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Abstract: 

C 

Sorne useful properties of the nth stop-los order and the exponential order will 

be given in this paper. These results will be applied to the study of losses Li (i = 

1.2,-  - -), L and ruin probability @ ( u )  A relationship between the claim amount 

random variables and ruin probabilities will d s o  be found. The concepts of the 

nth stoploss distance and the ruin probability distance will be introduced. A 

formula for ruin probabilities for heterogeneous portfolios will be given. 

Key Words: 

nth stoploss transform, nth s t o g l o s  order, exponential order, niin probability. 
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O Introduction 
C 

For an insurance company, each contract of insurance brings a risk with it. A 

daim may occur some time in the future and the amount of the claim is a nonneg- 

ative random variable which is called a risk. One of the main tasks of actuaries 

is to compare the attractiveness of different risks. This helps them to determine 

insurance premiums and to decide on the reinsurance needed. Another task of ac- 

tuaries is to calculate the risk premiums. The bais  of insurance is the hypothesis 

that claims can be compensated by fixed payments called premiums. Premiums 

are calculated by a premium calculation principle. The partial orders on a family 

of risks are called risk orders. The theorey of risk orders is a useful mathematical 

tool for comparing risks and risk premium principles. 

From Bowers (1997), we know if the decision maker has decided on the fixed 

amount to be paid for insurance, also the expected claims is a fixed value, the 

stoploss insurance will rnaximize the expected utility of the decision maker. Con- 

sequently, we concern more with the feature of the stoploss insurance. The 

properties of nth stoploss orders and exponential orders provide rnuch more in- 

formation for studying the stop-loss insurance, since the 1st stoploss transforms 

are the stoploss premiums. 

This paper is based upon the works of Goovaerts et al. (1990) and Cheng and Pai 

(1999a, 1999b, 1999~). Many kinds of partial orders were discussed in Goovaerts 

I 



et al. (l99O). The nth stop-loss order and the exponential order are two of them. 

In Cheng and $ai (1999a' 1999b7 1999~). the concept of stoploss transforw was 

generalized to the nth stoploss transforms. The maintenance properties of the 

nth stoploss order under the individual risk mode1 and the collective risk mode1 

were developed. In this paper, we first discuss the properties of the nth stoploss 

order and the exponential order: later apply them in risk premium principles and 

ruin probabilities. 

This paper is organized as follows. In Section 1, we introduce some definitions 

and results of Goovaerts et  al. (1990) and Cheng and Pai (1999a, 1999b7 1999~). . 

In Section 2, we continue the study by Cheng and Pai (1999a, 1999b, 1999~) on 

nth stoploss orders. We give a necessary condition and a sufficent condition for 

nth stop-loss orders. They are convenient tools to construct risk pairs that can 

have nth stop-loss orders. The maintenance properties of n th  stoploss orders un- 

der the operation of compound, in the situation where counting variables NI and 

1V2 are not identical, are to be proved. In Section 3, we study exponential orders 

which are weaker than nth stop-los orders. A necessary condition and a sufficient 

condition for exponential orders will be given. The maintenance properties of ex- 

ponential orders under the operations of compound and mixture are developed. 

In Section 4, the results from Section 2 and 3 will be used to study the losses Li, 

the maximal aggregate losses L, ruin probabilities and risk premium principles. 

The necessary condition for nth stop-loss orders will be applied in the valuation 

of risk premium principles. We will prove that exponential prernium principles 

2 



can differentiate between losses more finely than the net premium principles un- 

der some condkons. Consequently, if some proper forrns for prernium rates c 

in the classical risk modek being chosen, we can discuss the properties of ruin 

probabilities. This topic is worth hirther study. The relationship between the 

claim amount random variable and L, the relationship between the daim amount 

random variable and the ruin probability will be given. These result are worth 

further study for finding upper bounds of min probabilitiesSome properties of 

E[Li] will be developed. These results may provide approximation methods to 

estimate the ruin probabiiity functions. The concepts of the nth stoploss dis- 

tance and the ruin probability distance will also be introduced. In Section 5: a 

formula for ruin probabilities for heterogeneous portfolios will be given. 



1 Groundwork 
r 

This article deals with risks to be insured, which are defined as non-negative 

random variables. Here we cite some definitions and resuits of Goovaerts et al. 

(1990) and Cheng and Pai (1999a, 1999b. 1999~). 

Definition 1.1 (nth StogLoss Transform) Suppose Ioss random variable X is 

nonnegative with its distribution function being F ( x ) ,  its survival function being 

- 
F ( z )  = 1 - F ( x ) ,  and E[Xn] < m. Let 

where 

for a: < u, 
x - u, for z > u, 

As a function of u, IIcn)(u), n = 1,2, . - -, will have domain [O, w). We call 

function n(")(u) the nth stoploss transform of X. 



Definition 1.2. ( n t h  StopLoss Order) W e  Say that X is l e s  than Y in the 

meaning of the ;th stop-loss order, denoted by X <sl(,l Y, if 

and 

When n = 0, the formula (3) disappears and formula (4) becomes 

- 
Fx(u)  IF&), for  du^ 0. 

When n = 1- the formula (3) is trivial and formula (4) becomes 

00- /y~&)& < /  F y ( z ) d z ,  for d u >  O. 
U 

Definition 1.3. (Weak nth Stop-Loss Order) Let 

R = { H ( x )  , x 3 O : H ( z )  2 O monotonous decreasing and lim H ( x )  = O ). 
X + c a  

Suppose H ( x ) ,  G ( x )  E R. We Say that H ( x )  is l e s  than G(x) in the meaning of 

weak nth stoploss order, denoted by H <,,[(,) G, if 

$YU) < n,$)(u), for u 2 O. 



Definition 1.4. (Exponential Order) Risk X precedes Y in the exponential 

order. written lr <, Y, if for each a > O, ive have 

Ad,&) = ~ [ e " ~ ]  5 ~ [ e " ~ ]  = My(a) (can be oo). 

Theorern 1.1. 

II$) (u) = i~ /y IIx-') (r) dz. 

(see Cheng and Pai (1999a), Theorem 6 ) 

Theorem 1.2. Let n = 0,1,2,. . . and m > n. Suppose risk X <,l(,) Y. Then 

x <si(,) y. 

(see Goovaerts et al. (1990), Theorem 4.2.2) 

Theorem 1.3. Suppose u(x) is a utility function having n - 1 continuous deriva- 

tives of alternating sign: 



( - ) n u ( x )  0, and non-decreasing in x. 

C 

Let Un. = {u(x) : u ( x )  satisfies (9) and (IO)), w(x) = -u ( -x ) :  and W, = (w(x) : 

dk) ( z )  = ( - l ) ( k + l ) ~ ( k ) ( - ~ )  2 O). Then X <,[(,) Y, if and only if 

E[u(-X)]  2 E[u(-Y)], for all u E Un, 

if and only if 

E[w(X)]  5 E[w(Y)] ,  for all w E W,. 

(see Cheng and Pai (1999a). Theorem 10) 

Theorern 1.4. The nth stop-loss order is maintained under the siimmation of 

independent random variables. That is, if 

where k is a positive integer, then 

(see Cheng and Pai (1999a), Theorem 19 ) 



2 Properties of nth  Stop-Loss Orders 

nth 

From Theorem 1.3; we can see that the nth stoploss order can be characterized 

as the common preferences of a group of decision makers with increasingly regular 

utility functions u(x) E Un. CVe will continue the work of Goovaerts et al. (1990) 

and Cheng and Pai (EW), to give more features of the nth stogloss order. 

Theorem 2.1 wili be used to compare the differences of the net premium principle 

and the exponential premium principle in Section 4. 

Theorem 2.1. (Necessary Condition) Suppose X , Y are not identically 

distributed risks. If X <,,[(,) Y and E[Xn+'] < ca , then 

If E[Y"+'] = m , the result is obvious. If E[Y"+'] < oo , we fist show that for 

k = 1 we have 

Indeed, let 



From Definition 1.3 and Theorem 1.1 . rve have for al1 u > 0' 

and 

F~~r ther  more , there exists u, 2 O. such that 

(otherwise differentiate gr(u) n times, we will have FdY(u) = Gu(u)) 

So the following inequality must be true 

Applying the sarne method and the fact that @+j)(u) C - I$'"(u) for j = 

1,2, . and for d l  u > O, we obtain the relation 

A sufficient condition for the nth stoploss order is given by Theorem 4.2.3 of 

Goovaerts (1990) : n + 1 sign changes in density hc t i ons  implies the nth stop-loss 

order. Here we give another sufficient condition: n sign changes in distribution 

functions implies the nt  h stoploss order. 

Theorem 2.2. (SuWcient Condition) Suppose that for two risks X and Y 

there is a partition of [O, w) into n + 1 consecutive non-empty intervals(c1osed 

9 



intervals containing oniy one point are acceptable) Io, I L ,  - - - , I, such that 

< 

(-i)*"-'{~,~(i-(t) - FY(t)} 5 O on I j -  

If moreover the first n monients satisfy 

E[x~] = E[Y]] ,  j = 1 ,2 , - - - , n ,  

For convinence, we let n be an even number. When n is an odd number, we can 

apply the same method to arrive at the result. Let 

then from Theorem 1.1, we have 

hl( t )  = -ik-l (t). 

We only need to show that 

h&) 1 0 ,  for al1 t > 0. 

First we know that 



and 

we know that there exists ai E (O, m) such that hk(ai) = 0, using Rolle's theorem 

and repeating this process, we have: there exist bl < b2 < . . . < b,-l such that 

- hi(b,-1) = hl (4 = 0- hl(0) = hl (bl) = - - - 

Combin the discussions above, the following conclusion must be true: t here exist 

CI E I l , . * . , ~ n - r  E  SUC^ that 

h&) 5 O on [O, cl) = lo('), 

hl ( t)  3 O on [cl, cz) = l1('), 

Repeat the same process, we finally have (11). 1 

We can see that the 

n different points in 

condition of Theorem 2.2 implies: Fx (t)  = Fu@) at least at 

(0, 4- 

11 



Theorem 2.1 and 2.2 are two usefid tools to help us End out or co~1struct the risk 

pairs which ha& nth stoploss orders. 

Compound risk was discussed in Theorem 20 of Cheng and Pai (1999a) where 

the' counting variables lVl and 1V2 have identical probability distributions. Now 

we give another result where NI <,[(,) N2 but Xi and Y,  are two sequences of 

independent and identically distributed risks. 

Theorem 2.3. (Compound Risks) Let Xl, X2, - - - and Y i ,  &,- be two se- 

quences of independent and identically distributed risks, N,(j = l, 2) be counting 

variables independent of Xi and K. In the collective risk modeis, S1 and S2 are 

defined as 

tben we have 

Proof 

According to Definition 1.2, we need to prove 



and 

First we prove (13). From Theorem 1.4, we have for al1 u 3 O, 

(define ~ [ { ( ~ i c ,  - u),)"] = O when k = 0) 

Let 

It is obvious that 

we can construct a convex function w2(t), such that 



and 

C 

w; ( t )  2 0, and non-decrewing in t .  

Then from Theorem 1.3, we have 

and (14) becomes 

Now we only need to show (15). Let 

(15) is equivalent to the following inequality 

and this follows directly if we Look at the conditional distribution with Ak = a, 

Y)+, = y, = z,  and use the following inequality 



It is easy to check (16). When u 2 a, (16) is obvious; when u < a, we can get 

(16) by using Ehomial Theorem- 

Applying the same method, we can prove (12). 1 

In the following C~rollaxy~ w e  generalized the result of Theorem 3.2.5 in Goovaerts 

et al. (1990) from stoploss orders to nth stoploss orders. 

Corollary 2.4. (Conditional CornPound Poisson Distribution) Let Aj be 

a non-negative structure variable, and Nj be an integer valued non-negative ran- 

dom variable. Their conditional distribution given A, = X of Nj is Poisson(X) dis- 

tributed, j = 1,2 .  Let XI, X2, - - . and Yi, Yz, - - - be two sequences of independent 

and identically distributed risks, N j ( j  = 1,2) be counting variables independent 

of Xi and Y;. In the collective risk models, Si and S2 are defined as 

If 

and 

then 



Proof 

c 

In view of Theorem 2.3, we only need to know 

1% <. l ( i )  lV2* 

From the proof of Theorem 3.2.5 of Goovaerts et al. (1990), 

Al Q(1) 112 

implies 



3 Properties of Exponential Orders 

Now we discuss another partial order-exponentid order. If exponential utility 

functions are being used, the risk averters' attitude to risk does not change with 

the acquired capital. From Definition 1 4  we know that the exponential order 

can be characterized as the common preferences of the g o u p  of these decision 

makers. The foilowing proposition indicates the exponential order is a weaker 

order than any nth stoploss order. It is the limiting case of the nth stoploss 

order. 

Proposition 3.1. (Sufficient Condition) Let n = 0,1,2, . -. Suppose risk 

Applying Theorem 1.3, we have for all a > O, let w(x) = ew, then w ( z )  E W,, 

and 

Example 1. For a compound Poisson risk process with premium c per unit 

time and two risks X, Y, if X Y, then the adjustment coefficients satisfy 

Rx 2 RY. 



From Tlieorem 2.3.2 of Goovaerts et al. (1990), X ce Y implies Rx > Ry and 
by Proposition 3.1 our conclusion can be arrived at immediately. 1 

For convenience to use later, we prove the following proposition. 

Proposition 3.2. (Necessary Condition) Let Az = sup{a : E[eaZ] < cm}, 

and X, Y be two non-negative random variables. If 

If Ax = O, frorn X <, Y and the definition of Az, we have Au = 0. 

If O < Ax < m, we use the method of reduction to absurdity to prove the result. 

If Ax < Ay,  then there exists a, > O, such that 

and 

~ [ e " ' ~ ]  = w, E [ ~ " O ~ ]  < m. 

This is contrary to X <, Y. The proof is complete. 



Proposition 3.1 and 3.2 provide some information for finding risk pairs that have 

exponentiai orders. 

The following theorem is uçehil when ive discuss the properties of Li and L later. 

Theorem 3.3. Let i ly > O. If X <. Y and E [ X j ]  = E[Yj] ,  j = 1, - - ,  k - 1: 

then 

We use the method of reduction to absurdity to prove this proposition. We know 

that for a < Ay,  M(Y)(a) < cal MYxG)(a) < oo for j = 1,2,  - - -(we will show it 

later in Proposition 3.9 ). If 

tben 

MF) (O) - M;)(o) > O. 

From E[X'-I] = E[Y*-~]  = M ~ - ' ) ( o )  = M~-')(o), we know that there exists 

ak-l < Ay such that for al1 O < cr < ab-1 

Mg-" (a) - M$-(&) > o. 

Repeat this process, we finally have there exists a0 < Ay such that for all O < 

a < 0 0  



This is contras. to X <, Y. 

c 

Like nth s toplos  orders, exponential orders are maintained under a compound 

operation and a mixture operation, we will show these properties in the following 

t heorems. 

Theorem 3.4. (Compound Risks) Let XI, X2, - - and Yi, Y*, - - - be two se- 

quences of independent distributed risks. Ni and 1\12 are counting variables inde- 

pendent of Xi and K.  In addition, Ail and N2 have identical probability distri- 

butions. In the collective risk models, SI and S2 are defined as 

If Xi <, Y,  for all i, we have 

For a > O and I3[eaS2] < m, we have 



That is 

C s1 <e s2- 1 

The identical assumption of NI and 1\12 in Theorem 3.4 can be released if Xi and 

Y. are i-i-d. respectively, i = 1,2, - - -. The same property is held if NI <. N2. 

The result is stated in Theorem 3.5. 

Theorem 3.5. (Compound Risks) Let X17 X2, - - and YI, Y2, - - be two se- 

quences of identically distributed risks, iVl and N2 be counting variables inde- 

pendent of Xi and x. In the collective risk models, Sl and Sz are defined as 

Let X and Y be the common random variable of Xi and respectively. If 

X <, Y and NI <, &, we have 

If E[eaK] = 1, (18) is obvious. Now we consider the case E[eax] > 1. For a > O 

and E [eaS2] < co, let al > O such that 



Applying Proposition 3.2. we have 

That is 

CoroU- 3.6. (Conditional Compound Poisson Distribution) Let Aj 

be a non-negative structure variable, and Ni be an integer valued non-negative 

random variable. Their conditional distribution given Aj = X of N, is Poisson(X) 

distributed, j = 1,2. Let Xi, X2, . . , YI,  Y*, - - - and Si, S2 be the same as The* 

rem 3.5. If 

and 



a 

In the view of Theorern 3.5, we only need to prove 

i& <= iv2. 

For Q > O and E[aN2] < oo, using Proposition 3.2. we have 

In the following theorem the situation is studied where a risk is produced by one of 

m sources. The index i for which Ii = 1 indicates which source ac tudy  produces 

the risk. The resulting distribution is a mixed distribution. We formulate the 

maintenance of exponential orders for the random variables. 

Theorem 3.7. (Mixing of Randorn Variables) Let X I ,  - , X, and YI, . - . , Ym 

be two sequences of independent risks with Xi <, Y, for ail i = 1,. . - , m. If 

I l ,  . . - . 1, have a joint distribution such that Il + - - - + Im = 1 and margindy, 

P(1,) = pi = 1 - P(Ii = O). Then 



Proof 

c 

For al1 û > 0. 

E [exp{a C 1, Xi)] = C E [eaY.] - pi 
i= L i=1 

In order to prove Theorem 3.12, we need the following proposition. 

Proposition 3.8 Let X be non-negative random variable. If there elcists a, > O 

such that E[eaax] < ca, then 

lim eaaT(x)  = O ,  
2400 

where F ( x )  is the sunrival function of X. 

t herefore 

The proof is complete. 1 



Now Ive prove a more 

C 

general result as follows: 

Proposition 3.9. If cr < Ax, then 

lim eTI$)(z) =O, n = 1,2,-- .  
Z-00 

Proof 

FVe first prove that h$)(a) < co, n = 1,2 ,  - - -. Since 

let 

and 

By dominated convergence theorem, we have 

So h&(a) has derivatives of all  orders at a and ~ g ) ( a )  c m  be cdculated by 



term-by-term differentiation of the series. That is 

By monotone convergence theorem, we have 

OQ k Ziûi 

Mg)(a! = lim 1 -zn d F , . ( x )  
i! 

Therefore 

and 

Lm een$)(z) = iim e ~ . / j ( ~  - 2)" dFx(y)  
z-a0 2-Ca 

The prove is completed. m 

Let us generalize the concept of the moment generating function and the concept 

of the exponential order to the class of general nonnegative monotonous decreas- 

ing functions on [O, w). 

Let R be the same as  in Definition 1.3. We have the following definitions: 



Definition 3.10 Let H ( x )  E R, and 

C OQ 

Mx(&) = - J /  eQz dH(z) (can be m). 

LVe call iWH(a) the Laplace transform of H ( x ) .  

Definition 3.11 Suppose H ( x ) ,  G ( x )  E 0. We Say that H ( x )  is less than G(I )  

in the meaning of exponential order, denoted by X(x) <, G(x), if 

According to these definitions, we can discuss the maintenance of exponential 

order for the 1st stoploss transform. 

Theorem 3.12 If X <, Y ,E [X]  < oo and E[Y] < oo, then 

nX)(t) <. n c ) ( ~ ) .  

If a < Ax, from Theorem 1.2.1 of Goovaerts et al. (1990) and Proposition 3.8, 

we have 



If a > Ax,  from X <, Y and Proposition 3.2, we have 

and 

e- Y ew 
iim Ilg eLYn$)(x)  dz = iim [-CI - G+)) 1; + / - ~ G ~ ( X ) I  
Y-= Y-- O a 

Therefore 

If a = Ax,  and hlIY (a) = cm, then from X <, Y, we have iIfy(a) = m, the prove 

is the same as the case a > Ax. 

If a = Ax, and M x ( a )  < CO, then from Proposition 3.8, we have 

eM y ecrz 
iim 1' e a x I l ~ )  (x) dz = Lim [-(1- FX(2) )  1; + 4 - dFX(x)] 
Y-- Y-* a QI 



So we have 
c 

The proof is completed. 4 



4 Applications in Ruin Probabilities 

We have now established two ways to study the risk models. One way is by using 

the martingale theorey, we can find formulas of d(u) and estimate the upper 

bound and lower bound of @(IL). We d l  give a formula of lu(u) in Section 5 by 

this way. The other way is by using the Renewal equation from which we can 

find the distribution of LI and therefore we cm study the maximal aggregate loss 

random variable L and L provides much more information about $(a). We use 

this method to discuss the properties of L and @(u) in this section . 

4.1 Surplus Process 

Now we introduce some concepts related to ruin probabilities by Bowers et al. 

(1997). 

4.1.1 Surplus Process 

Let U ( t )  denote an insurer's surplus at time t, u denote the initial surplus at  

time O, c ( t )  denote premiums collected through time t, and S(t) denote aggregate 



daims paid through time t. U ( t )  is given by 

C 

U ( t )  = u + c(t) - S(t) .  

We call U ( t )  the surplus process and S(t)  the aggregate daims process. S(t) is 

determined by the number of claims N ( t )  that occured in [O' t )  and the amount 

of each daim Xi. - - , In this section, ive assume that the claini number 

process N(t)  is a homogeneous Poisson process with constant parameter A, Xi, 

i = 1,2, -. are independent and identically distributed with common d.f. Fx(x), 

premium rate is a constant, c, c > O .  c ( t )  = ct, c = (1 + B)XE[X] where 0 is the 

security loading. Consequently, S(t) is a compound Poisson process, and it is 

expressed as follows: 

4.1.2 Ruin Probability 

When the surplus becornes negative for the first time, we say that ruin has oc- 

curred. Let 



denote the time of ruin with T = cro if U ( t )  2 O for all t .  Let 

C 

denote the probability of ruin which is a function of the initial surplus u, and 

denote the probability of min befure time t. Of course, ~,L(tl) is an-upper bound 

for lu(u. t ) .  

4.1.3 The First Surplus below the Initial Level 

Let LI be a random variable denoting the amount by which the surplus falis 

below the initial level for the fîrst time, given that this ever happens. The p.d.f. 

for LI is 

where P(y)  is the d-f. of c l a h  size random variable X, pl = E [ X ] .  



4.1.4 The Maximal Aggregate Loss 

C 

Let 

L = mau{S(t) - c t }  = max{u - U ( t ) )  
t2o t>o 

denote the maximal aggregate loss random variable. By this definition, we know 

that L 2 O and 

If Li denote the i th  deficit and M denote the total number of deficits, then M 

has a geometric distribution with parameter p = 1 -$(O) and LI, LZ, - are i.i.d. 

with the cornmon p.d.f. given by (24). We can represent L as follows: 



4.2 The Relationship between the Order in Claims and 

the Ofder in Ruin Probabilities 

From the following discussion we can finally see that the exponential ordered 

clairn amounts induce the exponential ordered ruin probability functions. 

Proposition 4.1 Let Lf and L: be random variables denoting the amounts by 

which the surpluses fa11 below the initial levels for the first time, given that these 

ever happen. If X <, Y, and E [ X ]  = E[Y], then 

From (24).we have 

1 
f ~ ,  (Y) = -P - P(Y)IY 

Pl 

and by Theorem 3.12, we have for al1 a > 0, 

Proposition 4.2 Let Lx and Ly be the maximal aggregate losses related risks 

X and Y, 4 and B2 are security loadings related risks X and Y. If X <, Y, 



E [ X ]  = E [ Y ]  and O1 = B2. then 

C 

From the former discussion in this section, tve know that 

where b1 is the total number of deficits and has a geometric distribution with 

Applying Proposition 4.1 and Proposition 3.4 on L ~ ~ ,  L~ Y, fiIl and nd12 are iden- 

tical distributed, we have 

Lx -=. LY- 1 

From (26) and (27) we know that @(u) 2 O, monotonous decreasing and Iim,,o @(a) = 

O. Consequently, $(u) E Cl and we can define the exponential order on the family 

of ruin probability functions as  follows: 

Definition 4.3 We Say that ruin probability function ?Lx(u) is less than iLy(u) 

in the meaning of the exponentid order, denoted by @&) <. (u), if for all 

ai > O, 

- Io-- e" d q ! ~ ~ ( s )  5 - - -  eax d @ y ( x )  (cm be oo). 
O 



Theorem 4.4 If X <. Y and E [ X ]  = E[Y] < w and the security loading and 

O2 are the same as in Proposition 4.2, then 

Proof 

'lote that 

tLx(u) = Pr(Lx > u) = 1 - FL,(u). 

From Definition 4.3 and Proposition 4.2, we arrive at the conclusion. 

4.3 Moments of the Maximal Aggregate Loss Distribution 

For some claim distributions it may be difficult to calculate adjustment coeffients 

and ruin probabilities. Approximation methods based on the moments of the 

maximal aggregate loss distribution may be easy to apply. In this section we 

develop theory which wiIl provide more information about E[Li]. 

Theorem 4.5. If E [ X ]  = E[Y] ,  X <, Y and the security loading O1 and B2 are 

the same as in Proposition 4.2, then 



c 

According to Proposition 4 of Cheng and Pai (1999b) and Theorem 3.3, we have 

Theorem 4.6. If E[Xi ]  = E[Yi], i = 1,2,X <, Y and the security loading 81 

and B2 are the same as in Proposition 4.2, then 

According to Proposition 4.2 

impiies 

and from Proposition 4 of Cheng and Pai (1999b) 



Therefore by Theorem 3.3. Ive know that 

C 

E [ L , Y ~ ]  1 E[LY2].  1 

Theorem 4.7 If E [ X L ]  = E[Yi],  i = 1, - - - ,  k and X <, Y, then 

E[(L;Y)" 1 T; < 331 I E [ ( L : ) ~  1 T; < ml. 

where T; is the k t  time at which a deficit occurs. 

Proof 

By Proposition 2 of Cheng and Pai (1999~) and Theorem 3.3 

In Cai and Garrido (1998), a method was given to calculate E [ L ~ ] ,  the purpose 

of proposition 4.8 is to give us a method that can also calculate E [ L ~ ] .  

Proposition 4.8 If Ax > O, then 

where p, = E[Xi]. 



c 

From Theorem 13.6.1 of Bowers et al. (1997). we know that 

Applying the formula 

are have 

and 

- 1 iç[y"(~)[ l  + (1 + @ ) p i r  - Ad,&)] + [(If B)pl - il.fXt(r)j2 - -- + 
r2 [l + (1 + B)pir - Mx (r)] 

For O < r < a < A,,.  from the proof of Proposition 3.9. we know that ~&( ' ) ( r )  < 

h ~ , ~ ( ' ) ( a )  < W. i = 1, - -  - ,  5. Hence 

r2 r3 r5z5 
hl,. ( r )  = 1 + r p l  + -p2 + - p ~  f kW(% 

2 
+ - + . . -) f (a;) d ~ .  

3! 5! 

Since 



Applying the same rnethod we have 

and 

Let k ( r )  = [I + (1 + e ) p l ~  - !&(r)], then (29) becomes 

CP 
-[in i L b  ( r ) ]  
dr2 

- - M,$"'r) k ( r )  + [(l + B)pl - ~Ci,$(r)]~ - l / r2k2(r )  

k2 (4  

From Proposition 4 of Cheng and Pai (ENgb), we have 

hence 

Proposition 4.9 Suppose E[Xi]  = E[Yi] ,  i = 1,2,3.  If X <, Y, and the 

security Ioading 81 and e2 are the same as in Proposition. 4.2, then 



c 

From Proposition 4 of Cheng and Pai (1999b) and Proposition 4.8. we know that 

E[Lx] = E[LY]:  E [ ( L , , ) ~ ]  = E [ ( L ~ ) ~ ] :  again by Theorem 3.3, we arrive at the 

conclusion. 1 

We give another example that apply Theorem 2.1 to estimate E[Ln]. 

Example 2 Denote the random variable having a n  exponential distribution with 

1 parameter p by e,. Suppose X and e, are two risks. If E [ X ]  = ;, X <,[(,, e,, 

security loadings O1 and O2 related to risks X and e, are equal. then E[L;I] < 

*! where R = &. (L+f3)m ? 

Proof 

From Lemma 1 of Cheng and Pai (1999c), we know that Lx <,[+1, L,, and by 

Theorem 2.1. we have E[LX] < E[L;J We know that 

consequently 

and we arrive at the conclusion. 1 



4.4 The Application in Risk Premium Principles 

c 

Xow we cite some concepts of risk premium principles in Goovaerts et al. (1990). 

The basis of insurance is the hypothesis that claims can be compensated by fked 

payments called premiums. Premiums are calculated by a premiurn calculation 

principle. This is a rule ir that assigns a real nurnber r[X], also written n[FdY], to 

the distribution function Fx of risk X. Each premium principle induces a total 

order of all risks. ranking risk X with low premium K [ X ]  below risk Y with higher 

premium ?i[Y]. We make three assumptions. 

1. If X <sl (0)  Y <  then n[X] 5 ir[Y], with equality only if Fx = F'. 

2. If P[X = cl = 1. 0 5 c' then H[X] = C. 

3. Let X- X' be risks such that x[X] = x[Xf]: p E [O. 11, then 

These assumptions lead to a Mean Value Principle, where the premium is calcu- 

lated from the formula 

for sorne suitable increasing continuous valuation function f .  For example, f (x) = 

-u(w - x) where ( x )  is a utility function and w is the wealth of the decision 

rnaker. CVe can narrow the class of premium principles even further by adding 

the fourth requirement of additivity. 



A premium principle ?r is called additive if for independent risk X and Y. II(X + 
Y )  = I I ( X )  + H(Y). From Theorern 6.2.2 in Goovaerts (1990), we can see that 

by the four requirments mentioned above the set of feasible premium principles 

is reduced to the net premium principles f (x) = x and the exponential principles 

f (x) = eaz. 

For net premiurn principle. we can not d is t in-~sh the risk X and Y if E [ X ]  = 

E[Y]  but X <,1(1) Y(that is V a r ( X )  < Var(Y)  by Theorem 2 4 ,  the situation 

is different if we use exponential principle. from the following theorem we can 

see that the exponential premium principle can differentiate between losses more 

finely than the net premium principle under some conditions . 

Theorem 4.10 Let X and Y be two risks. If E[Xk] = E [ Y ~ ] ,  k = 1,2,  - - , n - 1, 

and X <,[(,, Y: then 

r(X) < dY), 

under the exponential premium principle for the same a. 

From Theorem 2.1, we know that 



Consequent ly 

'low that the exponential premium principle can differentiate between losses more 

finely than the net premium principle, maybe we can choose some proper form 

for c in the classical risk models, and discuss the properties of ruin probabilities. 

This topic is worth further study. 

Proposition 4.11 Let X and Y be two risks. If X <, Y: then 

under the exponential premium principles for the same a. 

We arrive at the conclusion immediately From Definition 1.4. 1 

We know that if the aggregate claims process is not a compound Poisson process, 

sometimes it is difficult to calculate the exponential premium for S( t )  in a unit 



time interval. by using the maintenance properties of exponential order. we can 

compare the exponential premiums for two aggregate claims processes. 

Proposition 4.12 Suppose the exponential principle is being used. Under the 

condition of Theorem 3.4 or Theorem 3.5. we have ir,[Si] 5 ir,[Sz]. 

l i e  can have S1 C .  S2 both fiom Theorem 3.4 and Theorem 3.5. Consequently 

4.5 The Concepts of Distance on Risk Sets 

Xow we introduce the concepts of nth stoploss distances and ruin probability 

distances on the set of risks. From the discussion of Cheng and Pai (IWgb), we 

can compare the ruin probability distances of different pairs of risks. 



Definition 4.13 Suppose X and Y are two risks. We define the nth stoploss 

distance as foilows: 

From Definition 4.13 and Theorem 1.1, we know that d,(,, (X. O) = &E[XnCt].  

d,&X Y )  > O if X and Y are not identically distributed, and &O we have 

following propositons. 

Proposition 4.14 If X Y. then 

From Definition 1.3, we know that 

I p ( u )  5 r p ( U ) ,  

by Theorem 1.1, Rte have 



Proposition 4.15 Suppose X .  Y and 2 are not identicdy distributed risks. 

(1) If X <jl(n) Y < s ~ ( n )  2- then 

From Proposition 4.14 and Theorem 2.1: we can immediately get (1). 

and by j l ) :  we c m  get (2). 1 

Definition 4.16 Suppose X and Y are two risks. We define the ruin probability 

distance between X and Y with parameter u as follows: 

From Definition 4.16, we know that &,,(X, Y) > O if X and Y are not identically 

distributed risks. 

Proposition 4.17 Let X and Y be two risks. Suppose 1 , 6 ~ ( x )  and -qhy(x) intersect 

at finite points, denoted by X I  < x2 < - - - < xk. If there is an integer n 2 O such 

47 



From Proposition 7 of Cheng and Pai (1999b). we know that 

(x) < SY ( z )  for ail u > xk. 

Consequently 

Example 3 Let X and e, be two risks. Suppose @.Y(X) and S,,(z) intersect at 

finite points, denoted by X I  < xl < - - - < xk. If there is an integer n 2 O such 

that 1Lx(x) <,si(,) de>, ,  (11, then 

By Proposition 1.17, we have 



we arrive at the conclusion immediately. 1 



5 A Formula for Ruin Probabilities 

Consider an insurance portfolio in which the distribution of the number of claims 

in a p a r  is a conditional Poisson distribution with mean A = A. For most classes 

of general insurance. many possible sources of heterogeneity of risk exist. For 

esample, if A follows the gamma distribution representing heterogeneity of risk. 

then the number of daims follows the negative binomial distribution. At this 

time, the aggregate claims process S(t) is compiicated since S(t)  does not have 

both independent and stationary increments like compound Poisson process. In 

the following theorem we give a formula for min probabilities for heterogeneous 

portfolios. 

Theorem 5.1. (Ruin Probability) For a heterogeneous portfolio' let X I ,  X2,  - - - 

be independent. identically distributed claim amount random variables wit h com- 

mon d-f. P ( x ) :  A be a non-negative variable on (A,, X i ) ,  A, > O, XI < m. 

XL, X2< be independent of the process iV(t) S ( t )  = ~ 2 : )  Xi, c be the pre- 

mium rate for the portfolio. c = (1 + B)E[A]E[X].  Given that A = A. N ( t )  is a 

Poisson process ( A t ) .  If U ( t )  = u + ct - S ( t ) ,  then for u 2 0, 



where R is the smallest positive root of 

& 

1 + (1 +B)E[X]r  = i&(r). 

I t  is similar to the proof of Theorem 13.4.1 of Bowers et al. (1997). For t > O 

and r > 0, 

= ~ [ e - ~ ~ ( ' )  1 T < t] - Pr(T 5 t )  f ~[ë"(') 1 T > t] - Pr(T > t ) .  (38) 

The term on the le&-hand side is 

The first term on the right-hand side is 

E [e-'u(t) 1 T 5 t] .Pr(T 5 t )  

= E ~ [ E [ ~ - ' ~ @ )  1 T 5 t ,  A = A]] - Pr(T 5 t )  

= EA[E[edxp{-r[U(T) + c( t  - S) - [S(t) - S(T)] ] )  1 T 5 t ,  A = A]] 

51 



Pr(T 5 t) 

= ~ ~ ~ [ ~ [ e - ' ~ ( ~ ) e q { ( i b I ~ ~ ( r )  - 1 - r( l  + B))X(t - T ) )  1 T 5 t ,  A = A]] - 

Pr(T 5 t). (40) 

Mie choose r that satisk (37), then (38) becomes 

e - ~ ~  = E , ~  [E [e- Ru(T) 1 T 5 t ,  A = A]] - Pr(T 5 t) + 

E , [ E [ ~ - ~ ~ ( ~ )  1 T > t. h = A]] - Pr(T > t ) .  

Let t  -, oo. if 

lim E * [ E [ ~ - ~ ~ ( ~ )  
t-00 

1 T > t .  A = A]] - Pr(T > t) = 0, 

from (38) ,  we c m  get 

Now we only need to show (41). From the proof of Theorem 13.4.1 of Bowers et 

al. (1997). we have 



t-i + .-{-R(U + @Atpi - ~hp; t : ) } ,  
- < E"[ 

(1 - Ilt(u 1 A = A)) - ~ A ( A )  

-+ O (when t - m), 

and we can have (41). 1 

In general? a closed f o m  evaluation of the denominator of (36) is not possible. 

However, (36) can be used to derive inequalities. It is easy to see that ~u(u)  < 

e-Ru. Moreover: if the claim amount distribution is bounded so that F ( m )  = Z 

for some finite m, then we have ~ ( u )  > e-R(u+m). 

For the special case of u = O and the case where the claim amount distributions 

are mixtures of exponential distributions. the explicit expressions for @(u) are 

worth further study. 



6 Concluding Remarks 

The theory of partial orders of risks is interesting and useful in many fields. This 

paper discussed the properties of nth stoploss orders and exponential orders. 

The necessary condition and the suficient condition for the nth stoploss order 

are convenient tools to construct risk pairs that can have nth stoploss orders. 

The relationship between a daim random variable and ruin probability a;as also 

established. This result is worth further study for finding upper bounds of ruin 

probabilities. The applications of these partial orders in evaluating existing risk 

premium principles and setting up new risk premium principles are worth further 

st udy. 
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