
CIM and XML in Network Management
BY

Haohong Shen

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Department of

Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba

O Copyright by Ha~hong Shen, June 2000

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. me WeilingtOC)
Ottawa ON K1A ON4 OîîawaON K1AON4
Canada Canada

The author has granted a non-
exclusive licence dowing the
National Library of Canada to
reproduce, loan, distribute or seil
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts f?om it
may be printed or otherwise
reproduced without the author' s
permission.

L'auteur a accordé m e licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation,

TBE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDLES

COPYRIGHT PERMISSION PAGE

CIM and XML in Network Management

Haohong Shen

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

EIAOHONG SEIEN O ZOO0

Permission has been granted to the Library of The University of Manitoba to lend or seil
copies of this thesis/prrcticum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or seU copies of the film, and to Dissertations Abstracts
International to publish an ribstract of this thesidpracticum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

1 hereby declare that 1 am the sole author of this thesis.

1 authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

1 further authorize the University of Manitoba to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

The University of Manitoba requires the signatures of d l persans using or

photocopying this thesis. Please sign below, and give address and date.

Acknowledgements

1 would like to thank ail those who helped me write this thesis. In particular 1

would like to Say a special thanlc you to Dr. David Blight and Dr. Bob McLeod who

provided invaluable guidance through the years and gave me suggestions whenever 1

asked for. 1 would also like to thank those I worked with in the lab.

I am gratefbl to my family for always being there for me. Their love, support and

encouragement sustain me through difficult times.

Abstract

As the popularity of Intemet soars, new applications are king adapted to run on the

Internet due to the market demand. Network device vendors install more fiinctions on

diffkrent types of network devices to solve specific problems but, in so doing, complicate

the interoperation of these devices with each other. The proliferation of protocols, dong

with the reliance on individual device management, exacerbates this problem and makes

managing network devices even harder.

The use of Directory Enabled Networks @ENS) simplifies the tasks of network

adminisîrators. DEN uses directory as a special purpose database that contains information

about the nodes, or devices, attached to a network. The directory is stnictured around

network objects: usa, applications, printers, file seners, switches, routas, remote access

servers, etc. For each object there is a set of attributes stored in the database. Directory

support for device configuration management will enable network devices to reûieve their

configuration parameters fkom a directory semer, rather than requiring the network

manager to perform box-by-box configuration. The Distributed Management Task Force

(DMTF) Cornmon information Mode1 (CIM) presents a consistent view of the managed

environment that is independent of the various protocols and data formats used by those

devices and applications. It can be used to describe network objects. The thesis presents

detailed description of DEN and CIM. It also introduces XML (extensible Markup

Language), which is powerfbl enough to express complex &ta stmctures to satis@ the need

of complex applications. in system management environments, the XML representation of

management information could be used to transfer data between co-~ooperating

management platforms.

As the acceptance of the htemet by the business cornmunity Uicreases, cornpanies

redize that sharing network resources by using the Internet is defhitely cost-effective than

using dedicated facilities. One of the major problems with messaging on the internet is

insufficient security. Because the internet is a public network, it offers little protection to

the data it carries. Vimial Private Networks (VPNs) offer operational savings while

maintainhg the security associated with private network infiastnicture. Three tunneling

protocols: Point-to-point Tunneling Protocol (PPTP), Layer 2 Tunneling Protowl (LZTP)

and IP Security Protocol (IPSec) are discussed in details in Chapter Three. The VPN

solution is implemented at the management level and at the packet level.

This thesis demonstrates the use of C M and XML in a network management

environment. A VPN policy file is used in the implementation of the network

management system.

III

CONTENTS

ACKNO WLEDGEMENTS ...
ABSTRACT ...

... CONTENTS
FIGURES ..
TABLES ...
ACRONYMS AND ABBREVIATIONS
Chapter 1 Introduction ...

1 . 0 Introduction ...
Chapter 2 Network Management ...

2.0 Directory Enabled Network (DEN)
2.0.1 Principle Goals of DEN ...
2.0.2 Intelligent Network ..
2.0.3 Lightweight Directory Access Protocol (LDAP)
2.0.4 Network Management ...
2.1 Policy-Based Networks ...
2.2 Common Information Mode1 (CIM)
2.3 XML ...

Chapter 3 Virtual Pnvate Networks ...
3 . 0 Virtual Private Network (VPN)
3.1 Tumeiing Protocols ..
3.1.1 The Point-to-Point Tunneling Protocol (PPTP)
3.1.2 The Layer 2 Tunneling Protocol (L2TP)
3.1.3 IP Security (IPSec) ...
3.2 Secunty Functions ..
3.3 VPN Management Requirements

Chapter 4 Modeling a Simple Network Management System 40

4.0 Java ... 40

4.0.1 Advantages of Java as a Programming Language 40

... 4.0.2 The RMI 41

4.1 The IBM XML Parser .. 42

4.2 Converting MOF files to JAVA 43

4.3 Modeling a Simple Network Management System 46

4.3.1 Modeling a Simple Network 48

4.3 -2 Mode1 ing a Management S ystem 54

4.3 -3 Ruming the Program ... 56

4.4 Modeling IPSec at the Packet Level 58

.................................... 4.4.1 Implementation in the System 61

....................................... Chapter 5 Conclusion and Future Work 66

................................... 5.0 Conclusion .. 66

.................................... 5.1 Future Work ... 67

... REFERENCE 70

Appendix A:

XML representation of class CIM-ManagedSysternElement. 73

Appendix B:

Static variables used to identiw different components of a network . 75

Appendix C:

... Network configuration file 76

Appendix D:

................... DTD file for the configuration file in Appendix C 82

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

STAND ALONE LD AP SERVER ... 1 0

LDAP SERVER ACTING AS A GATEWAY TO

.. AN X.500 SERVER 11

CENTRALIZED DEVICE CONFIGURATION MANAGEMENT 12

A SAMPLE CONFIGURATION FOR POLICY-BASED NETWORK 15

... ILLUSTRATION OF UML 18

....................................... EXPRESSING A C M CLASS IN MOF 22

A SIMPLFIED MODEL OF A JAVA DISTRIBUTED

..................................... APPLICATION THAT PROCESS XML 26

A SENDER AND RECEIVER SENDING XML

... TEXT VIA HTïP 26

.................................... CONSTRUCTION OF A PPTP PACKET 29

.................................... CONSTRUCTION OF A L2TP PACKET 31

... AH HEADER FORMAT 32

... ESP HEADER AND TRAILER -34

AH AND ESP iN TRANSPORT MODE 35

... AH AND ESP IN TUNNEL MODE 36

GRAPHIC REPRESENTATION OF THE NETWORK

... MANAGEMENT PROGRAM 46

COMMUNICATIONS BETWEEN NMSs, NETWORKS 47

PHYSICAL HIERARCHY OF IMPLEMENTED

.. NETWORK COMPONENTS 48

GRAPHIC INTERFACE OF THE PROGRAM 54

GRAPHICAL REPRESENTATION OF THE

... NMS PROGRAM 57

...................................... DIFFIE-HELLMAN KEY EXCHANGE 59

.. GENERAL PROCESS OF DES 60

... HMAC-MD5-96 PROCESSING 61

TABLES

TABLE 1

TABLE 2

TAE3LE 3

TABLE 4

TABLE 5

TABLE 6

TABLE 7

TABLE 8

COMPARISON BETWEEN CURRENT NEWORKS

AND THE INTELLIGENT NETWORKS 8

THE INSTRINSIC DATA TYPES AND THEIR

INTERPRETATION ... 19

THE EIGHT COMMON MODELS .. 21

..................... THE EXPLANATION OF FIELDS IN AH FORMAT 33

THE EXPLANATION OF FIELDS IN ESP - 3 4

THE MOST COMMON QUALEIERS -44

RESULTS FOR SIMUALTION OF DIFFTE-HELLMAN

KEY EXCHANGE .. -65

RESULTS FOR SIMULATION OF DES

KEY GENERATION ... -65

Acronyms and Abbreviations

AH

CIM

DAP

DEN

DMTF

DTD

ESP

HTML

IPSec

L2TP

LDAP

MOF

NMS

PPTP

QoS

SA

SGML

SNMP

SPI

UML

VPN

W3C

XML

XSL

Authentication Header

Common Information Mode1

Directory Access Protocol

Directory Enabled Network

Distributed Management Task Force

Document Type Definition

Encapsulating Security Payload

HyperText Markup Language

IP Security Protocol

Layer 2 Tunneling Protocol

Lightweight Directory Access Protocol

Managed Object Format

Network Management System

Point-to-Point T u m e h g Protocol

Quality of Service

Security Association

Standardized Generalized Markup Language

Simple Network Management Protocol

Security Parameter Index

Uni fied Modeling Language

Virtual Private Network

World Wide Web Consortium

Extensible Markup Language

extensible Style Language

INTRODUCTION

1.0 Introduction

The Internet was originally designed for the movernent of files between research

sites, and for the relay of electronic mail on a packet switched network. The network

provides best effort service to al1 traffic, and the application is responsible for e f fdve ly

taking advantage of that service. People are demanding more robust services for l e s cost,

which may be achieved by using internet technologies [I l . New applications are being

adapted to run on the Internet due to market demand. To support those new applications,

network devke vendors instail more fiinctions on different types of network devices to

solve specific problems. The resdt is complicated interoperation of these devices with each

other. The proliferation of protocols, dong with the reliance on individual device

management, exacerbates this problem and makes managing network devices even harder.

Effective device configuration is a significant problern facing network administrators

today. As networks get bigger, the problern gets more cornplex.

The use of Directory Enabled Networks @ENS) simplifies the tasks of network

administrators. DENs descnbe a philosophy for transforming the network nom a passive

collection of devices that route and forward traffic to an active set of cooperating devices

that intelligently provide services to the user 12). A directory is a special purpose database

that contains information about the nodes, or devices, attached to a network. In a DEN, the

directory is sûuctured around network objects: users, applications and devices. For each

object there is a set of attributes stored in the database. Directory support for device

configuration management enables network devices to retrieve their configuration

parameters fkom a directory server, rather than requiring the network manager to perform

box-by-box configuration via Telnet, Web, or GUI-based management alternatives. When

a network device is initialized, it may use a simplified access protocol such as, Lightweight

Directory Access Protocol (LDAP) [4] to query the directory Server and obtain its

configuration parameters.

A fundamental problem with directory semices is that as the size and complexity of

an enterprise's network infiastructure grows, the number of di fferent directory services also

increases [2]. Much of the information contained in any given directory is duplicated across

multiple directory services. This results in inefficient and labor-intensive processes for

adding, deleting, moving, and changing information. Whenever there is a modification to a

record in one directory, that change must be rnanually cascaded through al1 the other

directones on the network. The chance that the network as a whole will have conflicting

configurations grows. Configurhg policies on a device-by-device basis is difficult and can

lead to inconsistencies. Poiicy-based networking solves this problem by using a highly

distributed, logically centralized system to adrninistratively control the various components

of a network and the policy system itself.

To manage a network, the managing system and the managed systern need to

exchange information about the state of the network. A network may include devices fiom

different vendors. To enable different vendors to provide intaoperable network services,

we need a common information mode1 to describe such information so that d l the network

devices c m understand the information. The Distributed Management Task Force @MTF)

Common Information Mode1 (C M [6] is such an information model. C M includes a çore

mode1 and eight mmmon models, each of these is an object-oriented information model,

which can be built upon to model and represent rnanaged systems and their components.

To exchange information, network management systems need a communication

protocol and an information encoding scherne. The extensible Markup Language (XML),

which is a subset of the Standard Generalized Markup Language (SGML), can be used as

the encoding scherne. XML is simiIar in concept to HyperText Markup Language

(HTML), but whereas HTML is used to cunvey display information about a document,

XML is used to represent structureci data in a document. An XML document can

optionally have a description of its grammar aîtached. The grammar for an XML

document is described using a mechanism known as a Document Type Definition (DTD).

The DTD describes the allowable elernents in the XML document and describes the

structure of those elements.

Because XML is based upon an open industry standard, the XML representation

of management information could be used to transfer data between CO-cooperating

management platforms, which need not necessarily be m i n g the same operating

environment. Interoperability is enabled because of a comrnon understanding of the XML

representation of management information. XML is particularly suitable as a data

representation mechanism for use in heterogeneous environments. However, to represent

CIM data, an XML vocabulary must be defined and agreed upon. The XML management

vocabulary would be in effect a mapping of the CiM meta-mode1 to an XML DTD.

Any communication protocol such as, simple network sockets, HTTP, etc., can be

used to transport the data depending on the needs and the preferences of network

administrators. H'ïTP ernerges as the ideal candidate because of the wide spread of

browsers, their simple user interface and wide accessibility.

A simple network management system based on the work done by Dr. D. Blight

[1 71 [1 81 was developed in this thesis. The system models a policy-based network. The

network management system comunicates with the network via simple network

sockets. The information exchanged between them is encodecl in XML. The policy server

of the managing system listens to requests fiom users. A user sends a policy request to

the managing system. A policy that realizes a virtual private network (VPN) is used. The

reason why a VPN policy was chosen is because VPN uses the Internet as a channel for

private data communications. More and more businesses are implementing VPNs to

utilize the low cost of the Internet. The Internet includes different networks and devices

fiom di fferent vendors.

This thesis is divided into five chapters. Chapter one is the introduction section,

which discusses the need for policy-based networks, the idea of using C M and DENs in

the implementation of policy-based networks and XML as the transport scheme for

network communications.

Chapter two provides a brief introduction to Unified Modeling Language (UML).

It defines the goal and structure of DENs. It also describes LDAP. The motivation for

using policy-based network management is also discussed. A detailed example of an

emerging policy architecture is presented. Chapter two also includes the motivation for

CIM and detailed information on its Core Mode1 and the eight Common Models. The

chapter concludes with an introduction to XML and its use in network management

systems.

Because a VPN policy file will be used in the simple network management

system, Chapter three is used to describe VPNs. It begins with an introduction to VPNs

and the financial benefits that VPNs provide. It discusses three tunneling protocols:

PPTP, L2TP, and [PSec. The first two establish tunnels at Layer 2 and are connection

onented. The last one operates at Layer 3. IPSec is discussed in detail because it has

emerged as the protocol due to its encryption capability.

Chapter four presents a CIM implernentation. Though the application did not fiilly

implement CM, it provides the foundation which can be built upon. The class hierarchy

and major classes for the implementation are discussed in detail. It aiso includes

procedures, which can be used to convert Managed Object Format (MOF) files to XML

and to Java program files. The Java program files can then be extended according to the

specific needs of the network administrator to customize network applications. The

implementation includes a server, which listens to the users for VPN policy requests. The

semer checks to see if the requested file is in the system. If it is, it pulls the file nom the

directory and converts it to XML format. The user receives the poIicy in XML format,

reads it and takes action accordhgly. To take a look at specific aspects associateci with

VPNs, IPSec is implemented in the implementation as well.

The thesis concluda with chapter five, which includes suggested fbture work.

NETWORK MANAGEMENT

2.0 Directory Enabled Networks @ENS)

A directory service is a physicall y distributed, logicall y centralized repository of

infiequently changing data that is used to manage a computing environment [l]. The

directory typically stores information in a hierarchical fashion thus providing a unique

namespace for each entry. Each object in the directory has a set of attributes that describe

the information carried by the objet. A directory service provides a means for locating and

identifjhg users and available resowces in a distributed system. In today's Internet based

network computing, a directory enableci network uses directory services to store crïticaI

information to facilitate access, management, and search operations. A DEN may use

LDAP to access, manage, and manipulate directory information.

As the intemet penetrates enterprise networks and htranets becorne Extranets,

networks as a whole are becoming increasingly complex. There are different types of

network elements, each running a potentially different set of protocols and senrices over

possibly different media. Consequently, a network may have too many different directory

services for network administrators to manage successfully. The key to solving this

problem is to switch to a new paradigm-policy based management. Policy based

management allows network administrators to manage device configurations, users, and

services via a centrai directory enabled policy management system.

2.0.1 Principal Goais of DENs

DENs have four main objectives [2]:

1. to model network elements and services, and their interaction with other

elements in a managed systern,

2. to provide the means for interoperable network-enabled solutions to be built,

3. to enable applications to leverage the power of the network without requiring

the user to know or set esoteric network related information, and

4. to define a way to manage the network, as opposed to an element within a

ne twork.

2.0.2 Intelligent Networks

Historically, networks have treated the traffic 6rom every user and application the

same. As the applications using the internet grow, enterprises, senice providers, and even

small businesses are changing to a more intelligent, services-oriented model wheiein the

network c m provide differentiated services to certain users and applications, Thereby

adding intelligence to traditional networks.

In a DEN, network administrators store policies and information about the network

in a directory. Nehuork devices and applications publish information about them to the

directory and obtain information about other resources fiom the directory. In an intelligent

network, a robust information model is used for modeling the network and its interaction

with the environment. A directory serves as a unified Somation repository and also

contains specialized system components (for example, policy servers) for managing and

coordinathg information exchange.

The best way to define the features and fiinctions of an intelligent network is to see

how it would be managed and fùnction compared to the way existing networks are

managed and fiinction (Table 1) [2].

Table 1. Cornparison between cment networks and the intelligent networks

,
Configuration Process 1 Separate processes to

r

Feature or Function

Configuration
Approach

configure people,
applications, and devices

Existing Network
Implementation
Focus is on configuting
individual devices

Use of Directory u

Management

Policy

1 Use of an Information

A set of lwsely related
applications that are oriented
towards managing individual
devices
If present, used to contml
individual device
configurations

Isolated functionality, if used
at al1
Not Used

1 Passive or Active
1

1 Passive-network elernents
1 System 1 are assigned a role to play in

1 Components 1 savices, and people as
Modeling System

I I smarate entities

providing network services
Treat applications, devices,

Intelligent Network
Implernentation
Focus is on configuring the
netwrk and e n s u ~ g h t al1
devices in the network work
together
Links devices to people,
appiicatiotls, and other
resources as part of the same
pmcess
One or more layered
applications that manage the
network as well as devices in
the network
Integral part of the system.
Used to control the
configuration of the systern and
its components
Integral-It is a uni@ng
information repository
Integral-it models network
elernents, the network, network
services, and how the network
relates to the rest of the system
Active-network elements play
a dynarnically changing role in
1
Treat applications, d e v i a ,
services, and people as an
integral partnership

2.03 Lightweight Directory Access Protocol (LDAP)

X.500 is the name given to a series of standards (ISO 9594, Data Communications

Network Directtory, Recommendations X.500-X.521) developed by the International

Standardization Organization (ISO) that specify how information can be stored and

accessed in a giobal directory service [3]. The primary construct holding infoxmation in the

directory is the bbentry". Each enûy' which is built h m a collection of attributes, contains

information about one object. A main distinction of X.500 is that it organizes directory

entries in a hierarchical namespace capable of supportïng large amount of information. A

sarnple entry in the directory could be a user's name, phone number, title, country name

and organization narne. In this example, the XS00 hierarchy would be country,

organization within the country, and individual name within the organization. Once

îraversing to the individual, a single collection of attributes about that individual uui be

stored, as in the example, a title and a phone number. Additional information can be added

at the lowest level. As a standard, X.500 enables the development of an electronic directory

of peopIe in an organization so that it çan be part of a global directory available to anyone

with Internet access.

X.500 specifies that communications between the directory client and the directory

server use the directory access protocol (DM) [4]. LDAP is designed to provide access to

the X.500 directory without incurring the rwource requirements of the Directory Access

Protocol (DAP). The LDAP specification defines standard communications methods for

inputting and accessing information in direct~ries but does not make any statement about

the structure or contents of a directory. LDAP pulls uifonnation fiom the directory. It n m

directly over TCP, and can be used to access a standalone LDAP d k t o r y service (Figure

1) or to access a directory service that is back-ended by X.500 (Figure 2).

In Figure 1, a LDAP smer is used to store and access the directory itself. A

standalone LDAP server elhinates the need for the OS1 protocol stack. This makes the

LDAP sexver much more çomplicated, since it must store and retrieve directory entries,

which are hct ions normally perfonned by X.500 directory m e r .

TCPnP

LDAP Client
LDAP S m c r

Figure 1. Standalone LDAP server

In Figure 2, an application client program initiates an LDAP message by calling an

LDAP API. But an X.500 directos. server does not understand LDAP messages. To solve

the problem, the LDAP client communicates with an LDAP server that fornards requests

to the XSOO directory server. The LDAP server services requests fkom the LDAP client by

becoming a client of the X.500 server. As indicated in the figure, the LDAP m e r

communicates with LDAP client using TCPm and communicates with the X.500 sm e r

using OS1 protocols.

LD AP Client

Figure 2. LDAP server acting as a gateway to an X.500 server

OS1
4 m

Because LDAP uses a cornmon client/mer interface for setting up and

-

maintaining network devices across a hetmgeneous network environment, it provides

LDAP saver XSOR ~ e r v c r

vendor interoperability. The security, policy and network configuration files are located in

the directory, thus, al1 the components of a neiwork have easy access to the desired

information. This, in tum, reduces the need for redundant information.

2.0.4 Network Management

Since many parameter settings for various devices (such as routers and switches) are the

same, the configuration files and parameters can be effectively stored in a directory server.

Directory support for device configuration managemnit allows network devices to retrieve

their configuration parameters directiy h m the directory m e r . The benefits are obvious

as the size and scope of an organization's network expands. If a network has router

configuration files stored in the directory serva, when new routers are introduced to the

n e ~ o r k , they will not have to be individually configured. instead, the routers can examine

the directory for appropriate router configuration parameters and then go oniine on their

own. Figure 3 shows this sc&o.

Configuration files
and parameters

Figure 3. Centralized device configuration management

2.1 Policy-Based Networks

New tools, applications, and s e ~ c e s are causing phenomenal growth in the

volume of users on the Intemet- There are many businesses that conduct some of their

businesses on line. Each day, companies strive to correlate business decisions to things

that actually happen on their network, which inclodes:

access control-selecting which users have access to which network

resources,

application priontization-pnontizing applications according to their roles

in Company operations,

service differentiatiodelivering bandwidth and services to each

customer according to their needs and the application they are using, and

traffic management-managing the traffic through networks.

Al1 of these actions require applying corporate business policies to specific network

actions. To ensure the end-to-end network performance meets the businesses needs,

network administrators ne& the ability to rnake and deploy rules, which automate

configuration and management of the services, for access and use of network resources. A

comprehensive, policy-based system ailows the network administrators to define, in a

succinct and organized fashion, policies that automatically effect changes on specific

equipment in the network environment.

Over time progresses, stated policies are deployed fbrîher and fÙrther into the

network, producing intelligent business-driven systems. This leads to consistency and

predictability of network operation, and superior operation results. It gives the ability to

define and control operations according to centralized policies with the needs of the

business foremost . This is Policy-based networking [SI. Policy-based networking is much

more complex than device configuration management. The main difference between a

directory configuration systern and a policy-based networking system is state. in a simple

directory configuration, a device pulls a static configuration fiom the central repository. In

a policy-based system, a policy server interprets the stored statïc information in the context

of other circumstantial data. Thus, network operation is enabled through application of

simple and consistent guidelines. One exarnple is a policy file that specifies the tirne at

which a particular application can be run by a group of users on a network. The static

information-user profiles are stored in the directory. The policy server has to know the

type of the application and the identity of the user in order to make a decision.

In a standard policy-based network, policies consist of two components 121:

A set of conditions under which the policy appli~s (this might inchde

parameters such as user name, addresses, protocols and applications

Wpes.), md

A set of actions that apply as a consequence of satisfying or not satisfjhg

the conditions including bandwidth guarantees, access control, service

load balancing, cache rediredon, and intelligent routing.

Polic y- based networking emplo ys a policy server that accesses information from multiple

sources, çollecting al1 relevant information, making policy decisions, and cornmunicating

these decisions to the network devices. A sample configuration for a policy-based network

is shown in Figure 4.

The network is oomposed of a policy manager, policy server, applications server,

and directory server. The policy manager is a user interface program, which allows the

network administrators to create new policies or to modim existing policies. The policy

server sends policy information to policy decision points (PDPs), where decisions about a

network are made according to the pre-set d e s and current network states. The directory

server provides information storage, where information such as user profila and

configuration files for devices is stored. The policy m e r can use LDAP to retrieve

information from the directory sewer. The network nodes (routers and switches) are where

policy decisions are implemented. Sometirnes, the policy conditions depend on the values

of certain fields in the packet header. The policy server can not make a policy decision

since it does not have specific howledge. The routa or switch must make a policy

decision in this case. It uses LDAP to retrieve necessary information h m the directory

server in order to make a decision.

Nodrslswitches

d & € 3 f l ,.-.. _

Application Serva
user

Figure 4. A sarnple configuration for policy based network

in this sample configuration (Figure 4), a user launches an application by sending a

request to the application server. The launch of the application tnggers a policy request A

router or a switch subrnits the request to the policy server. The policy serva uses LDAP to

access the user's profile and other related infoxmation h m the directory s e n m . Then the

policy server formulates a response to send to the policy client, in this case a router or

switch, whether it should pemiit or deny the user's request to access the application. The

policyenabled router or switch cames out enforcement of policy decisions.

Configuration complexity, inconsistent policies, lack of application control, and

insufficient visibility are four main problems in building intelligent networks. Policy-based

networks sol ve these problems b y using automated policy configuration, centralized policy

control, network application rmgnition, and active audit of policies. This provides

network administrators integral controi over the network, which in turn reduces operating

cost and gives the Company cornpetitive advantages.

The benefits of policy-based networking include:

+ Network administrators can priontize services according to which applications

are critical to business needs during what specific periods and for certain users,

Automation of network configuration and user administration reduces the cost

of ownership and the network administrators' productivity is improved as well,

+ Integral control over the entire network enhances overall end-to-end

wnsistenc y. Network administrators can appI y consistent behaviors across the

entire network domain they must manage, and

+ Network security is strengthened because corporate exposure is minimized via a

consistenf ever-present security implementation for resources and information.

2.2 CIM

The capability to manage and maintain a comprehensive information model that

enables each of the network components to be related to each other is the key to use of a

DEN. The Disîributed Management Task Force @MW) Cornmon information model

(CIM) is one such model. It is an object-oriented information model that describes how a

systern may be managed. CiMTs major goal is to present a consistent view of the managed

environment independent of the various protocols and data formats supported by those

devices and applications [6].

CIM supplies a set of classes that are used to implement an inheritance hierarchy

and a set of relationship hierarchies. These classes can be used as building blocks to mode1

arbitrarily complex systems. Since C M is a standardized information model, components

and management applications by different vendors can share infonnation using CIM. This

allows integration of different management infonnation h m different sources that use

different syntaxes and expressions.

CIM is based on an object-oriented model. Object oriented modeling is a formal

way of representing something in the real world. Object models are built h m classes that

relate to each other through associations and generalization. The object model describes a

system's data structure, its objects and their relationships. A class is a description of a

group of objects with similar properties (object attribute), cornmon behavior (operations

and state diagrams), sirnilar relationships to other objects, and cornmon sernantics. C M

uses Unified Modeling Language (UML) [7] as its modeling language. In UML, a class is

represented by a rectangle containing the name of the class. A class with properties is

represented by a rectangle divided into two regions, one containing the narne of the class

and the other a list of properties. Methods are represented by a third region contauiing the

list of methods. An edge drawn behueen a subclass and its superclass with an arrow

indicating the superclass, represents inheritance, or a subclass/superclass relationship.

Associations are represented by edges with the narne of the association u d l y placed near

the center of the line [7]. Associations are classes in CIM. Therefore, it is possible for an

association to have properties. Aggregation is a Lind of association bebveen a whole, called

the assembly, and its parts, called the components. It is drawn with a small diamond added

next to the assembly end.

An example of UML is shown in Figure 5. The following can be concluded h m

the example: bats have owners; owners are perrons. Person has two properties-Name

and Address. Boat has two properties-Passengers and Displacement A boat may be either

a sailboat or a powerboat. A powerboat contains an engine. The usage of a boat is the

number of days a particular user has used that boat.

Narne
Address

Figure 5. illustration of UML

Sailboat Powerboat le

Sail configuration

T
U s p ~

Fsgiri~ ,

Passengers
' ,, Displacernent

Property data types are limited to the intrinsic data types or arrays of those data

types. Structurecl types are constructed by creating new classes 161. If the property is an

array property, the correspondhg variant type is simply the array quivalent of the variant

for the underlying intrinsic type. Table 2 lists the intrinsic data types and their

interpretation.

Table 2. The intrinsic data types and their interpretation

tntrinsic Data interpretation
Type
Uint8 Unsigned &bit integer
Sint8 Singeâ 8-bit integer
Uintl6 Unsigned 1 &bit integer
Sint 16 Signed 1 &bit integer
Uint32 Unsigned 32-bit integer
Sint32 Signed 32-bit integer
Uint64 Unsigned 64-bit integer
Sint64 Signed 64-bit integer
Struig UCS-2 string
Boolean Boolean
R d 3 2 IEEE 4-byte floating point
Datetime A string containhg a data-time
<classname> ref Strongly typed reference
Char 1 6 1 6-bi t UCS-2 character

CIM is stmctured into three distinct layers: Core Model, Common Model and

extension schema. The core model is the topmost layer, which is composed of a small set

of classes. It is an infoxmation model that captures notions that are applicable to al1 areas

of management. The cornmon model is the second layer. Like the core model, it is

composed of a set of classes, as wek It captures notions that are cornmon to particular

management areas, but independent of a particular technology of hplementation. There

are eight cornmon rnodels: System, Device, Application, Network, Physical, User, Policy,

and Database. As the names irnply, each of them is concerned with a certain part of

networking. The third layer of C M is called the extension schema. It represents technology

specific extensions of the common model. These schema are specific to environments, such

as operathg systems.

The C M core model is a good starting point for building a desired network

application mode1 since it is not specific to any platform. At the mot of the dass hierarchy

is an absbrict class: CM-ManagedS ystemElement. Any çomponent of a systern that can be

managed should be its subclass. It has two subclasses: CIM-LogicalElement and

CIM-PhysicalElernent- CIM_PhysicalElement is the mot of the physical portion of the

class hierarchy. It defines common information a physical device should have, such as

manufacturer infornation and model information. It could be use. to distinguish products

£iom different vendors. The CIM_LogicalElement is an empty class whose sole purpose is

for classification. The reason for this is that it is very hard to abstract the çornmon elements

of Iogical hc t i ons because of diversity. Four subclasses of CIM-LogicalElement,

CIM-System, CIMIMLogicalDevice, CIM-Service and CIMrrvlServiceAccessPoint are

defined in the core model. To model different logical aspects of a

CIM-MmagedSystemElement, one can build concrete classes based on these four classes.

The core model also defines various types of associations. These associations are

represented by abstract classes, which relate elernents of CIM_ManagedSystemElement.

The common model provides a set of base classes for extension into the area of

technology-specific schemas. The eight wmmon models and their definitions are s h o w in

Table 3. Each of these common models includes many classes and reiations that are not

listed in this thesis.

Table 3. The eight common models

1 System 1 Defines the key components of a system and how to assemble them. 1

1 1 mode1 the comectio& between devices. These include mass storage 1
Device

These include cornputer system, operating system, file, and processes.
Defines how to realize physical devices in hardware, dong with how to

1 1 includes the concepts of software features and elements as well as the 1
Application

1 [ability to check if conditions are met for installing software and actions 1

devices, media, sensors, printers, power supplies, and other components.
Defines how to manage the installation of software in a system. This

Network
to be taken as part of executing the software.
Defines specialization to the physical and logical element class
hieratchies to model network elements and devices. This also includes

P hysical
modeling network protocols and network systems.
Defines the physical organization, containment structure and

User

1 1 this beyond network policy to a policy that can control any type of 1

composition of devices and device interconnections.
Models users, groups and organizations, and how these abjects interact

Policy
with the 0 t h &m&nents of a managed system.
Builds on the original policy mode1 proposed by DEN and generalizes

CIM, as an implementation-neutral schema, facilitates the common understanding

of management data across different management systerns and management infornation

integration fiom different sources. CIM is a conceptual model that is not bound to a

particular irnplementation. This allows it to be used to exchange management information

in a variety of ways.

Database

Each CIM model is desaibed in a language called the Managed Object Format

(MOF). This language is based on a standard interface Definition Language (DL). The

managed entity.
Models the operation of relational database (this is still work in

purpose of MOF is to define the capabilities of a distributed service dong with a cornmon

set of data types for interacting with those services. Figure 6 shows an excerpt fiom the

CIM Core mode1 file. The class definition is defined ushg the keyword "class" and is

enclosed in braces. Qualifiers are enclosed in brackets and appear immediately before the

component they affkc~ The narne of the class is defined first, A colon separates the class

name and its superclass name if it has one.

Superclass
//class Senice dcfinitioii

Qualifie - b ~ b s t r a c t , Description("A
Logical Element -. .")]

Class J
\class CIM-Service : CIM_LogicalElement { Dcciarat ion

wey, MaxLen(256), Description("CreationClassNarne
indicates the name of the class.. .")]

/string CreationClassName;
Data type

[Description("The StartSe~ce method places the \ uint.32 Service. S tartService0; . . ")]

Figure 6. Expressing a C M class in MOF

CIM is abstract in nature-al1 the classes are not hlly implemented. It only

provides a skeleton for developing network applications. The methods in al1 classes are

only descrîbed in terms of th& parameters, the parameters' types, order, and whether they

are inputs. The contents of the methods are not specified. Since it is impossible to

anticipate the specific needs of each producf applications must provide support for some or

the entire core mode1 plus some or al1 the appropnate common models. Since the current

mechanisrn for describing management information is in MOF, applications must be able

to import and export properly fomed MOF constnicts.

23 XML

HTML is easy to learn because it uses a h e d tag set to mark up documents. The

ability to incorporate images and audio into a document makes it popular among web

developers. With free Web browsers such as MicrosofYs internet Explore and Netscape's

Navigator being deployed universatly, HTML has become one of the prïmary means to

mark up documents delivered via the Web. However, one of its advantages, its k e d set of

tags is also one of its most significant disadvantages. The only way to add hctionality to

HTML via new tags is to take a proposal detailing the desûed functionaiity to the World

Wide Web Consortium (W3C). The discussion process can be lengthy, and not al1

proposed tags are general enough to be included in future HTML specifications.

This problern of limite- flexibility can be solved with XML. XML is similar to

HTML in the sense that it is a text based markup language. With a few exceptions, most

tags in HTML are for fomattïng purposes. The tags insûuct the browser how a piece of

text ought to be displayed. Browsers simpl y ignore any tags they do not recognize. XML

does not have a predefined set of elements, rather it allows XML vocabularies to be defied

using a Document Type Definition (Dm). With XML, you can define your own set of tags

by means of a DTD. Al1 the tags used by HTML can be easily described using XML.

Sometime, an XML document is made up of elements that consists of textual

information contained between a start tag, and an end tag. The information between the

start tag and the end tag is referred to as the content or data Each element must have a start

tag and an end tag. Although elements may be nested, they must not overlap.

A unique feature of XML documents is that they are self-validating-the rules of

the standard used to create the document can themselves be part of the document. There are

two types of validity. The k t type deals with the physical structure of the document. A

document that meets the criteria describeci earlier is caIled well forrned. In the second level

of validation, a Document Type Definition (DTD) accompanies the document. The DTD

can be part of the document or an extemal document. The DTD specifies the grammar of

what the XML document contains.

An example of a simple XML document is shown below:

<?xml vcrsion = " 1 .O?">
c!DOCTYPE nanic [<! ELEMENT namc (first? last)>]>
<nanie>

<first>Jolin<!tirst>
<last>Doe<:ilas~

<:'name>

In this example, three tags <name, <first>, <lase were created to describe a person's

name. The DTD included in the document specifies that the name entity must include two

other entities called "fïrst" and "last". In the above example, a name entity is composed of

two parts: a first name and a last narne. It also shows the nested relationship between these

entities.

The hrst and the largest benefits of XML are its simplicity and extençibility. It is a

character-based format, therefore, XML messages can easily be read, created, and modified

by widely available text editors. In XML, tags can be named with undexstandable strings

An XML document has a rwted tree structure!. For many applications, a tree structure is

general and powerfiil enough to express fairly complex data Thus XML has sufficient

power to express complex data structures to satisfi the needs of many applications.

Another important benefit of using XML is its capability to handle international character

sets. Today, many businesses are international in scope. This is especially true for Internet

applications because the Internet easily leaps national borders. XML 1.0 is defined based

on the ISO- 10646 (Unide) character set so al1 possible characters are legal characters.

An XML document by itself is merely a collection of data. A prognimming

language is required to process that data and perform usefiil operations using the data. Just

as a browser brings HTML to life, programming languages can bring XML documents to

life. Java is the ideal choice among al1 the languages because it offers platform

independence, built-in intemet support and good support for intemationalization.

Figure 7 illustrates a simplified model of a Java distributed application that

processes XML. In this model, the processors are implemented using Java The sender end

processor obtains data fiom a data source, then processes the data and ultimately produces

a document object model (DOM) representation. The processor passes the DOM

representation of the XML data to the sender. The receiver receives the XML data and

passes it to its processor. The receiver end processor processes the XML data and stores

data in its data store.

Figure 7. A simplified mode1 of a Java distributed application that processes ICML

XML over H?TP allows for a smooth transition fiom HTML-based sites to an

pmcessOr .

XML-based site. A possible implementation is show in Figure 8. The sender converts the

DOM representation of the XML into text and sends the text to the receiver. The receiver

6 $5
- 4

Processor 7 Sender

then converts the text back to the DOM representation.

receiver

: 3

t i

Receiver

Figure 8. A sender and receiver sending XML text via Hï'TP

-'

CIM does not define a standard for data exchange. XML has been proposed to

define declaration of CIM objects that can be easily transformecl into many representations.

For illushative prirposes, one possible mapping of a CIM objcct to XML is s h o w in

Appendix A. The class used in Appendix A is CIMIMManagedSysternElement.

~ r î t e r text ,,
L L L

text cgi
b

text
*mer

=>

VIRTUAL PRIVATE NETWORKS

3.0 Virtual Private Networks (VPNs)

The introduction of the World Wide Web and HTML, fueled the steady

acceptance of the Intemet by the business cornmunity. The Intemet provides valuable

business opporhmities to such enterprises. There have been two major technicai problems

with conducting businesses on the internet. One is agreeing on a standard message fonnat

to use. XML can be used as the standard message format because of its flexibility. The

other technical problern is insufficient security. The internet is a public netwok and

offers little protection to the data it carries. If data integrity c m not be trusted, the

messaging can not be tnisted either. A private network offers one of the best security

environrnents for data transitions in a global economy. However, private networks are

expensive. Installation, setup, and routine administration can easily run into millions of

dollars. Virtual private networks afford enterprises the security, performance, availability,

and multiprotocol environment of a private network over the inexpensive Intemet.

There are primarily three types of use for VPNs: remote access, Extranet, and

dial-in access. VPNs reduce network operational cost because users can use the Intemet

instead of dialing a dedicated number, which could be long distance, to access the

corporate network and the corporations do not need to install private access lines to their

sites.

Virîual Pnvate Networking technology provides the ability to use the public

Intemet as an appropriate channel for private data communication. It accomplishes this

by creating a ''tunnel'' through the Intemet. To a user, it appears as if the data is being

sent over a dedicated pnvate link-despite the fact that this communication occurs over a

public network.

3.1 Tunneling Protocols

Tunneling is a technology that enables one network (private neiwork or enterprise

network) to send its data via another network's (the Internet) connections. instead of

sending a fiame as produced by the originating node, the tunneling protocol encapsulates

the data in a new packet with an additional header. The additional header provides muting

information. The original IP header and the packet payload or transport data are encrypted.

In the case of IPSec, the outer header, put in position by PSec, is also authenticated. The

authenticated and encrypted IP packet is routed over the internet to the destination. To

ensure the security, each tunnel uses its own encryption key. The tunnel server selects the

appropriate encryption key for authentication and encryption operatiom.

Some mature tunneling technologies include the Point-to-Point Tunneling Protocol

(PPTP) developed by Microsoft, the Layer 2 Tunneling Protocol (L2TP) developed by

Cisco, and IP Security (IPSec) Tunnel Mode. For a tunnel to be established, both the tunnel

client and the tunnel server musc of course, be using the same tunneling protocol.

3.1.1 The Point-to-Point Tunneiing Protocol (PPTP)

The PPTP is an extension to the Point-to-Point Protocol (PPP). It uses a TCP

comection for tunnel maintenance. The data flowïng through the tunnel are Generic

Routing Encapsulation (GRE) encapsulated PPP fknes. in essence, PPTP wraps PPP

packets in IP. A remote user using PPTP can work in either a regular LAN environment or

an Intranet environment as if they were locaily connected. An example of how a PqTP

packet is assembled prior to transmission is shown in Figure 9 (The example shows the use

of PPTP in the case of remote access.).

PPP IP GRE PPP iP

GRE

Figure 9. Construction of a PPTP Packet

PPP IP TCP
UDp User Data

The application generates a datagram, which is sent to the network. Depending on

the type of application, the network transport layer adds either a TCP or UDP header to the

datagram. The PPTP software, which resides in the network access server, adds its header

to the new datagram. Before sending it out to the network, an IP header and a PPP header

are added. The ha1 fiame layout shows the encapsulation for the dial-up client.

3.1.2 The Layer 2 Tunnehg Protocol (LZTP)

LZTP is a network protocol that encapsulates PPP h e s to be sent over IP, X.25,

Frarne Relay, or Asynchronous Transfer Mode (ATM) networks. It uses UDP and a

series of LZTP messages for tunnel maintenance. L2TP usa UDP to send L2TP-

encapsulated PPP -es as the tunneled data. Figure 10 demonstrates how an LZTP

packet is assembleci pnor to transmission. As in the case of PPTP, each layer or process

adds its own header to the datagram generated by the application. The chief difference

between LZTP and PPTP is that L2TP adds a UDP header to the packet and PPTP adds a

GRE header to the packet.

3 . 1 IP Secunty (IPSec)

IPSec is an Internet Engineering Task Force (IETF) layer three protocol standard

that supports the secured transfer of information across an IP network. As the narne

irnplies, it protects IP based services or applications by using cryptography. D'Sec is

expected to emerge as the preferred protocol for VPNs because it has a complete security

solution, which includes packet authentication, encryption, and key management.

PPP &via [T l

IP

Figure 10. Construction of an L2TP Packet

PPP

To deliver security, the iPSec standard provides two security strategies:

Authentication Header (AH) and Encapsulating Security Payload (ESP).

Tc?
UDP

3.1.3.1 Authen tication Header (AH)

The IP Authentication Header [12] provides comectionless integrity and data origin

User Data

IP

authentication for IP datagrams, and also offers protection against replay. Data integrity is

assured by the checksum generated by a message authentication code; data origin

Ta'

authentication is assurd by including a secret shared key in the data to be authenticated;

User Data

and replay protection is provided by use of a sequence number field within AH. The PSec

au thentication header provides no data encxyption.

Some fields in the IP header change en-route and the receiver c m o t predict their

value. These fields are called mutable and are not protected by the AH. The mutable IPv4

fields are:

Type of Service (TOS),

Flags,

Fragment Offset,

Time to Live (TîL), and

Header Checksum

nie payloads of IP packets are considered immutable and are always protected by the AH.

The position of the AH header in the iP packet and the header fields are shown in

Figure 1 1 . These fields are explained in Table 4.

Payload

1 32 bits 1

Figure 1 1. AH Header Fonnat

Table 4. The explanation of fields in AH format

Field Name Field Len. Explmation
(bits)

Next Header 8 The type of the next payload afler the AH. The value is
chosen fiom the set of iP protocol numbers.

Payload Length 8 The length of the AH header expressed in 32-bit word,
minus 2. The default value is 4.

Reserved 16 Reserved for fiiture use. It is currently set to zeroes.
Securi ty 32 An arbitrary 32-bit number assigneci to a security
P arameter association (SA) (discussed Iater).
Index
Sequence 32 Serves as a counter, whîch is used for replay protection.
Nunber The sequence number has to be unique.
Authentication Integral Used by the receiver to verify the integrity of the incorning
Data multiple of packet.

32 bits

3.1.3.2 Encapsulating Securiîy Payhad (ESP)

The ESP [13] header provides a mechanism to encrypt the iP payload. In doing so,

i t provides confidentiality, &ta origin authentication, connectionless integrity, and anti-

replay protection. Therefore ESP headers are an alternative to AH headers in PSec

packets.

The format of the ESP packet is more complicated than that of the AH packet.

There is not only an ESP header, but also an ESP trailer and ESP authentication data. The

payload is located between the header and the trailer. Figure 12 shows the structure of the

ESP header and trailer. The security parameter index (SPI) and the sequaice number fields

are the same as those in AH. The explanations of the remaining fields are listed in Table 5.

ESP Header

Payload Data (variable) I [l J 1 , 1
3 1 Padding (0-255 bytes)
8 ESP Trailer

? w -
ESP Auth
Data

Figure 12. ESP Header and Trailer

Table 5. Explanation of fields in ESP

Payload Data A data of variable length that consists of data described by the Next
Header field

Padding Used to make the input data an integral number of blocks
Pad Length An 8-bit field that contains the number of padding in bytes.
Next Header An 8-bit field that shows the data type carried in the payload.
Authentication Data A variable length field which is calculated fkom the SPI to the Next

Header field.

Comparing ESP to AH, only ESP provides encryption, while either can provide

au thentication, integri ty checking, and replay protection.

3.3.1.3 Secunty Association (SA)

A security association (SA) [14][15] is a data structure that contains information

about which transfomation is to be applied to an IP datagram. An SPI, as well as an IP

destination address and a seciirity protocol identifier (AH or ESP) uniquely identify each

SA.

Two types of SA cm be use& transport mode SA and tunnel mode SA. Figure 13

illustrates the A H and ESP in transport mode. As s h o w in the figure, the P header for the

transformed packet is the original packet's IP header. Therefore, transport mode only

provides protection for upper layer protocols, but not for the P header. in the case of AH,

protection is provided to the P header and the IP payload. In the case of ESP protection,

the original packet except the P header is encrypted.

7 Pay load

1 Authenticated
(except mutable fields)

Datagram with
AH Header in
transport mode

Datagram with
ESP in transport
mode

Figure 13. AH and ESP in Transport Mode

Tunnel Mode protects the entire inner IP packet, including the IP header. Figure 14

shows AH and ESP in tunnel mode. For AH format, the entire original packet is appended

after a new IP header. The original IP header cames the uitimate source and destination

addresses. For ESP, the entire original IP daîagrarn is enclosed within the ESP payload. A

new IP header is generated and attached to the ESP payload, Upon receipt of the datagram,

a tunnel semer processes and discards the plain text IP header and then decrypts its

contents to retrieve the origuial payload IP packet. The payload IP packet is then processed

normally and routed to its destination on the target network.

Authenticated
(except mutable fields in the new iP header)

Datagram with
AH in tunnel
mode

Datagram with
ESP in tunnel
mode

1 Authenticated

Figure 14. AH and ESP in Tunnel Mode

Either AH or ESP can be specified in an SA, but not both. I f both AH and ESP

protection is needed, then two or more SAS must be created. To secure a bidirectional

communication between two hosts, or betwem two security gateways7 two Securïty

Associations (one in each direction) are required.

3.1.3.4 ISAKMP/Oakfey (IKE)

The Internet key exchange (IKE) [161 combines the intanet Securïty Association

and Key Management Protocol (ISAKMP) with the Oakiey key exchange. It is used to

establish, negotiate, d i S . and delete SAS. ISAKMP requires that al1 information

exchanges must be both encrypted and authenticated No one can eavesdrop on the key

material, and the keying material will be exchanged only among authenticated parties.

ISAKMP/Oakley uses a two-phase approach. The purpose of phase 1 is to establish

a master secret key &om which ail cryptographie keys will subsequently be derïved for

protecting the users' data t r a c . It establishes an SA for the ISAKMP itself. Phase 2 is

used to atablish an SA for IPSec. Phase 2 negotiations generally occur more fiequently

than Phase 1 since the master key c m be used for a longer time.

3.2 Security

VPNs primarily protect data as it tunnels through the intemet. This process, though

very effective with information in transit, does not offer protection to an organization's

network itself. As in the case of private networks, a firewall offers the best potential for

VPN security. Firewalls achieve network protection and pnvacy through access control.

Access control specifies the amount of fieedom a VPN user has, restricts certain types of

mffic, and controls access to applications in various network domains. Since almost every

organization connected to the Internet has a firewall installed, ail that is needed is to add

VPN s o h a r e to the firewall. The internet firewall is also the ideal location for deploying

World Wide Web and FTP mers. The firewall can be codgured to dlow Internet access

only to those services, while prohibiting external access to oher systems on the protected

network.

When two sites, each behind different corporate firewalls, want to çornmunicate

with each other via a VPN, the VPN software on each fïrewall creates keys that wilJ be

used to encrypt messages. When an application king used by the user generates a packet,

the packet Ieaves for the destination via the firewail. The VPN software, which resides in

the firewall, encrypts the packet according to the protocol (AH or ESP) then the firewdl

forwards it to its destination. The firewalVVPN at the other end receives the packet,

decrypts it and then forwards it to the final destination, which is located in the local

network. The responding packet generated by the receiving end goes through the sarne

procedure in the opposite direction.

33 VPN Management Requirements

VPNs offer enterpri ses an al ternative approach to interconnecting emplo yees,

remote facilities, and external business partners. Though it extends a private network to

the Internet, a VPN is still an end-to-end network that exhibits most of the sarne

characteristics as private WAN infiastructures As a business expands, the network

grows. A VPN must remain scalable to address the increased needs. Moving h m a

dedicated infrastructure to the intemet challenges network administrators to maintain the

confidentiality and integrity of the data while opening the network to intemet accesses.

The move to a shared infiastructure (the Intemet) also presents new challenges in

delivering and monitoring the reliability of the network service provided.

To ensure smwth integration of private WANs and VPNs, network managers need

to exchange configuration information with the service provider. This includes validatîng

that the service levels provided by the service provider meet the corporation network

requirements. To provide scalable network-wide management, the network administrators

can use policy-based network management to configure the network instead of contiguring

the network on a device-by-device basis.

Since VPNs are an extension to enterprise networks, the existing enterprise

management environrnents can be extended and enhanced with VPN management

capabilities to provide neîwork administrators with control over the VPN end users. As

VPNs gain popularity, the need for open, standard, replicated, and integrated

management services becomes essential. Using directory-based policy management will

enable integrated user information and network states. By leveraging the DEN standard,

the directory will become the repository for the critical information required for

interoperable, polic y-based networking including VPNs.

4. MODELING A SIMPLE NETWORK

MANAGEMENT SYSTEM

A program was written in Java to mode1 a simple network and its management

system. The program dernonstrates the use of DENs in network management. A CIM is

used to implement some of the network and network management components. XML is

used as the communication vehicle between devices. Network sockets are used to enable

objects running in different virtual machines to wmmunicate with each other.

4.0 Java

To demonstrate the use of a C M in a network application, an application [17] 11 81

was developed in Java which utilizes Java Rernote Method Invocation (RMI). RMI creates

Java applications that can talk to other Java applications over a network. RMI allows an

application to cal1 methods and access variables inside another application, which may be

running in different Java environments or different operating systern altogether, and to pass

objects back and forth over a network connedon.

4.0.1 Advantages of Java as a programming Ianguage

As a programming language, Java has a number of advantages:

Platforni independence- A Java program can run on any platfonn that

has a Java vimial machine (JVM) because Java programs are compiled

into bytecodes, which in tum are interpreted b y the interpreter in a JVM.

High productivity-Java was designed to incorporate the latest object-

oriented software engineering techniques. Further, it does not have

constructs such as multiple inkitance and operator overloading that are

prone to usage mistakes.

Built-in network support-JavaYs buiIt-in network library package

(javanet) provides cross-platform support for simple networking

operations, including connecting and retrieving files by using cornmon

Web protocols and creating basic UNIX like sockets.

Support for international characters-Java uses Unicode as the character

set. It is esbeciallv immrtant in todav's elobal economv.

4.0.2 Java RMI

The goal for RMI is to integrate a distributed object mode1 into Java without

disrupting the language or the existing object model, and to make interacting with a

remote object as easy as interacting with a local one. It also inchdes additional

exceptions for handling network errors that may occur while a remote operation is

occumng. RMI is protocol independent.

The Stub and Skeleton classes, which reside on the client and server respectively,

hide the remoteness of the method cal1 from the application implemmtation classes. When

a semer application registers an object with the RMI Registry, the skeleton class is also

registered. When a client application or applet requests a server object, an instance of the

stub class is created and CO~ected to the server application. Shibs and skeletons allow the

client and server classes to behave as if the objects they are dealing with were local.

RMI is simple to use because most of the complexity is hidden in the stub and

skeleton classes. A normal Java object can be transformeci into an RMI m e r object by

applying a few simple modifications and generating stubs. The client invokes methods on

the semer object through a Java interface, so there are even fewer modifications requinxi

there.

Although RMI is easy-to-use and simple-to-hplement, it is a Java only solution.

RMI can not be used unless al1 mmmunicating programs are written in Java.

4.1 The IBM XML parser

Using XML as a standard message format in business to business transactions

requires a mechanism that can read and interpret the XML documents. An XML parser can

be used for this purpose. It reads the document and re-arranges it in a structured foxm that

ailows each elernent to be accessed and rnanipdated.

IBM's XMU4 paner is Witten in Java, and is therefore portable to any operating

systerns with a IVM. The parser uses both DTD and the XML documents to create a

Document Object Mode1 (DOM) tree, which presents the document hierarchically. The

DOM has a group of API's, that allow easy access to the elements within the tree. Using

the DOM APIS, any element within the XML document can be accessed, changed, or

added.

The package "com.ibm.xml.parser", which is prirnarily used in the project,

contains classes and methods for parsing, generating, manipulating, and validating XML

documents.

4.2 Converting MOF fdes to JAVA

As mentioned earlier (Section 2.2), a C M mode1 is described in a ianguage called

Managed Object Format (MOF). The MOF file is basically made up of a series of class

and instance declarations. Components of a MOF file include:

Ke ywords,

Conunents,

Validation Context,

Naming of schema elernents,

Class declarations,

Qualifier declarations,

Instance declarations,

Method declarations,

Compiler directives, and

Ini tializers.

Figure 6 illustrated an exampie of expressing a CIM class in MOF. The following specifies

a class:

1 . The qualiners of the class. This may be empty or contain a list of qualifier

namehalue pairs separated by commas and enclosed within square brackets ("["

and "1").

2. The cIass name.

3. The name of the class from which this class is derived (if any).

4. The class properties, which define the data members of the class. A property

may also have an optional qualifier list, expressed in the sarne way as the class

qualifier list. in addition, a property has a data type and (optionall y) a default

initial value.

5 . The rnethods supported by the class. A method may have an optional qualifier

list. A method has a signature consisting of its r e m type, plus its parameters and

their type.

The most common qualifiers used are listed in Table 6 [9].

Table 6. The most cornmon qualifiers

ALLAS Establishes an altemate narne for a property or method in the

DESCRIPTION
KEY

MAPPMGSTRINGS
MAX

MAXLEN

MIN

MODEL
CORRESPONDENCE

schema.
Indicates the type of the qualified array. Valid valws are "Bag",
"Indexed", and "Orderedw.
Provides a description of a Narned Element.
Indicates that the property is part of the key. If more thart one
property has the KEY qualifier, then al1 such properties
collectively f o m the key (Le. a wmpound key).
A mapping string for a given provider or agent.
Indicates the maximum number of values a given multi-valued
reférence can have. A value of NULL implies no limit.
Indicates the maximum length, in octets, of a string property.
When ovhd ing the default value, any unsigned integer value
(uint32) can be specified. A value of NULL irnplies unlimiteci
length.
Indicates the minimum number of values a given reference can
have.
Indicates a correspondence beîween an object's property and
other properties in the CIM Schema. Object properties are
identified using the syntax:
achema name> "-" c~1as.s or association name> ". "
<property name>

OVERRJDE Indicates that the property? method, or referme in the derived
class ovemides the similar construct in the parent class in the
inheritance tree or in the specified parent class.

PROPAGATED The propagated qualifier is a string-valued qualifier that
contains the name of the key that is king propagated. READ
Indicates that the property is teadable.

REQUIRED Indicates that a non-NULL value is required for the property.
UNITS Provides units in which the associatecl property is expressed.

For example, a Size property might have Units ("bytes").
VALUEMAP Defines the set of permissible values for this property. For

example:
W u e M a p ("lm, "2", "3", "4", "5") , Values ("Other",
"Unknownw, "Enabled", "Disabled", "Not Applicable")]
uint 1 6 StatusInfo;
Provides translation between an integer value and an associated
sûing. If a ValueMap qualifier is not present, the Values array is
indexed (zero relative) using the value in the associated
property. If a ValueMap qualifier is pfesent, the Values index is
d e h e d by the location of the property value in the ValueMap.

VALUES

One qualifier that needs to be stresse. is KEY. Keys in the CIM are used to

provide a way of uniquely identi%ng an instance within the scope of a given namespace.

Only properîies and references may be used as keys, and keys are unique within a

namespace. If a new subclass is derived fiom a superclass and the superclass or any of its

parent classes have key properties, the new subclass cannot define any additional key

properties. New key properties in a subclass can be introduced only if al1 of the

superclasses of a gîven class have no keys. A class can have more than one key. Those

keys consist of a composite key, which enables any instance of any subclass of the class

to be identified.

Since the CIM is expressed in MOF files, a program was developed to convert

MOF files to Java program files. To take advantages of XML, the conversion is done in

two steps. The first step involves converthg MOF files to XML files. A program-

ProcessMOFjava was written to accomplish this task. The program takes one string

argument, i.e. the name of the MOF file being processed. The conversion is done according

to the XML DTDvZ.O.0, which is posted on the DMTF's web based enterprise

management (WBEM) standards web site (htt~://www.drntf.or.dsDeç/wbem.h~l). Each

class of the C M has it own XML file that means that for every MOF file, there could be

many XML files. The second step is to convert XML files to Java Program files. The

program ProcessxMLJczva was developed for this purpose. it takes the name of a)(ML file

as input. The output of ProcessXMLJava is a series of Java program files, which can be

used as building blocks to develop network applications.

To convert a MOF file to Java program files, fint ProcessM0F.java is used to

convert the MOF files to XML files. Once the conversion is done, another program-

ProcessXMLjava c m be used to prduce Java program files using the outputs of the fïrst

step as its input.

4 3 Modeling a simple network management system

A management program developed by Dr. D. Blight at Fujitsu is used as the basis

for the project Figure 15 shows the high level structure interpretation of the management

system.

4 i
I
I

t I
I
I

Nmork Management
I b Network B
I

I

Figure 15. Graphic Representation of the Network Management Program

I
I
I b
I

Network A

Network management systern (NMS) A manages Network A and NMS B manages

Network B. The two networks c m be connecteci or disconnected. If the two neîwork are

connected and A needs to send some data to B, NMS A wants to know the state of Network

B. To accomplish this, NMS A needs to communicate with NMS B. The information

exchanged between the two network management systems can be the policies or state

deciding which policy to use . To exchange the information effectively, a standard format

rhould be used. Figure 16 illustrates a possible solution where CIM is used to describe the

infomation. XML is used as the encoding schema because of the benefits described in

Section 2.3. A network administrator can access the infonnation through web browsers

using HTIP or through text editors depending on his/her preference and the location of the

files.

Data Description
c m

-u
Transport Encoding Access

Figure 16. Communications between NMSs, Netsvorks

4.3.1 Modeling a simple network

To MIy mode1 a neîwork, we need to irnplement network objects, such as routas,

connections, applications, application systems and policies. A class-NetObject was used

as the base class for al1 the network components. A RemoteObject class was developed to

identify objects with theïr hostnames, object names, and its NetObject names. The physical

aspects of a network are modeled by classes: Connecfion, Router, Path, Nehÿork, Datice

and Pori. The fui1 cIass hierarchy is shown in Figure 17.

Figure 1 7. Physical Class Hierarchy of implernented Network Components

The NetObject class dehes a set of static variables that are used to identi@

different components of a network, wbich are modeled in the simple network. The values

of these static variables are listed in Appendix B. The class defines the following attributes:

'Wame" is a string that is the key of this class. This attnbute is wd to

distinguish di fferent objects

"Sttte" is an enumerated integer that defines the status of the network objeçt

There are eighteen possible values, which are listed in Appendix B

"Description" is a string that provides a textual description of the object Each

and every object has its own description

"InstallDate" is a Date value indicating when the object was installed. It can be

updated whenever a network manager updates a system

"Caption" is a string that provides a short textual description (one-line string) of

the object

The NetObjecf class is modeled der the CIM's ManaeedSvstemElement class. Because

the project is not intended to mode1 a complex network system, the devices that are

modeled in the program are generic. The CM-PhysicalElement is skipped since it is

mainly concemed with manufacturing information, such as manufacturer, stock number,

serial number, part number and version. Since CM-LogicalElement is an empty class

whose sole purpose is to separate logic elements fkom physical elements, it is not adopted

in this project.

The class Xdevice is a subclass of the class NetObject, and it defines methods:

neighborso, Connections(), addconnectiono and deleteComection0. Al1 these methods

will be used in the implementation of a simple network. In the BasicDevice class, the

methods: neighborso and Connections0 are overrïdden. The class Device is a subclass of

the BasicDevice class; it can be used to represent physical components such as routes,

switches, and texminais. The difference between a Router object and a Device object is that

a router object has a loopback connection, whereas a daice object does not. A much

simplifiai version of the CIM hierarchy is used because of the complexity involved in

modeling a whole CIM.

The class Path is a subclass of the class NetObject, and it represents connections

between different network devices. It is composed of path segments (Objects of PathSeg,

which is a class that defines attnbutes: Device, Application, Co~ection, Port and Queue).

The transmission rate of the path can be set by user to simulate network under different

conditions.

The Network class defines methods that establish a network. The network includes

devices, paths, applications, and routing protocols. The queues that network devices use are

implemented as well in the Network class. This class also includes methods that can be

use. to distinguish data source and data sink. Al1 the devices in the network are stored in a

vector. Any device in the network can be found by using the method: findDevice(String

name). As indicated in the above, al1 the instances of NetObjecf has name as one of its

attributes. Di fferent instances should have di fferent value for narne.

In the Group class, a vector is used to store the instances of class NetObject. The

group then can be treated as a whole during the sùnulation. The class NetPath irnplements

methods that can associate devices and connections. The class NetPath is the subclass of

the Group class, and thus it inherits al1 the methods in the Group clas.

The locai IP address, local port, foreign IP address and foreign port identie the two

endpoints of a conneaion. The class Pon implements the methods that realize the

functionality provided by ports. It includes the method findQueue(String QN) which takes

a siring as an input and fin& the correspondhg queue, selectQueue(Device dst,

Pv4Header IP) which selects a queue according to the device and its IP address which is

irnplemented by th:: class IPv4Header, and removeQueue() which removes contents in a

queue. Since in this simple network al1 the instances of the class NetObjecf have distinct

names, ports, connections, and devices can also be identified by their names. The data flow

rate can aiso be calcuiated ushg the information contained in the queue. The method

calcFlow0 is implemented for this purpose.

The class SirnConn implernents the basic functions of a connection. It identifies the

two ends of a comection: the source device and the destination device. It aiso contains

rnethod-isVPNO that r e m s a boolean, which distinguishes VPN comection h m other

connections. A VPN connection is between two instances of NetObject. The class

Comection is used to implement general-purpose network connections.

The logical aspects of a network are described by the classes: Application,

ApplicationSystem and Policies. These classes are al1 subclass of NetObject. The class

Application and ApplicationSysfem are classes used to model applications and the system

they reside. An application may be in one of four states: deployable, installable, executable

and running. To simpliQ the model, ody the later two stages were implernented in this

thesis. Applications are mn assuming a client-server model as most of the applications used

in networking are unda it. The ApplicationSystem resides in the host and the Application

resides in the AppZicationSysfern. The instances of ApplcationSystem and Applcation can

be identified by their name since they are al1 subclass of NetObject.

The package Policy contains classes that can be used to implement policies for

connections, paths, QoS, and VPNs. S i n e the main purpose of this thesis is to dernonstrate

the use of XML in network management and the benefits of a CM, not aU the policies are

fully implemented. The classes are however, written so that they can be extended at a Iaîer

time. The base class of this package is flaPolicy, which is a subclass of Net-ect. An

important method inflaPoiicy is activate(Network N), which activates a policy in a given

network.

There are several supportkg packages, which implernent al1 the other necessary

functions a network supports. These include IP, semer, and RemoteRefefence. There are

two classes in the IP package: IPv4Addres.s and IPv4Hcadee. JPv4 addresses are expressed

as four decimzl numbers separated by decimal points. Each decimal number represents one

of the 4 bytes of the 32-bit address. The class IAtQHeader includes fields: source address,

destination address, source port, destination port and Type of Service (T'os). Al1 the other

fields are ignored in the model. The package RemoteReference contains class-

RemoteReference, which links host and object, host and rernote host. Objects can be

anything, such as an application, a comection, or an application system.

The class TNOM which is a server side application utilizing RMI. To implement an

RMI-based client/sewer application, an interface, which contains al1 the methods the

rernote objects support, must be defined. ManagedObject is such an interface. Al1 the

methods in this interface potentiall y throw Remotefiception to handle potential network

problems. The class lUOM implements the rernote interface M o n a g e ~ e c t and extends

the class UnicastRemoteObject. The methods contained in the interface are implemented

inside the TNOM class. The remote application is also registered, which binds it to a host

and port.

To complete the network, a client side a p p l i c a t i o d e m o is used. The class takes

one argument, which is a file narne, fiom the input line. The input file, which is written in

XML, contains the configuration of a particular network. The simulated network then

configures itself according to the input. Thus, the configuration of a network can be easily

changed to mode1 different situations. Since the configuration files are written in XML

format, the program can search for a particular input if neçessary. Al1 the configuration

files are contained in a well known directory which enables progams running on different

machines to locate desired files easily.

An exarnple of the graphical user interface of the prograrn is given in Figure 18.

The configuration file for the output shown in the figure is listed in Appendix C. The DTD

for the configuration file is listed in Appendix D.

The example network consists of four gateway routers, each of which has distinct

name. The IP address for a router can either be auto-assigned or specified by network

administrators. The routers are connecteci to five different datasources. The bandwidth of

each connection is initially set at 1500 bps, which can be changed during a simulation. The

connections are arranged such that the routers can still perform routing hc t i ons even if

some connections are down. This scenario can be simulated by disabling selected

connections. The center of the network consists of two interconnected Internets. A user can

customize the network configuration by clicking on the buttons located at the bottom of the

window (see Figure 18). Each component of the network has its own configuration panel.

They are invoked by double clicking on the specific component Usas might n d to

change some parameters to meet their specific needs. Each panel shows changeable

parameters, such as the JP address of a device. The process of configuring a network and

the simulation are shown in a sepanite window so that a user can monitur the progress.

Figure 18. Graphic Interface of the Program

4.3.2 Modeling a management system

To communicate, we need the information to be exchanged and an encoding

scheme. As shown ùi Figure 16, the data is described using CM, which is written in

MOF. The ideal choice of encoding scheme is XML because it is system-independent.

The other benefits of XML are that new tag and attribute narnes can be defïned at will

and document structures can be nested to any level of complexity. The program

ProcessMOFJava (described in Section 4.2) was implemented and incorporateci into the

system to convert MOF file to XML files.

A policy servw was added to the above program (Section 4.3.1), which listens to

requests from the users. A user invokes a request for a policy by clicking on the Policy

menu (shown in Figure 18). Once the server receives the request, it generates a MOF file

according to the status of the network. The generated file is then converted to an XML

file, which is sent to the requester.

A VPN policy file that instructs the network to realize a VPN connection using

PSec is used in this program. Several classes are added to the package pbn.policy, which

contains classes that specifies policies for different purposes. The class IPSecPoliccyList

uses a string vector to store a set of policy names that are containeci in the system. Methods

that cm be used to access, add, and delete a particular policy are implemented in this class.

The class VPNpolicy is used to send a request for a VPN comection to a policy semer. The

class is used as a network management system. It tells the network of the existence of VPN

connections and secuïty associations. It also identifies whether encryption should be used

in a VPN connection or not. The class also includes methods can be used to generate keys

for encryption. The class Server is used as the policy server. It listens to the users' requests

and sends the requested policy files to the users. Since XML is just an open way to express

data, XML can be transported with any protocol. Network sockets are used to transfei

information between user and policy server in this program.

A flag was added to the class Neiwork, which indicates the existence of a VPN. If it

is me, a VPN is used sornewhere in the network- A vertor--SA, which is used to store al1

the security associations in the network, was also addd to the Nefwork class. A security

association is unidirectional. Two semrity associations are needed for two parties to

communicate. Al1 the security associations could be stored in a separate file so that other

management systems muid have access to the file.

Class WNtunnefPolicy is used to indicate the existence of a VPN between two end-

points. After receiving the policy file, the user creates a new instance of the class

VPNtunnelPolicy. It checks to see if a comection between two endpoints of the VPN

exists. If the comection exists, it sets the flag 4'kVPN' in the class Conneetion. O t h d s e ,

it creates a new connection between the two endpoints. It then adds the VPN connection to

the vector SA in the class Network. A network manager can keep track of VPN connections

by checking this vector. If the protowl ESP is used, the class VPNpoficy generates keys

which can be distributed to the comrnunicating parties.

4.33 Using the program

While nuullng the program, a user invokes a VPN policy request by clicking on the

menu item VPNPolicy, which in turn creates a new instance of the class VPNpoZicy. The

method-configure(Network N) in the class YPNpolicy is called. This method creates a

network socket comection to the policy server and sends a VPN policy request to the

server. The server generates a simple policy file which includes the two endpoints of the

VPN comection, the protocol and the transport mode to be used in the VPN comection.

The server then converts the MOF file to XML and sen& it back to the user.

AAer receiving the policy file, the user creates a new instance of the class

VPNhnnelPolÎcy using the two endpoints spaified by the policy file. It f h t checks to see

if the connection between the two points exists. If it does, it sets the flag is W N in the class

Connection to tnie. Otheninse, it mates a new comection between the two endpoints and

then sets the flag. The class Connection uses vector sas to store the two seciinty

associations (one for each direction).

The flag W N - m S T in the class Network is set to true to indicate the existence of

the VPN comection in the network. The class Network uses vector SR to store al1 the VPN

connections in the network. A network manager can keep track of the VPNs by checkhg

this vector. To simplim the management, ail the VPN connections are output to a text file,

which can be accessed by other network management systems if necessary.

Figure 19 dernonstrates the program's process.

Network

Classes:
VPNtunnelPolicy
Connec tion
VPNpolicy
Network

Output

Genera i es MOF

1
Coverts to X M L

Text file includcs al1
Securitv Associations

Policy File

Figure 19. Graphical representation of the NMS management program

4.4 Modehg IPSec at the Packet Level
Because PSec is expected to emerge as the dominant protocol for VPNs due to its

encryption ability, I modeled it at the packet level. The Diffie-Hellman algorithm is used in

the IKE phase. The algorithm DES in ECB mode is used to encrypt and decrypt the

packets. HMAC-MD5-96 [19][20] is used to authenticate data origin and to ensure packet

The Diffie-Hellman key exchange protocol aibws two parties to agree on a shared

key, even though the messages are transferred through public media. Suice there is no

secure channel in the earliest key negotiation session, it can be used to negotiate shared

secret keys. Figure 20 shows the steps involved in establishg shared secret keys. These

secret keys will be used in the next steps of the key negotiation protocol to derive keys that

will be used in DES. In the Diffie-Hellman key exchange, both parties share two public

values, a modulus m, which is a large prime nurnber, and an integer g. Each party has a

private number (a and b respectively) that should be large.

A lice Bob
X=ga mod m, g, m

*

Ka = Ya mod m Kb = Xb mod m

Ka = Kb = gab mod m

Figure 20. Diffie-Hellman key exchange

DES [2 11 in ECB mode is used in ESP to encrypt and decrypt IP packets. The DES

encryption process, which consists of three steps, is shown in Figure 2 1 . The input is 64-bit

plaintext and the key is 56 bits in length. First, the input goes through a permutation. The

output is then fed to 1 6 iterations, each with a different key. The right and left halves of the

output of the last iteration are swapped before going through an inverse permutation

fhction. In ECB mode, each block of ciphertext is encrypted independent of every other

block.

Figure 2 1. The process of DES encryption

KMAC-MDS-96 is used as the authentication mechanism to provide data origin

authentication and integrity protection. The HMAC-MD5-96 process is shown in Figure

22. The base bction is applied twice in succession. The lefùnost 96 bits of the resulting

hash value are used as the MAC for the datagram, which is stored in the authentication data

field of AH (Figure 1 1) and ESP (Figure 12).

Paylaad 1

Figure 2 1. HMAC-MDS-96 Processing

4.4.1 Implementing in the management system

There were several classes added to the program described in Section 4.3 for

handling ericryption and VPNs. the package Key contains three classes that implernent iKE

key exchange, encryption key generation, and authentication. Because only Diffie-Hellman

key exchange is implemented for this thesis, the class DHKeyGen is the only subclass of

the class IKE. Other key exchange algorithms can be added by extending the class ME.

The class DES and the class MAC are used for DES and MAC generation.

Three main components of the protocol iPSec are contained in the package VPN.

The class AH-Heuder realizes the AH header format shown in Figure 12. Next-Hdr and

Payld-Len are bytes; R e s d is a short; SPI and sequence number are integers. The MAC

is a byte array that could use a different length for a different algorithm. The Reserved field

is set to zeroes and it is included in the data authentication calculation. Because a 96 bits

authentication value is used, Payld-Lm is set to 4. The implementation of ESP is more

complex than that of AH-Header. Three classes ESP-Hader, ESP_Trailer and ESPJuth

are used to implement header, trailer and authentication daîa (show in Figure 12),

respectively. The class ESP has four instance variables: header, payload, trailer and

authentication. The class SA uses properties: SPI, protocol narne, and destination IP address

to identifi unique security associations used in IPSec.

Package pbn.VPN.Action contains the classes ahAcfion and espAction, which are

subclasses of the class vpnAction. AH oui be ernployed in two ways: transpoxt mode and

tunnel mode. In transport mode, AH is inserted after the IP header and before the upper

layer protocol. When AH is used in a security gateway such as firewall, tunnel mode must

be used. The method generateAHPacket in the class ahAction handles the generation of AH

packets. The method takes one argument-payload, it then checks the mode and the

destination. It uses a security gateway (a default muter) for tunnel mode. The inner IP

header contains the ultimate source and destination address, while the outer IP header uses

the address of the security gateway as its destination address. A SA is associated with each

session of the AH process. The sequence number is set to zero when a SA is fht

established. The first packet sent using the given SA will have a sequence number of 1 . The

class espAction handles the process of ESP. The method generateESP takes one string

argument and generates the ESP header and trailer. The string is padded to ensure that the

resulting ciphertext texminates on a 4-byte boundary so that the Authentication Data field is

aligned on a 4-byte boundary, as illustrateci in Figure 14. For illustrative purpose, a random

byte is used for property Next-Hdr to identifi the type of data oontained in the Payloaà

Data field. Like AH, ESP can be employed in two ways: tunnel mode and transport mode.

The transport mode is only applicable to host implementations. The ESP is placed after the

IP header, but before the upper layer protocol information. Thus it provides protection to

the upper layer protocol, but not to the IP header. The padded payload and ESP trailer are

encrypted before king added to the final ESP packet. Authentication is perfomed on the

ESP header and the encrypted payload and ESP trailer. Tunnel mode ESP may be

employed in either hosts or security gateways. The program uses a default router for the

security gateway. If tunnel mode is used, the method generateESP adds the original IP

header to the padded payload. The resulting string and ESP traita are encrypted. The

method composeESPPackt adds an IP header to the output of generateESP. If tunnel

mode is use& the IP M e r has the router as its destination. If transport mode is used, the

iP header uses the original destination as its destination address. The method &Exchange

is used to generate keys that will be used for enqption and deayption. The generation of

sequence numbers is the sarne as in the case of AH.

Several classes were also added to the package pbn.policy. The class IPSecPoficy

includes the name of the algorithm that will be used to exchange keys during the IKE

negotiation and the specifics of IPSec, such as the protocol (AH or ESP) and the transport

mode (Transport or Tunnel). It contains one flag, which is set whenever the vuTent policy

is enabled. Since 1 only used Diffie-Hellman key exchange, the narne of the algorithm is set

to DH (for Diffie-Hellman) by default. The class WNpolicy is used to send a request for a

VPN policy to the server and create a new instance of the class vpnPoIicyAcfion &er

receiving the policy file. The method execufeAction in the class vpnPoficyAction mates an

SA for the session and it uses AH or ESP to transmit packets according to the policy file.

The class Device is modified to add encryption and decryption capabilities to the

hosts and routers. For IPSec in tunnel mode, a router checks the MAC field to see if the

packet is valid. If it is not, it drops the packet without M e r action. If AH is used, it sen&

the packet to the final destination directly. It decrypts the packet, then sen& it to the

intended destination if ESP is used. For PSec in transport mode, the host checks the MAC

field and performs necessary functions before sending it to the upper layer.

A semer is used to listen to the request for the VPN policy file fkorn users. The class

Server extends the class Ttiread. A server object can accept requests h m diflerent users.

When the semer receives a request for a VPN policy file fkom a user, it checks to see if it is

available. If the requested file is available, the semer pulls the policy file, which is written

in MOF format, fiom a directory, converts it to a file in XML, and sends it to the requester.

The directory that contains the policy files and sewer can be located on different hosts. A

user invokes a VPN solution by clicking on the VPNPoiicy menu item. The class

VPNPolicy reads the XML file and executes the VPN solution according to the specific

policy. The server and the requester comrnunicate via network sockets in this model.

The program was run to see the time it takes to generate Diffie-Hellman key pairs.

Two users exchange public information (g, m) first. Each user then computes a shared

secret value based on the public information (g, m) and their own secret information (a,

b) (see Figure 20). These secret values can be used as session keys or as encryption keys

for encrypting randomly generated session keys. The graphic interface of the program is

shown in Figure 18. A string 'This is a test for VPN protocol." was used in the

simulation. The simulation was run several times. Ten randomly chosen results are shown

in Table 7. The average thne for the key exchange is 41052 ms. Depending on the

server's condition, it could take a lot more than 41052 ms to generate Diffie-Hellman key

pairs. Thus, it makes sense to use a single Diffie-Hellman key for a long perïod of time.

Unlike DES key pairs, which change for different session, Diffie-Hellman key pairs

usually valid for a day, so they will not overly burden the server for key generation.

Table 7. Results for simulation of Diffie-Hellman key exchange

Time used to generate Diffie-Hellman key pairs (in ms)

40700 38780 37960 38330 39000 37790 41030 38500 55310 43120

To demonstrate that DES takes l e s tirne to generate keys, 1 also collected data for

DES key generation. The results are shown in Table 8. The average tirne for a client to

generate a DES key is 368 ms, which is less than one percent of that of Diffie-Hellman

key exchange. To maxirnize the security of data transmission, it is feasible to generate

different DES keys for different sessions to provide enhanced data integrïty.

Table 8. Results for simulation of DES key generation

Time used to generate DES key (in ms)

330 380 330 330 390 380 390 380 390 380

CONCLUSION AND FUTURE WORK

5 .O Conclusion

The Intemet is becoming a universal way of providing çomectivity and application

services. New applications are being conceived that have their own special requirements

but are being adapted to run on the Inteniet due to market demand. People are demanding

more robust services for less cost, which may be able to be achieved by using Internet

technologies. These three factors are primarily responsible for driving an increased demsad

for more intelligent networking.

Directory Enabled Networking @EN) was conceived as the foundation for building

an intelligent network. DEN defines a means to store information describing the services

that the users of the networks need and the capabilities of the devices that make up the

network. The information is stored in a cornmon repository in an agreed-upon format (e. g.

MOF). DMTF's C M is a standard information model, which could be used as a building

block to build network applications. Detailed implementation is then the responsibility of

the applications that build upon the model.

A simple network management program based on the previous work done by Dr.

Blight, which is a much simplified CIM implementation, was developed in this thesis. The

information stored in the directory is in MOF. A policy server can generate policy files,

which are in MOF. The policy semer then converts the MOF file to XML to leverage the

portability of XML and sends it to the user. Al1 the components used in the project are

generic in nature. The program dernonstrates the use of CIM and DEN in the

irnplementation of an intelligent network management system. in this system, CIM enabla

sharing information between different management systems; DEN integrates howledge

about network to provide users with end-to-end network services.

IPSec at the packet level is also modeled within the program. Once a VPN policy is

invoked, it sends a VPN request to a server, which is listening for the requests h m users.

The server generates a VPN policy file in MOF, then converts the file to XML format and

sends the resulting file to the user- The user reads the file and takes appropriate actions

accordingl y.

In the test that 1 have done, it takes about 41420 ms, which is significant long, to

generate Diffie-Hellman key pairs. If several requests are sent simultaneously, the m e r

may be overloaded. The solution to this problem is to use the same Diffie-Hellman key for

a longer period, such as one per day. It only takes 368 ms to generate DES key. To

maximize the protection for data, DES key can be changed h m session to session.

5.1 Future Work

Because only VPN policy files are used, 1 did not implement methods which can

be used to replicate and extend the directory senice. As the network grows, each separate

management domain m u t be configwed individually. Adding support for replication

could reduce the network administrator's workload by automatically replicating the

values for common network components' parameters. A directory service must be able to

grow and expand as new standards andor applications evolve. Or the cost of constantly

implemenring new senices and upgrading the system will be very high in the long run.

In this program, policy requests were sent in response to a user manually clicking

on a button. This could be modified to add an application layer. Instead of sen- a

request directly, the user could then launch an application, which would then sends policy

requests to the policy server.

Because the project is only a simplified version of CIM, it may not meet the needs

of some of the network managers. To use the program for the specific needs of different

networks, a network manager needs to extend the program. Some common areas that

network managers might want to expand are the Policy class and IP address format for

simple network management simulations. In the case of complex network programs,

other classes, such as Applications and Users should be added.

The policy server can be used to coordinate the creation, modification, validation,

administration, management, and installation of policies. A network can be informai

about changes to existing policies or the additional of a new policy via the policy server.

The policy server can also be used to communicate updates of policies to other network

systems. This work also remains to be done.

Today, IP has established itself as the primary vehicle for global system of

networking. As more and more people are C O M ~ C ~ ~ to the Internet, the available IPv4

addresses will not be able to meet the growing demands for new IP addresses. IPv6

increases the IP address size fiom 32 bits to 128 bits. IPv6 addresses performance,

scalability, security, ease-of-configuration, and network management issues that are

central to the ongoing competitiveness and bottodine perfomance of al1 types of

network-dependent businesses. The project only implements support for IPv4 address

foxmat. To meet f h r e demands of network managers, the program can also be extended

to include IPv6 address.

Only VPN policy files are used in this project. A policy file, in this program, only

includes the parameters that are essentiai to the creation of VPN. The policy file can be

extended to include user profile and application profile. A user profile can include the

service level the user is entitled to and the access level the user has. An application

profiIe can include the tirne the application can be run and the service level the

application is entitled to. Policy cm aiso be extended to incorporated enterprise's

business goal to ensure maximum use of lirnited network resources.

The access protocol (Figure 17) was not implemented in this project. A network

manager can add a servlet to this program so that the information can be accessed via

web browsers.

Reference:

Judd, S., and Strassner, J., "Directory Enabled Networks",

wwv.cisco .com/w~/public/~dCis~0/mkt~enm/direri/~rod1it/de1l~~ ai .d f, Cisco, 1 998.

Goncalves, M., "Directory Enabled Networks", McGraw Hill, 1999.

Weider, C., Reynodls, J., and Heker, S., 'Technical Overview of Directory Services

using the X.500 protocol", RFC 1309, 1992.

Yeong, W., Howes, T., and Kille, S., "Lightweight Directory Access Protocol", W C

1777,1995.

"Policy-based Networking-creating the business-dn'ven networK', Lucent

Technologies.

Strassner, J., "Directory Enabled Networks", Macmillan Technical Publishing, 1999.

"CIM Tutorial", www.dmtf.org!s~ec/cim tutonau, Distributed Management Task

Force, 1998.

"Common Information Model Core M& White Paper, version l",

www. dmtfordsnec/cim CO&, Distributed Management Task Force, 1 998.

"Common Information Mode1 (CIM) Specification ~ 2 . 2 " ~

~~ww.dmtf.org/s~ec/cim mec - v22/, Distributed Management Task Force, 1999.

10. "'Understanding the Application Management Model, version 0.9".

~~~w.dmtf.orels~eclcim a ~ d ,  Distributed Management Task Force, 1998. 

1 1. "Specification for CIM Operations over HTP". Distributed Management Task Force, 

1999. 

12. Kent, S., and Atkinson, R, "IP Authentication Header", RFC 2402, Novernber 1998. 



13. Kent, S., and Atkinson, R, "IP Encapdating Security Payload (ESP)", RFC 2406, 

November 1 998. 

14. Kent, S., and Atkinson, R, "Security Architecture for the Internet Protocol", RFC 

240 1, November 1 998. 

15. Maughan, D., Schertler, M., Schneider, M., and Turner, J., "Intemet Security 

Association and Key Management Protoc01 (ISAKMP)", RFC 2408, November 1998. 

16. Harkins, D., Carrel, D., 'The Internet Key Exchange (IKE)", RFC 2409, November 

1998. 

17. Hamada, T., Blight, D. C., and Czezowski, P. J., "Active Policies in Knowledge 

Hyperspace: Intelligent Agents and Policy Based Networking", KICS KNOW Review, 

vol 2, no 2, PP.3 1-4 1, December 1999. 

18. Blight, D. C., Czezowski, P. J., "Issue in IP over DWDM Management", Optical 

Network Workshop (ONW 2 0 ) ,  Richardson, USA, January 2000. 

19. Krawczyk, H., Bellare, M., and Canetti., R., "HMAC: Keyed-Hashing for Message 

Authentication", RFC 2 104, Febniary 1 997. 

20. Madson, C., Glenn, R., "The Use of HMAC-MDS-96 withui ESP and AH", RFC 2403, 

November 1998. 

2 1. Stallings, W., "Data and Cornputer Communications", srn Edition, Prentice Hall, 

1997. 

22. McConnell, J., "Building a Policy-Driven Mastnicture". McConneIl Associates, 

1999. 



23. "Private Use of Public Networks for Enterprise Customers New Standards-Based 

Virtual Private Networks Oger Cosi Savings and Business Opportunities". 

~~~\v~3com.com/technolom/tech netjwhite apers/50065 1 .hm, 3COM. 

24. Ryan, J., "Managing the Costs and Complexities of VPN Deployment".

Appendix A: XML represcntation of cIM-ManagedSystemElement

c?xml version=" 1 .Ow?x!DOCTYPE C M SYSTEM "cim.dtd">
<CM>
CCLASS NAME="CIM~anagadSystcmE1cme~1t~>

<QUALIFIER NAME="description" TYPE="stringW TOSUBCLASS="We">
<VP1LUE>CIM_ManagtdSystcmEIement is the base class for the Systcrn Element hierarchy.

Membership Criteria: Any distinguishable compoacnt of a System is a candi& for inclusion in this class.
Examples: software cornponents, such as files; and devices, such as disk drives and controllers, and physical
cornponents such as chips and cards<NALUE>

</QUALIFIER>
<QUALIFIER NAME="Abstractw TYPE="boolcanw TOSUBCLASS="W">
~VALUE>TRUE<NALUE>

</QUALIFIER>
<PROPERTY NAME="CaptionW TYPE="stringw>
<QUALFER NAME="dcscriptionn TYPE="sûing" TOSUBCLASS="W>
<VALUE>The Caption property is a short textuai description (one-IUic string) of the objcct4VALTJE>

dQUALWER>
<QUALIRER NAME="Maxicnw TYPE="sint32" TOSUBCLASS="fàkw>
<VALUE%4<NALOE>

(/QUALIFIER>
</PROPERTY>
<PROPERN NAME="Desqtion" TYPE="strulg">
<QUALIFIER NAME="dtscription" TYPE="stnngn TOSüBCLASS="falsen>
<VALUE>ïhe Description property provides a textual description of the object<NALUE>

-4QUALLFIER>
</PROPER'i'Y>
CPROPERTY NAME="InstallDate" TYPE="datetimeW>
<QUALIFIER NAME="descriptionw TYPE="stringW TOSUBCLASS="~w>
<VALUE>A datetirne valut indicating when the object was installai. A lack of a value does not indicate

that the object is not installed<NALUE>
4 Q UALïFïER>
<QUALIFIER NAME="MappingS tringsw IZYPE="string" TOSUBCLASS="false">

<VALWE.ARRAY>
<VALUE>Miï.D~Componen tlD[00 1 .S<NALUE>

<NALUE.ARRAY>
dQUALiFIER>
</PROPERTY>
CPROPERTY NAME="Name" TYPE="string">
<QUALIFIER NAME="descriptionw TYPE="stringn TOSUBCLASS="fàkw>
<VALUE>The Name propcrty defines the label by which the objcct is knowa. When subclasscd, the

Name property can be ovemddcn to be a Key propertydVALUE,
</QUALIFIER>
<QUALIFIER NAME="MaxLenW lYPE="sint32" TOSUBCLASS="fàIse">
<VAïUE>256<NAïUE>

(/QUALFER>
</PROPERTY>
4'ROPERTY NAME=" S tatus" TYPE="stringn>
<QUALIFIER NAME="descriptionW TYPE="stringW TOSUBCLASS="fâisc">
<VALUE>A string indicating the cunent status of the object. Various operational and non-operational

statuses are defined. Operational statuses are \OK\, \Degraded\, \ S t d and \Pred FailL \Sûessed' indicatcs
that the Element is hctiouing, but needs attention. Examples of \Strcssed\ sratcs are ovcrload, overhded,
etc. The condition Wred Fail\ (failurt prcdictcd) indicatcs that an Element is fùnctioning pmperly but

predicting a Mure in the near fiiture. An examplc is a SMARTcnabIed hard drive- Non-opetationai statuses
can also be specified. Thest arc \Em& WonRecov& Startingi \Stopping\ and \Servicel WonRccovd
indisates that a non-rccoverablc m r has occurred. \Service\ desc r i an Elerncnt king configured,
maintained or cleaned, or otherwise administd This s t a t u could apply during minor-rcsilvcring of a dislr,
reload of a user permissions Iist, or 0 t h administrative task Not al1 such work is on-hc, ytt the Elemcnt is
neither \OK\ nor in one of the other states<NALUE>

</QUALIFIER>
<QUALIFIER NAME="MaxLenW TYPE="sint32" TOSUBCLASS="fàisew>
CVALUE>lO</VALUE>
</QUALIFIER>
<QUALIFIER NAME="VaiueMapw ïYPE="stringW TOSü13CLASS=w~w>
<VALUEARRAY>
<VALUE>OK<NALUE>
<VALUE=-Erro~ALUE>
<VALUE>Degradedc/VALUE>
<VALUE>Unknown<NALU3
<VALUE>Pred FailcNALUE>
<VALUE>Starthg4VALUE>
<VALb'E>S toppinHALUE>
<VALUE>Service<NALUE>
<VALUE~S~scddVALUE>
cVALUE>NonRecovcr<NALUE>

<NALUE.ARRAY>
-=iQUhLIFIER>
</PROPERTY>
4CLASS>

4CIM>

Appendix B: Static variables used to identify different components of a network

ROUTER
DATASOURCE
O PTICALT-oRM
INTERNET
NETMARKER
DEVICE
APPLSYS
APPL
CONNECTION
SCONNECTION
STRINGLABEL
MARKER
MOVEABLE
POLICY
GROUP
oxc
XDEVICE

Appendix C: Configuration Fiie used in Figure 18

Appendix D: DTD me for the configurition fde in Appendi. C

<!ELEMENT Class (AgentFilter, Router+, Intemet+, Connection+, Device+)>

<! ATTLIST Class Narne CDATA #REQUIFED>

<! E LEMENT AgentFilter (FilterEntry)>

<! E LEMENT FilterEntry (Agent)>

<! ELEMENT Agent (#PCDATA)>

<! ELEMENT Router (Narne, GInfo)>

<! ELEMENT Name (#PCDATA)>

<! ELEMENT GInfo (LOC, Line, NFILE+)>

<! kLEMENT Line EMPTY>

<!ELEMENT LOC OC, Y)>

<! ELEMENT X (#PCDATA)>

<! ELEMENT Y (#PCDATA)>

<! ELEMENT NFILE (#PCDATA)>

<! ELEMENT Internet (Name, Guifo)>

<!ELEMENT Connection (Name, Src, Dst, BW, GInfo)>

<!ELEMENT Src (#PCDATA)>

<! ELEMENT Dst (#PCDATA)>

<! ELEMENT BW (#PCDATA)>

<! ELEMENT Device (Name, IPv4Address, Ghfo)>

<! ELEMENT IPv4Address (#PCDATA)>

