to the ancestor tree (if j — R; > 0) or is nouexistent

(if j = Ry).

Thus. the immediate neighbors in the ordered sequence have indices that
put them in the ancestor tree (the right neighbor may not exist if j = R;).
As L, < R,. it is clear then that j is a right child of its left neighbor. Note
also that at the end of the construction of the (i + 1}-st layver. all nodes in
it are leaves, and are right children of nodes in the ancestor tree. Thus. the
(i + 1)-st layer paints a collection of leaves on the ancestor tree. [n fact. it

destrovs all existing leaves of the ancestor tree. as we will now prove.

We prove by induction the following:
L _ R —
Ig’rlfl—l| - R‘ .|£'n+l_l| - L‘ ’

As
1Tﬂ+l-l| =T’l+l -1= L: '{"Ri —-1.

we verifv that indeed. at all times. the number of external nodes is equal
to the tree size plus one. The statement is quickly verified for i = 1 as
L, = R = 1. T, = 2. and T has one left and one right external node.

Assuming the hvpothesis to be satisfied for j < i. we look at the (i + 1)-st

17



layer. All nodes in this layer are leaves of Tr,, . and if T; = R; {without
loss of generality; a symmetric statement for 7; = L, is easily obtained as
well), then all these leaves fill right-external nodes of the ancestor tree T, _;.

But by the induction hypothesis.
EE_|=Lioi=1L,.
Also, the (i + 1)-st laver has size
T,a-T,=R+L,-R=L,.

so that we can conclude that all right-external nodes of the ancestor tree are
filled in. But then,

EF. il =L..

which was to be shown. Because all left externals survive from the ancestor
tree.

'gTLI»l—l’ = L! + |£I[',—ll = Ll—l + Rt—l = Rz .
and the Proof is complete.

Example: Let § = V2 2 141421, ... T, for i > | are times of records

and L;. for i > 1 (resp. R,. for i > 1) are times of minimas (resp. maximas).

18



T. | n nf Extremas

T, | 1 ]0.414214 Li=R =1

T,| 2 (088027 Ry=L,+R =2 Ly=L =1

Ty| 3 | 0242641 | Ly=Ro+Ly=3. Ry=Ry=2
1 | 0.656854

T, | 5 |0.071068| Ly=Ry+Ly=5 Ry=Ry=2
6 | 0.485281

Ty | 7 |0899495 | Re=Ry+Ly=7 Ly=L;=5
8 | 0.313708
9 | 0.727922

10 | 0.142136
11| 0.556349
Ts | 1210970563 | Ry = Ry +Ls =12, Lg = Ls
13 | 0.384776
141 0.798989
15 | 0.213203
16 { 0.627417
T: | 1T 0.041631 | L = Rs + Lsg = 17. Ry = Rs = 12
18 | 0.455844

il

The next extremum is the element with index L; + Ry = 17 + 12 = 29.
Furthermore. sorting the sequence r,..... £, needs only the index of the

minimum which is 5 for Ty < n < T- . The indices of the ordered sequence

19



are computed according to lemma 3.1:

a*xl = 3 (mod 17) =5 35%9 =43
3x2=10 (mod 17) =10 5x10=
5*3 =13 (mod 17) =13 311 =233
5x4 =20 (mod 17) =3 3=x12=
35 =729 (mod I7) =8 35*13=
53x6 =230 (mod 1Y =13 5*14=7
2xT7T =35 (mod 1T) =1 H5=*13=
28 =40 (mod 17) = 6 JH*16 =

The ordered sequence is o5 < Iy < Iyj5 < ...
T, =Tsand j € {T;;. Ty + 1.... . T: — 1} we can compute indices of immediate
predecessor and successor of r,. for instance. if j =
immediate predecessor is j — Ly = 14— 5 = 9 and the index of the immediate

successor is J + Lg — (Rg + Lg) = 14+5 =17 = 2 and we can effectively check

these results from the list above. The tree obtained is shown by fig.3 below:

1L}

vure

figure 3: Weyl tree from a seed ¢ = V2.
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(
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Lemma 3.3 We have
IcT.+l—1| = rni'n(Li! Rl) .

and

HT-+1-1 =1

Put differently,

r

H, <k

I/

rA=1

17\

if k is the unique integer with T, < n < Ty,

Proof.
The first statement is an immediate corollary of the Lemma 3.2, Also. as each
layer destrovs all the leaves of the ancestor tree. it is clear by induction that

the height of the tree is exactly equal to the number of lavers minus one.

The study of the height and of the number of leaves reduces to the study
of the sequence (L;. R;). For the height. the growth of T} as a function of
k is important. This is closely related to the continued fraction expansion of
#. To understand the rest of the thesis. we recall a few basic facts from the

theory of continued fractions.

4 Continued fractions.

To define a continued fraction we consider the irrationnal number = = 3.141359. ..
The first step is to write 7 = 3 + 0.14159. ... Next we consider the fractional

part 0.14159 ... and rewrite it as 1/r for some irrational value .c:

21



T=3+ ‘.n—ﬁf,s—. The denominator may be rewritten as 7+ 0.0625... and we

can repeat this process n times for any n > 1. The result is:

’ 1 , L L
T=3+ o r— =3t o =3 o — S S
1.0625. .. ¢+ 13.996... £+ 15+ rgo5

So. the representation of = as a continued fraction will be noted [3:7.15.1.292....].

Let. now 8 be irrational. and define the Wevl sequence with n-th term

ry = {n#}. n > 1. where {. } denotes the “modulo 1" operator: {u} =
w— |u.

Denote the continued fraction expansion of § by
B =(ap:ar. as. ...].

where the a;s are the partial quotients. a; > 1 for i > I(see Lang [21] or

LeVeque [22]). Thus. we have

1
6= y +
() ——“!_‘_m
with
ag = |8].
The i-th convergent of 6 is
ri = lagiay. ... .o
It can be computed recursively as
_ b
==
i



where ged(pi.¢;) =1.and p_» =0, p_y =1, py =a;pi—; +pi—» . £ >0, and
g2=1,q9g=0gg=agi_1 +qi_». 20,

Note that ro = ap and r, = g9 + 1/a;. The r,’s alternately underestimate

and overestimate 6. The denominators ¢; of the convergents play a special

role as
l=gp < ¢y <gp <+
and
l -
-2l< Li>0.
G| = gigie

To study the number of records and the evolution of the lavers. the following

result is essential. [t extends a theorem of Lang [21].

Theorem 4.1 (Boyd and Steele [5].) [n a Weyl sequence for an irrational
8 with partial quotients a,., and convergents p,/qn,. the (right extrema) occur
when n is in the following list

g1+ 4o =1 + 2. ... . oy Fa1go = ¢y

G, FYae G+ 2. ..o Fazgr =gyl

s+ Qo g3+ 2¢4. oo gy FdA5qy = (s

and the (left extrema) occurs when n s in the list ¢y + q\. qo + 2q1. ... .
qo + a2q1 = (2!
2+ Q3. Q2 +2q3. ... . g+ agqy = (40

Gy + qs. Q1+ 2qs. ... . gy +asqs = s



Lemma 4.1 shows that we start with a, right extremes, followed by a, left
extremes, then aj right extremes. and so forth. This description. together

with lemma 3.1 and Lemma 3.2 should suffice to completely reconstruct the

shape of the tree (see figure 4).

\
40] g+,

figure 4: This figure shows the Weyl tree for § = V77 =8;1.3.2.3...].

24



Note that ¢g = 1. qy = 1. g2 = 4. g3 = 9. ¢4 = 31. Layvers are separated by
wiggly lines. Thicker lines separate layers of different polarity. Note that there
are first a, layvers of right polarity. followed by a, lavers of left polarity. and
so forth. Also note that just before an extremum. all leaves mayv be found
in the last layer. The r-coordinates of the points are geometrically exact.
to facilitate interpretation. Using lemma 3.1, can the reader guess who the
parent is of point 417 The last node is a maxima. hence R = 40. The next
laver is a set of left nodes. to find the index ¢ of the parent of node j = 41

we use relation j — L+ A(R+ L) with L =31, R=40. A =U:

i=d1 =31 +0x (31 +40) = 10.

5 Height of random Weyl trees.

From the lemma 3.3 and lemma 1.1, we easily determine the relationship

between height and partial quotients.

Proposition 5.1 Let 0 be wrational. Let k > 2. [fn = g — L. then there

are eractly
k

Zu, -1

=1

full layers. and the Weyl tree T, has height

Hn =

(l,'—'.)..

k
=1

t
In general, if

G S 1< Qs -

25



then

k k+1
Za,- < H,.+‘2§Za,- .
=1 1=1

6 Discrepancy.

n
=1

There is another field in which the behaviour of the partial sums S, = Y7 @,

matters. In quasi-random number generation. the notion of discrepancy is

important. [n general. the discrepancy for a sequence ry. ... . r, is
n
AR (R
D" b S“p .X:I_IA —_ ,\(..l) .
Aed n

where A(.) denotes Lebesgue measure. and A is a suitable subclass of the
Borel sets. For example. if we take the intervals. then (Schmidt [29]: Béjian
[6])
0.12log n
L> 2087
I
infinitely often. From Niederreiter ([26c]. p. 24). we note that for a Weyl

sequence for irrational 6.

i(n)
| S(l(n))
< — Cm
Dn < n 'Z:l:“' n

where [(n) is the unique integer with the property that

Gitn) S 1< Qay+r -
n

For example. Niederreiter's bound implies that if € is such that Y_\" ¢, =

O(m) (as when all a,’s are bounded). then

D, =0 (logn)
n
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Thus. Weyl sequences with small partial quotients behave well in this sense.
We will see that the same is true for random search trees based on Weyl

sequertices.

7 Partial quotients of random irrationals.

Now. replace 8 by a uniform [0. 1] random variable. and consider its continued
fraction expansion. Several results are known about this. and most may be

found in Khintchine [16b]. Philipp [27a]. or the references found there.

Theorem 7.1 (the Borel-Bernstein theorem.) For almost all 8. a, >
<(n) infinitely often if and only if Y, 1/o(n) = x. (Thus. if § is uniform
(0.1}, then with probability one. a, > nlognloglogn infinitely often. for

example.)

This shows that the a,’s necessarily have large oscillations. The result
can also be used to show that certain subclasses of #'s have zero measure.

Examples include:

A. The #'s with bounded partial coefficients. The extreme example here is

§=(1+v3)/2. whichhas ag =a; =ay =--- = L.

B. The 8's that are quadratic irrationals (non-rational solutions of quadratic
equations). It is known that the a;'s are eventually periodic and thus
bounded (in fact. the periodicity characterizes the quadratic irrationals.

see [16b]).



Lemma 7.1 (Kusmin [19]; Lévy [23]) . Let z, denote the value of the
continued fraction
{Oi(L,H.l. Ape2. .- ] .

(That is. 2y =r, —an = {rn}. where
rn = [@ni@uere Quiae -o.) )

Then, if 8 is aniform [0.1). z, tends in distribution to the so-called Gauss-

Kusmin distribution with distribution function

Flr)=log,(1+r).0<r<1.

This limit theorem is easy to interpret if we consider convergents. Indeed.
ro = #. and in general. @, = [1/z,]. Thus, lemma 7.1 also gives an accurate
description of the limit law for a,. In fact, as a corollary. one obtains another
result of Lévy ([23]). which states that the proportion of a,’s taking value
k tends for almost all 8 to a finite constant only depending upon k. If ¢
is uniform [0. 1]. then a, = (1/8] is a discretized version of a uniform [0. 1}
random variable. As n grows. the distribution graduaily shifts to a discretized
version of one over a Gauss-lKusmin random variable. As the latter law has
a density f(r) = 1/((1 + r)log2) on [0.1] which varies monetonically from
1/log?2 to 1/log4. for practical purposes. it is convenient to think of the
a,’s as having a law close to that of 1/U. For example. the Borel-Bernstein
law holds also for the sequence 1/U, where U'\. L. ... are i.i.d. uniform
[0.1]. There is stability if we start the process with # having the Gauss-
Kusmin law, just if we were firing up a Markov chain by starting with the

stationary distribution: if # has the Gaus-Kusmin law. then all z,’s have
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the Gauss-Kusmin law. and all the a,,’s have the same distribution (however,
they are not independent; in fact. Chatterji ([7]) showed that any law with

independent a,’s corresponds to a random # with a singular distribution.)

Lemma 7.2 (Galambos [13].) Let 8 have the Gauss-Kusmin law. Then

. maXi<i<n { 1
lim P i Y L _ -, y>0.
n—oc n ].()g?

Galambos’s result says that the excursions predicted by Borel-Bernstein
are rather rare, as the maximal ¢; up to time n typically has magnitude
A(n). Of course. the difference is easily explained by the different natures
of strong and weak convergence. Note that lemma 7.2 remains valid if 8 has
the uniform distribution on [0.1]. The important technical contribution of
Galambos is that he has mastered the dependence between the a,’s. We are
faced with the same problem. and cite the fundamental result needed to make

things click.

Lemma 7.3 (Philipp [27a].) Let 6 have the Guauss-Kusmin distribution.
Let M, be the smallest o-algebra with respect to which the coefficients

(ye ... tt, are measurable. Then for cny sets A € M, and B € My, .
[P{AB} - P{A}P{B}| < ¢p"P{A}P{B} .
where p € (0. 1) and ¢ is a constant.
This result states that in effect the a,’s are almost independent. with the

dependence decreasing in an exponential fashion. One last Lemma concludes

the technical introduction.



Lemma 7.4 If P and QQ are two probability measures and c« > 0 is a number
such that for all rectangular Borel sets (products of intervals). P > aQ), then
P > «Q for all Borel sets.

Proof.
This result should be standard. Let 4 be a Borel set. For ¢ > (. we find .V

and rectangles A, and B,. 1 < i.j < V. such that

A l N
QUA) = QA <€ |P(A) - Z P(B)| <.
=1 1=l
Clearly. then.
'S
QA) = ) QUANB,)| <e.
=1

and similarly for P. Therefore.

P{4} > Y P{4inB}-e

> o) Q{ANB}-¢
]
> a(Q(A)—¢€) —¢

= a@Q(d) —ela+1)

v

al(A) - 2.

Let € — 0. and the inequality follows.

8 Partial sums of partial quotients.

Here we consider the behavior of partial sums of the partial quotients of a

random Weyvl sequence. and obtain a limit law. More precisely. we study the
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behavior of

-
-

Sn = a;
1

1=
when # is replaced by (', a uniform [0.1] random variable. The following
Lemma relates bounds for sums of (dependent) partial quotients to bounds

for sums of independent partial quotients.

Lemma 8.1 Lei X, .... X, be the first n purliel quotients when 8 is
Gauss-Kusmin distributed. and let Y. ... . Y, be i.i.d. with common dis-

tribution that of X|. Define, for e > ().

k .

Y

def Luy=1 %J
’:(,”) - n;lk['i‘)mp{ I_ﬁﬂ—l >F} ’

Then there exists ny depending upon € only such that for n > ny.

P{ PINETAY s 26} < lelog(en) (u log(l/p))

nlog, n log(1/p) 7\ log(en)
Let .V be a positive integer and let € > 0 be arbitrary. Let 4, denote a generic

Proof.

Borel set. Then. if ¢, is replaced by .\, to denote the fact that it is a random
variable. and if § has the Gauss-Kusmin law. then by repeated application

of lemma 7.3. for & > 1.

k
P{E_,[Xy, € Av} € 1+ o™ T P{Xy, € Ay))

J=1
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Let Y7, Y5, ... be an i.i.d. sequence with the same distribution as X,. I[n

particular, then, by lemma 7.3,

k .
Zj:l)Nj _

Zf—l'\""i Vyk-1
La=tm A < AV
P{ k log, >ep < (1+cp’)™'P Flog, 1| > ¢
k .
}
= Vyk—1 ;?l_{_
= (l+cp) P{ Flog, k 1 >c}

< (L+epV) ' (k) .

Note that 2 is a nonincreasing function. Clearly. assuming that n is a multiple

of .V to avoid messy expressions.

(B s} - ol

N n/N-1 -
Zj:l =0 N Niey

nlog, n

T X
(n/N)log, n

P > '_’f}
z:l:'_'/'[v '\'.\“ > D) €
(n/N)log, n o
-p{ AR i oY
P

z:l:l ‘\" -1

-1
nlog, n

>‘2f}
-1

M-

-1

IN
<

(n/N)log,n  (n/N)log,(n/N)

n/N y-
Zi:l -\.Vz

.'\ - -
i { IV logg(n/) 17 }
n/N - y
< VP Yokt X ' >flogn

(n/N)log,(n/N) log .V
N n/N . i
+V(L+ept) " o (\«)
/N n
< AN (1+ep®)" ;(?\—,)

(as soon as elogn/log N > 1 +¢€) .
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Now, assume that .V is chosen such that

log(cen) < V< 2log(cn)
log(1/p) ~ log(1/p)

2 log{cn) IN"Y  [nlog(l/p)
2 < ) - N —
>“’} log(1/p) (”n) "( log(cn)
e log(en) (n log(1/p) )
log(l/p) ~ \ log{cn) '

Then

{

Recall that this bound is valid under the condition flogn/log V > 1 +e.

Z:;l X,

-1
nlog, n

l

This in turn is valid for all n large enough by our choice of V.

8.1 Generalization.

Note also that in Lemma 8.1, the X's and Yi's may be replaced by ¢(.\\,)

and ¢(Y;) for any mapping ¢. In what follows below. we fix n. and define

0 if u > n/loglogn.
glu) =
i otherwise

and apply Lemma 8.1 to the g(.\,)’s.

Proposition 8.1 [f 0 is Gauss-Kusmin distmbuted., then

Z::.:l a, =1

nlog, n

in probability.
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Proof.

By Bonferroni's inequality, if g is as in the remark above,

P{ Z?:l ‘\'i — l.| > 36} S P{ Z?:l g(~\-l) —l

nlog, n nlog, n

> ‘25} + nP{X, > nloglogn}

+ P {Z .\’i[[n/loglogn. nloglogu](.\’l) > €en lngn}

=1
= [+IIT+1IIl
TeERM [I. If Z is a Gauss-Kusmin random variable,

1
<
n loglog n) ~ log, logn

[T <nP {I/Z > n\/logn} = nlog, (1 +

TERM 1. I is bounded as above with a slight change in the definition of 2:

Zf:lg(};) > F} )

-1
klog, k
Let us compute the mean g and variance ¢ of g(})).

n>k>m

Slm) “f sup P{

E { I_(l/Z)[l/Z<n/luglugnJ} < E {(I/Z)[UZ(n/loglugn}
ol
= </| (1/2)dF(2)

oglogn/n

(where F(z) = log,(1 + z))

L /‘ 1
= — (l:
lOgZ loglogn/n *':(1 + :)
< log,(n/loglogn) .
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. Similarly.

1+ E { I_(]-/Z)Il/2<n/loglugn.l}

v

E {(1/Z)Il/z<n/loglog"}

o)
-/l (1/2)dF(z)

oglogn/n

v

il

1 /! 1
L / dz
logz loglogn/n :(1 + :)

2
= log,(n/loglogn) - log, (1 + loglogn '”)
=2ad

v

log,(n/loglogn) — 1.
Therefore,
\jt — log,(n/loglogn)| < 2.

and thus. i — log, n| < 2 + log, loglog n. Next. to compute an upper bound

for the variance. we argue simply as follows:

-

=)
1
INA

Eg*(}1)
E {(1/2)211,/Z<n/ log log n}

0
/ (1/22)dF(z)

loglogn,n

IA

Il

Lot 1
= - - T (l:
log 2 loglogn/n 2 (l+2)
n

log2loglogn

IA



We are finally ready to apply Chebyshev’s inequality:
k .
V) —
p Seb < p > =1lg(¥)) — p)
klog, k

p S (i = log, k)
klog, k

3 j=19(%)
klog, k

-1 >

}
1o }

2 k€2 + [(2+l0g.'\ log log n+loga(n/k))/ logs k>e/2

k log;

o™

+ >

™

IN

4n

IN

klogsk log?2 € loglogn

+ [('_‘Hog-_. log log n+log, (n/k))/ logy k>e /2 -

Thus. in Lemma 8.1. applied to ¢(.X,)’s. we may take

\ 1 if 202 + log, loglog n + log,(n/m)) > elog, m
Slm) =
n

T —— otherwise.
mlogs mlog 262 loglog n

Therefore. by Lemma 8.1.

de log(en) (n log(1/p) )
I < %
log(1/p) log(en)
(log n) x ,,O(”)
(n/log n) log~(n/log n) loglog n
= O(1/loglogn) .

which tends to zero. Thus. [ — 0 as well.

TerM III. Define B = [n/loglogn. nloglogn|. We bound P{A}. where

k
1Y Z Xilx,cg > enlogn

t=1
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. Let .V be the number of X;’s in B. Clearly. A C [V > elogn/loglogn|.

Note that

= P{X, > n/loglogn}

< P{1/Z > n/loglogn}

= log,(1 + loglogn/n)
log, log n

n

By Lemmas 7.3 and 7.4. we have

P{V > u}

IN

P{3({. .... &) C{l.....n}: X, €B. .... \,, € B}
(L+cp)*P{3(51. .... &) S {l.....n}:Y,, € B..... Y}, € B}

IN

(where the },'s are i.i.d. and distributed as the \;’s)

(L +cp)t (‘:)P“{Y,1 € B}

IN

< ((1 + ('p)enp)"
u
< ((1 + cp)e log, log n) ¢
i
- 0

if we set u = [2(1 + cp)elog,logn]. As u = olelogn/loglogn). we have

shown (with room to spare) that
[ =P{dA} >0.

Proposition 8.1 was proved by analytical methods by Khintchine {16]. The
Proof given here provides explicit estimates of rates of convergence as well.

Proposition 8.1 may be rephrased as follows. if 4, denotes the collection of
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all @'s on [0.1] with | Y a;/(nlog,n) — 1| > e

lim P{# e d,}=0.

n—oc

Theorem 8.1 If 6§ has a distribution with a density on [0.1]. then

Z?: 3 a;

-1
nlog, n

in probadility.

Proof.
If the Gauss-Kusmin 8 is replaced by a uniform [0.1] random variable U,
then. as the density f of 8 decreases monotonically from 1/log?2 to 1/ log-

on [0, L]. we have

P{led,} = / du
An

. 5
< / ——du
A, (L +u)

) l
L,
log—l/A" (1+ u) log?f !

= logd P{# € 4,}

H

- 0.

Thus. Proposition 8.1 remains true for the uniform distribution and for

any distribution with a density on {0. 1].
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. 9 The behavior of the denominater of the

convergents.

Lemma 9.1 (Khintchine (16] and Lévy [23a]; see Khintchine [16b], p. 75.)
There erists a universal constant v = 7%/12In2 ~ 1.186569111 such that for
almost all 8.
Yn = cf‘v-i-nfl)\n )
Lemma 9.1 is related to the property (Khintchine [16b]. p. 101) that

n l/n x 1 ‘_J..
11 T )"
u, - = l+ ——
( ) =1 J(J +2)

=1

for almost all €. Indeed. to get this intuition. recall from the recurrences for
the ¢,’s that

Un+1 = UpeYn + G-y < (ayer + I)qn .

so that

n n
4n < H(l +q;) < '2"Hu1 .
=1 i=1

We also note that ¢, must grow faster than a Fibonacci sequence. as
Gne1 > n +Gn-1. This implies that g, > p*~" for all n. where p = (1+v/3)/2
is the golden ratio. Another simple lower bound is ¢, > 2"~!"/2 (Khintchine
[16b]. p. 18). Finally, we note that a normal limit law for (logqx — ~k)/Vk
was obtained by Philipp [27].
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Theorem 9.1 If 6 has any density on (0. 1], then

H" _ Hn, _ Hu
(1/+)lognlog,logn ~ (121n2/72)logn log, log n ~ (12/72) log nloglog n

in probability. Note that 12/m* ~ 1.215854203 and 121n2/7* = 0.8427659130.

Proof.

By Theorem 8.1, as & — .

k

Y ai~ klog, k

=1
in probability. Next. log g, ~ ~k in probability. The latter fact implies that in
probability. & ~ (1/~) log n if k is the unique integer such that ¢ < n < gx.
But Theorem 8.1 and Proposition 3.1 then imply that

Hn H"
klog,k  (1/7)lognlog,logn

in probability.

This theorem does not describe the behavior as n — x for a single 8 (the
“strong” behavior). Rather. it refers to a metric property and takes for each
n a cross-section of s that give a height in the desired range. and confirms
that the measure (probability) of these €'s tends to one. For oscillations and
strong behavior. a bit more is required. By the Borel-Bernstein theorem. with
probability one.

a, > nlognloglogn

e g e . . .y L/k -
infinitely often. Since with probability one, ¢,/ — ¢” as & — . we see from

Lemma 3.1 that with probability one.
H, > (1/~) log nlog log n loglog log n
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infinitelv often. Thus. Theorem 9.1 cannot be strengthened to almost sure

convergence, as the oscillations are too wide.

[t is of interest to bound the oscillations in the strong behavior as well.
Also. again by the Borel-Bernstein theorem. with probability one. for all but
finitelv many n.

an < nlognlog! ™ logn

for € > 0. This implies that with probability one. for all but finitely many n,

n

Zu, < n*lognlog'™ logn .

1=1
But then. by Theorem 5.1 and lemma 9.1. with probability one. for all but

finitelv many n.

9 R
H, < = log” nloglogn log' ™ log nlogn .

9.1 Very good trees.

From the inequality of Theorem 2. we recall that H, = O(logn) if }.I_ a; =
O(n). Such irrationals have zero probability. As the most prominent member
with the smallest partial sums of partial quotients. we have the golden ratio
(a, = 1 for n > 0). Indeed. as for these sequences. ¢, < [T, (1 + @) <
exp(Y.i, a;) = exp(O(n)). we have the claimed result on ,, without further
ado. In fact. for the golden ratio. we have g, ~ cp". where p = (1 + v3)/2
and ¢ > 0 is a constant. As Y ! a; = n. we see that

log n

H, ~ i
log p
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The Weyl tree is simply not high enough compared to typical random Weyl

trees. and also with respect to true random binary search trees.

If a, = a for all n. then ¢, = agp-; + ¢, -2 for all n. From this. g, ~

e+varzi\" n
¢ ¢2#)  for some constant ¢. As Y . @; = an. we see that

a

)

H, ~ logn .

Note that the coefficient can be made as large as desired by picking a large

enough.

9.2 Very bad trees.
We first show that Weyl trees can be almost of arbitrary height.

Theorem 9.2 Let h, be « monotone sequence of numbers decreasing from
1 to O at any slow rate. Then there exists an irrational § such that for the

Weyl tree. H,, > nh, infinitely often.

Proof.
We exhibit a monotonically increasing sequence a, of partial quotients to
describe 6. The inequality will be satisfied at instants when the tree size

n = g for some k. Thus. we will have for all & large enough.
qu ?_ qkhqk .

Now. for k > 2. H,, > Zf:l a; — 1 > ai. and

k
a < g <2 Hai < %y (ap-,)F .

=1
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Thus. asy = 1, @41 = 4k & > 1. From gogyy = dkqor + gor—1 and qop =

@ax—1 + G2x—2. one cam show (see Boyd and Steele [3]. p. 37) that
R < gy < 8k + 1))

and

f2r+1 = Qokrr = (ck)F

tor some constant c¢. In fact. then. we see that the & for Theorem 32 satisties

. logn
loglogn
But then
o k* log* n
Hy~ ) ()~ 5~ s
= 2 2log”logn

The Weyl tree is much higher than that of a typical random Wevl tree.

[n a second example. consider
e = [‘.’: 1.2.1.1.4. 1. 1.6. L. 1.8... ]

so that ¢y = 2. a3 = a3m-2 = 1 and a3,y = 2m for m > 1. Then (Lang.

1966. p. 74) there exist constants C'} and C, such that
CH' T(n+3/2) < gane K CH"T(n+3/2) .

This shows that & ~ logn/loglogn. Thus.

log” n

" 9log’ logn

Again. the Weyl tree has an excessive height.

14



10 Sorting Weyl sequences

Ellis and Steele [10] have shown that the first n elements of any Weyl sequence
can be sorted with the aid of O(log(n)) comparisons only, even though these
sequences too are equidistributed for any irrational b. This shows that such
sequences possess a lot of structure. Of course. the fact that discrete random
Wevl sequences and random Lehmer sequences are imperfect is hecause they
can be “described” very simply by a small number of bits. The random-
ness of a sequence has been related by several authors to the length of the
descriptors (see e.g. Martin-Lof [25]. Knuth [17]. Bennett {3]). For surveys
and discussions on the topic of uniform random variate generation. one could

consult Niederreiter (26, 26a. 26b] or L'Ecuyer {20. 20a]).

[t is well-known that the number of comparisons needed in quicksort is
equal to the sum of the depths of all the nodes in the binary search tree
constructed from the data by ordinary insertion. As this sum is bounded
from below by H,(H, + 1)/2 (just by summing over the path leading to
the furthest node). we see that the number of comparisons in quicksort is
infinitely often at least equal to

nhy(nh, +1)
2

for anv sequence h, decreasing to zero. and some irrational 8. Yet. for
i.i.d. data drawn from the same nonatomic distribution. the expected num-
ber of comparisons is asymptotic to 2nlogn (Sedgewick [30]). Therefore.
Weyl sequences are not appropriate for generating test data for sorting algo-
rithms. With a uniform [0. 1] #. the expected number of comparisons grows

as nlogn loglogn. In fact. we have the following.
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Proposition 10.1 Let 8 be uniform [0, 1]. For any constant C. with prob-
ability one, the number of comparisons for quicksort-ing the first n numbers

of ¢ random Weyl sequence erceeds
Cnlognloglognlogloglogn

infinitely often.

Proof.

Consider only n = ¢ for some k. Note that the sum of the depths of the nodes
in the Weyl tree is at least ¢._, (the number of leaves) times (ap + 1)ag/2
(as each leafl is the end of a path of a; all-left or all-right edges and these
paths are thus disjoint). But apqeoy = g — gi-2 2 qx/2 = n/2. because
Q-2 < -2+ qe-1 < gk Therefore, the number of comparisons in quicksort

is at least
n(ay + 1)
1 .

But by the Borel-Bernstein Theorem.
a, > 4C~k log k log log k&

infinitely often almost surely. while by lemma 9.1. & ~ (1/~)logn almost

surelv. Combining all this gives the result.

11 The number of leaves.

For a random binary search tree. the expected number of leaves is asyvmptotic

to n/3 (see Mahmoud [24]). However. for Weyl trees. the behavior of the

16



number of leaves is much more erratic. We refer to Lemma 3.3. and note

that at time g — L. the number of leaves is exactly qx_;:

Ich—li = qk—l .
Thus, at that instant in the tree construction (the last node to complete a
layer). the proportion of leaves is

Ih-i k-

g — 1 Uk

Just to show how this interesting relationship explains the erratic behavior
of typical Wevl trees. consider the recurrence ¢ = apyp_| +qr--. and observe
that

k-1 < l

v g
The behavior of a; was discussed in an earlier section. [t suffices to note that
ar > kloghk infinitely often with probability one. so that. with probability

one, the proportion of leaves is infinitely often less than 1/ log n. for example.

12 The fill-up level.

The fill-up level F, of a search tree is the maximal number of full levels. For a
random binary search tree. this is known to be asvmptotic to 0.3711...logn
in probability (Devroye [8]). Again. random Weyl trees deviate from this
substantially. While we will not study F, in detail. we would like to note one

inequality:
Fu

[ei<ar <n.

=1
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Indeed. to get a path in the tree of polarity + — + — + — ... of length &, by
the way layers are painted on. we must have n > ¢.. But ¢ > l_[f=l a;. which

proves the inequality.

13 Examples

13.1 Example 1

By lemma 9.1. we have without further work
Fy < (1/~+o(1)) logn

in probability when ¢ is uniform [0. 1]. In fact. then. we have for all € > 0,

lim P{—F& > (1 —f)lug;,logn} =10.

n—2xx F“

13.2 Example 2

If ap. = k. then F,! < n. so that

F,,=O( log n ) .
loglog n

This result applies also when # = tan(1/2). and 6 = ¢. two examples cited

earlier.
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13.3 Example 3

When a; = 2*, simple calculations show that

F, = O(y/logn) .

In fact. for any slowly increasing sequence b,. it is possible to find a € such

that F, < b, for all n large enough.

14 Other characteristics.

Let the left height of a tree be the maximal number of left edges seen on
any path from a node to the root. Let the right height be defined similarly.
Clearly. the left height is one less than the number of layers of left polarity
and this grows as Zf‘; ‘: ay; where k is the solution of n = g. Using arguments
as in Theorem 9.1. it is easv to prove that if HE and HE are the left and
right heights of 7,. then
H G
tog nloglogn - T

and

HE 6
—————— ..,.) —
log nloglogn T

in probability.
The distance from the root to the minimum is equal to HE. and is thus also
covered by the result above. In random binary search trees. these quantities
are O(log n) in probability: the left height grows as e log n. while the distance

from the minimum to the root grows as log n in probability (Devroye [8a]).
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15 Conclusion

Working on this thesis led me to investigate data structures. algebraic theory
of numbers, discrepancy and technical computations involving bounding of

expressions in probability theory.

In addition to the new results. particular attention is given to link to
continued fractions of irrational numbers. which is not obvious at first sight.
This has suggested to go further and design Weyl trees starting now from
given values for partial quotients. For instance. we can fix fo;_’ each step the
number of layers of right and left polarity. Also. we realized that there are
many structures in the continued fractions expansion of numbers and that

the field is wide open to research.

The investigations in this thesis are important and worthwhile as the
new results are based on ideas of Ellis and Steele. Bovd and Steele. Levy,

and Galambos. These results were not easy to find and to understand.
Finally. this thesis was of prime interest for me since it strengthened
my theoretical background on data structures. [n addition. all the material

comes in handy for further research.
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