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Abstract

As the popularity of Internet soars, new applications are being adapted to run on the
Internet due to the market demand. Network device vendors install more functions on
different types of network devices to solve specific problems but, in so doing, complicate
the interoperation of these devices with each other. The proliferation of protocols, along
with the reliance on individual device management, exacerbates this problem and makes
managing network devices even harder.

The use of Directory Enabled Networks (DENs) simplifies the tasks of network
administrators. DEN uses directory as a special purpose database that contains information
about the nodes, or devices, attached to a network. The directory is structured around
network objects: users, applications, printers, file servers, switches, routers, remote access
servers, etc. For each object there is a set of attributes stored in the database. Directory
support for device configuration management will enable network devices to retrieve their
configuration parameters from a directory server, rather than requiring the network
manager to perform box-by-box configuration. The Distributed Management Task Force
(DMTF) Common Information Model (CIM) presents a consistent view of the managed
environment that is independent of the various protocols and data formats used by those
devices and applications. It can be used to describe network objects. The thesis presents
detailed description of DEN and CIM. It also introduces XML (eXtensible Markup
Language), which is powerful enough to express complex data structures to satisfy the need

of complex applications. In system management environments, the XML representation of



management information could be used to transfer data between co-cooperating
management platforms.

As the acceptance of the Internet by the business community increases, companies
realize that sharing network resources by using the Internet is definitely cost-effective than
using dedicated facilities. One of the major problems with messaging on the Intemnet is
insufficient security. Because the Internet is a public network, it offers little protection to
the data it carries. Virtual Private Networks (VPNs) offer operational savings while
maintaining the security associated with private network infrastructure. Three tunneling
protocols: Point-to-Point Tunneling Protocol (PPTP), Layer 2 Tunneling Protocol (L2TP)
and IP Security Protocol (IPSec) are discussed in details in Chapter Three. The VPN
solution is implemented at the management level and at the packet level.

This thesis demonstrates the use of CIM and XML in a network management
environment. A VPN policy file is used in the implementation of the network

management system.
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1. INTRODUCTION

1.0 Introduction

The Internet was originally designed for the movement of files between research
sites, and for the relay of electronic mail on a packet switched network. The network
provides best effort service to all traffic, and the application is responsible for effectively
taking advantage of that service. People are demanding more robust services for less cost,
which may be achieved by using Internet technologies [1]. New applications are being
adapted to run on the Internet due to market demand. To support those new applications,
network device vendors install more functions on different types of network devices to
solve specific problems. The result is complicated interoperation of these devices with each
other. The proliferation of protocols, along with the reliance on individual device
management, exacerbates this problem and makes managing network devices even harder.
Effective device configuration is a significant problem facing network administrators

today. As networks get bigger, the problem gets more complex.

The use of Directory Enabled Networks (DENSs) simplifies the tasks of network
administrators. DENs describe a philosophy for transforming the network from a passive
collection of devices that route and forward traffic to an active set of cooperating devices
that intelligently provide services to the user [2]. A directory is a special purpose database
that contains information about the nodes, or devices, attached to a network. In a DEN, the
directory is structured around network objects: users, applications and devices. For each

object there is a set of attributes stored in the database. Directory support for device



configuration management enables network devices to retrieve their configuration
parameters from a directory server, rather than requiring the network manager to perform
box-by-box configuration via Telnet, Web, or GUI-based management alternatives. When
a network device is initialized, it may use a simplified access protocol such as, Lightweight
Directory Access Protocol (LDAP) [4] to query the directory server and obtain its

configuration parameters.

A fundamental problem with directory services is that as the size and complexity of
an enterprise’s network infrastructure grows, the number of different directory services also
increases [2]. Much of the information contained in any given directory is duplicated across
multiple directory services. This results in inefficient and labor-intensive processes for
adding, deleting, moving, and changing information. Whenever there is a modification to a
record in one directory, that change must be manually cascaded through all the other
directories on the network. The chance that the network as a whole will have conflicting
configurations grows. Configuring policies on a device-by-device basis is difficult and can
lead to inconsistencies. Policy-based networking solves this problem by using a highly
distributed, logically centralized system to administratively control the various components

of a network and the policy system itself.

To manage a network, the managing system and the managed system need to
exchange information about the state of the network. A network may include devices from
different vendors. To enable different vendors to provide interoperable network services,
we need a common information model to describe such information so that all the network

devices can understand the information. The Distributed Management Task Force (DMTF)



Common Information Model (CIM) [6] is such an information model. CIM includes a core
model and eight common models, each of these is an object-oriented information model,

which can be built upon to model and represent managed systems and their components.

To exchange information, network management systems need a communication
protocol and an information encoding scheme. The eXtensible Markup Language (XML),
which is a subset of the Standard Generalized Markup Language (SGML), can be used as
the encoding scheme. XML is similar in concept to HyperText Markup Language
(HTML), but whereas HTML is used to convey display information about a document,
XML is used to represent structured data in a document. An XML document can
optionally have a description of its grammar attached. The grammar for an XML
document is described using a mechanism known as a Document Type Definition (DTD).
The DTD describes the allowable elements in the XML document and describes the

structure of those elements.

Because XML is based upon an open industry standard, the XML representation
of management information could be used to transfer data between co-cooperating
management platforms, which need not necessarily be running the same operating
environment. Interoperability is enabled because of a common understanding of the XML
representation of management information. XML is particularly suitable as a data
representation mechanism for use in heterogeneous environments. However, to represent
CIM data, an XML vocabulary must be defined and agreed upon. The XML management

vocabulary would be in effect a mapping of the CIM meta-model to an XML DTD.



Any communication protocol such as, simple network sockets, HTTP, etc., can be
used to transport the data depending on the needs and the preferences of network
administrators. HTTP emerges as the ideal candidate because of the wide spread of

browsers, their simple user interface and wide accessibility.

A simple network management system based on the work done by Dr. D. Blight
[17] [18] was developed in this thesis. The system models a policy-based network. The
network management system communicates with the network via simple network
sockets. The information exchanged between them is encoded in XML. The policy server
of the managing system listens to requests from users. A user sends a policy request to
the managing system. A policy that realizes a virtual private network (VPN) is used. The
reason why a VPN policy was chosen is because VPN uses the Internet as a channel for
private data communications. More and more businesses are implementing VPNs to
utilize the low cost of the Internet. The Internet includes different networks and devices

from different vendors.

This thesis is divided into five chapters. Chapter one is the introduction section,
which discusses the need for policy-based networks, the idea of using CIM and DENSs in
the implementation of policy-based networks and XML as the transport scheme for

network communications.

Chapter two provides a brief introduction to Unified Modeling Language (UML).
It defines the goal and structure of DENSs. It also describes LDAP. The motivation for
using policy-based network management is also discussed. A detailed example of an

emerging policy architecture is presented. Chapter two also includes the motivation for



CIM and detailed information on its Core Model and the eight Common Models. The
chapter concludes with an introduction to XML and its use in network management

systems.

Because a VPN policy file will be used in the simple network management
system, Chapter three is used to describe VPNs. It begins with an introduction to VPNs
and the financial benefits that VPNs provide. It discusses three tunneling protocols:
PPTP, L2TP, and IPSec. The first two establish tunnels at Layer 2 and are connection
oriented. The last one operates at Layer 3. IPSec is discussed in detail because it has

emerged as the protocol due to its encryption capability.

Chapter four presents a CIM implementation. Though the application did not fully
implement CIM, it provides the foundation which can be built upon. The class hierarchy
and major classes for the implementation are discussed in detail. It also includes
procedures, which can be used to convert Managed Object Format (MOF) files to XML
and to Java program files. The Java program files can then be extended according to the
specific needs of the network administrator to customize network applications. The
implementation includes a server, which listens to the users for VPN policy requests. The
server checks to see if the requested file is in the system. If it is, it pulls the file from the
directory and converts it to XML format. The user receives the policy in XML format,
reads it and takes action accordingly. To take a look at specific aspects associated with

VPN, IPSec is implemented in the implementation as well.

The thesis concludes with chapter five, which includes suggested future work.



2. NETWORK MANAGEMENT

2.0 Directory Enabled Networks (DENS)

A directory service is a physically distributed, logically centralized repository of
infrequently changing data that is used to manage a computing environment [1]. The
directory typically stores information in a hierarchical fashion thus providing a unique
namespace for each entry. Each object in the directory has a set of attributes that describe
the information carried by the object. A directory service provides a means for locating and
identifying users and available resources in a distributed system. In today’s Internet based
network computing, a directory enabled network uses directory services to store critical
information to facilitate access, management, and search operations. A DEN may use

LDAP to access, manage, and manipulate directory information.

As the Internet penetrates enterprise networks and Intranets become Extranets,
networks as a whole are becoming increasingly complex. There are different types of
network elements, each running a potentially different set of protocols and services over
possibly different media. Consequently, a network may have too many different directory
services for network administrators to manage successfully. The key to solving this
problem is to switch to a new paradigm—policy based management. Policy based
management allows network administrators to manage device configurations, users, and

services via a central directory enabled policy management system.



2.0.1 Principal Goals of DENs
DENSs have four main objectives [2]:
1. to model network elements and services, and their interaction with other
elements in a managed system,
2. to provide the means for interoperable network-enabled solutions to be built,
3. to enable applications to leverage the power of the network without requiring
the user to know or set esoteric network related information, and
4. to define a way to manage the network, as opposed to an element within a
network.
2.0.2 Intelligent Networks
- Historically, networks have treated the traffic from every user and application the
same. As the applications using the Internet grow, enterprises, service providers, and even
small businesses are changing to a more intelligent, services-oriented model wherein the
network can provide differentiated services to certain users and applications, Thereby

adding intelligence to traditional networks.

In a DEN, network administrators store policies and information about the network
in a directory. Network devices and applications publish information about them to the
directory and obtain information about other resources from the directory. In an intelligent
network, a robust information model is used for modeling the network and its interaction
with the environment. A directory serves as a unified information repository and also
contains specialized system components (for example, policy servers) for managing and

coordinating information exchange.



The best way to define the features and functions of an intelligent network is to see

how it would be managed and function compared to the way existing networks are

managed and function (Table 1) [2].

Table 1. Comparison between current networks and the intelligent networks

at all

Feature or Function Existing Network Intelligent Network
Implementation Implementation
Configuration Focus is on configuring Focus is on configuring the
Approach individual devices network and ensuring that all
devices in the network work
together
Configuration Process | Separate processes to Links devices to people,
configure people, applications, and other
applications, and devices resources as part of the same
process
Management A set of loosely related One or more layered
applications that are oriented | applications that manage the
towards managing individual | network as well as devices in
devices the network
Policy If present, used to control Integral part of the system.
individual device Used to control the
configurations configuration of the system and
its components
Use of Directory Isolated functionality, if used | Integral—It is a unifying

information repository

Use of an Information
Model

Not Used

Integral—it models network
elements, the network, network
services, and how the network
relates to the rest of the system

Passive or Active
System

Passive—network elements
are assigned a role to play in
providing network services

Active—network elements play
a dynamically changing role in
providing network services

Modeling System
Components

Treat applications, devices,
services, and people as
separate entities

Treat applications, devices,
services, and people as an
integral partnership




2.03 Lightweight Directory Access Protocol (LDAP)

X.500 is the name given to a series of standards (ISO 9594, Data Communications
Network Directory, Recommendations X.500-X.521) developed by the International
Standardization Organization (ISO) that specify how information can be stored and
accessed in a global directory service [3]. The primary construct holding information in the
directory is the “entry”’. Each entry, which is built from a collection of attributes, contains
~ information about one object. A main distinction of X.500 is that it organizes directory
entries in a hierarchical namespace capable of supporting large amount of information. A
sample entry in the directory could be a user’s name, phone number, title, country name
and organization name. In this example, the X.500 hierarchy would be country,
organization within the country, and individual name within the organization. Once
traversing to the individual, a single collection of attributes about that individual can be
stored, as in the example, a title and a phone number. Additional information can be added
at the lowest level. As a standard, X.500 enables the development of an electronic directory
of people in an organization so that it can be part of a global directory available to anyone

with Internet access.

X.500 specifies that communications between the directory client and the directory
server use the directory access protocol (DAP) [4]. LDAP is designed to provide access to
the X.500 directory without incurring the resource requirements of the Directory Access
Protocol (DAP). The LDAP specification defines standard communications methods for
inputting and accessing information in directories but does not make any statement about

the structure or contents of a directory. LDAP pulls information from the directory. It runs



directly over TCP, and can be used to access a standalone LDAP directory service (Figure

1) or to access a directory service that is back-ended by X.500 (Figure 2).

In Figure 1, a LDAP server is used to store and access the directory itself. A
standalone LDAP server eliminates the need for the OSI protocol stack. This makes the
LDAP server much more complicated, since it must store and retrieve directory entries,

which are functions normally performed by X.500 directory server.

TCPAP

LDAP Server

LDAP Client

Figure 1. Standalone LDAP server

In Figure 2, an application client program initiates an LDAP message by calling an
LDAP API. But an X.500 directory server does not understand LDAP messages. To solve
the problem, the LDAP client communicates with an LDAP server that forwards requests
to the X.500 directory server. The LDAP server services requests from the LDAP client by
becoming a client of the X.500 server. As indicated in the figure, the LDAP server
communicates with LDAP client using TCP/IP and communicates with the X.500 server

using OSI protocols.

10



OSI

LDAP Server X.50Q Server

Figure 2. LDAP server acting as a gateway to an X.500 server

Because LDAP uses a common client/server interface for setting up and
maintaining network devices across a heterogeneous network environment, it provides
vendor interoperability. The security, policy and network configuration files are located in
the directory, thus, all the components of a network have easy access to the desired

information. This, in turn, reduces the need for redundant information.

2.0.4 Network Management

Since many parameter settings for various devices (such as routers and switches) are the
same, the configuration files and parameters can be effectively stored in a directory server.
Directory support for device configuration management allows network devices to retrieve
their configuration parameters directly from the directory server. The benefits are obvious
as the size and scope of an organization’s network expands. If a network has router
configuration files stored in the directory server, when new routers are introduced to the

network, they will not have to be individually configured. Instead, the routers can examine

11



the directory for appropriate router configuration parameters and then go online on their

own. Figure 3 shows this scenario.

Configuration files
and parameters

Switch

Figure 3. Centralized device configuration management

2.1 Policy-Based Networks

New tools, applications, and services are causing phenomenal growth in the
volume of users on the Internet. There are many businesses that conduct some of their
businesses on line. Each day, companies strive to correlate business decisions to things
that actually happen on their network, which includes:

e access control—selecting which users have access to which network
resources,
e application prioritization—prioritizing applications according to their roles

in company operations,

12



e service differentiation—delivering bandwidth and services to each
customer according to their needs and the application they are using, and

e traffic management—managing the traffic through networks.

All of these actions require applying corporate business policies to specific network
actions. To ensure the end-to-end network performance meets the businesses needs,
network administrators need the ability to make and deploy rules, which automate
configuration and management of the services, for access and use of network resources. A
comprehensive, policy-based system allows the network administrators to define, in a
succinct and organized fashion, policies that automatically effect changes on specific

equipment in the network environment.

Over time progresses, stated policies are deployed further and further into the
network, producing intelligent business-driven systems. This leads to consistency and
predictability of network operation, and superior operation results. It gives the ability to
define and control operations according to centralized policies with the needs of the
business foremost. This is Policy-based networking {5]. Policy-based networking is much
more complex than device configuration management. The main difference between a
directory configuration system and a policy-based networking system is state. In a simple
directory configuration, a device pulls a static configuration from the central repository. In
a policy-based system, a policy server interprets the stored static information in the context
of other circumstantial data. Thus, network operation is enabled through application of
simple and consistent guidelines. One example is a policy file that specifies the time at

which a particular application can be run by a group of users on a network. The static

13



information—user profiles are stored in the directory. The policy server has to know the

type of the application and the identity of the user in order to make a decision.

In a standard policy-based network, policies consist of two components [2]:

e A set of conditions under which the policy applies (this might include
parameters such as user name, addresses, protocols and applications
types.), and

e A set of actions that apply as a consequence of satisfying or not satisfying
the conditions including bandwidth guarantees, access control, service
load balancing, cache redirection, and intelligent routing.

Policy-based networking employs a policy server that accesses information from multiple
sources, collecting all relevant information, making policy decisions, and communicating
these decisions to the network devices. A sample configuration for a policy-based network

is shown in Figure 4.

The network is composed of a policy manager, policy server, applications server,
and directory server. The policy manager is a user interface program, which allows the
network administrators to create new policies or to modify existing policies. The policy
server sends policy information to policy decision points (PDPs), where decisions about a
netyvork are made according to the pre-set rules and current network states. The directory
server provides information storage, where information such as user profiles and
configuration files for devices is stored. The policy server can use LDAP to retrieve
information from the directory server. The network nodes (routers and switches) are where

policy decisions are implemented. Sometimes, the policy conditions depend on the values

14



of certain fields in the packet header. The policy server can not make a policy decision
since it does not have specific knowledge. The router or switch must make a policy
decision in this case. It uses LDAP to retrieve necessary information from the directory

server in order to make a decision.

Policy Manager Direttory Serve:s
Traditional
Network
Management
Tools
Policy Server

Backbone
Network,
/ Nodes/Switches

Application Server

Figure 4. A sample configuration for policy based network

In this sample configuration (Figure 4), a user launches an application by sending a
request to the application server. The launch of the application triggers a policy request. A
router or a switch submits the request to the policy server. The policy server uses LDAP to
access the user’s profile and other related information from the directory server. Then the

policy server formulates a response to send to the policy client, in this case a router or

i5



switch, whether it should permit or deny the user’s request to access the application. The

policy-enabled router or switch carries out enforcement of policy decisions.

Configuration complexity, inconsistent policies, lack of application control, and

insufficient visibility are four main problems in building intelligent networks. Policy-based

networks solve these problems by using automated policy configuration, centralized policy

control, network application recognition, and active audit of policies. This provides

network administrators integral control over the network, which in tun reduces operating

cost and gives the company competitive advantages.

The benefits of policy-based networking include:

*

Network administrators can prioritize services according to which applications
are critical to business needs during what specific periods and for certain users,
Automation of network configuration and user administration reduces the cost
of ownership and the network administrators’ productivity is improved as well,
Integral control over the entire network enhances overall end-to-end
consistency. Network administrators can apply consistent behaviors across the
entire network domain they must manage, and

Network security is strengthened because corporate exposure is minimized via a

consistent, ever-present security implementation for resources and information.

22 CIM

The capability to manage and maintain a comprehensive information model that

enables each of the network components to be related to each other is the key to use of a

DEN. The Distributed Management Task Force (DMTF) Common Information model
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(CIM) is one such model. It is an object-oriented information model that describes how a
system may be managed. CIM’s major goal is to present a consistent view of the managed
environment independent of the various protocols and data formats supported by those

devices and applications [6].

CIM supplies a set of classes that are used to implement an inheritance hierarchy
and a set of relationship hierarchies. These classes can be used as building blocks to model
arbitrarily complex systems. Since CIM is a standardized information model, components
and management applications by different vendors can share information using CIM. This
allows integration of different management information from different sources that use

different syntaxes and expressions.

CIM is based on an object-oriented model. Object oriented modeling is a formal
way of representing something in the real world. Object models are built from classes that
relate to each other through associations and generalization. The object model describes a
system’s data structure, its objects and their relationships. A class is a description of a
group of objects with similar properties (object attribute), common behavior (operations
and state diagrams), similar relationships to other objects, and common semantics. CIM
uses Unified Modeling Language (UML) [7] as its modeling language. In UML, a class is
represented by a rectangle containing the name of the class. A class with properties is
represented by a rectangle divided into two regions, one containing the name of the class
and the other a list of properties. Methods are represented by a third region containing the
list of methods. An edge drawn between a subclass and its superclass with an arrow

indicating the superclass, represents inheritance, or a subclass/superclass relationship.
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Associations are represented by edges with the name of the association usually placed near
the center of the line [7]. Associations are classes in CIM. Therefore, it is possible for an
association to have properties. Aggregation is a kind of association between a whole, called
the assembly, and its parts, called the components. It is drawn with a small diamond added

next to the assembly end.

An example of UML is shown in Figure S. The following can be concluded from
the example: boats have owners; owners are persons. Person has two properties—Name
and Address. Boat has two properties—Passengers and Displacement. A boat may be either
a sailboat or a powerboat. A powerboat contains an engine. The usage of a boat is the

number of days a particular user has used that boat.

Person Owner Boat
Name Usage Pgsscngcrs
Address T Displacement
Usage
Days
Sailboat Powerboat | o> |_FEngine |
Sail configuration Range

Figure 5. Illustration of UML
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Property data types are limited to the intrinsic data types or arrays of those data
types. Structured types are constructed by creating new classes [6]. If the property is an
array property, the corresponding variant type is simply the array equivalent of the variant
for the underlying intrinsic type. Table 2 lists the intrinsic data types and their

interpretation.

Table 2. The intrinsic data types and their interpretation

Intrinsic Data Interpretation

Type

Uint8 Unsigned 8-bit integer
Sint8 Singed 8-bit integer
Uint16 Unsigned 16-bit integer
Sint16 Signed 16-bit integer
Uint32 Unsigned 32-bit integer
Sint32 Signed 32-bit integer
Uint64 Unsigned 64-bit integer
Sint64 Signed 64-bit integer
String UCS-2 string

Boolean Boolean

Real32 IEEE 4-byte floating point
Datetime A string containing a data-time
<classname> ref Strongly typed reference
Charlé 16-bit UCS-2 character

CIM is structured into three distinct layers: Core Model, Common Model and
extension schema. The core model is the topmost layer, which is composed of a small set
of classes. It is an information model that captures notions that are applicable to all areas
of management. The common model is the second layer. Like the core model, it is
composed of a set of classes, as well. It captures notions that are common to particular

management areas, but independent of a particular technology of implementation. There
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are eight common models: System, Device, Application, Network, Physical, User, Policy,
and Database. As the names imply, each of them is concemed with a certain part of
networking. The third layer of CIM is called the extension schema. It represents technology
specific extensions of the common model. These schema are specific to environments, such

as operating systems.

The CIM core model is a good starting point for building a desired network
application model since it is not specific to any platform. At the root of the class hierarchy
is an abstract class: CIM_ManagedSystemElement. Any component of a system that can be
managed should be its subclass. It has two subclasses: CIM_LogicalElement and
CIM_PhysicalElement. CIM_PhysicalElement is the root of the physical portion of the
class hierarchy. It defines common information a physical device should have, such as
manufacturer information and model information. It could be used to distinguish products
from different vendors. The CIM_LogicalElement is an empty class whose sole purpose is
for classification. The reason for this is that it is very hard to abstract the common elements
of logical functions because of diversity. Four subclasses of CIM_LogicalElement,
CIM_System, CIM_LogicalDevice, CIM_Service and CIM_ServiceAccessPoint are
defined in the core model. To model different logical aspects of a
CIM_ManagedSystemElement, one can build concrete classes based on these four classes.
The core model also defines various types of associations. These associations are

represented by abstract classes, which relate elements of CIM_ManagedSystemElement.

The common model provides a set of base classes for extension into the area of

technology-specific schemas. The eight common models and their definitions are shown in
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Table 3. Each of these common models includes many classes and relations that are not

listed in this thesis.

Table 3. The eight common models

System

Defines the key components of a system and how to assemble them.
These include computer system, operating system, file, and processes.

Device

Defines how to realize physical devices in hardware, along with how to
model the connections between devices. These include mass storage
devices, media, sensors, printers, power supplies, and other components.

Application

Defines how to manage the installation of software in a system. This
includes the concepts of software features and elements as well as the
ability to check if conditions are met for installing software and actions
to be taken as part of executing the software.

Network

Defines specialization to the physical and logical element class
hierarchies to model network elements and devices. This also includes
modeling network protocols and network systems.

Physical

Defines the physical organization, containment structure and
composition of devices and device interconnections.

User

Models users, groups and organizations, and how these objects interact
with the other components of a managed system.

Policy

Builds on the original policy model proposed by DEN and generalizes
this beyond network policy to a policy that can control any type of
managed entity.

Database

Models the operation of relational database (this is still work in
- progress).

CIM, as an implementation-neutral schema, facilitates the common understanding

of management data across different management systems and management information

integration from different sources. CIM is a conceptual model that is not bound to a

particular implementation. This allows it to be used to exchange management information

in a variety of ways.

Each CIM model is described in a language called the Managed Object Format

(MOF). This language is based on a standard Interface Definition Language (IDL). The
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purpose of MOF is to define the capabilities of a distributed service along with a common
set of data types for interacting with those services. Figure 6 shows an excerpt from the
CIM Core model file. The class definition is defined using the keyword “class” and is
enclosed in braces. Qualifiers are enclosed in brackets and appear immediately before the
component they affect. The name of the class is defined first. A colon separates the class

name and its superclass name if it has one.

Commem\‘ Superclass
. //class Service definition
Quahﬁen\{Abstract, Description(*“A CIM_Service is

Logical Element...")]

Class ————sclass CIM_Service : CIM_LogicalElement {
Declaration

[Key, MaxLen(256), Description(*‘CreationClassName
indicates the name of the class...”)]

string CreationClassName;
Data type

[Description(““The StartService method places the
Service...”)]

uint32 StartService();

¥

Figure 6. Expressing a CIM class in MOF

CIM is abstract in nature—all the classes are not fully implemented. It only
provides a skeleton for developing network applications. The methods in all classes are
only described in terms of their parameters, the parameters’ types, order, and whether they

are inputs. The contents of the methods are not specified. Since it is impossible to



anticipate the specific needs of each product, applications must provide support for some or
the entire core model plus some or all the appropriate common models. Since the current
mechanism for describing management information is in MOF, applications must be able

to import and export properly formed MOF constructs.

23 XML

HTML is easy to leamn because it uses a fixed tag set to mark up documents. The
ability to incorporate images and audio into a document makes it popular among web
developers. With free Web browsers such as Microsoft’s Internet Explore and Netscape’s
Navigator being deployed universally, HTML has become one of the primary means to
mark up documents delivered via the Web. However, one of its advantages, its fixed set of
tags is also one of its most significant disadvantages. The only way to add functionality to
HTML via new tags is to take a proposal detailing the desired functionality to the World
Wide Web Consortium (W3C). The discussion process can be lengthy, and not all

proposed tags are general enough to be included in future HTML specifications.

This problem of limited flexibility can be solved with XML. XML is similar to
HTML in the sense that it is a text based markup language. With a few exceptions, most
tags in HTML are for formatting purposes. The tags instruct the browser how a piece of
text ought to be displayed. Browsers simply ignore any tags they do not recognize. XML
does not have a predefined set of elements, rather it allows XML vocabularies to be defined
using a Document Type Definition (DTD). With XML, you can define your own set of tags

by means of a DTD. All the tags used by HTML can be easily described using XML.



Sometime, an XML document is made up of elements that consists of textual
information contained between a start tag, and an end tag. The information between the
start tag and the end tag is referred to as the content or data. Each element must have a start

tag and an end tag. Although elements may be nested, they must not overlap.

A unique feature of XML documents is that they are self-validating—the rules of
the standard used to create the document can themselves be part of the document. There are
two types of validity. The first type deals with the physical structure of the document. A
document that meets the criteria described earlier is called well formed. In the second level
of validation, a Document Type Definition (DTD) accompanies the document. The DTD
can be part of the document or an external document. The DTD specifies the grammar of

what the XML document contains.

An example of a simple XML document is shown below:

<?xml version = 1.07">
<!DOCTYPE name [<!ELEMENT name (first, last)>]>
<name>

<first>John</first>
<last>Doe</last>
</name>
In this example, three tags <name>, <first>, <last> were created to describe a person's
name. The DTD included in the document specifies that the name entity must include two
other entities called “first” and “last™. In the above example, a name entity is composed of

two parts: a first name and a last name. It also shows the nested relationship between these

entities.
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The first and the largest benefits of XML are its simplicity and extensibility. It is a
character-based format, therefore, XML messages can easily be read, created, and modified
by widely available text editors. In XML, tags can be named with understandable strings.
An XML document has a rooted tree structure. For many applications, a tree structure is
general and powerful enough to express fairly complex data. Thus XML has sufficient
power to express complex data structures to satisfy the needs of many applications.
Another important benefit of using XML is its capability to handle international character
sets. Today, many businesses are international in scope. This is especially true for Intemet
applications because the Internet easily leaps national borders. XML 1.0 is defined based

on the ISO-10646 (Unicode) character set so all possible characters are legal characters.

An XML document by itself is merely a collection of data. A programming
language is required to process that data and perform useful operations using the data. Just
as a browser brings HTML to life, programming languages can bring XML documents to
life. Java is the ideal choice among all the languages because it offers platform

independence, built-in Internet support and good support for intemationalization.

Figure 7 illustrates a simplified model of a Java distributed application that
processes XML. In this model, the processors are implemented using Java. The sender end
processor obtains data from a data source, then processes the data and ultimately produces
a document object model (DOM) representation. The processor passes the DOM
representation of the XML data to the sender. The receiver receives the XML data and
passes it to its processor. The receiver end processor processes the XML data and stores

data in its data store.



= Sender +——=={Receiver — Processor

Processor

[

(]

Figure 7. A simplified model of a Java distributed application that processes XML

XML over HTTP allows for a smooth transition from HTML-based sites to an
XML-based site. A possible implementation is shown in Figure 8. The sender converts the
DOM representation of the XML into text and sends the text to the receiver. The receiver

then converts the text back to the DOM representation.

sender receiver

Writer text cgi text

http text

parser

Figure 8. A sender and receiver sending XML text via HTTP

CIM does not define a standard for data exchange. XML has been proposed to
define declaration of CIM objects that can be easily transformed into many representations.
For illustrative purposes, one possible mapping of a CIM object to XML is shown in

Appendix A. The class used in Appendix A is CIM_ManagedSystemElement.
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3. VIRTUAL PRIVATE NETWORKS

3.0 Virtual Private Networks (VPNs)

The introduction of the World Wide Web (WWW) and HTML, fueled the steady
acceptance of the Internet by the business community. The Intemet provides valuable
business opportunities to such enterprises. There have been two major technical problems
with conducting businesses on the Internet. One is agreeing on a standard message format
to use. XML can be used as the standard message format because of its flexibility. The
other technical problem is insufficient security. The Internet is a public network, and
offers little protection to the data it carries. If data integrity can not be trusted, the
messaging can not be trusted either. A private network offers one of the best security
environments for data transitions in a global economy. However, private networks are
expensive. Installation, setup, and routine administration can easily run into millions of
dollars. Virtual private networks afford enterprises the security, performance, availability,

and multiprotocol environment of a private network over the inexpensive Internet.

There are primarily three types of use for VPNs: remote access, Extranet, and
dial-in access. VPNs reduce network operational cost because users can use the Internet
instead of dialing a dedicated number, which could be long distance, to access the
corporate network and the corporations do not need to install private access lines to their

sites.
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Virtual Private Networking technology provides the ability to use the public
Internet as an appropriate channel for private data communication. It accomplishes this
by creating a “tunnel” through the Internet. To a user, it appears as if the data is being
sent over a dedicated private link—despite the fact that this communication occurs over a

public network.

3.1 Tunneling Protocols

Tunneling is a technology that enables one network (private network or enterprise
network) to send its data via another network’s (the Internet) connections. Instead of
sending a frame as produced by the originating node, the tunneling protocol encapsulates
the data in a new packet with an additional header. The additional header provides routing
information. The original IP header and the packet payload or transport data are encrypted.
In the case of IPSec, the outer header, put in position by IPSec, is also authenticated. The
authenticated and encrypted IP packet is routed over the Internet to the destination. To
ensure the security, each tunnel uses its own encryption key. The tunnel server selects the

appropriate encryption key for authentication and encryption operations.

Some mature tunneling technologies include the Point-to-Point Tunneling Protocol
(PPTP) developed by Microsoft, the Layer 2 Tunneling Protocol (L2TP) developed by
Cisco, and IP Security (IPSec) Tunnel Mode. For a tunnel to be established, both the tunnel

client and the tunnel server must, of course, be using the same tunneling protocol.
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3.1.1 The Point-to-Point Tunneling Protocol (PPTP)

The PPTP is an extension to the Point-to-Point Protocol (PPP). It uses a TCP

connection for tunnel maintenance. The data flowing through the tunnel are Generic

Routing Encapsulation (GRE) encapsulated PPP frames. In essence, PPTP wraps PPP

packets in [P. A remote user using PPTP can work in either a regular LAN environment or

an Intranet environment as if they were locally connected. An example of how a PPTP

packet is assembled prior to transmission is shown in Figure 9 (The example shows the use

of PPTP in the case of remote access.).

User Data

TePAp i | 0 | User Data

s: g?m GRE| pPP| 1P Ig;, User Data

IP | GRE| PPP| [P Lg‘; User Data
stack

("":nff:“ pep| 1P | GRE| PP | 1P lT_g;. User Data

Figure 9. Construction of a PPTP Packet
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The application generates a datagram, which is sent to the network. Depending on
the type of application, the network transport layer adds either a TCP or UDP header to the
datagram. The PPTP software, which resides in the network access server, adds its header
to the new datagram. Before sending it out to the network, an IP header and a PPP header

are added. The final frame layout shows the encapsulation for the dial-up client.

3.1.2 The Layer 2 Tunneling Protocol (L2TP)

L2TP is a network protocol that encapsulates PPP frames to be sent over IP, X.25,
Frame Relay, or Asynchronous Transfer Mode (ATM) networks. It uses UDP and a
series of L2TP messages for tunnel maintenance. L2TP uses UDP to send L2TP-
encapsulated PPP frames as the tunneled data. Figure 10 demonstrates how an L2TP
packet is assembled prior to transmission. As in the case of PPTP, each layer or process
adds its own header to the datagram generated by the application. The chief difference
between L2TP and PPTP is that L2TP adds a UDP header to the packet and PPTP adds a

GRE header to the packet.

3.1.3 IP Security (IPSec)
IPSec is an Intemet Engineering Task Force (IETF) layer three protocol standard

that supports the secured transfer of information across an IP network. As the name
implies, it protects I[P based services or applications by using cryptography. [PSec is
expected to emerge as the preferred protocol for VPNs because it has a complete security

solution, which includes packet authentication, encryption, and key management.
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Application User Data
rgc.lp P m User Data
Solﬂ"’m uvoe| eeP| 1P E User Data
P i | vor| prP| 1P m User Data

[ PP::{:&] pee| [P | uDe| per| P g User Data

Figure 10. Construction of an L2TP Packet

To deliver security, the I[PSec standard provides two security strategies:

Authentication Header (AH) and Encapsulating Security Payload (ESP).

3.1.3.1 Authentication Header (AH)
The IP Authentication Header [12] provides connectionless integrity and data origin

authentication for [P datagrams, and also offers protection against replay. Data Integrity is
assured by the checksum generated by a message authentication code; data origin
authentication is assured by including a secret shared key in the data to be authenticated;
and replay protection is provided by use of a sequence number field within AH. The [PSec

authentication header provides no data encryption.
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Some fields in the IP header change en-route and the receiver cannot predict their

value. These fields are called mutable and are not protected by the AH. The mutable [Pv4

fields are:

Type of Service (TOS),

Flags,

Fragment Offset,

Time to Live (TTL), and

Header Checksum

The payloads of IP packets are considered immutable and are always protected by the AH.

The position of the AH header in the IP packet and the header fields are shown in

Figure 11. These fields are explained in Table 4.

32 bits

Figure 11. AH Header Format
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Table 4. The explanation of fields in AH format

Field Name Field Len. Explanation

(bits)

Next Header 8 The type of the next payload after the AH. The value is

chosen from the set of IP protocol numbers.
Payload Length 8 The length of the AH header expressed in 32-bit word,

minus 2. The default value is 4.
Reserved 16 Reserved for future use. It is currently set to zeroes.
Security 32 An arbitrary 32-bit number assigned to a security
Parameter association (SA) (discussed later).
Index
Sequence 32 Serves as a counter, which is used for replay protection.
Number The sequence number has to be unique.
Authentication Integral  Used by the receiver to verify the integrity of the incoming
Data multiple of packet.

32 bits

3.1.3.2 Encapsulating Security Payload (ESP)
The ESP [13] header provides a mechanism to encrypt the IP payload. In doing so,

it provides confidentiality, data origin authentication, connectionless integrity, and anti-
replay protection. Therefore ESP headers are an alternative to AH headers in [PSec

packets.

The format of the ESP packet is more complicated than that of the AH packet.
There is not only an ESP header, but also an ESP trailer and ESP authentication data. The
payload is located between the header and the trailer. Figure 12 shows the structure of the
ESP header and trailer. The security parameter index (SPI) and the sequence number fields

are the same as those in AH. The explanations of the remaining fields are listed in Table 5.
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ESP Header
Payload Data (variable)
| Padding (0-255 bytes) ESP Trailer
ESP Auth
Data

Figure 12. ESP Header and Trailer

Table 5. Explanation of fields in ESP

Payload Data

Padding

Pad Length

Next Header
Authentication Data

A data of variable length that consists of data described by the Next
Header field

Used to make the input data an integral number of blocks

An 8-bit field that contains the number of padding in bytes.

An 8-bit field that shows the data type carried in the payload.

A variable length field which is calculated from the SPI to the Next
Header field.

Comparing ESP to AH, only ESP provides encryption, while either can provide

authentication, integrity checking, and replay protection.
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3.3.1.3 Security Association (SA)
A security association (SA) [14][15] is a data structure that contains information

about which transformation is to be applied to an IP datagram. An SPI, as well as an [P
destination address and a security protocol identifier (AH or ESP) uniquely identify each

SA.

Two types of SA can be used: transport mode SA and tunnel mode SA. Figure 13
illustrates the AH and ESP in transport mode. As shown in the figure, the [P header for the
transformed packet is the original packet’s IP header. Therefore, transport mode only
provides protection for upper layer protocols, but not for the IP header. In the case of AH,
protection is provided to the [P header and the IP payload. In the case of ESP protection,

the original packet except the IP header is encrypted.

Original IP
IP Hdr Payload datagram
IP Hdr Payload Datagram W_ith
AH Header in
. Authenticated | transport mode
(except mutable fields)
Payload Datagram with
ESP in transport
mode

Figure 13. AH and ESP in Transport Mode
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Tunnel Mode protects the entire inner IP packet, including the IP header. Figure 14
shows AH and ESP in tunnel mode. For AH format, the entire original packet is appended
after a new IP header. The original IP header carries the ultimate source and destination
addresses. For ESP, the entire original [P datagram is enclosed within the ESP payload. A
new [P header is generated and attached to the ESP payload. Upon receipt of the datagram,
a tunnel server processes and discards the plain text I[P header and then decrypts its
contents to retrieve the original payload IP packet. The payload IP packet is then processed

normally and routed to its destination on the target network.

|IP Hdr| Payload | g:;:; P
Bl = Ho|  Paytoad | Tunneled
Datagram

P Hdrl Payload Datagram with
AH in tunnel
Authenticated mode

(except mutable fields in the new IP header)

IPHdr| Payload - Datagram with

ESP in tunnel
Encrypted mode

Authenticated

Figure 14. AH and ESP in Tunnel Mode

Either AH or ESP can be specified in an SA, but not both. If both AH and ESP

protection is needed, then two or more SAs must be created. To secure a bi-directional
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communication between two hosts, or between two security gateways, two Security

Associations (one in each direction) are required.

3.1.3.4 ISAKMP/Oakley (IKE)
The Internet key exchange (IKE) [16] combines the Internet Security Association

and Key Management Protocol (ISAKMP) with the Oakley key exchange. It is used to
establish, negotiate, modify and delete SAs. ISAKMP requires that all information
exchanges must be both encrypted and authenticated. No one can eavesdrop on the key

material, and the keying material will be exchanged only among authenticated parties.

[SAKMP/Oakley uses a two-phase approach. The purpose of phase 1 is to establish
a master secret key from which all cryptographic keys will subsequently be derived for
protecting the users’ data traffic. It establishes an SA for the ISAKMP itself. Phase 2 is
used to establish an SA for IPSec. Phase 2 negotiations generally occur more frequently

than Phase [ since the master key can be used for a longer time.

3.2 Security

VPNs primarily protect data as it tunnels through the Internet. This process, though
very effective with information in transit, does not offer protection to an organization’s
network itself. As in the case of private networks, a firewall offers the best potential for
VPN security. Firewalls achieve network protection and privacy through access control.
Access control specifies the amount of freedom a VPN user has, restricts certain types of
traffic, and controls access to applications in various network domains. Since almost every
organization connected to the Intemnet has a firewall installed, all that is needed is to add

VPN software to the firewall. The Internet firewall is also the ideal location for deploying
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World Wide Web and FTP servers. The firewall can be configured to allow Internet access
only to those services, while prohibiting external access to other systems on the protected

network.

When two sites, each behind different corporate firewalls, want to communicate
with each other via a VPN, the VPN software on each firewall creates keys that will be
used to encrypt messages. When an application being used by the user generates a packet,
the packet leaves for the destination via the firewall. The VPN software, which resides in
the firewall, encrypts the packet according to the protocol (AH or ESP) then the firewall
forwards it to its destination. The firewallUVPN at the other end receives the packet,
decrypts it and then forwards it to the final destination, which is located in the local
network. The responding packet generated by the receiving end goes through the same

procedure in the opposite direction.

3.3 VPN Management Requirements

VPNs offer enterprises an alternative approach to interconnecting employees,
remote facilities, and external business partners. Though it extends a private network to
the Internet, a VPN is still an end-to-end network that exhibits most of the same
characteristics as private WAN infrastructures. As a business expands, the network
grows. A VPN must remain scalable to address the increased needs. Moving from a
dedicated infrastructure to the Internet challenges network administrators to maintain the
confidentiality and integrity of the data while opening the network to Internet accesses.
The move to a shared infrastructure (the Internet) also presents new challenges in

delivering and monitoring the reliability of the network service provided.
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To ensure smooth integration of private WANs and VPNs, network managers need
to exchange configuration information with the service provider. This includes validating
that the service levels provided by the service provider meet the corporation network
requirements. To provide scalable network-wide management, the network administrators
can use policy-based network management to configure the network instead of configuring

the network on a device-by-device basis.

Since VPNs are an extension to enterprise networks, the existing enterprise
management environments can be extended and enhanced with VPN management
capabilities to provide network administrators with control over the VPN end users. As
VPNs gain popularity, the need for open, standard, replicated, and integrated
management services becomes essential. Using directory-based policy management will
enable integrated user information and network states. By leveraging the DEN standard,
the directory will become the repository for the critical information required for

interoperable, policy-based networking including VPNs.
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4. MODELING A SIMPLE NETWORK

MANAGEMENT SYSTEM

A program was written in Java to model a simple network and its management
system. The program demonstrates the use of DENs in network management. A CIM is
used to implement some of the network and network management components. XML is
used as the communication vehicle between devices. Network sockets are used to enable

objects running in different virtual machines to communicate with each other.

4.0 Java

To demonstrate the use of a CIM in a network application, an application [17] [18]
was developed in Java which utilizes Java Remote Method Invocation (RMI). RMI creates
Java applications that can talk to other Java applications over a network. RMI allows an
application to call methods and access variables inside another application, which may be
running in different Java environments or different operating system altogether, and to pass

objects back and forth over a network connection.

4.0.1 Advantages of Java as a programming language
As a programming language, Java has a number of advantages:
e Platform independence— A Java program can run on any platform that
has a Java virtual machine (JVM) because Java programs are compiled

into bytecodes, which in turn are interpreted by the interpreter in a JVM.



e High productivity—Java was designed to incorporate the latest object-
oriented software engineering techniques. Further, it does not have
constructs such as multiple inheritance and operator overloading that are
prone to usage mistakes.

e Built-in network support—Java’s built-in network library package
(java.net) provides cross-platform support for simple networking
operations, including connecting and retrieving files by using common
Web protocols and creating basic UNIX like sockets.

e Support for international characters—Java uses Unicode as the character

set. Itis especially important in today’s global economy.

4.0.2 Java RMI

The goal for RMI is to integrate a distributed object model into Java without
disrupting the language or the existing object model, and to make interacting with a
remote object as easy as interacting with a local one. It also includes additional
exceptions for handling network errors that may occur while a remote operation is

occurring. RMI is protocol independent.

The Stub and Skeleton classes, which reside on the client and server respectively,
hide the remoteness of the method call from the application implementation classes. When
a server application registers an object with the RMI Registry, the skeleton class is also
registered. When a client application or applet requests a server object, an instance of the
stub class is created and connected to the server application. Stubs and skeletons allow the

client and server classes to behave as if the objects they are dealing with were local.
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RMI is simple to use because most of the complexity is hidden in the stub and
skeleton classes. A normal Java object can be transformed into an RMI server object by
applying a few simple modifications and generating stubs. The client invokes methods on
the server object through a Java interface, so there are even fewer modifications required

there.

Although RMI is easy-to-use and simple-to-implement, it is a Java only solution.

RMI can not be used unless all communicating programs are written in Java.

4.1 The IBM XML parser

Using XML as a standard message format in business to business transactions
requires a mechanism that can read and interpret the XML documents. An XML parser can
be used for this purpose. It reads the document and re-arranges it in a structured form that

allows each element to be accessed and manipulated.

IBM’s XMLJ4 parser is written in Java, and is therefore portable to any operating
systems with a JVM. The parser uses both DTD and the XML documents to create a
Document Object Model (DOM) tree, which presents the document hierarchically. The
DOM has a group of API's, that allow easy access to the elements within the tree. Using
the DOM APIs, any element within the XML document can be accessed, changed, or

added.

The package ‘“com.ibm.xml.parser”, which is primarily used in the project,
contains classes and methods for parsing, generating, manipulating, and validating XML

documents.
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4.2 Converting MOF files to JAVA
As mentioned earlier (Section 2.2), a CIM model is described in a language called
Managed Object Format (MOF). The MOF file is basically made up of a series of class
and instance declarations. Components of a MOF file include:
O Keywords,
€ Comments,
C Validation Context,

Naming of schema elements,

(|

O Class declarations,
C Qualifier declarations,
C Instance declarations,
G Method declarations,
C Compiler directives, and
C Initializers.
Figure 6 illustrated an example of expressing a CIM class in MOF. The following specifies

a class:

1. The qualifiers of the class. This may be empty or contain a list of qualifier
name/value pairs separated by commas and enclosed within square brackets ("["
and "1").

2. The class name.

3. The name of the class from which this class is derived (if any).

4. The class properties, which define the data members of the class. A property

may also have an optional qualifier list, expressed in the same way as the class
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qualifier list. In addition, a property has a data type and (optionally) a default

initial value.

5. The methods supported by the class. A method may have an optional qualifier

list. A method has a signature consisting of its return type, plus its parameters and

their type.

The most common qualifiers used are listed in Table 6 [9].

Table 6. The most common qualifiers

ALIAS

ARRAYTYPE
DESCRIPTION
KEY
MAPPINGSTRINGS
MAX

MAXLEN

MIN

MODEL
CORRESPONDENCE

OVERRIDE

PROPAGATED

Establishes an alternate name for a property or method in the
schema.

Indicates the type of the qualified array. Valid values are "Bag",
"Indexed", and "Ordered".

Provides a description of a Named Element.

Indicates that the property is part of the key. If more than one
property has the KEY qualifier, then all such properties
collectively form the key (i.e. a compound key).

A mapping string for a given provider or agent.

Indicates the maximum number of values a given multi-valued
reference can have. A value of NULL implies no limit.

Indicates the maximum length, in octets, of a string property.
When overriding the default value, any unsigned integer value
(uint32) can be specified. A value of NULL implies unlimited
length.

Indicates the minimum number of values a given reference can
have.

Indicates a correspondence between an object’s property and
other properties in the CIM Schema. Object properties are
identified using the syntax:

<schema name> "_" <class or association name>
<property name>

"o
.

Indicates that the property, method, or reference in the derived
class overrides the similar construct in the parent class in the
inheritance tree or in the specified parent class.

The propagated qualifier is a string-valued qualifier that
contains the name of the key that is being propagated. READ
Indicates that the property is readable.




REQUIRED Indicates that a non-NULL value is required for the property.

UNITS Provides units in which the associated property is expressed.
For example, a Size property might have Units ("bytes").

VALUEMAP Defines the set of permissible values for this property. For
example:

[ValueMap ("1", "2", "3", "4", "S") , Values ("Other",
"Unknown", "Enabled”, "Disabled”, "Not Applicable")]
uint1 6 StatusInfo;

VALUES Provides translation between an integer value and an associated
string. If a ValueMap qualifier is not present, the Values array is
indexed (zero relative) using the value in the associated
property. If a ValueMap qualifier is present, the Values index is
defined by the location of the property value in the ValueMap.

One qualifier that needs to be stressed is KEY. Keys in the CIM are used to
provide a way of uniquely identifying an instance within the scope of a given namespace.
Only properties and references may be used as keys, and keys are unique within a
namespace. If a new subclass is derived from a superclass and the superclass or any of its
parent classes have key properties, the new subclass cannot define any additional key
properties. New key properties in a subclass can be introduced only if all of the
superclasses of a given class have no keys. A class can have more than one key. Those
keys consist of a composite key, which enables any instance of any subclass of the class

to be identified.

Since the CIM is expressed in MOF files, a program was developed to convert
MOF files to Java program files. To take advantages of XML, the conversion is done in
two steps. The first step involves converting MOF files to XML files. A program—
ProcessMOF .java was written to accomplish this task. The program takes one string
argument, i.e. the name of the MOF file being processed. The conversion is done according

to the XML DTDv2.0.0, which is posted on the DMTF’s web based enterprise
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management (WBEM) standards web site (http://www.dmtf.org/spec/wbem.html). Each

class of the CIM has it own XML file that means that for every MOF file, there could be
many XML files. The second step is to convert XML files to Java Program files. The
program ProcessXML.java was developed for this purpose. It takes the name of a XML file
as input. The output of ProcessXML. java is a series of Java program files, which can be

used as building blocks to develop network applications.

To convert a MOF file to Java program files, first ProcessMOF java is used to
convert the MOF files to XML files. Once the conversion is done, another program—
ProcessXML.java can be used to produce Java program files using the outputs of the first

step as its input.

4.3 Modeling a simple network management system
A management program developed by Dr. D. Blight at Fujitsu is used as the basis
for the project. Figure 1S shows the high level structure interpretation of the management

system.

> Network A

Network Management
System (NMS)B

g Network B

Figure 15. Graphic Representation of the Network Management Program



Network management system (NMS) A manages Network A and NMS B manages
Network B. The two networks can be connected or disconnected. If the two network are
connected and A needs to send some data to B, NMS A wants to know the state of Network
B. To accomplish this, NMS A needs to communicate with NMS B. The information
exchanged between the two network management systems can be the policies or state
deciding which policy to use . To exchange the information effectively, a standard format
should be used. Figure 16 illustrates a possible solution where CIM is used to describe the
information. XML is used as the encoding schema because of the benefits described in
Section 2.3. A network administrator can access the information through web browsers
using HTTP or through text editors depending on his/her preference and the location of the

files.

Data Description

VAN

Transport Encoding Access

Figure 16. Communications between NMSs, Networks
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4.3.1 Modeling a simple network
To fully model a network, we need to implement network objects, such as routers,

connections, applications, application systems and policies. A class—NetObject was used
as the base class for all the network components. A RemoteObject class was developed to
identify objects with their hostnames, object names, and its NetObject names. The physical
aspects of a network are modeled by classes: Connection, Router, Path, Network, Device

and Port. The full class hierarchy is shown in Figure 17.

NetObject
[ 1 I T | ] |
XDevice| Path INetWork| | Group Pont SimConn
Device VPN Connection
1
Internet Router

Figure 17. Physical Class Hierarchy of Implemented Network Components

The NetObject class defines a set of static variables that are used to identify
different components of a network, which are modeled in the simple network. The values
of these static variables are listed in Appendix B. The class defines the following attributes:

e “Name” is a string that is the key of this class. This attribute is used to

distinguish different objects
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e *“State” is an enumerated integer that defines the status of the network object.
There are eighteen possible values, which are listed in Appendix B

e “Description” is a string that provides a textual description of the object. Each
and every object has its own description

e “InstallDate” is a Date value indicating when the object was installed. It can be
updated whenever a network manager updates a system

e “Caption” is a string that provides a short textual description (one-line string) of

the object

The NetObject class is modeled after the CIM’s ManagedSystemElement class. Because
the project is not intended to model a complex network system, the devices that are
modeled in the program are generic. The CIM_PhysicalElement is skipped since it is
mainly concerned with manufacturing information, such as manufacturer, stock number,
serial number, part number and version. Since CIM_LogicalElement is an empty class
whose sole purpose is to separate logic elements from physical elements, it is not adopted

in this project.

The class Xdevice is a subclass of the class NetObject, and it defines methods:
neighbors(), Connections(), addConnection() and deleteConnection(). All these methods
will be used in the implementation of a simple network. In the BasicDevice class, the
methods: neighbors() and Connections() are overridden. The class Device is a subclass of
the BasicDevice class; it can be used to represent physical components such as routers,
switches, and terminals. The difference between a Router object and a Device object is that

a router object has a loopback connection, whereas a device object does not. A much
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simplified version of the CIM hierarchy is used because of the complexity involved in

modeling a whole CIM.

The class Path is a subclass of the class NetObject, and it represents connections
between different network devices. It is composed of path segments (Objects of PathSeg,
which is a class that defines attributes: Device, Application, Connection, Port and Queue).
The transmission rate of the path can be set by user to simulate network under different

conditions.

The Network class defines methods that establish a network. The network includes
devices, paths, applications, and routing protocols. The queues that network devices use are
implemented as well in the Nerwork class. This class also includes methods that can be
used to distinguish data source and data sink. All the devices in the network are stored in a
vector. Any device in the network can be found by using the method: findDevice(String
name). As indicated in the above, all the instances of NetObject has name as one of its

attributes. Different instances should have different value for name.

In the Group class, a vector is used to store the instances of class NetObject. The
group then can be treated as a whole during the simulation. The class NerPath implements
methods that can associate devices and connections. The class NetPath is the subclass of

the Group class, and thus it inherits all the methods in the Group class.

The local IP address, local port, foreign IP address and foreign port identify the two
endpoints of a connection. The class Port implements the methods that realize the

functionality provided by ports. It includes the method findQueue(String QN) which takes
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a string as an input and finds the corresponding queue, selectQueue(Device dst,
IPv4Header IP) which selects a queue according to the device and its IP address which is
implemented by the class IPv4Header, and removeQueue() which removes contents in a
queue. Since in this simple network all the instances of the class NetObject have distinct
names, ports, connections, and devices can also be identified by their names. The data flow
rate can also be calculated using the information contained in the queue. The method

calcFlow() is implemented for this purpose.

The class SimConn implements the basic functions of a connection. It identifies the
two ends of a connection: the source device and the destination device. It also contains
method—isVPN() that retums a boolean, which distinguishes VPN connection from other
connections. A VPN connection is between two instances of NetObject. The class

Connection is used to implement general-purpose network connections.

The logical aspects of a network are described by the classes: Application,
ApplicationSystem and Policies. These classes are all subclass of NetObject. The class
Application and ApplicationSystem are classes used to model applications and the system
they reside. An application may be in one of four states: deployable, installable, executable
and running. To simplify the model, only the later two stages were implemented in this
thesis. Applications are run assuming a client-server model as most of the applications used
in networking are under it. The ApplicationSystem resides in the host and the Application
resides in the ApplicationSystem. The instances of ApplicationSystem and Application can

be identified by their name since they are all subclass of NetObject.
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The package Policy contains classes that can be used to implement policies for
connections, paths, QoS, and VPNs. Since the main purpose of this thesis is to demonstrate
the use of XML in network management and the benefits of a CIM, not all the policies are
fully implemented. The classes are however, written so that they can be extended at a later
time. The base class of this package is flaPolicy, which is a subclass of NetObject. An
important method in flaPolicy is activate(Network N), which activates a policy in a given

network.

There are several supporting packages, which implement all the other necessary
functions a network supports. These include IP, server, and RemoteReference. There are
two classes in the IP package: /Pv4Address and [Pv4Hcader. IPv4 addresses are expressed
as four decimal numbers separated by decimal points. Each decimal number represents one
of the 4 bytes of the 32-bit address. The class /Pv4Header includes fields: source address,
destination address, source port, destination port and Type of Service (ToS). All the other
fields are ignored in the model. The package RemoteReference contains class—
RemoteReference, which links host and object, host and remote host. Objects can be

anything, such as an application, a connection, or an application system.

The class TNOM which is a server side application utilizing RMI. To implement an
RMI-based client/server application, an interface, which contains all the methods the
remote objects support, must be defined. ManagedObject is such an interface. All the
methods in this interface potentially throw RemoteException to handle potential network
problems. The class TNOM implements the remote interface ManagedObject and extends

the class UnicastRemoteObject. The methods contained in the interface are implemented
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inside the TNOM class. The remote application is also registered, which binds it to a host

and port.

To complete the network, a client side application—Sdemo is used. The class takes
one argument, which is a file name, from the input line. The input file, which is written in
XML, contains the configuration of a particular network. The simulated network then
configures itself according to the input. Thus, the configuration of a network can be easily
changed to model different situations. Since the configuration files are written in XML
format, the program can search for a particular input if necessary. All the configuration
files are contained in a well known directory which enables programs running on different

machines to locate desired files easily.

An example of the graphical user interface of the program is given in Figure 18.
The configuration file for the output shown in the figure is listed in Appendix C. The DTD

for the configuration file is listed in Appendix D.

The example network consists of four gateway routers, each of which has distinct
name. The IP address for a router can either be auto-assigned or specified by network
administrators. The routers are connected to five different datasources. The bandwidth of
each connection is initially set at 1500 bps, which can be changed during a simulation. The
connections are arranged such that the routers can still perform routing functions even if
some connections are down. This scenario can be simulated by disabling selected
connections. The center of the network consists of two interconnected Internets. A user can
customize the network configuration by clicking on the buttons located at the bottom of the

window (see Figure 18). Each component of the network has its own configuration panel.
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They are invoked by double clicking on the specific component. Users might need to
change some parameters to meet their specific needs. Each panel shows changeable
parameters, such as the IP address of a device. The process of configuring a network and

the simulation are shown in a separate window so that a user can monitor the progress.

Figure 18. Graphic Interface of the Program

4.3.2 Modeling a management system
To communicate, we need the information to be exchanged and an encoding

scheme. As shown in Figure 16, the data is described using CIM, which is written in

MOF. The ideal choice of encoding scheme is XML because it is system-independent.



The other benefits of XML are that new tag and attribute names can be defined at will
and document structures can be nested to any level of complexity. The program
ProcessMOF java (described in Section 4.2) was implemented and incorporated into the

system to convert MOF file to XML files.

A policy server was added to the above program (Section 4.3.1), which listens to
requests from the users. A user invokes a request for a policy by clicking on the Policy
menu (shown in Figure 18). Once the server receives the request, it generates a MOF file
according to the status of the network. The generated file is then converted to an XML

file, which is sent to the requester.

A VPN policy file that instructs the network to realize a VPN connection using
[PSec is used in this program. Several classes are added to the package pbn.policy, which
contains classes that specifies policies for different purposes. The class /PSecPolicyList
uses a string vector to store a set of policy names that are contained in the system. Methods
that can be used to access, add, and delete a particular policy are implemented in this class.
The class VPNpolicy is used to send a request for a VPN connection to a policy server. The
class is used as a network management system. It tells the network of the existence of VPN
connections and security associations. It also identifies whether encryption should be used
in a VPN connection or not. The class also includes methods can be used to generate keys
for encryption. The class Server is used as the policy server. It listens to the users’ requests
and sends the requested policy files to the users. Since XML is just an open way to express
data, XML can be transported with any protocol. Network sockets are used to transfer

information between user and policy server in this program.
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A flag was added to the class Network, which indicates the existence of a VPN. If it
is true, a VPN is used somewhere in the network. A vector—SA4, which is used to store all
the security associations in the network, was also added to the Network class. A security
association is unidirectional. Two security associations are needed for two parties to
communicate. All the security associations could be stored in a separate file so that other

management systems could have access to the file.

Class VPNtunnelPolicy is used to indicate the existence of a VPN between two end-
points. After receiving the policy file, the user creates a new instance of the class
VPNtunnelPolicy. It checks to see if a connection between two endpoints of the VPN
exists. If the connection exists, it sets the flag “isVPN” in the class Connection. Otherwise,
it creates a new connection between the two endpoints. It then adds the VPN connection to
the vector S4 in the class Network. A network manager can keep track of VPN connections
by checking this vector. If the protocol ESP is used, the class VPNpolicy generates keys

which can be distributed to the communicating parties.

4.3.3 Using the program

While running the program, a user invokes a VPN policy request by clicking on the
menu item VPNPolicy, which in turn creates a new instance of the class VPNpolicy. The
method—configure(Network N) in the class ¥PNpolicy is called. This method creates a
network socket connection to the policy server and sends a VPN policy request to the
server. The server generates a simple policy file which includes the two endpoints of the
VPN connection, the protocol and the transport mode to be used in the VPN connection.

The server then converts the MOF file to XML and sends it back to the user.
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After receiving the policy file, the user creates a new instance of the class
VPNrtunnelPolicy using the two endpoints specified by the policy file. It first checks to see
if the connection between the two points exists. If it does, it sets the flag isVPN in the class
Connection to true. Otherwise, it creates a new connection between the two endpoints and
then sets the flag. The class Connection uses vector sas to store the two security

associations (one for each direction).

The flag VPN_EXIST in the class Network is set to true to indicate the existence of
the VPN connection in the network. The class Network uses vector SA4 to store all the VPN
connections in the network. A network manager can keep track of the VPNs by checking
this vector. To simplify the management, all the VPN connections are output to a text file,

which can be accessed by other network management systems if necessary.

Figure 19 demonstrates the program’s process.

Network NMS
Classes:
VPNuunnelPolicy Implement Generates MOF
Connection
VPNpolicy
Network Coverts to XML
' l
Output Policy File

Text file includes all
Securitv Associations

Figure 19. Graphical representation of the NMS management program
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44 Modeling IPSec at the Packet Level
Because [PSec is expected to emerge as the dominant protocol for VPNs due to its

encryption ability, I modeled it at the packet level. The Diffie-Hellman algorithm is used in
the IKE phase. The algorithm DES in ECB mode is used to encrypt and decrypt the

packets. HMAC-MD5-96 [19](20] is used to authenticate data origin and to ensure packet
integrity.

The Diffie-Hellman key exchange protocol allows two parties to agree on a shared
key, even though the messages are transferred through public media. Since there is no
secure channel in the earliest key negotiation session, it can be used to negotiate shared
secret keys. Figure 20 shows the steps involved in establishing shared secret keys. These
secret keys will be used in the next steps of the key negotiation protocol to derive keys that
will be used in DES. In the Diffie-Hellman key exchange, both parties share two public
values, a modulus m, which is a large prime number, and an integer g. Each party has a

private number (a and b respectively) that should be large.
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Figure 20. Diffie-Hellman key exchange

DES [21] in ECB mode is used in ESP to encrypt and decrypt IP packets. The DES
encryption process, which consists of three steps, is shown in Figure 21. The input is 64-bit
plaintext and the key is 56 bits in length. First, the input goes through a permutation. The
output is then fed to 16 iterations, each with a different key. The right and left halves of the
output of the last iteration are swapped before going through an inverse permutation
function. In ECB mode, each block of ciphertext is encrypted independent of every other

block.
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Figure 21. The process of DES encryption

HMAC-MDS5-96 is used as the authentication mechanism to provide data origin
authentication and integrity protection. The HMAC-MDS5-96 process is shown in Figure
22. The base function is applied twice in succession. The leftmost 96 bits of the resulting
hash value are used as the MAC for the datagram, which is stored in the authentication data

field of AH (Figure 11) and ESP (Figure 12).
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Figure 21. HMAC-MDS5-96 Processing

44.1 Implementing in the management system

There were several classes added to the program described in Section 4.3 for
handling encryption and VPNs. the package Key contains three classes that implement IKE
key exchange, encryption key generation, and authentication. Because only Diffie-Hellman
key exchange is implemented for this thesis, the class DHKeyGen is the only subclass of
the class /KE. Other key exchange algorithms can be added by extending the class IKE.

The class DES and the class MAC are used for DES and MAC generation.

Three main components of the protocol [PSec are contained in the package VPN.
The class AH_Header realizes the AH header format shown in Figure 12. Next_Hdr and
Payld_Len are bytes; Reserved is a short; SPI and sequence number are integers. The MAC

is a byte array that could use a different length for a different algorithm. The Reserved field
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is set to zeroes and it is included in the data authentication calculation. Because a 96 bits
authentication value is used, Payld _Len is set to 4. The implementation of ESP is more
complex than that of AH_Header. Three classes ESP_Header, ESP_Trailer and ESP_Auth
are used to implement header, trailer and authentication data (shown in Figure 12),
respectively. The class ESP has four instance variables: header, payload, trailer and
authentication. The class S4 uses properties: SPI, protocol name, and destination IP address

to identify unique security associations used in IPSec.

Package pbn.VPN.Action contains the classes ahAction and espAction, which are
subclasses of the class vpnAction. AH can be employed in two ways: transport mode and
tunnel mode. In transport mode, AH is inserted after the [P header and before the upper
layer protocol. When AH is used in a security gateway such as firewall, tunnel mode must
be used. The method generateAHPacket in the class ahAction handles the generation of AH
packets. The method takes one argument—payload, it then checks the mode and the
destination. It uses a security gateway (a default router) for tunnel mode. The inner IP
header contains the ultimate source and destination address, while the outer IP header uses
the address of the security gateway as its destination address. A SA is associated with each
session of the AH process. The sequence number is set to zero when a SA is first
established. The first packet sent using the given SA will have a sequence number of 1. The
class espAction handles the process of ESP. The method generateESP takes one string
argument and generates the ESP header and trailer. The string is padded to ensure that the
resulting ciphertext terminates on a 4-byte boundary so that the Authentication Data field is
aligned on a 4-byte boundary, as illustrated in Figure 14. For illustrative purpose, a random

byte is used for property Next_Hdr to identify the type of data contained in the Payload
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Data field. Like AH, ESP can be employed in two ways: tunnel mode and transport mode.
The transport mode is only applicable to host implementations. The ESP is placed after the
IP header, but before the upper layer protocol information. Thus it provides protection to
the upper layer protocol, but not to the IP header. The padded payload and ESP trailer are
encrypted before being added to the final ESP packet. Authentication is performed on the
ESP header and the encrypted payload and ESP trailer. Tunnel mode ESP may be
employed in either hosts or security gateways. The program uses a default router for the
security gateway. If tunnel mode is used, the method generateESP adds the original IP
header to the padded payload. The resulting string and ESP trailer are encrypted. The
method composeESPPacket adds an IP header to the output of generateESP. If tunnel
mode is used, the IP header has the router as its destination. If transport mode is used, the
IP header uses the original destination as its destination address. The method keyExchange
is used to generate keys that will be used for encryption and decryption. The generation of

sequence numbers is the same as in the case of AH.

Several classes were also added to the package pbn.policy. The class /PSecPolicy
includes the name of the algorithm that will be used to exchange keys during the IKE
negotiation and the specifics of IPSec, such as the protocol (AH or ESP) and the transport
mode (Transport or Tunnel). It contains one flag, which is set whenever the current policy
is enabled. Since I only used Diffie-Hellman key exchange, the name of the algorithm is set
to DH (for Diffie-Hellman) by default. The class VPNpolicy is used to send a request for a
VPN policy to the server and create a new instance of the class vpnPolicyAction after
receiving the policy file. The method executeAction in the class vpnPolicyAction creates an

SA for the session and it uses AH or ESP to transmit packets according to the policy file.
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The class Device is modified to add encryption and decryption capabilities to the
hosts and routers. For [PSec in tunnel mode, a router checks the MAC field to see if the
packet is valid. If it is not, it drops the packet without further action. If AH is used, it sends
the packet to the final destination directly. It decrypts the packet, then sends it to the
intended destination if ESP is used. For [PSec in transport mode, the host checks the MAC

field and performs necessary functions before sending it to the upper layer.

A server is used to listen to the request for the VPN policy file from users. The class
Server extends the class Thread. A server object can accept requests from different users.
When the server receives a request for a VPN policy file from a user, it checks to see if it is
available. If the requested file is available, the server pulls the policy file, which is written
in MOF format, from a directory, converts it to a file in XML, and sends it to the requester.
The directory that contains the policy files and server can be located on different hosts. A
user invokes a VPN solution by clicking on the VPNPolicy menu item. The class
VPNPolicy reads the XML file and executes the VPN solution according to the specific

policy. The server and the requester communicate via network sockets in this model.

The program was run to see the time it takes to generate Diffie-Hellman key pairs.
Two users exchange public information (g, m) first. Each user then computes a shared
secret value based on the public information (g, m) and their own secret information (a,
b) (see Figure 20). These secret values can be used as session keys or as encryption keys
for encrypting randomly generated session keys. The graphic interface of the program is
shown in Figure 18. A string “This is a test for VPN protocol.” was used in the

simulation. The simulation was run several times. Ten randomly chosen results are shown



in Table 7. The average time for the key exchange is 41052 ms. Depending on the
server’s condition, it could take a lot more than 41052 ms to generate Diffie-Hellman key
pairs. Thus, it makes sense to use a single Diffie-Hellman key for a long period of time.
Unlike DES key pairs, which change for different session, Diffie-Hellman key pairs

usually valid for a day, so they will not overly burden the server for key generation.

Table 7. Results for simulation of Diffie-Hellman key exchange

Time used to generate Diffie-Hellman key pairs (in ms)

40700 38780 37960 38330 39000 37790 41030 38500 55310 43120

To demonstrate that DES takes less time to generate keys, I also collected data for
DES key generation. The results are shown in Table 8. The average time for a client to
generate a DES key is 368 ms, which is less than one percent of that of Diffie-Hellman
key exchange. To maximize the security of data transmission, it is feasible to generate

different DES keys for different sessions to provide enhanced data integrity.

Table 8. Results for simulation of DES key generation

Time used to generate DES key (in ms)

330 380 330 330 390 380 390 380 390 380
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5. CONCLUSION AND FUTURE WORK

5.0 Conclusion

The Internet is becoming a universal way of providing connectivity and application
services. New applications are being conceived that have their own special requirements
but are being adapted to run on the Internet due to market demand. People are demanding
more robust services for less cost, which may be able to be achieved by using Internet
technologies. These three factors are primarily responsible for driving an increased demand

for more intelligent networking.

Directory Enabled Networking (DEN) was conceived as the foundation for building
an intelligent network. DEN defines a means to store information describing the services
that the users of the networks need and the capabilities of the devices that make up the
network. The information is stored in a common repository in an agreed-upon format (e. g.
MOF). DMTF’s CIM is a standard information model, which could be used as a building
block to build network applications. Detailed implementation is then the responsibility of

the applications that build upon the model.

A simple network management program based on the previous work done by Dr.
Blight, which is a much simplified CIM implementation, was developed in this thesis. The
information stored in the directory is in MOF. A policy server can generate policy files,
which are in MOF. The policy server then converts the MOF file to XML to leverage the
portability of XML and sends it to the user. All the components used in the project are

generic in nature. The program demonstrates the use of CIM and DEN in the

66



implementation of an intelligent network management system. In this system, CIM enables
sharing information between different management systems; DEN integrates knowledge

about network to provide users with end-to-end network services.

[PSec at the packet level is also modeled within the program. Once a VPN policy is
invoked, it sends a VPN request to a server, which is listening for the requests from users.
The server generates a VPN policy file in MOF, then converts the file to XML format and
sends the resulting file to the user. The user reads the file and takes appropriate actions

accordingly.

In the test that I have done, it takes about 41420 ms, which is significant long, to
generate Diffie-Hellman key pairs. If several requests are sent simultaneously, the server
may be overloaded. The solution to this problem is to use the same Diffie-Hellman key for
a longer period, such as one per day. It only takes 368 ms to generate DES key. To

maximize the protection for data, DES key can be changed from session to session.

5.1 Future Work

Because only VPN policy files are used, I did not implement methods which can
be used to replicate and extend the directory service. As the network grows, each separate
management domain must be configured individually. Adding support for replication
could reduce the network administrator’s workload by automatically replicating the
values for common network components’ parameters. A directory service must be able to
grow and expand as new standards and/or applications evolve. Or the cost of constantly

implementing new services and upgrading the system will be very high in the long run.
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In this program, policy requests were sent in response to a user manually clicking
on a button. This could be modified to add an application layer. Instead of sending a
request directly, the user could then launch an application, which would then sends policy

requests to the policy server.

Because the project is only a simplified version of CIM, it may not meet the needs
of some of the network managers. To use the program for the specific needs of different
networks, a network manager needs to extend the program. Some common areas that
network managers might want to expand are the Policy class and IP address format for
simple network management simulations. In the case of complex network programs,

other classes, such as Applications and Users should be added.

The policy server can be used to coordinate the creation, modification, validation,
administration, management, and installation of policies. A network can be informed
about changes to existing policies or the additional of a new policy via the policy server.
The policy server can also be used to communicate updates of policies to other network

systems. This work also remains to be done.

Today, IP has established itself as the primary vehicle for global system of
networking. As more and more people are connected to the Internet, the available IPv4
addresses will not be able to meet the growing demands for new IP addresses. IPv6
increases the IP address size from 32 bits to 128 bits. IPv6 addresses performance,
scalability, security, ease-of-configuration, and network management issues that are
central to the ongoing competitiveness and bottom-line performance of all types of

network-dependent businesses. The project only implements support for [IPv4 address
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format. To meet future demands of network managers, the program can also be extended

to include IPv6 address.

Only VPN policy files are used in this project. A policy file, in this program, only
includes the parameters that are essential to the creation of VPN. The policy file can be
extended to include user profile and application profile. A user profile can include the
service level the user is entitled to and the access level the user has. An application
profile can include the time the application can be run and the service level the
application is entitled to. Policy can also be extended to incorporated enterprise’s

business goal to ensure maximum use of limited network resources.

The access protocol (Figure 17) was not implemented in this project. A network
manager can add a servlet to this program so that the information can be accessed via

web browsers.
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Appendix A: XML representation of CIM_ManagedSystemElement

<?xml version="1.0"7><!DOCTYPE CIM SYSTEM "cim.dtd">
<CIM>
<CLASS NAME="CIM_ManagedSystemElement">
<QUALIFIER NAME="description” TYPE="string” TOSUBCLASS="false">
<VALUE>CIM_ManagedSystemElement is the base class for the System Element hierarchy.
Membership Criteria: Any distinguishable component of a System is a candidate for inclusion in this class.
Examples: software components, such as files; and devices, such as disk drives and controllers, and physical
components such as chips and cards</VALUE>
</QUALIFIER>
<QUALIFIER NAME="Abstract" TYPE="boolean" TOSUBCLASS="false">
<VALUE>TRUE</VALUE>
</QUALIFIER>
<PROPERTY NAME="Caption" TYPE="string">
<QUALIFIER NAME="description” TYPE="string” TOSUBCLASS="false">
<VALUE>The Caption property is a short textual description (one-line string) of the object</VALUE>
</QUALIFIER>
<QUALIFIER NAME="MaxLen" TYPE="sint32" TOSUBCLASS="false">
<VALUE>64</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="Description" TYPE="string">
<QUALIFIER NAME="description" TYPE="string" TOSUBCLASS="fals¢">
<VALUE>The Description property provides a textual description of the object</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="InstallDate" TYPE="datetime">
<QUALIFIER NAME="description" TYPE="string" TOSUBCLASS="false">
<VALUE>A datetime value indicating when the object was installed. A lack of a value does not indicate
that the object is not installed</VALUE>
</QUALIFIER>
<QUALIFIER NAME="MappingStrings" TYPE="string" TOSUBCLASS="false">
<VALUE.ARRAY>
<VALUE>MIF.DMTF|ComponentID|001.5</'VALUE>
</VALUE.ARRAY>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="Name" TYPE="string">
<QUALIFIER NAME="description" TYPE="string” TOSUBCLASS="false">
<VALUE>The Name property defines the label by which the object is known. When subclassed, the
Name property can be overridden to be a Key property</VALUE>
<JQUALIFIER>
<QUALIFIER NAME="MaxLen" TYPE="sint32" TOSUBCLASS="false">
<VALUE>256</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME="Status” TYPE="string">
<QUALIFIER NAME="description" TYPE="string” TOSUBCLASS="false">
<VALUE>A string indicating the current status of the object. Various operational and non-operational
statuses are defined. Operational statuses are \OK)\, \Degraded\, \Stressed\ and \Pred Fail\. \Stressed\ indicates
that the Element is functioning, but nceds attention. Examples of \Stressed\ states are overload, overheated,
etc. The condition \Pred Fail\ (failure predicted) indicates that an Element is functioning properly but
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predicting a failure in the near future. An example is a SMART-enabled hard drive. Non-operational statuses
can also be specified. These are \Error\, \NonRecover\, \Starting\, \Stopping\ and \Service\. \NonRecover\
indicates that a non-recoverable error has occurred. \Service\ describes an Element being configured,
maintained or cleaned, or otherwise administered. This status could apply during mirror-resilvering of a disk,
reload of a user permissions list, or other administrative task. Not all such work is on-line, yet the Element is
neither \OK\ nor in one of the other states</VALUE>
</QUALIFIER>
<QUALIFIER NAME="MaxLen" TYPE="sint32" TOSUBCLASS="false">
<VALUE>10</VALUE>
</QUALIFIER>
<QUALIFIER NAME="ValueMap"” TYPE="string” TOSUBCLASS="false">
<VALUE.ARRAY>
<VALUE>OK</VALUE>
<VALUE>Emor</VALUE>
<VALUE>Degraded</VALUE>
<VALUE>Unknown</VALUE>
<VALUE>Pred Fail</VALUE>
<VALUE>Starting</VALUE>
<VALUE>Stopping</VALUE>
<VALUE>Service</VALUE>
<VALUE>Stressed</VALUE>
<VALUE>NonRecover</VALUE>
</VALUE.ARRAY>
</QUALIFIER>
</PROPERTY>
</CLASS>
</CIM>
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Appendix B: Static variables used to identify different components of a network

ROUTER
DATASOURCE
OPTICALTERM
INTERNET
NETMARKER
DEVICE
APPLSYS
APPL
CONNECTION
SCONNECTION
STRINGLABEL
MARKER
MOVEABLE
POLICY
GROUP

OoXcC

XDEVICE

nnnnonon

Nonowo
W
N OYO VP

“e

64;
128;
256;
512;

= 1024;
0x00000400;
0x00000800;
0x00001000;
0x00002000;
0x00004000;
0x00008000;

e N1 W w
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Appendix C: Configuration File used In Figure 18

<CIM Name=Enterprise>
<AgentFilter>
<FilterEntry>
<Agent>Agents.QoS</Agent>
</FilterEntry>
</AgentFilter>
<Router>
<Name>Gateway-HeadOffice</Name>
<GlInfo>
<LOC><X>208</X><Y>113</Y></LOC>
<Line/>
<NFILE>images/r]_gif</NFILE>
<NFILE>images/r1.gif</NFILE>
<NFILE>images/r| gif</NFILE>
<NFILE>images/rl.gif</NFILE>
<NFILE>images/rl.gif</NFILE>
</GInfo>
</Router>
<Router>
<Name>Gateway-Europe</Name>
<Glnfo>
<LOC=<X>194</X><Y>3 10</Y></LOC>
<Line/>
<NFILE>images/r]. gif</NFILE>
<NFILE>images/r].gif</NFILE>
<NFILE>images/r].gif</NFILE>
<NFILE>images/r].gif</NFILE>
<NFILE>images/rl1.gif</NFILE>
</GInfo>
</Router>
<[ntermet>
<Name>Carrierl </Name>
<GInfo> .
<LOC><X>321</X><Y>188</Y></LOC>
<Line/>
<NFILE>images/internet gif</NFILE>
<NFILE>images/internet gif</NFILE>
<NFILE>images/internet gif</NFILE>
<NFILE>images/internet.gif</NFILE>
<NFILE>images/intemet.gif</NFILE>
</GInfo>
</Internet>
<Internet>
<Name>Carrier2</Name>
<Glnfo>
<LOC><X>320</X><Y>268</Y></LOC>
<Line/>
<NFILE>images/intemet.gif</NFILE>
<NFILE>images/internet.gif</NFILE>
<NFILE>images/intemet.gif</NFILE>
<NFILE>images/intemet.gif</NFILE>
<NFILE>images/internet.gif</NFILE>
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</GInfo>
</Intemet>
<Router>
<Name>Gateway-NA</Name>
<GlInfo>
<LOC><X>497</X><Y>] 1 2</Y></LOC>
<Line/>
<NFILE>images/rl.gif</NFILE>
<NFILE>images/rl.gif</NFILE>
<NFILE>images/r] gif</NFILE>
<NFILE>images/rl.gif</NFILE>
<NFILE>images/rl.gif</NFILE>
</GInfo>
</Router>
<Router>
<Name>Gateway-Asia</Name>
<GInfo>
<LOC><X>514</X><Y>310</Y></LOC>
<Line/>
<NFILE>images/r].gif</NFILE>
<NFILE>images/r1.gif</NFILE>
<NFILE>images/r] . gif</NFILE>
<NFILE>images/r|.gif</NFILE>
<NFILE>images/rl.gif</NFILE>
</GInfo>
</Router>
<Connection>
<Name>Conn0</Name>
<Src>Carrier] </Src>
<Dst>Carrier2</Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>361</X><Y>212</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection™>
<Name>Connl </Name>
<Src>Gateway-HeadOffice</Src>
<Dst>Carrier1 </Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>232</X><Y>137</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn2</Name>
<Src>Carrier </Src>
<Dst>Gateway-NA</Dst>
<BW>1500</BW>
<GlInfo>
<LOC><X>361</X><Y>212</Y></LOC>
<Line/>
</GInfo>
</Connection>
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<Connection>
<Name>Conn3</Name>
<Src>Gateway-Europe</Src>
<Dst>Carmier2</Dst>
<BW>1500</BW>
<GlInfo>
<LOC><X>218</X><Y>334</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn4</Name>
<Src>Carrier2</Src>
<Dst>Gateway-Asia</Dst>
<BW=>[500</BW>
<GInfo>
<LOC><X>360</X><Y>292</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn5</Name>
<Src>Gateway-HeadOffice</Src>
<Dst>Carrier2</Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>232</X><Y>137</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn6</Name>
<Src>Carrierl </Src>
<Dst>Gateway-Europe</Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>361</X><Y>212</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn7</Name>
<Src>Carrierl </Src>
<Dst>Gateway-Asia</Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>361</X><Y>212</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn8</Name>
<Src>Carrier2</Src>
<Dst>Gateway-NA</Dst>
<BW>1500</BW>
<GInfo>
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<LOC><X>360</X><Y>292</Y></LOC>

<Line/>
</GInfo>
</Connection>
<Device>
<Name>Database2</Name>
<[Pv4Address>192.168.2.0</IPv4Address>
<GInfo>
<LOC>=<X>101</X><Y>145</Y></LOC>
<Line/>
<NFILE>images/noicon gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
</GInfo>
</Device>
<Device>
<Name>Database1</Name>
<[Pv4 Address>192.168.2.0</TPv4address>
<GInfo>
<LOC><X>104</X><Y>50</Y></LLOC>
<Line/>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d}.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
</GInfo>
</Device>
<Device>
<Name>Cache-Europe</Name>
<[Pv4 Address>192.168.2.0</IPv4address>
<GlInfo>
<LOC><X>100</X><Y>378</Y></LOC>
<Line/>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1 . gif</NFILE>
</GInfo>
</Device>
<Device>
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<Name>Cache-NA</Name>
<IPv4Address>192.168.2.0</1Pv4 Address>
<GlInfo>
<LOC><X>571<7X><Y>49</Y></LOC>
<Line/>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d|.gif</NFILE>
<NFILE>images/noicon gif</NFILE>
<NFILE>images/d!.gif<NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
</GInfo>
</Device>
<Device>
<Name>Cache-Asia</Name>
<[Pv4Address>192.168.2.0</IPv4d Address>
<GlInfo>
<LOC<X>607</X><Y>408</Y></LOC>
<Line/>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d1.gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d | .gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d].gif</NFILE>
<NFILE>images/noicon.gif</NFILE>
<NFILE>images/d|.gif</NFILE>
</GlInfo>
</Device>
<Connection>
<Name>Conn 4</Name>
<Src>Database2</Src>
<Dst>Gateway-HeadOffice</Dst>
<BW>1500</BW>
<Glnfo>
<LOC><X>125</X><Y>169</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Connl5</Name>
<Src>Database 1 </Src>
<Dst>Gateway-HeadOffice</Dst>
<BW>1500</BW>
<GInfo>
<LOC>><X>128</X><Y>74</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Connl6</Name>
<Src>Cache-Europe</Src>
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</CIM>

<Dst>Gateway-Europe</Dst>
<BW=>1500</BW>
<GInfo>
<LOC><X>124</X><Y>402<Y></LOC>
<Line/>
</Glnfo>
</Connection>
<Connection>
<Name>Conn| 7</Name>
<Src>Gateway-NA</Src>
<Dst>Cache-NA</Dst>
<BW>1500</BW>
<GInfo>
<LOC><X>521</X><Y>136</Y></LOC>
<Line/>
</GInfo>
</Connection>
<Connection>
<Name>Conn| 8</Name>
<Src>Gateway-Asia</Src>
<Dst>Cache-Asia</Dst>
<BW>1500</BW>
<GlInfo>
<LOC><X>538</X><Y>334</Y></LOC>
<Line/>
</GInfo>
</Connection>
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Appendix D: DTD file for the configuration file in Appendix C

<!ELEMENT Class (AgentFilter, Router+, Internet+, Connection+, Device+)>
<!ATTLIST Class Name CDATA #REQUIRED>

<!tELEMENT AgentFilter (FilterEntry)>
<!ELEMENT FilterEntry (Agent)>
<!'ELEMENT Agent (#PCDATA)>

<!ELEMENT Router (Name, GInfo)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Ginfo (LOC, Line, NFILE+)>
<ILEMENT Line EMPTY>

<IELEMENT LOC (X, Y)>

<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ELEMENT NFILE (#PCDATA)>

<!ELEMENT Internet (Name, GInfo)>

<IELEMENT Connection (Name, Src, Dst, BW, GInfo)>
<!ELEMENT Src (#PCDATA)>

<IELEMENT Dst (#PCDATA)>

<!IELEMENT BW (#?CDATA)>

<!ELEMENT Device (Name, IPv4Address, GInfo)>
<!ELEMENT IPv4Address (#PCDATA)>





