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Abstract 

Depth profilometry of hardened steels and Thermal-wave Slice Diffraction Tomography 

(TSDT) of sub-surface defects in metals are important thermal wave inverse problems. The 

imaging parameters in thermal wave inverse problerns are the material thermal inhomogeneities. 

Depth profilometry is an inverse problem that retrieves thermal difisivity along the 

depth of a sarnple. It is well established that in hardened steels thermal diffisivity anticorrelates 

with microhardness, allowing depth profilometry to be used as a tool to measure microhardness. 

Depth profilometry also has the unique advantage, over conventional methods, of being 

non-destructive. Current techniques have not separately addressed the effects of different heat 

treatments on the thermal difisivity profile of steels, and therefore, the exact nature of the 

anticorrelation between thermal diffisivity and microhardness is not properly understood. 

Carburizing and quenching are widely used for the heat treatment of industrial steel, and it is 

important to understand their effects on thermal difisivity profiles. This thesis presents a 

thorough examination of the actual mechanism by which thermal difisivity depth profiles are 

affected by first carburizing and then quenching. The comrnon process in both these heat 

treatments is the diffision of carbon. Two novel observations are made: first, it is found that the 

shape of the thermal diffusivity profile is dominated by carbon diffision, and second, the 

absolute thermal diffisivity is a fùnction of microstructure. Furthemore, a novel method of 

accounting for surface roughness of the sarnples is developed, which models roughness as white 

noise of random spatial distribution in the fiequency domain. This extends the suitability of 

depth profilometry to industrial applications. 



Thermal-wave Slice Difhction Tomography (TSDT) is a photothermal imaging 

technique for non-destructive detection of sub-surface cross-sectional defects in opaque solids in 

the very-near-surface region (p-mm). Conventional reconstructions of the well-posed 

propagating wave-field tomographies cannot be applied to the ill-posed thermal wave problem. 

A reguIarization mehod, such as Tikhonov regularization, is used to invert the a h o s t  singular 

matrices resulting fiom the ill-posedness of the inverse thermal wave problem. Multiplicity of 

soIutions, which is inherent to ill-posed problems, is resolved by adopting the L-curve method 

for optimization. For tomographic imaging of sub-surface defects, a new high-resolution 

radiometric setup is constmcted, which reduces the broadening of images associated with 

previous low-resolution setups. 

In summary, two important themal-wave problems, namely, the depth profilometry and 

diffraction tomography, were studied in this work. Several improvementç to existing methods 

were implemented, making them attractive for industrial applications. 
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Chapter 1 

Introduction to Thermal-Wave Inverse 
problems 

1.1 History 

Photothermal methods involve generating and propagating heat by absorbing modulated 

radiation. These methods date back to as early as 1880 when Alexander Graham Bell [1] 

invented the "photophone". This device converted sound waves into a modulating bearn of light, 

transmitted the light through the air, and reconverted the light into sound waves at the receiving 

end. The transmission was perfonned in open air which often blocked and scattered the 

lightwaves, causing Bell to eventually abandon the idea of the photophone. The principle of the 

photophone was only redeveloped as late as 1976 with the Rosencwaig and Gersho theory [2,3], 

which descnbed the photoacoustic effect. Their theory resulted in the birth of photothermal 

detection methods. Today, there are nwnerous photothermal detection schemes applied to a 

varïety of applications. It has been said by photothermal scientists that the photothermal 

principle is a solution in search of a problem. 



1.2 Thermal Wave Forward Theory 

1.2.1 One-Dimensional Formulation 

When an energy source is focused onto the surface of an opaque solid material, the 

material will absorb some of the incident energy. This will, in turn, produce a localized heat flow 

in the material followed by a non-radiative de-excitation process [4]. If this energy source is 

modulated, a periodic heat flow is produced in the material. The resulting penodic heat flow in 

the matenal is a d~flwive process that produces a periodic temperature distribution called a 

thermal wave (Figure 1.1). 

lntensity Modulated 
Laser Beam 

Figure 1.1 Schematic picture of periodic heat diffusion in an opaque solid. 

The characteristics of a thermal wave and its behavior can be understood by considering 

the simplest geometry. Time-dependent heat flow is governed by the one-dimensional heat 

diffusion equation [SI, 



where T is the temperature excursion fiom the equilibnum, p, c and k are the mass density, 

specific heat and thermal conductivity of the medium, respectively. The temperature excursion 

T. is generated by a periodic source, represented by e-iWt, where o is the angular fiequency of the 

heat source. Equation (1.1) can be written in the form of a pseudo-wave Helmholz equation by 

using a Fourier transformation as follows, 

where q is the complex wave number, 

and p is the thermal diffusion length also referred to as the damping constant, and is equal to the 

wavelength of the wave, Ah, divided by 2x.  

K with a = - 
PC 

(1.3~) 

where a is the thermal diffisivity and gives a measure of the rate of heat propagation in a 

material and /, is the modulating frequency. Equation (1.2) can be solved to obtain the 



one-dimensional thermal wave respowe in a uniform, homogeneous, isotropie matenal, 

propagating in the positive x-direction [SI as 

where TO is the surface temperature produced by the source. Thermal waves are heavily damped, 

as can be seen by equation (1.4) which shows a decay in the amplitude of a thermal wave with 

distance fiom the surface of the material. Equation (1.4) also shows that the penetration depth 

can change by altering the modulation fiequency. For iow frequencies, a deep penetration is 

observed, and for high frequencies, a shallow penebation is obsewed [dl. 

Another interesting property of thermal waves is that they are thought to "reflect" 

between media of different thermal characteristics. The thermal wave reflection coefficient R, 

for the interface between medium 1 (bulk) and 2 (air) is given by [7] 

where 

and, e2 and el are the thermal effisivities of media 2 and 1, respectively. The thermal efisivity 

is the preferred property when referring to thermal boundaries. 

It is important to note that in reality thermal waves do not refect as rays do in optical 

fields. However, the fact that the thermal wave interface can be mathematically modeled using a 



reflection coefficient has led to the misconception in the photothermal cornmunity that thermal 

waves actually reflect [8]. Such modeling [9] has evolved merely for mathematical convenience 

and it h a .  also been reinforced by strong agreement between theory and experiment. The 

existence of reflection phenornenon in thermal waves was first explained by Shen and Mandelis 

[IO]. Mandelis argued, that according to Fourier's law of heat conduction, 

F(r, t )  = -kv T(r, t),  

where F is the thermal flux, T is temperature, and k is the thermal conductivity of the material, 

conduction heat transfer is unidirectional and only activated by existing temperature gradients 

that generate net heat fluxes in appropriate directions of a material. Therefore, unlike 

conventional propagating wave fields, themal waves cannot sustain reflections at boundaries 

where thermophysical properties change abruptly. Instead the rate of forward propagation at the 

boundary increases (er>ei) or  decreases (ez<ei) according to the thermal properties of the 

boundary. Mandelis furthet explained [I l ]  that the dif is ion equation is a parabolic (i.e., 

first-order in time) rather than hyperbolic (i.e., second-order in time) differential equation. 

Propagating waves such as sound waves are represented by a hyperbolic differential equation. In 

the hyperbolic differential equation, which has two characteristic curves (squared-Iaw), both 

forward and backward propagation are supported. This is significant, since a parabolic 

differential equation has only one characteristic curve (linear-law) and thus cannot support 

backward propagation. Strictly speaking, the terminology of "reflection" and "refiaction" at 

interfaces is inaccurate in the context of thermal waves. Mandelis correctly defined two new 

ternis, namely, thermal-energy accumulation (focward flux decrease), and thermal-energy 



depletion (fonvard flux increase) for heat dimision waves. In summary, thermal wave reflections 

at interfaces are not physically possible because of the unidirectional (thermal gradient driven) 

and non-squared-law nature of thermal diffision waves. 

1.2.2 Experimental Methods 

1.2.2.1 Thermal Wave Imaging 

A basic application of the photothermal principle is thermal wave imaging, which is a 

technique used to uncover sub-surface defects of opaque solids. The imaging can be achieved 

using intensity-modulated heat sources such as lasers or particle beams and detectors such as 

microphones, ultrasonic transducers, infrared detectors and laser probes 1121. The first evidence 

that thermal waves could be used in imaging was given by Wong et al. [13] in 1978, who later 

developed a new imaging technique called Scanning Photoacoustic Microscopy (SPAM) [14]. In 

this technique, a modulated heat source scanned the surface of the sample, producing heat at 

each point that was then detected by a photoacoustic cell. 

The basic ingredients for a thermal microscope include a source of energy, a physical 

scatterer, and a detector of the radiation scattered 1121. A convenient source of energy is the laser 

beam, which can be easily rnodulated and focused to yield a coherent localized energy source. 

The physical scatterer is the sub-surface defect object. For an image to be formed, either the 

source of energy or the detector must be localized. Thermal wave imaging generally involves the 

use of a localized source. The contrast in thermal wave images is controlled by scatterers located 

within a fraction of a thermal wavelength away fiom the source. Thus, when the thermal 

wavelength is varied, the region of the specimen that contributes to the image also changes. The 

heavily damped nature of thermal waves makes them well-suited to the non-destructive 



evaluation of near sub-surface defects in opaque solids, ranging fiom a few micrometers to 

several millimeters. 

Moreover, due to their heavily darnped nature, thermal waves can achieve resolutions 

much higher than those possible with a conventional microscope. The maximum resolution of a 

conventional microscope is diffiction-limited. This means that the resolution is roughly equal to 

the wavelength of light used. The diffraction limit is derived for the far-field (Fraunhofer) 

diffraction approximations, which assume a large distance between the source and observation 

point. Since thermal waves operate in the extreme-near-field limit (Le., distances of the order or 

smaller than the wavelength), the thermal wavelength does not become the limiting factor of 

resolution [15], making it possible to achieve much higher resolutions. The resolution can also 

be increased with increasing frequency, however an increased frequency is accompanied by a 

low signal-to-noise ratio (SM). Therefore, it is important to seek a compromise between 

resolution and SNR. In addition, the resolution of a thermal microscope also depends on several 

other parameters, the most important being the beam spot size. If the beam spot is not smaller 

than the defect, the image will broaden [15]. 

Thermal wave microscopes come in several different forms, each with associated 

advantages and disadvantages, depending on the nature of the source and the detector. As 

mentioned before, al1 thermal microscopes have a localized heat source, but differ in that the 

detectors may be local or non local to a greater or lesser degree. For example, the focused 

infrared detector is a local point temperature detector; the collinear mirage-effect laser probe is a 

line detector; and the microphone maybe an area detector 1121. The most prominent of these 

thermal wave detection methods are descnbed briefly below. 



1.2.2.2 Thermd Wave Deteetion Techniques 

a) Photoacoustic gas-cell detection 

Photoacoustic gas-ceIl detection [ 13- 14,16-221 is historically the earliest method, and 

uses a microphone to detect the pressure variations in a volume of gas enclosed in a cell, while a 

focused modulated laser beam is scanned over the surface of the sample. The technique can be 

thought of as imaging with a point source and an area detector. An advantage of this technique is 

that it lends itself readily to theoretical analysis. This is due to the planar symmetry of the 

detection scheme, which allows the use of plane-wave scattering theory [22]. This symmetry, 

unfortunately, precludes the detection of closed vertical cracks [IZ]. It is, however, applicable to 

detection of complex shapes, since the ce11 can be designed to fit the sample. A senous 

disadvantage of the photoacoustic gas-ce11 detection method is that the sample must be enclosed 

in an airtight cell. Therefore, it is essentially a contact method. It is also a destructive method 

due to sample dimension limitations. A m e r  disadvantage is that the fiequency range is 

limited by the audio response range of the microphone, which is about IOktIz. 

b) Piezoelectric detection 

Piezoelectric detection [23-261 monitors the modutated thermal expansion of a sample by 

attaching a piezoelectric solid to it. The modulating laser bearn generates thermo-elastic waves 

that propagate through the sample. These waves are picked up by the piezoelectric detector and 

are converted into a measurable voltage [23]. This technique measures both thermal and acoustic 

expansions of the material. Most piezoelectric detection systems use an optical beam scanning 

method in which the laser scans the sample. An advantage of the method is that a wide range of 

fkequencies is allowed. There are two major dificulties with this method. First, the detector must 



be physically bonded to the sample without affecting the quality of the sample and second the 

acous tic and thermal modes must be deconvoluted. 

C) Pyroelectric detection 

In pyroelectric detection [27,28], a temperature modulation can be converted directly into 

an electric signal by use of the pyroelectric effect 1271. This technique consists of using a thin 

pyroelectric film in direct contact with a solid sample on which a modulated monochromatic 

light bearn is incident. Following the absorption of the incident light, the temperature of the 

sample fluctuates and, through heat difision, the temperature at the sample-pyroelectric film 

interface fluctuates. As a result of this temperature fluctuation, a pyroelectric signal proportional 

to the temperature change in the film is produced. The first pyroelectic thermal wave image was 

obtained by Baumam et al. [29]. An advantage of pyroelectric detection is that it needs very 

little incident laser power (-mW) because it senses the sample back-surface temperature directly. 

In recent years, pyroelectric detection has been used as a non-contact technique [10]. 

d) Optical beam deflection (Mirage) method 

The optical beam deflection technique otherwise known as Mirage detection was first 

introduced by Boccara et al. f30J. This technique avoids the difficulties that anse from 

sample-detector contact. The method uses a laser probe for detection and, is therefore a line 

detector method. The modulated heating of the sample produces a periodic heating of the gas 

(air) adjacent to the sample causing a periodic variation in the index of refiaction of the gas [4]. 

The change in the refractive index of the air deflects the probe laser, which is measured by a 

position sensitive optical detector [3 11. The optical bearn deflection technique is a non-contact 

method and can operate over a wide fiequency range. A disadvantage of this technique is the 

practical difficulty of maintaining two laser positions @ump and probe), and especially when 



controlling the height of the probe beam during a scan [12]. n ie  requirement that the sample 

must have a flat or cylindrical surface fùrther limits the method. 

e) Photothermal radiornelric detection (PTR) 

In photothermal radiometric detection, [32-351 variations in the local surface temperature 

are measured with a focused infhred detector. The first rnethod based on the infrared emission 

fiom the specimen was described by Nordal and Kanstad [32]. The source is a modulated laser 

beam focused on the surface. The thermal microscope consists of a point source and a point 

detector, providing one of the highest resoiution methods in the extreme-near-field. 

Photothermal radiometric imaging was demonstrated by Busse 1331 using a Golay infiared 

detector. The method was later extended by Busse and Renk [35] for stereoscopic depth 

localization of sub-surface defects using a combination of localized heating and detection. An 

advantage of this technique is that it does not depend on heat flow into air. The analysis is not 

complicated by the presence of air, which may cause phase delays and signal magnitude 

changes. However, variations in surface emissivity can obscure the amplitude of the thermal 

wave image. Photothermal radiometric detection is the expenmentaI method that was chosen in 

this work to be used for the fiequency scanning and cross-sectional imaging of a sarnple, as 

described in chapters 4 and 7, respectively. 

1.3 Thermal Wave Inverse Theory 

In the preceding sections, the thermal wave forward theory was described as a method for 

obtaining expenmental data which when combined with a theoretical mode1 can be used to 

describe the behavior of thermal waves. This can be referred to as the fonvard process. The 



simplest application of a forward process is the determination of thermal diffisivity of a 

homogeneous material. The process involves experimentally obtaining the surface temperature 

distribution and fitting a theoretical formulation to the expenmental "forwarâ" data. The fitting 

parameter directly yields the homogenous thermal diffisivity. However, there exists another 

class of problems where the required variable cannot be directly obtained by forward fitting. An 

example would be a matenal with near-surface inhomogeneities or subsurface defects. In such 

cases, a numerical technique is required to invert or reconstruct the sought parameter from the 

forward process. This can be referred to as the inverse process. It is important to note that the 

thermal wave inverse problem is an ill-posed problem in that small perturbations in data can lead 

to large artifacts in the reconstruction. This is unlike the well-posed propagation wave field 

problems where conventional reconstructions can be applied. To solve the ill-posed thermal 

problem, regularization procedures such as Tikhonov regularization are used. This is explained 

in detail in Chapter 7. 

In recent years, rapid advances in cornputer hardware and software have led to an 

increase interest in sotving thermal wave inverse problems. There are two main types of thermal 

inhomogeneities ideal for inverse problem implementation (Figure 1.2). The first is a 

continuously varying thermal inhomogeneity (known as Type A), and the second is a thermal 

sub-surface defect (known as Type B). In the case of continuously inhomogeneous materials, the 

goal is to reconstruct the thexmal diffisivity (conductivity) profiles. The point of interest with a 

sub-surface defect is the identification of the exact location and shape of the defect at a 

cross-section. The continuously thermal inhomogeneous problem can be treated using a 

one-dimensional geometry, whereas the sub-surface defect problem requires a three-dimensional 

geometry. In this study, N o  thermal wave inverse problems as applied to opaque materials will 



be investigated in the fiequency-domain. The first problem is a one-dimensionai depth 

profilometric problem (Type A), and the second problem is a three-dimensional thermal wave 

diffraction tomography problem (Type B). A review of these problems is presented in the 

following sections. 

1.3.1 Depth Profilometry 

Figure 1.2 f 

Depth profilometry (Type A inverse problem) is an important inverse problem where the 

thermal difisivity profile is inverted from the experimental surface information. Thermal 

difhsivity is a property that depends on the microstnictural properties of a material and can thus 

be used to identiQ changes that take place in a material as a result of surface modification 

processes, such as, laser processing, case hardening, and coating deposition. For determining the 

metallurgical properties of case treated materiais, depth profilometry offers an important 

advantage over existing techniques by being a non-destructive method. 

With inhomogeneous materials, the photothemal amplitude and phase signal charnels 

cany information about any heat transport dismption or change below the surface. These 

changes must be interpreted with appropriate models, in order to yield reliable reconstructions of 

the spatially variant thermal diffisivity of a sarnple. A good review dating up to 1996 on the 
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depth profilometric problem was composed by Mandelis et al. [36] and is surnmarized below. 

The first attempt to study the properties of surface hardened steel in tems of an inverse process 

was made by Jaarinen and Luukkala [37], who developed a numerical technique based on the 

solution of the thermal-wave equation usïng a two-dimensional finite difference grid. A 

theoretical formulation of the depth profilomeûic problem was first described by Vidberg et al. 

[38]. The authors measured the radial variation of the surface temperatwe of a heated point at a 

single modulation frequency. The thermal conductivity and heat capacity profiles were 

reconstructed using Pade approximants for the inversion of spatial Laplace transforms. The 

model was only valid for nonconventional experimental geometries and the reconstructed 

profiles were not always numerically reliable. In a later publication [39], the well-known 

Hamilton-Jacobi formalism fiom Classical Mechanics was introduced into the thermal-wave 

problem by treating the AC temperature field as a Thermal Harmonic Oscillator (THO) [40] and 

inverting the amplitude and phase of the experimental data by matching it to explicit theoretical 

expressions for a semi-infinite material. Experimental inversions were obtained for a liquid 

crystal octyicyanobiphenyl (8CB) [41] using this method with a WKI3.l type approximation. 

Further inversions with semi-infinite laser-processed solids were reported later 142,431. The 

method was very sensitive to the presence of experimental noise and was not valid in al1 physical 

limiting cases. An inversion procedure for a finite thickness problem has also been reported 

based on the same THO approach [40]. Glorieux et al. [Ml, then proposed a model that assumed 

locally constant or linearly-dependent thermal conductivity on depth where the solid was divided 

up into a virtual incremental discrete-layer system and, in each layer, foward and reverse 

thermal-wave equations were set up for constant conductivity. The theory presents problems 

with the treatment of finite-thickness materials, since it ignores the multiple inter-reflections of 



the thermal wave between the two boudaries (surfaces) o f  the material. Fivez and Thoen 

reported yet another version [45] of the foregoing inversion problem with a linear dependence of 

the local (incremental) thermal conductivity with depth. Explicit expressions were derived and 

matched with experirnental data, and the results of the inversions were in agreement with those 

obtained by Ma et al. [42]. The major disadvantage of this approach is its inability to treat 

semi-infinite soli&, since the explicit formulas depend on the boundedness of the denved Bessel 

and Neumann fiinctions. Instead, the approach requires flat profiles in the bulk of the material 

under investigation. This is because several combinations of these functions utilized in this 

approach become infinite in value as the depth increases without bound. A theoretical approach 

by Lan et al. [46] combines the approaches of both prior papers 144,451. In this paper, a mirror 

anticorrelation was found between thermal diffisivity and quenched steels. The method has 

improved strengths fiom Ref. [44,45 1, but it is subject to some combination shortcomings: a flat 

profile of the themal conductivity at large distances [47] (Le., at "infinity") to induce 

boundedness, and the lack of a theoretical basis to treat multiple thermal-wave reflections fiom 

the opposite surfaces of finiteiy-thick sarnples. In a theoretical paper [48], Fivez and Thoen 

presented a new analytical approach to the inverse problem that is valid for semi-infinite solids 

at sufficiently high frequencies, but shows significant deviations of reconstmcted thermophysical 

profiles fiom the expected values at low frequencies (equivalent to large depths in a sample). 

A good overview of one-dimensional ill-posed inverse problems was given by Power and 

Prystay [49]. The authors introduced the expectation-minimum principle as a robust method of 

recovery of the heat flux profile. In a cornpanion paper Power and Prystay [SOI found that the 

expectation-minimum principle had an improved resolution over the zero-order Tikhonov 

regularization. A different approach was developed by Glorieux and Thoen [SI] using neural 



networks, in which the reconstruction was obtained by observation of the signal and thus on a 

'leaming' relation between profile-signal examples. The accuracy of such a method depends on 

the training of the neural network. Mandelis et al. [36] M e r  fomulated a complete generalized 

expression for the thermal-wave field in an inhomogeneous bounded solid. The method 

improved on the previously denved formulas based on the THO approach [39,42,52] by ensuring 

proper convergence to limiting cases. Another numencal methodology was developed by 

Ales hin and Vyslous h [53] who attempted to develop a general inverse problem-solving 

aigorithm with the use of Tikhonov regularization. A method by Kolarov and Velinov [54] 

developed the depth profilometric problem based on the Riccati first-order differential equation. 

A numerical method was presented to solve the general Riccati equation in real time. In this 

formulation, in the limit of infinitesimally thin layers, the recursion used in most works is 

replaced by a non-linear Ricatti equation. LiVoti et al. [55] also developed a similar formulation 

using a Singular-Value-Decomposition (SVD) regularized inversion method. Xu et al. [56] 

presented a regularized chi-square rninimization technique. Munidasa et al. 1571 applied the 

THO method [36] on quenched steels and found an anticorrelation between thermal diffiisivity 

and microhardness. However, no explanation was given on the thermal diffisivity mechanism. 

This was a preliminary study which tested the technique under laboratory conditions. Although 

the sarnples used were rough, the roughness response on the experimental data was neglected. 

Walther and Aleshin 1581 developed a method which combines laterally-scanned and 

frequency-resolved measurements for the inspection of inhomogeneous samples by making use 

of a Tikhonov stabilizer function. A lateral scan can be rigorous, experimentally increasing the 

ill-posedness of the problem since more dimensions are introduced. Miller et al. 1591 recently 

introduced a numerical reconstruction rnethod based on an adaptive multi-scale algorithm with 



no approximations to the heat diffusion equation. An exact physical mode1 is used which allows 

the profile reconstruction process to be formulated as a non-linear inverse scattenng problem. 

The method is currently being tested on experimental data. In surnmary, the depth profilometric 

methods described above can be divided into three main categories: 1) reconstructing the profile 

using a slicing methodology or WKBJ type approximation with minimization methods, 2) using 

a matix-based formulation and reconstructing in terms of regularization (Expectation Minimum, 

Tikhonov, SVD), and 3) neural network methods which do not require analytical formulation for 

the forward problem. 

1.3.2 Thermal Wave Slice Diffraction Tomography 

Thermal Wave Slice Diffhction Tomography (TSDT) (Type B inverse problem), is a 

photothermal imaging technique for Non-Destructive Evaluation (NDE), Ieading to the detection 

of sub-surface cross-sectional defects in opaque solids in the very-near-surface region (pm-mm). 

Thermal wave tomography refers to cross-sectional imaging of an object upon reconstruction 

fiom its projections from different directions. This calls for an inversion technique which can 

reconstmct the thermal defect fiom expenmental cross-sectional data. Images obtained by 

thermal wave imaging are two-dimensional "projections" of sub-surface features. These images 

are projections in the sense that they are formed by mapping the sample surface temperature in a 

hvo-dimensional raster without regard to the actual depth position of scatterers. AIthough work 

has been done in obtaining depth information on sub-surface features (35,601 and depth profiling 

of layered samples using equivalent experimental techniques, no studies have been reported until 

recently about obtaining tomographie images using thermal waves. A photothermal method 

based on the mirage effect was utilized to obtain depth information of defects using a 



tomographic like procedure [6 11. However, due to the line-integral nature of the probe beam, this 

technique did not yield proper tornographic imaging. 

The first rigorous implementation of TSDT detected scan data by photopyroelectric 

detection [62], followed by reconstruction using an algorithm based on the ray-iike propagation 

of thermal waves [63,64]. The instrumentation involved attaching a thin pyroelectric film to the 

back of a sample with a remote metal tip detection geometry. Since both the modulated heating 

source and detector were localized, they were scanned independently to perform a limited angle 

tornographic scan. A reconstruction method based on the ray-like propagation of thermal wave 

in one-dimension calculated average values of thermal difisivity using phase data. Each imaged 

cross-section was divided into rectangular pixels and thermal diffhivity values for individual 

pixels were calculated. Al1 the reconstmcted images s howed an extensive elongation of the 

defect cross-section along the vertical direction. The limitations of this rnethod suggested that a 

diffiactive propagation procedure be considered for thermal waves. 

A high-fidelity ray-based tomographic imaging reconstruction method for 

photopyroelectric thermal detection was later dernonstrated by Yarai et al. 1651. The 

experimental method improved on the scan data resolution fiom the previous works [63,64]. 

High signal-to-noise ratio detection and resolution were possible by using a film of high 

pyroelectric coefficient, a very-high-power laser diode and a very-small diameter metal probe 

tip. The bypass transmission ratio of a thermal wave was calculated between every laser and 

probe tip position along the defect by using the detected phase signal. The cross-sectional area to 

be imaged was divided into a picture pixel matrix. Every pixel was classified into "1" or "O" 

according to surnmed values of the bypass transmission ratio; a larger value than a certain 

threshold level was classified as "1". The reconstruction technique presented by Yarai et al. was 



not necessarily a better technique than the previous one discussed here. Classification of pixels 

into "1" and "O" increased image contrast, but it did not indicate the mie sarnple shape. This 

method also suffered from the assurnption of ray-like-propagation. 

Unlike electromagnetic or acoustic tomography, thennal wave tomography suffers from 

two drawbacks. First, propagation distances of the thennal wave are short, and second the 

thermal wave vector is cornpiex, lying along the 45" line in the complex plane [66]. Therefore, 

the conventional reconstruction used in well-posed propagating wave-field tomographies [67] 

cannot be applied to the thermal wave problem. To overcome the limitations of a ray optic 

tomographie reconstruction, Pade and Mandelis [68,69] developed a method taking into account 

the d i f i c t ive  and heavily damped nature of thennal waves. The problem approximated the 

wave field with the two-dimensional Green fiuiction and used Tikhonov regularization to deaI 

with the ill-conditioning of thermal waves. The limitation of this method was that it only 

addressed the physical behavior of thermal waves approximately. The technique, however 

resulted in adequate reconstructions of cross-sections away f?om the incident laser source where 

a strong singularity was pronounced. To avoid the strong two-dimensional singularity at the 

origin, a three-dimensional formulation of the problem was needed. More recently, Nicolaides 

and Mandelis 1701 implemented a rigorous mathematical mode1 representing the behavior of 

three-dimensional thermal waves. The method was based on a theoretical expression of Green 

function for the three-dimensional Helmholtz pseudowave equation [7 1 1. A major limitation of 

the above work was that an optimization procedure was not implemented to overcorne the 

problem of multiple solutions, which is inherent to ill-posed problerns. In a companion paper, 

Nicolaides et al. [72] successfully reconstmcted thermal defects using photothermal radiometry. 

The experimental technique was made truly non-contact by obtaining cross-sectional scans with 



photothermal-radiometrk detection. However, the use of low resolution photothermal 

radiometric experimental setup, resulted in reconstmcted images that were broadened. 

A new numerical technique for solving the forward problem [7 11 in the wavelet space has 

recently been developed by Miller et a[. [73]. This technique uses a wavelet-based regularization 

method to better resolve the edge structures of defects relative to reconstructions obtained with 

srnoothness-type regularization. In the future, the experimentat data obtained in this thesis will 

be tested with Miller's formalism. 

1.4 Objectives 

The literature review presented in the previous sections has set the stage for the 

objectives of this thesis. The overall objective was to overcorne the above descnbed limitations 

of depth profilometry and thermal wave diffraction tomography. Since these techniques are 

distinct thermal wave inverse problems, they are treated separately. In the following sections the 

objectives relating to each problem are described. 

1.4.1 Depth Profilometry 

The non-destructive nature of depth profilometry offers significant advantages over 

currently used conventional microhardness techniques. The first objective of this thesis is to 

explain the correlation between thermal diffbsivity and the heat treatment of steels, keeping in 

mind the anticorrelation between thermal diffisivity and microhardness in quenched steel as 

observed by Munidasa et al. [573. This thesis considers not only the effects of quenching on the 

thermal diffisivity profiles, but also the effects of carburizing. Carburizing is the absorption and 

diffusion of carbon into solid ferrous alloys by heating. The microstructure of the near-surface 



region is altered producing carbon gradients and is therefore of interest when studying the effects 

of carburizing on thermal diffisivity. Furthemore, Munidasa et al. [57] neglected to include the 

effects of surface roughness on the obtained experimental data. In the context of a Iaboratory 

study, neglecting surface roughness does not appear to be a severe limitation because rough 

samp les can be easily polished. However, as an on-line industrial application, sample polishing 

would be time consurning. These reasons validate the importance of incorporating the effects of 

roughness on the forward experimental data. The study of surface roughness in hardened steels 

has dnven the second objective of the thesis which is to take into account the influence of 

surface roughness on experimentally gathered data. It is also important to analyze a sufficiently 

large nurnber of samples so that statistical variations can be documented. This served as a third 

objective of this thesis. 

1.4.2 Thermal Wave Slice Diffraction Tomography 

Multiplicity of solutions is inherent to ill-posed problems. Earlier works have used a 

"brute-force" approach [70,72] to obtain a single solution. However, in order to pinpoint a 

reasonable solution, it is important to adapt a rigorous optimization approach. This is especially 

important if TSDT can be successfully implemented for an industrial application. Incorporating a 

suitable optimization algorithm in TSDT formed the fourth objective of this thesis. 

The fifth and final objective of this thesis was to constmct a high resolution photothermal 

radiometic experimental setup. The purpose of such a high resolution setup is to overcome the 

problem of image broadening associated with the low resolution setup [72J 



1.5 Outline of Thesis 

This thesis is divided into two main parts. The frrst part (Chapters 2-5) deals with the 

depth profiiometric problem, while the second part (Chapters 6-9) presents the thermal wave 

tomography problem. 

Chapter 2 sets the theoretical basis for the depth profilometric problem and develops a 

theoretical mode1 to treat a rough layer on an inhomogeneous semi-infinite substrate. Chapter 3 

outlines the numerical methodology used and irnplements the theoretical development of 

Chapter 2. In Chapter 4, the low resolution photothermal radiometric setup is explained and the 

experimental data obtained are presented and discussed. Chapter 5 includes the reconstructions 

of the data presented in Chapter 4 by way of eliminating roughness in a novel manner. 

Chapter 6 presents the theoretical basis for thermal wave diffraction tomography, and 

also presents a theoretical expression for the three-dimensional Green function and the incident 

temperature field. In Chapter 7, the numerical aspects of the thermal wave difiction problem 

are discussed and the technique used to optimize the inversion is presented. Chapter 8 describes 

the construction of the high resolution experirnental setup. Although not outlined in the 

objectives of this thesis, an application of high resolution off-set imaging of cracks is also 

developed. Tomographie experiments are also presented in Chapter 8, which, in tum, are used 

for real tomographic inversions, as described in Chapter 9. Chapter 10 presents the overall 

conclusions of this thesis as well as recornmendations for future work. 



Chapter 2 

Forward Process: Depth Profilometry 

2.1 Introduction 

Depth profilomeûy is a one-dimensional inverse problem where the thermal diffùsivity 

profile is inverted fiom a modulated temperature surface information. Before the inverse 

problem can be solved the forward problem must be developed. The depth profilometric forward 

problem is based on fonnulating a one-dimensional temperature distribution model of a thermal 

wave field fiom a homogeneous layer on top of a semi-infinite inhomogeneous layer. The top 

homogeneous layer is introduced into the model so as to account for the thermal response due to 

the surface conditions (roughness) of the sample. In this way the effects of roughness can be 

deconvolved to recover the sample's true thermal inhomogeneities. Previous depth profilometry 

models treated the surface thermal wave response of a smoothed surface 1361 and did not 

account for roughness. 

In this chapter the standard (Green fünction method) one-dimensional treatrnent of the 

thermal-wave equation will be presented for a homogeneous sample. This will be followed by a 

presentation of the thermal wave field in an inhomogeneous layer in terms of treating the thermal 

wave as a thermal hannonic oscillator (THO) and thus implementing the Hamilton-Jacobi 

formalism [40] fiom classical mechanics. The thermal wave theory of a homogeneous layer on 



top of a semi-infinite inhomogeneous layer will be developed as the depth profilometnc solution 

to the forward problem. 

2.2 General Solution of the Thermal Wave Field in a 
Homogeneous Solid 

The general form of the heat diffusion equation in Cartesian coordinates for the 

temperature distribution T(r,t) with a thermal source q(r,t) is 

where a is the thermal diffisivity and k is the thermal conductivity, both of which are assumed 

to not Vary in space. Applying the temporal Fourier transfom, equation (2.1) transforms into the 

frequency domain as follows, 

where O(r,o) is the wideband Fourier transform of T(r,t), which is assumed to exist as 

and 



where a is the complex wavenurnber, and w represents the angular modulation fiequency. To 

obtain the conventional thermal-wave behavior, the wideband spectral equation (2.2) rnust be 

reduced to a single spectral component form by assuming harmonic thermal exciktion at some 

specific fiequencyfo=od2x 151. The temperature function for a single spectral component of the 

Fourier field after an inverse Fourier transform, equation (2.3a) becomes 

where ~(co-u~) is the Dirac delta function, which is used to show that the harrnonic field peaks 

infinitely at the single component o=oo. By trivially substituting o for oo and using equation 

(2.4), equation (2.2) can be written as the thermal-wave field equation 

where T(r,o=oo) is assumed to exist and is well defined at the spectral component of interest oo. 

Following a Green function methodology [ 5 ]  which is based on solving for a homogeneous 

boundary problem, the solution to equation (2.5) is, 



where r and ro are the observation and source coordinates, respectively. SO is the surface 

surrounding the source volume Vo and 6 is a cwrdinate point on So. G(r 1 6; w )  is the associated 

Green function that depends on the geometry boundaries. The thermal diffisivity and 

conductivity are assumed to be independent of the cwrdinate in 6. 

2.3 One-Dimensional Thermal Wave Field of Homogeneous 
Semi-Infinite Solid with Prescribed Surface Flux at x=O 

The AC thermal wave flux prescnbed at x=û is given by 

where Fo is the incident flux. The associated Green function must satisQ a hornogeneous 

Neumann boundary condition at the source cwrdinate xo=O as shown below, 

a -Go(x - XO, w) = 0. 
dxo 

In the absence of a bulk source, equation (2.6) reduces in one-dimension to 



where e = klfiis the thermal e h i v i t y  of the semi-infinite material. It can be seen by the 

equation that for high thermal e h i v i t y  a low thermal signal is expected since the thennal 

power is conducted away into the bulk of the matenal. The resulting thermal field exhibits the 

well-known d4 phase lag with respect to the input thennal wave Llw predicted for semi-infinite 

geomeîries [5,40]. 

2.4 The Hamilton-Jacobi Thermal Wave Oscillator: Solution 
to an Inhomogeneous Semi-Infinite Solid 

A mathematical formalism for the description of the propagation of thermal waves in 

solids has been pioneered by Mandelis (1985) [39,40]. The method is based on the analogy 

between thermal waves and classical mechanics by expressing the heat conduction equation in 

the Hamilton-Jacobi formulation. As outlined above, the AC temperature field can be written as 

which yields the Fourier-Helmholtz equation 

with continuously variable thennal conductivity, k(x), density p(x), and specific heat c(x). For a 

semi-inifinite medium, the boundary conditions at x=O are, 



where Qo is the thermal flux prescribed on the surface (x=û). Equation (2.1 1) satisfies the Euler 

equation 

with the Langrangian L, corresponding to [74] 

and yielding the Hamiltonian 

where p, is the generalized momentum defined by 

Equations (2.15) and (2.16) show that the generalized coordinate and momentum are the field 

temperature and heat flux, respectively. For an appropriate Hamiltonian, the canonical 

transformation is required such that both coordinate and momenturn will be constants of the 



motion. The thermal-harmonie-oscillator canonical Hamiltonian (constant of motion) is then 

derived as 

which is analogous to the classical canonical Hamiltonian fwiction H(p r, r) = &/2m + Kr2/2 

with the following effective physical assignations of a harmonic osci llator 

(position), (2.18a) 

(momentum), (2.18b) 

(inertia), (2.18~) 

(spring constant). (2.18d) 

where e(x) = ,/- is the material thennal effisivity. Finally, the temperature field T(x) 

in equation (2.18a) may be written as [40], 
p p p - - - - - - - - - - -  

The exponent H(x), is defined as 



where a@) is the depth thermal diasivity distribution of the solid and CI and Cz are integration 

constants 1401 , 

e-jd4 + so, and 

where PTO and Q can be determined by boundary (equations (2.12a) and (2.12b)) and limiting 

conditions. The material under investigation is assumed to be opaque in that its optical 

penetration depth is much shorter than the shortest thermal diffision length, p = 4%. 

2.5 Discrete Homogeneous Layer on a Semi-Infinite 
Inhomogeneous Layer 

The regions surrounding the investigated inhomogeneous Iayer @>O) include an air-solid 

homogeneous interface (r-d) and a solid-backing interface (x=O) as shown in Figure 2.1. 

air roughness layer of 
layer interest 

(a) I ( i ) l  (2) 

Figure 2.1 Depth profilometric region under investigation. 



The AC temperature fields in each region air (a), roughness layer (1) and investigated 

inhomogeneous layer (2) are: 

Equation (2.22a) is the bounded (finite as x -. -) solution to the thermal-wave equation for a 

homogeneous semi-infinite medium (shown in Section 2.3) [5] and equation (2.22b) is the 

solution for a finite homogeneous region. In equations (2.22a) and (2.22b) Gj is the complex 

wave number defined in equation (2.4), where aj is the thermal diffisivity of the j-th medium 

(j: 1,2). Equation (2.22~) is the result of treating the inhomogeneous layer thermal wave field in 

terms of the Hamilton-Jacobi formulation as s h o w  in Section 2.3, and applying the appropriate 

subscript, 2, to the expressions for identiQing the investigated layer. Constants D, B, and C 

depend on the boundary and Iimiting conditions of the system, and CI and C2 are as defined in 

equations (2.20a) and (2.20b), respectively. 

The boundary conditions for the regions at x=-d and x=O are the continuity of 

temperature and the continuity of heat flux: 



where Qo represents the thermal source fluence at the matenal surface [W/m2] assurning 100% 

laser power absorption. In the limit x -. a, the AC temperature, Tz(x), generated should be zero. 

Applying this condition to equation (2.22~) yields 

Substituting equation (2.25) to (2.22~) gives 

In order to use this with the boundary conditions, the first denvative of T~(x) with respect to x is 

written as 

An approximation is now made by neglecting the second part of equation (2.26) and setting the 

thermal effusivity derivative equal to zero: 



This asswnption amounts to a requirement for nonsteep local variations of the effusivity (WKBJ 

approximation). This is easily satisfied when the thermophysical field is evaluated at small 

incremental depth slices where it is not expected that local steep diffisivity gradients may exist 

[39,59]. Solving for the constants by using the boundary conditions and substituting in equation 

(2.26), the temperature distribution at layer (2) becomes: 

where, 

In deriving equation (2. 29) the air-solid interface was assumed to be negligible. This is a va 

assumption, since in most cases the thermal coupling coefficient is much less than I ( Rai,* a 1 

near adiabatic conditions). Similarly, by substitution, the temperature distribution in the 

homogeneous layer (1) fiom equation (2.22b) becomes: 



where, 

Although it will be seen that the results are valid for arbitrary thermal diffisivity depth 

profiles, for this analysis the following simple simulated fùnctional dependence of the solid 

inhomogeneous region thermal diffisivity is assumed [36]: 

such that a,@) = a,, a,(O) = a0 and 

The parameter q is a constant that detemines the rate of thermophysical decay if a0 > a, or 

growth if a0 < a,. By defining a form for the inhornogeneous thermal diffisivity the integral for 

H(x), equation (2.20), gives &(a) - a, which is also valid for a constant homogeneous thermal 

diffusivity in Layer (2). Thus fiom equation (2.29a), Fz = 1, and fkom equation (2.3 l), 

r2 (O) = y2  (O) = ymi. The resulting temperature, for the inhomogeneous tayer (2) fiom equation 

(2.29), simplifies to 



QO JRzo b (0) e* ld-~2(1) 

= k2(0)a2(0) (1 + b21(0)) - (1 - b21(0))e-2ald 

The superposition principle is implemented in solving the complete expression for the 

thermal wave field in an inhomogeneous solid bowided by the regions s h o w  in Figure 2.1. 

According to this pnnciple, any complicated linear boundary-value problem can have a solution 

written as a linear combination of solutions to a nurnber of simpler boundary value problems. 

The general solution of the thermal wave field for the regions shown in Figure 2.1 is then, 

T(x) = a Tz (x, o) + bTo(x, w) + cT,(x, w), (2.34) 

where To and T,are  the temperature distributions with constant thermal diffusivities a0 and a, 

in layer (2) ,  respectively, and the expressions are 

where b20i and y201 are as defined in equation (2.29b) and (2.3 1)  (Fz= 1 ), respectively. b2a1 and 

yzmi are defmed similarly by replacing O witb a, in equations (2.29b) and (2.3 l), respectively. 



2.5.1 Determination of the Constants (a, b, c) 

Constants a, b and c are determined by the various limiting case requirements of the 

problem. 

2.5.1.1 At Large Distance: x -+ a, 

Since equation (2.32) gives a constant diffisivity profile of a, at very large distances 

from the surface, qx,  w) = T,(x, o) in this limit and equation (2.34) leads to 

Substituting equations (2.33), (2.35a) and (2.35b) to (2.36a), and by setting b=O to satis@ 

boundness, results in 
r )  

where 

2.5.1.2 Vety High Frequency: o -+ 00 

In this limit the penetration depth of the thermal wave is zero, whicb results in 

Substituting (2.36b) in equation (2.34) and since 0 2 ,  -. a, as o -. ai, it can be shown that 
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2.5.2.3 Very Lou Frequenqv O -+ O 

In this limit the penetration depth is infinite resulting in 

Substituting (2.36b) and (2.38) in equation (2.34) and since a2, + O as w -. O, it c m  be shown 

that 

which results in 

R2(4 = 1 .  

Finally, substituting all the determined constants fiom equations (2.38) and (2.4 1 )  in 

equation (2.34) and calculating the field at the front surface x = -d, 

where d cannot + m. 



2.6 One and Three Dimensional Formulation for a 
Homogeneous Layer on a Semi-Infinite Homogeneous Layer 

In this thesis, rough homogeneous semi-infinite samples in a one-dimensional geometry 

were also examined. The samples served as a tool for ensuring that a one-dimensional 

expenmental response was obtained. To correct the experimental data for any 

three-dimensionalities the theoretical model of a homogeneous layer with a homogeneous 

semi-infinite substrate is also derived. 

Equation (2.42) can be reduced to the well known one-dimensional formulation [3] of a 

homogeneous layer on a semi-infinite system by setting the inhomogeneous layer to 

homogeneous, i.e a0 = a, and therefore 24. The resulting equation is: 

where yzoi becomes y21 with F2=l as defined in equation (2.40). 

Let us prove the one-dimensionality of the depth profilometric experiments. A 

three-dimensional formulation for a homogeneous layer on a homogeneous semi-infinite 

substrate is developed. In a three-dimensional formulation the thermal wave field, as generated 

by a volume source of a Gaussian laser beam incident normal to the swface, must be taken into 

consideration. Figure 2.2 shows the three dimensional geometry in cartersian coordinates with a 

Gaussian beam. 



Figure 2.2 Depth profilometric three dùnensional region under investigation. 

- 
The Gaussian beam is e w2 , w is the beam spot size, and #=a?+f. The one-dimensional 

formulation o f  equation (2.43) can be converted to three dimensions by integrating over the 

Bessel function of order zero with the use of one-dimensional Green function by Hankel 

transformation 

where, 

and, 



Chapter 3 

Inverse Process: Depth Profilornetric 
Numerical Method 

3.1 Introduction 

In this chapter, the inversion method for depth profilometric reconstruction is outlined. 

This is a minimization based method and the numerical procedure is outlined in Section 3.2. In 

Section 3.3, simulation results are presented. Numerical considerations are presented in Section 

3.4. 

3.2 Numerical Method 

The amplitude and phase are experimentally obtained and they correspond to the surface 

temperature distribution, T(0,o). The theoretical values of the data pair are calculated by 

where M(o) is the amplitude and A&o) is the phase at an angular frequency o. At each 

frequency the amplitude and phase are used to calculate a,-, and q of equation (2.32) with a, 

representing the known bulk thennal dimisivity. Although a profile of the form of equation 



(2.32) is assumed, the actual profile is updated at each frequency by recalculating new parame- 

ters of ao and q. In this way, the validity of equation (2.42) becomes more general than the 

assumed profile of equation (2.32). Arbitrary depth profiles may be reconstnicted by numericall y 

detennining the optimal pair of and q so that the profile sought locaily results in the expen- 

mentally observed thermal-wave signal amplitude and phase data. Therefore, at each aj a system 

of two equations and two unknowns is solved. 

The reconstruction method used to solve for the parameters ~1 and qj is a multidirnen- 

sional secant method, known as Broyden's method [36,75], and is based on minimizing the 

difference between the expenmental and theoretical data for amplitude phase as follows, 

The calculation of the depth parameter xj is perfomed based on the fact that as modulation 

frequency decreases the thermal wave probing depth increases. Starting at the highest frequency 

ao. the shortest depth is the shortest thermal diffusion Iength, i.e., 

The next (lower) frequency Wj+i, corresponds to an increased thermal wave depth 



which is then substituted in equation (2.32) to calculate -1,. Once -1) is calculated the 

method returns to recursively calculate the increased thermal wave depth as, 

Therefore, the depth of each "sIice" depends on aj and %)(xj). The expression for RI, equation 

(2.32), is used for analytical consistency. The true profile is built up by individual slice profiles 

as seen in Figure 3.1, with XI being the first slice corresponding to the highest fiequency. In 

reconstmcting depth profiles fiom data it is important to first find a reliable set of initial values 

for and q. This can be achieved by finding the best theoretical fit, using equation (2.42) 

(forward problern) to the first few end points (high ftequency) using a single profile of the form 

of equation (2.32). 

Figure 3.1 Depth profilometric profile calculation. 
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3.2.1 Detailed Description of the Inversion Method 

nie numencal solution is obtained by using the following steps: 

Step 1. initializing the theoretical amplitudes. 

Since the experimental data amplitude ratio IF&(oj)l differs tiom the theoretical one, the 

experimental data are multiplied by a "scaling constant7' which is calculated as a ratio between 

theoretical and experimental data amplitudes for the highest kquency, using initial values of 

and q(1,. An approximate set of initial values, CQ,, and q(11, can be obtained by fitting the hi& 

fiequency experimental data to the theoretically simulated data corresponding to a single 

exponential profile (forward problem). 

Step 2. Scaling data amplitudes. 

In order to eliminate data error for the highest frequency, a scale constant is used which 

is in the range of *5% of the initial one. These errors may result from improper -11 and q(i, 

values, roundoff errors and inhomogeneities in the reference sarnple, and most importantly the 

effect of reflectivity andor ernissivity of the surfaces of both the reference and the sample. The 

process is started with the lower value and then step three is applied. 

Step 3. Search for local ~1 and q ~ , .  

This is the main step of the numerical search for solutions to equation (2.42). To be able 

to calculate the thermal diffisivity a(x)(j) and depth q, corresponding to frequency oo) one has to 

find unknown parameters ~1 and qü,. A customized two dimensional Broyden's method [36,75] 

is used. The procedure is customized to avoid nui-time erron and singulanties in Broyden's 

two-dimensional Iine search procedure so that it can be used in conjunction with equation (2.42). 

The method searches for -1 and qü, to satisfy the minimum conditions lI+&(~j)l - IM(oj)( = O 

and A&xp(COj) - A4(oj) = O for each angular frequency aj. The procedure starts witb the highest 



frequency COI. Tbe procedure also has the ability to search for solutions fiom the lowest 

frequency. If no solution is found for some of the frequencies, the scaling constant is increased 

by 1% and the procedure returns to step two above. If the scaling constant reaches the upper 

boundary of the allowed range and still no solution has k e n  found for each of the frequencies, 

the procedure returns to step one where the initial w, is increased by 1%. When solutions are 

found for a specified number of fkequencies the procedure advances to step four. 

Step 4. Calculation of a ( ~ ) ~ )  and depth Q,. 

After al1 local values of %) and q ~ ,  are known, the thermal difisivity profile of the 

sample is calculated. Starting at the highest frequency o(11, where a solution was found, the 

corresponding ao(1, and q(ll are used for deterrnining the thermal difisivity and the shallowest 

depth using the algorithrn outlined in equations (3.3)-(3.5). In this algorithrn a smooth continuity 

is appl ied wherein if a ( ~ ) ~ ,  signi ficantly di ffers fiom the neighboring a ( ~ ) ~  1 ), the scaling 

constant is increased by 1% and the program returns to step two. This entire procedure takes a 

few seconds on a Pentium II 266MHz, provided that a reasonable set of initial parameters is 

given. 

The numerical code to solve the minimization problem was originally written in C++ by 

Frank Funak [36], and it was modified in this work to solve for the new forward theory of 

homogeneous layer with inhomogeneous semi-inifinite substrate developed in Chapter 2. The 

forward problem (written in C e )  was also linked with an Excel spreadsheet to expedite the 

forward fitting which is used as an initial guess for the high frequencies. In this process, the 

numerical calculations are made in C++ as a built-in function in Excel so that the end user can 

modiQ parameters in real time. 



3.3 Numerical simulations 

In order to test the numerical method simulations were performed. Three basic 

reconstmctions were performed for a homogeneous sample with no roughness, and an increasing 

and a decreasing inhomogeneous profile with no roughness. The reconstniction case which 

includes roughness is adcûessed along with the limitations in Chapter 4. The inhomogeneity was 

formulated with one exponential as given by equation (2.32). Figure 3.1 shows the three 

simulated profiles and the corresponding reconstmctions in a geornetry consisting of an 

inhomogeneous semi-infinite substrate. The first profile constructed is of a homogenous 

semi-infinite solid with a=12.5x10dm2/s. The second profile is of an inhomogeneous 

semi-infinite solid with m=lIxl  0dm2/s, a,=12.5~ 104m2/s and q= 1000m-'. The third profile is an 

inhomogeneous semi-infinite solid of decreasing profile and with Q= 1 2 . 5 ~  104m2/s, 

a, = 1 lx10bm2/s, and q=1000m-'. The reconstructions are in agreement with the original 

profiles created by using a single exponential as seen in Figure 3.2. The reconstruction of the 

hornogeneous sarnple is ~ = 1 2 . 4 9 ~ 1 0 - ~ m ~ / s  with a 0.08% precision. The increasing and 

decreasing profiles are less reproducible at the low fiequencies. 

3.4 Numerical Considerations 

In reconstructing thermal diffisivity profiles, the bulk thermal diffisivity is needed a 

priori. This is the value to which the profile will eventually converge. A reconstruction is 

initiated by forward fitting of a, q and a, to the experimental data, The value of the bulk 

thermal diffisivity G, is kept constant and Q and q are searched for a solution to the slicing 

increment. In this way, % serves as a means of setting the absolute thermal diffisivity value of 



the profile and thus reducing the ill-conditionhg of the problem. If for some reason a lower 

value of a, is given then the initial guess of aa and q will change accordingly. The final 

reconstruction is a thermal diffisivity profile with the same shape but lower absolute value and 

shallower depth as shown in Figure 3.3. In conclusion, the shape of the profile is defined by the 

relative change of the experimental data, whereas the absolute value and depth are defined by 

&. 

Depth Profilometric Simulations 
I 

Inverse: homogeneous 

Figure 3.2 Simulated (solid lines) and reconstructions for a homogeneous (triangle), 
inhomogeneous increasing (circle) and inhomogeneous decreasing (square) 
profile. 



Figure 3.3 Reconstniction of the same forward data with two different bulk thermal 
dimisivities. 



Chapter 4 

Depth Profilometric Ex~erimental Method 
and Data 

4.1 Introduction 

In this chapter, the expenmental methodology for acquiring the fiequency scan data for 

depth profilometry is explored. The data is obtained at a constant spatial position and the 

fiequency is scanned. The current experimental method is based on photothermal radiometric 

detection, which has the flexibility for both backpropagation and transmission rneaswements. 

This is a truly non-contact method. Section 4.2 explains the fundamentals of photothermal 

radiometry and presents the Iow resolution experimental system used. In Section 4.3 the types of 

experimental sarnples and heating treatment performed are cited. The heating treatments of 

carburizing and quenching are explained. In Section 4.4 the experimental data for carbunzed and 

quenched samples are presented and the significance of the forward data is discussed. 

4.2 Experimental Method 

4.2.1 Photothermal-Radiometric Detection 

Photothemial-radiometric detection is a non-contact technique. The temperature 

modulation causes a variation in the thermal emissions, which are monitored using an infrared 



detector. This radiation process is govemed by the Stefan-Boltzmann law that relates the total 

flux of emitted radiation density, W, to the temperature, T, of the emitter surface given by 

where E is the emissivity of the surface and a=5.67~10-~ Wm-2KJ is the Stefan-Boltzmann 

constant. Due to modulated heating by a focused laser beam, the increment 6 W ( o )  of the local 

thermal radiation emitted fiom the surface (for 6T<<To ) is given by 

where TO is the static surface temperature, 8T is the modulated temperature excursion, and o is 

the modulation angular fiequency. 

Radiometric imaging can be used in two different detection modes: a) Front Surface 

Detection (BackpropagatiodReflection) and b) Rear Surface Detection (Transmission) 1761. In 

backpropagation, both the generation and detection of thermal waves take place on the same side 

of the sample as shown in Figure 4.l(a). Infrared emission fiom a thennally excited beam 

location is focused ont0 an inhred detector using infrared optics. Precautions must be taken to 

prevent scattered modulated high-intensity laser light from getting into the detector. This could 

produce false signals at the same fiequency as the thermal waves. The scattered laser light may 

be removed by using a lowpass germanium filter at the detector aperture. In this detection mode, 

subsurface features are exposed by the backscatter thetmal waves that produce a change in 

temperature at the front surface. Backpropagation is particularly suitable for detecting near 



surface (up to two thermal diffision lengths) defects, but there is no limit on specimen thickness. 

In transmission, thermal waves are generated and detected on opposite sides of the sarnple, as 

shown in Figure 4.l(b). The thermal wave transmission method is usehl for samples with a 

thickness of up to four thermal diffision lengths (p). 

Modulated Thermal 
Emission for Reflected 
Thermal Wave 

Therma 
Sample 

Thermal 

Modulated Thermal 
Modulated Emission for Transmitted 
Laser Thermal Wave 

Infrared 
Detector 

Figure 4.1 (a) Front surface (BackpropagatiodReflection) arrangement. (b) Rear surface 
(transmission) detection. 



4.2.2 Experimental System 

The depth profilometric application is a one-dimensional problem and therefore the 

experimental setup has a low spatial resolution. To maintain the one-dimensional heat diffision 

formalism assumed in the theory, the pump beam spot size is made much larger than the 

maximum profile depth. The experimental apparatus is s h o w  in Figure 4.2. A 514.Snm 

wavelength continuous-wave (cw) Innova Ar" laser fiom Coherent is modulated and then 

focused ont0 a sample, to a broad spot size of LOrnm diameter, at an output power of 1 W. To 

achieve the broad beam an optical diffuser, which is a 5mm thick polyrneric substrate, is placed 

in the path of the beam and the scattered light is collimated with a lens ont0 the surface of the 

sample. The modulation is performed by an extemal Acousto-Optic Modulator (AOM) (ISOMET 

120 1 E-1). The blackbody radiation fiom the optically excited sarnple is collected and collimated 

by two silver-coated, off-axis paraboloidal mirrors and then focused ont0 a liquid nitrogen 

cooled HgCdTe (Mercury-Cadmium-Telluride) detector (EG&G Judson Model 

SlSD12-M204-S01M). The heated area of the sample is at the focal point of the one mirror 

positioned near the sample, and the detector is at the focal point of the other mirror. The HgCdTe 

detector is a photoconductive element that undergoes a change in resistance proportional to the 

intensity of the incident infrared radiation. It has an active square size of lmm x lmrn and a 

bandwidth of 2 -12p .  Since the eficiençy of the detector increases with decreasing 

temperature, the detector is operated at a cryogenic temperature of 77' K [77]. An 

Anti-Reflecting (AR) coated germanium window with a transmission bandwidth of 2-14pm is 

mounted in front of the detector to block any visible radiation fiom the pump laser. Prior to 

being sent to the digital lock-in amplifier (Stanford Research System Model SR850) [78], the 

photothermal-radiometric signal is amplified by a preamplifier (Analog Modulus 350-3A), 



especially designed for operation with the HgCdTe detector. The low noise preampiifier ensures 

a proper performance for subsequent signai processing with a lock-in amplifier. The lock-in 

amplifier, which is interfaced with a personal cornputer, receives the pre-amplifier output and 

rejects al1 stray signals except those that have the same modulation fiequency as the excitation 

beam. This process of data acquisition, storage, and scannîng is fiilly automated. 

Ar-Ion Laser Al0 1 
Modulator g 

Off-Asis 
I 

Para boloidal 

Dctector 

Figure 4.2 Frequency-domain photothermal radiomehic instrumentation. 



4.2.3 Experimental System: Detaiied Procedure 

For al1 the experiments, a cw Argon-ion Laser mode1 100-15 by Coherent was used, 

which operates in the 333.6-528.7~1 band, and has an all-lines power output of 15 Watts. The 

unit is comprised of three major fûnctional units: the laser head, the plasma tube within the laser 

head, and the power supply. The laser was configured to emit at 5 14.5nrn, and was found to have 

a maximum optical output of 10 Watts at this wavelength. The intensity has a Gaussian 

distribution with a l/e radius of 0.87mm. Before the laser was sent to the acousto-optic 

modulator, it was collimated by lenses to a Gaussian distribution with l/e radius of 0.262mm. 

The collimating lens setup is shown in Figure 4.3. The beam profile was rneasured with a 

photodiode, and is s h o w  in Figure 4.4, which confirms a good Gaussian profile. 

Laser I-PY"' i /e=0.87mm 

Figure 4.3 Laser beam collimating lens setup. 

AAer the beam was collimated, it was directed to the aperhue of an Isomet AOM (Mode1 

12 1 1). The AOM is a device that modulates the intensity of the incident beam by means of an RF 

signal at a given center fkequency as shown in Figure 4.5. A digital (on-off) or analog (video) 

modulation can be produced, depending on the type of driver selected. In this assembly an 

analog Isomet driver (Mode1 223A- 1) was used which accepted a sinusoidal wave fiom the 

interna1 fùnction generator of the lock-in amplifier. This provided an amplitude-modulated RF 



output to the acousto-optic modulator at the particular fiequency. The process of fkequency 

scanning and data acquisition was then automated. The AOM was mounted on a translating 

vertical stage and a rotating micrometer stage for accurate adjusment. Beyond the exit of the 

rnodulator and aAer haveling for 20cm, the higher orders (12, 13, ...) were separated enough so that 

the preferred modulating first order beam (1,) was chosen by blocking al1 the other beam orders 

with an iris. 

Beam profile after collimating 

Figure 4.4 Beam profile after collimating, as measured with a photodiode. 

Acoustic - 1 

AOM 

Figure 4.5 Laser bearn diffracted paths fiom the AOM. 



Frequency scans were then performed in the range of 0.5Hz -LûûkHz. The experiments 

were performed in two ranges: a) OSHz-lkHz with broad lOmm diameter beam and b) 

500Hz-100kHz with bare 2mm diameter bearn. The data in the freguency range 500-1000Hz 

overlapped. This ensured that the thermal diffision length was much smaller than the size of the 

beam and thus the signai remained one-dimensional. The reason for such an operation was that 

the SNR would increase at the higher freguency range since the power density w/m2]  (Power/ 

beam cross-sectional area) with the 2mrn beam was higher. The experimental surface 

temperature response on the sample was normalized by the surface temperature response of a 

reference sample (Zr alloy). This gave, for each fiequency, an amplitude ratio and phase 

difference. The nomalizing procedure was necessary to correct al1 instrumental frequency 

dependencies [36]. One instrumental fkquency dependence anses fiom the response of the 

inhred detector. The responsivity and noise frrguency dependence of the detector are shown in 

Figure 4.6. The responsivity of this detector is flat at the frequency region observed. When the 

frequency is below 1lcHz both the sample and reference are affected by the l/fnoise frequency 

response of the detector. As a result, the normalization procedure amplifies the noise of the data. 

Figure 4.6 HgCdTe responsivity and noise frequency dependence [77]. 



4.2.4 Experimental Dimensionality 

Depth pro filometry theory assumes a one-dimensional heat dimision formaiism, which is 

difficult to achieve experimentally. At high fiequencies, the penetration depth is close to the 

surface so lateral heat diffision is negligible. However, at low frequencies, the thermal wave 

penetrates deep into the material and lateral heat difision is pronounced. To ensure 

one-dimensionaiity, the size of the beam must be much larger than the deepest penetration. Not 

only is the beam an important consideration here, but also the beam shape. The laser source has a 

Gaussian profile, an assumption not included in the theory. Experimentally a "top hat" 

distribution, which is a flat distribution of the beam, is needed in order to more closely satisfi 

the theoretical assumptions. To alleviate the three dimensionality introduced by the Gaussian 

distribution, a thick diffiser with the lens is placed in the path of the beam. This difises the 

light in order to redistribute the Gaussian distribution and redirect it into a broad distribution. By 

this process, the Gaussian profile is greatly reduced. The three dimensionality effects are 

drasticaliy diminished but not eliminated as can be seen in Figure 4.7, which shows the response 

of a Zr reference sample for one bare and two diffised beams. As the beam is increasingly 

diffused both the amplitude and phase graphs approach one-dimensional theory. The response of 

a one-dimensional semi-infinite sample is derived in equation (2.9), where the amplitude is 

invenely proportional to the square-root of fkequency and the phase is constant at -45'. Figure 

4.7 presents unnormalized data, which explains the deviation fiom the theory at high 

frequencies. At low fiequencies, the three-dimensionality effects are, as expected, more 

pronounced. Some of the deviation that exists relates to the AC coupled response of the infiared 

detector, which adds to the positive phase shift in the low frequency. This would be canceled by 

the nonnalizing procedure. To correct for the actual three-dimensionalities of the system, a 



known homogeneous sample with 2pm roughness is normalized with the reference Zr alloy 

sample, which is then fitted to the three-âirnensional homogeneous layer theory denved in 

equation (2.44). The infinite integration was perfonned numencally by a routine written in C" 

[74]. Figure 4.8 shows the nomalized experimental data of a homogeneous steel with roughness 

and the expected one-dimensional response of the system. At low fiequency there is an 

approximately 2" deviation fkom the one-dimensional theory. The deviation is due to the fact that 

below lOHz lateral diffision is not negligible. The three-dimensionality is not only a firnction of 

the beam, but also of the thermophysical properties of the sample and reference. With al1 the 

parameters known, a three-dimensional theory, equation (2.44), is fitted to the experimental data, 

and as seen in Figure 4.8, an excellent agreement between theory and experiment is obtained. 

The difference between the one-dimensional and three-dimensional theory is then included in the 

instrumental data, and al1 the experiments that follow are corrected. Also, in this data the l/f 

noise dependence of the instrument is evident below 10Hz where the SNR decreases. 

4.3 Experimental Samples and Heating Treatment 

To understand the mechanism by which the thermal diffisivity profile in hardened steels 

develops, experimental samples were prepared for two heat treatments: the case hardening 

process of carburizing and quenching. In a previous study [57], only the quenching process was 

studied and the mechanism of the thermal diffisivity profile was not properly explained. In this 

work a hypothesis was made that the profile is formed at the carburizing stage. To test this 

hypothesis, the same set of samples were first studied after carburizing and then after quenching. 

Furthemore, in a laboratory study, neglecting surface roughness does not appear to be a severe 



limitation because rough samples can be easily polished. However, as an on-line industrial 

application, this technique would be prohibitively time consuming. It is thus, of great interest to 

incorporate the effects of roughness on the forward experimental data. 
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Figure 4.7 Zr alloy expenmental reference. For clarity only 50% of the data are shown. 



2.0 Three-dimensionalitv effects 
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Figure 4.8 Frequency response of experimental data with roughness with one-dimensional 
and three dimensional theoretical fits. For clarity only 50% of the experimental 
data are s h o w .  



With these goals, a sample matrix was constructed as a function of roughness and case 

hardness depth. The sample ma& is shown in Table 4.1, and for each possible case three 

samples are studied for statistical purposes. The samples used are lcm thick, and are cut fkom 

the sarne slab of AIS1 8620 steel alloy, which is a low carbon steel (0.25%C). The roughness of 

samples was prepared with a 200-grit silicon carbide (Sic) grinding-paper for samples 11-19, 

and with a 600-grit Sic  grinding-paper for samples 21-29. Samples 1,10 and 7 were prepared 

with a lpm polish. The bulk thermal diffisivity of the AIS1 8620 steel was rneasured by 

photothermal radiometry in transmission [79] for three disks of 850pm, 500pm and 250pm. The 

average value obtained for thermal diffisivity is 0.125cm2/s which is within 0.005cm2/s of the 

documented value that exists for a similar low carbon stee1 [80]. 

Case hardness 
depth 

200 grit 

(-5pm) 

600 grit 

The sarnples were first carburized, and then quenched at three case depths. The case 

depth is defined by 0.25% C on the carbon profile, as shown in Figure 4.9. The carbon profile 

curve is a preprocess factory estimation of heating process that will occur. Carbon is the 

principal hardening element in al1 steel. There are several kinds of carbon steel, classified by the 

quantity of carbon they contain and their mechanical properties. By composition, steels are 

classified as low carbon (<0.2%C), medium carbon (0.2-0.5%C) and high-carbon (>0.5%C). 

Figure 4.10 shows a simplified portion of the iron-carbon phase diagram [8 11. Pure iron exists in 

(-2.5 pm) 
Mirror Polish 
Hardness test 

0.02" 

sample 11 
sample 12 
sample 13 
sarnple 21 
sample 22 

Table 4.1 AIS1 8620 steel sample matrix 

sample 23 
sarnple 1 
sample 34 

0.04" 

sarnple 14 
sample 15 
sample 16 
sample 24 
sarnple 25 
sarnple 26 
sample 10 
sample 35 

0.06" 

sample 17 
sample 18 
sample 19 
sarnple 27 
sample 28 

Photothermal 
test 

sample 32 

sample 33 
sample 29 
sample 7 
sample 36 

sarnple 31 



two crystal foms below its melting point. One is the body-centered cubic (BCC), which is the 

stable form in rwm temperature, and is known as a-ferrite in the low temperature range, and 

8-ferrite in the high temperature range. The other crystal form is the face-centered cubic (FCC) 

form known as austenite or y-iron. iron is uselessly soft without carbon. Carbon profoundly 

changes the phase relationships, microstructure and properties in steels [8 11. At the eutectoid 

point D, austenite, femte and cementite (iron carbide-Fe3C) al1 exist in equilibrium. Carburizing 

is the process by which the carbon concentration of a ferrous alloy is increased by diffusion. In 

this heat treatment process (approximately equilibriurn condition), pearlite formation is 

accomplished by carbon diffùsion. This is a time-dependent process where the carbon atoms 

diffise away fiom regions that become ferrite to regions that becorne cementite. Both 

components grow in layers to form the lameliar structure of pearlite as carbon continues to be 

rejected by femte. A strong alloy (femtetçernentite) results fiom this process. Quenching heat 

treatment is the rapid cooling process after carburizing that produces the highest hardness in 

steels. This heating treatrnent results in a martensite structure which is not present in the 

phase-diagram because it is formed under strictly non-equilibriurn conditions. With quenching 

carbon diffûsion is prevented, and thus the carbon remains fixed in a lattice structure, setting up 

intense local lattice strains that block movement of dislocations. As a result, the structure is hard 

and extremely strong. 

AAer heating treatment the test sarnples were cross-sectioned and polished to observe the 

microstructure. For maximum contrast in developing femte grain boundaries in carburized and 

quenched steels, the samples were etched in 2% Nital (2ml of HNO3 in lOOml of alcohol). An 

optical microscope image (X80) of the pearlite to femte gradient (lmm deep) for the deepest 

carbunzed depth (0.06") is shown in Figure 4.1 1. Under the optical microscope the pearlite 



structure has an iridescent appearance. Scanning electron microscope (SEM) pictures at X300 

magnification are shown for different depths of the sample in Figure 4.12. Close to the surface 

the pearlite alloy exists (Figure 4.12a). Figure 4.12b shows the gradua1 interface between the 

pearlite and the original ferritic structure of AISI 8620 steel, and Figure 4 . 1 2 ~  is at the center of 

the sample where the original femtic form of the sample is maintained. In Figure 4.13 the 

martensite microstructure under the SEM for a) XI500 and b) X300 magnification is shown. 

Martensite has a needle-like structure that is formed by carbon being trapped in the iron crystal 

lattice. The gradient of the martensite is observed (Figure 4.14) under an optical microscope with 

the structure showing high carbon martensite to low carbon martensite. For a sample of this 

thickness (lcm) the whole structure is changed to martensite and therefore the bulk of the sample 

fias a different structure than that of untreated and carburized steel. 

Since microhardness testing is a time consuming and costly process, there is a demand 

for non-destructive testing in the heat treating industry. A photothermal non-destructive method 

which can monitor hardness (indirectly), would be an important achievement for the industry. 

Figure 4.15 shows the hardness profile for the carburized and quenched microhardness test of 

samples 34, 35 and 36 (Table 4.1). The carburized slow cool samples show a tow and mild 

hardness profile, whereas after quenching the profile becomes harder and sharper. The error 

margin for these microhardness tests is between +lOHV for 300HV and e 0 H V  for 700HV with 

the error bars for each microhardness test shown in Figure 4.1 S. For the sake of clarity, in Figure 

4.15, the last measured value for carburizing is not shown. This value is 193+7HV at 38 10pm. 

The heating processes and microhardness tests were performed by B&W Heat Treating Ltd. 

(Kitchener, Ontario). Experimental fiequency scans were performed on the same sarnples for 



three consecutive processes: first, the rough untreated process, second, the carburizing process, 

and finally, the quenching process. 

Figure 4.9 Carbon profile for case depths 0.02", 0.04" and 0.06". 

Figure 4.10 Simplified portion of the iron-carbon phase diagram [8 11. 



Figure 4.1 1 Optical microscope image; magnification X80; Imm depth o f  pearlite to ferrite 
structure. 

Figure 4.12 Microstxucture of  pearlite gradient; SEM magnification X300; a) peariite; 
b)pearlite to ferrite; c) femte. 



Figure 4.13 Microstructure of martensite forrned by quenching; SEM magnification a) X 1500; 
b) X30. 

Figure 4.14 Optical microscope image (X80) of lmrn deep martensite gradient; high carbon 
martensite near surface; low carbon martensite in the buk. 



Hardness profile of carburized and quenched samples 

Figure 4.15 Hardness profile for carburized and quenched process of case depths 0.02", 0.04" 
and 0.06" (performed by B&W Heat Treating Ltd., Kitchener, Ontario). 

4.4 Forward Experimental Data and Discussion 

4.4.1 Untreated Experimental Data 

Figures 4.16 and 4.17 show the normalized fiequency response (amplitude and phase) of 

the untreated 200 and 600 grit samples, respectively. Roughness affects both the amplitude and 

phase response of a sarnple throughout the entire frequency spectrum, causing peaks in both the 

amplitude and phase data at different frequencies. This response is a notable deviation fiom the 

response of a homogeneous sample, which exhibits a constant normalized amplitude and phase 

of 1 a.u. and O degrees, respectively. At high fiequencies, the penetration depth of the signal is 

shallow, and therefore information about the swface can be obtained. The surface thermal 



effisivity of the sample can be obtained by theoretically fitting the experimental response to a 

homogeneous layer (roughness layer) with a semi-inifinite homogeneous substrate to the mode1 

derived in equation (2.43). The effbsivity, e==kpc)lR, near the surface is the relevant themal 

parameter in time-dependent surface-heating processes, rather than the thermal diffisivity, 

a=k/pc, which govems the propagation inside the solid [82]. The thermal conductivity, k, mass 

density, p, and the specific heat capacity, c, can be measured separately for the bulk material. 

The homogeneous substrate was the same for al1 samples since the sampIes were obtained from 

the same steel rod. The only unknowns in equation (2.43) are the thermal difisivity and 

conductivity, which when combined can be represented by the thermal effisivity of the rough 

layer. The roughness thickness, d, of each sarnple was measured independently with a surforneter 

(Series 400; Precision Devices, Milan, MI) of a 0.0 1pm total system resolution. The instrument 

measures over an evaluation length, which is the length over which the surface parameters are 

evaluated. The evaluation length (1Omm) for each rneasurement consisted of five sarnpling 

lengths, where the sampling length is defined as the nominal wavelength used for separating 

roughness and waviness. For each measurement the following three surface parameters were 

documented: 1) roughness average, Ra, 2) maximum height of the profile, Rt, and 3) average 

maximum height of the profile, Rz. Ra is the arithrnetic average of the absolute values of the 

profile heights over the evaluation length, Rt is the vertical distance between the highest and 

lowest points of the profile within the evaluation length, and Rz is the average of the successive 

values of Rti (Rt of each sarnpling length) calculated over the evaluation length. The 

rneasurements were repeated at three independent positions on the surface of the sarnple, and the 

final value of each surface parameter was obtained as an average of the three measurements. For 

theoretical fitting the average of three independent Rz values, avg3(Rz), was used as the 



roughness thickness, d, in equation (2.43). This parameter was chosen as the effective thickness 

that generates the photothermal signal that can be modeled as a homogeneous layer on a 

semi-infinite substrate. In Table 4.2 the roughness thickness, d=avg(Rz) is documented for each 

sample. The average of the three independent values of Ra, av&(Ra), is also included in 

parenthesis. 

Using the roughness thickness as a known parameter for each sample along with the bulk 

thermal properties, theoretical fitting was performed using equation (2.43) on al1 the samples. 

The actual thermal effisivity of the rough layer, can be seen in Table 4.2 for each untreated 

sample. It is found that the surface roughness effisivity is of lower thermal efiùsivity than the 

bulk, which is consistent with previous findings by Bein et al. [82]. The bulk thermal efisivity 

of the AIS1 8620 steel is 13100 WslR/mZK. The average surface themal efisivity for the 600 

grit (-2.5pm) sarnples was found to be 4808 WslR/m2K and for the 200 grit (-5pm) was 2949 

W S ' ~ / ~ ' K  (Table 4.3). It was therefore concluded that as roughness increases the thermal 

effusivity of the surface decreases. Qualitatively, this can be understood phenomenologically by 

considering that roughness consists ideally of a series of pyramidal (or conical or triangular 

fin-like) structures of decreasing spatial extent away fkom the baseline [83 J. The temperature rise 

due to optical absorption and thermal conversion inside these material shapes will be 

progressively higher closer to the apex of the pyramids 1831, i.e with increasing modulation 

fiequency or decreasing equivalent-thickness overlayer. The excess apex temperature wilI 

decrease the rnaterial thermophysical properties, leading to an increase in the experimental 

phase. In Appendix A-1, Scanning Electron Microscope (SEM) pictures of the cross-section of 

the untreated photothermal test sarnples 31, 33 and 32 (Table 4.1) are presented for 

magnifications of X300 and X 1500, respectively. The roughness thickness for each sample is 



verified with the surfocmeter measured values. The roughest sample exhibits the strongest peaks 

and valleys on the surface. As seen in Figures 4.16 and 4.17, thermally, each roughness level is 

related to a center-fiequency. j, (maximum of phase) which s h i h  to a higher frequency as 

roughness decreases. For the 200 grit ( - S v )  samples, fs5kHz, and for the lower roughness of 

600 grit (-2.5pm). f+2SlrHz. The amplitude typically exhibits its own center-fiequency, and for 

the 200 grit (-5pm) samples,f,=SOkHz, and for the 600 grit (-2Spm), f> 100kHz. 

200 grit 
d=av~(Ra) 
(avg3(Ra)) 

11 
d=5.1 pn 
(0.85pm) 

12 
d=5pm 

(0.83pm) 
13 

d = 5 p  
(O.82pm) 

14 
d=Spm 

(0.83pm) 
15 

d=5pm 
(0.84pm) 

16 
d=Sprn 
(0.83pm) 

17 
d=5.1 pm 
(0.84pm) 

18 
d=4.7prn 
(0.78prn) 

19 
d=4.8pm 
(0.80pm) 
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Table 4.3 Rough layer average effisivity values in terms of case deptb samples. 
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Figure 4.16 Frequency scans (amplitude and phase) of untreated 200 grit sarnples. 
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Figure 4.17 Frequency scans (amplitude and phase) of untreated 600 grit sarnples. 



4.4.2 Carburized Experimental Data 

Frequency scans (amplitude and phase) of the same range were perfonned on al1 

carburized samples, as shown in Figures 4.18 and 4.19 for the 200 and 600 grit, respectively. 

Figures 4.20 and 4.21 are the smoothed data to be used in Chapter 5 for the reconstniction 

process for the 200 and 600 grit, respectively. Although the reconstruction method proved to 

work reasonably with noisy data 1361, smwthed data was chosen in this work so as to reduce any 

uncertainties associated with noise. Upon investigation, it was found that the best smoothing of 

experimental data is performed using a 7th order polynornial fit. in al1 figures, the experimental 

data is color coded based on case depth; 0.02" samples are black, 0.04" sarnples are red, and the 

0.06" depth samples are blue. When the carburized data is compared to the untreated data, it is 

observed that the surface thermal efksivity of these samples has increased. At the sarne time the 

Full-Width-Half-Maximum (FWHM) of the hîgh fiequency response is narrower, supporting an 

inhomogeneous behavior for the roughness layer. The rough layer thermal effusivity values for 

these samples are documented in Table 4.2. Ln Table 4.3 and the average rough layer thermal 

diffusivity per case depth is calculated. The efisivity values are effective values since they were 

obtained by fitting the phase maximum to the homogeneous layer with homogeneous 

semi-infinite substrate, i.e., equation (2.43). The thermal properties of the sarnples are related to 

the case depth and thus the thermal effusivity behaves accordingly. Overall the surface thermal 

effûsivity of the 0.02" case depth is higher than that of the 0.04" and 0.06" case depth samples. 

The carburizing process has changed the surface and the most dramatic change is seen in 

samples 24,25 and 26 (Figure 4.19). These sarnples behave like the rougher samples 14, 15 and 

16 (Figure 4.18). Al1 samples were re-measured with the surfonneter and the roughness 

thickness was found to be approximately the same within a tolerance of W. lpm. To investigate 



the effects of carburizing on the surface m e r ,  the samples were observed under Scanning 

Electron Microscope (SEM). In Appendix A-2 and A-3 the surfaces (top view) of the untreated 

photothermal test samples and the carburized samples are s h o w  for magnifications X300 and 

X1500, respectively. The samples are shown in the form of a matrix with each column 

representing a distinct roughness thickness: -O. lp(polished), -2.5pm and -5pm, sequentially. 

Each row represents a unique treatment of the samples: untreated, 0.02", 0.04" and 0.06" 

carburizing depth, sequentially. Sample 3 1 is the untreated polished sample and samples 1, 10 

and 7 are the polished samples that were carburïzed with 0.02", 0.04" and 0.06" case depth, 

respectively. As the case depth increases, microcracks and clusters that form at the surface 

increase. This is consistent with the fact that the deepest case depth has endured the longest oven 

time. The porosity of these sarnples has also increased as is more evident in Appendix A-3, 

where the XI500 magnification is shown. Similarly, sample 33 (2.5pm) is compared with same 

roughness carburized-samples 21, 24 and 27 of case depth 0.02", 0.04" and 0.06", respectively, 

and sample 32 (5pm) is compared with the same roughness carburized-samples i l ,  14 and 17 of 

case depth 0.02", 0.04" and 0.06", respectively. The surface modifications should be similar to 

that of samples 1, 1 O and 7 since they have endured the same process. Although more difficult to 

see, one observation is that the roughness seems to be more closely packed with valleys of 

clusters. On sample 24, which is one of the samples that behave differently, there are traces of 

elements shown as large white spheres, as seen in Appendix A-3. This may be the reason the 

thermal properties of the surface (lower thermal diffisivity) have changed so drastically. Both 

the photothermal signal and the SEM pictures support a change in the surface structure occurring 

with the carburizing process. 



Carburized AlSI 8620 - 200 grit 
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Figure 4.18 Frequency scans (amplitude and phase) of carburized 200 grit sampies. 
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Carburized AlSI 8620 - 600 grit 

Figure 4.19 Frequency scans (amplitude and phase) of carburized 600 grit samples. 
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Smoothed Carburized AISI 8620 -200grit 
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Figure 4.20 Smoothed data for carburized 200 grit samples. 
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Figure 4.21 Smoothed data for carburized 600 grit sarnples. 



4.4.3 Quenched Experimental Data 

Afier the carburizing slow cool process, the sarnples were sent back to the factory for oil 

quenching. The photothermal signals for the 200 and 600 grit samples were then taken for these 

samples as show in Figures 4.22 and 4.23, respectively. Figures 4.24 and 4.25 are the respective 

smoothed data to be used in Chapter 5 for reconstructions. in general, the low frequency 

inhomogeneous region resembles the response fiom the carbwized data. In Figure 4.26 the 

untreated, carburizing and quenched fkequency response of sample 1 1 (200 grit) are plotted for 

cornparison. The roughness response of the quenched process has changed to resemble the 

response from the untreated sarnples at high fiequency. At low fiequency the data converges to 

that of the carburizing response. The same was re-plotted in Figure 4.27 for sample 2 1 (600 grit) 

where at low frequencies the response of quenching and carburizing processes approach each 

other. At high fiequency, the quenched samples behave in a rougher manner than the untreated 

samples but are still within closer agreement as compared to the carburized response. For the 

quenched samples, the thermal effusivity of the rough surface for each sarnple is documented in 

Table 4.2, with the averages shown in Table 4.3. The thermal emisivity for the 200 grit is of the 

same order as that of the untreated steel samples. On an average, the surface thermal effisivity 

of the 600 grit quenched samples is lower than that of the originally untreated samples. This is 

consistent with Figure 4.27 where the maximum phase is the highest for quenching. The FWHM 

of the roughness has increased and the layer behaves in a more homogeneous manner. Samples 

24, 25 and 26 again behave differently. This implies that the different behavior occurred at the 

carbunzing stage. The samples were examined under the SEM and Appendix A-4 and A-5 show 

the pictures for the X300 and Xl Sûû magnifications, respectively. The samples are shown in the 

form of a matrix with each column representing a distinct roughness thickness: 



-O. 1 jdplished),  - 2 . 5 ~  and -Spm, sequentially. Each row represents a unique treatment of 

the samples: untreated, 0.02", 0.04" and 0.06" carburizhg depth, sequentialiy. Sample 24, as seen 

in Appendix A-5, again shows traces of white spheres. The mirror surface samples (1,1 1,7) of 

the quenched samples, look spatially similar to the carburized equivalent samples (A-3). The 

exception is that the quenched surfaces maintain better unifonnity throughout the sample surface 

Figure 4.22 Frequency sans  (amplitude and phase) of quenched 200 grit samples. 
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Figure 4.23 Frequency scans (amplitude and phase) of quenched 600 grit samples. 
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Smaothed Quenched AlSI 8620 - 200 gnt 
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Figure 4.24 Srnoothed data for quenched 200 grit samples. 
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Smoothed Quenched AlSI 8620 - 600 grit 
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Figure 4.25 Smoothed data for quenched 600 grit samples. 
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Figure 4.26 Frequency scan of Sample 1 1  (200 grit) for untreated (solid), carburized (dash) 
and quenched (dot) process. 
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Figure 4.27 Frequency scan of Sample 2 1 (600 grit) for untreated (solid), carburized (dash) 
and quenched (dot) process 



4.4.4 Bulk Thermal Diffusivity 

Before the reconstruction process can take place on al1 the experimental data, the bulk 

thermal difisivity is needed as additional information. The bulk thermal difisivity for each 

cross-section of untreated, carburized and quenched data was measured using a hi@-resolution 

photothermal radiometric experimental set-up (which is described in Chapter 7) with a 27pm 

beam spot size. This is a three-dimensional method that enables the measurement of thermal 

diffusivity in reflection. The theoretical formulation of the experiments was developed in 

Chapter 2, and is represented by equation (2.44). The only unknown parameter in this equation is 

the t hemal di ffisivity (the thermal conductivity is k=46.6W/mK). 

Untreated Carburized Quenched 

Figure 4.28 Frequency scan position for each sarnple of untreated, carburized and quenched 
category . 

To increase the confidence of the results, two measurements were taken for each 

cross-section, as indicated in Figure 4.28. In Figure 4.29, the phase was chosen out of 

convenience for implementing the respective error bars for each sample. The black line 

represents the untreated steel, the blue line the carburized steel, and the red line is the quenched 

steel. The frequency response is normalized with respect to an instrumental function obtained 

though a Zr alloy of known thermal parameters. By fitting the Zr alloy to the theoretical response 



(equation 2.44) and obtaining the difference (small variations), the instnunental function was 

constnicted. The theoretical fittings, equation (2.44), for both amplitude and phase of the 

normalized experimental data for the bulk untreated, carburized and quenched samples are 

shown in Figure 4.30. It is found that the untreated and carburized steels have the same thermal 

difisivity of a=12.5x1O4m% whereas the quenched steel has a lower thermal diffisivity of 

a= 1 0 . 5 ~  1 04m2/s. The untreated and carburized steels have the same femtic tnicrostnicture 

whereas the quenched steel bas a martensite structure in the buik. 

Bulk Experirnental Data 

Figure 4.29 Three-dimensional experimental phase data of untreated (black), carburized 
(blue) and quenched (red) steel. 



Bulk Thermal DifFusivity 
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Figure 4.30 Three-dimensional experimental phase data with theoretical fitting; untreated 
(square), carburized (circle) and quenched (triangle) steel; theory 
a= 1 2 . 5 ~  1 04m2/s (red); theory a= 1 0 . 5 ~  1 0dm2/s (blue). 



Chapter 5 

Depth Profilometric Inversions and 
Discussion 

5.1 Introduction 

In this chapter, the depth profilometric reconstructions fiom the experimental data 

presented in Chapter 4 are shown. The reconstructions are produced using the theoretical and 

numencal rnethodologies developed in Chapters 2 and 3, respectively. In Section 5.2, the effects 

of roughness are investigated and incorporated into the experimental data. A novel heuristic 

approach for accounting for the effects of roughness in experimental data is developed. The final 

reconstruction for both carburized and quenched data is outlined in Section 5.3. Finally, the 

conc1usions and limitations of the method are discussed in Section 5.4. 

5.2 Depth Profilornetic Reconstructions of Rough Steels 

Modeling roughness is a non-trivial problem. In most photothermal applications, the 

surface of the sample is polished so tbat roughness effects can be neglected. The use of a 

polished sample can introduce errors in the results if a carefùl examination is not perforrned. 

Polished samples also need a high incident power for a high SNR since most of the incident 

energy is reflected. The rnirror surface can be seen as a themai barrier to the substrate. Also, 



when normalizing with the instrumental fùnction, great care must be taken so that the size of the 

Gaussian laser beam would be the same. With a minor surface, the laser beam shape is 

imprinted on the surface and any inhomogeneities that may exist become more pronounced. A 

rough surface tends to act as a scrarnbler resulting in a quasi-uniformity of intensity over the 

illuminated suface. With careful experimentation, polishing can work in laboratory conditions 

but it c m  be costly and time consuming for industrial applications. Thus, a method of 

"eliminating" roughness theoretically/numericaIly can be advantageous. Roughness effects on 

the photothemal signal have been reported by Bein et al. [8î J. They have modeled roughness as 

a three-layer mode1 and have found that the rough surface has a low thermal effisivity, the 

intermediate porous layer has an increased thermal effisivity and, finally, the bulk has the 

highest thermal effusivity. This is consistent with this work (Section 4.44,  where the rough 

surface was found to have a lower thermal effisivity (Spm:-5000W~'~/m~K, 

2.5prn:-3000W~'~/m~K) than the buk (-13000 Ws'%n2K). It was also found that the 

rough-layer thermal effisivity decreases, with increasing roughness. 

Roughness eflects becarne visible at high fiequency, appearing as a peak in the phase 

data, affecting the signal beyond the roughness depth and thus is necessary to treat. In modeling 

roughness, one option is to use a finite thickness layer theory (Chapter 2) for depth 

reconstruction in order to obtain a reliable profile beyond the depth of the roughness. A second 

option is to account for roughness in the experimental data by considering roughness as a 

random processes. 



5.2.1 Deptb Profües of Rough Untreated AIS1 8620 Steels 

The first method developed for treating roughness was based on the theoretical model 

developed in Chapter 2 of the geometry shown in Figure 2.1 (d= roughness thickness). As 

outlined in Section 3.4, the bulk thermal diffisivity is needed a priori for the reconstniction 

method. In Section 4.4.4, the bulk thermal difïusivity was measured as ~ = 1 2 . 5 ~ 1 0 ~ r n ~ / s .  

Reconstructions are performed using the independent measurement of the buk thermal 

diffusivity and roughness thickness (600 and 200 &rit) of the untreated AISI 8620 samples. The 

numencal procedure is based on reconstmcting from the high eequency end by fitting a~ at each 

virtuaI slice (Figure 3.1). With this method, the effect of surface roughness is greatly reduced 

from the system. For the sarnples in question, the input parameters for the equivalent roughness 

layer were thermal diffisivity a, thermal conductivity k, and independently measured 

roughness thickness ( 6 2 . 3 ~ ) .  For the 600 grit the input parameters were a&.5~10%%, 

kd=lO. 1 W h K  and roughness thickness d=2.3pm. For the 200 grit the input parameters were 

~ = 2 . 2 x  1 04m2/s, -.6W/mK and roughness thiclcness d=5pm. It is observed that as roughness 

increases the thermal effisivity of the surface decreases (Table 4.2). The smoothed experimental 

data with the theoretical fit, which assumes one homogeneous layer (roughness) with a 

homogeneous substrate, are shown in Figure 5.1. The fornard theoretical fit is in agreement with 

the experimental data. Small discrepancies exist at the high fiequency end where the roughness 

is more dificult to model. In Figure 5.2, the experimental data were nurnencally inverted to 

obtain the corresponding thermal diffisivity profile. 

The roughness layer, which is assumed to be homogeneous with low thermal parameters, 

is theoretically eliminated. Thus, the reconstruction shown in Figure 5.2 commences below the 

roughness layer. It is seen fiom the reconstniction that the thermophysical properties are 



disturbed up to about SOpm and 4 0 0 ~  for the 2 . 5 ~  and 5pm roughness, respectively. Beyond 

these depths, the buk material is undishirbed and approaches the experimentally independently 

measured value of a= 12.5 x 1 06m2/s. The near surface fluctuation can be attributed to the 

approximate modeling of roughness as a homogeneous layer. Another reason can be the 

violation at the high fiequency increments of the requirement for nonsteep local variations of the 

effisivity (equation 2.28). Since rough profiles have steep variations at high fiequency, a very 

large number of modulating fiequencies is needed to satise the nonsteep local variation 

assumption. For low roughness materials, the perturbation can be neglected since hardness 

measurements are usually of interest above 50pm. Such a reconstruction can serve as a guide to 

determine the extent to which roughness influences a specific profile. As roughness increases, 

the reconstniction becomes less reliable. There are two reasons for this: (1) the forward mode1 is 

not represented adequately in the higher fkequency spectrurn where the randomness of roughness 

is more evident, and (2) the inverse problem becomes more ill-posed, since more variables 

(effective roughness properties) are introduced. Overall, reconstructing in this rnanner 

(homogeneous layer assurnption) can only be satisfactory for low roughness materials. 



AIS18620 untreated Steel 

1 10 100 1000 10000 100000 
Frequency [Hz] 

Figure 5.1 Experimental and theoretical forward fit of 200 and 600 g i t  samples. For clarity 
only 25% of the experimental data is shown. 
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Figure 5.2 Reconstruction of 200 and 600 grit untreated samples. For clarity only 25% of the 
data is shown. 

5.2.2 Random-SpatiaCVariable Approach to Eliminate Roughness from 
Experimental Data 

The one-layer theoretical model above treats roughness as a homogeneous layer over an 

inhomogeneous substrate and, with a low-level roughness, the results are satisfactory as seen in 

Figure 5.2. This theoretical model is, however, too simplistic. As the Ievel (thickness) of 

roughness increases, the thermal wave spectrum becomes more complicated, especially at high 

fiequencies, resulting in an erroneous thermal diffisivity profile. In this part of the work, a new 

approach is adopted and tested for various levels of roughness and inhomogeneity. By using the 

concept that random roughness is equivalent to white (Gaussian) noise in the spatial depth 

coordinate, the effects of inhomogeneity and roughness can be deconvolved. The theoretical 

simulations show great promise and, therefore, the method has been implemented to reconstruc t 



experimental data. Ln a fiequency domain method, both the roughness and the inhomogeneity are 

observed throughout the fkequency spectrwn. A simple approach for deconvolving roughness 

from inhomogeneity would not be valid since this is a non-linear system. The roughness method 

is based on recognizing distinct features (phase maxima) fkom the frequency spectrum. Since 

roughness is associated with the surface of a sample, the effects are strongest at high fkequencies, 

whereas low frequencies are substantially related to substrate inhogeneities. The objective of the 

method is to deconvolve the roughness spectrum fiom the underlying profile (homogeneous or 

inhomogeneous). To demonstrate the method, simulations of a semi-infinite inhomogeneous 

profile, equation (2.42), using a single profile of equation (2.32) are performed with different 

roughness thicknesses. Three cases A, B and C with roughness 1.6pm, 7 p  and iOpm, 

respectively, are examined. Table 5.1 displays the thermal parameters used for each case, 

modeled for four thermal geometries (referred to as curves). Curve 1 is the response of an 

inhomogeneous sample with roughness. Curve 2 is the inhomogeneous field with no roughness. 

Curve 3 is the homogeneous field with roughness and Curve 4 is an effective homogeneous field 

fitted to the high frequency of Curve 1. 

Figure 5.3 shows the amplitude and phase of Case A with the pararneters displayed in 

Table 5.1. Curve 1 shows the response of an inhomogeneous sample with roughness d=1.6pm 

and Curve 2 is the inhomogeneous field with d=Opm. C w e  2 represents the ideal experimental 

situation where no roughness effects are present (i.e., polished surface). Cwve 3 is the 

homogeneous field with roughness (i.e., untreated samples). Curves 2 and 3 are the individual 

responses forming the inhomogeneity and roughness. The objective of the method is to retrieve 

Curve 2 fiom Curve 1 by eliminating roughness. A theoretical fitting (equation 2.42) of a 

homogeneous substrate with roughness is made to the higher fkequency end of C w e  1. This is 



the region that is associated with the roughness. The input parameters of this Curve 4 are the 

same as the ones used for Curve 3, except that an effective thermal conductivity is used for the 

roughness layer. With this operation, the high fiequency response of Curve 1 is fitted. Using a 

simple nonnalizing procedure of the total field Curve 1 and 4, the sought inhomogeneity is 

obtained as 

where each temperature distribution is defined in equation (2.42). The result of equation (5.1) is 

Curve 5. Comparing Cuve 5 with Curve 2, in Figure 5.3, the two results are found to be in 

excellent agreement. Operation (5.1) can thus be used as a tool for obtaining the inhomogeneity 

from a rough sample. The method is then tested for a higher level of roughness. Figure 5.4 shows 

Case B where the roughness thickness is d=7pm. Apart fiom the roughness thickness the 

thermal properties are identical to Case 1 as seen in Table 5.1. The final result (Curve 5) is in 

agreement with the expected theoretical value (Curve 2) although there are small deviations at 

the low fiequency end. The important observation is that the effective thermal properties of 

Curve 4 for Cases B and A are identical. A more complicated situation, Case C, is then examined 

where the amplitude and phase do not show any charactenstic maximum fiom which the 

inhomogeities can be inferred (Figure 5.5). The knowledge that the sarne inhomogeneities affect 

the roughness spectrum in a similar manner is used in this case. Curve 4 is constructed using the 

same effective properties as in Cases A and B. The thermal values for each curve of Case C are 

shown in Table 5.1. For this case, the deviations of Cuwe 5 fiom the theoretical value of Curve 2 

are more pronounced as compared to Cases A and B, but are still within satisfactory boundaries. 
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Thermal Prowrties Case A 1 Case B Case C 

Curve 1: 
Total field: 

Inhomogeneous 
with roughness 

Curve 2: 
Inhomogeneous 

with no roughness 

Curve 3: 
Hornogeneous 
with roughness 

Curve 4: 
Homogeneous with 1 effective rougimess 

Table 5.1 Thermal properties of simulations s h o w  in Figures 53-55. 

Table 5.2 Gaussian fit panuneters of experimental data shown in Figures 5.6 and 5.7. 

Gaussian 
Fit 

Mo or AOo 
Iog (~c  1 ) 

l o g ( w  1) 

Ai 

sample 12 sample 22 
Ampli tude 

0.98 
4.8 1 
0.8 1 
O. 12 

Ampli tude 
0.98 
4.89 
3.69 
0.29 

Phase 
0.1 1 
4.96 

2.28 
41.86 t 

Phase 
0.08 
4.6 1 
2.03 

2 1 -29 



Modeling roughness (d=1.6pm) 
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Figure 5.3 Simulation of roughness elhination method with 1 . 6 ~  roughness thickness. 
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Modeling roug hness (d=7pm) 
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Figure 5.4 Simulation of roughness elirnination method with 7 p  roughness thickness. 
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Figure 5.5 Simulation of roughness elhination method with 1 3 p  roughness thickness. 



Although the above method proves to be very effective in a theoretical application of an 

inhomogeneous substrate with a rough layer, a more general expression (not based on the 

theoretical model) for modeling the roughness can be obtained. Since roughness c m  be viewed 

as a random spatiatvariable effect, a white Gaussian noise is fitted to the effective 

frequency-domain roughness profile (Curve 4), based on the theoretically expected 

Gaussian-to-Gaussian Fourier transformation. Through a spatial Fourier transformation, it is 

expected that the roughness spatial Gaussian profile will also be mapped as a Gaussian 

distribution in the fiequency coordinate. By extension, there can be a linear superposition of 

several such Gaussian fûnctions, if there are multiple charactenstic roughness scales associated 

with a particular surface. The field thus created a non-symmetrical field and, therefore, the 

expressions for amplitude and phase, respective1 y, are as follows 

where Mo and Am0 are the amplitude and phase offsets, respectively, W is the full width, A is the 

area and a, is the center-fiequency of the Gaussian function. N is the upper number of 

characteristic roughness lengths anticipated. The summation of Gaussians is greater than one 

so as to account for the asyrnrnetry of the field. The offset values can be derived by using 

the first point of theoretical fit of the effective roughness (Curve 4). This can serve as a guide to 

the level at which the Gaussian function will saturate, and is an approximation. The approximate 



offset values are "1" for amplitude and "0" for phase. Hence, in order to retrieve and elirninate 

roughness fiom the experimental data, a Gaussian fit to the high fiequency end (roughness) is 

made based on equations (5.2) and (5.3). Figwe 5.6 shows the elimination of roughness fiom 

experimental data. The sarnple has a roughness of 2Spm (Sample 22 )  on an inhomogeneous 

substrate. The profile needed to perfonn such an operation on these data is a double Gaussian 

fùnction whose parameters can be found in Table 5.2. Figure 5.7 shows the method of 

eIimination on rougher data (d=Spm) with an inhomogeneous substrate. Although the phase 

roughness is fitted to a double Gaussian function as above, the amplitude for this data requires a 

summation of three Gaussians to perform the operation. A double Gaussian fùnction would have 

fitted the data, but the higher frequencies would bave suffered from deviations frorn the 

experimental data. The parameters for the Gaussians can be found in Table 5.2. 

5.2.3 Interpretation of the Roughness Elimination Method 

In the above section, roughness was eliminated by fitting a Gaussian distribution to it. In 

this section, a physical explanation is attempted. An analogy of the method can be made with 

astrophysics where Gaussian distributions are fitted to each spectmm response to find the 

temperature of the planet observed. When fitting the swnmation of Gaussians to the roughness, 

each Gaussian function is associated with a different frequency constant. This can be explained 

by viewing roughness as layers over layers as seen in Figure 5.8. Each level of roughness is 

associated with a characteristic frequency whose randornness can be represented as a Gaussian 

distribution. The roughness is thus modeled as white noise of random spatial distribution in the 

frequency domain. In the fbture, the random distribution of spatial roughness dimision c m  



perhaps be modeled using "fkactai" analysis which was introduced to explain diffusion processes 

in the micron or submicron scale [84]. 

Figure 5.6 Result o f  computational elimination from expenmental data of 2.5pm thickness 
roughness. 
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Figure 5.7 Result of computational elimination fiom experimental data of 5pm thickness 
roughness. 
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Figure 5.8 Multiple (two shown) layers of roughness with multiple (two shown) frequency 
centers. 

5.3 Depth Profiles of Carburized AIS1 8620 Steels with a 
Rough Layer 

Roughness elimination is performed on al1 the carburized and quenched data. The 

success of the method is ciearly seen when two cii!Ycrc3t levels of roughness result in the sarne 

inhomogeneous experimental response. 

5.3.1 Carburized Samples 

Using the Gaussian elimination method, the roughness effects were eliminaied from al1 

smoothed experimental data of Figures 4.20 and 4.21 for the 200 and 600 grit, respectively, as 

shown in Figure 5.9. The solid symbols correspond to 200 grit roughness, whereas the open 

symbols correspond to 600 grit roughness. The black, red and blue curves correspond to 0.02", 

0.04" and 0.06" case depth, respectively. After eliminating roughness, the underlying profiles for 

both roughness depths are superïmposed over each other (solid black with open black, solid red 

with open red, and solid blue with open blue). This is an indication of the satisfactory 



performance of the roughness elirnination method. With knowledge of the buk thermal 

difhsivity of carburized samples, as measured in Section 4.4.4, reconstructions are performed 

for al1 experimental data, using the method outlined in Chapter 3. The buik thermal diffisivity 

serves as a guide for finding the initial guess for (a, q). The reconstructions for al1 samples are 

shown in Figure 5.10. In order to develop a statistical boundary for the reconstructions, the 

expenmental data were averaged as per hardness case depth (0.02",0.04" and 0.06"). Figure 5.1 1 

shows the average curves with their respective error bars. The variations between experiments 

are due to sample variation rather than due to poor experimental reproducibility. The 

experimental reproducibility is in fact better than 1% for fiequencies higher than lOHz, and on 

the order of 2% to 5% for the lower fiequency regime. The same data are presented on l/sqrt@ 

axis (Figure 5.12) showing the relative rate o f  change of signal with depth since the depth of 

propagation is proportional to l/sqrtv). The reconstruction of the average experimental curve is 

perfomed and the resulting reconstructions are shown in Figure 5.13. To ensure the validity of 

reconstmcting the average experimental data, the average of al1 the reconstructions performed 

per case depth is shown on the sarne graph. At shallow depths, there is an agreement between the 

average reconstruction and the mean of reconstructions. As the depth increases the deviation of 

the two methods increases but it is still within 0.3% variation. In this way, a standardized 

instrumental methodology c m  be developed where, first multiple positions on the sample can be 

monitored, and then, the average of experimental data can be reconstructed. The thermal 

diffisivity reconstruction of the average is compared to the conventional microhardness test as 

seen in Figure 5.14. The depth profiles of the hardened samples exhibit an anti-correlation 

between thermal dimisivity and hardness. A good one-to-one correlation between hardness and 

thermal difisivity is present, although the curves are not a mirror image of each other. The 
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Figure 5.10 Reconstructions of al1 data in Figure 5.9 for 0.02" (black), 0.04" (red) and 0.06" 
(Hue) case depth. 

Mean of caiburizsd data with rowhness dimination 

Figure 5.1 1 Average forward experimental data of Figure 5.9 for 0.02'' (black), 0.04" (red) 
and 0.06" (blue) case depth. 



Mean of carburized data with roughness elimination 

Figure 5.12 Average data versus 1 /sqrt(fiequency) for 0.02" (black), 0.04" (red) and 0.06" 
(blue) case depth. 



Figure 5.13 Cornparison behueen carburized data mean of reconstructions (solid) and 
reconstruction of data mean for 0.02" (black), 0.04" (red) and 0.06" (blue) case 
depth. 

Figure 5.14 Hardness and thermal difisivity profile for carburited data; 0.02" (black), 0.04" 
(red) and 0.06" (blue) case depth. 



5.3.2 Quenched Samples 

After carburizing, the same samples were oil quenched and the frequency response was 

repeated. Gaussian roughness elimination was again perfomed on these data as shown in Figure 

5.15, where roughness was eliminated fiom al1 smoothed experimental data in Figures 4.24 and 

4.25 for the 200 and 600 grit, respectively. The solid symbols correspond to 200 grit roughness 

whereas the open symbols correspond to 600 grit roughness. The black, red, blue curves 

correspond to 0.02", 0.04" and 0.06" case depth, respectively. After eliminating roughness, the 

underlying profiles for each respective roughness depth were superimposed over each other 

(solid black with open black, solid red with open red and solid blue with open blue). The 

averages of these data were taken (Figure 5-16), and the reconstruction for each depth (Figure 

5.17) was compared to the microhardness test, where once again an anti-correlation was noted. 

As the depth increases, the one-to-one anti-correlation between microhardness and thermal 

diffisivity decreases. Beyond 2mm, the hardness profiles approach the bulk value but the 

diffisivity profiles do not yet saturate to the buik thermal difisivity. This could be due to the 

high sensitivity of photothermal methods detecting actual small variations before reaching the 

bulk value (5mm for this case). The exact mechanism of the thermal diffisivity versus the 

microstructure is discussed in the following section. 

5.3.3 Sample Correlation 

An important aspect of the reconstruction procedure is the understanding of the driving 

forces for the anti-correlation between thermal diffisivity and hardness. In this thesis, the 

samples underwent two major heat treating processes of carburizing and quenching. A 

cornparison between the two treatrnents can assist in the data interpretation. The experimental 



data for both the carburizing and quenching process are shown Figure 5.18. The experimental 

data between the carburizing and quenching process show small variations suggesting that there 

are no major differences in terms of the relative thermal diffusivity depth profiles. It must, 

however, be noted that the bulk thermal dimisivity for these samples is different and, thus, the 

absolute reconstmction was at different saturation levels, as outlined in Section 3.4. The 

back-propagation one-dimensional expriment only provides information about the dative 

thermal diffisivity of a material. The bulk thermal diffisivity is measured independently. Figure 

5.19 compares the reconstnictions of both the carburized and quenched data and, although they 

are at different levels, the depth profile (as indicated by shape) in each reconstruction is similar. 

The quenched data reconstnictions are of lower thermal diffisivity value since the quenched 

bulk thermal diffisivity value is lower than the carburized one. The result was obtained from the 

forward measurement of the bulk thermal difisivity for the quenched venus carburized sample 

(Section 4.4.4). At the bulk value the sarne carbon content exists but the carburized samples have 

a femtic structure whereas the quenched samples have a martensite structure. This leads to the 

conclusion that the microstructure dominates the absolute value of thermal diffisivity. The 

diffbsivity shape similarity between the carburized and quenched reconstructions can be related 

to their common carbon profile (Figure 4.9). Thus, it can be concluded that the shape of the 

thermal diffisivity profile is dominated by carbon diffision. 
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Figure 5.15 Quenched experimental data after elimination of roughness for 0.02" (black), 
0.04" (red) and 0.06" (blue) case depth with 600 grit (open symbols) and 200 grit 
(solid symbols) roughness. 



Mean of quenched data with rounhness elimination 

Figure 5.16 Average forward experimental data of Figure 5.15 for 0.02" (black), 0.04" (red) 
and 0.06" @lue) case depth. 
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Figure 5.17 Hardness and thermal difisivity profile for quenched data; 0.02" (black), 0.04" 
(red) and 0.06" (blue) case depth. 
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Figure 5.18 Average foward carburized (dots) and quenched (solid line) experimental data 
for 0.02" (black), 0.04" (red) and 0.06" (blue) case de@. 
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Figure 5.19 Average reconstructions of carburized (solid) and quenched (dash) data for 0.02" 
(black), 0.04" (red) and 0.06" (blue) case depth. 

5.4 Conclusions 

Thermal wave depth profilometry can be an invaluable analytical technique for 

understanding the effect surface treatment processes such as case hardening of metals. In this 

work, AISI 8620 type steels were subject to common industrial heat treatments like carburizhg 

and quenching. A complete experimental and theoretical/cornputational analysis was performed 

to generate thermal diffisivity profiles. A novel approach of treating roughness as spatial 

(depth-coordinate) white noise was inttoduced. This method led to a Gaussian roughness profile 

in the fi-equency domain and helped establish a procedure for elhinating the effects of this layer 

fiom the frequency response of the inhomogeneous substrate. The Gaussian elimination of 

roughness proves to be an important method of improving the experimental data and achieving 



thermal diffusivity reconstructions of non-homogeneous underlayers. This method can thus be of 

great interest in other photothemal applications where roughness can be an undesirable 

parameter. in fact, it has been recently applied in the Photothennal Laboratory of the University 

of Toronto with success to thermal spray coatings. 

The current methods used to characterize case hardening are destructive and, therefore, 

success in developing a correlation (anticorrelation) between hardness and thermal diffisivity 

profiles implies a significant contribution to the steel industry. A near anticorrelation between 

the thermal diffûsivity profile of a hardened surface and its microhardness is found in this thesis. 

The study of the two processes of carburizing and quenching concluded that the shape of the 

thermal diffisivity profile is dominated by carbon diffision whereas the absolute thermal 

diffùsivity depth profile is dominated by microstructural changes. Obtaining the carbon difision 

can be significant to the steel industry since, in the heating process, the carbon content is not a 

measured output but only an estimated input. Care must be taken to measure the correct bulk 

thermal difisivity which is used a priori otherwise the shape of the profile would be correct but 

the absolute thermal diffisivity depth profile would be incorrect. 



Chapter 6 

Forward Process: 
Thermal Wave Diffraction Theory 

6.1 Introduction 

In the next chapters (Chapter 6-9), the three-dimensional inverse problem of Thermal 

wave Slice Diffraction Tomography (TSDT) is studied. TSDT is a method for retrieving 

sub-surface thermal defects. 

In this chapter, the mathematical theory of the thermal wave propagation process will be 

developed utilizing thermal wave diffraction [66], and will be called the fonvard process. The 

mathematical formulation of thermal wave propagation will be presented as an integral solution 

for the Helmholtz equation. Approximations of the integral solution will be established in the 

limit of a perturbative first Born (or Rytov) approximation. 

6.2 General Form of the Thermal Wave Equation 

Upon a harmonic optical excitation of the boundary S enclosing some inhomogeneous 

region in space, R, and having fimctional f o m  [66], 

I(r, t )  = Io (r) exp(-iwt) 



where 1 is the incident optical irradiance on S and m=-2# is the optical beam intensity 

modulation angular fnquency, the resulting photothermal wavefield in R can be described fùlly 

by the equation [5,66], 

where K(r), p(r), c(r) are the coordinate-dependent thermal conductivity, density and specific 

heat of the matter in R, at location r fiom a suitably chosen origin. T(r) is the spatial part of the 

modulated temperature field, 

Equation (6.2) may be written in the following form 

where 

is the local thermal difisivity. In the case where the thermal conductivity of the matter in R 

does not Vary drastically with position, so that the fractional change of K(r) in one local thermal 

wavelength, Xt(,(,;w)=2n(a(r)/o)'n, is small, the right hand side of equation (6.4) may be 

neglected, which then yields the Helmholtz pseudowave equation [5,66] 



w here 

is the complex thermal wavenumber. Letting the thermal difisivity of the assumed 

homogeneous medium smounding the object region R be a, equation (6.6) may be replaced by 

a modified Helmholtz pseudowave equation [Ml: 

where 

/ O 

and 

and 

n(r) is a measure of the variation of the thermal diffisivity values in the scattenng object R fkom 

that of the surrounding (reference) region &. The ratio in equation (6.8d) has been syrnbolized 
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by n(r) deliberately, to suggest the analogy of this parameter to the effects of variations in the 

refractive index in conventional optical propagating fields [66]. The effect of the 

inhomogeneities of object region R appear as a source function in the right side of equation 

(6.8a) even though a new source was not introduced in the wave field. This is in agreement with 

the fact that inhomogeneities are sources of the scattered fields. F(r) is the object fiinction and it 

represents the inhomogeneities of scattering object region R. The object fiuiction F(r) is zero at 

every point outside region R and has a non-zero value that represents the ratio of thermal 

diffusivities inside region R. If the inhomogeneous region R is removed fiom boundary S, then 

F(r) will be zero everywhere and thus the medium in boundary S would be totally homogeneous. 

With this in mind, equation (6.8a) represents an inhomogeneous wave equation, and if the right 

hand side of equation (6.8a) is identically zero, it represents a homogeneous wave equation. 

The hl1 solution of equation (6.8a) satisfies, in three dimensions [85,86,71], 

The integration is carried over spatial object region R and boundary M. Also, n, is the normal 

outward unit vector to dR. Region R is a cross-sectional slice in two-dimensional space [66], and 

is of constant thickness. T(r) is the total thermal wave field; r and ro are the coordinates of the 

observation point and the source point, with respect to the origin; Go(r/r~) is the Green function, 

which will be discussed in more detail in a m e r  section. In equation (6.9) the surface integral 

yields the bulk field (homogeneous), and the volume integral contains the scatterers. Thus, the 

integral equation (6.9) can be re-written in the following form, where the total surface integral is 

represented by the homogeneous field, Kir), 



The total thermal wave field, qr), can be expressed as the sum of the incident (homogeneous) 

fieId, T,(r), and of the scattered field, T,(r), as follows: 

Thus, from equations (6.10) and (6.11), one obtains the following expression for the scattered 

field, 

This is the final integral equation needed for solving the inverse problem. If the thermal wave 

source, ro, and/or observation point, r, are not infinitesimally close to the boundary, S, which 

encloses the spatial region, R, then 1851, 

If not the case, then there will be r and ro dependent components to G, but not in the r-ro forrn 

only. 



6.3 Geometry for TSDT with Backpropagation and 
Transmission Detection 

Thermal Wave Slice Difiction Tomography can be evaluated in either backpropagation 

or transmission mode. The thermal wave field is excited with a laser bearn, and the thermal wave 

field characteristics (amplitude and phase) are measured with a photothermal detector along the 

detection line. Backpropagation mode is met when the thermal excitation (at *) and the 

detection (at y=û) occur on the sarne side of the cross-section, whereas transmission is met when 

the thermal excitation (at y+) and the detection (at y=yf) occur on opposite sides, figure 6.1. 

y 4  Backpropagation 
er-detector on same side) 

Scattering Object 

4 
y=yf Transmission 

Detector (laser-detector on opposi te 
side) 

Figure 6.1 Geornetry for TSDT amenable to backpropagation and transmission detection. 

Region R in equation (6.12) is a slice in two-dimensional space, and it is assumed to be 

rectangular, with the thermal excitation on one side of the region (y=O), as in Figure 6.1. The 

rectangular region is then 



If the thermal wave field in backpropagation T(x,y=O) is measured, then fiom equation (6.12), 

the scattered field is 

where 5 and q are the integration dummy variables. Similarly, if the thermal wave field in 

transmission, T(x.y=yf), is measured, then the scattered field is 

6.4 Approximations to the Wave Equation 

Equation (6.12) is a Fredholm equation of the first kind and can not be solved directly. A 

solution can be written using either the Born or the Rytov approximation. These approximations 

are valid under different conditions, but the forms of the resulting solutions are quite similar 

~671- 

6.4.1 The First Born Approximation 

When the object is weakly inhomogeneous, the scattered field is weak and much smaller 

than the total field, T,(r)«Rr). With equation (6.1 l), the scattered field in equation (6.12), can 

be written as 



If the scattered field is small, compared to the total field, the effects of the second integral can be 

considered a small perturbation and thus ignored, leading to the approximation [67], 

6.4.2 The First Rytov Approximation 

An alternative to the scattered field is the Rytov approximation, which is valid under 

slightly different restrictions. Let the total field be represented as a complex phase 1671 

T(r) = exp(Y (r)). 

Substituting equation (6.18) into equation (6.8a), the following is obtained, 

The total complex phase can be expressed as the sum of the incident and the scattered phase 

F719 

Y(r) = Y j(r) + Ys(r)- 

The solution to equation (6.16) using (6.17) is then [67], 



The Rytov approximation is valid when the phase change over a single wavelength is small. For 

very small objects and perturbations it can be proven mathematically that the Rytov solution is 

approximately equal to the Born solution 1671. 

6.5 Three-Dimensional Thermal Wave Green Function 

Scatterer detection methodologies using propagating fields (e.g., acoustic, 

electromagnetic, optical, microwave) can be best quantified using Green fùnction techniques 

[71]. If G(r/ra) is the field at the observer's point r, caused by a unit point source at the source 

point ro, then the field at r, caused by a source distribution p(ro), is the integral of G(r/ro)p(ro) 

over the whole range of r~ occupied by the source 1851. The Green fwiction, therefore, represents 

the field response resulting !tom a single point scatterer, so the scattered field cm be expressed 

by a summation or integration over al1 individual scatterers. Boundary conditions are satisfied in 

the sarne way. The field at the boundary value is zero at every point except for surface point, 6. 

The boundary conditions on a surface can be thought of as being equivalent to source 

distributions on the surface [85].  

6.5.1 Semi-Infinite Geometry 

If the thermal wave flux is prescnbed at the intefiace, 2 4 ,  the Green fûnction must 

satisfy the homogeneous Neumann boundary condition at the source coordinate, &=O, 



vo indicates the normal derivative of GO along the normal source coordinate, a, at the interface. 

The coordinate, a, coincides with the direction normal to the dividing interface. From analogy to 

the infinite-domain Green fùnction [ 1 11, 

an impulsive image must be placed at CO such that the thermal wave fluxes cancel out at the 

interface; q(o) is the thermal wave nurnber, equation (1.3a). The appropnate combination is 

t711, 

corresponding to the situation shown in Figure 6.2. In tems of the coordinate system of Figure 

6.2, 

Ir-roi = 

and 

~r-ril  = 



Figure 6.2 Coordinate system for three dimensional geometry. 

For a finite geometry, the method of images can be used to accommodate plane bounding 

surfaces at z=O,L. Satisfying the Neumann boundary conditions at 2=0,L, the resulting Green 

fùnction is [IL], 

where, 

and 



6.6 Homogeneous Temperature Field 

The solution to the homogeneous themal wave equation is [7 11, 

where SO is the surface surrounding the source volume VO; roS is a coordinate point on SO. The 

thermal diffusivity, a, and thermal conductivity, k, are assumed to be constant throughout VO. 

Equation (6.27) is equivalent to equation (6.9) without any volume sources. 

Thermal wave flux, 4, is prescnbed over the interface plane, a=O, 

generated by a Gaussian laser beam of spot size, w, Figure 6.3. 

Figure 6.3 Semi-inifmite geometry for calculation of semi-inifinite thermal wave field 
generated by a Gaussian laser beam totally absorbed at the swface plane a=û. 



6.6.1 Semi-Infinite Geometry 

The Green function must satis@ the homogeneous Neumann boundary conditions on the 

source plane, ZJ=O, and is given by equation (6.24). For the homogeneous case, no volume 

sources exist in the half-space (xt~,yo,a), as in Figure 6.2. Therefore, fiom equation (6.27), the 

thermal wave field becomes [7 11, 

where dSo must be replaced by ai = iiidxodyo pointing in the direction inside the half-space, VO, 

to indicate the inflow of thermal energy. The surface, SO, is the plane, M. Furthemore, 

so that, fiom the defuiition of thermal flux, 



Combining equations (6.24), (6.29) and (6.32), the spectnun of the thermal wave tield in the 

form of an integral over the bounding interface, So(xo,yo) [7 11, is 

where, at a=O,  

After some manipulation and a change of variables of equation (6.33), the thermal wave field of 

a semi-infinite geometry with a thermal wave flux prescribed over the surface becomes [71], 

with, 

Io is the modified Bessel function of order zero. The thermal wave field represented by equations 

(6.35) and (6.36) can be evaluated numerically using the polynomial approximation for lo(x) 



given in 187, entries 9.8.1-9.8.41. Integral J3 has a removable singularity at 2 4 ,  which makes it 

very attractive for programrning. At z=0, J3 becornes, 

6.6.2 Finite Geometry 

In the finite region, @,L, the thermal wave flux is prescribed over the interface plane, 

a=O, generated by a Gaussian laser beam of spot size, w, given by equation (6.28). The 

thermal-wave field is given by equation (6.29), with the thermal wave flux being approximately 

zero at a=L.  The relevant Green fimction is now equation (6.26), satisGing the homogeneous 

Neumann conditions at the two interface planes. Equation (6.29) becornes [7 11, 

where aO/&,, is given by equation (6.3 1). Defining the integrals 

and splitting up the summation in equation (6.38) results in the expression 



(6.40) 

The backpropagation thermal wave field becomes 



Chapter 7 

Inverse Process: TSDT Numerical Method 

7.1 Introduction 

The thermal wave diffraction problem leads to a so-called discrete ill-posed problem 

when solved numerically. By a discrete ill-posed problem it is meant that in either a square or an 

overdetemined system of linear algebraic equations (Le., Ax=b or min IIAx-b(I2) the coefficient 

maîrix, A, is ill-conditioned, in a way that its singular values decay rapidly to zero 1881. In an 

ill-conditioned problern, small perturôations in the data cause large perturbations in the solution 

[89]. These types of problems are intrinsically dificult to solve, and, indeed, the standard 

methods in numerical linear algebra, such as LU- or QR- factorizations, cannot be used. Instead, 

a regularization method cm be applied to stabilize the problem. In this work, the Tikhonov 

regularization method is used. 

In this chapter the discretization (Section 7.2) of the theoretical formulation of Chapter 6 

and numerical solution of the inverse problem (Section 7.3) is presented. In Section 7.4, the 

definition of an ill-posed problem is given, along with the regularization method used, necessary 

for solution. The optirnization method used for the ill-posed problem is also explained in this 

section. Finally, in Section 7.5 the numerical procedure used to solve the infinite integrals of the 

homogeneous field is outlined. 



7.2 Discretization of Equations 

The sarnpte region is divided into n intervals, and the rectangular region 

is divided into n2 cells. Since, equations (6.15a) and (6.15b) are double integrals, the choice of n2 

points at the boundary is essential to obtain a square matrix [69]. 

For 1 $ j < n 2 ,  equation (6.1 Sb) assumes the following form, 

and equation (6.15a) can lx written in similar form, with yr= .  To obtain the discretized foxm of 

equation (7.2), the grid points in R, (kA~,iAq), are ordered in the following maûix order, m(lc,l) 

1681, 



The type of ordering in ma& (7.3) is generai and it does not depend on the ma& dimensions. 

In addition, it is not dificult for numerical programming. Discretizing equation (7.2) by the 

rectangular rule [90], 

In addition, the scattered field in the entire cross-sectional region, R, for O i k . 1 ~  n, can be 

calculated by 1691, 

The complete solution to the inverse problem, with the final goal of retrieving the 

behavior of the object huiction, F, can be accomplished with the following arrangement of 

equations. Expenmentally, the total transmitted or backpropagated field is measured. The 

measurement provides the amplitude, (Tl, and phase. v, of the field, and, thus, the total field can 

be expressed in the foIlowing complex fom, 



Using equation (6.1 1) with the theoretically calculated incident field, equation (6.41), the 

scattered field at the transmitted or backpropagated surface is computed. With a theoretically 

known complex Green function given by equation (6.26), the complex valued linear system (7.4) 

is solved for the multiplicity, FT, of the object function and the complex temperature field, T. 

Therefore, the scattered field in the entire region, R, cm, then, be calculated with the complex 

valued linear system (7.6). The total field is computed with equation (6.1 l), and which is used in 

equation (7.4) to solve for the object funetion, F. The solution of the complex linear system (7.4) 

is a complex function whose real part is the required object funetion, F, and whose imaginary 

part is theoretically zero 1691. Nurnencally, it is not exactly zero, and its value may serve as a 

measure for successfûl reconstruction [69]. The computational flowchart of the full solution is 

shown in Table 7.1. 

Although it is entirely possible to solve the inverse problem exactly by following the 

flowchart in Table 7.1, in this work the first Born approximation, equation (6.17) - Table 7.2, is 

adopted. Namely, in equation (7.2), T,(r) is used instead of qr).  Again, using equation (6.1 1), 

with the theoretically calculated incident field, equation (6.41), the scattered field at the 

transmitted or backpropagated surface is computed. The object fünction, F(r& is direc tl y 

computed with the complex linear system (7.4) by replacing T with T,. The computational 

flowchart of the approximate solution of the inverse problem for the object function is shown in 

Table 7.6. The use of the Born approximation simplifies large scale computation and saves 

computer tirne. 



Known Input Fields 1 Eauation # Com~uted Field II 

Table 7.1 Computational flowchart for the calculation of the object function F(r0) ( y f l  indicates 
transmitted/bac kpropagated themal wave detect ion). 

I I I I 
Table 7.2 Computational flowchart for the calculation o f  the object fûnction F(r0) by means of 

the Born approximation (y& indicates transmittecUbackpropagated thermal wave 
detection). 



7.3 Matrix Formalization of Linear System 

The main objective is to solve the complex linear system (7.4) for the object function 

F(r). This can be achieved by expressing the linear system in terms of linear algebra. Let L be 

the following complex matrix, 

Lbn = GO (Ir& - rorn(ij3 1)- (7-8) 

When calculating the solution of equation (6.1 1), instead of the rectangular rule for integration, 

the trapezoidal rule for integration is used for even values of n, and Simpson's rule for 

integration is used for odd values of  n [go]. The trapezoidal rule is a second-order method, and is 

more accurate than the rectangular rule which is a first-order method. Simpson's rule is a 

fourth-order method [9 11. Because of its higher accuracy level, Simpson's rule is used whenever 

possible. Furthemore, an n2 x n2 system of linear equations can be defined as follows, 

where A = D ~ L ~ ,  Di, is the constant mat& that applies either trapezoidal or Simpson's rule of 

integration, f=FT, and t=Ts. Let f represent the solution of matrix system (7.9). The rnatrix 

system is solved for FT and, after deducing T fiom equations (7.6) and (6.1 l), a new linear 

system is defined with f=F and A=DuT. Thus, the final solution can be reached. When the 

Born approximation is used, f=F and A=Dh-n. 



7.4 Iii- Conditioniag and Tikhonov Regularization Method 

From a computational point of view, the main problem with this linear system is that the 

matrix G O ~  is ofien almost singular 1681. The accuracy of the solution is substantially influenced 

by the conditioning of the given system of equations. Discrete ill-posed problems are analyzed 

and solved by nurnencal techniques. The rapid development of computer engineering, the 

introduction of mathematical methods to new fields of science and technology, and the 

widespread use of cornputers have brought computing mathematics to a point of intensive 

development of theory and methods for solving ill-posed problems [89]. The general theory and 

methods for solving ill-posed problems were initiated by the work of Tikhonov (1943) [89,93]. 

From Tikhonov and other prominent mathematicians, a number of vital and interesting results 

have been obtained in the theory of ill-posed problems, to date. 

7.4.1 Ill-Posed Problerns 

The ill-conditioning of a matrix can be defined by the condition number, 

where IlAl1 denotes a given matricial nom. A linear system for which cond(A) a 1 is called well 

conditioned; a linear system for which cond(A) » 1 is called ill-condilioned [92]. Narnely, a 

system is said to be ill-conditioned if a relatively small change in one of the coefficients results 

in a relatively large change in the solution. If there are elements in the inverse A-' of the matrix 

that are several orders of magnitude larger than those in original matrix A, then the matnx is 



probably ill-conditioned. Forrnally speaking, an inverse problem is ill-posed (ill-conditioned) if 

one of the criteria, introduced by Hadamard [94], of existence, uniqueness and stability is 

violated. Let Ax=b be an algebraic problem, equivalent to system (7.9), with A being 

ill-conditioned. For existence to be fiilfilled there must exist a solution x for any b. A way of 

overcoming this criterion is to calculate a function r, that minirnizes the distance between Arr 

and b [95], 

Uniqueness is tùlfilled if tbere exists one and only one solution x for any b. In order to overcome 

the uniqueness criterion, information fiom the experimental nature of the problem c m  be used a 

posteriori for selecting the inverse solution. Finally, stability occurs when the solution x is 

continuously dependent on b. Lack of stability means that two nurnbers q and ~ ( q )  do not exist 

so that [95], if 

independently of the choice of xi and x2. The stability of the linear system is obtained by forcing 

the validity of ~ ( q )  -. O for q + O. Numerical methods for treating discrete ili-posed problems 

seek to overcome the problems associated with a large condition number by replacing the 

problem with a "nearby" well-conditioned problem whose solution approximates the required 



solution. Such methods are called regularization methods, and they include a so-called 

regularization parameter, o, which controls the degree of smoothing or regularization applied to 

the problem [96]. There are different methods of regularization such as truncated Singular-Value 

Decomposition (SVD), Tikhonov reguiarization, and maximum-entropy. These methods are the 

subject of many publications [97]. 

7.4.2 Tikhonov Regularization Method 

To solve the ill-posed problem in equation (7.9), Tikhonov's regularization method is 

used. Let Ax=b be an algebraic problem, equivalent to system (7.9), with A king 

ill-conditioned. The regulanzed solution, &, as proposed by Tikhonov is [933, 

where Q is an initial estimate of the solution, and matrix L is either the identity matrix 1 or a 

discrete approximation to a denvative operator. The regularization parameter, a, controls the 

weight given to minhization of the side constraint, IlL(x-xo)/lz, relative to rninimization of the 

residual nom, IlAr-bllz. For this work, no particular knowledge about the desired solution is 

available, so &=û is used; also matrix L is set as the identity matrix, 1. The solution reduces to 

minimizing the following function, 

where 



Minimization of fwiction, @(x), is equivalent to minimization of 

n f n  \/ n \ n 

where bars indicate complex conjugation 1691. Differentiating with respect to the components of 

x, it is found that the minimum can be obtained as the solution of the linear system 

where asterix quantities denote adjoint matrices. 

To solve the system (7.16), the Eispack libtary [98] is used to compute the eigenvalues 

and eigenvectors of matrix M=oI+A*A. Lettuig V be a matrix whose columns are the 

eigenvectors of M, and E be a diagonal matrix of the corresponding eigenvalues, 

The elements of the diagonal matrix, E, are greater or equal to regularization parameter, o, and, 

therefore, as long as a is kept witbin the cornputer accuracy, a good inversion c m  be obtained. 

The fiindamental idea in Tikhonov regularization is to introduce a trade-off between the size of 



the residual nom I[Ax-b(12 and the side constraint Ilxll2 by choosing a suitable regularization 

parameter, o, a satisfactory solution for which the two constraints must be balanced [99]. Tw 

much regularization leaves out information actuaily available in b while too Little regularization 

produces a solution dominated by errors. A method for choosing the optimal regularization 

parameter, and thus the optimal solution, is needed for the Tikhonov regularization. Many 

methods have been introduced for finding the optimum regularization parameter like the 

discrepancy principle, the quasi-optimality criterion, generalized cross-validation and L - c w e  

cri tenon 1961. 

7,4,3 L-Cuwe Method 

In this thesis, we adopt the L-curve method [96,100] for finding the optimal 

regularization parameter. The L-curve is a posteriori method based on plotting the side 

constraint Ilx, Il  of the solution versus the residual nom IlAr - b I l  for a pariicular 

regularization parameter. A schematic of the L-curve is shown in Figure 7.1 and, as c m  be seen, 

the name "L-curve" is derived fiom the fact that the cuve is L-shaped. The "corner" of the c w e  

corresponds to a regularization parameter that is optimal [96]. 

The "flat" part of the L-curve is dominated by regularization errors occurring fiom 

oversmoothing and the "vertical" part is dominated by perturbation errors occurring from 

undersmoothing. Thus the corner of the L-curve corresponds to a solution in which there is a fair 

balance between the regularization and perturbation errors. A simple example to illustrate the 

behavior of the L-curve is shown below. 
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Figure 7.1 L-curve method: corner of curve corresponds to optimum regularization. 

7.4.3 L-Curve Example 

The definition of the L-curve exarnple was taken from Hansen [99] and it was solved 

using numerical code developed as part of this work. The problem is based on considering the 

discrete ill-posed problem of a Fredholm integral equation of the first kind, 

where K is the kemei, g is the observed quantity and f is the unknown solution. This is an 

example taken fiom image restoration [99] with, 

sin u 2 
K(s, t)  = [(coss + CO SI)(^)] , 
u =x(sins+sint) S , I E  [-lt/2,n/2]. 

At) = 2 exp(-6(t - 0.8)*) + exp(-2(t + 
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with f() king the exact solution. The problem was then discretized in the following matrix 

fom, 

where A= K(s, r), b= g(s) and x,, is the sought solution. e is perturbation noise introduced in the 

probtem with a zero mean and a standard deviation of 1x10". Equation (7.22) solved with 

Tikhonov regularization method is presented in Section 7.4.2. The side constraint IIx,II, of the 

solution was plotted versus the residual nom 11 Ar - b 11 2 for particular regularization parameters 

as is seen in Figure 7.2. In this graph the corner of the L-curve corresponds to a regularization 

parameter, ~ 2 . 3 ~ 1 0 ~ .  The exact solution of the problem as well as solutions corresponding to 

regularization parameters e==.3x10d, ~ 2 . 3 ~ 1 0 - ~  and d. 1, are shown in Figure 7.3. The first 

solution of regularization parameter, ~ 4 . 3 ~ 1 0 ~  is a solution which is from the "vertical" part of 

the L-curve and it is dominated by noise which distorts the maximums of the solution. This is an 

undersmooth solution influenced by the perturbation noise. The solution with a regularization 

parameter, ~ 0 . 1  is fiom the "flat" part of the L-curve and it is an oversmoothed sotution which 

reduces the contrast of the maximum. The best solution is, indeed, the corner of the L-curve, 

regularization parameter, a=2.3x104, as s h o w  in Figure 7.3. 



Figure 7.2 L-curve of inverse problem defmed in equation 7.22. 

Solutions of Tikhonov regularization 
Exact solution: f(t) 
a4.3~1 O* 

~ 2 . 3 ~ 1  os 

Figure 7.3 Inverse problem defmed in equations (7.18)-(7.2 1): exact solution (black); 
~ 4 . 3 ~ 1 0 ~  (green), ~ 2 . 3 ~ 1 0 ~  (red) and M . 1  (Mue). 



7.5 Amplitude and Phase of Homogeneous Field 

For the hornogeneous backpropagation or transmission thermal wave field, the amplitude 

and phase of the field were measured. Equations (6.41a) and (6.41b) were rewritten, for 

numerical ease, by separating the field into a real and an imaginary part, 

where, o is the inverse of thermal diffusion length, a = ,/% ; and the other variables are as 

defined in Section 6.6. When A, the backpropagation homogeneous field is represented, when 

z=L, the transmission homogeneous field is represented. The amplitude of the field can then be 

calculated as, 



and, the phase of the field as, 

, Inte 
~ ( x , Y ,  2; 0 0 )  = tan- - L e 0  1- 

For the backpropagation mode 

(7.27) 

@=O), the first integral of equation (7.25) has an analytically 

removable singularity at z=û, thus eliminating any numerical problems from the fùnction to be 

integrated. 

The Hankel integral of equation (7.25) is an improper integral Le., its upper limit is 

infinite. It is assumed that the integral exists and approaches a fuiite value as the upper lirnit of 

integration approaches idlnity. This assumption is based on the physical quantity represented by 

the integral. Equation (7.25) was calculated using the improper integral routine, qromo with 

midpnt taken fiom Numerical Recipes in Fortran [101]. The routine solves for smooth integrals 

with an upper limit to infinty using Romberg integration on a semispen interval. In calculating 

improper integrals the convergence criterion must be carefully met. A convenient convergence 

approach for this integral is to replace the infinite upper limit with a finite value b and to 

evaluate the integral with increasing values of b until any tùrther increase in b results in a 

negligible change in the integral. The downfall of this approach is that the value b is chosen 

according to the integrand behavior, which in turn depends on the input parameters. If the 

integrand is not tested for convergence each time an input parameter is changed, an error can 

occur. To avoid this ngorous procedure the additional routine rnidinf [ IOl] ,  which rnaps an 

infinite range of integration to a finite one using the identity 



is used. As a result, the Hankel integral is separated into two integrais, 

where the first integral is calculated using midpnt routine from O to b and the second integral is 

calculated using midinf routine fiom b to a large number (lx103*). This type of methodology 

assures that the convergence criterion is reached every time, provided b is large enough so that 

the integrand begins to approach its asyrnptotic decrease. 

The original numerical code to solve the system (7.18) was written in Fortran 77 for a 

Sun4 workstation by Offer Pade [68], and was later transferred to a Pentium II 266MHz CPU 

with 128Mb of RAM personal computer, where it was modified for a Microsofi Fortran 

Powerstation compiler [70]. In addition, the development of the homogeneous field and Green 

function presented in Chapter 6 was implemented in the program [70]. The L-curve method was 

implernented in the program by executing for a range of regularization parameters, plotting al1 

the residuals and finally chwsing the corner solution of the L-curve. 



Chapter 8 

Experimental System and Data: Tomographie 
microscope 

8.1 Introduction 

In this chapter, the experimental technique needed to acquire the scanned data for 

thermal wave tomograms is explored. The data is obtained at one cross-section fiom different 

laser and detector positions. Historically, the first detection method used to obtain tomographic 

slice data was photopyroelectric detection 162,631, which was limited to transmission 

rneasurements. A photothermal radiornetric detection rnethod then followed [70]. However, a 

main disadvantage was that a low resolution setup was used which resulted in image broadening 

[72]. To overcome this problem, a high-resolution photothermal setup for tomographic 

application was constmcted in this thesis. The method is based on the photothermal radiometric 

detection outlined in Chapter 4, which has the flexibility for both backpropagation and 

transmission measurements. This is a non-contact method. 

8.2 Experimental System: Short Description 

The experimental setup for cross-sectional imaging via photothermal-radiometric 

detection is shown in Figure 8.1. A 514.5nm wavelength cw Innova Ar+ laser fiom Coherent is 



modulated and then focused onto a sample to a spot size of approximately 27pm. The 

modulation is perforrned by an extemal Acousto-Optic modulator (AOM) (ISOMET 120 1 E- 1). 

Lock-in Amplifier r - l  
Corn puter El 

Reflectin 
-ion 

Laser F 

Figure 8.1 High resolution tomographie microscope experimental setup. 

The blackbody radiation fiom the optically excited sarnple is collected and collimated by two 

axially aligned reflecting objectives [102]. It is then focused ont0 a liquid nitrogen cooled 

HgCdTe (Mercury-Cadmium-Tellunde) detector (EG&G Iudson Mode1 J 1 5D 12-M.204-S050LJ). 

The HgCdTe detector is a photoconductive element that undergoes a change in resistance 

proportional to the intensity of the incident W e d  radiation. It bas an active square size of 

50pm x 50pm and a bandwidth of 2 - 1 2 p .  The detector is operated at a cryogenic temperature 



of 77°K [77] since its efficiency increases with decreasing temperature. An A-R coated 

germanium window with a transmission bandwidth of 2 - 1 4 p  is mounted in fiont of the 

detector to block any visible radiation from the pump laser. Before being sent to the digital 

lock-in amplifier (Stadord Research System Model SR850) 1781, the photothemal-radiometric 

signal is amplified by a preamplifier (EG&G Judson Model PA-300) specifically designed for 

operation with the HgCdTe detector. The low noise preamplifier ensures a proper performance 

for subsequent signal processing with a lock-in amplifier. The lock-in amplifier, which is 

interfaced with a personal cornputer, receives the prearnplifier output and rejects al1 stray signals 

except those that have the sarne modulation fiequency as the excitation beam. This process of 

data acquisition, storage, and scanning is hlly automated. The instrumentation has the ability to 

perform in either backpropagation or transmission mode by directing the laser beam to the front 

or rear surface of the sample using removable mirrors. 

8.3 Experimental System: New Components Detailed Description 

After modulation, the beam was directed towards a focusing Iens through mirrors. Before 

entering the focusing lens the beam size was measured to be 0.78mn-1, lie radius. In this work, a 

diffraction-limited Gradium glas  Plano-Convex lens (Newport GradiumTM GPX085 LR. 14) with 

60mm focal length and a 400-700nm anti-reflection coating was used. Gradium lenses utilize a 

unique optical glass where the refiactive index varies along the optical axis providing a focusing 

power by eliminating spherical aberration and significantly reducing coma. Spherical aberration 

occurs when not al1 incoming rays focus on the focal point thus forming an image that is not 

sharp. Coma results when different parts of the lens surface exhibit different degrees of 



magnification. The leus was mounted on a 12.2mm travel XYZ miniature translation stage 

(Newport MS-500-XYZ). This mounthg was ideal for precise centering of the Gradium lens. 

For accurate theoretical modeling the bearn profile at the focal point was measured with a 

photodiode and the l/e radius was found to be 2 7 p  as shown in Figure 8.2. The results of the 

measurement were reconfirmed using a bearn profilometer with a CCD carnera. A good Gaussian 

profile was also obtained. 

Bearn profile after focusing with Gradium lens 
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Figure 8.2 Beam profile after focusing, as measured with a photodiode. 

The blackbody radiation fiom the optically excited sample is collected and collimated by 

two axially aligned reflecting objectives (Ealing: ~ 3 6  0.5 N.A. 25-0522 and x15 0.28 N.A 

24-0506). Reflecting microscope objectives are hown for their unique optical properties. They 

are based on a two-mirror design; a small convex prirnary mirror and a larger concave secondary 

mirror (Figure 8.3). Because of the all-reflecting construction, the reflecting objectives are free 

of chromatic aberration. Sphencal aberration, coma and astigmatism are corrected by choosing 



appropriate values for the mirrot radii of cmature and their separation. Reflecting objectives 

have large Numencal Aperture (NA) for improved light gathering power and high throughput 

from the ultraviolet to the far infiared due to their all-reflective construction. 
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Figure 8.3 Reflecting objective schematic. 

The radiometric signal was detected with an HgCdTe detector (EG & G Judson Model 

J15D12-M204-S050U), which is a photoconductive detector designed for operation in the 

2-12pm wavelength range. The detector requires a low voltage noise preampiifier. An AC 

coupling capacitor blocks the DC bias voltage fiom the high gain prearnplifier and prevents DC 

saturation. The preamplifier used (PA-300) was supplied with a bias resistor to provide optimum 

bias voltage to the detector. This prearnplifier offen a low noise, adjustable gain, DC offset 

compensation and a linearizing network. A low noise digital lock-in amplifier (Stanford 

Research System Model SRSSO) [78] was used. The lock-in amplifier is interfaced with a 

personal cornputer and the data acquisition is automated. Al1 the experimental system 

components were placed on a pneumatic table (Newport corporation) so that the system would 

be isolated by building vibrations. 



8.4 Scanning System 
In the experimental setup, both the modulated heating source and the detector are 

localized, and therefore can be scanned independently. For each laser position, data is collected 

at several detector positions along a straight line. This defines the cross-sectional plane 

(tornographic scan) to be irnaged i.e., line PQ in Figure 8.4. The scan for the same cross-section 

is repeated for different laser positions. The experimental information is then used to reconstruct 

the respective cross sectional slice, using the method outlined in Chapter 7. 

Figure 8.4 Line scan for cross-sectional imaging, of sample thickness d with subsurface 
de fec t. 

In practice rnoving the sample becomes equivalent to moving the detector. For example, 

the transmission tornographic scan is performed by first positioning the laser and then moving 

the sample and laser together over the detector. Figure 8.5 illustrates a tornographic scan in 

transmission with three detection points and three laser positions, which ensures that the same 

cross-section is observed at al1 times. When detector and laser are aligned with each other the 

signal is the highest. For laser position 1, the maximum occurs at point 3, for laser position 2, the 

maximum occurs at point 2 and for laser position 3, the maximum occurs at point 1. These three 

scans construct the experimental tornographic scan. In backpropagation mode the tomographic 

scan is achieved by attaching a 45" mirror to the first reflective objective (Figure 8.6). The size 

of the mirror is limited by the dead optical field that the reflective objective produces. For this 

reason the dimensions of the mirror are 3mmx2mm, limiting the tornographic scan to 1.5rnrn 



(3mm/2). Experimentally, this limit was found to be 0.7mrn and thus tomographically only a 

maximum cross-section of O.7rnm can be investigated at a time. 

Laser position 
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Figure 8.5 Method of tomographie scan. 

I Reflective objective I 

Figure 8.6 Part of backpropagation experimentat setup. 



8.5 Instrumental Performance and Image Resolution 

As mentioned in the introduction, many factors c m  contribute to the resolution of a 

microscope. Apart from the extreme-near-field underlying physics of the thermal microscope, 

expenmental factors like imperfections in lenses or rnirrors, coarseness of the detector can lead 

to a lower resolution. With proper experimental design, the most significant limitation becomes 

the beam spot size which if not smaller than the defect, will cause the image to broaden [15]. 

In the previous tomographie work [72], the experirnental setup was similar to the setup 

described in Chapter 4. The difference was that the bearn spot size was focuced to about 5 0 p  

and the dimensions of the detector active area were 50pm x 50pn. The major disadvantage of 

the systern was that the collected infiared radiation was f'used to a spot size much larger 

(-70pm) than the detector active area. This not only led to a significant loss of signal but also 

made the detector size the limiting factor of the observed image area. When a detector with an 

active area of lmm x lmm was used, there was no signal loss, but a broader image was seen. 

This broadening, due to the detection size, is explored by using the new high-resolution 

experirnental configuration for photothermal radiometric microscopy. 

The radial temperature field (amplitude and phase) of a homogeneous mild steel in 

transmission, at constant fiequency, for both the old (50pm detector, parabdoidal mirrors) and 

new (50pm detector, reflecting objectives) experimental setups, is s h o w  in Figure 8.7. As 

expected, the field measured with the new experimental setup is narrower compared to that 

measured with the old experimenbi design. The theoretically calculated hornogeneous field of a 

mild steel is in good agreement with the new experimental field. 

The experiment was repeated in backpropagation using the high resolution experimental 

setup (Figure 8.8) and again the agreement between theory and experiment is obvious. This is an 



important achievement for TSDT since the method uses the theoretical calculation of the 

homogeneous temperature distribution. A small degree of bmadening still exists at the edges of 

the radial scan. in a O . S m  scan this broadening is greatly diminished. The limiting factor for the 

resolution of this microscope is the laser-bearn size (w=27pm). 
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Figure 8.7 Transmission of homogeneous mild steel: theory (solid); old experimental setup 
(square); new experimental setup (circle). 
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Figure 8.8 Backpropagation (reflection) of homogeneous mild steel: theory (solid); new 
expenmental setup (circle) 

8.6 Experimental Results 

8.6.1 Thermal Wave Imaging 

Before tomographic expenments were performed using the high-resolution experimental 

setup, thermal wave imaging was performed on a sample with an induced crack to test the 

performance of the radiometric microscope. The material investigation is a sintered reaction 

bonded Eaton E-processm Silicon Nitride with an induced cone crack. This is a material that 

requires a low cost route to achieve commercial applications, thus information in required of the 

fatigue properties before widespread use materializes [103]. Spherical indenter geometry 

reproduces the loading that cerarnics would have to endure in applications like roller bearings. In 



this investigation, Hertzian fatigue damage is studied using thermal wave imaging. Hertzian 

indentation produces a ringkone crack combination below the indenter. A schematic of Hertzian 

indentation [KM] and the corresponding ringlcone crack is shown on Figure 8.9 with P being the 

load of the indenter. "Ring" cracks refer to the partial or complete circular cracks around an 

indent visible on the surface. "Cone" cracks are subsdace extensions from the ring cracks that 

extend down into the material in a conical manner. The interest here is the subsurface conical 

crack since it is optically invisible. Figure 8.10 shows an optical image of the indentation with 

the surface ring crack illustrated with arrows. The specimen was exposed to a load of 2700N 

(6001bs) for 17000cycles. On the surface of the sample there is a ring contact scar 0 . 7 ~  in 

diameter fiom inducing the crack. An approximate 90" arc of a ring crack exists to the lefi of the 

contact scar. 

Figure 8.1 1 shows thermal wave images of the sample at three modulation fkequencies 

with three different methods of radiometric irnaging. The region imaged corresponds to the 

optical area marked in Figure 8.10. The thermal images are presented in a matrix type order 

where the three rows correspond to a fiequency of SOOHz, 175Hz and 73Hz, respectively and the 

three columns correspond to three types of imaging methods. Method 1 is the conventional 

method of moving the sample along the constant detector and laser location. Method 2 is based 

on mathematically offsetting the quadrature signal to enhance the contrast of the image as 

compared to the conventional image by: 

Vsig = (Amplitude) sinehase - 8 o ~ e I ) -  



The method enhances the contmst of the images. Method 3 is based on separating the laser from 

the detector at a constant distance in the order of the object size (crack). This increases the 

contrast between the object and the background. 

Varying the tiequency determines the penetration depth of the thermal wave. The thermal 

difision length is a measure of the effective depth sarnpled and indicates that with decreasing 

fkequency an increasing penetration is observed. The thermal response of t t i s  region is varied 

with modulation fkequency. At 5ûûHz with a thermal diffision length of 9 6 p  the response is 

deeper than the surface. At 175Hz the thermal diffision length is 162pm and at 73Hz the thermal 

diffusion length is 250pm. At 500Hz, Method 1 faintly shows some charactenstics of a ring 

surface crack along y==O.lmrn, Method 2 clearly shows a shadow at y=O.OSmm, beyond the size 

of the ring crack which suggests deeper damage into the sample. In Method 3 the separation 

distance between the detector and the laser is O. 1 mm and the ring crack is clearly defmed with 

some subsurface defects at (0.05rnm,0.75mm) coordinates. Looking deeper into the sample, at 

175Hz Method 1 again shows some faint characteristics of a crack at y=O.lmm. By 

mathematically offsetting the sample (method 2) the shadow on the ring crack expands at 

y=0.05rnrn, which suggests that the defect is deeper into the sample. In Method 3 the damaged 

area at (0.05mrn,0.75mm) coordinates, is more localized and is well-defined. Finally, at 7 3 k ,  

Method 1 again shows some faint subsurface damage at y=O.lmm. Method 2 does not show any 

clear extension of the crack. In Method 3 the shadow at (0.05rnm,0.8mm) coordinates, expands 

further, which indicates that the crack extends as deep as the corresponding thermal diffusion 

length of 250pm. The conventional method of imaging is not as sensitive as the experimentally 

offsetting method. Thermal wave imaging provides the information about the existence and 

approximate depth of the crack (one thermal diffision length). The depth of the defect can be 



easily determined by the offsetting irnaging method ( - 2 5 0 ~ ) .  Much of engineering science is 

concerned with the behavior of materials under stress as their performance under extreme 

conditions and subsequent failure analysis is essential for the continued development of both 

material and design criteria. The potential of thermal wave analysis therefore lies in its ability to 

image subsurface structures or defects in a nondestructive manner. 
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Figure 8.9 Hertizian indentation by spherical indenter with P load. 

Figure 8.10 Optical image of specimen inflicted by Hertzian crack; magnification X50; ring 
crack illustrated with arrows. Solid line indicates the approximate area thermally 
imaged. The optical image provided by D. Rose of US Army TACOM. 



8.6.2 Tomographie Erperiments 

Steel is a good thermal emitter and can be reasonably assumed homogeneous for testing 

the tornographic method. Two samples of mild steel type alloy with subsurface defects were 

used for the tornographic experiments. Sarnple 1 contained a subsurface hole of diameter 0.6m.m 

located O. 1 mm below the surface and had a thickness of 2mm. The sample geometry is shown in 

Figure 8.12, with line AB representing the cross-section scanned for the expenments. The 

thermal diffisivity of the sample was measured in transmission [793 and was found to be 

a= 1.1 x 1 0-5m2/s. Since the experimental setup in backpropagation was limited by the 

tomographic range, a second steel sample (similar geometry as Sample 1) was customized to 

investigate the backpropagation expenments. Sample 2 had two 0.3mm diameter defects, 0. lmm 

and 0 . 2 m  deep in the material, respectively. The thermal diffisivity of this steel material was 

measured in transmission [79] and was found to be a=l .55~10-'m2/s. Before any experiments 

were run, the linearity [43] of signal obtained fkom al1 samples was tested for different 

modulated laser powers showing that the detected signal is linearly proportional to the surface 

temperature excursion. For Sample 1 (Figure 8.13), the signal remains linear up to 0.4W laser 

power output. Therefore, the mild steel samples were safely run at 0.2W output power. 

First, Sample 1 was tested in transmission at a modulation fiequency of 1 lHz with a 

thermal difision length, p, of O.S6mm. The tomographic scan was taken along cross section AB 

(Figure 8.12). The defect imaged is O. lmm fiom the fkont surface and 0.6mm in diameter. Figure 

8.14 shows a conventional 2-D scan along the imaged line. A 2-D scan is achieved by scanning 

the laser and the detector together. This provides information about the defect's x-location. Both 

the amplitude and phase of the scan exhibit a minimum at the defect location. This behavior is 

due to the fact that the defect (air) is poor thermal conductor and thus the heat propagation is 



blocked in transmission. In general, the amplitude of the signal is influenced by surface 

blemishes and reflectance, whereas the phase is largely unaffected and truly represents 

sub-surface defects. From the 2-D scan data the defect is found to be at the center of the scan 

(x=1.5mm). Figure 8.15 is the amplitude and phase of the backpropagation tomographic scan 

with five laser positions along line AB (3mm) at 49 detector points. The £ive laser positions used 

were x ~ O . 5 ,  1, 1.5, 2, 2.5mm. From the tomographic scan, the information given from a 2-D 

scan can also be obtained. In a tomographic scan, the maximum signal always occurs when the 

laser and detector are aligned with each other, and therefore, the maximum of each laser position 

scan c m  map the 2-D scan. This is the diagonal line (x-y) in the experimental data as seen in 

Figure 8.15 where a minimum is obsemed for both amplitude and phase equivalent to the 2-D 

scan. 

Before the backpropagation tomograptuc experiments were performed on Sample 2, 2-D 

scans at different fiequencies (40-1ûûûHz) were taken for the O.lmrn deep defect. This was 

performed so that the frequency with the best resolution would be selected for the tomographic 

scans. Figure 8.16 shows these experiments and the two fiequencies chosen for the tornographic 

scans were 80Hz and 300Hz. In backpropagation a maximum is observed in the amplitude. Since 

the defect is a poor thermal conductor (air), heat diffision is blocked by the boundary, which 

results in a larger amplitude signal. A thermal wave image (top view) was also performed on the 

sampIe so that the actual defect location and shape would be found. Figure 8.17 shows al1 

channels (in-phase, quadrature, amplitude and phase) of the signal. This image also illustrates 

that thermal wave imaging is a 2-D projection of the probing area whereas tomography is a 

cross-sectional projection. The black line is the exact location where the tomographic scans were 

performed. The quadrature shows the highest fidelity regarding defect shape. 
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Figure 8.12 Sarnple 1 and 2 geometry. Dimensions s h o w  for sample 1. 
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Figure 8.13 Output laser power vs signal amplitude for sarnple 1 (mild steel). 
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Figure 8.14 Amplitude and phase in transmissicin of the 2-D line scan. 

Figure 8.15 Transmission tomographie scan of O. 1 mm deep defect. Amplitude and phase. 
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Figure 8.16 Amplitude and phase in backpropagation of the 2-D line scan for 40, 80, 100, 
200,300 and IOOOH.. 

Figure 8.17 Thermal wave image of top view of Sample 2. From left clockwise: in-phase, 
amplitude, phase and q&drature. The black line is the location of the 
tomographie scan. F=80Hz. 



A backpropagation tornographic scan at a modulation fiequency of 80Hz with a thexmal 

diffusion length of 0.25mm was then perfomed. The defect was 0.lm.m deep into the material 

and the x-location was at the center (x=û.2Smm) of O.Srnm scan. Figure 8.18 is the amplitude 

and phase of the tomographic scan in backpropagation with 1 1 laser positions, xr = O, 0.05, 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, OSmm, and 2 1 detector positions. Above the tomogram the 

diagonal, which is equivalent to a 2-D scan, is shown for each signal channel (amplitude and 

phase). At the same location the tornographic experiments were perfomed at a frequency of 

300Hz. The thermal dimision length at this fiequency is 0.13mm. The length of this scan is 

0.3rnm since there was no signal for higher scanning distance. Figure 8.19 is the 

backpropagation tomographic scan for seven laser positions, xf= O, 0.05, 0.1,O. 15,0.2,0.25mm, 

and 13 detector positions. The diagonal 2-D scan (x-y) is shown above the channels. This is 

created by the maximum of each scan (laser position spike). 

Figure 8.20 is a backpropagation tomographic scan of a 0.2rnm deep defect at a 

fiequency of 80Hz. Both amplitude and phase have a minimum at the location of the defect. The 

defect is located at the center of the scan and 1 1 laser positions were collected, xf= 0, 0.05, 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4,0.45, OSrnm, with 21 detector positions. For the same location the 

tomographic expenment was repeated at a fkequency of 300Hz with a thermal diffision length of 

0.13mm. The length of this scan is 0.3mm since again there was no signal for higher scanning 

distance. Figure 8.2 1 is the backpropagation tornographic scan for seven laser positions, xt= O, 

0.05,O. 1,O. 15,0.2, C.25, and 0.3mm, with 13 detector positions. 

The homogeneous field was also investigated in these experiments and Figures 8.22 and 

8.23 show the field for both frequencies F=80Hz and F=300Hz, respectively. The response is 

shown on a two-dimensional graph. Each laser position corresponds to a maximum in the 



experimental data. The theoretical fields are also shown at each laser position and fiequency. 

The agreement between theory (equation 6.4lqb) and experiment is excellent although there is a 

slight instrumental asymmetry on the right-hand side o f  the experimental data. 

O. 1 mm deeo defect - F=80Hz 

Figure 8.18 Backpropagation tornographic scan of O. 1 mm deep defect. F=80Hz. 

O. 1 mm deeo defect - F=300Hz 

Figure 8.19 Backpropagation tomographic scan of  O. 1 mm deep defect. F=300Hz. 



0.2mm deep defect - F=80Hz 

Figure 8.20 Backpropagation tomographic scan of 0.2mm deep defect. F=80Hz. 

0.2mm deep defect - F=300Hz 

Figure 8.21 Bacbropagation tomographic scan of 0.2mm deep defect. F=300Hz. 
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Figure 8.22 Homogeneous field of sample 2 at F=80Hz. Experiment (square); Theory (solid). 
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Figure 8.23 Homogeneous field of sample 2 at F=300Hz. Experiment (square); Theory (solid). 



Chapter 9 

Real Tornographic Inversions and Discussion 

9.1 Introduction 

In this chapter, real tomographic reconstructions from experimental data obtained in 

backpropagation and transmission mode presented in Chapter 8, are shown. The reconstructions 

are produced by the Born approximation, with the methodology developed in Chapters 6 and 7. 

in Section 9.2, the reconstruction method used is briefly summarized. In Section 9.3, real 

tomographic inversions are shown with a discussion. Finally, conclusions and limitations of the 

method are discussed in Section 9.4. 

9.2 Reconstruction Method 

In reconstructing an image, only one set of experimental data, represented by one laser 

position and multiple detector points, is needed. Both amplitude and phase are used to describe 

the total surface field expressed in equation (7.7). The reconstmctions are produced by the Born 

approximation following the flowchart in Table 7.2, and solving the linear system (7.18) with a 

regularization parameter. Equations (6.4 1 a) and (6.4 1 b) were used, respectively, for the 

calculation of the homogeneous backpropagation and transmitted thermal wave fields. The 



solution of the linear system is the object function, which is a real field with a zero imaginary 

part (391. Numerically this value is not zero. An optimal solution to the linear system was 

obtained using the L-curve method. The object fùnction reconstructed was the non-dimensional 

function (n2(r)-l), where n(r) is the square-mot ratio of the thermal diffûsivity of the background 

to that of the defect, defined by equation (6.8d). The background thermal diffisivity, a, thermal 

conductivity, k, modulation frequency, f; and laser beam size, w, are the necessary input 

pararneters for calculating the homogeneous thermal wave field. The input pararneters for the 

inversion technique are as follows: 

The expected magnitude of the non-dimensional object function, with a thermal diffisivity for 

the defect of aur=2.2x10-hm%, is -0.5 and -0.3 for Sarnple 1 and 2, respectively. Experimentally, 

the total surface field was measured at 49 (transmission), 21 (backpropagation, F=80Hz) and 13 

(backpropagation, F=300Hz) detector positions and the data was then interpolated to the desired 

number of points for a square matrix, using the cubic splines interpolation technique. 

Reconstructions for the transmission experiment were computed for n=10, so that the linear 

system consisted of 100 equations with 100 unknowns; for the backpropagation experiments 

~ 1 5 .  The reconstructions were perfomed using a Pentium II 266 MHz CPU with 128Mb of 

RAM. 



9.3 Tornographic Reconstructions of Steel and Discussion 

9.3.1 Tomograms 

The first reconstruction performed was that of the transmission experiment (Figure 8.15). 

Figure 9.1 is the average reconstruction of five laser position reconstructions obtained 

individually fiom the experimental data. in a previous work [72], it was found that averaging of 

reconstruction improves the final image since limited infonnation is obtained through one laser 

position reconstruction. By averaging reconstructions information fiom different perspectives is 

obtained. The individual numerical reconstnictions were performed with the laser position at 

x1=0.5, 1 .O, 1.5, 2 and 2.5m.m. The experimental amplitude and phase data of the respective laser 

positions were used as input parameters for the inversion technique. The experimental data 

represented the total surface thermal-wave field of the imaged cross-section. The fiequency used 

in this expenment was F=IIHz with a thermal d i h i o n  length of O.56mm. Figure 9.1 

reconstmcts the object function F(x j ) ,  with a contour of the reconstruction fiinction at the 

bottom. The solid line on the contour of Figure 9.1 indicates the exact location and size of the 

defect, which was 0.6mm in diameter, centered at (&=1 Smm, yC=1.6mm). The defect is show 

at the correct x-position but it extends M e r  to the back of the simple. The artifacts of the 

reconstruction diminish as a wider spectnun of spatial laser positions is used. The magnitude 

(contrat) of the defect is underestimated. In averaging, information was lost due to the fact that 

a few reconstmctions underestimated the defect magnitude; the use of more laser positions for 

averaging reconstmctions would ensure accuracy of the magnitude of the object function. Also, 

since detection occwred at the back surface of the sample only limited information is available 

for reconstructing the defect. The optimal regularization parameter for the reconstmction was 

retrieved using the L-cuve method. 



Figure 9.1 TSDT transmission reconstruction of Figure 8.14, average of 5 laser positions. 
True defect show by solid line. Average regularization a-lx 104. 

Figure 9.2 L-curve of x=1 Sm laser position reconstruction of Figure 9.1. 



Figure 9.3 Reconstruction from the vertical part of the L-curve (Figure 9.2). Regularization 
~ l x l o - ~ .  

Figure 9.4 Reconstruction from the flat part of the L-curve (Figure 9.2). Regularization 
tF0.1.  



For each reconstruction performed at a specific laser position an L-curve was plotted for 

selecting the optimal solution comesponding to the corner regularization parameter, a. For one 

laser position the L-cwe  is shown in Figure 9.2 and the optimal solution is ~ 1 ~ 1 0 ~ .  The 

average reconstniction was created by an average of al1 the optimal solutions. Figure 9.3 is the 

result of a reconstruction from the "vertical" part of the L-curve plot. The regularization 

pararneter is a= l~10-~ .  Perturbation noise dominates such a solution and the location of the 

defect is distorted. in Figure 9.4 an oveamwthed solution ("flat" part of the L-curve) is shown 

with the regularization parameter being FO. 1. In this reconstruction the defect is overshadowed 

by the laser position x= 1 .Smm. 

Backpropagation experiments were then performed with defects at two depths (O. hm, 

0.2mm) and at two modulation fiequencies (F=80Hz, F=300Hz). These experiments were 

performed to test the limitations and resolution of the methoci at different depths. The next 

reconstmction was of the backpropagation experiment of a 0-lmrn deep defect at F=80Hz 

(Figure 8.1 8). At this fiequency the thermal diffusion Iength is 0.25m.m. The defect was 0.3mm 

in diameter, centered at (&=O. 15mm, yc=0.25mrn). Figure 9.5(a) is the average reconstniction of 

eleven laser positions at xi+, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5mm. The 

regularization parameter used for reconstruction was on the order of 10'. Al1 subsequent 

experimental reconstruction in reflections had the same regularization pararneter of IO4. The 

value of this regularization parameter assigns the transmission (regularity of IO4) problem as 

being less i ll-de fined when compared to the bac kpropagation one. An i ll-defined problern 

provides a reasonable solution after king regularized. The regularization parameter is directly 

proportional to the ill-conditioning of the problem. The depth position of the defect is correctly 

reproduced but the image is smaller than the true defect size show by the solid line. Also it is 



observed that the defect is somewhat asymmetric on the right hand side. This can be attributed to 

the asymmetry of the experimental data obtained by the photothermal microscope. The 

magnitude of the defect is underestimated at -0.25. Some artifacts exist at the left and back 

surfaces of the defect. As the number of laser positions increase these artifacts may decrease. 

The same defect was reconstnicted in backpropagation at F=300Hz with a difision 

length of 0.13rnm. The reconstructed image corresponding to the experimental data of Figure 

8.19 is shown in Figure 9.5(b). The reconstruction is the average of thirteen laser positions at 

xr=O, 0.05,0.1, 0.15,0.2, 0.25, and 0.3m.m. Although the front of the defect is reconstnicted well 

the back boundary is shified to the fkont at about two thermal difision lengths (0.26mrn). This 

can be attributed to the fact that, in backpropagation the scatterer to be seen at about twice the 

diffusion length. Beyond a total distance of two thermal diffision lengths, information is lost. 

The reconstniction as compared to Figure 9.5(a) is symrnetrical. This is to be expected since for 

a 0.3mm scan the asymmetry of the instrument is much diminished. 

The next reconstruction was the backpropagation experiment (Figure 8.20) of the 0.2mm 

deep defect with a 0.3mm diameter, centered at (&=1.5mm, yc=0.35mm). The modulation 

fiequency of the experiment was 80Hz, so that the thermal diffision length was 0.25m.m. Figure 

9.6(a) is the average of al1 the reconstructions performed for each laser position. The location of 

the defect is in agreement with the exact position shown with the solid line. The fiont surfoce is 

precise but the back of the defect is degraded. An asymmetry in the reconstruction is again 

o b s e ~ e d  at the right-hand side. This reinforces the fact that this asymrnetry is due to 

instrumental effects. Also at the back of the defect some artifacts are observed. With an increase 

in the number of laser positions, these artifacr could decrease. 



Figure 9.6(b) is the backpropagation reconstruction of the same defect with F=300Hz. 

The experimental data is shown in Figure 8.21. The diffusion length is 0.13mm. The laser 

position is closer to the defect and above the edge of the defèct. The Liont surface is 

reconstnicted well whereas the back surface is reconstmcted well up to about two thermal 

diffusion lengths corn the front surface. At the front surface there are artifacts that would 

diminish with an increasing number of laser positions. 

9.3.2 Image Error Analysis 

In this section, error percentages of the reconstructions of Figures 9.1, 9.5(a), 9.5(b), 

9.6(a), and 9.6(b) are calculated. The reconstructions are compared to the true images with 

respect to location, size and contrast. The true defect, although circular, in the analysis is 

represented as an ellipse, centered at xc in the x-direction, and y, in the y-direction, with a and b 

as its axes in the x- and y-direction, respectively. The emor parameters are calculated below, and 

the subscripts calc and exact are used to represent the parameters calculated and their exact 

values (obtained tiom the knowledge of sample geometry), respectively. The parameters that 

will be examined are G, y,, a, b and image contrast. The error is expressed as: 

where p is the error parameter being examined. The calculated and exact values of each image, 

along with the e m r  percentages, are tabulated. The first error exarnined is related to the defect 

location (Table 9.1). The error presented is an absolute value. The xJocation and y,-location are 

analyzed separately to clearly distinguish defect behavior. The second error deals with the defect 



size (Table 9.2). The shape of a defect is measured at the f in t  contour level below the surface. 

and is defined at the same contrast in al1 the figures. This is the level where the defect is clearly 

formed, and îhere are no effects from surface anomalies. The error is negative if the size was 

underestimated, and positive if the size was overestimated. The eccentricity, e, of the defect is 

also calculated. Eccentricity indicates the degree of departtire fiom circularity, and varies 

between O and 1. It is defined as: 

where a is the semimajor axis and b is the semiminor axis (n>b). When e=O, the ellipse is a 

circle. As eccentricity increases, the ellipse becomes flatter (depressed b), up to the extreme 

case, e=l, where the ellipse becomes a line segment. The eccentricity is used since al1 distortions 

in the images appear as ellipses. This is due to the fact that in these tomographie scans only 

one-sided information is obtained at the cross-section. The third error is associated with the 

defect contrast (Table 9.3). The contrast of a defect is taken as the largest minimum value 

produced by reconstruction. For an underestimated contrast, the error is negative. 



Figure 9.5 Average reconstruction of O. lmm deep defect with 0.15mrn diameteca) F=80Hz, 
b) F=300Hz. 

Figure 9.6 Average reconstruction of O. I mm deep defect with O. 15mm diarneter:a) F=80Hz, 
b) F=300Hz. 
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The location of the center of the defect in the x-direction is accurate in al1 the 

reconstnictions (Table 9.1). It is the y-coordinate of the defect center that is inaccurate. In 

transmission mode, the defect center is farther away than two thermal difhsion lengths 

measured fkom the back of the sample and as a result the defect shifts to the back surface, 

producing a large error. In backpropagation, as the fiequency increases the y-center shifts to the 

front of the surface. As the defect moves closer to the back of the surface, the amount of 

y-location distortion is reduced, and the calculated value approaches the theoretical value. 

The shape of a defect was examined in Table 9.2. in transmission, the image is elongated 

in the y-direction and depressed in the x-direction. The result is a defect reconstruction with 

eccentricity of almost 1 (&.9 1 ). For the 0. lm deep defect in backpropagation the eccentricity 

decreases as the fiequency is increased. For the 0.2rnm deep defect the lower fiequency gives a 

resonable eccentricity (e=û.58) but at the higher fiequency the circular shape ( ~ 0 . 8 5 )  is lost. 



This is due to the fact that at this fkquency the reconstruction is at the shallow depth of the 

cross-section. The next parameter that was tested was image contrast (Table 9.3). The 

reconstruction contrast defect is underestimated in both backpropagation and transmission mode. 

The averaging of more laser positions would reduce such errors. As the fkequency is increased 

the contrast is decreased. Overall, contrast is reproduced well in al1 reconstmctions. Taking into 

account the location, size and contrast of the defect, the best reconstructions were produced in 

backpropagation mode at F=80Hz. The most optimal of al1 is the case of 0.2mm deep defect at 

F=80Hz. 

9.4 TSDT Limitations 

In general, most of the error relating defect location was associated with the y-direction 

depression. This error occurred because the reconstruction information was obtained on a limited 

plane. Information obtained fiorn a reconstruction depends on the laser position. A defect is 

delineated accurately on the side closer to the laser position, regardless of which mode of 

detection is used [72]. The experirnental technique for obtaining the surface field is limited to 

providing information fiom the fiont or back of the sarnple. A tomographie scan along the 

perimeter of a cross-section would yield more information about the reconstructed cross section. 

In conclusion, the Born approximation seems to be adequate for the materials and defect 

geometries utilized in this investigation. Assuming tubular (cylindrical) defects, such as drilled 

holes in alurninum, Kak and Slaney [67] have given a mathematical condition for the validity of 

the first Born approximation for general propagating fields that obey the conventional Helmholtz 

wave equation. This condition can be expressed as 



where a is the radius of the cylindrical defect, na is the change in the rehctive index between 

the surrounding medium and the defect (equation 6.8d), and k is the probe field wavelength 

( h h = 2 ~ p ) .  For al1 the cases examined the critenon was calculated in Table 9.4. In al1 the cases 

the critenon was valid. One issue that arises h m  this table is that the criterion for reconstruction 

2 is identical to that for reconstruction 4. With thermal waves this is not true since the depth of 

the defect is as important as the size. In the fiiture perhaps a better criterion on the thermal wave 

Born approximation c m  be fonnulated. 
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Based on these observations, a "guide" can be fomulated for optimal reconstructions. 

Backpropagation reconstructions can better resolve defects close to the surface. The probïng 

frequency and thus thexmal diffision length must be chosen with care. Large defects compared 

to the thermal diffision length do not reconstruct as well as when the defect diameter is one 

thermal dimision length. If the depth of the defect is deeper than the thermal difision length the 

defect will not be resolved depth wise. Therefore, for an optimum reconstruction the depth and 

size of the defect must be of the same order of one thermal difision length. This is consistent 

with the fact that in the cases examined the optimal reconstruction was that of a 0.2mrn deep 

defect at F=80Hz. 

9.5 Conclusions 

In the previous work [72] the experimental field measured was broader than the 

theoretical field resulting in broader reconstructions. A major achievement of this work is that 

the broadening of images has been reduced. The L-curve method of finding an optimal 

reconstruction proved to be an effective tool for TSDT. The only Iimiting factor for the 

reconstructions is the validity of the Born approximation. It was found that for the geometries 

used in this work, the Born approximation yields a large number of satisfactory results. A 

tomographie scan along the perimeter of a cross-section would yield more information. 

Reconstructing a cross-section at different fiequencies may prove effective for future 

superposition of images. The thermal difision length is a mesure of the depth to which a 

cross-section can be imaged. A marked deterioration of images is observed as modulation 

frequency is increased beyond two thermal diffision lengths as compared to the defect depth. 

The image restoration is lost with increasing depth and decreasing fiequency. Optimal 



reconstructions can be obtained in backpropagation when the defect depth and size are of the 

order of one thermal dimision l e m .  

In the future, TSDT reconstmctions can be performed for subsurface cracks Iike the one 

investigated in Section 8.6.1. This would give infiormation, at certain cross-sections about the 

exact curvature, direction and depth of the crack. 



Chapter 10 

Conclusions and Recommendations 

10.1 OveMew of Depth Profilometry 

Depth profilometry is an inverse problem that reconstructs thermal difisivity profiles in 

a non-destructive way. The theoretical treatment of this problem approximates the thermal wave 

as a thermal hannonic oscillator (THO), and follows the Hamilton-Jacobi formalism 1401 from 

classical mechanics. The theory satisfies al1 limiting cases of the problem geometry. From the 

theory, an inverse problem is developed which discretely solves for local thermal difisivity as a 

hnction of depth. The profilometric nature of the problem arises fkom the fact that the depth is 

inversely proportional to the square-rwt of the modulating fiequency. Experimentally, the 

problem requires one-dimensionality, and, therefore, a large incident beam is used so that lateral 

diffusion can be neglected. 

Thermal wave depth profilometry finds substantial applications in surface treatment 

processes such as case hardening. Nurnerous photothermal researchers al1 over the world are 

currently seeking a solution to the depth profilometric problem. While many approaches to 

thermal diffisivity depth profiling have been introduced over the years, no study has rigorously 

examined the exact mechanism of thermal diffisivity. in the European community there is a 

consortium of groupe attempting different methods to solve the problem. They have found a 

linear anti-correlation between microhardness and thema1 difisivity. It is however, the feeling 



of the author that although this may be true for the specific process of quenching, a simplified 

linear anti-correlation cannot be used as a universal fomula for al1 heating process and steels. In 

this thesis, a low carbon steel (AISI 8620) was subjected to the carburizing, followed by 

quenching, which are two widely used indusnial case hardening processes. While an 

anti-correlation between hardness and thermal diffisivity profiles was observed, several new 

observations were made. First, it was found that at greater depths, thermal difisivity 

reconstructions showed a deviation fkom microhardness profiles, which becarne more substantial 

with increasing depth. The deviation was also more noticeable for quenched steels as compared 

to plain carburized steels. Therefore, the simplified linear anti-correlation noted in earlier studies 

[46] cannot be used for al1 cases. Second, the general shape of the thermal diffisivity profile was 

similar for both carburizing and quenching, which suggests that the shape of the profile is 

dominated by carbon difision. Tbird, it was observed that the martensite structure formed by 

quenching has a lower thermal diffusivity than the pearlite structure formed by carburizing. This 

suggests that the absolute magnitude of the thermal diffisivity profile is defrned by the 

microstructure. 

Futhermore, radiometric signais are influenced by surface roughness throughout the 

fiequency spectnrm. A novel method to account for surface roughness was developed, which is 

based on modeling roughness as a white Gaussian noise fitted to the effective fiequency-domain 

roughness spectnim. This development is significant because it enables more eficient on-line 

non-destructive testing. The current methods for characterizing microhardness are destructive 

and time-consuming. 



10.2 OveMew of TSDT 

An existing Thermal-wave Slice Difhction Tomography (TSDT) technique for the 

detection of subsurface defects was improved. The existing method solves the Helmholtz 

pseudowave equation with a complex was number 1661 for the temperature field generated in a 

material by an intensity-modulated laser beam incident on the surface. The pseudo-propagating 

temperature field is then expressed as the surn of the incident and scattered fields. The 

three-dimensional Green function and incident field are calculated by assuming Neumann 

boundary conditions [67]. The scattered field is expressed as a summation, over al1 individual 

point scatterers, represented by the Green function. Ultimately, the scattered field is expressed 

by a Fredholm integral equation of the first kind. Owing to the diffisive nature of the thermal 

wave field and the ill-conditionhg of the inverse problem, conventional Fourier transfomi 

methods used in electromagnetic and acoustic tomography cannot be used [42]. Thus, the 

integral equation is solved using the Tikhonov regularization method. 

In this thesis, a robust computatîonal method for TSDT was developed. Most importantly, 

the L-curve method was used to resolve the diffrculty of rnultiplicity of solutions, thereby 

obtaining an optimal solution to the inverse problem. Furthemore, a new tomographic 

high-resolution photothermal microscope, limited by the beam spot size (w=27pm), was 

constructed for the scans. Machined defects were made on mild steel samples to test the 

performance of TSDT. Scanned thermal wave data for one point source and multiple detection 

points were used as input to reconstruct a cross-sectional thermal diffisivity image. A final 

reconstmction was made by averaging over reconstructions of several source positions. It was 

concluded that when the defect depth and size were of the order of one thermal diffusion length, 

optimal reconstructions were obtained. 



Photothermal radiometric detection microscopy is used as a rnethod of collecting 

cross-sectional data, which are then numericafly ptocessed with the use of Tikhonov 

regularization to produce a tomogram. The implications of this work, besides establishing a 

reliable experimental foundation of TSDT, are quite broad in that it has the potential to address 

several other fields of tomographic science where strong dispersive attenuation presents a 

reconstruction problem. These fields include medical diffise photon tomography, attenuated 

acoustical imaging, and geophysical tomography. There are other aspects that require further 

research in order to make TSDT a practical diffraction tomographic technique. Developments are 

presently being pursued to improve both the computational and experimental methodologies. 

10.3 Overall Conclusions 

Thermal wave inverse problerns are ill-posed problems in that they either have no 

solution, no unique solution, or an unstable solution. It is only due to recent technological 

advances that these problems have become tractable computationally. The main diffculty with 

these problems is that a regularization method is needed to isolate a unique solution. Two 

important inverse problems were studied in this work: depth profilometry of hardened steels and 

tomography of subsurface defects. Tomography is a three-dimensional problem with a 

complicated theoreticai/computational formulation but a relatively easy experimental 

formulation, whereas depth profilometry is a one-dimensional problem whose experimental 

replication is quite challenging. 

In conclusion, the potential of thermal wave analysis lies in its ability of retrieving 

subsurface thermal inhomogeneities in a nondestructive manner. Both depth profilometry and 

diffraction tomography have their own unique advantages, and consequently, an immense 



potential for applicability to the metals industry. Depth profilometry c m  be used in the 

heat-treating industry as a replacement to microhardness testing. Depths in the prn-mm region 

can be observed for retrieving thermal difhivity. The accuracy of the method decreases with 

increasing depth since experimentally the signal-to-noise ratio is low for low fiequencies. The 

methodology can be used to identifi changes that take place in a material as a result of surface 

modification processes such as: laser processing, case hardening and coating deposition. TSDT 

is also non-destructive, and fin& practical applications for retrieving defects in the pm-mm 

region in backpropagation. One specific application can be in the automotive industry where 

roller bearings produce subsurface damage (cracks) in cerarnics. Due to its high-resolution 

nature, TSDT can be used to accurately resolve defects of the order of the experimental beam 

spot sizc (27 pm in this work). 

10.4 Future Work 

10.4.1 Depth Profdometry 

The current study bas successfully studied the microhardness behaviour of rough low 

carbon steels subjected to carburizing and quenching. To produce an industrial-level instrument 

the work must be extended in the following ways: 

(i) The heating process of carbonitriding must be investigated on AISI 8620 steel. 

(ii) More steels under the categories of low, medium and high carbon steels must be studied; 

specifically, grades such as IOxx, 33xx, 86xx could be looked at. 

(iii) These specific steels must undergo processes like carburizing, quenching and 

carbonitriding. 



(iv) Cornparison of al1 these steels must be made so that a global conclusion can be reached 

about the relationship between thermal diffbsivity and microhardness. Care must be 

taken not to make any presurnptions about the buk  thermal diffisivity. Therefore, the 

samples must be cross-sectioned and examined with a forward measurement so as to 

ensure uniqueness of the inversion resuits with respect to bulk values. 

(v) In the numerical domain, the exact mode1 developed by Miller et al. [S8] can be tested to 

reconstruct real experimental data. 

(vi) The signal acquisition speed can be increased by chirp modulation and Fast Fourier 

Transform analysis [105]. This will make the method more suitable for industrial 

applications. 

10.4.2 TSDT 

The curent study has successfully obtained a tomographic process for the 

three-dimensional thermal wave field with sub-swface defects. This work can be extended in the 

following ways: 

The boundaries of the potential of TSDT can be fiirther defined by studying classes of 

materials with widely different sub-surface structures and thermal transport properties. 

Other methods besides the Tikhonov regularization method must be investigated for 

solving the ill-condition thermal wave problem. The wavelet based method developed by 

Miller et al. [73] can be tested with real experimental data. 

The experimental time can be reduced by introducing an array detector. 

An experimental method can be developed to obtain tomographic scans from al1 

perspectives of the sample. 
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