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Abstract:

Some useful properties of the nth stop-loss order and the exponential order will
be given in this paper. These results will be applied to the study of losses L; (i =
1,2,---), L and ruin probability ¥(u). A relationship between the claim amount
random variables and ruin probabilities will also be found. The concepts of the
nth stop-loss distance and the ruin probability distance will be introduced. A

formula for ruin probabilities for heterogeneous portfolios will be given.
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0 Introduction

[

For an insurance company, each contract of insurance brings a risk with it. A
claim may occur some time in the future and the amount of the claim is a nonneg-
ative random variable which is called a risk. One of the main tasks of actuaries
is to compare the attractiveness of different risks. This helps them to determine
insurance premiums and to decide on the reinsurance needed. Another task of ac-
tuaries is to calculate the risk premiums. The basis of insurance is the hypothesis
that claims can be compensated by fixed payments called premiums. Premiums
are calculated by a premium calculation principle. The partial orders on a family
of risks are called risk orders. The theorey of risk orders is a useful mathematical

tool for comparing risks and risk premium principles.

From Bowers (1997), we know if the decision maker has decided on the fixed
amount to be paid for insurance, also the expected claims is a fixed value, the
stop-loss insurance will maximize the expected utility of the decision maker. Con-
sequently, we concern more with the feature of the stop-loss insurance. The
properties of nth stop-loss orders and exponential orders provide much more in-
formation for studying the stop-loss insurance, since the 1st stop-loss transforms

are the stop-loss premiums.

This paper is based upon the works of Goovaerts et al. (1990) and Cheng and Pai

(1999a, 1999b, 1999c). Many kinds of partial orders were discussed in Goovaerts



et al. (1990). The nth stop-loss order and the exponential order are two of them.
In Cheng and Pai (1999a. 1999b, 1999c¢). the concept of stop-loss transforms was
generalized to the nth stop-loss transforms. The maintenance properties of the
nth stop-loss order under the individual risk model and the collective risk model
we.re developed. In this paper, we first discuss the properties of the nth stop-loss
order and the exponential order, later apply them in risk premium principles and

ruin probabilities.

This paper is organized as follows. In Section 1, we introduce some definitions
and results of Goovaerts et al. (1990) and Cheng and Pai (1999a, 1999b, 1999¢).
In Section 2, we continue the study by Cheng and Pai (1999a, 1999b, 1999c) on
nth stop-loss orders. We give a necessary condition and a sufficent condition for
nth stop-loss orders. They are convenient tools to construct risk pairs that can
have nth stop-loss orders. The maintenance properties of nth stop-loss orders un-
der the operation of compound, in the situation where counting variables V| and
N, are not identical, are to be proved. In Section 3, we study exponential orders
which are weaker than nth stop-loss orders. A necessary condition and a sufficient
condition for exponential orders will be given. The maintenance properties of ex-
ponential orders under the operations of compound and mixture are developed.
In Section 4, the results from Section 2 and 3 will be used to study the losses L;,
the maximal aggregate losses L, ruin probabilities and risk premium principles.
The necessary condition for nth stop-loss orders will be applied in the valuation
of risk premium principles. We will prove that exponential premium principles
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can differentiate between losses more finely than the net premium principles un-
der some conditions. Consequently, if some proper forms for premium rates ¢
in the classical risk models being chosen, we can discuss the properties of ruin
probabilities. This topic is worth further study. The relationship between the
claim amount random variable and L, the relationship between the claim amount
random variable and the ruin probability will be given. These result are worth
further study for finding upper bounds of ruin probabilities.Some properties of
E[L*] will be developed. These results may provide approximation methods to
estimate the ruin probability functions. The concepts of the nth stop-loss dis-
tance and the ruin probability distance will also be introduced. In Section 5. a

formula for ruin probabilities for heterogeneous portfolios will be given.



1 Groundwork

This article deals with risks to be insured, which are defined as non-negative

random variables. Here we cite some definitions and results of Goovaerts et al.

(1990) and Cheng and Pai (1999a, 1999b, 1999c).

Definition 1.1 (nth Stop-Loss Transform) Suppose loss random variable X is
nonnegative with its distribution function being F(z), its survival function being

F(z) =1— F(z), and E[X"] < co. Let

H(n](u) = E[{(X - u')-f-}n]: u 2 01 n= 19 21 T (1)
where
0, forz < u,
(z —u)s =
z—u, forz>u,

) = F(u) =1 — F(uw). (2)

As a function of u, I™(u), n = 1,2,---, will have domain [0,00). We call

function IT1(™ (u) the nth stop-loss transform of X.



Definition 1.2. (nth Stop-Loss Order) We say that X is less than Y in the

meaning of the nth stop-loss order, denoted by X <g(n) Y, if
E[X* < E[Y¥], k=1,2,---,n—1,

and
P (u) < Hgf)(u), for all u > 0.

When n = 0, the formula (3) disappears and formula (4) becomes
Fx(u) < Fy(u), forallu>0.
When n = 1, the formula (3) is trivial and formula (4) becomes

/w Fx(z)dz < /mfy(z)d:z:, for all w > 0.

u

Definition 1.3. (Weak nth Stop-Loss Order) Let

(3)

(4)

Q= {H(z), > 0: H(z) > 0 monotonous decreasing and Jlim H(z) =0}

Suppose H(z), G(z) € 2. We say that H(z) is less than G(z) in the meaning of

weak nth stop-loss order, denoted by H <ws(n) G, if

Hg‘)(u) < Hg’)(u), for allu > 0.

(5)



Definition 1.4. (Exponential Order) Risk X precedes Y in the exponential

order, written X <. Y, if for each a > 0, we have

Mx(a) = E[e**] < E[e*¥] = My(a) (can be o). (6)

Theorem 1.1.

21 w)] = —n0§ 0 (w) @
or
NP =n [ 0§ (@)dz. (®)

(see Cheng and Pai (1999a), Theorem 6 )

Theorem 1.2. Letn =0,1,2,--- and m > n. Suppose risk X <gn) Y. Then
X <,¢(m) Y.

(see Goovaerts et al. (1990), Theorem 4.2.2)

Theorem 1.3. Suppose u(z) is a utility function having n—1 continuous deriva-

tives of alternating sign:

(—1)(k_1)u(k)(z) 2 01 k= 17 21 e, — 11 (g)

6



(=1)*=Dy™(z) > 0, and non-decreasing in z. (10)

<

Let U, = {u(z) : u(z) satisfies (9) and (10)}, w(z) = —u(—z), and W,, = {w(z) :

w® (z) = (=1)E+yk)(—z) > 0}. Then X <y Y, if and only if
Eu(—X)] =2 E{u(-Y)), for allu € Uy,

if and only if

Elw(X)] < E[w(Y)), for all w € W,.

(see Cheng and Pai (1999a). Theorem 10)

Theorem 1.4. The nth stop-loss order is maintained under the summation of

independent random variables. That is, if
X; <si(n) Yi: izlaza"'vky
where & is a positive integer, then

k k
ZXi<sl(n)zYia n=09112)""
=1

i=1

(see Cheng and Pai (1999a), Theorem 19 )



2 Properties of nth Stop-Loss Orders

<

nth

From Theorem 1.3, we can see that the nth stop-loss order can be characterized
as the common preferences of a group of decision makers with increasingly regular
utility functions u(z) € U,. We will continue the work of Goovaerts et al. (1990)

and Cheng and Pai (1999), to give more features of the nth stop-loss order.

Theorem 2.1 will be used to compare the differences of the net premium principle

and the exponential premium principle in Section 4.

Theorem 2.1. (Necessary Condition) Suppose X , Y are not identically

distributed risks. If X <,qn) Y and E[X™"] < co , then
E[X™ | < E[Y™¥], k=1,2,---,i.

Proof

If E[Y"*] = oo , the result is obvious. If E[Y™*] < oo , we first show that for
= 1 we have

E[X™] < E[Y™*!].

Indeed, let

g(u) = Mg () — &+ (w).



From Definition 1.3 and Theorem 1.1 . we have for all © > 0,

‘ g(u) <0,
and
/() = (I () — IV )] = ~(n + VTP ) — TP ()] > 0.
Further more , there exists u, > 0. such that

g (o) = —(n + 1) (uo) — I (w0)] > 0.

(otherwise differentiate g’(u) n times, we will have Fix(u) = Gy (u))

So the following inequality must be true
9(0) = I¢*H(0) - IF*P(0) = BX™] - E[Y™] < 0.

Applying the same method and the fact that HS}‘*"’(u) < n§£‘ +9) (u) for j

1,2, - and for all © > 0, we obtain the relation

E[X™"¥ < E[Y™*], k=2,---,i.

A sufficient condition for the nth stop-loss order is given by Theorem 4.2.3 of

Goovaerts (1990): n+1 sign changes in density functions implies the nth stop-loss

order. Here we give another sufficient condition: n sign changes in distribution

functions implies the nth stop-loss order.

Theorem 2.2. (Sufficient Condition) Suppose that for two risks X and Y

there is a partition of [0,00) into n + 1 consecutive non-empty intervals(closed

9



intervals containing only one point are acceptable) Iy, [y, - - -, I, such that
(=)™ {Fx(t) — Fr(t)} <0 on [;.
If moreover the first n moments satisfy

E(X?)=E[Y?], j=1,2,---,n,

then

X <st(n) Y.

Proof

For convinence, we let n be an even number. When n is an odd number, we can

apply the same method to arrive at the result. Let
h(t) = P () - IR(®), i=0,1,---,m,
then from Theorem 1.1, we have
hi(t) = —ihi1(2).

We only need to show that

ha(t) >0, forall¢> 0. (11)

First we know that

(1) (Fy(t) — Fx(t)) <0, 7=1,2,---,n,

10



and

: Ri(t) €0, hy(t) | on I,

hi(t) 20, hi(t) T on I,

Bi(8) <0, hy() | on L.

On the other hand, from

hn(0) = hn(o0) =0,

we know that there exists a; € (0, 00) such that A/ (a;) = 0, using Rolle’s theorem

and repeating this process, we have: there exist b; < by < --- < bn_; such that
hl(O) = hl(b1) =~ = hl(bn-—l) = h1(00) =0.

Combin the discussions above, the following conclusion must be true: there exist

¢y € I1,---,cn-1 € [n_1 such that
hi(¢) <0 on0,c) = Iom,
hi(t) 20 onfey,c) = LY,

hi(t) =0 on[ca-1,00) = [, (V).

Repeat the same process, we finally have (11). g

We can see that the condition of Theorem 2.2 implies: Fx(t) = Fy(t) at least at
n different points in (0, o).

11



Theorem 2.1 and 2.2 are two useful tools to help us find out or construct the risk

pairs which have nth stop-loss orders.

Compound risk was discussed in Theorem 20 of Cheng and Pai (1999a) where
the counting variables NV} and N, have identical probability distributions. Now
we give another result where N; <gu) Nz but X; and Y; are two sequences of

independent and identically distributed risks.

Theorem 2.3. (Compound Risks) Let X;, X5,--- and Y}, Y5,--- be two se-
quences of independent and identically distributed risks, N;(j =1, 2.) be counting
variables independent of X; and Y;. In the collective risk models, S, and S, are

defined as

Ny Na
Si=) X, SH=3 Y.

=1 i=1
If

Xi <sin) Yi, N1 <aq1) Na,

then we have

S1 <sifn) Sa2-

Proof

According to Definition 1.2, we need to prove

E[S]I<E[S)] i=1,2,---,n—1, (12)

12



and

<

Hg:)(u) < Hfgr,_:) (u), for allu > 0. (13)
First we prove (13). From Theorem 1.4, we have for all u > 0,

0§ (w) = E[{(S1 ~ u):}"]
= i E[{(S1 —u)4}" | My = k] - Pr(N, = k)
k=0
< S E{(S: —w)" | My = k] - Pr(V, = &)
k=0

o0 k
= Y E{(O_Yi—u)e}" - Pr(V1 = k). (14)

k=0 i=1

(define E[{(T¥ | ¥i — u).}"] = 0 when k£ = 0)
Let
k
wi(k) = E{(S % — ). }7]
=1
It is obvious that

wi(k) Sw(k+1), k=0,1,---.

If
2?..01(]64—1) S wl(k) +‘LU1(k+2), IC=0,1,"-, (15)

we can construct a convex function ws(t), such that

wy(k) = wy(k),

13



and

wy(t) > 0, and non-decreasing in ¢.
Then from Theorem 1.3, we have

Efwy(N1)] £ Efwy(N2)],

and (14) becomes

oo k
8w < Y B Y —w)+}]-Pr(Vy = k)

1
k=0 =1

oo k
< X E{(ZYe—w)+}"] - Pr(Ne = &)

k=0 i=1
= I (u).

Now we only need to show (15). Let

k
A=Y Y.

i=1

(15) is equivalent to the following inequality

E[{(Ak + Y1 — u) 4} + E[{(Ak + Yigo — )4 }"]

< E[{(Ak — u)+}7) + E[{(Ak + Yer1 + Yeo — w)4 }7,

and this follows directly if we look at the conditional distribution with Ax = a,

Yk+1 =1y, Yr42 = 2, and use the following inequality

(e+y—u)i+(@+z—u)i<(a—u)i+(a+y+2z—-u)i. (16)

14



It is easy to check (16). When u > a, (16) is obvious; when u < a, we can get
(16) by using Binomial Theorem.

Applying the same method, we can prove (12). g

In the following Corollary, we generalized the result of Theorem 3.2.5 in Goovaerts

et al. (1990) from stop-loss orders to nth stop-loss orders.

Corollary 2.4. (Conditional Compound Poisson Distribution) Let A; be
a non-negative structure variable, and N; be an integer valued non-negative ran-
dom variable. Their conditional distribution given A; = X of NN; is Poisson(\) dis-
tributed, 7 = 1,2. Let X, X3, --- and Y, Y2, - - - be two sequences of independent
and identically distributed risks, N;(7 = 1,2) be counting variables independent

of X; and Y;. In the collective risk models, S; and S, are defined as

M N2
Si=YXi; S2=) Y.
=1

i=1

If
Xi <qm) Yi, 1=1,2,---,
and
A1 <gq) Az,
then

S1 <si(n) S2.

15



Proof

<

In view of Theorem 2.3, we only need to know

lv;_ <sl(1) IVQ .

From the proof of Theorem 3.2.5 of Goovaerts et al. ( 1990),

Ay <siqy A2

implies

Ny <gq) V2. 8

16



3 Properties of Exponential Orders

<

Now we discuss another partial order-exponential order. If exponential utility
functions are being used, the risk averters’ attitude to risk does not change with
the acquired capital. From Definition 1.4, we know that the exponential order
can be characterized as the common preferences of the group of these decision
makers. The following proposition indicates the exponential order is a weaker
order than any nth stop-loss order. It is the limiting case of the nth stop-loss

order.

Proposition 3.1. (Sufficient Condition) Let n = 0,1,2,---. Suppose risk
X <si(n) Y, then

X <Y

Proof

Applying Theorem 1.3, we have for all o > 0, let w(z) = e**, then w(z) € W,,

and

B[e™] = Bfw(X)] < Ew(Y)] = B[], y

Example 1. For a compound Poisson risk process with premium c¢ per unit
time and two risks X, Y, if X <gn) Y, then the adjustment coefficients satisfy

Rx > Ry.

17



Proof

<

From Theorem 2.3.2 of Goovaerts et al. (1990), X <. Y implies Ry > Ry and

by Proposition 3.1 our conclusion can be arrived at immediately. g
For convenience to use later, we prove the following proposition.
Proposition 3.2. (Necessary Condition) Let Az = sup{a : Efe*?] < oo},
and X, Y be two non-negative random variables. If
X <Y,

then

Proof

If Ax =0, from X <. Y and the definition of Az, we have Ay = 0.
If 0 < Ax < oo, we use the method of reduction to absurdity to prove the result.

If Ax < Ay, then there exists a, > 0, such that
Ax < Qo < AY,

and

Ele™*] = 0, E[e*¥] < .

This is contrary to X <. Y. The proof is complete. g

18



Proposition 3.1 and 3.2 provide some information for finding risk pairs that have

exponential orders.

The following theorem is useful when we discuss the properties of L; and L later.

Theorem 3.3. Let Ay >0. f X <. Y and E[X/] = E[Y?], 7 =1,--,k—1,
then

E[X*] < E[Y*].

Proof

We use the method of reduction to absurdity to prove this proposition. We know
that for a < Ay, Nfg)(a) < 00, My XY (a) < oo for j =1,2,---(we will show it

later in Proposition 3.9 ). If
E[X* > E[YH],
then
MP0) - M¥F(0) > 0.
From E[X*Y] = E[Y*"!] = MEV(0) = M¥1(0), we know that there exists
ar-1 < Ay such that forall 0 < a < oy

M¥E V(@) = ME(a) > 0.

Repeat this process, we finally have there exists g < Ay such that for all 0 <
a < qg
fo(a) - .[1/[1/(&) > 0.

19



This is contrary to X <. Y. g

L3

Like nth stop-loss orders, exponential orders are maintained under a compound
operation and a mixture operation, we will show these properties in the following

theorems.

Theorem 3.4. (Compound Risks) Let X, X5,--- and Y7, Y3,--- be two se-
quences of independent distributed risks. N, and N, are counting variables inde-
pendent of X; and Y;. In addition, N; and NV, have identical probability distri-

butions. In the collective risk models, S; and S, are defined as

Ny No
51=ZX,;, 52=ZYt
=1

=1

If X; <. Y; for all 7, we have

Proof

For a@ > 0 and E[e*S?] < co, we have

Ele*] = iO{E[e“X‘]}" - Pr(Ny = n)
< i{E[e"‘Y"]}“ - Pr(Np = n)
n=0
= E[e=%).

20



That is

51 <e 52. B

The identical assumption of N and NV, in Theorem 3.4 can be released if X; and
Y; are i.i.d. respectively, ¢ = 1,2,---. The same property is held if N; <. Na.

The result is stated in Theorem 3.5.

Theorem 3.5. (Compound Risks) Let X, X,,--- and Y7, Y, - - be two se-
quences of identically distributed risks, V; and N; be counting variables inde-

pendent of X; and Y;. In the collective risk models, S; and S; are defined as

Ny N2
Si=Y Xi, =) Y.
i=1 =1

Let X and Y be the common random variable of X; and Y; respectively. If

X <. Y and NV, <, N,, we have

S[ <e 52. (18)

Proof

If E[e*"] = 1, (18) is obvious. Now we consider the case E[e*¥:] > 1. For @ > 0

and F [e“sz] < 00, let a1 > 0 such that

e®t = E[e™].

21



Applying Proposition 3.2, we have

<

Bl =
<
<

That is
Corollary 3.6.

be a non-negative structure variable, and N; be an integer valued non-negative
random variable. Their conditional distribution given A; = X of NV; is Poisson(A)

distributed, j = 1,2. Let X3, X, -~, Y1, Y2, -- and S}, S; be the same as Theo-

rem 3.5. If

and

then

S {E[e)}" - Pr(IV; = n)

n=0

S {E[e™ )" - Pr(IVy = )

n=0

> et Pr(N, =n)

n=0

Z e . Pr(lVg — n)

n=0

S (E[ )" - Pr(M, = n)

n=0

E[e>%]..

S <. 52. [}

(Conditional Compound Poisson Distribution) Let A;

Xi<.Y; i=12--

A <e Ay,

Sl <e 5’2.

22



Proof

<

In the view of Theorem 3.5, we only need to prove
N] <. IVQ.

For o > 0 and E[aV2] < 00, using Proposition 3.2, we have

E[e*™] = E[E[e*™ | Adll = Efexp (e* — 1)A]

al=e°:-l>0 E[ealz\l] < E[eau\z] — E[eaNz]. i

In the following theorem the situation is studied where a risk is produced by one of
m sources. The index ¢ for which /; = 1 indicates which source actually produces
the risk. The resulting distribution is a mixed distribution. We formulate the

maintenance of exponential orders for the random variables.

Theorem 3.7. (Mixing of Random Variables) Let X, -, X, and ¥}, -+, Y
be two sequences of independent risks with X; <, Y; foralli = 1,---,m. If
Iy,---.1n have a joint distribution such that I, +--- + I, = 1 and marginally,

P(I;) =pDi = 1-— P(],, = O) Then

Z [iXi <e Z .[,K
=1

i=1

23



Proof

For all a > 0,

Elexp{ad_ LX:}] = > E[e%]-p
=1 i=1
> Ele®™]-p: = Elexp{a)_LY}] 0

=1 i=1

IN

In order to prove Theorem 3.12, we need the following proposition.

Proposition 3.8 Let X be non-negative random variable. If there exists a, > 0

such that E[e®¥] < oo, then
lim e**F(z) =0,

where F(z) is the survival function of X.
Proof

From E[e®*] < oo, we have
Jim [T e aF(y) =0,

therefore

Jim ¢**F(z) < Jim [~ e dF(y) = 0.

The proof is complete. g

24



Now we prove a more general result as follows:

Proposition 3.9. If a < Ax, then
lim e““’HS’(’)(I) =0, n=12,---.

L0

Proof

We first prove that NI)(Q’)(Q) < oo, n=1,2, ---. Since

=~ k rigt
Mx(a) = /0 Jim (3 =) dFx(a),
=0 -

let
9k(z) = g x;?i,
then
l9x(z)| < e°%,
and

o
/(; e* dFx(z) < oo.

By dominated convergence theorem, we have

Mx(a) = /0 = kli{g: gr(z) dFx(z)
o0 E[Xi]a‘

Y 22N o

i=0 il
So Mx(a) has derivatives of all orders at a and M;(?)(a) can be calculated by
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term-by-term differentiation of the series. That is

“ gl

o k
i=0

2!
By monotone convergence theorem, we have
k rig

M (a) = /0 “lim Y ZE o dFy ()

— 1
k—oc i—g &

= /:Q z"e*® dFx(z) < .

Therefore
Jim, [Ty dFx(y) =0,
and
: azry(n) - : ar [ \n
lim e*I’(z) = lime / (y — z)" dFx(y)

o
< lim e™y" dFx(y) =0.
T~ OQ P

The prove is completed. g

Let us generalize the concept of the moment generating function and the concept

of the exponential order to the class of general nonnegative monotonous decreas-
ing functions on [0, c0).

Let €2 be the same as in Definition 1.3. We have the following definitions:
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Definition 3.10 Let H(z) € 2, and

<

My(a) = — /Ooo e** dH(z) (can be o0).

We call My (a) the Laplace transform of H(z).

Definition 3.11 Suppose H(z),G(z) € Q). We say that H(z) is less than G(z)

in the meaning of exponential order, denoted by H(z) <. G(z), if
Mpy(a) £ Mg(a) for all @ > 0.

According to these definitions, we can discuss the maintenance of exponential

order for the 1st stop-loss transform.

Theorem 3.12 If X <. Y ,E[X] < 00 and E[Y] < o0, then
i (z) <. TP (x).

Proof

If a < Ax, from Theorem 1.2.1 of Goovaerts et al. (1990} and Proposition 3.8,

we have

—/oeoe‘”" diP(z) = /0 e 11 () dz

1 e's) eca:
= ath =@
1 o0 eaz:
—'; + 0 —a— de(.’L‘)

IN

(o2}
= - [~ e dnP(a).
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If a > Ay, from X <. Y and Proposition 3.2, we have

<

lim [ e=Q(z) dz = hm{f—(l—Fx(x))lé’ + /Oye—a—de(I)l

y—aoa jo Y00

v

lim [—— + —/ye"‘z dFx(z)] — oo
a a 0 o b

y—co

and
(Y exp(® — lim[Ery y, [1€7
jim [ e (@) dz = Jim[—(1 - Gr@)l} + /0 — dGy(3)]
. 1 1 v .
> 1}2&‘[—;4.;[) € de(.’L‘)]—*OO
Therefore

% e Wy [ ez Dy
/Oe dily’ (z) = /;e dIly ' (z) = oo.

If o = Ax, and Mx(a) = oo, then from X <, Y, we have My(a) = oo, the prove
is the same as the case o > Ax.

If o = Ax, and Mx(a) < oo, then from Proposition 3.8, we have

lim [ e*IQ(z) dz = lim [——(l—Fx(x) ¥+ / ——de(:z:)]

y—x Jo
1 .
= ——+jim /0 = dFx(z)
1 ) Yy e*=
< ——+lim — dGy(z)
a y—oJy «

< lim ”H@(z) dz

y—o0
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So we have
‘ n{P (z) <e 0y (2)-

The proof is completed.
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4 Applications in Ruin Probabilities

<

We have now established two ways to study the risk models. One way is by using
the martingale theorey, we can find formulas of ¥(u) and estimate the upper
bound and lower bound of w(u). We will give a formula of ¥(u) in Section 5 by
this way. The other way is by using the Renewal equation from which we can
find the distribution of L; and therefore we can study the maximal aggregate loss
random variable L and L provides much more information about 1(u). We use

this method to discuss the properties of L and 1(u) in this section .

4.1 Surplus Process

Now we introduce some concepts related to ruin probabilities by Bowers et al.

(1997).

4.1.1 Surplus Process

Let U(t) denote an insurer’s surplus at time ¢, u denote the initial surplus at

time 0, c(t) denote premiums collected through time ¢, and S(t) denote aggregate
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claims paid through time ¢. U(¢) is given by

€

U(t) = u +c(t) — S(t). (19)

We call U(t) the surplus process and S(t) the aggregate claims process. S(¢) is
determined by the number of claims N(t) that occured in [0, £} and the amount
of each claim Xj.--+, Xy()- In this section, we assume that the claim number
process N(t) is a homogeneous Poisson process with constant parameter A, X,
i=1,2,---, are independent and identically distributed with common d.f. Fx(z),
premium rate is a constant, ¢, ¢ > 0. c(t) = ct, ¢ = (1 + 9)AE[X] where § is the
security loading. Consequently, S(¢) is a compound Poisson process, and it is
expressed as follows:
N(t)

S =Y. X.. (20)

=1

4.1.2 Ruin Probability

When the surplus becomes negative for the first time, we say that ruin has oc-

curred. Let

T =min{t: ¢t >0, U(t) < 0} (21)
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denote the time of ruin with T = oo if U(¢) > 0 for all ¢. Let
U(u) = Pr(T < oo | U(0) = u) (22)
denote the probability of ruin which is a function of the initial surplus u, and

Uy, t) =Pr(T <t | U(0) =u) (23)

denote the probability of ruin before time t. Of course, ¥(u) is an upper bound

for ¥(u,t).

4.1.3 The First Surplus below the Initial Level
Let L, be a random variable denoting the amount by which the surplus falls

below the initial level for the first time, given that this ever happens. The p.d.f.

for L, is

fr(y) = pil[l - Py)l, y>0, (24)

where P(y) is the d.f. of claim size random variable X, p; = E[X].
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4.1.4 The Maximal Aggregate Loss
Let

L= ng)adt{S(t) —ct} = ntlgaox{u - U()} (25)

denote the maximal aggregate loss random variable. By this definition, we know

that L > 0 and

Pr(L <u)=1-v¢(u), u=>0, (26)

Pr(L = 0) = 1 — %(0). 27)

If L; denote the ith deficit and M denote the total number of deficits, then M
has a geometric distribution with parameter p = 1 —9(0) and L, Lo, - -- are i.i.d.

with the common p.d.f. given by (24). We can represent L as follows:

L=Li+Ly+ -+ Ly (28)
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4.2 The Relationship between the Order in Claims and

the Order in Ruin Probabilities

From the following discussion we can finally see that the exponential ordered

claim amounts induce the exponential ordered ruin probability functions.

Proposition 4.1 Let L; and LY be random variables denoting the amounts by
which the surpluses fall below the initial levels for the first time, given that these

ever happen. If X <. Y, and E[X]| = E[Y], then
L¥ <. LY.

Proof

From (24).we have

) = =1 - P@)l,
y25

and by Theorem 3.12, we have for all & > 0,

® oz - 1 R ez (1)
[ e fi@) de = B &A@
< L °°ea=dn“’(z)=/°°ewf v(z) dz. g
~  E[Y]Jo Y 0 L ’

Proposition 4.2 Let Ly and Ly be the maximal aggregate losses related risks

X and Y, 8, and 6, are security loadings related risks X and Y. If X <. Y,
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E[X] = E[Y] and 6; = 6. then

<

Lx <e Ly.

Proof

From the former discussion in this section, we know that
L’=.L1+-L2-F'--+'L@b

where M is the total number of deficits and has a geometric distribution with

Pr(M =mn) = (1 — %(0))(¥(0))" =6 (1—4175

)n+1_
Applying Proposition 4.1 and Proposition 3.4 on L;*, L;¥, M, and M, are iden-

tical distributed, we have

Lx'<eLy.|

From (26) and (27) we know that 1/(u) > 0, monotonous decreasing and lim,_.o ¥(u) =
0. Consequently, ¥(u) € Q and we can define the exponential order on the family

of ruin probability functions as follows:

Definition 4.3 We say that ruin probability function ¥x(u) is less than ¥y (u)
in the meaning of the exponential order, denoted by ¥x(u) <. ¥y (u), if for all
a>0,

— [T e dux(@) < — [ e di(2) (can be o).
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Theorem 4.4 If X <. Y and E[X] = E[Y] < oo and the security loading 6; and

#» are the samé as in Proposition 4.2, then
Ux(u) <. Yy (u).

Proof

Note that

'l,/)x(u) = Pr(Lx > u) =1- FLX(‘U.).

From Definition 4.3 and Proposition 4.2, we arrive at the conclusion. g

4.3 Moments of the Maximal Aggregate Loss Distribution

For some claim distributions it may be difficult to calculate adjustment coeffients
and ruin probabilities. Approximation methods based on the moments of the
maximal aggregate loss distribution may be easy to apply. In this section we

develop theory which will provide more information about E[L].

Theorem 4.5. If E[X] = E[Y], X <. Y and the security loading 6; and 8, are

the same as in Proposition 4.2, then

E[Lx] < E[Ly].
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Proof

<

According to Proposition 4 of Cheng and Pai (1999b) and Theorem 3.3, we have

E[X?
20, E[X]
EY?
26,E[Y] -

ElLx] =

IA

ElLy]. &

Theorem 4.6. If E[X'] = E[Y'], i = 1,2,X <. Y and the security loading 6,

and 6, are the same as in Proposition 4.2, then
E[(Lx)%] € E[(Lv)?]

Proof

According to Proposition 4.2

X< Y
implies
Lx <e Ly,
and from Proposition 4 of Cheng and Pai (1999b)
EX'=E[YY],i=1,2
implies

B[Lx] = ElLy].
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Therefore by Theorem 3.3. we know that
E[Lx* < E[Lv*]. 1
Theorem 4.7 If E[X']| =E[Y", i=1,---,kand X <. Y, then

E[(LY)* | Ty < o0] < E(LY)* | T < o0,

where 77 is the first time at which a deficit occurs.
Proof

By Proposition 2 of Cheng and Pai (1999c) and Theorem 3.3

E[X’H'l]
(k+1)E[X]

E[yk-HI _ k .
< m— E[(LY)" | Ty < o). g

E[(LN)" | TT < o0

In Cai and Garrido (1998), a method was given to calculate E[L?], the purpose

of proposition 4.8 is to give us a method that can also calculate E[LY].

Proposition 4.8 If Ax > 0, then

1/360py - ps + 1/2p2>
92?12 !

E[LY =

where p; = E[X].
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Proof

(3

From Theorem 13.6.1 of Bowers et al. (1997). we know that

Oprr
M
fi(r) = 1+ (1+8)pir — Mx(r)
Applying the formula
&
VaT[L] = }-l% PU.D. l‘/[L(r)]’

we have

d 1 (1+8)p — My'(r)

Ziln M == -

dr[lnl[L(r)] r 1+ (1+8)pir— Mx(r)’
and

fg [ln Mz (r)] (29)
1 ML+ (1 +60)pir — Mx(r)] + [(1+ 6)py — Mx'(r)]?
T2 1+ (1+68)pir — Mx(r)]2 '

For 0 < r < a < Ay, from the proof of Proposition 3.9. we know that Mx®(r) <

Mx®(a) < oo, i=1,---,5. Hence

Me(r) =14 ro+ Tpat ot [ ) f(z) d

Since

[EE T e de
2,.2

°°.'Z7 T T T
- r/(; Tt T e+ )@ ds

< r"‘/o zte™ f(z) dz

< rMx®(a) = o(r®),
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then
-2 3
Folry — 3
. Mx(r)=1+4+rp + P2+ 3773 + o(r”).

Applying the same method we have
’ r? 3
My (r) = p1+rpa+ o p3 + O(r),

and

2
Mx"(r) =p2+1p3 + -T;;-p‘; + O(r%).

Let k(r) = [1 + (1 + 8)pyr — Mx(r)], then (29) becomes

-c-id%[ln M ()]
."-’Ix”(f‘)k’(f’) + [(1 + 6‘)p1 - A/[X,(T)P - 1/T2IC2(T')
k3(r)
1/30p1psr? + 1/4p2>r? + o(r?)
[Opyr — r2/2 + O(3))?
1/39231[)3 + l/4p22
62p, 2 '

From Proposition 4 of Cheng and Pai (1999b), we have

E[L] = 25; :

hence

1/392)1[)3 + 1/2p22

2] _
El] = 0°p1?

Proposition 4.9 Suppose E[X'] = E[Y'], i = 1,2,3. If X <. Y, and the

security loading 8, and 6, are the same as in Proposition 4.2, then

E((Lx)’] < E[(Ly)*].
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Proof

<

From Proposition 4 of Cheng and Pai (1999b) and Proposition 4.8. we know that
E[Lx] = E[Ly]. E{(Lx)?] = E[(Ly)?. again by Theorem 3.3, we arrive at the

conclusion. g
We give another example that apply Theorem 2.1 to estimate E[L"].

Example 2 Denote the random variable having an exponential distribution with

parameter u by e,. Suppose X and e, are two risks. If E[X] = ﬁ, X <gi(n) €pus

security loadings #; and 8, related to risks X and e, are equal, then E[L%] <
n!

—nl o = fu
ey where R = 145"

Proof

From Lemma 1 of Cheng and Pai (1999¢c), we know that Lx <syn-1) Le,, and by

Theorem 2.1. we have E[L%]| < E[L7 ]. We know that

L= Pr(L,, S ) =, (u) = e,

consequently

n R c’Qn—u
E‘[Le,‘]——--I——i:—e—‘/0 ueR du=

n!
(1+6)R"’

and we arrive at the conclusion. (]
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4.4 The Application in Risk Premium Principles

<

Now we cite some concepts of risk premium principles in Goovaerts et al. (1990).

The basis of insurance is the hypothesis that claims can be compensated by fixed
payments called premiums. Premiums are calculated by a premium calculation
principle. This is a rule = that assigns a real number 7{X], also written «{Fx}], to
the distribution function Fx of risk X. Each premium principle induces a total
order of all risks. ranking risk X with low premium 7[X] below risk Y with higher
premium ={Y]. We make three assumptions.

1. If X <q0) Y. then #[X] < 7[Y], with equality only if Fx = Fy.

2. If P[X =¢c] =1, 0<c then 1{X] =c

3. Let X. X’ be risks such that n[X] = n[X'], p € [0. 1], then
TlpFx + (1 = p)Fy| = n[pFx + (1 — p)Fy].

These assumptions lead to a Mean Value Principle, where the premium is calcu-

lated from the formula
T(X] = FTHE[F(X))),

for some suitable increasing continuous valuation function f. For example, f(z) =
—u(w — z) where u(z) is a utility function and w is the wealth of the decision
maker. We can narrow the class of premium principles even further by adding

the fourth requirement of additivity.
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A premium principle 7 is called additive if for independent risk X and Y. II(X +
Y) =II(X) + H(Y). From Theorem 6.2.2 in Goovaerts (1990). we can see that
by the four requirments mentioned above the set of feasible premium principles

is reduced to the net premium principles f(z) = z and the exponential principles

f(z) = e*=.

For net premium principle. we can not distinguish the risk X and Y if E{X] =
EfY] but X <qq) Y(that is Var(X) < Var(Y) by Theorem 2.1), the situation
is different if we use exponential principle. from the following theorem we can
see that the exponential premium principle can differentiate between losses more

finely than the net premium principle under some conditions .

Theorem 4.10 Let X and Y be two risks. If E[X*] = E[Y*], k =1,2,---,n~1,
and X <si(n) Y. then

m(X) < 7 (Y),

under the exponential premium principle for the same «.

Proof

From Theorem 2.1, we know that

E[X"] < E[Y™].
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Consequently

R(X) = —ln{Ele]]

1 02 23 a™ n
= aln(l-%—aE[X]-i——?T!-E[Xj+---+;!—E[X J+---)

L a1 + aBlY] + & E[¥? < Ely
< ;].Il(l-:-OcE[ ]+—2-l— [ ]+"-+E Y™ +--9)

= w(Y). g

Now that the exponential premium principle can differentiate between losses more
finely than the net premium principle, maybe we can choose some proper form
for ¢ in the classical risk models, and discuss the properties of ruin probabilities.

This topic is worth further study.

Proposition 4.11 Let X and Y be two risks. If X <. Y, then
m(X) < 7 (Y)

under the exponential premium principles for the same «.
Proof
We arrive at the conclusion immediately from Definition 1.4. g

We know that if the aggregate claims process is not a compound Poisson process,

sometimes it is difficult to calculate the exponential premium for S(¢) in a unit
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time interval. by using the maintenance properties of exponential order, we can

compare the exponential premiums for two aggregate claims processes.

Proposition 4.12 Suppose the exponential principle is being used. Under the

condition of Theorem 3.4 or Theorem 3.5. we have m,[S]] < 7 [S2].

Proof

We can have S; <. Sy both from Theorem 3.4 and Theorem 3.5. Consequently
1
T[S1] = FTUEf(S)]) = ;ln(Msl(a)) (30)
1 .
< S l(Ms(e) =TalS2). § (31)
4.5 'The Concepts of Distance on Risk Sets

Now we introduce the concepts of nth stop-loss distances and ruin probability
distances on the set of risks. From the discussion of Cheng and Pai (1999b), we

can compare the ruin probability distances of different pairs of risks.
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Definition 4.13 Suppose X and Y are two risks. We define the nth stop-loss

distance as follows:
d(X.Y) = [ 1P (w) ~P() | du. (32)

From Definition 4.13 and Theorem 1.1, we know that dy(n)(X.0) = 5 E[X™+!],
dsqn)(X.Y) > 0 if X and Y are not identically distributed, and also we have

following propositons.

Proposition 4.14 If X < ) Y. then
1
b — Yn+1 _ n+l )
ds(n)(X,Y) " 1{E[ |- EX™]} (33)

Proof

From Definition 1.3, we know that
I (w) < I8 (u),

by Theorem 1.1, we have

dymy(X,Y) = /0 I (w) du — /0 1 () du

= (B - B}
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Proposition 4.15 Suppose X. Y and Z are not identically distributed risks.

(1) If X <qn) Y <si(n) Z. then
dsin)(X.Y) < dsn)(X. Z).
(2} If X <gim) Y.Y <qn) Z and | = max{m, n}. then
dsqy(X.Y) < dsy(X, 2).

Proof

From Proposition 4.14 and Theorem 2.1. we can immediately get (1).

From Theorem 1.2, we know that
X <awy Y <aw <

and by (1), we can get (2). g

Definition 4.16 Suppose X and Y are two risks. We define the ruin probability

distance between X and Y with parameter u as follows:
doalX, ¥) = [ [ux(a) —wv(z) | do (34)

From Definition 4.16, we know that dy, (X, Y) > 0 if X and Y are not identically

distributed risks.

Proposition 4.17 Let X and Y be two risks. Suppose ¥x(z) and ¥y (z) intersect
at finite points, denoted by z; < 25 < --- < zx. If there is an integer n > 0 such
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that ¥ x(r) <wsi(n) Yy (z), then

(3

dyu(X, Y) = T2 (u) — I (w), for all u > z«. (35)

Y

Proof

From Proposition 7 of Cheng and Pai (1999b). we know that
Ux(z) < ¥y(z), for all u > zx.

Consequently

dyo(X, Y) = / = by (z) dz — /:’wx(x) dz

Ju

— H(l)

vy (W) — Hs,}_l(u), for all u > z¢. g

Example 3 Let X and e, be two risks. Suppose ¥x(z) and 9., (z) intersect at
finite points, denoted by z; < z2 < --- < . If there is an integer n > 0 such
that ‘d)x(l‘) <wsl(n) ’l,/)e“(:l?), then

—Ou

H(l)
1+86

1
ane () < M exp{

u}, forall u > z.

Proof

By Proposition 4.17, we have

dyu(X, e,) = Hf,,le)“(u) -1 (u) > 0,

LTA'e
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also from

¢ H,(‘,}e)“(u) =/u Ue,(z) dz = @e@{iz%u

we arrive at the conclusion immediately. g
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5 A Formula for Ruin Probabilities

Consider an insurance portfolio in which the distribution of the number of claims
in a year is a conditional Poisson distribution with mean A = X. For most classes
of general insurance. many possible sources of heterogeneity of risk exist. For
example, if A follows the gamma distribution representing heterogeneity of risk.
then the number of claims follows the negative binomial distribution. At this
time, the aggregate claims process S(t) is complicated since S(t) does not have
both independent and stationary increments like compound Poisson process. In
the following theorem we give a formula for ruin probabilities for heterogeneous

portfolios.

Theorem 5.1. (Ruin Probability) For a heterogeneous portfolio, let X, X5, - - -
be independent. identically distributed claim amount random variables with com-
mon d.f. P(z), A be a non-negative variable on (A,, A1), Ao > 0, A\; < oo.
X1, X3, -~~~ be independent of the process N(t) ., S(t) = Zfi(f) X;, ¢ be the pre-
mium rate for the portfolio. ¢ = (1 + 0)E[A]E[X]. Given that A = A, N(¢) is a

Poisson process (At). If U(t) = u + ¢t — S(t), then for u > 0,

e—Ru

Ele®U(D) | T < oo’

w(u) = (36)

50



where R is the smallest positive root of

<

1+ (1 +8)E[X]r = Mx(r). (37

Proof

It is similar to the proof of Theorem 13.4.1 of Bowers et al. (1997). For t > 0

and r > 0,

E[e —rU(t)]

= Ee7™V® | T<t]-Pr(T<t)+E[e™O|T>¢-Pr(T>t). (38)

The term on the left-hand side is

E[e™?®) = Ex[Ele™® | A = )]]

= e Eylexp{[Mx(r) — 1 — r(1 + 8)E[X]]At}]. (39)

The first term on the right-hand side is

Ele™" | T <] Pr(T < ¢)
= EAE[e™® | T <t, A=))]-Pr(T <¢)
= Ex[Elexp{—r[U(T) +c(t=T) = [St) = ST} | T <t, A= A]] -

51



Pr(T <t)
= E\E[eTVDexp{(Mx(r) —1~r(L+)At-T)}|T <t, A= )]

Pr(T < t). (40)

We choose r that satisfy (37), then (38) becomes

e = E\E™D|T<t, A=N]-Pr(T <t)+

EA[E[e B | T >¢t, A= MNj-Pr(T > t).

Let t — o0, if

lim Ep[E[e @O | T >¢t, A=)]-Pri(T >t) =0, (41)

from (38), we can get

e~ = E\E[E™D | T <00, A=1]]-v(u)

= E[e®M|T < 0] - w(u).

Now we only need to show (41). From the proof of Theorem 13.4.1 of Bowers et

al. (1997), we have

Ee ™ | T>¢t A=A -Pr(T >t A=)\)
< t75 +exp{—R(u+ OAtpr — \/Apati)}. (42)
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Consequently

IN

IA

<

E[e™8U& | T > t] = EA[E[e™™®W | T > t, A = )]
Ele BVO | T >t, A=A -Pr(T >t A=)\)

EAf Pr(T > t,A = \) |
EAl -3 4 exp{—R(u + 0Atp, — \/xi’;tg)}]
A (L—v@|A=N)-fal)

c1t™5 + cpexp{~R(BAotp1 — \//\1P2t§)}

0 (when t — oc),

and we can have (41). g

In general, a closed form evaluation of the denominator of (36) is not possible.
However, (36) can be used to derive inequalities. It is easy to see that ¥(u) <

e~ 8% Moreover, if the claim amount distribution is bounded so that F(m) = 1

for some finite m, then we have ¥(u) > e~ &u+m)

For the special case of u = 0 and the case where the claim amount distributions

are mixtures of exponential distributions, the explicit expressions for ¥(u) are

worth further study.
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6 Concluding Remarks

The theory of partial orders of risks is interesting and useful in many fields. This
paper discussed the properties of nth stop-loss orders and exponential orders.
The necessary condition and the sufficient condition for the nth stop-loss order
are convenient tools to construct risk pairs that can have nth stop-loss orders.
The relationship between a claim random variable and ruin probability was also
established. This result is worth further study for finding upper bounds of ruin
probabilities. The applications of these partial orders in evaluating existing risk
premium principles and setting up new risk premium principles are worth further

study.
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