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Thermal wave inverse problems: Depth profilometry of hardened steels and
diffraction tomography of subsurface defects in metals

by Lena Nicolaides

Doctor of Philosophy, 2000
Department of Mechanical and Industrial Engineering
University of Toronto

Abstract

Depth profilometry of hardened steels and Thermal-wave Slice Diffraction Tomography
(TSDT) of sub-surface defects in metals are important thermal wave inverse problems. The
imaging parameters in thermal wave inverse problems are the material thermal inhomogeneities.

Depth profilometry is an inverse problem that retrieves thermal diffusivity along the
depth of a sample. It is well established that in hardened steels thermal diffusivity anticorrelates
with microhardness, allowing depth profilometry to be used as a tool to measure microhardness.
Depth profilometry also has the unique advantage, over conventional methods, of being
non-destructive. Current techniques have not separately addressed the effects of different heat
treatments on the thermal diffusivity profile of steels, and therefore, the exact nature of the
anticorrelation between thermal diffusivity and microhardness is not properly understood.
Carburizing and quenching are widely used for the heat treatment of industrial steel, and it is
important to understand their effects on thermal diffusivity profiles. This thesis presents a
thorough examination of the actual mechanism by which thermal diffusivity depth profiles are
affected by first carburizing and then quenching. The common process in both these heat
treatments is the diffusion of carbon. Two novel observations are made: first, it is found that the
shape of the thermal diffusivity profile is dominated by carbon diffusion, and second, the
absolute thermal diffusivity is a function of microstructure. Furthermore, a novel method of
accounting for surface roughness of the samples is developed, which models roughness as white
noise of random spatial distribution in the frequency domain. This extends the suitability of

depth profilometry to industrial applications.

ii



Thermal-wave Slice Diffraction Tomography (TSDT) is a photothermal imaging
technique for non-destructive detection of sub-surface cross-sectional defects in opaque solids in
the very-near-surface region (um-mm). Conventional reconstructions of the well-posed
propagating wave-field tomographies cannot be applied to the ili-posed thermal wave problem.
A regularization method, such as Tikhonov regularization, is used to invert the almost singular
matrices resulting from the ill-posedness of the inverse thermal wave problem. Multiplicity of
solutions, which is inherent to ill-posed problems, is resolved by adopting the L-curve method
for optimization. For tomographic imaging of sub-surface defects, a new high-resolution
radiometric setup is constructed, which reduces the broadening of images associated with
previous low-resolution setups.

In summary, two important thermal-wave problems, namely, the depth profilometry and
diffraction tomography, were studied in this work. Several improvements to existing methods

were implemented, making them attractive for industrial applications.
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Chapter 1

Introduction to Thermal-Wave Inverse
problems

1.1 History

Photothermal methods involve generating and propagating heat by absorbing modulated
radiation. These methods date back to as early as 1880 when Alexander Graham Bell [1]
invented the “photophone”. This device converted sound waves into a modulating beam of light,
transmitted the light through the air, and reconverted the light into sound waves at the receiving
end. The transmission was performed in open air which often blocked and scattered the
lightwaves, causing Bell to eventually abandon the idea of the photophone. The principle of the
photophone was only redeveloped as late as 1976 with the Rosencwaig and Gersho theory {2,3],
which described the photoacoustic effect. Their theory resulted in the birth of photothermal
detection methods. Today, there are numerous photothermal detection schemes applied to a
variety of applications. It has been said by photothermal scientists that the photothermal

principle is a solution in search of a problem.



1.2 Thermal Wave Forward Theory

1.2.1 One-Dimensional Formulation

When an energy source is focused onto the surface of an opaque solid material, the
material will absorb some of the incident energy. This will, in turn, produce a localized heat flow
in the material followed by a non-radiative de-excitation process [4]. If this energy source is
modulated, a periodic heat flow is produced in the material. The resulting periodic heat flow in
the material is a diffusive process that produces a periodic temperature distribution called a

thermal wave (Figure 1.1).

Intensity Modulated
LaserBeam

T
ol >
H
A
Sub-surface 0
Defect
v ¢
N ~ ~ ~~ XV

Figure 1.1 Schematic picture of periodic heat diffusion in an opaque solid.

The characteristics of a thermal wave and its behavior can be understood by considering
the simplest geometry. Time-dependent heat flow is governed by the one-dimensional heat
diffusion equation [5],

52 oT(x, )
K@'T(x, ! =pc—>o (1.1)



where T is the temperature excursion from the equilibrium, p, ¢ and & are the mass density,
specific heat and thermal conductivity of the medium, respectively. The temperature excursion
T, is generated by a periodic source, represented by e=*, where o is the angular frequency of the
heat source. Equation (1.1) can be written in the form of a pseudo-wave Helmholz equation by

using a Fourier transformation as follows,
4 2(x, ) = 0 1.2
£ Tx, ) — ¢ T(x, ) = (1.2)

where g is the complex wave number,

g=1+L (1.3a)

and p is the thermal diffusion length also referred to as the damping constant, and is equal to the

wavelength of the wave, A, divided by 2.

P _tn _ [ G (1.3b)

witha = 5= (1.3¢)

where a is the thermal diffusivity and gives a measure of the rate of heat propagation in a

material and f. is the modulating frequency. Equation (1.2) can be solved to obtain the



one-dimensional thermal wave response in a uniform, homogeneous, isotropic material,

propagating in the positive x-direction [5] as
T(x, 1) = Ty exp(i(gx — wt)), (1.9

where Ty is the surface temperature produced by the source. Thermal waves are heavily damped,
as can be seen by equation (1.4) which shows a decay in the amplitude of a thermal wave with
distance from the surface of the material. Equation (1.4) also shows that the penetration depth
can change by altering the modulation frequency. For low frequencies, a deep penetration is
observed, and for high frequencies, a shallow penetration is observed [6].

Another interesting property of thermal waves is that they are thought to “reflect”
between media of different thermal characteristics. The thermal wave reflection coefficient R,

for the interface between medium 1 (bulk) and 2 (air) is given by [7]

_1=by
Ra1 =175, (1.5)

where
(pcK)2 e
b2 = | o) = Ve (1.6)

and, e; and e, are the thermal effusivities of media 2 and 1, respectively. The thermal effusivity

is the preferred property when referring to thermal boundaries.
[t is important to note that in reality thermal waves do not reflect as rays do in optical

fields. However, the fact that the thermal wave interface can be mathematically modeled using a



reflection coefficient has led to the misconception in the photothermal community that thermal
waves actually reflect [8]. Such modeling [9] has evolved merely for mathematical convenience
and it has also been reinforced by strong agreement between theory and experiment. The
existence of reflection phenomenon in thermal waves was first explained by Shen and Mandelis

[10]. Mandelis argued, that according to Fourier’s law of heat conduction,

F(r,t) = —kvT(r, 1), (1.7)

where F is the thermal flux, 7 is temperature, and k is the thermal conductivity of the material,
conduction heat transfer is unidirectional and only activated by existing temperature gradients
that generate net heat fluxes in appropriate directions of a material. Therefore, unlike
conventional propagating wave fields, thermal waves cannot sustain reflections at boundaries
where thermophysical properties change abruptly. Instead the rate of forward propagation at the
boundary increases (e;>e;) or decreases (e:<e;) according to the thermal properties of the
boundary. Mandelis further explained [11] that the diffusion equation is a parabolic (i.e.,
first-order in time) rather than hyperbolic (i.e., second-order in time) differential equation.
Propagating waves such as sound waves are represented by a hyperbolic differential equation. In
the hyperbolic differential equation, which has two characteristic curves (squared-law), both
forward and backward propagation are supported. This is significant, since a parabolic
differential equation has only one characteristic curve (linear-law) and thus cannot support
backward propagation. Strictly speaking, the terminology of “reflection” and “refraction” at
interfaces is inaccurate in the context of thermal waves. Mandelis correctly defined two new

terms, namely, thermal-energy accumulation (forward flux decrease), and thermal-energy



depletion (forward flux increase) for heat diffusion waves. In summary, thermal wave reflections
at interfaces are not physically possible because of the unidirectional (thermal gradient driven)

and non-squared-law nature of thermal diffusion waves.

1.2.2 Experimental Methods
1.2.2.1 Thermal Wave Imaging

A basic application of the photothermal principle is thermal wave imaging, which is a
technique used to uncover sub-surface defects of opaque solids. The imaging can be achieved
using intensity-modulated heat sources such as lasers or particle beams and detectors such as
microphones, ultrasonic transducers, infrared detectors and laser probes [12]. The first evidence
that thermal waves could be used in imaging was given by Wong et al. [13] in 1978, who later
developed a new imaging technique called Scanning Photoacoustic Microscopy (SPAM) [14]. In
this technique, a modulated heat source scanned the surface of the sample, producing heat at
each point that was then detected by a photoacoustic cell.

The basic ingredients for a thermal microscope include a source of energy, a physical
scatterer, and a detector of the radiation scattered [12]. A convenient source of energy is the laser
beam, which can be easily modulated and focused to yield a coherent localized energy source.
The physical scatterer is the sub-surface defect object. For an image to be formed, either the
source of energy or the detector must be localized. Thermal wave imaging generally involves the
use of a localized source. The contrast in thermal wave images is controlled by scatterers located
within a fraction of a thermal wavelength away from the source. Thus, when the thermal
wavelength is varied, the region of the specimen that contributes to the image also changes. The

heavily damped nature of thermal waves makes them well-suited to the non-destructive
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evaluation of near sub-surface defects in opaque solids, ranging from a few micrometers to
several millimeters.

Moreover, due to their heavily damped nature, thermal waves can achieve resolutions
much higher than those possible with a conventional microscope. The maximum resolution of a
conventional microscope is diffraction-limited. This means that the resolution is roughly equal to
the wavelength of light used. The diffraction limit is derived for the far-field (Fraunhofer)
diffraction approximations, which assume a large distance between the source and observation
point. Since thermal waves operate in the extreme-near-field limit (i.e., distances of the order or
smaller than the wavelength), the thermal wavelength does not become the limiting factor of
resolution [15], making it possible to achieve much higher resolutions. The resolution can also
be increased with increasing frequency, however an increased frequency is accompanied by a
low signal-to-noise ratio (SNR). Therefore, it is important to seek a compromise between
resolution and SNR. In addition, the resolution of a thermal microscope also depends on several
other parameters, the most important being the beam spot size. If the beam spot is not smaller
than the defect, the image will broaden [15].

Thermal wave microscopes come in several different forms, each with associated
advantages and disadvantages, depending on the nature of the source and the detector. As
mentioned before, all thermal microscopes have a localized heat source, but differ in that the
detectors may be local or non local to a greater or lesser degree. For example, the focused
infrared detector is a local point temperature detector; the collinear mirage-effect laser probe is a
line detector; and the microphone maybe an area detector [12]. The most prominent of these

thermal wave detection methods are described briefly below.



1.2.2.2 Thermal Wave Detection Techniques

a) Photoacoustic gas-cell detection

Photoacoustic gas-cell detection [13-14,16-22] is historically the earliest method, and
uses a microphone to detect the pressure variations in a volume of gas enclosed in a cell, while a
focused modulated laser beam is scanned over the surface of the sample. The technique can be
thought of as imaging with a point source and an area detector. An advantage of this technique is
that it lends itself readily to theoretical analysis. This is due to the planar symmetry of the
detection scheme, which allows the use of plane-wave scattering theory [22]. This symmetry,
unfortunately, precludes the detection of closed vertical cracks [12]. It is, however, applicable to
detection of complex shapes, since the cell can be designed to fit the sample. A serious
disadvantage of the photoacoustic gas-cell detection method is that the sample must be enclosed
in an airtight cell. Therefore, it is essentially a contact method. It is also a destructive method
due to sample dimension limitations. A further disadvantage is that the frequency range is
limited by the audio response range of the microphone, which is about 10kHz.

b) Piezoelectric detection

Piezoelectric detection [23-26] monitors the modulated thermal expansion of a sample by
attaching a piezoelectric solid to it. The modulating laser beam generates thermo-elastic waves
that propagate through the sample. These waves are picked up by the piezoelectric detector and
are converted into a measurable voltage [23]. This technique measures both thermal and acoustic
expansions of the material. Most piezoelectric detection systems use an optical beam scanning
method in which the laser scans the sample. An advantage of the method is that a wide range of

frequencies is allowed. There are two major difficulties with this method. First, the detector must



be physically bonded to the sample without affecting the quality of the sample and second the
acoustic and thermal modes must be deconvoluted.

¢} Pyroelectric detection

In pyroelectric detection [27,28], a temperature modulation can be converted directly into
an electric signal by use of the pyroelectric effect [27]. This technique consists of using a thin
pyroelectric film in direct contact with a solid sample on which a modulated monochromatic
light beam is incident. Following the absorption of the incident light, the temperature of the
sample fluctuates and, through heat diffusion, the temperature at the sample-pyroelectric film
interface fluctuates. As a result of this temperature fluctuation, a pyroelectric signal proportional
to the temperature change in the film is produced. The first pyroelectric thermal wave image was
obtained by Baumann et al. [29]. An advantage of pyroelectric detection is that it needs very
little incident laser power (~mW) because it senses the sample back-surface temperature directly.
In recent years, pyroelectric detection has been used as a non-contact technique [10].

d) Optical beam deflection (Mirage) method

The optical beam deflection technique otherwise known as Mirage detection was first
introduced by Boccara et al. {30]. This technique avoids the difficulties that arise from
sample-detector contact. The method uses a laser probe for detection and, is therefore a line
detector method. The modulated heating of the sample produces a periodic heating of the gas
(air) adjacent to the sample causing a periodic variation in the index of refraction of the gas [4].
The change in the refractive index of the air deflects the probe laser, which is measured by a
position sensitive optical detector [31]. The optical beam deflection technique is a non-contact
method and can operate over a wide frequency range. A disadvantage of this technique is the

practical difficulty of maintaining two laser positions (pump and probe), and especially when



controlling the height of the probe beam during a scan [12]. The requirement that the sample
must have a flat or cylindrical surface further limits the method.

e) Photothermal radiometric detection (PTR)

In photothermal radiometric detection, [32-35] variations in the local surface temperature
are measured with a focused infrared detector. The first method based on the infrared emission
from the specimen was described by Nordal and Kanstad [32]. The source is a modulated laser
beam focused on the surface. The thermal microscope consists of a point source and a point
detector, providing one of the highest resolution methods in the extreme-near-field.
Photothermal radiometric imaging was demonstrated by Busse [33] using a Golay infrared
detector. The method was later extended by Busse and Renk [35] for stereoscopic depth
localization of sub-surface defects using a combination of localized heating and detection. An
advantage of this technique is that it does not depend on heat flow into air. The analysis is not
complicated by the presence of air, which may cause phase delays and signal magnitude
changes. However, variations in surface emissivity can obscure the amplitude of the thermal
wave image. Photothermal radiometric detection is the experimental method that was chosen in
this work to be used for the frequency scanning and cross-sectional imaging of a sample, as

described in chapters 4 and 7, respectively.

1.3 Thermal Wave Inverse Theory

In the preceding sections, the thermal wave forward theory was described as a method for
obtaining experimental data which when combined with a theoretical model can be used to

describe the behavior of thermal waves. This can be referred to as the forward process. The
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simplest application of a forward process is the determination of thermal diffusivity of a
homogeneous material. The process involves experimentally obtaining the surface temperature
distribution and fitting a theoretical formulation to the experimental “forward™ data. The fitting
parameter directly yields the homogenous thermal diffusivity. However, there exists another
class of problems where the required variable cannot be directly obtained by forward fitting. An
example would be a material with near-surface inhomogeneities or subsurface defects. In such
cases, a numerical technique is required to invert or reconstruct the sought parameter from the
forward process. This can be referred to as the inverse process. It is important to note that the
thermal wave inverse problem is an ill-posed problem in that small perturbations in data can lead
to large artifacts in the reconstruction. This is unlike the well-posed propagation wave field
problems where conventional reconstructions can be applied. To solve the ill-posed thermal
problem, regularization procedures such as Tikhonov regularization are used. This is explained
in detail in Chapter 7.

In recent years, rapid advances in computer hardware and software have led to an
increase interest in solving thermal wave inverse problems. There are two main types of thermal
inhomogeneities ideal for inverse problem implementation (Figure 1.2). The first is a
continuously varying thermal inhomogeneity (known as Type A), and the second is a thermal
sub-surface defect (known as Type B). In the case of continuously inhomogeneous materials, the
goal is to reconstruct the thermal diffusivity (conductivity) profiles. The point of interest with a
sub-surface defect is the identification of the exact location and shape of the defect at a
cross-section. The continuously thermal inhomogeneous problem can be treated using a
one-dimensional geometry, whereas the sub-surface defect problem requires a three-dimensional

geometry. In this study, two thermal wave inverse problems as applied to opaque materials will
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be investigated in the frequency-domain. The first problem is a one-dimensional depth
profilometric problem (Type A), and the second problem is a three-dimensional thermal wave
diffraction tomography problem (Type B). A review of these problems is presented in the

following sections.

Type A Type B
Figure 1.2
Thermal Inhomogeneities Inverse Problem
Type A | continuously inhomogeneous 1-D (depth profilometry)
Type B | sub-surface defect 3-D (thermal wave tomography)

1.3.1 Depth Profilometry

Depth profilometry (Type A inverse problem) is an important inverse problem where the
thermal diffusivity profile is inverted from the experimental surface information. Thermal
diffusivity is a property that depends on the microstructural properties of a material and can thus
be used to identify changes that take place in a material as a result of surface modification
processes, such as, laser processing, case hardening, and coating deposition. For determining the
metallurgical properties of case treated materials, depth profilometry offers an important
advantage over existing techniques by being a non-destructive method.

With inhomogeneous materials, the photothermal amplitude and phase signal channels
carry information about any heat transport disruption or change below the surface. These
changes must be interpreted with appropriate models, in order to yield reliable reconstructions of

the spatially variant thermal diffusivity of a sample. A good review dating up to 1996 on the
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depth profilometric problem was composed by Mandelis et al. [36] and is summarized below.
The first attempt to study the properties of surface hardened steel in terms of an inverse process
was made by Jaarinen and Luukkala [37], who developed a numerical technique based on the
solution of the thermal-wave equation using a two-dimensional finite difference grid. A
theoretical formulation of the depth profilometric problem was first described by Vidberg et al.
[38]. The authors measured the radial variation of the surface temperature of a heated point at a
single modulation frequency. The thermal conductivity and heat capacity profiles were
reconstructed using Pade approximants for the inversion of spatial Laplace transforms. The
model was only valid for nonconventional experimental geometries and the reconstructed
profiles were not always numerically reliable. In a later publication [39], the well-known
Hamilton-Jacobi formalism from Classical Mechanics was introduced into the thermal-wave
problem by treating the AC temperature field as a Thermal Harmonic Oscillator (THO) [40] and
inverting the amplitude and phase of the experimental data by matching it to explicit theoretical
expressions for a semi-infinite material. Experimental inversions were obtained for a liquid
crystal octylcyanobiphenyl (8CB) [41] using this method with a WKBJ type approximation.
Further inversions with semi-infinite laser-processed solids were reported later [42,43]. The
method was very sensitive to the presence of experimental noise and was not valid in all physical
limiting cases. An inversion procedure for a finite thickness problem has also been reported
based on the same THO approach [40]. Glorieux et al. [44], then proposed a model that assumed
locally constant or linearly-dependent thermal conductivity on depth where the solid was divided
up into a virtual incremental discrete-layer system and, in each layer, forward and reverse
thermal-wave equations were set up for constant conductivity. The theory presents problems

with the treatment of finite-thickness materials, since it ignores the multiple inter-reflections of
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the thermal wave between the two boundaries (surfaces) of the material. Fivez and Thoen
reported yet another version [45] of the foregoing inversion problem with a linear dependence of
the local (incremental) thermal conductivity with depth. Explicit expressions were derived and
matched with experimental data, and the results of the inversions were in agreement with those
obtained by Ma et al. [42]. The major disadvantage of this approach is its inability to treat
semi-infinite solids, since the explicit formulas depend on the boundedness of the derived Bessel
and Neumann functions. Instead, the approach requires flat profiles in the bulk of the material
under investigation. This is because several combinations of these functions utilized in this
approach become infinite in value as the depth increases without bound. A theoretical approach
by Lan et al. [46] combines the approaches of both prior papers [44,45]. In this paper, a mirror
anticorrelation was found between thermal diffusivity and quenched steels. The method has
improved strengths from Ref. [44,45], but it is subject to some combination shortcomings: a flat
profile of the thermal conductivity at large distances [47] (i.e., at “infinity”) to induce
boundedness, and the lack of a theoretical basis to treat multiple thermal-wave reflections from
the opposite surfaces of finitely-thick samples. In a theoretical paper [48], Fivez and Thoen
presented a new analytical approach to the inverse problem that is valid for semi-infinite solids
at sufficiently high frequencies, but shows significant deviations of reconstructed thermophysical
profiles from the expected values at low frequencies (equivalent to large depths in a sample).

A good overview of one-dimensional ill-posed inverse problems was given by Power and
Prystay [49]. The authors introduced the expectation-minimum principle as a robust method of
recovery of the heat flux profile. In a companion paper Power and Prystay [50] found that the
expectation-minimum principle had an improved resolution over the zero-order Tikhonov

regularization. A different approach was developed by Glorieux and Thoen [51] using neural
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networks, in which the reconstruction was obtained by observation of the signal and thus on a
‘learning’ relation between profile-signal examples. The accuracy of such a method depends on
the training of the neural network. Mandelis et al. [36] further formulated a complete generalized
expression for the thermal-wave field in an inhomogeneous bounded solid. The method
improved on the previously derived formulas based on the THO approach [39,42,52] by ensuring
proper convergence to limiting cases. Another numerical methodology was developed by
Aleshin and Vysloush [53] who attempted to develop a general inverse problem-solving
algorithm with the use of Tikhonov regularization. A method by Kolarov and Velinov [54]
developed the depth profilometric problem based on the Riccati first-order differential equation.
A numerical method was presented to solve the general Riccati equation in real time. In this
formulation, in the limit of infinitesimally thin layers, the recursion used in most works is
replaced by a non-linear Ricatti equation. LiVoti et al. [55] also developed a similar formulation
using a Singular-Value-Decomposition (SVD) regularized inversion method. Xu et al. [56]
presented a regularized chi-square minimization technique. Munidasa et al. [57] applied the
THO method [36] on quenched steels and found an anticorrelation between thermal diffusivity
and microhardness. However, no explanation was given on the thermal diffusivity mechanism.
This was a preliminary study which tested the technique under laboratory conditions. Although
the samples used were rough, the roughness response on the experimental data was neglected.
Walther and Aleshin [58] developed a method which combines laterally-scanned and
frequency-resolved measurements for the inspection of inhomogeneous samples by making use
of a Tikhonov stabilizer function. A lateral scan can be rigorous, experimentally increasing the
ill-posedness of the problem since more dimensions are introduced. Miller et al. [59] recently

introduced a numerical reconstruction method based on an adaptive multi-scale algorithm with
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no approximations to the heat diffusion equation. An exact physical model is used which allows
the profile reconstruction process to be formulated as a non-linear inverse scattering problem.
The method is currently being tested on experimental data. In summary, the depth profilometric
methods described above can be divided into three main categories: 1) reconstructing the profile
using a slicing methodology or WKBJ type approximation with minimization methods, 2) using
a matrix-based formulation and reconstructing in terms of regularization (Expectation Minimum,

Tikhonov, SVD), and 3) neural network methods which do not require analytical formulation for

the forward problem.

1.3.2 Thermal Wave Slice Diffraction Tomography

Thermal Wave Slice Diffraction Tomography (TSDT) (Type B inverse problem), is a
photothermal imaging technique for Non-Destructive Evaluation (NDE), leading to the detection
of sub-surface cross-sectional defects in opaque solids in the very-near-surface region (um-mm).
Thermal wave tomography refers to cross-sectional imaging of an object upon reconstruction
from its projections from different directions. This calls for an inversion technique which can
reconstruct the thermal defect from experimental cross-sectional data. Images obtained by
thermal wave imaging are two-dimensional “projections” of sub-surface features. These images
are projections in the sense that they are formed by mapping the sample surface temperature in a
two-dimensional raster without regard to the actual depth position of scatterers. Although work
has been done in obtaining depth information on sub-surface features [35,60] and depth profiling
of layered samples using equivalent experimental techniques, no studies have been reported until
recently about obtaining tomographic images using thermal waves. A photothermal method

based on the mirage effect was utilized to obtain depth information of defects using a
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tomographic like procedure [61]. However, due to the line-integral nature of the probe beam, this
technique did not yield proper tomographic imaging.

The first rigorous implementation of TSDT detected scan data by photopyroelectric
detection [62], followed by reconstruction using an algorithm based on the ray-like propagation
of thermal waves [63,64]. The instrumentation involved attaching a thin pyroelectric film to the
back of a sample with a remote metal tip detection geometry. Since both the modulated heating
source and detector were localized, they were scanned independently to perform a limited angle
tomographic scan. A reconstruction method based on the ray-like propagation of thermal wave
in one-dimension calculated average values of thermal diffusivity using phase data. Each imaged
cross-section was divided into rectangular pixels and thermal diffusivity values for individual
pixels were calculated. All the reconstructed images showed an extensive elongation of the
defect cross-section along the vertical direction. The limitations of this method suggested that a
diffractive propagation procedure be considered for thermal waves.

A high-fidelity ray-based tomographic imaging reconstruction method for
photopyroelectric thermal detection was later demonstrated by Yarai et al. [65]. The
experimental method improved on the scan data resolution from the previous works [63,64].
High signal-to-noise ratio detection and resolution were possible by using a film of high
pyroelectric coefficient, a very-high-power laser diode and a very-small diameter metal probe
tip. The bypass transmission ratio of a thermal wave was calculated between every laser and
probe tip position along the defect by using the detected phase signal. The cross-sectional area to
be imaged was divided into a picture pixel matrix. Every pixel was classified into “1” or “0”
according to summed values of the bypass transmission ratio; a larger value than a certain

threshold level was classified as “1”. The reconstruction technique presented by Yarai et al. was
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not necessarily a better technique than the previous one discussed here. Classification of pixels
into “I1” and “0” increased image contrast, but it did not indicate the true sample shape. This
method also suffered from the assumption of ray-like-propagation.

Unlike electromagnetic or acoustic tomography, thermal wave tomography suffers from
two drawbacks. First, propagation distances of the thermal wave are short, and second the
thermal wave vector is complex, lying along the 45° line in the complex plane [66]. Therefore,
the conventional reconstruction used in well-posed propagating wave-field tomographies [67]
cannot be applied to the thermal wave problem. To overcome the limitations of a ray optic
tomographic reconstruction, Pade and Mandelis [68,69] developed a method taking into account
the diffractive and heavily damped nature of thermal waves. The problem approximated the
wave field with the two-dimensional Green function and used Tikhonov regularization to deal
with the ill-conditioning of thermal waves. The limitation of this method was that it only
addressed the physical behavior of thermal waves approximately. The technique, however
resulted in adequate reconstructions of cross-sections away from the incident laser source where
a strong singularity was pronounced. To avoid the strong two-dimensional singularity at the
origin, a three-dimensional formulation of the problem was needed. More recently, Nicolaides
and Mandelis [70] implemented a rigorous mathematical model representing the behavior of
three-dimensional thermal waves. The method was based on a theoretical expression of Green
function for the three-dimensional Helmholtz pseudowave equation [71]. A major limitation of
the above work was that an optimization procedure was not implemented to overcome the
problem of multiple solutions, which is inherent to ill-posed problems. In a companion paper,
Nicolaides et al. [72] successfully reconstructed thermal defects using photothermal radiometry.

The experimental technique was made truly non-contact by obtaining cross-sectional scans with
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photothermal-radiometric detection. However, the use of low resolution photothermal
radiometric experimental setup, resulted in reconstructed images that were broadened.

A new numerical technique for solving the forward problem [71] in the wavelet space has
recently been developed by Miller et al. [73]. This technique uses a wavelet-based regularization
method to better resolve the edge structures of defects relative to reconstructions obtained with
smoothness-type regularization. In the future, the experimental data obtained in this thesis will

be tested with Miller’s formalism.

1.4 Objectives

The literature review presented in the previous sections has set the stage for the
objectives of this thesis. The overall objective was to overcome the above described limitations
of depth profilometry and thermal wave diffraction tomography. Since these techniques are
distinct thermal wave inverse problems, they are treated separately. In the following sections the

objectives relating to each problem are described.

1.4.1 Depth Profilometry

The non-destructive nature of depth profilometry offers significant advantages over
currently used conventional microhardness techniques. The first objective of this thesis is to
explain the correlation between thermal diffusivity and the heat treatment of steels, keeping in
mind the anticorrelation between thermal diffusivity and microhardness in quenched steel as
observed by Munidasa et al. [S7]. This thesis considers not only the effects of quenching on the
thermal diffusivity profiles, but also the effects of carburizing. Carburizing is the absorption and

diffusion of carbon into solid ferrous alloys by heating. The microstructure of the near-surface
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region is altered producing carbon gradients and is therefore of interest when studying the effects
of carburizing on thermal diffusivity. Furthermore, Munidasa et al. [57] neglected to include the
effects of surface roughness on the obtained experimental data. In the context of a laboratory
study, neglecting surface roughness does not appear to be a severe limitation because rough
samples can be easily polished. However, as an on-line industrial application, sample polishing
would be time consuming. These reasons validate the importance of incorporating the effects of
roughness on the forward experimental data. The study of surface roughness in hardened steels
has driven the second objective of the thesis which is to take into account the influence of
surface roughness on experimentally gathered data. It is also important to analyze a sufficiently
large number of samples so that statistical variations can be documented. This served as a third

objective of this thesis.

1.4.2 Thermal Wave Slice Diffraction Tomography

Muitiplicity of solutions is inherent to ill-posed problems. Earlier works have used a
“brute-force” approach [70,72] to obtain a single solution. However, in order to pinpoint a
reasonable solution, it is important to adapt a rigorous optimization approach. This is especially
important if TSDT can be successfully implemented for an industrial application. Incorporating a
suitable optimization algorithm in TSDT formed the fourth objective of this thesis.

The fifth and final objective of this thesis was to construct a high resolution photothermal
radiometric experimental setup. The purpose of such a high resolution setup is to overcome the

problem of image broadening associated with the low resolution setup [72].
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1.5 Outline of Thesis

This thesis is divided into two main parts. The first part (Chapters 2-5) deals with the
depth profilometric problem, while the second part (Chapters 6-9) presents the thermal wave
tomography problem.

Chapter 2 sets the theoretical basis for the depth profilometric problem and develops a
theoretical model to treat a rough layer on an inhomogeneous semi-infinite substrate. Chapter 3
outlines the numerical methodology used and implements the theoretical development of
Chapter 2. In Chapter 4, the low resolution photothermal radiometric setup is explained and the
experimental data obtained are presented and discussed. Chapter S includes the reconstructions
of the data presented in Chapter 4 by way of eliminating roughness in a novel manner.

Chapter 6 presents the theoretical basis for thermal wave diffraction tomography, and
also presents a theoretical expression for the three-dimensional Green function and the incident
temperature field. In Chapter 7, the numerical aspects of the thermal wave diffraction problem
are discussed and the technique used to optimize the inversion is presented. Chapter 8 describes
the construction of the high resolution experimental setup. Although not outlined in the
objectives of this thesis, an application of high resolution off-set imaging of cracks is also
developed. Tomographic experiments are also presented in Chapter 8, which, in turn, are used
for real tomographic inversions, as described in Chapter 9. Chapter 10 presents the overall

conclusions of this thesis as well as recommendations for future work.
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Chapter 2

Forward Process: Depth Profilometry

2.1 Introduction

Depth profilometry is a one-dimensional inverse problem where the thermal diffusivity
profile is inverted from a modulated temperature surface information. Before the inverse
problem can be solved the forward problem must be developed. The depth profilometric forward
problem is based on formulating a one-dimensional temperature distribution model of a thermal
wave field from a homogeneous layer on top of a semi-infinite inhomogeneous layer. The top
homogeneous layer is introduced into the model so as to account for the thermal response due to
the surface conditions (roughness) of the sample. In this way the effects of roughness can be
deconvolved to recover the sample’s true thermal inhomogeneities. Previous depth profilometry
models treated the surface thermal wave response of a smoothed surface [36] and did not
account for roughness.

In this chapter the standard (Green function method) one-dimensional treatment of the
thermal-wave equation will be presented for a homogeneous sample. This will be followed by a
presentation of the thermal wave field in an inhomogeneous layer in terms of treating the thermal
wave as a thermal harmonic oscillator (THO) and thus implementing the Hamilton-Jacobi

formalism [40] from classical mechanics. The thermal wave theory of a homogeneous layer on
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top of a semi-infinite inhomogeneous layer will be developed as the depth profilometric solution

to the forward problem.

2.2 General Solution of the Thermal Wave Field in a
Homogeneous Solid

The general form of the heat diffusion equation in Cartesian coordinates for the

temperature distribution 7{(r,t) with a thermal source g(r,t) is

V2T ) - 2T 1) = —q(r.) @1

where a is the thermal diffusivity and & is the thermal conductivity, both of which are assumed
to not vary in space. Applying the temporal Fourier transform, equation (2.1) transforms into the

frequency domain as follows,
V2 0(r,0) - 0(@)O(r, ) = 4 (r,) @2)

where O(r,w) is the wideband Fourier transform of 7(r,t), which is assumed to exist as

O(r,w) = | T(r,)e="dt, (232)
and
o(w) = (1 +1i) /% (2.3b)
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where o is the complex wavenumber, and © represents the angular modulation frequency. To
obtain the conventional thermal-wave behavior, the wideband spectral equation (2.2) must be
reduced to a single spectral component form by assuming harmonic thermal excitation at some
specific frequency fi=w¢/2n [S]. The temperature function for a single spectral component of the

Fourier field after an inverse Fourier transform, equation (2.3a) becomes
1 +0
Ir. =5, | ©(r, w)d(w - wo)edew = B(r, wo)e™* = T(r, wo), (2.4)

where 8(w-wo) is the Dirac delta function, which is used to show that the harmonic field peaks
infinitely at the single component ®=w,. By trivially substituting ® for w, and using equation

(2.4), equation (2.2) can be written as the thermal-wave field equation
V2 I(r, @) - X (@)T(r, ) = 4. 0r, ), @3)
where T(r,w=w.) is assumed to exist and is well defined at the spectral component of interest wo.

Following a Green function methodology [S] which is based on solving for a homogeneous

boundary problem, the solution to equation (2.5) is,

1(r,0) = % §ff ,, O(ro, @)G(riro; )dVs

+a $; [G(r|re; ) Vo T(r, ) — T(r*, ) Vo G(r| ri; )] « dSo
(2.6)
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where r and r, are the observation and source coordinates, respectively. So is the surface
surrounding the source volume V; and r§ is a coordinate point on So. G(r| r§; w) is the associated
Green function that depends on the geometry boundaries. The thermal diffusivity and

conductivity are assumed to be independent of the coordinate in Vo.

2.3 One-Dimensional Thermal Wave Field of Homogeneous
Semi-Infinite Solid with Prescribed Surface Flux at x=0

The AC thermal wave flux prescribed at x=0 is given by
F(0,) = 3 Foe™ @.7)

where Fo is the incident flux. The associated Green function must satisfy a homogeneous

Neumann boundary condition at the source coordinate x,=0 as shown below,

%Go(x —Xx9,w) =0. (2.8)

In the absence of a bulk source, equation (2.6) reduces in one-dimension to

T(x, w) = aG(x|0; w)[a-i:T (x; )| xo=0 ]
2.9)

= a(_e_:i)[_f&eiwl] =F, Ja e~(@x+T) giot =F, 1 e~ (ox+ig) gion
2k eJo

kJow
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where e=4//ais the thermal effusivity of the semi-infinite material. It can be seen by the

equation that for high thermal effusivity a low thermal signal is expected since the thermal

power is conducted away into the bulk of the material. The resulting thermal field exhibits the
well-known /4 phase lag with respect to the input thermal wave flux predicted for semi-infinite

geometries [5,40].

2.4 The Hamilton-Jacobi Thermal Wave Oscillator: Solution
to an Inhomogeneous Semi-Infinite Solid

A mathematical formalism for the description of the propagation of thermal waves in
solids has been pioneered by Mandelis (1985) [39,40]. The method is based on the analogy
between thermal waves and classical mechanics by expressing the heat conduction equation in

the Hamilton-Jacobi formulation. As outlined above, the AC temperature field can be written as
T(x, 1) = T(x)e="* (2.10)

which yields the Fourier-Helmholtz equation

L ko)L 1) | - iwoplx)c) Tx) = 0, @.11)

with continuously variable thermal conductivity, &(x), density p(x), and specific heat c(x). For a

semi-inifinite medium, the boundary conditions at x=0 are,
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T(x=0)=T, (2.12a)
dT(x)

~k() 7 l=0 = Qo (2.12b)

where Qo is the thermal flux prescribed on the surface (x=0). Equation (2.11) satisfies the Euler

equation

oL d__ oL _
oT ~dro@Tidn) = % 2.13)

with the Langrangian L, corresponding to [74]

L= 2k( )(d x) ) + iwp(x)c(x)T?(x) (2.14)

and yielding the Hamiltonian

dTi
Hx, Tpr) = pr S22 ) - L
(2.15)
= 22’(1) 2 0p(X)cx)T? (),
where p. is the generalized momentum defined by
dT(x
pr(x) = %% =k(x) = T( ) (2.16)

Equations (2.15) and (2.16) show that the generalized coordinate and momentum are the field
temperature and heat flux, respectively. For an appropriate Hamiltonian, the canonical

transformation is required, such that both coordinate and momentum will be constants of the

27



motion. The thermal-harmonic-oscillator canonical Hamiltonian (constant of motion) is then

derived as
H(pr,7) = 3p}— 22, @.17)

which is analogous to the classical canonical Hamiltonian function H(pr, 1) = p3/2m + Kt2/2

with the following effective physical assignations of a harmonic oscillator

1 = [k(x)p(x)c(x)] " T(x) = [e(x)]* T(x); (position), (2.182)

pr=k(x) dT(x) (momentum), (2.18b)
L

=] [% 6[ = } (inertia), (2.18¢)

K =-iw, (spring constant). (2.18d)

where e(x) = [Jk(x)p(x)c(x) is the material thermal effusivity. Finally, the temperature field 7(x)

in equation (2.18a) may be written as [40],

T(x) = [Cef® —~ Cre~HM], (2.19)

.
2 Je(x)

The exponent H(x), is defined as

x x 12
H(x) = g oy, w)dy = (j) (1+ i)(z—:());j) dy, (2.20)
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where a(y) is the depth thermal diffusivity distribution of the solid and C; and C; are integration

constants [40],

Pr, .
Cp=Jge”“+rmmm (2.21b)
P ;
C, = J% et _ 14 (2.21b)

where Pro and 1o can be determined by boundary (equations (2.12a) and (2.12b)) and limiting

conditions. The material under investigation is assumed to be opaque in that its optical

penetration depth is much shorter than the shortest thermal diffusion length, 4 = J2d/w .

2.5 Discrete Homogeneous Layer on a Semi-Infinite
Inhomogeneous Layer

The regions surrounding the investigated inhomogeneous layer (x>0) include an air-solid

homogeneous interface (x=-d) and a solid-backing interface (x=0) as shown in Figure 2.1.

air roughness layer of
layer interest
(a) (2)
modulated & 205 X oo
laser beam

=

-d

Figure 2.1 Depth profilometric region under investigation.
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The AC temperature fields in each region air (a), roughness layer (1) and investigated

inhomogeneous layer (2) are:

T.(x, ) = D e+ ; x<-d= x+d<0 (2.22a)
T\(x,w)=Be’*+Ce™?"” ; —d<x<0 (2.22b)
T)(x,w) = —I—-[C 1e2®) — Cre~H209] :0<x<® (2.22¢)

2 /ex(x)

Equation (2.22a) is the bounded (finite as x —+ —0) solution to the thermal-wave equation for a
homogeneous semi-infinite medium (shown in Section 2.3) [5] and equation (2.22b) is the
solution for a finite homogeneous region. In equations (2.22a) and (2.22b) o; is the complex
wave number defined in equation (2.4), where q; is the thermal diffusivity of the j-th medium
(j:1,2). Equation (2.22c) is the result of treating the inhomogeneous layer thermal wave field in
terms of the Hamilton-Jacobi formulation as shown in Section 2.3, and applying the appropriate
subscript, 2, to the expressions for identifying the investigated layer. Constants D, B, and C
depend on the boundary and limiting conditions of the system, and C, and C; are as defined in

equations (2.20a) and (2.20b), respectively.

The boundary conditions for the regions at x=-d and x=0 are the continuity of

temperature and the continuity of heat flux:

T\(x=-d,w) =To(x =—-d,w), (2.23a)
dTi(x=—d,w dTo(x =—d, A

—k, ](xdx ) + ko O(de ) = %Qoe"‘”, (2.23b)

Ti(x=0,w)=T2(x=0,w), (2.24¢)
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dT,(x =0, w) dT>(x =0,w)
1 =

Zx k2 Zx R (2.24d)

k

where (o represents the thermal source fluence at the material surface [W/m?] assuming 100%
laser power absorption. In the limit x — o, the AC temperature, T3(x), generated should be zero.

Applying this condition to equation (2.22c¢) yields

P e™™* 1 + e~¥2=)
——‘/.5— = -7 TW) (2.25)

Substituting equation (2.25) to (2.22c) gives

(2.26)

To [e-Hz(x) — e—[ZHZ(m)—H2(I)] ]

@t 1-emo

Th(x) =

In order to use this with the boundary conditions, the first derivative of T3(x) with respect to x is

written as

d_ T __ T d [ e~ ..e-[2Hz(°°)-Hz(x)]]
dx Z(x)_ m dx l_e_wz(m)

~H2(x) _ o-[2H2(=)-Hy(X)] | 4
e e [,-12
+ TO[ 1 — e~2H2(=) ] dx [ez" @)1

(2.27)

An approximation is now made by neglecting the second part of equation (2.26) and setting the

thermal effusivity derivative equal to zero:
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%[eg“z(x)] = 0. (2.28)

This assumption amounts to a requirement for nonsteep local variations of the effusivity (WKBJ
approximation). This is easily satisfied when the thermophysical field is evaluated at small
incremental depth slices where it is not expected that local steep diffusivity gradients may exist
[39,59]. Solving for the constants by using the boundary conditions and substituting in equation

(2.26), the temperature distribution at layer (2) becomes:

() = Qo JR2(x) [e—ﬂz(x) — g [2H2()r-H ()] ]
" e@n@l  1-ewe

(2.29)
9 [ b21(0)e 14 ]
(1+521(0)F2) — (1 - b21(0)F3)e 24
where,
—2H ()

£y = i i§—21'7’z(°°) > (2.29a)

k2(0 0
bZI(O) = ——-——Z(kl)gf( ) = bZOl, and (2.29b)

e>(0
Ry(x) = ezﬁxi, 2290

In deriving equation (2.29) the air-solid interface was assumed to be negligible. This is a valid
assumption, since in most cases the thermal coupling coefficient is much less than | ( Rzir; < 1
near adiabatic conditions). Similarly, by substitution, the temperature distribution in the

homogeneous layer (1) from equation (2.22b) becomes:
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N QO e—dl(xﬂf) +r‘21(0)e-d|(d-x)
Tl (x) - 2k|a| [ 1 _rzl(o)e_za-ld (230)
where,
1 — b3 (0)F
F21(0) =7 +bz:§0;1~“§' (2.31)

Although it will be seen that the results are valid for arbitrary thermal diffusivity depth
profiles, for this analysis the following simple simulated functional dependence of the solid

inhomogeneous region thermal diffusivity is assumed [36]:

—qx\2
@:(x) = a,(x) = ao( 1 34 ) 2.32)

such that a;(®) = @, a;(0) = aoc and

A= o> -1 (2.32a)

The parameter g is a constant that determines the rate of thermophysical decay if ao > a» or
growth if ap < a-. By defining a form for the inhomogeneous thermal diffusivity the integral for
H(x), equation (2.20), gives H>(®) — o, which is also valid for a constant homogeneous thermal
diffusivity in layer (2). Thus from equation (2.29a), F> =1, and from equation (2.31),
I'2:(0) = 721(0) = 7201. The resulting temperature, for the inhomogeneous layer (2) from equation

(2.29), simplifies to
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Qo R2(x) b21(0) e714-H20)
k2(0)a2(0) (1 +521(0)) ~(1 - b21(0))e2214 (2.33)

_ Qo JR2(x) e o14-Ha()
ko (1+52(0))(1 - 21 (0)e2719)

Tz(X) =

The superposition principle is implemented in solving the complete expression for the
thermal wave field in an inhomogeneous solid bounded by the regions shown in Figure 2.1.
According to this principle, any complicated linear boundary-value problem can have a solution
written as a linear combination of solutions to a number of simpler boundary value problems.

The general solution of the thermal wave field for the regions shown in Figure 2.1 is then,

T(x) =aT(x, ) + bTo(x,w) + cTw(x,w), (2.39)

where Ty and T are the temperature distributions with constant thermal diffusivities ao and a

in layer (2), respectively, and the expressions are

Qo e °14-020x
kya (1 +b201)(1 — y200€72914)°

To(x,w) = (2.35a)

QO e—ald—az@t
kg (1 +772col)(1 — Y201 €7201d)°

To(x,w) = (2.35b)

where b20; and y2o1 are as defined in equation (2.29b) and (2.31) (F>=1), respectively. b»; and

721are defined similarly by replacing O with o in equations (2.29b) and (2.31), respectively.
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2.5.1 Determination of the Constants (a, b, ¢)

Constants a, b and ¢ are determined by the various limiting case requirements of the
problem.

2.5.1.1 At Large Distance: x -+ ©

Since equation (2.32) gives a constant diffusivity profile of a. at very large distances

from the surface, 7(x, @) = T»(x, w) in this limit and equation (2.34) leads to

Ta(x,) , To(x,w) c} L (2.36a)

““‘{ T, @) T T, 0) *

Substituting equations (2.33), (2.35a) and (2.35b) to (2.36a), and by setting b=0 to satisfy

boundness, results in

Z
a=(l-c)—==—=e =/~ (2.36b)
JR2(x)
where
Jo = 2 In(lg2)), (236¢)
—_— —20’14
7= (1 +b2o1)(1 = y201€7%71¢) (2.36d)

(1 + b2t Y(1 = Y21 €72919)
2.5.1.2 Very High Frequency: o - ©

In this limit the penetration depth of the thermal wave is zero, which results in

7(0,w - ) = To(0, w). .37)

Substituting (2.36b) in equation (2.34) and since 62o — ®© as w — o, it can be shown that

35



To(0,w)

€= T.00,w) @38)
2.5.1.3 Very Low Frequency: o ~ 0
In this limit the penetration depth is infinite resulting in

7(0,w = 0) = Tw(0, w). (2.39)

Substituting (2.36b) and (2.38) in equation (2.34) and since 62 — 0 as w — 0, it can be shown

that

To(0, w) J Z T-(0,w)

1 - — = = 4
[ Te(0,0)) JRy(o0) - ToO,@) —~ (2.40)
which results in
Ry(0) = 1. (2.41)

Finally, substituting all the determined constants from equations (2.38) and (2.41) in

equation (2.34) and calculating the field at the front surface x = —d,

ad
T, ("d, Cl)) = T(O, 0))-1—5'-';:;(1 + )’2018'2‘7”1)
(2.42)

_Oo 1+ ya01e7291¢ s
= 2k[d| 1_72018"2“"{ (1+(Z— l)e 22/ )

where d cannot — oo.
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2.6 One and Three Dimensional Formulation for a
Homogeneous Layer on a Semi-Infinite Homogeneous Layer

In this thesis, rough homogeneous semi-infinite samples in a one-dimensional geometry
were also examined. The samples served as a tool for ensuring that a one-dimensional
experimental response was obtained. To correct the experimental data for any
three-dimensionalities the theoretical model of a homogeneous layer with a homogeneous
semi-infinite substrate is also derived.

Equation (2.42) can be reduced to the well known one-dimensional formulation [3] of a
homogeneous layer on a semi-infinite system by setting the inhomogeneous layer to

homogeneous, i.e ap = a« and therefore Z=1. The resulting equation is:

Qo [1+yne?d
I(-d,w) = 2kio, | 1 -y €204 | (2.43)

where y20; becomes y2; with Fo=1 as defined in equation (2.40).

Let us prove the one-dimensionality of the depth profilometric experiments. A
three-dimensional formulation for a homogeneous layer on a homogeneous semi-infinite
substrate is developed. In a three-dimensional formulation the thermal wave field, as generated
by a volume source of a Gaussian laser beam incident normal to the surface, must be taken into
consideration. Figure 2.2 shows the three dimensional geometry in cartersian coordinates with a

Gaussian beam.
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Figure 2.2  Depth profilometric three dimensional region under investigation.

2

=r

The Gaussian beam is e w? , w is the beam spot size, and #=x’+)?. The one-dimensional
formulation of equation (2.43) can be converted to three dimensions by integrating over the
Bessel function of order zero with the use of one-dimensional Green function by Hankel

transformation

_Ow? T _1 [1*‘[‘21(2’)3_2"'(&1] —i2WRA (5003
T(r,~d, ) = = g | T T (Demem [€ " Joln)2d) (2.44)
where,
1-821(4)

Ion(A)=5—=—"=

1+ &21(4)°

kava(A
521(2):‘%,

and,

via(i) = JAZ+02,.
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Chapter 3

Inverse Process: Depth Profilometric
Numerical Method

3.1 Introduction

In this chapter, the inversion method for depth profilometric reconstruction is outlined.
This is a minimization based method and the numerical procedure is outlined in Section 3.2. In
Section 3.3, simulation results are presented. Numerical considerations are presented in Section

34.

3.2 Numerical Method

The amplitude and phase are experimentally obtained and they correspond to the surface

temperature distribution, 7(0,w). The theoretical values of the data pair are calculated by

7(0, w) = |M(w) |24, (3.1

where M(w) is the amplitude and A¢(w) is the phase at an angular frequency . At each
frequency the amplitude and phase are used to calculate a, and g of equation (2.32) with a«

representing the known bulk thermal diffusivity. Although a profile of the form of equation
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(2.32) is assumed, the actual profile is updated at each frequency by recalculating new parame-
ters of ap and q. In this way, the validity of equation (2.42) becomes more general than the
assumed profile of equation (2.32). Arbitrary depth profiles may be reconstructed by numerically
determining the optimal pair of o and g so that the profile sought locally results in the experi-
mentally observed thermal-wave signal amplitude and phase data. Therefore, at each ; a system
of two equations and two unknowns is solved.

The reconstruction method used to solve for the parameters aog and g; is a multidimen-
sional secant method, known as Broyden’s method [36,75], and is based on minimizing the

difference between the experimental and theoretical data for amplitude phase as follows,

| Mexp(@))| = [Mun()| =0, (3.22)

| A ()| — | ADm(w))| =0, (3.2b)
The calculation of the depth parameter x; is performed based on the fact that as modulation

frequency decreases the thermal wave probing depth increases. Starting at the highest frequency

o, the shortest depth is the shortest thermal diffusion length, i.e.,

2
X0 = Gor (33)

The next (lower) frequency w;.;, corresponds to an increased thermal wave depth

2as) 2as()
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which is then substituted in equation (2.32) to caiculate a;.1). Once ay;-) is calculated the

method returns to recursively calculate the increased thermal wave depth as,

_ 2a+1) 2a4()

(3.4)
Therefore, the depth of each “slice” depends on ®; and a;(x;). The expression for ag, equation
(2.32), is used for analytical consistency. The true profile is built up by individual slice profiles
as seen in Figure 3.1, with x; being the first slice corresponding to the highest frequency. In
reconstructing depth profiles from data it is important to first find a reliable set of initial values
for ao and ¢. This can be achieved by finding the best theoretical fit, using equation (2.42)

(forward problem) to the first few end points (high frequency) using a single profile of the form

of equation (2.32).
ot (x) (@oLqy)
0 | . (e 0z2q2)
az [
ST LiTeitcaaiaaas aw
>

Figure 3.1 Depth profilometric profile calculation.
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3.2.1 Detailed Description of the Inversion Method

The numerical solution is obtained by using the following steps:

Step 1. Initializing the theoretical amplitudes.

Since the experimental data amplitude ratio [Mc.,(®;)| differs from the theoretical one, the
experimental data are multiplied by a “scaling constant” which is calculated as a ratio between
theoretical and experimental data amplitudes for the highest frequency, using initial values of
ao and qgy. An approximate set of initial values, agi)and qq), can be obtained by fitting the high
frequency experimental data to the theoretically simulated data corresponding to a single
exponential profile (forward problem).

Step 2. Scaling data amplitudes.

In order to eliminate data error for the highest frequency, a scale constant is used which
is in the range of £+5% of the initial one. These errors may result from improper o) and qq,
values, roundoff errors and inhomogeneities in the reference sample, and most importantly the
effect of reflectivity and/or emissivity of the surfaces of both the reference and the sample. The
process is started with the lower value and then step three is applied.

Step 3. Search for local ay and qg).

This is the main step of the numerical search for solutions to equation (2.42). To be able
to calculate the thermal diffusivity a(x)g and depth x;, corresponding to frequency ) one has to
find unknown parameters a and qg. A customized two dimensional Broyden’s method [36,75]
is used. The procedure is customized to avoid run-time errors and singularities in Broyden’s
two-dimensional line search procedure so that it can be used in conjunction with equation (2.42).
The method searches for aog and q; to satisfy the minimum conditions [Mep(©;)| - [M(w;)| = 0

and Adexp(®j) - Ad(w;) = 0 for each angular frequency ;. The procedure starts with the highest
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frequency ®,. The procedure also has the ability to search for solutions from the lowest
frequency. If no solution is found for some of the frequencies, the scaling constant is increased
by 1% and the procedure returns to step two above. If the scaling constant reaches the upper
boundary of the allowed range and still no solution has been found for each of the frequencies,
the procedure returns to step one where the initial oy is increased by 1%. When solutions are
found for a specified number of frequencies the procedure advances to step four.

Step 4. Calculation of a(x); and depth xg;.

After all local values of g and qg ) are known, the thermal diffusivity profile of the
sample is calculated. Starting at the highest frequency w(;), where a solution was found, the
corresponding o) and qq are used for determining the thermal diffusivity and the shallowest
depth using the algorithm outlined in equations (3.3)-(3.5). In this algorithm a smooth continuity
is applied wherein if a(x); significantly differs from the neighboring a(x)¢.;), the scaling
constant is increased by 1% and the program returns to step two. This entire procedure takes a
few seconds on a Pentium II 266MHz, provided that a reasonable set of initial parameters is
given.

The numerical code to solve the minimization problem was originally written in C++ by
Frank Funak [36], and it was modified in this work to solve for the new forward theory of
homogeneous layer with inhomogeneous semi-inifinite substrate developed in Chapter 2. The
forward problem (written in C++) was also linked with an Excel spreadsheet to expedite the
forward fitting which is used as an initial guess for the high frequencies. In this process, the
numerical calculations are made in C++ as a built-in function in Excel so that the end user can

modify parameters in real time.
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3.3 Numerical simulations

In order to test the numerical method simulations were performed. Three basic
reconstructions were performed for a homogeneous sample with no roughness, and an increasing
and a decreasing inhomogeneous profile with no roughness. The reconstruction case which
includes roughness is addressed along with the limitations in Chapter 4. The inhomogeneity was
formulated with one exponential as given by equation (2.32). Figure 3.1 shows the three
simulated profiles and the corresponding reconstructions in a geometry consisting of an
inhomogeneous semi-infinite substrate. The first profile constructed is of a homogenous
semi-infinite solid with a=12.5x10°m?s. The second profile is of an inhomogeneous
semi-infinite solid with ae=11x10°m?/s, a,=12.5x10°m?/s and q=1000m™'. The third profile is an
inhomogeneous semi-infinite solid of decreasing profile and with o=12.5x10°m?s,
de= =11x10°m?/s, and q=1000m". The reconstructions are in agreement with the original
profiles created by using a single exponential as seen in Figure 3.2. The reconstruction of the
homogeneous sample is 0=12.49x10°m?/s with a 0.08% precision. The increasing and

decreasing profiles are less reproducible at the low frequencies.

3.4 Numerical Considerations

In reconstructing thermal diffusivity profiles, the bulk thermal diffusivity is needed a
priori. This is the value to which the profile will eventually converge. A reconstruction is

initiated by forward fitting of oo, g and o to the experimental data. The value of the bulk
thermal diffusivity a., is kept constant and o, and g are searched for a solution to the slicing

increment. In this way, ., serves as a means of setting the absolute thermal diffusivity value of
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the profile and thus reducing the ill-conditioning of the problem. If for some reason a lower

value of a. is given then the initial guess of o, and ¢ will change accordingly. The final

reconstruction is a thermal diffusivity profile with the same shape but lower absolute value and
shallower depth as shown in Figure 3.3. In conclusion, the shape of the profile is defined by the

relative change of the experimental data, whereas the absolute value and depth are defined by
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Depth Profilometric Simulations
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Figure 3.2 Simulated (solid lines) and reconstructions for a homogeneous (triangle),
inhomogeneous increasing (circle) and inhomogeneous decreasing (square)
profile.
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Figure 3.3  Reconstruction of the same forward data with two different bulk thermal
diffusivities.
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Chapter 4

Degth Profilometric Experimental Method
and Data

4.1 Introduction

In this chapter, the experimental methodology for acquiring the frequency scan data for
depth profilometry is explored. The data is obtained at a constant spatial position and the
frequency is scanned. The current experimental method is based on photothermal radiometric
detection, which has the flexibility for both backpropagation and transmission measurements.
This is a truly non-contact method. Section 4.2 explains the fundamentals of photothermal
radiometry and presents the low resolution experimental system used. In Section 4.3 the types of
experimental samples and heating treatment performed are cited. The heating treatments of
carburizing and quenching are explained. In Section 4.4 the experimental data for carburized and

quenched samples are presented and the significance of the forward data is discussed.

4.2 Experimental Method

4.2.1 Photothermal-Radiometric Detection

Photothermal-radiometric detection is a non-contact technique. The temperature

modulation causes a variation in the thermal emissions, which are monitored using an infrared
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detector. This radiation process is governed by the Stefan-Boltzmann law that relates the total

flux of emitted radiation density, #, to the temperature, 7, of the emitter surface given by

W =eaT?, 4.1

where ¢ is the emissivity of the surface and 6=5.67x10®° Wm?ZK* is the Stefan-Boltzmann
constant. Due to modulated heating by a focused laser beam, the increment §#(w) of the local

thermal radiation emitted from the surface (for 87<<7, ) is given by

W (w) = deo T3 6T(w), 4.2)

where Ty is the static surface temperature, 8T is the modulated temperature excursion, and o is
the modulation angular frequency.

Radiometric imaging can be used in two different detection modes: a) Front Surface
Detection (Backpropagation/Reflection) and b) Rear Surface Detection (Transmission) [76]. In
backpropagation, both the generation and detection of thermal waves take place on the same side
of the sample as shown in Figure 4.1(a). Infrared emission from a thermally excited beam
location is focused onto an infrared detector using infrared optics. Precautions must be taken to
prevent scattered modulated high-intensity laser light from getting into the detector. This could
produce false signals at the same frequency as the thermal waves. The scattered laser light may
be removed by using a lowpass germanium filter at the detector aperture. In this detection mode,
subsurface features are exposed by the backscatter thermal waves that produce a change in

temperature at the front surface. Backpropagation is particularly suitable for detecting near
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surface (up to two thermal diffusion lengths) defects, but there is no limit on specimen thickness.
In transmission, thermal waves are generated and detected on opposite sides of the sample, as
shown in Figure 4.1(b). The thermal wave transmission method is useful for samples with a

thickness of up to four thermal diffusion lengths (n).

Infrared
Detector
Modulated
Laser
Beam
1’:1 Modulated Thermal
e Emission for Reflected
e Thermal Wave
Thermal \ /
Wave M Sample
R
(a)
Thermal
Wave

Mo?ulated Thermal
Emission for Transmitted
Modulated Thermal Wave

Laser
Beam
....... R Infrared
_______ Lo Detector
Sample
(b)

Figure 4.1 (a) Front surface (Backpropagation/Reflection) arrangement. (b) Rear surface
(transmission) detection.
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4.2.2 Experimental System

The depth profilometric application is a one-dimensional problem and therefore the
experimental setup has a low spatial resolution. To maintain the one-dimensional heat diffusion
formalism assumed in the theory, the pump beam spot size is made much larger than the
maximum profile depth. The experimental apparatus is shown in Figure 4.2. A 514.5nm
wavelength continuous-wave (cw) Innova Ar® laser from Coherent is modulated and then
focused onto a sample, to a broad spot size of 10mm diameter, at an output power of 1W. To
achieve the broad beam an optical diffuser, which is a Smm thick polymeric substrate, is placed
in the path of the beam and the scattered light is collimated with a lens onto the surface of the
sample. The modulation is performed by an external Acousto-Optic Modulator (AOM) (ISOMET
1201E-1). The blackbody radiation from the optically excited sample is collected and collimated
by two silver-coated, off-axis paraboloidal mirrors and then focused onto a liquid nitrogen
cooled HgCdTe (Mercury-Cadmium-Telluride) detector (EG&G Judson Model
J15D12-M204-S01M). The heated area of the sample is at the focal point of the one mirror
positioned near the sample, and the detector is at the focal point of the other mirror. The HgCdTe
detector is a photoconductive element that undergoes a change in resistance proportional to the
intensity of the incident infrared radiation. It has an active square size of Imm x Imm and a
bandwidth of 2-12um. Since the efficiency of the detector increases with decreasing
temperature, the detector is operated at a cryogenic temperature of 77° K [77]. An
Anti-Reflecting (AR) coated germanium window with a transmission bandwidth of 2-14um is
mounted in front of the detector to block any visible radiation from the pump laser. Prior to
being sent to the digital lock-in amplifier (Stanford Research System Model SR850) [78], the

photothermal-radiometric signal is amplified by a preamplifier (Analog Modulus 350-3A),
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especially designed for operation with the HgCdTe detector. The low noise preamplifier ensures
a proper performance for subsequent signal processing with a lock-in amplifier. The lock-in
amplifier, which is interfaced with a personal computer, receives the pre-amplifier output and
rejects all stray signals except those that have the same modulation frequency as the excitation

beam. This process of data acquisition, storage, and scanning is fully automated.

b\

] ; N
A/0 |
Ar-Ion Laser :
Modulator g
Off-Axis £
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Mirrors

» LOCK-IN
—
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Dectector
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Figure 4.2  Frequency-domain photothermal radiometric instrumentation.
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4.2.3 Experimental System: Detailed Procedure

For all the experiments, a cw Argon-ion Laser model 100-15 by Coherent was used,
which operates in the 333.6-528.7nm band, and has an all-lines power output of 15 Watts. The
unit is comprised of three major functional units: the laser head, the plasma tube within the laser
head, and the power supply. The laser was configured to emit at 514.5nm, and was found to have
a maximum optical output of 10 Watts at this wavelength. The intensity has a Gaussian
distribution with a l/e radius of 0.87mm. Before the laser was sent to the acousto-optic
modulator, it was collimated by lenses to a Gaussian distribution with 1/e radius of 0.262mm.
The collimating lens setup is shown in Figure 4.3. The beam profile was measured with a

photodiode, and is shown in Figure 4.4, which confirms a good Gaussian profile.

Laser | 1/e=0.87mm —21/e=0.262mm

s ) >

3cm 7cm

Figure 4.3  Laser beam collimating lens setup.

After the beam was collimated, it was directed to the aperture of an Isomet AOM (Model
1211). The AOM is a device that modulates the intensity of the incident beam by means of an RF
signal at a given center frequency as shown in Figure 4.5. A digital (on-off) or analog (video)
modulation can be produced, depending on the type of driver selected. In this assembly an
analog Isomet driver (Model 223A-1) was used which accepted a sinusoidal wave from the

internal function generator of the lock-in amplifier. This provided an amplitude-modulated RF
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output to the acousto-optic modulator at the particular frequency. The process of frequency
scanning and data acquisition was then automated. The AOM was mounted on a translating
vertical stage and a rotating micrometer stage for accurate adjustment. Beyond the exit of the
modulator and afier traveling for 20cm, the higher orders (I, s,...) were separated enough so that
the preferred modulating first order beam (I,) was chosen by blocking all the other beam orders

with an iris.

Beam profile after collimating

10 —e— Experiment
—— w=262um
o8 Fit: I(r)=l,e "™

086 |-

04

Intensity [a.u)

02

08 06 04 02 00 02 04 06 08
x [mm]}

Figure 4.4  Beam profile after collimating, as measured with a photodiode.
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Figure 4.5  Laser beam diffracted paths from the AOM.
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Frequency scans were then performed in the range of 0.5Hz -100kHz. The experiments
were performed in two ranges: a) 0.5Hz-1kHz with broad 10mm diameter beam and b)
500Hz-100kHz with bare 2mm diameter beam. The data in the frequency range 500-1000Hz
overlapped. This ensured that the thermal diffusion length was much smaller than the size of the
beam and thus the signal remained one-dimensional. The reason for such an operation was that
the SNR would increase at the higher frequency range since the power density [W/m?] (Power/
beam cross-sectional area) with the 2mm beam was higher. The experimental surface
temperature response on the sample was normalized by the surface temperature response of a
reference sample (Zr alloy). This gave, for each frequency, an amplitude ratio and phase
difference. The normalizing procedure was necessary to correct all instrumental frequency
dependencies [36]. One instrumental frequency dependence arises from the response of the
infrared detector. The responsivity and noise frequency dependence of the detector are shown in
Figure 4.6. The responsivity of this detector is flat at the frequency region observed. When the
frequency is below 1kHz both the sample and reference are affected by the 1/f noise frequency

response of the detector. As a result, the normalization procedure amplifies the noise of the data.

Figure 4.6  HgCdTe responsivity and noise frequency dependence [77].
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4.2.4 Experimental Dimensionality

Depth profilometry theory assumes a one-dimensional heat diffusion formalism, which is
difficult to achieve experimentally. At high frequencies, the penetration depth is close to the
surface so lateral heat diffusion is negligible. However, at low frequencies, the thermal wave
penetrates deep into the material and lateral heat diffusion is pronounced. To ensure
one-dimensionality, the size of the beam must be much larger than the deepest penetration. Not
only is the beam an important consideration here, but also the beam shape. The laser source has a
Gaussian profile, an assumption not included in the theory. Experimentally a “top hat”
distribution, which is a flat distribution of the beam, is needed in order to more closely satisfy
the theoretical assumptions. To alleviate the three dimensionality introduced by the Gaussian
distribution, a thick diffuser with the lens is placed in the path of the beam. This diffuses the
light in order to redistribute the Gaussian distribution and redirect it into a broad distribution. By
this process, the Gaussian profile is greatly reduced. The three dimensionality effects are
drastically diminished but not eliminated as can be seen in Figure 4.7, which shows the response
of a Zr reference sample for one bare and two diffused beams. As the beam is increasingly
diffused both the amplitude and phase graphs approach one-dimensional theory. The response of
a one-dimensional semi-infinite sample is derived in equation (2.9), where the amplitude is
inversely proportional to the square-root of frequency and the phase is constant at -45°. Figure
4.7 presents unnormalized data, which explains the deviation from the theory at high
frequencies. At low frequencies, the three-dimensionality effects are, as expected, more
pronounced. Some of the deviation that exists relates to the AC coupled response of the infrared
detector, which adds to the positive phase shift in the low frequency. This would be canceled by

the normalizing procedure. To correct for the actual three-dimensionalities of the system, a
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known homogeneous sample with 2um roughness is normalized with the reference Zr alloy
sample, which is then fitted to the three-dimensional homogeneous layer theory derived in
equation (2.44). The infinite integration was performed numerically by a routine written in C™
[74]. Figure 4.8 shows the normalized experimental data of a homogeneous steel with roughness
and the expected one-dimensional response of the system. At low frequency there is an
approximately 2° deviation from the one-dimensional theory. The deviation is due to the fact that
below 10Hz lateral diffusion is not negligible. The three-dimensionality is not only a function of
the beam, but also of the thermophysical properties of the sample and reference. With all the
parameters known, a three-dimensional theory, equation (2.44), is fitted to the experimental data,
and as seen in Figure 4.8, an excellent agreement between theory and experiment is obtained.
The difference between the one-dimensional and three-dimensional theory is then included in the

instrumental data, and all the experiments that follow are corrected. Also, in this data the 1/f

noise dependence of the instrument is evident below 10Hz where the SNR decreases.

4.3 Experimental Samples and Heating Treatment

To understand the mechanism by which the thermal diffusivity profile in hardened steels
develops, experimental samples were prepared for two heat treatments: the case hardening
process of carburizing and quenching. In a previous study [57], only the quenching process was
studied and the mechanism of the thermal diffusivity profile was not properly explained. In this
work a hypothesis was made that the profile is formed at the carburizing stage. To test this
hypothesis, the same set of samples were first studied after carburizing and then after quenching.

Furthermore, in a laboratory study, neglecting surface roughness does not appear to be a severe
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limitation because rough samples can be easily polished. However, as an on-line industrial
application, this technique would be prohibitively time consuming. It is thus, of great interest to

incorporate the effects of roughness on the forward experimental data.
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Figure 4.7  Zr alloy experimental reference. For clarity only 50% of the data are shown.
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20 Three-dimensionality effects
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Figure 4.8  Frequency response of experimental data with roughness with one-dimensional
and three dimensional theoretical fits. For clarity only 50% of the experimental
data are shown.
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With these goals, a sample matrix was constructed as a function of roughness and case
hardness depth. The sample matrix is shown in Table 4.1, and for each possible case three
samples are studied for statistical purposes. The samples used are 1cm thick, and are cut from
the same slab of AISI 8620 steel alloy, which is a low carbon steel (0.25%C). The roughness of
samples was prepared with a 200-grit silicon carbide (SiC) grinding-paper for samples 11-19,
and with a 600-grit SiC grinding-paper for samples 21-29. Samples 1,10 and 7 were prepared
with a Ium polish. The bulk thermal diffusivity of the AISI 8620 steel was measured by
photothermal radiometry in transmission [79] for three disks of 850um, 500um and 250um. The
average value obtained for thermal diffusivity is 0.125cm?/s which is within 0.005cm%/s of the

documented value that exists for a similar low carbon steel [80].

Case hardness 0.02" 0.04" 0.06" Photothermal
depth test

sample 11 sample 14 sample 17

200 grit sample 12 sample 18 sample 18 sample 32
(~5um) sample 13 sample 16 sample 19
sample 21 sample 24 sample 27

600 grit sample 22 sample 25 sample 28 sample 33
(=2.5um) sample 23 sample 26 sample 29

Mirror Polish sample 1 sample 10 sample 7 sample 31
Hardness test sample 34 sample 35 sample 36

Table 4.1

AISI 8620 steel sample matrix

The samples were first carburized, and then quenched at three case depths. The case
depth is defined by 0.25% C on the carbon profile, as shown in Figure 4.9. The carbon profile
curve is a preprocess factory estimation of heating process that will occur. Carbon is the
principal hardening element in all steel. There are several kinds of carbon steel, classified by the
quantity of carbon they contain and their mechanical properties. By composition, steels are
classified as low carbon (<0.2%C), medium carbon (0.2-0.5%C) and high-carbon (>0.5%C).

Figure 4.10 shows a simplified portion of the iron-carbon phase diagram [81]. Pure iron exists in
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two crystal forms below its melting point. One is the body-centered cubic (BCC), which is the
stable form in room temperature, and is known as a-ferrite in the low temperature range, and
S-ferrite in the high temperature range. The other crystal form is the face-centered cubic (FCC)
form known as austenite or y-iron. Iron is uselessly soft without carbon. Carbon profoundly
changes the phase relationships, microstructure and properties in steels [81]. At the eutectoid
point D, austenite, ferrite and cementite (iron carbide-Fe;C) all exist in equilibrium. Carburizing
is the process by which the carbon concentration of a ferrous alloy is increased by diffusion. In
this heat treatment process (approximately equilibrium condition), pearlite formation is
accomplished by carbon diffusion. This is a time-dependent process where the carbon atoms
diffuse away from regions that become ferrite to regions that become cementite. Both
components grow in layers to form the lamellar structure of pearlite as carbon continues to be
rejected by ferrite. A strong alloy (ferrite+cementite) results from this process. Quenching heat
treatment is the rapid cooling process after carburizing that produces the highest hardness in
steels. This heating treatment results in a martensite structure which is not present in the
phase-diagram because it is formed under strictly non-equilibrium conditions. With quenching
carbon diffusion is prevented, and thus the carbon remains fixed in a lattice structure, setting up
intense local lattice strains that block movement of dislocations. As a result, the structure is hard
and extremely strong.

After heating treatment the test samples were cross-sectioned and polished to observe the
microstructure. For maximum contrast in developing ferrite grain boundaries in carburized and
quenched steels, the samples were etched in 2% Nital (2ml of HNO; in 100ml of alcohol). An
optical microscope image (X80) of the pearlite to ferrite gradient (1mm deep) for the deepest

carburized depth (0.06) is shown in Figure 4.11. Under the optical microscope the pearlite
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structure has an iridescent appearance. Scanning electron microscope (SEM) pictures at X300
magnification are shown for different depths of the sample in Figure 4.12. Close to the surface
the pearlite alloy exists (Figure 4.12a). Figure 4.12b shows the gradual interface between the
pearlite and the original ferritic structure of AISI 8620 steel, and Figure 4.12c¢ is at the center of
the sample where the original ferritic form of the sample is maintained. In Figure 4.13 the
martensite microstructure under the SEM for a) X1500 and b) X300 magnification is shown.
Martensite has a needle-like structure that is formed by carbon being trapped in the iron crystal
lattice. The gradient of the martensite is observed (Figure 4.14) under an optical microscope with
the structure showing high carbon martensite to low carbon martensite. For a sample of this
thickness (1cm) the whole structure is changed to martensite and therefore the bulk of the sample
has a different structure than that of untreated and carburized steel.

Since microhardness testing is a time consuming and costly process, there is a demand
for non-destructive testing in the heat treating industry. A photothermal non-destructive method
which can monitor hardness (indirectly), would be an important achievement for the industry.
Figure 4.15 shows the hardness profile for the carburized and quenched microhardness test of
samples 34, 35 and 36 (Table 4.1). The carburized slow cool samples show a low and mild
hardness profile, whereas after quenching the profile becomes harder and sharper. The error
margin for these microhardness tests is between +10HV for 300HV and +20HV for 700HV with
the error bars for each microhardness test shown in Figure 4.15. For the sake of clarity, in Figure
4.15, the last measured value for carburizing is not shown. This value is 193+7HV at 3810pm.
The heating processes and microhardness tests were performed by B&W Heat Treating Ltd.

(Kitchener, Ontario). Experimental frequency scans were performed on the same samples for
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three consecutive processes: first, the rough untreated process, second, the carburizing process,

and finally, the quenching process.
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Figure 4.9  Carbon profile for case depths 0.02", 0.04" and 0.06".
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Figure 4.11 Optical microscope image; magnification X80; 1mm depth of pearlite to ferrite
structure.

(@) (b) (c)

Figure 4.12 Microstructure of pearlite gradient; SEM magnification X300; a) pearlite;
b)pearlite to ferrite; c) ferrite.
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() (b)

Figure 4.13 Microstructure of martensite formed by quenching; SEM magnification a) X1500;
b) X300.

Figure 4.14 Optical microscope image (X80) of Imm deep martensite gradient; high carbon
martensite near surface; low carbon martensite in the bulk.



Hardness profile of carburized and quenched samples
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Figure 4.15 Hardness profile for carburized and quenched process of case depths 0.02", 0.04"
and 0.06" (performed by B&W Heat Treating Ltd., Kitchener, Ontario).

4.4 Forward Experimental Data and Discussion

4.4.1 Untreated Experimental Data

Figures 4.16 and 4.17 show the normalized frequency response (amplitude and phase) of
the untreated 200 and 600 grit samples, respectively. Roughness affects both the amplitude and
phase response of a sample throughout the entire frequency spectrum, causing peaks in both the
amplitude and phase data at different frequencies. This response is a notable deviation from the
response of a homogeneous sample, which exhibits a constant normalized amplitude and phase
of 1 a.u. and 0 degrees, respectively. At high frequencies, the penetration depth of the signal is

shallow, and therefore information about the surface can be obtained. The surface thermal
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effusivity of the sample can be obtained by theoretically fitting the experimental response to a
homogeneous layer (roughness layer) with a semi-inifinite homogeneous substrate to the model
derived in equation (2.43). The effusivity, e=(kpc)'?, near the surface is the relevant thermal
parameter in time-dependent surface-heating processes, rather than the thermal diffusivity,
o=k/pc, which governs the propagation inside the solid {82]. The thermal conductivity, k, mass
density, p, and the specific heat capacity, ¢, can be measured separately for the bulk material.
The homogeneous substrate was the same for all samples since the samples were obtained from
the same steel rod. The only unknowns in equation (2.43) are the thermal diffusivity and
conductivity, which when combined can be represented by the thermal effusivity of the rough
layer. The roughness thickness, d, of each sample was measured independently with a surfometer
(Series 400; Precision Devices, Milan, MI) of a 0.01um total system resolution. The instrument
measures over an evaluation length, which is the length over which the surface parameters are
evaluated. The evaluation length (10mm) for each measurement consisted of five sampling
lengths, where the sampling length is defined as the nominal wavelength used for separating
roughness and waviness. For each measurement the following three surface parameters were
documented: 1) roughness average, Ra, 2) maximum height of the profile, Rt, and 3) average
maximum height of the profile, Rz. Ra is the arithmetic average of the absolute values of the
profile heights over the evaluation length, Rt is the vertical distance between the highest and
lowest points of the profile within the evaluation length, and Rz is the average of the successive
values of Rti (Rt of each sampling length) calculated over the evaluation length. The
measurements were repeated at three independent positions on the surface of the sample, and the
final value of each surface parameter was obtained as an average of the three measurements. For

theoretical fitting the average of three independent Rz values, avgi;(Rz), was used as the
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roughness thickness, d, in equation (2.43). This parameter was chosen as the effective thickness
that generates the photothermal signal that can be modeled as a homogeneous layer on a
semi-infinite substrate. In Table 4.2 the roughness thickness, d=avg;(Rz) is documented for each
sample. The average of the three independent values of Ra, avgi(Ra), is also included in
parenthesis.

Using the roughness thickness as a known parameter for each sample along with the bulk
thermal properties, theoretical fitting was performed using equation (2.43) on all the samples.
The actual thermal effusivity of the rough layer, can be seen in Table 4.2 for each untreated
sample. It is found that the surface roughness effusivity is of lower thermal effusivity than the
bulk, which is consistent with previous findings by Bein et al. [82]. The bulk thermal effusivity
of the AISI 8620 steel is 13100 Ws'?/m?’K. The average surface thermal effusivity for the 600
grit (~2.5um) samples was found to be 4808 Ws'?/m’K and for the 200 grit (~5um) was 2949
Ws'?/m’K (Table 4.3). It was therefore concluded that as roughness increases the thermal
effusivity of the surface decreases. Qualitatively, this can be understood phenomenologically by
considering that roughness consists ideally of a series of pyramidal (or conical or triangular
fin-like) structures of decreasing spatial extent away from the baseline [83]. The temperature rise
due to optical absorption and thermal conversion inside these material shapes will be
progressively higher closer to the apex of the pyramids [83], i.e with increasing modulation
frequency or decreasing equivalent-thickness overlayer. The excess apex temperature will
decrease the material thermophysical properties, leading to an increase in the experimental
phase. In Appendix A-1, Scanning Electron Microscope (SEM) pictures of the cross-section of
the untreated photothermal test samples 31, 33 and 32 (Table 4.1) are presented for

magnifications of X300 and X1500, respectively. The roughness thickness for each sample is
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verified with the surformeter measured values. The roughest sample exhibits the strongest peaks
and valleys on the surface. As seen in Figures 4.16 and 4.17, thermally, each roughness level is
related to a center-frequency, f. (maximum of phase) which shifts to a higher frequency as
roughness decreases. For the 200 grit (~5um) samples, f-=5kHz, and for the lower roughness of
600 grit (~2.5um), f=~25kHz. The amplitude typically exhibits its own center-frequency, and for

the 200 grit (~5um) samples, £=50kHz, and for the 600 grit (~2.5um), f=>100kHz.
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200 grit Effusivity [Ws'?/m’K} 600 grit Effusivity [Ws"?/m’K]}
d=avgi(Ra) | Untreat | Carburize | Quench | d=avgi;(Ra) | Untreat | Carburize | Quench
(avgi(Ra)) | actual | effective | effective | (avgs(Ra)) | actual | effective | effective
11 21
d=5.1um 3381 6483 2691 d=2.3um 4761 6198 3298
(0.85um) (0.33um)
12 22
d=5um 3381 6514 2937 d=2.5um 4942 6126 3744
(0.83um) (0.35um)
13 23
d=5um 2977 6419 3000 d=2.6um 4659 6609 3995
(0.82um) (0.35um)
14 24 4472
d=5um 2667 4775 2307 d=2.6um 4989 4347
(0.83um) (0.37um)
15 25
d=5um 2605 5774 2569 d=2.6um 4553 3783 3479
(0.84um) (0.35um)
16 26
d=5um 2754 4996 2384 d=2.5um 4863 4648 3323
(0.83um) (0.34um)
17 27
d=5.1ym 2822 5693 2452 d=2.5um 4855 5915 4165
(0.84um) (0.33um)
18 28
d=4.7um 3408 5515 2727 d=2.5um 4839 5989 3735
(0.78um) (0.36pm)
19 29
d=4.8um 2829 4884 2616 d=2.4um 4808 5470 3465
(0.80um) (0.33um
Table 4.2 Rough layer effusivity values for all samples under all processes.




200 grit | Average Effusivity [Ws'?/m’K] | 600 grit | Average Effusivity [Ws'?*/m’K]
samples | Untreated | Carburize | Quench | samples | Untreated | Carburize | Quench
(~5pm) actual effective | effective | (~2.5um) | actual effective | effective
0.02" - 6472 2876 0.02" - 6311 3679
0.04" - 5182 2420 0.04" - 4260 3758
0.06" - 5364 2598 0.06" - 5791 3788
All 2949 - - All 4808 - -
Table 4.3 Rough layer average effusivity values in terms of case depth samples.

Figure 4.16 Frequency scans (amplitude and phase) of untreated 200 grit samples.
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Figure 4.17 Frequency scans (amplitude and phase) of untreated 600 grit samples.
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4.4.2 Carburized Experimental Data

Frequency scans (amplitude and phase) of the same range were performed on all
carburized samples, as shown in Figures 4.18 and 4.19 for the 200 and 600 grit, respectively.
Figures 4.20 and 4.21 are the smoothed data to be used in Chapter 5 for the reconstruction
process for the 200 and 600 grit, respectively. Although the reconstruction method proved to
work reasonably with noisy data [36], smoothed data was chosen in this work so as to reduce any
uncertainties associated with noise. Upon investigation, it was found that the best smoothing of
experimental data is performed using a 7th order polynomial fit. In all figures, the experimental
data is color coded based on case depth; 0.02" samples are black, 0.04" samples are red, and the
0.06" depth samples are blue. When the carburized data is compared to the untreated data, it is
observed that the surface thermal effusivity of these samples has increased. At the same time the
Full-Width-Half-Maximum (FWHM) of the high frequency response is narrower, supporting an
inhomogeneous behavior for the roughness layer. The rough layer thermal effusivity values for
these samples are documented in Table 4.2. In Table 4.3 and the average rough layer thermal
diffusivity per case depth is calculated. The effusivity values are effective values since they were
obtained by fitting the phase maximum to the homogeneous layer with homogeneous
semi-infinite substrate, i.e., equation (2.43). The thermal properties of the samples are related to
the case depth and thus the thermal effusivity behaves accordingly. Overall the surface thermal
effusivity of the 0.02" case depth is higher than that of the 0.04” and 0.06" case depth samples.
The carburizing process has changed the surface and the most dramatic change is seen in
samples 24, 25 and 26 (Figure 4.19). These samples behave like the rougher samples 14, 15 and
16 (Figure 4.18). All samples were re-measured with the surformeter and the roughness

thickness was found to be approximately the same within a tolerance of +0.1um. To investigate
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the effects of carburizing on the surface further, the samples were observed under Scanning
Electron Microscope (SEM). In Appendix A-2 and A-3 the surfaces (top view) of the untreated
photothermal test samples and the carburized samples are shown for magnifications X300 and
X1500, respectively. The samples are shown in the form of a matrix with each column
representing a distinct roughness thickness: ~0.1um(polished), ~2.5um and ~Sum, sequentially.
Each row represents a unique treatment of the samples: untreated, 0.02", 0.04" and 0.06"
carburizing depth, sequentially. Sample 31 is the untreated polished sample and samples 1, 10
and 7 are the polished samples that were carburized with 0.02", 0.04" and 0.06" case depth,
respectively. As the case depth increases, microcracks and clusters that form at the surface
increase. This is consistent with the fact that the deepest case depth has endured the longest oven
time. The porosity of these samples has also increased as is more evident in Appendix A-3,
where the X1500 magnification is shown. Similarly, sample 33 (2.5um) is compared with same
roughness carburized-samples 21, 24 and 27 of case depth 0.02", 0.04" and 0.06", respectively,
and sample 32 (Sum) is compared with the same roughness carburized-samples 11, 14 and 17 of
case depth 0.02", 0.04" and 0.06", respectively. The surface modifications should be similar to
that of samples 1, 10 and 7 since they have endured the same process. Although more difficult to
see, one observation is that the roughness seems to be more closely packed with valleys of
clusters. On sample 24, which is one of the samples that behave differently, there are traces of
elements shown as large white spheres, as seen in Appendix A-3. This may be the reason the
thermal properties of the surface (lower thermal diffusivity) have changed so drastically. Both
the photothermal signal and the SEM pictures support a change in the surface structure occurring

with the carburizing process.
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Carburized AISI 8620 - 200 grit
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Figure 4.18 Frequency scans (amplitude and phase) of carburized 200 grit samples.
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Carburized AISI 8620 - 600 grit
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Figure 4.19 Frequency scans (amplitude and phase) of carburized 600 grit samples.
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Smoothed Carburized AlISI 8620 -200grit
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Figure 4.20 Smoothed data for carburized 200 grit samples.
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Figure 4.21 Smoothed data for carburized 600 grit samples.
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4.4.3 Quenched Experimental Data

After the carburizing slow cool process, the samples were sent back to the factory for oil
quenching. The photothermal signals for the 200 and 600 grit samples were then taken for these
samples as shown in Figures 4.22 and 4.23, respectively. Figures 4.24 and 4.25 are the respective
smoothed data to be used in Chapter 5 for reconstructions. In general, the low frequency
inhomogeneous region resembles the response from the carburized data. In Figure 4.26 the
untreated, carburizing and quenched frequency response of sample 11 (200 grit) are plotted for
comparison. The roughness response of the quenched process has changed to resemble the
response from the untreated samples at high frequency. At low frequency the data converges to
that of the carburizing response. The same was re-plotted in Figure 4.27 for sample 21 (600 grit)
where at low frequencies the response of quenching and carburizing processes approach each
other. At high frequency, the quenched samples behave in a rougher manner than the untreated
samples but are still within closer agreement as compared to the carburized response. For the
quenched samples, the thermal effusivity of the rough surface for each sample is documented in
Table 4.2, with the averages shown in Table 4.3. The thermal effusivity for the 200 grit is of the
same order as that of the untreated steel samples. On an average, the surface thermal effusivity
of the 600 grit quenched samples is lower than that of the originally untreated samples. This is
consistent with Figure 4.27 where the maximum phase is the highest for quenching. The FWHM
of the roughness has increased and the layer behaves in a more homogeneous manner. Samples
24, 25 and 26 again behave differently. This implies that the different behavior occurred at the
carburizing stage. The samples were examined under the SEM and Appendix A-4 and A-5 show
the pictures for the X300 and X1500 magnifications, respectively. The samples are shown in the

form of a matrix with each column representing a distinct roughness thickness:
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~0.1um(polished), ~2.5um and ~5um, sequentially. Each row represents a unique treatment of
the samples: untreated, 0.02", 0.04" and 0.06" carburizing depth, sequentially. Sample 24, as seen
in Appendix A-5, again shows traces of white spheres. The mirror surface samples (1,11,7) of
the quenched samples, look spatially similar to the carburized equivalent samples (A-3). The
exception is that the quenched surfaces maintain better uniformity throughout the sample surface

area.
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Figure 4.22 Frequency scans (amplitude and phase) of quenched 200 grit samples.
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Figure 4.23 Frequency scans (amplitude and phase) of quenched 600 grit samples.
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Smoothed Quenched AISI 8620 - 200 grit
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Figure 4.24 Smoothed data for quenched 200 grit samples.
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Figure 4.25
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Figure 4.27 Frequency scan of Sample 21 (600 grit) for untreated (solid), carburized (dash)
and quenched (dot) process
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4.4.4 Bulk Thermal Diffusivity

Before the reconstruction process can take place on all the experimental data, the bulk
thermal diffusivity is needed as additional information. The bulk thermal diffusivity for each
cross-section of untreated, carburized and quenched data was measured using a high-resolution
photothermal radiometric experimental set-up (which is described in Chapter 7) with a 27um
beam spot size. This is a three-dimensional method that enables the measurement of thermal
diffusivity in reflection. The theoretical formulation of the experiments was developed in
Chapter 2, and is represented by equation (2.44). The only unknown parameter in this equation is

the thermal diffusivity (the thermal conductivity is k=46.6W/mK).

1cm 1cm 1cm
o1 ’ : 5
o2 2 3
Untreated Carburized Q‘t;ea;;med

Figure 4.28 Frequency scan position for each sample of untreated, carburized and quenched
category.

To increase the confidence of the results, two measurements were taken for each
cross-section, as indicated in Figure 4.28. In Figure 4.29, the phase was chosen out of
convenience for implementing the respective error bars for each sample. The black line
represents ihe untreated steel, the blue line the carburized steel, and the red line is the quenched
steel. The frequency response is normalized with respect to an instrumental function obtained

though a Zr alloy of known thermal parameters. By fitting the Zr alloy to the theoretical response

84



(equation 2.44) and obtaining the difference (small variations), the instrumental function was
constructed. The theoretical fittings, equation (2.44), for both amplitude and phase of the
normalized experimental data for the bulk untreated, carburized and quenched samples are
shown in Figure 4.30. It is found that the untreated and carburized steels have the same thermal
diffusivity of a=12.5x10°m?/s whereas the quenched steel has a lower thermal diffusivity of
a=10.5x10%m?/s. The untreated and carburized steels have the same ferritic microstructure

whereas the quenched steel has a martensite structure in the bulk.

Bulk Experimental Data

P | A PR Erara i M e W | SR SR
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Figure 4.29 Three-dimensional experimental phase data of untreated (black), carburized
(blue) and quenched (red) steel.
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Figure 4.30 Three-dimensional experimental phase data with theoretical fitting; untreated
(square), carburized (circle) and quenched (triangle) steel; theory
a=12.5x10°m?/s (red); theory a=10.5x10°m?/s (blue).
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Chapter 5

Depth Profilometric Inversions and
Discussion

5.1 Introduction

In this chapter, the depth profilometric reconstructions from the experimental data
presented in Chapter 4 are shown. The reconstructions are produced using the theoretical and
numerical methodologies developed in Chapters 2 and 3, respectively. In Section 5.2, the effects
of roughness are investigated and incorporated into the experimental data. A novel heuristic
approach for accounting for the effects of roughness in experimental data is developed. The final
reconstruction for both carburized and quenched data is outlined in Section 5.3. Finally, the

conclusions and limitations of the method are discussed in Section 5.4.

5.2 Depth Profilometic Reconstructions of Rough Steels

Modeling roughness is a non-trivial problem. In most photothermal applications, the
surface of the sample is polished so that roughness effects can be neglected. The use of a
polished sample can introduce errors in the results if a careful examination is not performed.
Polished samples also need a high incident power for a high SNR since most of the incident

energy is reflected. The mirror surface can be seen as a thermal barrier to the substrate. Also,
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when normalizing with the instrumental function, great care must be taken so that the size of the
Gaussian laser beam would be the same. With a mirror surface, the laser beam shape is
imprinted on the surface and any inhomogeneities that may exist become more pronounced. A
rough surface tends to act as a scrambler resulting in a quasi-uniformity of intensity over the
illuminated surface. With careful experimentation, polishing can work in laboratory conditions
but it can be costly and time consuming for industrial applications. Thus, a method of
“eliminating” roughness theoretically/numerically can be advantageous. Roughness effects on
the photothermal signal have been reported by Bein et al. [82]. They have modeled roughness as
a three-layer model and have found that the rough surface has a low thermal effusivity, the
intermediate porous layer has an increased thermal effusivity and, finally, the bulk has the
highest thermal effusivity. This is consistent with this work (Section 4.4.1), where the rough
surface was found to have a lower thermal effusivity (Sum:~5000Ws'?/m’K,
2.5um:~3000Ws'"?/m?’K) than the bulk (~13000 Ws'?’/m¥K). It was also found that the
rough-layer thermal effusivity decreases, with increasing roughness.

Roughness effects became visible at high frequency, appearing as a peak in the phase
data, affecting the signal beyond the roughness depth and thus is necessary to treat. In modeling
roughness, one option is to use a finite thickness layer theory (Chapter 2) for depth
reconstruction in order to obtain a reliable profile beyond the depth of the roughness. A second
option is to account for roughness in the experimental data by considering roughness as a

random processes.
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5.2.1 Depth Profiles of Rough Untreated AISI 8620 Steels

The first method developed for treating roughness was based on the theoretical model
developed in Chapter 2 of the geometry shown in Figure 2.1 (d= roughness thickness). As
outlined in Section 3.4, the bulk thermal diffusivity is needed a priori for the reconstruction
method. In Section 4.4.4, the bulk thermal diffusivity was measured as a.=12.5x10°m?s.
Reconstructions are performed using the independent measurement of the bulk thermal
diffusivity and roughness thickness (600 and 200 grit) of the untreated AISI 8620 samples. The
numerical procedure is based on reconstructing from the high frequency end by fitting a, at each
virtual slice (Figure 3.1). With this method, the effect of surface roughness is greatly reduced
from the system. For the samples in question, the input parameters for the equivalent roughness
layer were thermal diffusivity oy, thermal conductivity k4, and independently measured
roughness thickness (d=2.3um). For the 600 grit the input parameters were as=4.5x10°m?%s,
k=10.1W/mK and roughness thickness d=2.3um. For the 200 grit the input parameters were
04=2.2x10m?/s, ks=4.6W/mK and roughness thickness d=5um. It is observed that as roughness
increases the thermal effusivity of the surface decreases (Table 4.2). The smoothed experimental
data with the theoretical fit, which assumes one homogeneous layer (roughness) with a
homogeneous substrate, are shown in Figure 5.1. The forward theoretical fit is in agreement with
the experimental data. Small discrepancies exist at the high frequency end where the roughness
is more difficult to model. In Figure 5.2, the experimental data were numerically inverted to
obtain the corresponding thermal diffusivity profile.

The roughness layer, which is assumed to be homogeneous with low thermal parameters,
is theoretically eliminated. Thus, the reconstruction shown in Figure 5.2 commences below the

roughness layer. It is seen from the reconstruction that the thermophysical properties are
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disturbed up to about 5S0um and 400um for the 2.5um and Sum roughness, respectively. Beyond
these depths, the bulk material is undisturbed and approaches the experimentally independently
measured value of a=12.5x10°m?s. The near surface fluctuation can be attributed to the
approximate modeling of roughness as a homogeneous layer. Another reason can be the
violation at the high frequency increments of the requirement for nonsteep local variations of the
effusivity (equation 2.28). Since rough profiles have steep variations at high frequency, a very
large number of modulating frequencies is needed to satisfy the nonsteep local variation
assumption. For low roughness materials, the perturbation can be neglected since hardness
measurements are usually of interest above 50um. Such a reconstruction can serve as a guide to
determine the extent to which roughness influences a specific profile. As roughness increases,
the reconstruction becomes less reliable. There are two reasons for this: (1) the forward model is
not represented adequately in the higher frequency spectrum where the randomness of roughness
is more evident, and (2) the inverse problem becomes more ill-posed, since more variables
(effective roughness properties) are introduced. Overall, reconstructing in this manner

(homogeneous layer assumption) can only be satisfactory for low roughness materials.
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Figure 5.1  Experimental and theoretical forward fit of 200 and 600 grit samples. For clarity
only 25% of the experimental data is shown.
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Figure 5.2  Reconstruction of 200 and 600 grit untreated samples. For clarity only 25% of the
data is shown.

5.2.2 Random-Spatial-Variable Approach to Eliminate Roughness from
Experimental Data

The one-layer theoretical model above treats roughness as a homogeneous layer over an
inhomogeneous substrate and, with a low-level roughness, the results are satisfactory as seen in
Figure 5.2. This theoretical model is, however, too simplistic. As the level (thickness) of
roughness increases, the thermal wave spectrum becomes more complicated, especially at high
frequencies, resulting in an erroneous thermal diffusivity profile. In this part of the work, a new
approach is adopted and tested for various levels of roughness and inhomogeneity. By using the
concept that random roughness is equivalent to white (Gaussian) noise in the spatial depth
coordinate, the effects of inhomogeneity and roughness can be deconvolved. The theoretical

simulations show great promise and, therefore, the method has been implemented to reconstruct
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experimental data. In a frequency domain method, both the roughness and the inhomogeneity are
observed throughout the frequency spectrum. A simple approach for deconvolving roughness
from inhomogeneity would not be valid since this is a non-linear system. The roughness method
is based on recognizing distinct features (phase maxima) from the frequency spectrum. Since
roughness is associated with the surface of a sample, the effects are strongest at high frequencies,
whereas low frequencies are substantially related to substrate inhogeneities. The objective of the
method is to deconvolve the roughness spectrum from the underlying profile (homogeneous or
inhomogeneous). To demonstrate the method, simulations of a semi-infinite inhomogeneous
profile, equation (2.42), using a single profile of equation (2.32) are performed with different
roughness thicknesses. Three cases 4, B and C with roughness 1.6pym, 7um and 10um,
respectively, are examined. Table 5.1 displays the thermal parameters used for each case,
modeled for four thermal geometries (referred to as curves). Curve | is the response of an
inhomogeneous sample with roughness. Curve 2 is the inhomogeneous field with no roughness.
Curve 3 is the homogeneous field with roughness and Curve 4 is an effective homogeneous field
fitted to the high frequency of Curve 1.

Figure 5.3 shows the amplitude and phase of Case 4 with the parameters displayed in
Table 5.1. Curve 1 shows the response of an inhomogeneous sample with roughness d=1.6um
and Curve 2 is the inhomogeneous field with &=0um. Curve 2 represents the ideal experimental
situation where no roughness effects are present (i.e., polished surface). Curve 3 is the
homogeneous field with roughness (i.e., untreated samples). Curves 2 and 3 are the individual
responses forming the inhomogeneity and roughness. The objective of the method is to retrieve
Curve 2 from Curve | by eliminating roughness. A theoretical fitting (equation 2.42) of a

homogeneous substrate with roughness is made to the higher frequency end of Curve 1. This is
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the region that is associated with the roughness. The input parameters of this Curve 4 are the
same as the ones used for Curve 3, except that an effective thermal conductivity is used for the
roughness layer. With this operation, the high frequency response of Curve 1 is fitted. Using a
simple normalizing procedure of the total field Curve 1 and 4, the sought inhomogeneity is

obtained as

_ Curve 1 _ IMyyg(w)le®oa@ | Mioa(®) | tag...oscor-adgen)
Tinae(0, @) = Cyrve 4 = M (w)ledts@ ~ | Mlw) |€ , 7, 6D

where each temperature distribution is defined in equation (2.42). The result of equation (5.1) is
Curve 5. Comparing Curve S with Curve 2, in Figure 5.3, the two results are found to be in
excellent agreement. Operation (5.1) can thus be used as a tool for obtaining the inhomogeneity
from a rough sample. The method is then tested for a higher level of roughness. Figure 5.4 shows
Case B where the roughness thickness is d=7um. Apart from the roughness thickness the
thermal properties are identical to Case | as seen in Table 5.1. The final result (Curve 5) is in
agreement with the expected theoretical value (Curve 2) although there are small deviations at
the low frequency end. The important observation is that the effective thermal properties of
Curve 4 for Cases B and 4 are identical. A more complicated situation, Case C, is then examined
where the amplitude and phase do not show any characteristic maximum from which the
inhomogeities can be inferred (Figure 5.5). The knowledge that the same inhomogeneities affect
the roughness spectrum in a similar manner is used in this case. Curve 4 is constructed using the
same effective properties as in Cases 4 and B. The thermal values for each curve of Case C are
shown in Table 5.1. For this case, the deviations of Curve 5 from the theoretical value of Curve 2

are more pronounced as compared to Cases 4 and B, but are still within satisfactory boundaries.
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Thermal Properties Case A Case B Case C

a;=6.15x10%m?s 0 =6.15x10°m?¥s o =6.15x10°m?/s

Curve 1: o=4.0x10"°m?¥s ao=4.0x10°m?%/s o=4.0x10°m?%/s
Total field: q=2x10’ m" q=2x10°m" q=2x10°m"'

Inhomogeneous ag=2.1x10°m?%s a=2.1x10°m?%s oe=2.1x10"°m%s
with roughness k~4.8 W/mk k=4.8W/mk ks=4.8W/mk

d=1.6pm d=7um d=13pum

a.=6.15%x10%m?¥s a0 =6.15x10°m?/'s 1 =6.15x10°m?%'s

Curve 2: 00=4.0x10°m?%/s 0e=4.0x10*m?%/s 0=4.0x10%m?/s
Inhomogeneous q=2x10° m™ q=2x10° m™* q=2x10°m!

with no roughness d=Opm d=Opum d=0um

a.=6.15x10°m?s

a,.=6.15x10°m?/s

o =6.15x10°m?/s

Curve 3: a=6.15x10m?/s a0=6.15x10°m?/s 0e=6.15x10m?/s
H_omogeneous os=2.1x10°m?%/s 0g=2.1x10°*m?%/s ag=2.1x10°m%s
with roughness ks~4.8W/mk k=4.8W/mk ks=4.8W/mk

d=1.6um d=7um d=13um

Curve 4:

Homogeneous with ker=5.96W/mK ke=S5.96W/mK ke=5.96W/mK
effective roughness
Table 5.1 Thermal properties of simulations shown in Figures 5.3-5.5.
Gaussian sample 22 sample 12
Fit Amplitude Phase Amplitude Phase
M, or Ad, 0.98 0.08 0.98 0.11
log(®e1) 4.89 4.61 4.81 4.96
]og(w 1) 3.69 2.03 0.81 2.28
A 0.29 21.29 0.12 41.86
log(®c2) 5.06 8.47 4.34 5.81
W 1.51 3.09 1.32 2.03
A, 0.54 -429.12 0.29 -82.02
log(®c3) . - 3.38 N
log(W3) - - 2.47 -
A; - - 0.13 -
Table 5.2 Gaussian fit parameters of experimental data shown in Figures 5.6 and 5.7.
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Modeling roughness (d=1.6um)
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Figure §.3  Simulation of roughness elimination method with 1.6um roughness thickness.
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Modeling roughness (d=7um)
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Figure 5.4  Simulation of roughness elimination method with 7um roughness thickness.
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Modeling roughness (d=13um)
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Figure 5.5  Simulation of roughness elimination method with 13um roughness thickness.
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Although the above method proves to be very effective in a theoretical application of an
inhomogeneous substrate with a rough layer, a more general expression (not based on the
theoretical model) for modeling the roughness can be obtained. Since roughness can be viewed
as a random spatial-variable effect, a white Gaussian noise is fitted to the effective
frequency-domain roughness profile (Curve 4), based on the theoretically expected
Gaussian-to-Gaussian Fourier transformation. Through a spatial Fourier transformation, it is
expected that the roughness spatial Gaussian profile will also be mapped as a Gaussian
distribution in the frequency coordinate. By extension, there can be a linear superposition of
several such Gaussian functions, if there are multiple characteristic roughness scales associated
with a particular surface. The field thus created a non-symmetrical field and, therefore, the

expressions for amplitude and phase, respectively, are as follows

(w10 = log(w1ci))?

Morwo)=Mo+|Z 3 pice” WA, 62
N A (w20 — log(w2c))*
ADo(w0) = Ao + 2 3 e Wi , (5.3)

where Mg and A®y are the amplitude and phase offsets, respectively, # is the full width, 4 is the
area and o. is the center-frequency of the Gaussian function. N is the upper number of
characteristic roughness lengths anticipated. The summation of Gaussians is greater than one
(N=1) so as to account for the asymmetry of the field. The offset values can be derived by using
the first point of theoretical fit of the effective roughness (Curve 4). This can serve as a guide to

the level at which the Gaussian function will saturate, and is an approximation. The approximate
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offset values are “1” for amplitude and “0” for phase. Hence, in order to retrieve and eliminate
roughness from the experimental data, a Gaussian fit to the high frequency end (roughness) is
made based on equations (5.2) and (5.3). Figure 5.6 shows the elimination of roughness from
experimental data. The sample has a roughness of 2.5um (Sample 22) on an inhomogeneous
substrate. The profile needed to perform such an operation on these data is a double Gaussian
function whose parameters can be found in Table 5.2. Figure 5.7 shows the method of
elimination on rougher data (d=5um) with an inhomogeneous substrate. Although the phase
roughness is fitted to a double Gaussian function as above, the amplitude for this data requires a
summation of three Gaussians to perform the operation. A double Gaussian function would have
fitted the data, but the higher frequencies would have suffered from deviations from the

experimental data. The parameters for the Gaussians can be found in Table 5.2.

5.2.3 Interpretation of the Roughness Elimination Method

In the above section, roughness was eliminated by fitting a Gaussian distribution to it. In
this section, a physical explanation is attempted. An analogy of the method can be made with
astrophysics where Gaussian distributions are fitted to each spectrum response to find the
temperature of the planet observed. When fitting the summation of Gaussians to the roughness,
each Gaussian function is associated with a different frequency constant. This can be explained
by viewing roughness as layers over layers as seen in Figure 5.8. Each level of roughness is
associated with a characteristic frequency whose randomness can be represented as a Gaussian
distribution. The roughness is thus modeled as white noise of random spatial distribution in the

frequency domain. In the future, the random distribution of spatial roughness diffusion can

100



perhaps be modeled using “fractal” analysis which was introduced to explain diffusion processes

in the micron or submicron scale [84].
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Elimination of roughness - 200 grit (sample 12)
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Figure 5.8  Multiple (two shown) layers of roughness with multiple (two shown) frequency
centers.

5.3 Depth Profiles of Carburized AISI 8620 Steels with a
Rough Layer

Roughness elimination is performed on all the carburized and quenched data. The

success of the method is clearly seen when two differeat levels of roughness result in the same

inhomogeneous experimental response.

5.3.1 Carburized Samples

Using the Gaussian elimination method, the roughness effects were eliminaicd from all
smoothed experimental data of Figures 4.20 and 4.21 for the 200 and 600 grit, respectively, as
shown in Figure 5.9. The solid symbols correspond to 200 grit roughness, whereas the open
symbols correspond to 600 grit roughness. The black, red and blue curves correspond to 0.027,
0.04” and 0.06” case depth, respectively. After eliminating roughness, the underlying profiles for
both roughness depths are superimposed over each other (solid black with open black, solid red

with open red, and solid blue with open blue). This is an indication of the satisfactory
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performance of the roughness elimination method. With knowledge of the bulk thermal
diffusivity of carburized samples, as measured in Section 4.4.4, reconstructions are performed
for all experimental data, using the method outlined in Chapter 3. The bulk thermal diffusivity
serves as a guide for finding the initial guess for (a0, q). The reconstructions for all samples are
shown in Figure 5.10. In order to develop a statistical boundary for the reconstructions, the
experimental data were averaged as per hardness case depth (0.02",0.04™ and 0.06"). Figure 5.11
shows the average curves with their respective error bars. The variations between experiments
are due to sample variation rather than due to poor experimental reproducibility. The
experimental reproducibility is in fact better than 1% for frequencies higher than 10Hz, and on
the order of 2% to 5% for the lower frequency regime. The same data are presented on 1/sqrt(f)
axis (Figure 5.12) showing the relative rate of change of signal with depth since the depth of
propagation is proportional to 1/sqrt(f). The reconstruction of the average experimental curve is
performed and the resulting reconstructions are shown in Figure 5.13. To ensure the validity of
reconstructing the average experimental data, the average of all the reconstructions performed
per case depth is shown on the same graph. At shallow depths, there is an agreement between the
average reconstruction and the mean of reconstructions. As the depth increases the deviation of
the two methods increases but it is still within 0.3% variation. In this way, a standardized
instrumental methodology can be developed where, first multiple positions on the sample can be
monitored, and then, the average of experimental data can be reconstructed. The thermal
diffusivity reconstruction of the average is compared to the conventional microhardness test as
seen in Figure 5.14. The depth profiles of the hardened samples exhibit an anti-correlation
between thermal diffusivity and hardness. A good one-to-one correlation between hardness and

thermal diffusivity is present, although the curves are not a mirror image of each other. The
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Carburized Reconstructions
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Figure 5.10 Reconstructions of all data in Figure 5.9 for 0.02” (black), 0.04” (red) and 0.06”
(blue) case depth.
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Figure 5.11 Average forward experimental data of Figure 5.9 for 0.02” (black), 0.04” (red)
and 0.06” (blue) case depth.

106



Mean of carburized data with roughness elimination
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Figure 5.12 Average data versus 1/sqrt(frequency) for 0.02” (black), 0.04” (red) and 0.06”
(blue) case depth.
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Figure 5.14 Hardness and thermal diffusivity profile for carburized data; 0.02” (black), 0.04”
(red) and 0.06” (blue) case depth.
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5.3.2 Quenched Samples
After carburizing, the same samples were oil quenched and the frequency response was

repeated. Gaussian roughness elimination was again performed on these data as shown in Figure
5.15, where roughness was eliminated from all smoothed experimental data in Figures 4.24 and
4.25 for the 200 and 600 grit, respectively. The solid symbols correspond to 200 grit roughness
whereas the open symbols correspond to 600 grit roughness. The black, red, blue curves
correspond to 0.02”, 0.04” and 0.06” case depth, respectively. After eliminating roughness, the
underlying profiles for each respective roughness depth were superimposed over each other
(solid black with open black, solid red with open red and solid blue with open blue). The
averages of these data were taken (Figure 5.16), and the reconstruction for each depth (Figure

5.17) was compared to the microhardness test, where once again an anti-correlation was noted.

As the depth increases, the one-to-one anti-correlation between microhardness and thermal
diffusivity decreases. Beyond 2mm, the hardness profiles approach the bulk value but the
diffusivity profiles do not yet saturate to the bulk thermal diffusivity. This could be due to the
high sensitivity of photothermal methods detecting actual small variations before reaching the

bulk value (Smm for this case). The exact mechanism of the thermal diffusivity versus the

microstructure is discussed in the following section.

5.3.3 Sample Correlation

An important aspect of the reconstruction procedure is the understanding of the driving
forces for the anti-correlation between thermal diffusivity and hardness. In this thesis, the
samples underwent two major heat treating processes of carburizing and quenching. A

comparison between the two treatments can assist in the data interpretation. The experimental
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data for both the carburizing and quenching process are shown Figure 5.18. The experimental
data between the carburizing and quenching process show small variations suggesting that there
are no major differences in terms of the relative thermal diffusivity depth profiles. It must,
however, be noted that the bulk thermal diffusivity for these samples is different and, thus, the
absolute reconstruction was at different saturation levels, as outlined in Section 3.4. The
back-propagation one-dimensional experiment only provides information about the relative
thermal diffusivity of a material. The bulk thermal diffusivity is measured independently. Figure
5.19 compares the reconstructions of both the carburized and quenched data and, although they
are at different levels, the depth profile (as indicated by shape) in each reconstruction is similar.
The quenched data reconstructions are of lower thermal diffusivity value since the quenched
bulk thermal diffusivity value is lower than the carburized one. The result was obtained from the
forward measurement of the bulk thermal diffusivity for the quenched versus carburized sample
(Section 4.4.4). At the bulk value the same carbon content exists but the carburized samples have
a ferritic structure whereas the quenched samples have a martensite structure. This leads to the
conclusion that the microstructure dominates the absolute value of thermal diffusivity. The
diffusivity shape similarity between the carburized and quenched reconstructions can be related
to their common carbon profile (Figure 4.9). Thus, it can be concluded that the shape of the

thermal diffusivity profile is dominated by carbon diffusion.
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Quenched Experimental Data
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Figure 5.15 Quenched experimental data after elimination of roughness for 0.02” (black),
0.04” (red) and 0.06” (blue) case depth with 600 grit (open symbols) and 200 grit

(solid symbols) roughness.
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Mean of quenched data with roughness elimination
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Figure 5.16 Average forward experimental data of Figure 5.15 for 0.02” (black), 0.04” (red)
and 0.06” (blue) case depth.
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Figure 5.17 Hardness and thermal diffusivity profile for quenched data; 0.02 (black), 0.04”
(red) and 0.06” (blue) case depth.
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Figure 5.19 Average reconstructions of carburized (solid) and quenched (dash) data for 0.02”
(black), 0.04” (red) and 0.06” (blue) case depth.

5.4 Conclusions

Thermal wave depth profilometry can be an invaluable analytical technique for
understanding the effect surface treatment processes such as case hardening of metals. In this
work, AISI 8620 type steels were subject to common industrial heat treatments like carburizing
and quenching. A complete experimental and theoretical/computational analysis was performed
to generate thermal diffusivity profiles. A novel approach of treating roughness as spatial
(depth-coordinate) white noise was introduced. This method led to a Gaussian roughness profile
in the frequency domain and helped establish a procedure for eliminating the effects of this layer
from the frequency response of the inhomogeneous substrate. The Gaussian elimination of

roughness proves to be an important method of improving the experimental data and achieving
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thermal diffusivity reconstructions of non-homogeneous underlayers. This method can thus be of
great interest in other photothermal applications where roughness can be an undesirable
parameter. In fact, it has been recently applied in the Photothermal Laboratory of the University
of Toronto with success to thermal spray coatings.

The current methods used to characterize case hardening are destructive and, therefore,
success in developing a correlation (anti-correlation) between hardness and thermal diffusivity
profiles implies a significant contribution to the steel industry. A near anticorrelation between
the thermal diffusivity profile of a hardened surface and its microhardness is found in this thesis.
The study of the two processes of carburizing and quenching concluded that the shape of the
thermal diffusivity profile is dominated by carbon diffusion whereas the absolute thermal
diffusivity depth profile is dominated by microstructural changes. Obtaining the carbon diffusion
can be significant to the steel industry since, in the heating process, the carbon content is not a
measured output but only an estimated input. Care must be taken to measure the correct bulk
thermal diffusivity which is used a priori otherwise the shape of the profile would be correct but

the absolute thermal diffusivity depth profile would be incorrect.
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Chapter 6

Forward Process:
Thermal Wave Diffraction Theory

6.1 Introduction

In the next chapters (Chapter 6-9), the three-dimensional inverse problem of Thermal
wave Slice Diffraction Tomography (TSDT) is studied. TSDT is a method for retrieving
sub-surface thermal defects.

In this chapter, the mathematical theory of the thermal wave propagation process will be
developed utilizing thermal wave diffraction [66], and will be called the forward process. The
mathematical formulation of thermal wave propagation will be presented as an integral solution
for the Helmholtz equation. Approximations of the integral solution will be established in the

limit of a perturbative first Born (or Rytov) approximation.

6.2 General Form of the Thermal Wave Equation

Upon a harmonic optical excitation of the boundary S enclosing some inhomogeneous

region in space, R, and having functional form [66],

I(r, t) = Iy(r) exp(—iwt) (6.1)
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where 7 is the incident optical irradiance on S and @=2# is the optical beam intensity
modulation angular frequency, the resulting photothermal wavefield in R can be described fully

by the equation [5,66],

VK(r) e« VI(r) + K(r)v*T(r) — iop(r)c(r)T(r) = 0 (6.2)

where K(r), p(r), c(r) are the coordinate-dependent thermal conductivity, density and specific

heat of the matter in R, at location r from a suitably chosen origin. T(r) is the spatial part of the

modulated temperature field,

O(r, 1) = T(r) exp(iwt) (6.3)

Equation (6.2) may be written in the following form

V2T(r) - 1[5‘(%)) ) = —[3[{5((;')1] o VT(r) (6.4)

where

K(r)

%)= 5y 3

is the local thermal diffusivity. In the case where the thermal conductivity of the matter in R

does not vary drastically with position, so that the fractional change of K(r) in one local thermal
wavelength, A(;w)=2n(a(r)/®)'?, is small, the right hand side of equation (6.4) may be

neglected, which then yields the Helmholtz pseudowave equation [5,66]
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(Vi - §*MT(n=0 (6.6)

where

3 ) w 12
2 =1+ 525 )

is the complex thermal wavenumber. Letting the thermal diffusivity of the assumed
homogeneous medium surrounding the object region R be aw, equation (6.6) may be replaced by

a modified Helmholtz pseudowave equation [66]:

(V2 —g3)T(r) = F(rT(r) (6.8a)
where
0 reR
L gor-n  rer (680
and
172

d0=(1+(32) = g0 (6:5¢)
and

n(r) = a‘ég) (6.8d)

n(r) is a measure of the variation of the thermal diffusivity values in the scattering object R from

that of the surrounding (reference) region R,. The ratio in equation (6.8d) has been symbolized
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by n(r) deliberately, to suggest the analogy of this parameter to the effects of variations in the
refractive index in conventional optical propagating fields [66]. The effect of the
inhomogeneities of object region R appear as a source function in the right side of equation
(6.8a) even though a new source was not introduced in the wave field. This is in agreement with
the fact that inhomogeneities are sources of the scattered fields. F(r) is the object function and it
represents the inhomogeneities of scattering object region R. The object function F(r) is zero at
every point outside region R and has a non-zero value that represents the ratio of thermal
diffusivities inside region R. If the inhomogeneous region R is removed from boundary S, then
F{(r) will be zero everywhere and thus the medium in boundary S would be totally homogeneous.
With this in mind, equation (6.8a) represents an inhomogeneous wave equation, and if the right
hand side of equation (6.8a) is identically zero, it represents a homogeneous wave equation.

The full solution of equation (6.8a) satisfies, in three dimensions [85,86,71],

I(r) = [ § ] Golriro) Fro)T(ro)d’ro+| | [Go(r/ro)ééf—r(ro) — T(ro) ‘gff ldro.  (6.9)

The integration is carried over spatial object region R and boundary OR. Also, n is the normal
outward unit vector to JR. Region R is a cross-sectional slice in two-dimensional space [66], and
is of constant thickness. 7(r) is the total thermal wave field; r and r, are the coordinates of the
observation point and the source point, with respect to the origin; Go(r/ro) is the Green function,
which will be discussed in more detail in a further section. In equation (6.9) the surface integral
yields the bulk field (homogeneous), and the volume integral contains the scatterers. Thus, the
integral equation (6.9) can be re-written in the following form, where the total surface integral is

represented by the homogeneous field, T(r),
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(=T +{] I‘; Go(r/ro)F(ro)T(ro)d>ro. (6.10)

The total thermal wave field, 7{r), can be expressed as the sum of the incident (homogeneous)

field, Ti(r), and of the scattered field, T,(r), as follows:
I(r)=T(r) + T«(r). (6.11)

Thus, from equations (6.10) and (6.11), one obtains the following expression for the scattered

field,

T(r)=1{] ,je Go(r/ro)F(ro)T(ro)dry (6.12)

This is the final integral equation needed for solving the inverse problem. If the thermal wave
source, ro, and/or observation point, », are not infinitesimally close to the boundary, S, which

encloses the spatial region, R, then [85],

Go(l‘/l‘o) = Go(r - ro). (6.13)

If not the case, then there will be r and r; dependent components to G, but not in the r-ro form

only.
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6.3 Geometry for TSDT with Backpropagation and
Transmission Detection

Thermal Wave Slice Diffraction Tomography can be evaluated in either backpropagation
or transmission mode. The thermal wave field is excited with a laser beam, and the thermal wave
field characteristics (amplitude and phase) are measured with a photothermal detector along the
detection line. Backpropagation mode is met when the thermal excitation (at y=0) and the
detection (at y=0) occur on the same side of the cross-section, whereas transmission is met when

the thermal excitation (at y=0) and the detection (at y=yr) occur on opposite sides, figure 6.1.

I
Laser Beam? Detectorv
X0, x y=0 Backpropagation
xi

m (laser-detector on same side)
: 7

Scattering Object

* xf
| y=yf Transmission
Detector (laser-detector on opposite
side)

Figure 6.1  Geometry for TSDT amenable to backpropagation and transmission detection.
Region R in equation (6.12) is a slice in two-dimensional space, and it is assumed to be

rectangular, with the thermal excitation on one side of the region (y=0), as in Figure 6.1. The

rectangular region is then

R={(x,y)xi<x<x;0<y<ys} (6.14)
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If the thermal wave field in backpropagation 7(x,y=0) is measured, then from equation (6.12),

the scattered field is
TS(xs O) = ,‘[ g][ GO[r(xa O)lro(é, ")]Hro(és P])] nrﬂ(és ”)]dédﬂ (6.15a)

where £ and n are the integration dummy variables. Similarly, if the thermal wave field in

transmission, 7{x,y=yy), is measured, then the scattered field is

Xr Y
Ts(x!yf) = f _fGO[r(xayf)IrO(é9 'I)]F‘[rO(é, ")] ][ro(é’ ”)]déd" (6.15b)

6.4 Approximations to the Wave Equation

Equation (6.12) is a Fredholm equation of the first kind and can not be solved directly. A
solution can be written using either the Born or the Rytov approximation. These approximations

are valid under different conditions, but the forms of the resulting solutions are quite similar

[67].

6.4.1 The First Born Approximation

When the object is weakly inhomogeneous, the scattered field is weak and much smaller

than the total field, T.(r)<<7T(r). With equation (6.11), the scattered field in equation (6.12), can

be written as
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T.(n={§ II? Go(riro)F(ro)Tiro)d*ro +§ § { Go(r/ro)F(ro)T(ro)d’ro. (6.16)

If the scattered field is small, compared to the total field, the effects of the second integral can be

considered a small perturbation and thus ignored, leading to the approximation [67],

To(r) = Taom(®) =1 § ‘[! Go(r — ro)F(ro)Ti(ro)d>ro. 6.17)

6.4.2 The First Rytov Approximation

An alternative to the scattered field is the Rytov approximation, which is valid under

slightly different restrictions. Let the total field be represented as a complex phase [67]

I(r) = exp(\¥(r))- (6.18)
Substituting equation (6.18) into equation (6.8a), the following is obtained,

(V¥ (r)? + V2(r) + k% = —F(r). (6.19)

The total complex phase can be expressed as the sum of the incident and the scattered phase
[67],

W(r) = Wi(r) + ¥s(r). (6.20)

The solution to equation (6.16) using (6.17) is then [67],
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¥ () =¥ o = Ty £j F(ro)T{ro)Go(r— ro)dAo. (6.21)

The Rytov approximation is valid when the phase change over a single wavelength is small. For
very small objects and perturbations it can be proven mathematically that the Rytov solution is

approximately equal to the Born solution [67].

6.5 Three-Dimensional Thermal Wave Green Function

Scatterer detection methodologies using propagating fields (e.g., acoustic,
electromagnetic, optical, microwave) can be best quantified using Green function techniques
[71]. If G(r/ro) is the field at the observer’s point r, caused by a unit point source at the source
point ro, then the field at r, caused by a source distribution p(ro), is the integral of G(r/ro)p(ro)
over the whole range of r; occupied by the source [85]. The Green function, therefore, represents
the field response resuiting from a single point scatterer, so the scattered field can be expressed
by a summation or integration over all individual scatterers. Boundary conditions are satisfied in
the same way. The field at the boundary value is zero at every point except for surface point, rj.
The boundary conditions on a surface can be thought of as being equivalent to source

distributions on the surface [85].

6.5.1 Semi-Infinite Geometry

If the thermal wave flux is prescribed at the interface, z=0, the Green function must

satisfy the homogeneous Neumann boundary condition at the source coordinate, z,=0,
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VoGo(r— rolf - "a , (U)IZO_—.{) =0. (6.22)

Vo indicates the normal derivative of G, along the normal source coordinate, z,, at the interface.
The coordinate, zo, coincides with the direction normal to the dividing interface. From analogy to

the infinite-domain Green function [11],

e~9@lrrg|

4nalr - ro| ’ 62

GO(rQrOaw) =

an impulsive image must be placed at ro such that the thermal wave fluxes cancel out at the
interface; g(w) is the thermal wave number, equation (1.3a). The appropriate combination is

[71],

—q@)lrrol  p—glw)ir-ro|
1 re e 0 ] (6.24)

Go(r—rolr—ro,w)=4mk r—ro] Ir—ry|

corresponding to the situation shown in Figure 6.2. In terms of the coordinate system of Figure

6.2,
Ir—rol = J(x —x0)* + (¥ —y0)* +(z —20)* =Ry (6.253)
and
|r—r(')[ = \/(x—xo)z +(—y0)? +(z +20)? =R,. (6.25b)
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Figure 6.2  Coordinate system for three dimensional geometry.

6.5.2 Finite Geometry
For a finite geometry, the method of images can be used to accommodate plane bounding
surfaces at z=0,L. Satisfying the Neumann boundary conditions at z=0,L, the resulting Green

function is [11],

' 1 [ et@irrel e~9(@)lr—rol
Go(r—rolr —ro, @)= 7.7 ,z‘w[ |r — ronl + [P — ol J (6.26)
where,
Ir = ron| = J(x —x0)2 + (¥ — y0)? + (z — (2nL + zp))? (6.25¢)
and
Ir — Fon) = J(x = x0)? + ( = y0)? + (z — (2nL — z0))? (6.254)
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6.6 Homogeneous Temperature Field

The solution to the homogeneous thermal wave equation is [71],

O0(r, w) = a [[[Go(r - r§, @)V00(rs, @) — 6(r§, ©)V0Go(r — r§, ®)]dSo (6.27)
So

where S, is the surface surrounding the source volume Vy; ro° is a coordinate point on So. The
thermal diffusivity, a, and thermal conductivity, &, are assumed to be constant throughout V,
Equation (6.27) is equivalent to equation (6.9) without any volume sources.

Thermal wave flux, ¢, is prescribed over the interface plane, z,=0,
B(rs, 1) = poe™+ it (6.28)

generated by a Gaussian laser beam of spot size, w, Figure 6.3.

D

X0

Z0

r

Figure 6.3 Semi-inifinite geometry for calculation of semi-inifinite thermal wave field
generated by a Gaussian laser beam totally absorbed at the surface plane z,=0.
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6.6.1 Semi-Infinite Geometry

The Green function must satisfy the homogeneous Neumann boundary conditions on the
source plane, z=0, and is given by equation (6.24). For the homogeneous case, no volume
sources exist in the half-space (Xo,Yo,20), as in Figure 6.2. Therefore, from equation (6.27), the

thermal wave field becomes [71],

0(r, ) = a [| Go(r —rilr —r§, @)V o8(rs, w) - dSo (6.29)
So

where dSo must be replaced by dS; = si;dxodyo pointing in the direction inside the half-space, Vo,

to indicate the inflow of thermal energy. The surface, S,, is the plane, z,=0. Furthermore,

5O __, 0O
Vo =no 0zo n; 0zo (6.30)

so that, from the definition of thermal flux,

d(rs, ) = §(x0,y0,0; 8) = -k%a(xo,)’o,zo; t)|z5=0

. 2 .12
= doe' exp(—(—xow—zyolj 6.31)
' 2 43,2
908(rt, ) = (42 e exp( L0 632
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Combining equations (6.24), (6.29) and (6.32), the spectrum of the thermal wave field in the

form of an integral over the bounding interface, S¢(xo,y0) [71], is
— ﬂ. i dxodyo (x3 ,Vo)
or, o ﬂ exp| -~ —q(@w)R |, (6.33)

where, at z;=0,

R=ir—ro|=|r-rj| = J(x—x0)* + (¥ —yo)? +2%. (6.34)

After some manipulation and a change of variables of equation (6.33), the thermal wave field of

a semi-infinite geometry with a thermal wave flux prescribed over the surface becomes [71],

2 2
0(", Cl)) = %:leiwot exp(—(—x—‘:Ty_)-)‘lii (x,y, Z) (6.35)

with,
T_p
J3(x,y,z)=2n£J7?_;;-exp(— ~q(w)/p?+:z )Io( JxXi+y )dp (6.36)

Lo is the modified Bessel function of order zero. The thermal wave field represented by equations

(6.35) and (6.36) can be evaluated numerically using the polynomial approximation for Is(x)
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given in [87, entries 9.8.1-9.8.4]. Integral J; has a removable singularity at z=0, which makes it

very attractive for programming. At z=0, J; becomes,

J3(x,y,0)=2n g exp(i—z - q(w)p)lo(%,/xz +y? )dp. (6.37)

6.6.2 Finite Geometry

In the finite region, z=0,L, the thermal wave flux is prescribed over the interface plane,
z,=0, generated by a Gaussian laser beam of spot size, w, given by equation (6.28). The
thermal-wave field is given by equation (6.29), with the thermal wave flux being approximately
zero at zp=L. The relevant Green function is now equation (6.26), satisfying the homogeneous

Neumann conditions at the two interface planes. Equation (6.29) becomes [71],

O [ o-a(@)r-raal  p-q(@)r-ro,l
(e € ”J (6.38)

O(r,w) = —217?[—%9(.1‘0,}/0,20; CD)IZo=o] > IF — Fon| + IF — o]

n=—w

where 06/0zo is given by equation (6.31). Defining the integrals

JOx,y,A,) =21 g ,/?%4? exp(—;-’ii— -q(w)p? + A2 )[o(%';-,/xz +y? ) (6.39)

and splitting up the summation in equation (6.38) results in the expression
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x2 +y?
2¢0 iwol - VV2 - n) n)
6(r, ) = S -ev'e J3(x,,2) + By, 2nL = 2) + JP(x,p, 2nL + 2)}].

(6.40)

The backpropagation thermal wave field becomes

2 2

2 X° + & . An .
I(x,y,0; o) = -fTo exp[— wzy J[Js(x,y, 0)+2 (3, 0) + 1 (x,y, 2nL)3],
(6.41a)
and the transmitted thermal wave field becomes
X<+ ’ 9L 3 X 27
T(x,y,L; o) = %exp(—-i—zyz) Siley )+,§|U‘(‘ .y, @n + DL) . (6.41b)
+J$(x,y,(2n - 1)L)}
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Chapter 7

Inverse Process: TSDT Numerical Method

7.1 Introduction

The thermal wave diffraction problem leads to a so-called discrete ill-posed problem
when solved numerically. By a discrete ill-posed problem it is meant that in either a square or an
overdetermined system of linear algebraic equations (i.e., Ax=b or min ||[Ax-b||;) the coefficient
matrix, A, is ill-conditioned, in a way that its singular values decay rapidly to zero [88]. In an
ill-conditioned problem, small perturbations in the data cause large perturbations in the solution
[89]. These types of problems are intrinsically difficult to solve, and, indeed, the standard
methods in numerical linear algebra, such as LU- or QR- factorizations, cannot be used. Instead,
a regularization method can be applied to stabilize the problem. In this work, the Tikhonov
regularization method is used.

In this chapter the discretization (Section 7.2) of the theoretical formulation of Chapter 6
and numerical solution of the inverse problem (Section 7.3) is presented. In Section 7.4, the
definition of an ill-posed problem is given, along with the regularization method used, necessary
for solution. The optimization method used for the ill-posed problem is also explained in this
section. Finally, in Section 7.5 the numerical procedure used to solve the infinite integrals of the

homogeneous field is outlined.
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7.2 Discretization of Equations

The sample region is divided into » intervals, and the rectangular region
R={xp|xi<x<x;50<y<ys}, (7.1)
is divided into »? cells. Since, equations (6.15a) and (6.15b) are double integrals, the choice of ?

points at the boundary is essential to obtain a square matrix [69].

For 1 </ < n?, equation (6.15b) assumes the following form,
xry,
Ts(jAx,yy) = J[ Jo[ Golr(jAx, yplro(S, MIFTro(E, MITTro(E, m))dSdn (7.2)

and equation (6.15a) can be written in similar form, with y=0. To obtain the discretized form of

equation (7.2), the grid points in R, (kAE,l1An), are ordered in the following matrix order, m(k,l)

(681,

(1 2 6 7 1516.)

3 5 8 1417

4 9 13.18 . . .

101219 . . . .| (7.3)
11 20

21

\ ,
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The type of ordering in matrix (7.3) is general and it does not depend on the matrix dimensions.
In addition, it is not difficult for numerical programming. Discretizing equation (7.2) by the

rectangular rule [90],

2

TS(kAx’yf) = 2—:1 GO(lrk - rOmI)F(rOm)T(rOM)’ (7.4)
where
Yom = omip = < (IAE)?, (jAn)? >. (7.5)

[n addition, the scattered field in the entire cross-sectional region, R, for 0 <k./<n, can be

calculated by [69],

n n

To(kAx, 18y) = X X Go(Iris = romn DE(Tomn) T(FomG)- (7.6)

1 =1

The complete solution to the inverse problem, with the final goal of retrieving the
behavior of the object function, F, can be accomplished with the following arrangement of
equations. Experimentally, the total transmitted or backpropagated field is measured. The
measurement provides the amplitude, |7], and phase, v, of the field, and, thus, the total field can

be expressed in the following complex form,

T = |T) exp(iv). (7.7
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Using equation (6.11) with the theoretically calculated incident field, equation (6.41), the
scattered field at the transmitted or backpropagated surface is computed. With a theoretically
known complex Green function given by equation (6.26), the complex valued linear system (7.4)
is solved for the multiplicity, FT, of the object function and the complex temperature field, 7.
Therefore, the scattered field in the entire region, R, can, then, be calculated with the complex
valued linear system (7.6). The total field is computed with equation (6.11), and which is used in
equation (7.4) to solve for the object function, F. The solution of the complex linear system (7.4)
is a complex function whose real part is the required object function, F, and whose imaginary
part is theoretically zero [69]. Numerically, it is not exactly zero, and its value may serve as a
measure for successful reconstruction [69]. The computational flowchart of the full solution is
shown in Table 7.1.

Although it is entirely possible to solve the inverse problem exactly by following the
flowchart in Table 7.1, in this work the first Born approximation, equation (6.17) - Table 7.2, is
adopted. Namely, in equation (7.2), 7i(r) is used instead of 7(r). Again, using equation (6.11),
with the theoretically calculated incident field, equation (6.41), the scattered field at the
transmitted or backpropagated surface is computed. The object function, F(r,), is directly
computed with the complex linear system (7.4) by replacing T with 7,. The computational
flowchart of the approximate solution of the inverse problem for the object function is shown in

Table 7.6. The use of the Born approximation simplifies large scale computation and saves

computer time.
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T(kAx,y/0) -Experimental —> (6.11)—> T(kAx,y/0)
Ti(kAx,y#/0) -Theoretical

T{(kAx,y70) -Computational —> (74)—™> F(ro) (o)
Go(Jr-ro|) -Theoretical

F(ro)I(r;) -Computational —p (7.6)—> T(kAx,IAV)
Go(Jr-ro])  -Theoretical

Ty(kAx,lAy) -Computational —»(6.1])—> T(ry)
T (ro) -Theoretical

I(ro) -Computational F(ro)
Go(lr-ro)) -Theoretical —> (74) —»

T(kAx,y#70) -Computational

Table 7.1 Computational flowchart for the calculation of the object function F(r,) (y/0 indicates
transmitted/backpropagated thermal wave detection).

| Known Input Fields ||  Equation# || ted Field

T(kAx,y/0) -Experimental —®6.11)—» T.(kAx,y/0)
T; (kAx,y¢/0) -Theoretical

T{(ro) -Theoretical F(ro)
Go(|r-ro|) -Theoretical —> (74)—>
T(kAx,y/0) -Computational

Table 7.2 Computational flowchart for the calculation of the object function F(r,) by means of
the Born approximation (y/0 indicates transmitted/backpropagated thermal wave
detection).
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7.3 Matrix Formalization of Linear System

The main objective is to solve the complex linear system (7.4) for the object function
F(r). This can be achieved by expressing the linear system in terms of linear algebra. Let L be

the following complex matrix,

Lim = Go(|re = romipl)- (7.8)

When calculating the solution of equation (6.11), instead of the rectangular rule for integration,
the trapezoidal rule for integration is used for even values of n, and Simpson’s rule for
integration is used for odd values of n {90]. The trapezoidal rule is a second-order method, and is
more accurate than the rectangular rule which is a first-order method. Simpson’s rule is a
fourth-order method [91]. Because of its higher accuracy level, Simpson’s rule is used whenever

possible. Furthermore, an n* x n* system of linear equations can be defined as follows,

Af=t, (7.9)

where A=Dimim, Dim is the constant matrix that applies either trapezoidal or Simpson’s rule of
integration, f=F7T, and t=T,. Let f represent the solution of matrix system (7.9). The matrix
system is solved for FT and, after deducing 7 from equations (7.6) and (6.11), a new linear
system is defined with f=F and A=Dynimr- Thus, the final solution can be reached. When the

Born approximation is used, f=F and A=Dumvimr.
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7.4 I11- Conditioning and Tikhonov Regularization Method

From a computational point of view, the main problem with this linear system is that the
matrix Gor: is often almost singular [68]. The accuracy of the solution is substantially influenced
by the conditioning of the given system of equations. Discrete ill-posed problems are analyzed
and solved by numerical techniques. The rapid development of computer engineering, the
introduction of mathematical methods to new fields of science and technology, and the
widespread use of computers have brought computing mathematics to a point of intensive
development of theory and methods for solving ill-posed problems [89]. The general theory and
methods for solving ill-posed problems were initiated by the work of Tikhonov (1943) [89,93].
From Tikhonov and other prominent mathematicians, a number of vital and interesting results

have been obtained in the theory of ill-posed problems, to date.

7.4.1 Il1-Posed Problems

The ill-conditioning of a matrix can be defined by the condition number,

cond(4) = [ A4l| [47']l; (7.10)

where [[A|| denotes a given matricial norm. A linear system for which cond(A) = 1 is called well
conditioned; a linear system for which cond(A) >> 1 is called ill-conditioned [92]. Namely, a
system is said to be ill-conditioned if a relatively small change in one of the coefficients results
in a relatively large change in the solution. If there are elements in the inverse A" of the matrix

that are several orders of magnitude larger than those in original matrix A, then the matrix is
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probably ill-conditioned. Formally speaking, an inverse problem is ill-posed (ill-conditioned) if
one of the criteria, introduced by Hadamard [94], of existence, uniqueness and stability is
violated. Let Ax=b be an algebraic problem, equivalent to system (7.9), with A being
ill-conditioned. For existence to be fulfilled there must exist a solution x for any b. A way of

overcoming this criterion is to calculate a function x, that minimizes the distance between Ax

and b [95],

min ||b—Ax|| = ||[b—Ax,]|- (7.11)

Uniqueness is fulfilled if there exists one and only one solution x for any b. In order to overcome
the uniqueness criterion, information from the experimental nature of the problem can be used a
posteriori for selecting the inverse solution. Finally, stability occurs when the solution x is

continuously dependent on b. Lack of stability means that two numbers n and £(n) do not exist

so that [95], if

b2 —b\[|<n (7.12)
it follows that

lIx2 —x1]| < &(a), (7.13)

independently of the choice of x; and x,. The stability of the linear system is obtained by forcing
the validity of &(n) = O for 7 - 0. Numerical methods for treating discrete ill-posed problems
seek to overcome the problems associated with a large condition number by replacing the

problem with a “nearby” well-conditioned problem whose solution approximates the required
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solution. Such methods are called regularization methods, and they include a so-called
regularization parameter, o, which controls the degree of smoothing or regularization applied to
the problem [96]. There are different methods of regularization such as truncated Singular-Value
Decomposition (SVD), Tikhonov regularization, and maximum-entropy. These methods are the

subject of many publications [97].

7.4.2 Tikhonov Regularization Method

To solve the ill-posed problem in equation (7.9), Tikhonov’s regularization method is
used. Let Ax=b be an algebraic problem, equivalent to system (7.9), with A being

ill-conditioned. The regularized solution, x., as proposed by Tikhonov is [93],

x; = min{[l4x — b[|2 + a{|L(x — xo)||2 } (7.14)

where X, is an initial estimate of the solution, and matrix L is either the identity matrix I or a
discrete approximation to a derivative operator. The regularization parameter, &, controls the
weight given to minimization of the side constraint, |[L(x-Xo)];, relative to minimization of the
residual norm, ||Ax-b|.. For this work, no particular knowledge about the desired solution is
available, so xo=0 is used; also matrix L is set as the identity matrix, I. The solution reduces to

minimizing the following function,

O(x) = [l4x - b||> + allx]|2, (7.15)

where
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lixll2 = ‘/é beif2 (7.16)

Minimization of function, ®(x), is equivalent to minimization of

¥Y(x) = Z(Z ayx;j — biJ[; a;x; — 5,-] +0 Y X%, (7.17)
=1\j=1 =1 -

=

where bars indicate complex conjugation {69]. Differentiating with respect to the components of

x, it is found that the minimum can be obtained as the solution of the linear system
(cI+A*A)x=A"b, (7.18)
where asterix quantities denote adjoint matrices.

To solve the system (7.16), the Eispack library [98] is used to compute the eigenvalues

and eigenvectors of matrix M=cI+A*A. Letting V be a matrix whose columns are the

eigenvectors of M, and E be a diagonal matrix of the corresponding eigenvalues,
M1 =VE 'V~ (7.19)

The elements of the diagonal matrix, E, are greater or equal to regularization parameter, ¢, and,
therefore, as long as ¢ is kept within the computer accuracy, a good inversion can be obtained.

The fundamental idea in Tikhonov regularization is to introduce a trade-off between the size of
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the residual norm [[Ax-b||: and the side constraint ||x|; by choosing a suitable regularization
parameter, o, a satisfactory solution for which the two constraints must be balanced [99]. Too
much regularization leaves out information actually available in b while too little regularization
produces a solution dominated by errors. A method for choosing the optimal regularization
parameter, and thus the optimal solution, is needed for the Tikhonov regularization. Many
methods have been introduced for finding the optimum regularization parameter like the

discrepancy principle, the quasi-optimality criterion, generalized cross-validation and L-curve

criterion [96].

7.4.3 L-Curve Method

In this thesis, we adopt the L-curve method [96,100] for finding the optimal

regularization parameter. The L-curve is a posteriori method based on plotting the side
constraint jIx,[l, of the solution versus the residual norm [[Ax—bli, for a particular
regularization parameter. A schematic of the L-curve is shown in Figure 7.1 and, as can be seen,
the name “L-curve” is derived from the fact that the curve is L-shaped. The “comer” of the curve
corresponds to a regularization parameter that is optimal [96].

The “flat” part of the L-curve is dominated by regularization errors occurring from
oversmoothing and the “vertical” part is dominated by perturbation errors occurring from
undersmoothing. Thus the corner of the L-curve corresponds to a solution in which there is a fair
balance between the regularization and perturbation errors. A simple example to illustrate the

behavior of the L-curve is shown below.
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Figure 7.1 L-curve method: comer of curve corresponds to optimum regularization.

7.4.3 L-Curve Example
The definition of the L-curve example was taken from Hansen [99] and it was solved
using numerical code developed as part of this work. The problem is based on considering the

discrete ill-posed problem of a Fredholm integral equation of the first kind,

b

| K(s, fteyde = g(s), c<s<d, (7.20)
a

where K is the kemnel, g is the observed quantity and f is the unknown solution. This is an

example taken from image restoration [99] with,

. 2
K(s, 1) = [(coss +cos (3B, |, .21)
u = n(sins +sinf) s,t € [-n/2,7/2] (7.22)
A1) =2 exp(—6(t — 0.8)?) + exp(—2(t + 0.5)3). (7.23)
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with f{) being the exact solution. The problem was then discretized in the following matrix

form,

Ax,; =b+e (7.24)

where A= K(s, t), b= g(s) and x, is the sought solution. e is perturbation noise introduced in the
problem with a zero mean and a standard deviation of 1x10~. Equation (7.22) solved with
Tikhonov regularization method is presented in Section 7.4.2. The side constraint {x, ||, of the
solution was plotted versus the residual norm ||Ax - b /||, for particular regularization parameters
as is seen in Figure 7.2. In this graph the comer of the L-curve corresponds to a regularization
parameter, 6=2.3x10°. The exact solution of the problem as well as solutions corresponding to
regularization parameters 6=4.3x10%, 6=2.3x10 and 6=0.1, are shown in Figure 7.3. The first
solution of regularization parameter, 6=4.3x10" is a solution which is from the “vertical” part of
the L-curve and it is dominated by noise which distorts the maximums of the solution. This is an
undersmooth solution influenced by the perturbation noise. The solution with a regularization
parameter, 0=0.1 is from the “flat” part of the L-curve and it is an oversmoothed solution which
reduces the contrast of the maximum. The best solution is, indeed, the comer of the L-curve,

regularization parameter, 6=2.3x10%, as shown in Figure 7.3.
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L-Curve

10"
||Ax-b]l,

Figure 7.2  L-curve of inverse problem defined in equation 7.22.

Solutions of Tikhonov regularization
——— Exact solution: f(t)
—— 5=4.3x10"

—— 0=2.3x10"
c=0.1

Figure 7.3 Inverse problem defined in equations (7.18)-(7.21): exact solution (black);
0=4.3x10® (green), 6=2.3x10 (red) and 6=0.1 (blue).
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7.5 Amplitude and Phase of Homogeneous Field

For the homogeneous backpropagation or transmission thermal wave field, the amplitude
and phase of the field were measured. Equations (6.41a) and (6.41b) were rewritten, for

numerical ease, by separating the field into a real and an imaginary part,

2

Re[T(x,y,z;w0)] _ + 440 x’+y
Ty, zo0] ~ - & P w2 )

LT e- ,,z 5 cos(a,/p* +2%)
-aJT (22 22
x{_’; 10( x4y ) sm(a,/p +2z2)

© ®© 2 2 2

¢ Wl oAy (2 [T3 cos(aJ p*+(2nL -2)°)

+n§l'([ ,/me Io(w2 vX°+y )pdp sin(a\ﬁ)2+(2nL—Z)2)
f: af o o-a L [, (—f‘*‘—) cos(a,/p* +(2nL +z)?)
+n=| 0 VPiHQnL+)? Xy Jpdp sin(a/p? +(2nL +z)?)

(7.25)

where, a is the inverse of thermal diffusion length, a = %; and the other variables are as

defined in Section 6.6. When z=0, the backpropagation homogeneous field is represented, when

z=L, the transmission homogeneous field is represented. The amplitude of the field can then be

calculated as,

16(x,y,2; wo)| = J[ReB)? + [ImB)? , (7.26)
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and, the phase of the field as,

¢(x,y,2; wo) = tan™! [%z-] (7.27)

For the backpropagation mode (z=0), the first integral of equation (7.25) has an analytically
removable singularity at z=0, thus eliminating any numerical problems from the function to be
integrated.

The Hankel integral of equation (7.25) is an improper integral i.e., its upper limit is
infinite. It is assumed that the integral exists and approaches a finite value as the upper limit of
integration approaches infinity. This assumption is based on the physical quantity represented by
the integral. Equation (7.25) was calculated using the improper integral routine, gromo with
midpnt taken from Numerical Recipes in Fortran [101]. The routine solves for smooth integrals
with an upper limit to infinity using Romberg integration on a semi-open interval. In calculating
improper integrals the convergence criterion must be carefully met. A convenient convergence
approach for this integral is to replace the infinite upper limit with a finite value » and to
evaluate the integral with increasing values of b until any further increase in b results in a
negligible change in the integral. The downfall of this approach is that the value 4 is chosen
according to the integrand behavior, which in turn depends on the input parameters. If the
integrand is not tested for convergence each time an input parameter is changed, an error can
occur. To avoid this rigorous procedure the additional routine midinf [101], which maps an

infinite range of integration to a finite one using the identity
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l/a

) ,sz(%)dt (7.28)

176

b
J fxydx =

is used. As a result, the Hankel integral is separated into two integrals,

1/6

J ylz'f(%)dt (7.29)

@ b
| fx)dx = | fixydx +
0 0 1/1x1030
where the first integral is calculated using midpnt routine from 0 to 5 and the second integral is
calculated using midinf routine from b to a large number (1x10%°). This type of methodology
assures that the convergence criterion is reached every time, provided b is large enough so that
the integrand begins to approach its asymptotic decrease.

The original numerical code to solve the system (7.18) was written in Fortran 77 for a
Sun4 workstation by Offer Pade [68], and was later transferred to a Pentium II 266MHz CPU
with 128Mb of RAM personal computer, where it was modified for a Microsoft Fortran
Powerstation compiler [70]. In addition, the development of the homogeneous field and Green
function presented in Chapter 6 was implemented in the program [70]. The L-curve method was
implemented in the program by executing for a range of regularization parameters, plotting all

the residuals and finally choosing the comer solution of the L-curve.
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Chapter 8

Experimental System and Data: Tomographic
microscope

8.1 Introduction

In this chapter, the experimental technique needed to acquire the scanned data for
thermal wave tomograms is explored. The data is obtained at one cross-section from different
laser and detector positions. Historically, the first detection method used to obtain tomographic
slice data was photopyroelectric detection {62,63], which was limited to transmission
measurements. A photothermal radiometric detection method then followed [70]. However, a
main disadvantage was that a low resolution setup was used which resulted in image broadening
[72]. To overcome this problem, a high-resolution photothermal setup for tomographic
application was constructed in this thesis. The method is based on the photothermal radiometric
detection outlined in Chapter 4, which has the flexibility for both backpropagation and

transmission measurements. This is a non-contact method.

8.2 Experimental System: Short Description

The experimental setup for cross-sectional imaging via photothermal-radiometric

detection is shown in Figure 8.1. A 514.5nm wavelength cw Innova Ar* laser from Coherent is
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modulated and then focused onto a sample to a spot size of approximately 27um. The

modulation is performed by an external Acousto-Optic modulator (AOM) (ISOMET 1201E-1).

Pre-
Amp
Ar-ion
%Lock-in Amplifier] Reflecting Laser
Objectives
HL Reflection \HL
Computer ‘ i AOM

Figure 8.1  High resolution tomographic microscope experimental setup.

The blackbody radiation from the optically excited sample is collected and collimated by two
axially aligned reflecting objectives [102]. It is then focused onto a liquid nitrogen cooled
HgCdTe (Mercury-Cadmium-Telluride) detector (EG&G Judson Model J15D12-M204-S050U).
The HgCdTe detector is a photoconductive element that undergoes a change in resistance
proportional to the intensity of the incident infrared radiation. It has an active square size of

50um x 50um and a bandwidth of 2-12um. The detector is operated at a cryogenic temperature
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of 77°K {[77] since its efficiency increases with decreasing temperature. An A-R coated
germanium window with a transmission bandwidth of 2-14um is mounted in front of the
detector to block any visible radiation from the pump laser. Before being sent to the digital
lock-in amplifier (Stanford Research System Model SR850) [78], the photothermal-radiometric
signal is amplified by a preamplifier (EG&G Judson Model PA-300) specifically designed for
operation with the HgCdTe detector. The low noise preamplifier ensures a proper performance
for subsequent signal processing with a lock-in amplifier. The lock-in amplifier, which is
interfaced with a personal computer, receives the preamplifier output and rejects all stray signals
except those that have the same modulation frequency as the excitation beam. This process of
data acquisition, storage, and scanning is fully automated. The instrumentation has the ability to
perform in either backpropagation or transmission mode by directing the laser beam to the front

or rear surface of the sample using removable mirrors.

8.3 Experimental System: New Components Detailed Description

After modulation, the beam was directed towards a focusing lens through mirrors. Before
entering the focusing lens the beam size was measured to be 0.78mm, l/e radius. In this work, a
diffraction-limited Gradium glass Plano-Convex lens (Newport Gradium™ GPX085 LR.14) with
60mm focal length and a 400-700nm anti-reflection coating was used. Gradium lenses utilize a
unique optical glass where the refractive index varies along the optical axis providing a focusing
power by eliminating spherical aberration and significantly reducing coma. Spherical aberration
occurs when not all incoming rays focus on the focal point thus forming an image that is not

sharp. Coma results when different parts of the lens surface exhibit different degrees of
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magnification. The lens was mounted on a 12.2mm travel XYZ miniature translation stage
(Newport MS-500-XYZ). This mounting was ideal for precise centering of the Gradium lens.
For accurate theoretical modeling the beam profile at the focal point was measured with a
photodiode and the 1/e radius was found to be 27um as shown in Figure 8.2. The resuits of the
measurement were reconfirmed using a beam profilometer with a CCD camera. A good Gaussian

profile was also obtained.

Beam profile after focusing with Gradium lens
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Figure 8.2  Beam profile after focusing, as measured with a photodiode.

The blackbody radiation from the optically excited sample is collected and collimated by
two axially aligned reflecting objectives (Ealing: x36 0.5 N.A. 25-0522 and x15 0.28 N.A
24-0506). Reflecting microscope objectives are known for their unique optical properties. They
are based on a two-mirror design; a small convex primary mirror and a larger concave secondary
mirror (Figure 8.3). Because of the all-reflecting construction, the reflecting objectives are free

of chromatic aberration. Spherical aberration, coma and astigmatism are corrected by choosing
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appropriate values for the mirror radii of curvature and their separation. Reflecting objectives
have large Numerical Aperture (NA) for improved light gathering power and high throughput

from the ultraviolet to the far infrared due to their all-reflective construction.

Reflecting vy
Objective

P concave mirror

: : convex mirror

Figure 8.3  Reflecting objective schematic.

The radiometric signal was detected with an HgCdTe detector (EG & G Judson Model
J15D12-M204-S050U), which is a photoconductive detector designed for operation in the
2-12um wavelength range. The detector requires a low voltage noise preamplifier. An AC
coupling capacitor blocks the DC bias voltage from the high gain preamplifier and prevents DC
saturation. The preamplifier used (PA-300) was supplied with a bias resistor to provide optimum
bias voltage to the detector. This preamplifier offers a low noise, adjustable gain, DC offset
compensation and a linearizing network. A low noise digital lock-in amplifier (Stanford
Research System Model SR850) [78] was used. The lock-in amplifier is interfaced with a
personal computer and the data acquisition is automated. All the experimental system
components were placed on a pneumatic table (Newport corporation) so that the system would

be isolated by building vibrations.
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8.4 Scanning System

In the experimental setup, both the modulated heating source and the detector are
localized, and therefore can be scanned independently. For each laser position, data is collected
at several detector positions along a straight line. This defines the cross-sectional plane
(tomographic scan) to be imaged i.e., line PQ in Figure 8.4. The scan for the same cross-section
is repeated for different laser positions. The experimental information is then used to reconstruct

the respective cross sectional slice, using the method outlined in Chapter 7.

Sample

Figure 8.4 Line scan for cross-sectional imaging, of sample thickness d with subsurface
defect.

In practice moving the sample becomes equivalent to moving the detector. For example,
the transmission tomographic scan is performed by first positioning the laser and then moving
the sample and laser together over the detector. Figure 8.5 illustrates a tomographic scan in
transmission with three detection points and three laser positions, which ensures that the same
cross-section is observed at all times. When detector and laser are aligned with each other the
signal is the highest. For laser position 1, the maximum occurs at point 3, for laser position 2, the
maximum occurs at point 2 and for laser position 3, the maximum occurs at point 1. These three
scans construct the experimental tomographic scan. In backpropagation mode the tomographic
scan is achieved by attaching a 45° mirror to the first reflective objective (Figure 8.6). The size
of the mirror is limited by the dead optical field that the reflective objective produces. For this

reason the dimensions of the mirror are 3mmx2mm, limiting the tomographic scan to 1.Smm

154



(3mm/2). Experimentally, this limit was found to be 0.7mm and thus tomographically only a

maximum cross-section of 0.7mm can be investigated at a time.

Laser position 1 Laser position 2 Laser position 3

detector > I

Figure 8.5  Method of tomographic scan.

l Reflective objective J

dead
optical region

Ny mirror

A laser

sample |

Figure 8.6  Part of backpropagation experimental setup.
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8.5 Instrumental Performance and Image Resolution

As mentioned in the introduction, many factors can contribute to the resolution of a
microscope. Apart from the extreme-near-field underlying physics of the thermal microscope,
experimental factors like imperfections in lenses or mirrors, coarseness of the detector can lead
to a lower resolution. With proper experimental design, the most significant limitation becomes
the beam spot size which if not smaller than the defect, will cause the image to broaden [15].

In the previous tomographic work [72], the experimental setup was similar to the setup
described in Chapter 4. The difference was that the beam spot size was focuced to about 50um
and the dimensions of the detector active area were SOum X 50um. The major disadvantage of
the systern was that the collected infrared radiation was focused to a spot size much larger
(~70um) than the detector active area. This not only led to a significant loss of signal but also
made the detector size the limiting factor of the observed image area. When a detector with an
active area of Imm X Imm was used, there was no signal loss, but a broader image was seen.
This broadening, due to the detection size, is explored by using the new high-resolution
experimental configuration for photothermal radiometric microscopy.

The radial temperature field (amplitude and phase) of a homogeneous mild steel in
transmission, at constant frequency, for both the old (50um detector, paraboloidal mirrors) and
new (50um detector, reflecting objectives) experimental setups, is shown in Figure 8.7. As
expected, the field measured with the new experimental setup is narrower compared to that
measured with the old experimental design. The theoretically calculated homogeneous field of a
mild steel is in good agreement with the new experimental field.

The experiment was repeated in backpropagation using the high resolution experimental

setup (Figure 8.8) and again the agreement between theory and experiment is obvious. This is an
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important achievement for TSDT since the method uses the theoretical calculation of the
homogeneous temperature distribution. A small degree of broadening still exists at the edges of

the radial scan. In a 0.5Smm scan this broadening is greatly diminished. The limiting factor for the

resolution of this microscope is the laser-beam size (w=27um).
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Figure 8.7 Transmission of homogeneous mild steel: theory (solid); old experimental setup
(square); new experimental setup (circle).
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Figure 8.8  Backpropagation (reflection) of homogeneous mild steel: theory (solid); new
experimental setup (circle)

8.6 Experimental Results

8.6.1 Thermal Wave Imaging

Before tomographic experiments were performed using the high-resolution experimental
setup, thermal wave imaging was performed on a sample with an induced crack to test the
performance of the radiometric microscope. The material investigation is a sintered reaction
bonded Eaton E-process™ Silicon Nitride with an induced cone crack. This is a material that
requires a low cost route to achieve commercial applications, thus information is required of the
fatigue properties before widespread use materializes [103]. Spherical indenter geometry

reproduces the loading that ceramics would have to endure in applications like roller bearings. In

158



this investigation, Hertzian fatigue damage is studied using thermal wave imaging. Hertzian
indentation produces a ring/cone crack combination below the indenter. A schematic of Hertzian
indentation [104] and the corresponding ring/cone crack is shown on Figure 8.9 with P being the
load of the indenter. “Ring™ cracks refer to the partial or complete circular cracks around an
indent visible on the surface. “Cone” cracks are subsurface extensions from the ring cracks that
extend down into the material in a conical manner. The interest here is the subsurface conical
crack since it is optically invisible. Figure 8.10 shows an optical image of the indentation with
the surface ring crack illustrated with arrows. The specimen was exposed to a load of 2700N
(600lbs) for 17000cycles. On the surface of the sample there is a ring contact scar 0.7mm in
diameter from inducing the crack. An approximate 90° arc of a ring crack exists to the left of the
contact scar.

Figure 8.11 shows thermal wave images of the sample at three modulation frequencies
with three different methods of radiometric imaging. The region imaged corresponds to the
optical area marked in Figure 8.10. The thermal images are presented in a matrix type order
where the three rows correspond to a frequency of 5S00Hz, 175Hz and 73Hz, respectively and the
three columns correspond to three types of imaging methods. Mzthod 1 is the conventional
method of moving the sample along the constant detector and laser location. Method 2 is based
on mathematically offsetting the quadrature signal to enhance the contrast of the image as

compared to the conventional image by:

Vsig = (Amplitude) sin(phase — 0 ,ge:). (8.1
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The method enhances the contrast of the images. Method 3 is based on separating the laser from
the detector at a constant distance in the order of the object size (crack). This increases the
contrast between the object and the background.

Varying the frequency determines the penetration depth of the thermal wave. The thermal
diffusion length is a measure of the effective depth sampled and indicates that with decreasing
frequency an increasing penetration is observed. The thermal response of this region is varied
with modulation frequency. At 500Hz with a thermal diffusion length of 96um the response is
deeper than the surface. At 175Hz the thermal diffusion length is 162um and at 73Hz the thermal
diffusion length is 250um. At 500Hz, Method 1 faintly shows some characteristics of a ring
surface crack along y=0.1mm, Method 2 clearly shows a shadow at y=0.05mm, beyond the size
of the ring crack which suggests deeper damage into the sample. In Method 3 the separation
distance between the detector and the laser is 0.1mm and the ring crack is clearly defined with
some subsurface defects at (0.05mm,0.75mm) coordinates. Looking deeper into the sample, at
175Hz Method 1 again shows some faint characteristics of a crack at y=0.lmm. By
mathematically offsetting the sample (method 2) the shadow on the ring crack expands at
y=0.05mm, which suggests that the defect is deeper into the sample. In Method 3 the damaged
area at (0.05mm,0.75mm) coordinates, is more localized and is well-defined. Finally, at 73Hz,
Method 1 again shows some faint subsurface damage at y=0.1mm. Method 2 does not show any
clear extension of the crack. In Method 3 the shadow at (0.05mm,0.8mm) coordinates, expands
further, which indicates that the crack extends as deep as the corresponding thermal diffusion
length of 250um. The conventional method of imaging is not as sensitive as the experimentally
offsetting method. Thermal wave imaging provides the information about the existence and

approximate depth of the crack (one thermal diffusion length). The depth of the defect can be
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easily determined by the offsetting imaging method (~250um). Much of engineering science is
concerned with the behavior of materials under stress as their performance under extreme
conditions and subsequent failure analysis is essential for the continued development of both
material and design criteria. The potential of thermal wave analysis therefore lies in its ability to

image subsurface structures or defects in a nondestructive manner.

Spherical
Indenter

[ Specimen

Figure 8.9  Hertizian indentation by spherical indenter with P load.

Figure 8.10 Optical image of specimen inflicted by Hertzian crack; magnification X50; ring
crack illustrated with arrows. Solid line indicates the approximate area thermally
imaged. The optical image provided by D. Rose of US Army TACOM.
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8.6.2 Tomographic Experiments

Steel is a good thermal emitter and can be reasonably assumed homogeneous for testing
the tomographic method. Two samples of mild steel type alloy with subsurface defects were
used for the tomographic experiments. Sample 1 contained a subsurface hole of diameter 0.6mm
located 0.1mm below the surface and had a thickness of 2mm. The sample geometry is shown in
Figure 8.12, with line AB representing the cross-section scanned for the experiments. The
thermal diffusivity of the sample was measured in transmission [79] and was found to be
a=1.1x10°m?s. Since the experimental setup in backpropagation was limited by the
tomographic range, a second steel sample (similar geometry as Sample 1) was customized to
investigate the backpropagation experiments. Sample 2 had two 0.3mm diameter defects, 0.lmm
and 0.2mm deep in the material, respectively. The thermal diffusivity of this steel material was
measured in transmission [79] and was found to be a=1.55x10°m?%s. Before any experiments
were run, the linearity [43] of signal obtained from all samples was tested for different
modulated laser powers showing that the detected signal is linearly proportional to the surface
temperature excursion. For Sample 1 (Figure 8.13), the signal remains linear up to 0.4W laser
power output. Therefore, the mild steel samples were safely run at 0.2W output power.

First, Sample 1 was tested in transmission at a modulation frequency of 11Hz with a
thermal diffusion length, u, of 0.56mm. The tomographic scan was taken along cross section AB
(Figure 8.12). The defect imaged is 0.lmm from the front surface and 0.6mm in diameter. Figure
8.14 shows a conventional 2-D scan along the imaged line. A 2-D scan is achieved by scanning
the laser and the detector together. This provides information about the defect’s x-location. Both
the amplitude and phase of the scan exhibit a minimum at the defect location. This behavior is

due to the fact that the defect (air) is poor thermal conductor and thus the heat propagation is
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blocked in transmission. In general, the amplitude of the signal is influenced by surface
blemishes and reflectance, whereas the phase is largely unaffected and truly represents
sub-surface defects. From the 2-D scan data the defect is found to be at the center of the scan
(>=1.5mm). Figure 8.15 is the amplitude and phase of the backpropagation tomographic scan
with five laser positions along line AB (3mm) at 49 detector points. The five laser positions used
were x=0.5, 1, 1.5, 2, 2.5mm. From the tomographic scan, the information given from a 2-D
scan can also be obtained. In a tomographic scan, the maximum signal always occurs when the
laser and detector are aligned with each other, and therefore, the maximum of each laser position
scan can map the 2-D scan. This is the diagonal line (x=y) in the experimental data as seen in
Figure 8.15 where a minimum is observed for both amplitude and phase equivalent to the 2-D
scan.

Before the backpropagation tomographic experiments were performed on Sample 2, 2-D
scans at different frequencies (40-1000Hz) were taken for the 0.1mm deep defect. This was
performed so that the frequency with the best resolution would be selected for the tomographic
scans. Figure 8.16 shows these experiments and the two frequencies chosen for the tomographic
scans were 80Hz and 300Hz. In backpropagation a maximum is observed in the amplitude. Since
the defect is a poor thermal conductor (air), heat diffusion is blocked by the boundary, which
results in a larger amplitude signal. A thermal wave image (top view) was also performed on the
sample so that the actual defect location and shape would be found. Figure 8.17 shows all
channels (in-phase, quadrature, amplitude and phase) of the signal. This image also illustrates
that thermal wave imaging is a 2-D projection of the probing area whereas tomography is a
cross-sectional projection. The black line is the exact location where the tomographic scans were

performed. The quadrature shows the highest fidelity regarding defect shape.
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Figure 8.12 Sample | and 2 geometry. Dimensions shown for sample 1.
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Figure 8.13 Output laser power vs signal amplitude for sample 1 (mild steel).
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Figure 8.14 Amplitude and phase in transmission of the 2-D line scan.
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Figure 8.15 Transmission tomographic scan of 0.1mm deep defect. Amplitude and phase.
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Figure 8.16 Amplitude and phase in backpropagation of the 2-D line scan for 40, 80, 100,
200, 300 and 1000Hz.
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Figure 8.17 Thermal wave image of top view of Sample 2. From left clockwise: in-phase,
amplitude, phase and quadrature. The black line is the location of the
tomographic scan. F=80Hz.
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A backpropagation tomographic scan at a modulation frequency of 80Hz with a thermal
diffusion length of 0.25mm was then performed. The defect was 0.lmm deep into the material
and the x-location was at the center (x=0.25mm) of 0.5mm scan. Figure 8.18 is the amplitude
and phase of the tomographic scan in backpropagation with 11 laser positions, x;= 0, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5mm, and 21 detector positions. Above the tomogram the
diagonal, which is equivalent to a 2-D scan, is shown for each signal channel (amplitude and
phase). At the same location the tomographic experiments were performed at a frequency of
300Hz. The thermal diffusion length at this frequency is 0.13mm. The length of this scan is
0.3mm since there was no signal for higher scanning distance. Figure 8.19 is the
backpropagation tomographic scan for seven laser positions, x;= 0, 0.05, 0.1, 0.15, 0.2, 0.25mm,
and 13 detector positions. The diagonal 2-D scan (x=y) is shown above the channels. This is
created by the maximum of each scan (laser position spike).

Figure 8.20 is a backpropagation tomographic scan of a 0.2mm deep defect at a
frequency of 80Hz. Both amplitude and phase have a minimum at the location of the defect. The
defect is located at the center of the scan and 11 laser positions were collected, xc= 0, 0.05, 0.1,
0.15,0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5mm, with 21 detector positions. For the same location the
tomographic experiment was repeated at a frequency of 300Hz with a thermal diffusion length of
0.13mm. The length of this scan is 0.3mm since again there was no signal for higher scanning
distance. Figure 8.21 is the backpropagation tomographic scan for seven laser positions, x¢= 0,
0.05, 0.1, 0.15, 0.2, 0.25, and 0.3mm, with 13 detector positions.

The homogeneous field was also investigated in these experiments and Figures 8.22 and
8.23 show the field for both frequencies F=80Hz and F=300Hz, respectively. The response is

shown on a two-dimensional graph. Each laser position corresponds to a maximum in the
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experimental data. The theoretical fields are also shown at each laser position and frequency.

The agreement between theory (equation 6.41a,b) and experiment is excelient although there is a

slight instrumental asymmetry on the right-hand side of the experimental data.
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Figure 8.18 Backpropagation tomographic scan of 0.lmm deep defect. F=80Hz.
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Figure 8.19 Backpropagation tomographic scan of 0.1mm deep defect. F=300Hz.
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Figure 8.20 Backpropagation tomographic scan of 0.2mm deep defect. F=80Hz.
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Figure 8.21 Backpropagation tomographic scan of 0.2mm deep defect. F=300Hz.
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Figure 823 Homogeneous field of sample 2 at F=300Hz. Experiment (square); Theory (solid).
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Chapter 9

Real Tomographic Inversions and Discussion

9.1 Introduction

In this chapter, real tomographic reconstructions from experimental data obtained in
backpropagation and transmission mode presented in Chapter 8, are shown. The reconstructions
are produced by the Born approximation, with the methodology developed in Chapters 6 and 7.

In Section 9.2, the reconstruction method used is briefly summarized. In Section 9.3, real
tomographic inversions are shown with a discussion. Finally, conclusions and limitations of the

method are discussed in Section 9.4.

9.2 Reconstruction Method

In reconstructing an image, only one set of experimental data, represented by one laser
position and multiple detector points, is needed. Both amplitude and phase are used to describe
the total surface field expressed in equation (7.7). The reconstructions are produced by the Born
approximation following the flowchart in Table 7.2, and solving the linear system (7.18) with a
regularization parameter. Equations (6.41a) and (6.41b) were used, respectively, for the

calculation of the homcgeneous backpropagation and transmitted thermal wave fields. The
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solution of the linear system is the object function, which is a real field with a zero imaginary
part [39]. Numerically this value is not zero. An optimal solution to the linear system was
obtained using the L-curve method. The object function reconstructed was the non-dimensional
function (n’(r)-1), where n(r) is the square-root ratio of the thermal diffusivity of the background
to that of the defect, defined by equation (6.8d). The background thermal diffusivity, a, thermal
conductivity, k, modulation frequency, f, and laser beam size, w, are the necessary input
parameters for calculating the homogeneous thermal wave field. The input parameters for the

inversion technique are as follows:

Qgeert = 1.1%x1073 mM2/s, @seen = 1.55x1075 m2/s, kgeer = 45x102 W/mK

w=27um.

The expected magnitude of the non-dimensional object function, with a thermal diffusivity for
the defect of a.;=2.2x10"° m?/s, is -0.5 and -0.3 for Sample | and 2, respectively. Experimentally,
the total surface field was measured at 49 (transmission), 21 (backpropagation, F=80Hz) and 13
(backpropagation, F=300Hz) detector positions and the data was then interpolated to the desired
number of points for a square matrix, using the cubic splines interpolation technique.
Reconstructions for the transmission experiment were computed for »=10, so that the linear
system consisted of 100 equations with 100 unknowns; for the backpropagation experiments
n=15. The reconstructions were performed using a Pentium II 266 MHz CPU with 128Mb of

RAM.
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9.3 Tomographic Reconstructions of Steel and Discussion

9.3.1 Tomograms

The first reconstruction performed was that of the transmission experiment (Figure 8.15).
Figure 9.1 is the average reconstruction of five laser position reconstructions obtained
individually from the experimental data. In a previous work [72], it was found that averaging of
reconstruction improves the final image since limited information is obtained through one laser
position reconstruction. By averaging reconstructions information from different perspectives is
obtained. The individual numerical reconstructions were performed with the laser position at
x=0.5, 1.0, 1.5, 2 and 2.5mm. The experimental amplitude and phase data of the respective laser
positions were used as input parameters for the inversion technique. The experimental data
represented the total surface thermal-wave field of the imaged cross-section. The frequency used
in this experiment was F=11Hz with a thermal diffusion length of 0.56mm. Figure 9.1
reconstructs the object function F(x,y), with a contour of the reconstruction function at the
bottom. The solid line on the contour of Figure 9.1 indicates the exact location and size of the
defect, which was 0.6mm in diameter, centered at (x.=1.5mm, y.=1.6mm). The defect is shown
at the correct x-position but it extends further to the back of the sample. The artifacts of the
reconstruction diminish as a wider spectrum of spatial laser positions is used. The magnitude
(contrast) of the defect is underestimated. In averaging, information was lost due to the fact that
a few reconstructions underestimated the defect magnitude; the use of more laser positions for
averaging reconstructions would ensure accuracy of the magnitude of the object function. Also,
since detection occurred at the back surface of the sample only limited information is available
for reconstructing the defect. The optimal regularization parameter for the reconstruction was

retrieved using the L-curve method.
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Figure9.1  TSDT transmission reconstruction of Figure 8.14, average of 5 laser positions.
True defect shown by solid line. Average regularization 6~1x10.
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Figure 9.2  L-curve of x=1.5mm laser position reconstruction of Figure 9.1.
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Reconstruction from the vertical part of the L-curve (Figure 9.2). Regularization

Figure 9.3
o=1x103.
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Figure 9.4  Reconstruction from the flat part of the L-curve (Figure 9.2). Regularization

c=0.1.
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For each reconstruction performed at a specific laser position an L-curve was plotted for
selecting the optimal solution corresponding to the corner regularization parameter, o. For one
laser position the L-curve is shown in Figure 9.2 and the optimal solution is 6=1x10%. The
average reconstruction was created by an average of all the optimal solutions. Figure 9.3 is the
result of a reconstruction from the “vertical” part of the L-curve plot. The regularization
parameter is 6=1x10®. Perturbation noise dominates such a solution and the location of the
defect is distorted. In Figure 9.4 an oversmoothed solution (“flat” part of the L-curve) is shown
with the regularization parameter being 6=0.1. In this reconstruction the defect is overshadowed
by the laser position x=1.5mm.

Backpropagation experiments were then performed with defects at two depths (0.1mm,
0.2mm) and at two modulation frequencies (F=80Hz, F=300Hz). These experiments were
performed to test the limitations and resolution of the method at different depths. The next
reconstruction was of the backpropagation experiment of a 0.lmm deep defect at F=80Hz
(Figure 8.18). At this frequency the thermal diffusion length is 0.25mm. The defect was 0.3mm
in diameter, centered at (x.=0.15mm, y.=0.25mm). Figure 9.5(a) is the average reconstruction of
eleven laser positions at x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5mm. The
regularization parameter used for reconstruction was on the order of 10*. All subsequent
experimental reconstruction in reflections had the same regularization parameter of 10™. The
value of this regularization parameter assigns the transmission (regularity of 10°) problem as
being less ill-defined when compared to the backpropagation one. An ill-defined problem
provides a reasonable solution after being regularized. The regularization parameter is directly
proportional to the ill-conditioning of the problem. The depth position of the defect is correctly

reproduced but the image is smaller than the true defect size shown by the solid line. Also it is
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observed that the defect is somewhat asymmetric on the right hand side. This can be attributed to
the asymmetry of the experimental data obtained by the photothermal microscope. The
magnitude of the defect is underestimated at -0.25. Some artifacts exist at the left and back
surfaces of the defect. As the number of laser positions increase these artifacts may decrease.

The same defect was reconstructed in backpropagation at F=300Hz with a diffusion
length of 0.13mm. The reconstructed image corresponding to the experimental data of Figure
8.19 is shown in Figure 9.5(b). The reconstruction is the average of thirteen laser positions at
x=0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3mm. Although the front of the defect is reconstructed well
the back boundary is shifted to the front at about two thermal diffusion lengths (0.26mm). This
can be attributed to the fact that, in backpropagation the scatterer to be seen at about twice the
diffusion length. Beyond a total distance of two thermal diffusion lengths, information is lost.
The reconstruction as compared to Figure 9.5(a) is symmetrical. This is to be expected since for
a 0.3mm scan the asymmetry of the instrument is much diminished.

The next reconstruction was the backpropagation experiment (Figure 8.20) of the 0.2mm
deep defect with a 0.3mm diameter, centered at (x.=1.5mm, y.~=~0.35mm). The modulation
frequency of the experiment was 80Hz, so that the thermal diffusion length was 0.25mm. Figure
9.6(a) is the average of all the reconstructions performed for each laser position. The location of
the defect is in agreement with the exact position shown with the solid line. The front surface is
precise but the back of the defect is degraded. An asymmetry in the reconstruction is again
observed at the right-hand side. This reinforces the fact that this asymmetry is due to
instrumental effects. Also at the back of the defect some artifacts are observed. With an increase

in the number of laser positions, these artifacts could decrease.
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Figure 9.6(b) is the backpropagation reconstruction of the same defect with F=300Hz.
The experimental data is shown in Figure 8.21. The diffusion length is 0.13mm. The laser
position is closer to the defect and above the edge of the defect. The front surface is
reconstructed well whereas the back surface is reconstructed well up to about two thermal
diffusion lengths from the front surface. At the front surface there are artifacts that would

diminish with an increasing number of laser positions.

9.3.2 Image Error Analysis

In this section, error percentages of the reconstructions of Figures 9.1, 9.5(a), 9.5(b),
9.6(a), and 9.6(b) are calculated. The reconstructions are compared to the true images with
respect to location, size and contrast. The true defect, although circular, in the analysis is
represented as an ellipse, centered at x. in the x-direction, and y. in the y-direction, with g and b
as its axes in the x- and y-direction, respectively. The error parameters are calculated below, and
the subscripts calc and exact are used to represent the parameters calculated and their exact
values (obtained from the knowledge of sample geometry), respectively. The parameters that

will be examined are x., y., @, & and image contrast. The error is expressed as:

ERRp:P_‘EI&‘;‘!_’ (9_ 1 )

pexacl

where p is the error parameter being examined. The calculated and exact values of each image,
along with the error percentages, are tabulated. The first error examined is related to the defect
location (Table 9.1). The error presented is an absolute value. The x.-location and y.-location are

analyzed separately to clearly distinguish defect behavior. The second error deals with the defect
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size (Table 9.2). The shape of a defect is measured at the first contour level below the surface,
and is defined at the same contrast in all the figures. This is the level where the defect is clearly
formed, and there are no effects from surface anomalies. The error is negative if the size was
underestimated, and positive if the size was overestimated. The eccentricity, e, of the defect is
also calculated. Eccentricity indicates the degree of departure from circularity, and varies

between O and 1. It is defined as:

9.2)

where a is the semimajor axis and b is the semiminor axis (@>b). When =0, the ellipse is a
circle. As eccentricity increases, the ellipse becomes flatter (depressed b), up to the extreme
case, e=1, where the ellipse becomes a line segment. The eccentricity is used since all distortions
in the images appear as ellipses. This is due to the fact that in these tomographic scans only
one-sided information is obtained at the cross-section. The third error is associated with the
defect contrast (Table 9.3). The contrast of a defect is taken as the largest minimum value

produced by reconstruction. For an underestimated contrast, the error is negative.
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Figure 9.5  Average reconstruction of 0.1mm deep defect with 0.15mm diameter:a) F=80Hz,
b) F=300Hz.
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Figure 9.6 Average reconstruction of 0.Imm deep defect with 0.15Smm diameter:a) F=80Hz,
b) F=300Hz.
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Reconstructions Exact Exact |Calculated | Calculated | Error(+/-) | Error(+/-)
Xeemter Yecenter Xeenter Yeenter x-center | y-center
Transmission
1 F=11Hz 1.5mm 0.4mm 1.6mm 0.57mm 6.7% 42.5%
Figure 9.1
Backpropagation
2 F=80Hz 0.25mm | 0.25mm | 0.24mm 0.23mm 4% 8%
Figure 9.5(a)
Backpropagation
3 =300Hz 0.15mm | 0.25mm | 0.15mm 0.19mm 0% 24%
Figure 9.5(b)
Backpropagation
4 F=80Hz 0.25mm | 0.35mm | 0.22mm 0.32mm 12% 8.6%
Figure 9.6(a)
Backpropagation
5 F=300Hz 0.15mm | 0.35mm 1.5mm 0.26mm 0% 26%
Figure 9.6(b)
Table 9.1 Errors related to exact defect location.
Reconstructions Exact Exact Calcul. | Calcul. | Error | Error | Eccent
a-axis b-axis a-axis | b-axis a-axis | b-axis e
Transmission
1 F=11Hz 0.3mm 03mm | 0.2mm | 0.5mm | -33% 67% 0.92
Figure 9.1
Backpropagation
2 F=80Hz 0.15mm } 0.15mm | 0.12mm | 0.2mm | -20% 33% 0.80
Figure 9.5(a)
Backpropagation
3 F=300Hz 0.15mm | 0.15mm { 0.15mm | 0.19mm | 0% 27% 0.61
Figure 9.5(b)
Backpropagation
4 F=80Hz 0.15mm | 0.15mm | 0.13mm | 0.16mm | 13% 6.7% 0.58
Figure 9.6(a)
Backpropagation
5 F=300Hz 0.15mm | 0.15mm | 0.15mm | 0.08mm 0% -47% 0.85
Figure 9.6(b)
Table 9.2 Errors related to exact defect size.




Reconstructions

Exact
contrast

Calculated
contrast

Error

Transmission
F=11Hz
Figure 9.1

-0.5

-0.36

-28%

Backpropagation
F=80Hz
Figure 9.5(a)

-0.3

-0.25

-22%

Backpropagation
F=300Hz
Figure 9.5(b)

-0.3

-0.2

-20%

Backpropagation
F=80Hz
Figure 9.6(a)

-0.25

-20%

5

Backpropagation
F=300Hz
Figure 9.6(b)

-0.3

-0.2

-33%

Table 9.3 Errors related to exact contrast.

The location of the center of the defect in the x-direction is accurate in all the
reconstructions (Table 9.1). It is the y-coordinate of the defect center that is inaccurate. In
transmission mode, the defect center is farther away than two thermal diffusion lengths
measured from the back of the sample and as a result the defect shifts to the back surface,
producing a large error. In backpropagation, as the frequency increases the y-center shifts to the
front of the surface. As the defect moves closer to the back of the surface, the amount of
y-location distortion is reduced, and the caiculated value approaches the theoretical value.

The shape of a defect was examined in Table 9.2. In transmission, the image is elongated
in the y-direction and depressed in the x-direction. The result is a defect reconstruction with
eccentricity of almost 1 (e=0.91). For the 0.lmm deep defect in backpropagation the eccentricity
decreases as the frequency is increased. For the 0.2mm deep defect the lower frequency gives a

resonable eccentricity (e=0.58) but at the higher frequency the circular shape (e=0.85) is lost.
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This is due to the fact that at this frequency the reconstruction is at the shallow depth of the
cross-section. The next parameter that was tested was image contrast (Table 9.3). The
reconstruction contrast defect is underestimated in both backpropagation and transmission mode.
The averaging of more laser positions would reduce such errors. As the frequency is increased
the contrast is decreased. Overall, contrast is reproduced well in all reconstructions. Taking into
account the location, size and contrast of the defect, the best reconstructions were produced in
backpropagation mode at F=80Hz. The most optimal of all is the case of 0.2mm deep defect at

F=80Hz.

9.4 TSDT Limitations

In general, most of the error relating defect location was associated with the y-direction
depression. This error occurred because the reconstruction information was obtained on a limited
plane. Information obtained from a reconstruction depends on the laser position. A defect is
delineated accurately on the side closer to the laser position, regardless of which mode of
detection is used [72]. The experimental technique for obtaining the surface field is limited to
providing information from the front or back of the sample. A tomographic scan along the
perimeter of a cross-section would yield more information about the reconstructed cross section.

In conclusion, the Born approximation seems to be adequate for the materials and defect
geometries utilized in this investigation. Assuming tubular (cylindrical) defects, such as drilled
holes in aluminum, Kak and Slaney [67] have given a mathematical condition for the validity of
the first Born approximation for general propagating fields that obey the conventional Helmholtz

wave equation. This condition can be expressed as
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ans <% 9.1)

where a is the radius of the cylindrical defect, n; is the change in the refractive index between
the surrounding medium and the defect (equation 6.8d), and A is the probe field wavelength
(An=2mp). For all the cases examined the criterion was calculated in Table 9.4. In all the cases
the criterion was valid. One issue that arises from this table is that the criterion for reconstruction
2 is identical to that for reconstruction 4. With thermal waves this is not true since the depth of
the defect is as important as the size. In the future perhaps a better criterion on the thermal wave

Born approximation can be formulated.

Reconstructions a*ns criterion W 2=An/4

Transmission 0.3*0.71= n*0.56/2=

1 0.Imm deep /F=11Hz | 0.213mm < 0.880mm

Figure 9.1

Backpropagation 0.15%0.84= n*0.25/2=

2 |0.Immdeep/F=80Hz| 0.126mm < 0.393mm
Figure 9.5(a)

Backpropagation 0.15%0.84= n*0.13/2=

0.1mm deep /F=300Hz| 0.126mm < 0.204mm
Figure 9.5(b)

Backpropagation 0.15%0.84= n*0.25/2=

0.2mm deep / F=80Hz| 0.126mm < 0.393mm
Figure 9.6(a)

Backpropagation 0.15%0.84= n*0.13/2=

0.2mm deep /F=300Hz| 0.126mm < 0.204mm
Figure 9.6(b)

Table 9.4

Bom approximation validity.
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Based on these observations, a “guide” can be formulated for optimal reconstructions.
Backpropagation reconstructions can better resolve defects close to the surface. The probing
frequency and thus thermal diffusion length must be chosen with care. Large defects compared
to the thermal diffusion length do not reconstruct as well as when the defect diameter is one
thermal diffusion length. If the depth of the defect is deeper than the thermal diffusion length the
defect will not be resolved depth wise. Therefore, for an optimum reconstruction the depth and
size of the defect must be of the same order of one thermal diffusion length. This is consistent
with the fact that in the cases examined the optimal reconstruction was that of a 0.2mm deep

defect at F=80Hz.

9.5 Conclusions

In the previous work [72] the experimental field measured was broader than the
theoretical field resulting in broader reconstructions. A major achievement of this work is that
the broadening of images has been reduced. The L-curve method of finding an optimal
reconstruction proved to be an effective tool for TSDT. The only limiting factor for the
reconstructions is the validity of the Born approximation. It was found that for the geometries
used in this work, the Born approximation yields a large number of satisfactory results. A
tomographic scan along the perimeter of a cross-section would yield more information.
Reconstructing a cross-section at different frequencies may prove effective for future
superposition of images. The thermal diffusion length is a measure of the depth to which a
cross-section can be imaged. A marked deterioration of images is observed as modulation
frequency is increased beyond two thermal diffusion lengths as compared to the defect depth.

The image restoration is lost with increasing depth and decreasing frequency. Optimal
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reconstructions can be obtained in backpropagation when the defect depth and size are of the
order of one thermal diffusion length.

In the future, TSDT reconstructions can be performed for subsurface cracks like the one
investigated in Section 8.6.1. This would give information, at certain cross-sections about the

exact curvature, direction and depth of the crack.
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Chapter 10

Conclusions and Recommendations

10.1 Overview of Depth Profilometry

Depth profilometry is an inverse problem that reconstructs thermal diffusivity profiles in
a non-destructive way. The theoretical treatment of this problem approximates the thermal wave
as a thermal harmonic oscillator (THQO), and follows the Hamilton-Jacobi formalism [40] from
classical mechanics. The theory satisfies all limiting cases of the problem geometry. From the
theory, an inverse problem is developed which discretely solves for local thermal diffusivity as a
function of depth. The profilometric nature of the problem arises from the fact that the depth is
inversely proportional to the square-root of the modulating frequency. Experimentally, the
problem requires one-dimensionality, and, therefore, a large incident beam is used so that lateral
diffusion can be neglected.

Thermal wave depth profilometry finds substantial applications in surface treatment
processes such as case hardening. Numerous photothermal researchers all over the world are
currently seeking a solution to the depth profilometric problem. While many approaches to
thermal diffusivity depth profiling have been introduced over the years, no study has rigorously
examined the exact mechanism of thermal diffusivity. In the European community there is a
consortium of groups attempting different methods to solve the problem. They have found a

linear anti-correlation between microhardness and thermal diffusivity. It is however, the feeling
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of the author that although this may be true for the specific process of quenching, a simplified
linear anti-correlation cannot be used as a universal formula for all heating process and steels. In
this thesis, a low carbon steel (AISI 8620) was subjected to the carburizing, followed by
quenching, which are two widely used industrial case hardening processes. While an
anti-correlation between hardness and thermal diffusivity profiles was observed, several new
observations were made. First, it was found that at greater depths, thermal diffusivity
reconstructions showed a deviation from microhardness profiles, which became more substantial
with increasing depth. The deviation was also more noticeable for quenched steels as compared
to plain carburized steels. Therefore, the simplified linear anti-correlation noted in earlier studies
[46] cannot be used for all cases. Second, the general shape of the thermal diffusivity profile was
similar for both carburizing and quenching, which suggests that the shape of the profile is
dominated by carbon diffusion. Third, it was observed that the martensite structure formed by
quenching has a lower thermal diffusivity than the pearlite structure formed by carburizing. This
suggests that the absolute magnitude of the thermal diffusivity profile is defined by the
microstructure.

Futhermore, radiometric signals are influenced by surface roughness throughout the
frequency spectrum. A novel method to account for surface roughness was developed, which is
based on modeling roughness as a white Gaussian noise fitted to the effective frequency-domain
roughness spectrum. This development is significant because it enables more efficient on-line

non-destructive testing. The current methods for characterizing microhardness are destructive

and time-consuming.
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10.2 Overview of TSDT

An existing Thermal-wave Slice Diffraction Tomography (TSDT) technique for the
detection of subsurface defects was improved. The existing method solves the Helmholtz
pseudowave equation with a complex was number [66] for the temperature field generated in a
material by an intensity-modulated laser beam incident on the surface. The pseudo-propagating
temperature field is then expressed as the sum of the incident and scattered fields. The
three-dimensional Green function and incident field are calculated by assuming Neumann
boundary conditions [67]. The scattered field is expressed as a summation, over all individual
point scatterers, represented by the Green function. Ultimately, the scattered field is expressed
by a Fredholm integral equation of the first kind. Owing to the diffusive nature of the thermal
wave field and the ill-conditioning of the inverse problem, conventional Fourier transform
methods used in electromagnetic and acoustic tomography cannot be used [42]. Thus, the
integral equation is solved using the Tikhonov regularization method.

[n this thesis, a robust computational method for TSDT was developed. Most importantly,
the L-curve method was used to resolve the difficulty of multiplicity of solutions, thereby
obtaining an optimal solution to the inverse problem. Furthermore, a new tomographic
high-resolution photothermal microscope, limited by the beam spot size (w=27um), was
constructed for the scans. Machined defects were made on mild steel samples to test the
performance of TSDT. Scanned thermal wave data for one point source and multiple detection
points were used as input to reconstruct a cross-sectional thermal diffusivity image. A final
reconstruction was made by averaging over reconstructions of several source positions. [t was
concluded that when the defect depth and size were of the order of one thermal diffusion length,

optimal reconstructions were obtained.
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Photothermal radiometric detection microscopy is used as a method of collecting
cross-sectional data, which are then numerically processed with the use of Tikhonov
regularization to produce a tomogram. The implications of this work, besides establishing a
reliable experimental foundation of TSDT, are quite broad in that it has the potential to address
several other fields of tomographic science where strong dispersive attenuation presents a
reconstruction problem. These fields include medical diffuse photon tomography, attenuated
acoustical imaging, and geophysical tomography. There are other aspects that require further
research in order to make TSDT a practical diffraction tomographic technique. Developments are

presently being pursued to improve both the computational and experimental methodologies.

10.3 Overall Conclusions

Thermal wave inverse problems are ill-posed problems in that they either have no
solution, no unique solution, or an unstable solution. It is only due to recent technological
advances that these problems have become tractable computationally. The main difficulty with
these problems is that a regularization method is needed to isolate a unique solution. Two
important inverse problems were studied in this work: depth profilometry of hardened steels and
tomography of subsurface defects. Tomography is a three-dimensional problem with a
complicated theoretical/computational formulation but a relatively easy experimental
formulation, whereas depth profilometry is a one-dimensional problem whose experimental
replication is quite challenging.

In conclusion, the potential of thermal wave analysis lies in its ability of retrieving
subsurface thermal inhomogeneities in a nondestructive manner. Both depth profilometry and

diffraction tomography have their own unique advantages, and consequently, an immense
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potential for applicability to the metals industry. Depth profilometry can be used in the
heat-treating industry as a replacement to microhardness testing. Depths in the um-mm region
can be observed for retrieving thermal diffusivity. The accuracy of the method decreases with
increasing depth since experimentally the signal-to-noise ratio is low for low frequencies. The
methodology can be used to identify changes that take place in a material as a result of surface
modification processes such as: laser processing, case hardening and coating depositicn. TSDT
is also non-destructive, and finds practical applications for retrieving defects in the um-mm
region in backpropagation. One specific application can be in the automotive industry where
roller bearings produce subsurface damage (cracks) in ceramics. Due to its high-resolution
nature, TSDT can be used to accurately resolve defects of the order of the experimental beam

spot sizz (27 ym in this work).

10.4 Future Work

10.4.1 Depth Profilometry
The current study has successfully studied the microhardness behaviour of rough low
carbon steels subjected to carburizing and quenching. To produce an industrial-level instrument
the work must be extended in the following ways:
(i) The heating process of carbonitriding must be investigated on AISI 8620 steel.
(ii) More steels under the categories of low, medium and high carbon steels must be studied;
specifically, grades such as 10xx, 33xx, 86xx could be looked at.
(iti) These specific steels must undergo processes like carburizing, quenching and

carbonitriding.
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(iv)

v)

(vi)

Comparison of all these steels must be made so that a global conclusion can be reached
about the relationship between thermal diffusivity and microhardness. Care must be
taken not to make any presumptions about the bulk thermal diffusivity. Therefore, the
samples must be cross-sectioned and examined with a forward measurement so as to
ensure uniqueness of the inversion results with respect to bulk values.

In the numerical domain, the exact model developed by Miller et al. [58] can be tested to
reconstruct real experimental data.

The signal acquisition speed can be increased by chirp modulation and Fast Fourier
Transform analysis [105]. This will make the method more suitable for industrial

applications.

10.4.2 TSDT

The current study has successfully obtained a tomographic process for the

three-dimensional thermal wave field with sub-surface defects. This work can be extended in the

following ways:

1)

(ii)

(iii)
(iv)

The boundaries of the potential of TSDT can be further defined by studying classes of
materials with widely different sub-surface structures and thermal transport properties.
Other methods besides the Tikhonov regularization method must be investigated for
solving the ill-condition thermal wave problem. The wavelet based method developed by
Miller et al. [73] can be tested with real experimental data.

The experimental time can be reduced by introducing an array detector.

An experimental method can be developed to obtain tomographic scans from all

perspectives of the sample.
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