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Abstract 

In water treatrnent, there is a constant trend of ever increasingly stringent standards for 

finished water quality and with that cornes the need to meet and surpass these standards, 

which include particle count levels. This requires a good knowledge and understanding 

of the treatment processes involved as well as good controI of these processes- However, 

finished water particle counts are highly variable and difficult to control. In order to 

improve process controll an artificial neural network (ANN) model of filtration 

performance was developed for the E.L. Smith Water Treatment Plant (WTP) in 

Edmonton, Alberta. This mode1 is unique because it encompasses the complete treatrnent 

plant rather than focussing on a single unit treatment process. The model was also 

applied and demonstrated to be a potentially powerful tool in assisting WTP operators in 

optimising process control and researchers in analysing particle counts in a virtual lab 

seîting. 
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1.0 Introduction 

1 1  Background 

One of the most important goals of a water treatment plant (WTP) is the removal of 

particdate matter. Giardia and Cryptosporidium removal are of particular concern in 

water treatment, and this is addressed by stricter standards such as the Enhanced Surface 

Water Treatrnent Rule (ES WTR) (Lind 1 997), which rnay ultimately include standards 

for particle count levels in finished water- With this trend of ever increasingly stringent 

standards for finished water quality cornes the need to meet and surpass these standards. 

This requires a good knowledge and understanding of the treatment processes involved as 

well as good control of these processes. Filtration in particular is important in that it 

removes particles from the water and is credited with the removal of 99% of Giardia 

cysts present in the water. While much study has been done to understand the theory 

behind the process as well as the factors involved in infiuencing the performance of the 

process, there is still uncertainty in terms of understanding the quantitative relationships 

between various factors and filtration performance. More specifically, the relationship 

between various factors and particle counts, which is a direct rneasure of filtration 

performance, is still not cornpletely understood. This is due to the fact that such 

relationships are quite cornplex. In fact, there are situations in which the reason for 

obsenred particle comt  behaviour is unknown (Ginn Jr., Bennett and Wheatley 1997). 

In practice, an understanding of how these various factors influence filtration 

performance is important since this will lead to better control of the treatment process. 

Currently, process control stems fiom the results of traditional jar tests perforrned to 



determine chernical dosages as well as Corn operator experience. However, jar tests oniy 

assess clarification performance and does not directly assess filter performance. While 

this generally works for controlling turbidity, particle counts are more sensitive to small 

changes in filtration efficiency than turbidity (LeChevallier and Norton 1992; Hall and 

Croll 1997; Lind 1997), and thus particle counts are more variable and are harder to 

control. Therefore, with better control and improved understanding of these 

relationships, stringent water quality standards can be met. 

One way of understanding these relationships is through deriving mathematical models 

and equations. However, determining an exact mathematicai mode1 to describe the 

relationships between various factors and filtration performance is very dificult if not 

impossible given that such relationships are complex and non-linear. Therefore, a 

different type or method o f  modelling is necessary rather than conventional mathematical 

modelling. Artificial neural network ( A m )  modelling is jusr such an alternative. It is 

applicable to problems in which the cause-effect relationships are complex and non-linear 

and where no mathematical formulae exist, such as the case with filtration performance. 

If  enough data are available that represent al1 aspects of the problem domain, then a 

model can successfuily be developed. Unfortunately, ANN wili not give an explanation 

of why different effects are observed. However, it is up to the investigator to interpret 

these observations. Therefore, it is important to have expert knowledge and a strong 

understanding of the problem domain, and in this case, a strong understanding of the 

filtration process itself not only to interpret results, but aiso to develop a model that 

accurately represents al1 aspects involved in filtration. ANN also will not provide a 



precise explanation as to how the relationships are derived, but that is not necessary for 

the purposes of this study since determinhg the relationships and interpreting them are 

the more important goals in this study. 

Development of an ANN model for filtration performance addresses the problems of 

meeting stringent water quality standards by providing a description of the complex 

relationships involved in filtration performance and improving the process control of 

water treatrnent, Once deveIoped, the optimised model can be used to provide insight 

into particle count behaviour without expenmentation in a standard wet laboratory or 

through pilot tests. Control of the treatment process would improve since the ANN 

model could provide irnrnediate multiple treatment options as opposed to performing 

time consuming jar tests. The model can also be implemented online with the process 

control system in an advanced control mode improving process control by not only 

providing treatment options but by initiating the action. Improved control results in the 

optimisation of the treatment process and will lead to improved water quality. Moreover, 

there are savings benefits from reagent costs since an optimal chernical dose c m  be 

determined without utilising an excess arnount of reagents. In addition to the quickness 

and convenience of using the A N N  model for process control, the model could also be 

usefùl in operator training by simulating possible scenarios in which the operator would 

learn the results of various treatment options. Al1 of these various uses show the 

tremendous benefits of developing and utilising an ANN mode1 of filtration performance. 



1.2 Objectives 

One of the main objectives in this study is to determine the feasibility of developing an 

ANN model of filtration performance. Furthemore, the feasibility of developing a model 

of not just a single unit process but for a complete plant will be determined since 

filtration performance will be modelled based on plant operating conditions and raw 

water quality. This is significant because even though research has been conducted on 

the ANN modelling of unit processes in water treatment (Mirsepassi, Cathers and 

Dharmappa 1995; Maier and Dandy 1996; Rodriguez and Serodes 1996; Gagnon, 

Grandjean and Thibauft 1997; Han et al. 1997; Rodnquez, Serodes and Cote 1997; 

Stanley and Zhang 1997; Zhang and Stanley 1997), little development has been done in 

developing process models for a complete WTP. Therefore, the rnodel to be developed in 

this study is unique with beneficial implications as a result of this type of model 

development. 

Other objectives of this study are: 

to demonstrate the use of the AIW rnodel as a tool for WTP operators and researchers 

to examine the effects of various parameters on particle counts 



1.3 Scope of Study 

To meet the objectives, the fotlowing work was completed. A Iiterature review of 

filtration and the factors that affect the process was conducted and the available data were 

assessed as part of the model development process. From there, models were developed 

and optimised to predict with statistically reasonable results for the E.L. Smith WTP in 

Edmonton, Alberta. Finally, the applicability of the model and the benefits of using the 

model were demonstrated. Particle count behaviour in response to changing various 

factors was exarnined by utilising the developed modeI. 



2.0 Background 

2.1 Introduction 

Before developrnent of an ANN model can begin, background information of the 

problem domain needs to be researched and examined in order to have an understanding 

of the problem domain and subsequently to be able to develop a representative model. 

As a result, presented in this section is an overview of filtration performance and the 

filtration process as well as a discussion of the ANN modelling technique. 

The first topic to be discussed is filtration performance parameters. An understanding of 

how performance is measured and their significance is important since that is what is 

being modelled. Next, the filtration process and the mechanisms involved are discussed 

followed by a discussion on the factors that affect filtration performance. This is 

necessary to be able to determine the parameters that are to be used in model 

development. In order to be able to design, develop and optimise an ANN model, an 

understanding of ANN and its aspects are necessary, and that is covered in the following 

section. Other artificial intelligence (AI) systems are discussed aftenvard as options to 

ANN. Finally, the treatment process at E.L. Smith WTP is described since the model is 

to be specifically developed for that plant. 



2.2 Filtration Perfomance Parameters 

2.2.1 Descriptions 

Two of the most commonly used performance parameters for filtration are turbidity and 

more recently particle counts. ~ G b i d i t ~  is a light-transmitting property of water caused 

by a wide variety of suspended materials, which interfere with the passage of light 

through water (Sawyer, McCarty and Parkin 1994). It is measured in nephelometric 

turbidity units (NTU), which is a measure of the degree of light scattering from particles. 

Therefore, it is an indirect measure of the amount of particulate matter that is present in 

water. The suspended particles responsibIe for turbidity can be inorganic colloidai rock, 

silt, or clay materials, or organic materials of either natural or anthropogenic origin. 

Particle counts, on the other hand, are a direct measure of the amount of particulate 

matter present in solution that is causing turbidity. Turbidity is usually measured using a 

turbidimeter. A light source is shined through the water sample in which a photoelectric 

detector detects the intensity of scattered light at right angles to the path of the incident 

light (Sawyer, McCarty and Parkin 1994). Particle counters measure particle counts 

slightly differently. The water sample flows through a smail channel in which light, 

typically a laser bearn, shines through. A diode opposite the laser detects the light that is 

not scattered or obscured. The particle is thus counted and sized depending if the particle 

is greater than the sensor size detection limit. At E.L. Smith WTP, the turbidimeter used 

is a Hach Mode1 2100N and the particle counters are the Met One, PCX model. A more 

detailed description of how they operate is discussed in the appendix on pages 111-144. 



2.2.2 Significance of Filtration Performance Parameters 

There are two main reasons for wanting to remove turbidity. One is for aesthetic reasons 

so that the treated water appears to be clear, not murky. The other reason is for 

disinfection. Many harmfbl microorganisms, such as Giardia cysts and Cryprosporidium 

oocysts, tend to be adsorbed to particles or encased in solid matenal, and so it is 

necessary to remove such particles while disinfectant is used to kill the remaining 

microbes. Reduction of particle counts is desired for the sarne reasons as removal of 

turbidity. Removal of Cryptosporidium oocysts is a particularly major concem nght now 

for water treatment. Water disinfectants such as chlorine have little effect on the 

inactivation of Cryptosporidium oocysts, thus filtration is the most practical treatment 

technology to remove Cryptosporidium. However, there is currently no accurate and 

precise method for determining Cryptosporidium removal rates in filtration systems (Li et 

al. 1997). One study of 66 surface water treatment plants showed that there was no 

significant correlation behveen parasite removal and rernoval of turbidity (LeChevallier, 

Norton and Lee 1991). Furthemore, it was found in a series of four pilot studies that 

turbidity removaI did not directly correlate well with removal of either Cryptosporidizim 

or Giardia (Patania et al. 1995). In these pilot studies, it was observed that turbidity was 

removed to a much lesser extent than Cryptosporidium or Giardia when raw water 

turbidity was less than 10 NTG. However, for raw water with higher turbidity, there 

would be greater log removal of turbidity, thus turbidity is not a proper surrogate for 

Cryptosporidium or Giardia (Patania et al. 1995). Nevertheless, the level of turbidity 

rernoval did influence the level of organism rernoval (Patania et al. 1995). Moreover, 

turbidity was deemed to be a useful predictor of Giardia and Ctyptosporidizon removal 



within a single treatment facility (LeChevallier and Norton 199'23. Nonetheless, the U S  

Environmental Protection Agency has proposed stricter particle control standards to 

expand its Surface Water Treatrnent Rule to address removal of Giardia, 

Cryposporidiurn, and other microorganisms by reducing particle counts (Lind 1997). 

Since Crypiosporidium oocysts are roughly sphencal particles 4-6 p in diarneter and 

Giardia cysts are approximately 10-20 pm in diameter, it is desirable to reduce particle 

counts in that size range. Particle counts, however, do not necessarily correlate with 

turbidity. 

Particle counts have been found to be more sensitive to small changes in filtration 

efficiency than turbidiity (LeChevallier and Norton 1992; Hall and Cr011 1997; Lind 

1997), and removal o f  particles >5 pm has been considered to be a usefid predictor of 

Giardia and Cryptosporridiztrn removal (LeChevallier and Norton 1992). For example, in 

a pilot plant study (Hzall and Croll 1997), it was observed that in the first hour of a 

filtration run where turbidity ranged from 0.15 to 0.2 NTU, the average 2-5 pm particle 

count ranged from 1500 to 7100 particIes1mL. Thus, although there is a slight 

relationship between turbidity and particle counts, the correlation does not appear to be 

significant. This is a l s a  indicated by particle monitoring that was done at two full-scale 

plants (Hall and Croll 1997). It was found in this study that although turbidity ranged 

fiom 0.1 to 0.2 NTU ait both sites, the 2-5 p m  size range of particle counts ranged fiom 

20 to 250 particles1mL at one site and 2000 to 6000 particleslml at the other site. In 

addition, at the site in which particle counts peaked to 6000 particles1mL from 2000 

particlesImL, such chamges were not evident fiom turbidity as it remained fairly constant. 



This M e r  indicates the lack of correlation between particle counts and turbidity. In 

addition, this finding also highlights the greater sensitivity of particle counts with regards 

to filtration performance compared to turbidity. 

Despite the sensitivity of particle counts to changes in filtration performance, the 

accuracy and interpretation of such data are still not completely certair., particularly with 

the correlation between particle count removal and Cryptosporidizirn and Giardia 

removal. A study utilising field-scale bag filtration systems declared that removal of 4-6 

pm polystyrene microspheres was an accurate and precise surrogate for determining 

Cryptosporidirtrn log removal in bag filtration processes without addition of chemical 

coagulant (Li et al. 1997). However, naturally O C C U ~ ~ ~  4-6 prn particle counts, as well 

as 1-25 p m  particle counts and turbidity, were found to be less accurate and precise due 

to great variations in log removals. Variations in particle counts, not just within the bag 

filtration study, but between treatment plants, can be due to natural variation in water 

chemistry (Li et al. 1997) and the addition of particles such as floc particles or granular 

activated carbon fines fiom other treatment processes (Hall and Cr011 1997). Therefore, 

there is still concem with how reliable a surrogate particle count removal is with Giardicz 

and Crypfosporiclizirn removal. Although Li et al. (1997) found 4-6 pm polystyrene 

sphere removal to be an accurate surrogate for Cryptosporidiurn removal for bag filtration 

processes, which was observed under the condition of no added chemical coagulant, pilot 

studies done by Patania et al. (1995) had different results. Direct correlation was not 

observed between removal of 1-2, 2-5, 5-15, and 1-25 pm particles and Giardia cyst or 

Ctyptosporidium oocyst removal. Instead, it was observed that removal of particles 



underestirnated removai of Giardia and Cryptosporidium. However, just as with 

turbidity, the level of removal of particles can be dependent on concentration in raw 

water (Patania et al. 1995). 

These research studies have illustrated the need for M e r  study to understand the 

relationship between turbidity and particle counts and how the removal of each 

quantitatively relates to Giardia c yst and Cryptosporidium ooc yst removal. Even though 

exact relationships are not clear, general conclusions can still be made. It has been 

concluded that achieving a turbidity of 0.1 NTU is effective for cyst and oocyst removal 

(Patania et al. 1995). In addition, it has d s o  been concluded that removal of particles >5 

pm has been considered to be a useful predictor of Giarnia and Cryptosporidiurn removal 

(LeChevallier and Norton 1992). Therefore, both turbidity and particle counts stilI 

remain as important measures of filtration performance. 

As stated previously, particle counts are more sensitive to small changes in filtration 

efficiency than turbidity (LeChevallier and Norton 1992; Hall and Croll 1997; Lind 

1997). Particle counts are thus a usefùl measure within a single treatment plant more so 

than turbidity because of its sensitivity to these changes. However, with greater 

sensitivity cornes greater variability, and this makes particle counts more dificult to 

control. An example of this is with the Quarles No. 1 WTP in the state of Georgia (Ginn 

Jr., Bennett and Wheatley 1997). Particle count peaks were observed with no change in 

the treatment process during the surnmer aftemoons whereas turbidity remained relatively 

constant. No certain explanations could be given for this phenornenon. This serves to 



illustrate the difficulty of conû-olling particle count levels. Subsequently, meeting the 

stricter standards that address Giardia and Cryptosporidium removal is made difficult. 

The development of an ANN mode1 for filtration performance for predicting particle 

counts addresses this concem by irnproving the process control of water treatment, which 

subsequently improves the control of particle count levels in finished water. 



2.3 Filtration Process and Mechanisms 

In addition to understanding the parameters that measure filtration performance, it is 

necessary to understand how the process works to help determine the factors that have an 

effect on filtration performance. Consequently, an ANN mode1 representative of the 

problem dornain c m  be developed. Control of the treatment process is also discussed 

illustrating the need for improved control to irnprove performance- 

2.3.1 Description of Filtration 

Filtration is a unit treatment process used in producing potable water. Its primary 

objective is to remove particulate matter from the water whether the particles corne from 

the source water or are generated in treatment processes (AWWA 1990). As mentioned 

previously, filtration performance is typically measured in two ways: filtrate turbidity 

levels and filtrate particle count levels. Performance can also be rneasured by headloss 

through a filter. 

There are a number of different types of filters used in potable water production, and 

consequently they can be generally classified in four ways (AWWA 1990). One way is 

based on the type of media that is used. Granular media of sand, crushed quartz, 

anthracite, and garnet can be used in mono-media, dual media, or tri-media form. Instead 

of a granula bed, a contrasting type of filter is the pre-coat filter where a thin Iayer of 

very fine medium such as diatomaceous earth is used. Hydraulic arrangement is another 

means of classiQing filters. With gravity filters, flow through the media achieved by 

gravity and the filter is open to the atmosphere. On the other hand, pressure filters have 



the filter medium contained under pressure, and water is driven tfirough the filter by 

pressure. A third means of classifying filters, particularly granular-bed filters, is by the 

rate of filtration. Rapid sand frlters operate at high flow rates, whereas slow sand filters 

operate at much lower rates. A final means of classifiing filters is by the type of 

filtration defining where in the filter the solids are removed. If particles are removed 

within granular material, then this is defined as depth filtration. In contrast, cake 

filtration is when particles are removed on the entering surface of the filter media as the 

case with pre-coat filters. 

The type of filtes used at the E L  Smith WTP is dual-media granular filters operated 

under gravity. Anthracite and sand are the two types of media used in the filters. The 

flow rate is high therefore utilising rapid sand filtration, and since particles are removed 

within the granular media bed, the type of filtration c m  be classified as depth filtration as 

opposed to cake filtration. 

2.3.2 Mechanisms of Filtration 

The mechanism of rapid filtration is complex in that there are actually multiple 

mechanisrns involved. Particles that are Iarger than the pore spaces in the filter media are 

physically removed by the process of interstitial straining (AWWA 1990). However, for 

smaller particles, filtration is considered to be a combination of particle transport to the 

media and at tachent  to the media (O'Melia and Stumm 1967). Small particles must first 

be brought from the bulk of the fluid within the interstitial spaces of the media to the 

surface of the media grains by transport mechanisms. Once particles are brought to the 



surface of media grain, or surface of other deposited solids, physical and chernical forces 

control the attachment of the particles to the grain surface. 

There are three transport mechanisms that are generally considered to be the most 

important in particle transport: sedimentation, interception, and diffusion (AWWA 1990). 

EEciency of particle transport by sedimentation is govemed by equation 1 : 

where, qr = sedimentation transport efficiency of collector, 

p, = filter grain mass density, 

p = mass density of fluid, 

g = acceleration of gravity, 

d, = particle diameter, 

p = fluid viscosity, 

V = filtration rate. 

Efficiency of particle transport by interception is given by equation 2: 

where, qi = interception transport efficiency of collector, 

d, = particle diameter 

d, = filter grain diameter. 

Finally, efficiency of particle transport by difision is governed by equation 3: 



where, q~ = diffusion transport eficiency of collector, 

K = Boltzman's constant, 

T = absolute temperature, 

p = fluid viscosity, 

d, = particle diameter, 

d, = filter grain diameter, 

V = filtration rate. 

Particle transport can be intluenced by media grain size, filtration rate, fluid temperature, 

and the density and size of the suspended particles (O'Melia and Sturnm 1967), and this 

c m  be clearly seen within the three transport mode1 equations. In fact, the dominant 

transport mechanism is dependent on particle size. For particles cl pm in size, the more 

dominant transport mechanism is difhsion, whereas for particles >1 prn in size, the 

dominant mechanisms are sedimentation (Arnirtharajah 1988) and interception (OfMelia 

1985; Aim et al. 1997). As a result. there is a minimum net transport efficiency for 

particle sizes of approximately 1 pm (Habibian and O'Melia 1975; Arnirtharajah 1988). 

In other words, particles that are about 1 pm in size are the least effectively removed 

particles by filtration, and this has been observed in a number of studies (Tobiason, 

Johnson and Westerhoff 1990; Tobiason et al. 1993; Aim et al. 1997). 

Upon transport of the particle near the surface of the media grain, the particle must then 

attach to it. According to the DLVO theory, named after the work of Derjagin, Landau, 



Verwey, and Overbeck, a charged particle will have a layer of oppositely charged ions 

(the Stern layer) around it as well as a dif ise layer of mixed charged ions, which results 

in particles being repdsed from the media grain (Sawyer, McCarty and Parkin 1994)- 

However, if the particle is destabilised enough from the coagulation unit process prior to 

filtration, electrostatic repulsions will be minimal dlowing the particle to collide with the 

media grain surface. Through physical adsorption due to Van der Waals' forces, particles 

are thus able to attach to the grain or to other particles already aîtached to the media. 

Chemical adsorption may also play a role in particle attachment in which the particles 

become fixed to the surface of the media. Exchange adsorption is another possible form 

of interaction particularly for ions present in solution. 

2.3.3 Filter Operation and Control 

Typically at a WTP, the operator assesses the curent state of the treatrnent process from 

data acquired from the Supervisory Control and Data Acquisition (SCADA) system or 

fiom information collected through testing. Then based on a series of jar tests and 

through operator experience, a control action is determined. The problem with this level 

of control is that with al1 the variables involved that influence filtration performance, it is 

dificult to completely assess the state of the system process and there is no definite clear- 

cut control action that c m  be taken. Moreover, jar tests only assess clarification 

performance, and therefore results from these tests do not necessarily reflect how well the 

filters will perfom. The use of an ANN mode1 to predict performance provides an 

alternate means of assessing the state of the treatment process as well as providing 

control options based on the determined relationships between variables and 



performance. Such determinations are more comprehensive than relying solely on 

operator assessrnent since the mode1 is able to derive the extent of impact of multiple 

parameters making ANN assessrnents more reliable. Furthemore, current process 

control of treatment is a reactive process in which control actions are dictated and taken 

by changes in water quality coming off of the filters. However, since there is 

approximately a three to four hour detention time through the whole treatment process, 

the effects of control actions will not take effect for that time period, and this c m  

potentially result in three to four hours worth of poor water coming from the plant before 

this is corrected. Utilising ANN modeIs for process control is a proactive control 

technique in which water quality can be controIled based on influent water quality and 

operational control. Therefore, action is taken prior to incidences of poor water quality 

effluent by taking action in response to varying influent quality. This addresses the 

problem of the time deIay of control actions resulting from reactive process control. 



2.4 Factors Affecting Filtration Performance 

Given an understanding of the filtration process as described in section 2.3, the factors 

that affect filtration performance can be detemiined and assessed, which is done in this 

section. This is necessary to determine the parameters that wiIl be used in mode1 

development. These factors are categorised into three categories: operational parameters, 

solution chemistry and suspended particle properties. 

2.4.1 Operationai Parameters 

2.4.1.1 Filtration Rate 

According to models of transportation by sedimentation and by diffision shown in 

section 2.3, it is indicated that particle collection is hindered by higher filtration rates 

(AWWA 1990). As can be seen in the equations, as filtration rate increases, efficiency of 

transport of particles to the filter media decreases, thus filtration performance decreases. 

However, there have been a number of studies done in the 1950's and 1960's on varying 

filtration rates and the subsequent effects on turbidity removal in which rates ranging 

fkom 5 m/h to 15 rrih were examined (AWWA 1990). It was found that the varying rates 

had little effect on effluent turbidity. Nonetheless, the conclusion made from this 

literature was that higher filtration rates result in slightly poorer filtrate, and it was s h o w  

that high rates up to 37 m/h had a detrimental effect (AWWA 1990). This result was also 

demonstrated in a different pilot plant study undertaken in Israel (Hatukai, Ben-Tzur and 

Rebhun 1997). It was shown that as filtration velocity changed from 20 m/h to 15 m/h, 

total particle counts decreased correspondingly, and it increased as filtration velocity 

increased back to 20 mlh. Interestingly, turbidity remained constant throughout the entire 

mn. Such a result shows the sensitivity of particle counts compared to turbidity and 
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implies that the effect of varying filtration rates may not be detected as well through 

turbidity. Therefore, the filtration rate rnay have a more significant effect on eficiency 

of particulate removal than what is indicated by earlier studies. This is further indicated 

in a bench scale study that was done in which the effects of filtration velocities of O. 11, 

0.22, and 0.33 rn/h on particle removal were examined (Moran et ai. 1993). It was found 

that there was greater particle removal with a lower filtration velocity. Therefore, given 

the experimental evidence, filtration rate should be considered a significant factor 

af3ecting filtration performance. 

2.4.7.2 Filter Media Size 

It is generally understood that the larger the media, the less efficient the particle removal. 

This is because with increasing diameter of the filter particles, less surface area is 

available for contact to be made with particles, thus less opportunity for particles to be 

retained. This is supported theoretically by the mode1 of efficiency of transport by 

interception (eqn. 2) and by the mode1 for transport by diffusion (eqn. 3) given in section 

2.3.2. From these equations, it c m  be seen that as filter grain diameter decreases, 

efficiency of transport of particles increases resulting in improved filtration performance. 

Expenmental evidence from a bench scale study supports this statement (Moran et al. 

1993). 1.85 mm media was tested against 0.78 mm media with the same depth of 746 

mm. It was found that clean bed removal was more eff~cient for the smaller 0-78 mm 

media than the 1.85 mm media. Moreover, when adjustments were made to filter depth 

so that surface area was constant for both media sizes, particle removal efficiencies were 

very similar. This supports the concept that the amount of surface area of filter media 
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influences efficiency of  particle removals. Therefore, filter media size is a significant 

factor in filtration performance. 

2.4.7.3 filfer Media Depth 

Little information was encountered in literature regarding effects of filter media depth on 

filtration. However, it is intuitive to deduce that increasing the depth of the filter would 

improve filtration. This is because increasing filter depth increases total filter media 

surface area thereby allowing for greater opportunity for particles to have contact with 

the filter media. As a result, particle removal efficiency should improve. A bench scale 

lab study was done in which particle removal was determined at filter depths of 193 mm 

and 746 mm (Moran et al. 1993). It was observed and concluded that particle removal 

increased with increasing depth. Therefore, filter depth can be considered to be an 

important factor in filtration performance. 

2.4.2 Solution Chemistry 

2.4.2.1 Coagulant Dosage and Type 

The two general mechanisms that occur in filtration are the transport of particles to the 

filter grain followed by adherence of the particle to the grain. In order for particles to 

attach, they must be chemically destabilised by pre-treatment, and the importance of pre- 

treatrnent has been emphasised in literature (O1Melia 1985; Arnirtharajah 1988). Given 

that coagulants are responsible for destabilisation, it is clear that coagulant dosage is a 

significant factor in filtration efficiency. 



A series of pilot plant experiments were performed which demonstrates the importance of 

coagulant dosage to filtration performance (Arnirtharajah 1988). Afum dosages of 1, 5, 

and 8 mg/L were exarnined, and an optimal alum dosage was observed at 5 mg/L at a pH 

of 6.9-7.0. Good filtration was also observed at a dosage of 8 mg& however poor 

turbidity removal occurred with a dosage of 1 m g L  

In a different lab study (Tobiason and O'Melia 1988), calcium nitrate was used as a 

coagulant in varying concentrations to observe the clean-bed particle removal of a 

monodisperse solution of 4 pm latex particles. It was found that as concentration of the 

coagulant increased, particle removal increased M e r  demonstrating the influence of 

coagulant dosage. Zeta potential, which is explainsd in section 2.4.3.1 on p. 34, was also 

measured in this experïrnent, and it was observed that as coagulant dosage increased, the 

zeta potential of the particles approached O mV compared to an initial negative value of 

-70 mV. This is an indication of how the coagulant destabilises the particles eliminating 

the negative charge. 

Coagulant type can also be considered to be an influential factor on filtration 

performance as some coagulants may be more effective than others at destabilising 

particles depending on solution conditions. An example of this was demonstrated in a 

study in which alun and Fe2(S0& were compared (Valade et al. 1996). It was observed 

that the iron sulfate produced slightly lower filter effluent turbidity than alurn, which is 

evidence that coagulant type is an important factor that c m  influence filtration 

performance. 



From these studies, it is apparent that coagulant type, and more particularly the dosage, is 

very important in particle removal, Coagulant dosage should definitely be considered as 

a significant factor in filtration performance. 

2.4.2.2 Polymer Dosage and Type 

Polyrners c m  be used as a sole coagulant, coagulant aid or filter aid. It differs fiom metal 

salt coagulants, such as alum, in that polyrners are long chain organic molecules with 

positive andor negative charges and may destabilise particles possibly by charge 

neutralisation or by interparticle bridging. Therefore, the effects of polyrner 

characteristics may not be as significant depending on the dominating mechanism. This 

was demonstrated by a pilot plant study that was done in which the effects of using 

polyrners as a filter aid on filtration performance were assessed (Zhu et al. 1996). 

Different rnolecular weight polymers with different charge densities were exarnined, and 

it was found that these parameters had little effect on filtrate quality. However, since the 

polymers were used as filter aids and used in small amounts, it is difficult for charge 

neutralisation to occur, therefore polymer type and charge density would have Little 

impact on filtrate quality (Zhu et al. 1996). It is more likely that the dominant 

mechanism of removal was interparticle bridging between the polymers and particles, 

which would explain the observed Iack of influence of polymer type. Polymer dose, 

however, kvas founci to be an important factor. An optimal dose was found to be 0.01 

mg/L with no improvement when dose was increased to 0.02 mg/L. However, when dose 

was decreased to 0.005 m a ,  filtrate quality degraded. 



In another pilot plant study (Hatukai, Ben-Tzur and Rebhun I997), it was shown that 

addition of cationic polymer to alum as a coagulant aid resulted in better turbidity and 

total particle count removai. Log removd increased fi-om 1-4 to 1.8 for particles in the 

size range of 2-5 p m  with the addition of O. 1 mg/L of polymer. Furthemore, increasing 

the polymer dosage from O. 1 mg/L to 0.3 mg/L also improved removal efficiency. There 

was less improvement in the removal of smaller sized particles, but there was good 

improvement in the removal of coarser particles at this higher dosage. This is another 

indication on the importance of polymer dose to particle removal eficiency. 

It was shown in the study by Zhu et al. that polyrner type wras not found to be a 

significant factor in filtration performmce. However, both studies discussed have shown 

polymer dose to be an influential factor and therefore should be considered as significant 

in filtration performance. 

2.4.2.3 pH and Alkalinity 

One of the main effects of pH during water treatrnent is on the solubility and speciation 

of the coagulant alurn. This in turn affects the degree of destabilisation of particles as 

well as determines the dominant mechanism(s) of destabilisation, which ultimately 

affects filtration performance. The relationship between pH and alurn concentration is 

shown in Figure 2-1, which clearly displays solubility of alum at a given pH. The zeta 

potential of a colloid in a solution of 10 mg/L of alum and without alum is compared in 

the lower half of the diagram. pH can also influence the surface charge of a particle 

(Stumm and Morgan 1996). At low pH, protons can adsorb to the surface of a negatively 
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charged particle. Conversely, at high pH, hydroxides can adsorb to the surface of a 

positively charged particle. Either way, the surface charge is affected and the particle can 

become destabilised. 

Charge neutralisation to 
zero seta potential with 
Al,(OH),"*/Al(OH),(s) 

Restabilisation zone sweep coagulation 
/ 

solution pH 

Figure 2-1. AIum coagulation diagram and zeta potential with charge neutralisation zones (modified 
from Amirtharajah (1988)). 

In one direct filtration bench study (Collins, Amy and Bryant 1987), the effect of varying 

pH on filtration was determined. It was observed that an initial pH of 8.5 generally 

resulted in lower final turbidity and total particle counts compared to an initial pH of 5.5, 



but a clear explanation of these results was not discussed. The problem lies in the fact 

that alum dosages were chosen based on near-maximum removal of non-volatile total 

organic carbon. This resulted in holding alum of dosage to 2.0 mg/L for pH 5.5 and 4.0 

mg/L for pH 8.5. Therefore, the reason for the lower turbidity and particle count at pH 

8.5 compared to 5.5 was likely due to the higher arnount of alurn present whose actions 

result in improved filtration. 

The opposite results were found, however, in another lab study (Tobiason and O'MeIia 

1988). In this study, the zeta potential of a monodisperse mixture of 12 p m  latex 

particles was measured as pH was changed. It was observed that as pH decreased from 

10 to 2, zeta potential changed from -55 rnV to - 3 rnV. Filter efficiency was then 

observed for pH 9.7 and 3.0, and it was found that particle removal efficiency \vas better 

at pH 3 than at 9.7. This observation is explainable by the  likely fact that at such a low 

pH, protons adsorbed to the surface of the particle, which accounts for the obsewed zeta 

potential change to a positive value at lower pH. As a result. the particles are destabilised 

allowing for greater interaction and attachent with the negatively charged filter media. 

At a pH of 9.7, the particles would tend to retain a highly negative charge and therefore 

would be less likely to interact and be retained by the filter media. Therefore, the filter 

efficiency would be greater at a pH of 3.0 than at 9.7. 

Another study evaluated the effect of pH on direct sand filtration at pH values of 5, 7, and 

9 (Ebie and Miyake 1991). It was found that turbidity removal was higher at pH 5 and 7 

compared to pH 9, however the mode of filtration was different at each pH. At pH 5, 



particles had a highly positive charge and were therefore retained in the filter media 

mainly due to electrostatic attractive forces. At pH 7, which is in the optimal coagulation 

range of kaolinite particles with alurn, larger fiocculated particles formed with the 

predorninant transport mechanism found to be interception. This is different fiom 

filtration at pH 5 because the effectiveness of filtration is due to both particle attachment 

and transport, whereas at pH 5, fiItration efficiency was mainly due to particle 

attachent.  At pH 9, the suspended particles and the filter sand grains had a negative 

charge, and it was assumed that particles passed directly through the filter. 

Another study found that optimal filtration occurred at a pH range of 6.9-7.1 with a 

suffrcient dosage of alum for destabilisation (Amirtharajah 1988). This range of pH also 

falls within the pH boundary for charge neutralisation. 

It has been shown through these studies that pH has a major impact on filtration 

performance. It influences alum solubility therefore affecting the degree of particle 

destabilisation and subsequently particle attachment to filter media. pH also impacts 

filtration by affecting the surface charge of the particle with the adsorption of protons 

ont0 the negatively charged surface of the partide resulting in particle destabilisation. 

pH shouId therefore be considered as a significant factor in filtration performance. 

Alkalinity is defined as the measure of the capacity to neutralise acids (Sawyer, McCarty 

and Parkin 1994). This is an important characteristic of water because it has an effect on 

pH in that it would influence how much pH decreases as acid is added to water. Such a 



situation arises when alum is added to water. As alum undergoes hydrolysis, a proton is 

released which results in a decrease in pH. The alkalinity of the water, however, would 

determine the extent to which pH is affected. Since changes in pH have an effect on 

filtration performance and alkalinity affects changes in pH, alkalinity can be said to have 

an effect on filtration performance and rnay be a significant factor. 

2.4.2.4 ionic Strength 

The ionic strength of the solution may influence the surface chemistry of the particles and 

aiter the interactions between particles and between particles and filter media, which 

consequentIy may have an effect on filtration performance. If ionic strength is 

sufficiently high enough, the double layer of the particle is compressed with the difhse 

layer reduced (AWWA 1990). This would reduce the range of repulsive interaction 

between similarly charged particles allowing the particles to interact more easily through 

van der Waals interactions. A lab study was done (Prasanthi et al. 1994) with hematite 

particles in which the ionic strength was varied from 105 to 8x10-~ M My vvarying the KCl 

concentration from O to 80 mM. With increasing ionic strength, colloida1 aggregate size 

increased from 0.085 urn to 0.99 Pm. Clean bed filter efficiency thus increased with 

increasing size within this size range. However, efficiency decreased as aggregate size 

neared 1 Fm, which is theoretically expected as discussed in section 2.3. During the 

transient stage of filtration, there was quick break-through with KC1 concentrations from O 

to 10 mM. For higher concentrations (40 to 80 mM), initial removal efficiency improved 

with decreasing concentrations, however the trend was reversed as breakthrough was 

approached in that removal efficiency improved with increasing concentrations. Based 
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on these experimental results, ionic strength can have an impact, and it may be 

considered a significant factor. 

2.4-2.5 Particle Concentration 

Influent particle concentration is an important parameter in that it has an influence in 

deciding the type of filtration process to utilise. Depending on the mass concentration 

and volume average diameter of particles in the raw water, there are three types of 

filtration processes to consider as an optimal treatment process: contact filtration, direct 

filtration, and conventional filtration (O'Melia 1985). This is shown in the Figure 2-2 

below. Generally, for larger sized particles in greater concentrations, conventional 

filtration is most effective. 

Conventional 
Treatment 

O 10 20 30 40 50 60 

Particle Mass Concentration in Raw Water (mgn) 

Figure 2-2. Optimal water treatment configuration as a function of  raw water characteristics 
(modified from O'Melia (1 985)). 

More importantly is the effect of particle concentration on filter performance. Given that 

the purpose of filtration is to remove particles, variations in influent particle 

concentration have the potential to affect performance. Such effects are related to 
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particle size in that the presence of different sized particles also affects performance. 

Thus, varying concentrations of different sizes of particles have a varying effect on filter 

efficiency (Prasanthi, Vigneswaran and Dharmappa 1997). This is partially due to the 

different rnechanisms that dominate depending on the particle size as discussed in section 

2.3. 

The removal efficiency of a clean filter is independent of influent concentration, but as 

filtration proceeds, concentration is observed to have a significant effect (OIMelia and Ali 

1978). Specifically, it was observed that as influent concentration of suspended particles 

increased fiom 1 mg/L to 50 mg/L, the percent concentration remaining decreased. It 

was also found in the same study that during the fiIter ripening stage, filter efficiency was 

higher for higher influent concentrations. In another study in which submicron particles 

of sizes 0.46 pm and 0.825 pm were used, it was observed that the clean bed filter 

efficiency increased with increasing influent mass concentration (Prasanthi, Vigneswaran 

and Dharmappa 1997). Given the observations made in these studies, particle 

concentration should be considered to be a significant parameter in filtration. 

2.4.2.6 Hardness and Water SoRening 

Hardness of water is caused by multivalent metallic cations and is derived largely nom 

contact with soi1 and rock formations (Sawyer, McCarty and Parkin 1994). Some of the 

principal cations that cause hardness in water include caZC, M ~ ~ + ,  sr2', ~ e ~ + ,  and ~ n ~ ' .  

Very little information was encountered in the literature regarding the effects of hardness 

on filtration performance. It was stated, however, that the colloidal stability of natural 
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particles in surface water depends significantly on hardness and dissolved organic carbon 

or humic substances in the water (Amirtharajah 1988). This in turn can affect the ability 

of the particles to interact with the filter media and each other implying that filtration 

performance could ultimately be affected. 

In some treatment plants where the source water is quite hard, hardness is removed by 

softening. Lime is a typical chemical added to soften the water, and this results in the 

formation of calcium carbonate, which precipitates and settles out. This reaction also 

results in an increase in pH, which is then controlled. Because of this process, the 

formation of calcium carbonate precipitate may add to the particle concentration that 

enters the filters, which in tum could affect filtration performance as discussed previously 

in section 2.4.2.5. Therefore, it is possible that if water softening by lime addition is 

performed at a treatment plant, lime dosage could be considered to be an influential 

factor In filtration performance. 

2.4.2.7 Organic Matter Concentration 

Organic matter is capable of adsorbing ont0 particles, which c m  alter the surface 

characteristics of the particle thus altering interactions with other particles (Prasanthi et 

al. 1994). In fact, colloidal stability of natural particles in surface water is dependent on 

dissolved organic carbon or humic substances in water (Amirtharajah 1988). Since the 

surface chemistry of particles and the extent of particle stability affect particle removal, 

filtration performance may be affected by organic matter concentration. 



A lab study was done (Prasanthi et al. 1994) with hematite particles in which fùlvic acid 

concentration was varied fiom O to 4 mg/L to detemine the effect on particle removal. 

As concentration increased from O to 0.5 mg& the zeta potential of the particles went 

from a positive charge to a net charge of near zero, and the particle aggregate sizes 

increased. Clean bed filter efficiency was highest at a concentration of 0.5 mg/L fulvic 

acid. Removal efficiency dropped at 0.75 mg/L fulvic acid because aggregate size was at 

approximately 1 um, which is the critical size in which particle transport is at a minimum. 

At 2 and 4 mglL fûlvic acid, there was virtually no aggregation because the particles were 

stabilised by the fùlvic acid as evidenced by the particles possessing a negative zeta 

potential. However, removal efficiency was stiI1 quite high due to increase in transport of 

particles from diffusion. 

In another study that was done Collins et al. (1987) found that the presence of higher 

levels of fulvic acid did not significantly affect final turbidity and total particle counts at 

a pH of 8.5. However, at pH 5.5, inhibition of particle removal was observed. 

The results from these studies are evidence that organic matter can interact with and 

affect the chemistry of particles. Consequently, organic matter concentration might be 

considered to be an influential factor in filtration performance. 



2.4- 2.8 Activated Carbon Dosage 

Powdered activated carbon (PAC) is predominantly used for controlling taste and odour 

by adsorbing organic cornpounds. By affecting the concentration of organic rnatter in 

water, filtration performance may subsequently be affected as discussed previously in 

section 2.4.2.7. Furthermore, addition of activated carbon to water may contribute to 

particle concentration that eventualry enters the filters. As previously mentioned in 

section 2.4.2.5, the added particle concentration may impact filtration performance. 

Given the effects that activated carbon potentially has, it should be considered to be an 

influentid parameter in filtration performance. 

2.4.2.9 Temperafure 

From the models shown for transport efficiency by sedimentation (eqn. 1) and diffkion 

(eqn. 3j in section 2.3.2, it c m  be seen that transport is dependent on temperature for 

diffusion and viscosity for both sedimentation and difision. As temperature decreases, 

eficiency of transport by diffusion would decrease. In addition, viscosity increases with 

decreasing temperature, which resuhs in a decrease in efficiency of transport of particles 

by sedimentation and diffusion. This can ultimately result in a decrease in particle 

removal efficiency in filtration. Settling in the clarification tanks can also be affected. 

Another effect that temperature can have is on reaction rates. Cold temperatures can 

result in a decreased reaction rate affecting upstream processes such as coagulation and 

softening. Consequently, if the extent of destabilisation in coagulation is decreased, 

filtration efficiency may decrease. Therefore, temperature should be regarded as an 



important factor in filtration performance. However, the impact may only be slight if 

temperature does not v q  greatly. 

2.4.3 Suspended Particle Properties 

2-4.3.1 Zeta Poten tial 

Zeta potential c m  be described in the following way. A charged particle (negative) 

accumulates a layer of ions around it, which is the difise layer, with ions of the opposite 

charge (positive) particularly around the surface to form a layer called the stem layer. 

Together, these layers comprise the electric double layer, and this is shown in Figure 2.3. 

The potential at the edge of the stem layer within this double layer is the zeta potential 

(Sawyer, McCarty and Parkin 1994). The zeta potential is dependent on the potential at 

the surface of the particle, which is the Nerst potential, and the thickness of the double 

layer, and its value determines the extent of the electrostatic forces of repulsion between 

charged particles (AWWA 1990). Particles in natural water typically have a zeta 

potential ranging fiom -20 to 4 0  mV. but suspensions of particies that are well 

destabilised have a potential close to O (AWWA 1990). Therefore, it is evident that zeta 

potential is a good indication of the extent of particle destabilisation, which is an 

important condition in filtration effectiveness. 
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In a study previously mentioned in the section on coagulant dosage in section 2.4.2.1, 

zeta potential was monitored as coagulant dosage varied (Tobiason and O'Melia 1988). It 

was observed that as coagulant dosage increased, the zeta potential of the particles 

approached zero, whereas the particles initially possessed a negative zeta potential. As 

well, as zeta potential approached O mV, rernoval efficiency improved significantly. 

Within the sarne study, another experiment was carried out in which zeta potential was 

monitored while the pH was varied. What was observed was that as pH was shifted frorn 

10 to 2, zeta potential of the particles changed from -55 mV to nearly O mV. 

Furthemore, as zeta potential becarne less negative, removal efficiency improved. These 

results indicate a correlation between zeta potential and filtration performance, thus it 

may be an important factor. 



2.4.3.2 Particle Size and Size Distribution 

Particle size is an influential factor in fiItration performance in that the dominant 

mechanism of transport of particles to filter media is dependent on the size of the particle. 

AS it was discussed in section 2.1, there is a minimum net transport efficiency for particle 

sizes of approxirnately 1 pm (Habibian and O'Melia 1 975; Amirtharajah 1 988). Particles 

that are about 1 pm in size are least effectively removed by filtration, and this was 

obsewed in the following studies. 

In one lab study of contact filtration in which monodisperse suspensions of 0.27, 1.32 and 

10.0 pm particles were used, it was found that the 1.32 pm particles were removed least 

efficiently. Removal of the submicron particles was better, and removal of the large 10 

prn particles was best (Tobiason, Johnson and Westerhoff 1990; Tobiason et al. 1993)- 

In another granular bed filtration study (Aim et al. 1997). monodisperse suspensions of 

0.46, 0.825, and 2.967 Fm latex particles were studied. It was observed that the clean 

bed filter efficiency was less for the 0.825 pm particles than the other two sizes. which 

supports the contention that minimal particle removal occurs for particles approximately 

1 p m  in size. However, it was also found that such a critical size did not exist for the 

ripening stage filter efficiency and that removal efficiency at this stage increased with 

particle size. 

Size distribution may also play a role in filtration efficiency in that particles of one size 

can affect the removal efficiency of particles of a different size (Aim et al. 1997). In the 



contact filtration study (Tobiason et al. 1993), the removal efficiency of a polydisperse 

suspension of 0.27 and 1.32 p m  particles was examined. Tt was found that for the 0.27 

p m  particles, the presence of the larger particles resulted in a decrease in clean bed 

removal efficiency of the smaller particles. On the other hand, for the 1.32 prn particles, 

the presence of the srnaller particles resulted in an irnprovement in clean bed filter 

efficiency of the larger particles. The improvement in filter efficiency for larger particles 

due to srnaller particles could have been because of increased apparent surface roughness 

of the media or of the larger particle due to small particle deposition. Conversely, the 

effect of larger particles on smaller particles could be due to unfavourable hydrodynarnic 

interactions or differences in destabilisation (Tobiason et al. 1993). These effects of one 

particle size on another are dependent on the relative abundance of each particle as \vell 

as chernical conditions (Tobiason, Johnson and Westerhoff 1990). 

Given that transport mechanisms are size dependent and that there is experimental 

evidence supporting this, it is apparent that particte size is a significant factor that affects 

filtration performance. As well, particle size distribution can also be considered a 

significant factor in filtration performance from observations made in lab studies. 



2.5 Aspects of Arfificial Neural Networks 

The purpose of this section is to discuss the basic fundamentals of ANN. It is important 

to have an understanding of ANNs in order to be able to design, develop and optimise an 

ANN rnodel. A description of ANN is presented in this section dong with its specific 

components and aspects. 

2.5.1 Description 

An artificial neural network is a biologically inspired cornputational mode1 (Kasabov 

1996; Garrett Jr., Gunaratnam and Ivezic 1997). It is classified as an artificial 

intelligence modelling (AI) technique in that it has the capability to learn fiom examples, 

which is a key characteristic. An example of a basic network is depicted in Figure 2-4. 

The network consists of highly intercomected processing units cdled neurons, which are 

the basic elements of an ANN. These processing units or neurons receive input signals 

Error Backpropagation 

1 Outputs 1 

Layer Hidden 
Layer 

Figure 2-4. A basic artificial neural network 



fiom other neurons or extemal stimuli, process it through an activation or transfer 

fûnction, and produces a transformed output signai to other neurons or external outputs 

(Zhang, Patuwo and Hu 1998). Learning occurs through training of the network in which 

input exarnples are repeatedly presented to the network, and modification and 

optimisation of the connection weights between neurons are performed through the use of 

a leaniing algorithm. Therefore, mathematical formulae or algorithms are not required to 

develop solutions to the problem. Other important characteristics are its robustness and 

its ability to generalise mles and apply them to new cases. The network is able to 

produce the best output according to training examples when new input vectors are 

presented to the network, and it is fault-tolerant in that the system is still able to perforrn 

well if there are errors within the network (Kasabov 1996). In other words, approximately 

correct answers are produced even though data presented to the network is partially 

incorrect or incomplete. 

Before ANN can be applied to a problem, it should be detexmined if using ANN is 

appropriate and applicable. ANN is applicable in cases in which the algorithms or 

heuristics to solve the problem are unknown or too expensive or difficult to determine. In 

addition, developing mathematical formulae for the case study should not be a goal since 

ANN does not use nor provide such formulae. Furthermore, success of the mode1 is 

dependent on data as the modelling process is data intensive. If an adequate arnount of 

data are not available or if the type of data available is insufficient to describe the 

problem domain, then ANN may not be applicable. It is also important to have expert 

knowledge of the study domain itself. In the case of filtration performance, it is known 



that this is a complex process with multiple factors influencing the process. The 

algorithrns and heuristics to define and descnbe al1 the complex relationships involved 

are not completely known and are quite dificult to determine. Since mathematical 

formulae are not necessary for this study, and provided that there is sufficient variety and 

quantity of data availabte that wiIl represent the domain of this process, using ANN is 

applicable to the modelling of filtration performance in a WTP. 

ANN has previously been applied to other environmental engineering problems. Such 

applications have included water demand forecasting, river water quality prediction, air 

quality prediction, pipe break analysis, and enhanced coagulation modelling. 

2.5.2 Architecture, Cornponents, and Aspects of ANN 

There are several main aspects of ANN models: a set of processing units called neurons, 

a state of activation for each neuron, a set of comection weights, a propagation rule, an 

activation rule, and a learning mle (Rurnelhart and McClelland 1986). 

2.5.2.7 Neurons 

Neurons are processing units that receive input signals, process this information and then 

transmit an output signal. There are three types of neurons in a neural network: input, 

output, and hidden neurons. Input neurons receive input from extemal sources, which is 

scaled to a value to between O and 1 or -1 and 1 depending on the type of scaling 

function used. This scaling function is present only within input neurons. Their output is 

then computed as a function of the activation level, which is then transmitted to the 



network (Garrett Jr., Gunaratnam and Ivezic 1997). Specific examples of inputs fiom 

models developed for this thesis include raw water parameters such as turbidity and 

temperature and operationai parameters such as alum dose or polymer dose. Output 

neurons receive input fiom the rest of the network. The output of these neurons are 

computed and sent out of the system (Garrett Jr., Gunaratnam and Ivezic 1997). An 

example is effluent particle counts, which was used in mode1 development. Hidden 

neurons are rhose units in which inputs are received and outputs are sent within the 

network with no extemal contact (Garrett Jr., Gunaratnam and Ivezic 1997). These 

neurons are very important in that they allow the network to detect and capture features 

and patterns in data and to perform the non-linear mapping between input and output 

variables (Zhang, Patuwo and Hu 1998). 

As it was introduced in section 2.5.1, neurons process information in the following way. 

Input signals fiom other neurons or external stimuli are received by a neuron. This would 

include signals from error backpropagation as well. This is then processed through an 

activation or transfer function producing a transformed output signal that goes out to 

Propagation N , ~  Activation 
Function ~ ~ ~ ~ r b  Function 

Figure 2-5. A basic neuron. 



other neurons or as extemal outputs. A diagram of a neuron is shown in Figure 2-5. 

2.5.2.2 State of Activa fion 

The state of activation of a neuron determines whether or not the neuron will fire off an 

output. This is determined by the neuron after processing input stimuli and caiculating 

whether or not a certain threshold is exceeded by the transforrned signal. 

2.5.2.3 Set of Connection Weights 

Neurons are comected to each other and comrnunicate through these connections. The 

strengths of these connections determine how the network will respond to a given input 

(Rumelhart and McClelland 1986; Garrett Jr., Gunaratnam and Ivezic 1997). There are 

three types of  connections: excitatory, inactive, and inhibitory (Garrett Jr., Gunaratnam 

and Ivezic 1997). For example, if the weight, is, of the connection from the ith neuron 

to the jth neuron in a network with a sigmoidal activation fûnction is positive, the 

connection is excitatory meaning that neuron i has an activation effect on neuron j. I f  

is zero, then the connection is inactive meaning that neuron i has no effect on neuron j. If 

wu is negative, then the comection is inhibitory meaning that neuron i hinders activation 

of neuron j. 

2.5.2.4 Propagation Funcfion 

The rule of propagation determines the net input to a neuron by cornbining the output of a 

preceding neuron and the connection weight. The total net input from al1 preceding 

neurons can be mathematically represented by (Garrett Jr., Gunaratnam and Ivezic 1997): 



where, hr, = total net input, 

w, = connection weight, 

O, = output of preceding neuron 

2.5.2.5 Activation Function 

The activation function, which is also referred to as the transfer function, determines the 

new level of activation of a neuron by combining the total net input received with the 

current level of activation. This c m  be represented mathematically by (Garrett Jr., 

Gunaratnam and Ivezic 1 99 7): 

a,,,,,, = new activation level, 

F = activation fünction, 

a,[d = current activation leveI 

N, = net input 

The current activation level acts as the threshold value to which the new activation ievel 

is compared as mentioned in section 2-5.2.2. 



2.5.2.6 Leaming Rules and Nefwork Leaming 

In order for the neural network mode1 to learn the relationships between inputs and 

outputs, the pattern of comectivity in a model would need to be modified. The learning 

rule determines how the network is modified (Garrett Jr., Gunaratnam and Ivezic 1997). 

There are three types of modifications that can be done: the developrnent of new 

connections, the loss of existing connections, or the modification of the strengths of 

comections that currently exist (Rumelhart and McClelland 1986). The development and 

loss of connections can be considered to  be special cases in that connection weights 

become zero for a connection to be lost or move away from zero for a connection to be 

gained (Rumelhart and McClelland 1986). Most neural network simulators, however, 

only provide the capability to rnodifi existing connection strengths (Garrett Jr., 

Gunaratnam and Tvezic 1997). In which case, a zero connection weight indicates an 

inactive connection. 

Most learning rules involving the modification of current connection weights are variants 

of the Hebbian learning rule. The general idea of this rule is that if a neuron, 2 4 ,  receives 

input from another neuron, 19, and both neurons are highly active, then the connection 

weight, wu, fiom u, to u, should be strengthened (Rumelhart and McClelland 1986). 

Another Iearning rule, which is utilised i n  the rnodels developed in this study, is the delta 

rule. Basically, an input is used by the model to generate an output and this is compared 

with the desired or actual output. Connection weights are then rnodified to minimise the 

squares of the difference between the generated output and the actual desired output. 



There are two phases in the application of the generalised delta rule (Rumelhart and 

McClelland 1986). First, input is presented to the network and propagated forward 

through the network to generate an output value. This output is then compared with the 

actual output, and an error signal 6 is computed from the difference between the outputs 

times the derivative of the squashing function. In the second phase, 6 is propagated 

backwards through the network, and appropnate weight changes are made. Mathematical 

derivation of the generalised delta rule is presented by (Rumelhart and McClelland 1986). 

Supervised leaniing is a type of learning that utilises the delta rule. Training exarnples 

include both the input vectors and the desired output vectors. Training is performed until 

the neural network is able to associate each input vector with the corresponding desired 

output vector (Kasabov 1996). Unsupervised learning is a different type of leaming. It 

differs from supervised Ieaming in that the training examples only include the input 

vectors and not the output vectors. The neural network learns the internai features of the 

input vectors presented to it and categorises outputs according to how they associate with 

each other (Kasabov 1996). Kohonen categorisation is associated with this type of 

learning and is m e r  discussed in section 2.5.4. 

2.5.3 Generalisation and Convergence 

Convergence is the ability of the network to leam the training data within the specified 

error tolerance, whereas generalisation is the ability of the network to produce reasonable 

results for the unknown situation after training has been completed. This is important 

particularly during mode1 development because it descnbes the ability of the network to 



Iearn and then perform. The two main reasons for a network to not generalise or 

converge well are because the data set is too noisy or is not representative enough of the 

problem domain. Noise is further discussed in section 3.2. Another reason for poor 

generalisation includes previously unknown data deviating too much fiom examples used 

in the learning (MulIer and Reinhardt 1991). By avoiding these conditions, mode1 

developrnent should be easier to accomplish. 

2.5.4 Kohonen Categorisation 

As it will be discussed in the methodology section in section 3.0, Kohonen networks were 

used as part of the modelling process in this study. Therefore, the concept of this 

network is descnbed here to provide an understanding of what Kohonen networks are and 

how they work in order to understand how and why they are utilised. 

Kohonen networks are based on the behaviour of biological neurons in which specific 

neural responses are associated with the spatial location of neurons. The network 

comprises an interconnected lattice or array of neurons each of which are connected to 

input neurons. As network training occurs, example inputs are presented to the network, 

and neuron connection weights are adjusted. The octput neuron and its connection 

weights, which is equivalent to the centre of the category, that most resembles the input is 

the "wimer" and its weights are changed accordingly. In addition, neurons in the 

neighbouring vicinity to the wiming neuron are also adjusted. As a result. those input 

patterns that have similar characteristics tend to activate neurons that are clustered 

together. The resulting output is the categorisation of each input data pattern. Thus, 



significant features and patterns within the training data influence the network and are 

categorised accordingIy, and this type of network learning is defined as unsupervised 

learning. This differs greatly from backpropagation neîworks, which employ supervised 

learning and requires the actual outputs in addition to the inputs. In other words, the 

correct output is not required in the training of Kohonen networks, only inputs are 

needed, whereas the actual outputs are required to train backpropagation networks. 

Data patterns are categorised based on the spatial relation of the pattern to the centre of a 

category in n-dimensional space in which n-dimensional space is defined by the number 

of inputs. The centre of the category is defined by the average value of the inputs of ail 

patterns within that category. The spatial distance of the pattern is calculated based on 

the input values and relative to the centre of the category in terms of the Euclidean 

distance, which is defined by equation 6: 

where, X is the input value, 

Y is the value of the centre, and 

n is the number of inputs that define the pattern. 

The smaller the Euclidean distance, the closer a pattern is to the centre of a category, and 

the more likely it is that the pattern belongs to that category. 



2- 6 Ofher Al Systems 

ANN is not the oniy type of AI modelling technique that is available. These other AI 

techniques have been applied to water treatment (Boscolo, Mangiavacchi and Drius 199 1 ; 

Zhu and Simpson 1996; Liu and Wu 1997; Evans et al. 1998). However, there are 

advantages and disadvantages of each technique that need to be considered. Ultimately, 

upon evaluation and given the available resources as well as considering previously 

successful application of ANN in the environmental engineering field, which includes 

water demand prediction (Stark, Stanley and Buchanan 2000), prediction of cast iron 

water main breaks (Sacluti, Stanley and Zhang 2000), air quality prediction (Hasham, 

Stanley and Kindzierski 1998), modelling of coagulant dosages (Mirsepassi, Cathers and 

Dharrnappa 1995; Gagnon, Grandjean and Thibault 1997; Han et al. 1997), pressure drop 

in filtration (Conlin, Peel and Montague 1997), chlorination dosage and control 

(Rodriguez and Serodes 1996; Rodriquez, Serodes and Cote 1997), enhanced coagulation 

application (Stanley and Zhang 1 997), and water quality parameter prediction (Maier and 

Dandy 1996; Zhang and Stanley 1997), ANN is still the modelling technique of choice. 

There has been little research, however, in the modelling of the treatment process of an 

entire WTP. The examples of applications in water treatment given here are the 

modelling of single unit processes in treatrnent. Therefore, development of an ANN 

mode1 encompassing the entire treatment process, as with the case in this study, is a 

unique approach toward modelling water quality fiom a plant. 



2.6.1 Expert Systems 

An expert system is a cornputer system that simulates hurnan experts in a given area of 

specialisation (Castillo, Gutierrez and Hadi 1997). K m a n  reasoning is sirnulated about a 

problem domain with reasoning performed over representations of human knowledge, 

and problems are solved by heuristics or approximate methods (Jackson 1990). 

The basic architecture of an expert system is made up of six components: knowledge 

base, context, inference mechanism, explanation facility, knowledge acquisition, and user 

interface (Maher and Allen 1987). The knowledge base contains the facts and heuristics 

or niles associated with the problem domain, and the context contains information about 

the problem being solved. The inference mechanism is the heart of an expert system, 

which contains the control information and uses the knowledge base to modify and 

expand the context. The explanation faciiity is the component that c m  trace the 

execution of the system program and provide the explmations behind a solution to the 

problem being solved. The knowledge acquisition facility is the component that 

facilitates entering knowledge into the knowledge base. Finally, the user interface is the 

liaison between the expert system and the user where the user c m  interact with the 

system. AdditionaI subsystems include coherence control, information acquisition, action 

execution, learning (Castillo, Gutierrez and Hadi 1997). The coherence control 

subsystem controls the consistency of the knowledge base and prevents incoherent 

knowledge fiom reaching the knowledge base. Information acquisition is utilised by the 

inference engine when initial knowledge is limited and conclusions cannot be made. The 

user can provide such information through the user interface. The action execution 



subsystem allows the expert system to perform actions based on conclusions or solutions 

made. Expert systems can learn and gain experience based on available data by storing 

knowledge, which can be drawn upon by the knowledge acquisition subsystem. 

Compared to algonthmic solutions, heuristics are not guaranteed to succeed, and the 

system must be capable of explaining and justifying solutions or recornmendations 

(Jackson 1990). However, mathematical algorithms might be too difficult to develop in 

sorne cases, whereas rules for expert systems are easier to develop. In addition, expert 

systems can acquire knowledge as well as ver ie  its coherence, store the knowledge or 

ask for new knowledge when needed, l e m  from the knowledge base and available data, 

reason and rnake inferences in deterrninistic and uncertain situations, and comrnunicate 

with experts, non-experts, and other expert systems (Castille, Gutierrez and Hadi 1997). 

The main problem with utilising an expert system, however, is that the general mles 

developed might be too simplistic to describe more complex problem domains. For 

exarnple, filtration performance at a WTP involves many complex processes, therefore 

the d e s  that would be developed for an expert system may not adequately descnbe al1 

the relationships involved that affect filtration performance. As well, experts would need 

to be available to develop and modiQ rules as needed. 

2.6.2 F u u y  Logic 

Fuzzy systems are mle-based expert systems based on f k z y  rules and fùzzy inference, 

which represent knowledge that is subjective, arnbiguous, vague, or contradictory 

(Kasabov 1996). There are three main components in a f u v y  system: £ Ù u y  input and 
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output variables defned by their fÙzzy values, a set of fuzzy d e s ,  and a fuzzy inference 

mechanism. Fuzzy propositions are used in that propositions contain fuzzy variables and 

values such as "the temperature is cold" or "the pH is high." Fuzzy inference takes 

inputs, applies funy d e s ,  and produces outputs, and inputs and outputs may be either 

crisp exact values such as "2" or "3," or fuzzy values such as "low" or "high" (Kasabov 

1996). Defùzzification is then done in which an output membership function is 

transformed into a single value. 

Fuzzy logic has an advantage over expert systems in that rule generation c m  be done 

with statistical tools using historical data rather than relying on experts themselves. 

Another advantage just as with expert systems is that mathematical equations are not 

necessary to solve the problem. Other advantages of hzzy systems are that they are easy 

to implement, easy to maintain, easy to understand, robust, and cheap (Kasabov 1996). 

The problem with applying fuzzy logic to filtration performance is that filtration 

performance is a complex process, and even though mle generation is easier than for 

expert systems, it may still be inadequate to describe the relationships involved in the 

process. 

2.6.3 Hybrid Systems 

There are systems in which nile-based systems, f k z y  logic, and neural networks, as well 

as other paradigms such as genetic algonthms and probabilistic reasoning, are combined 

together to form hybrid systems. These systems are used when requirements for the 

solution of a problem are not met with a single method, or if models either cannot be 
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implemented using a single method or implement better using more than one method. 

Advantages of individual systems can thus be applied in a single system. If a f k q  

neural network were to be developed, then advantages of both systems could be utilised. 

For example, fuzzy systems can contnbute the following features: a well-developed fuzzy 

logic theory, humanlike reasoning mechanisms, uses linguistic terms, accommodates 

comrnon-sense knowledge, ambiguous knowledge, imprecise but rational knowledge, 

uses universal approximation techniques, robustness, fault-tolerance, low cost of 

development and maintenance, and low computationd cost. Neural networks can 

contribute the following advantages: ability to l e m  from data, ability to mode1 empiricaI 

behaviour of humans, use of universal approximation techniques, good generalisation, 

can extract knowledge from data, possess methods for data analysis, associative 

memories and pattern-matching techniques, massive parallelism (during data processing, 

many neurons may "fire" simultaneously), and robustness (Kasabov 1996). There are 

also several disadvantages of using hybrid systerns. Knowledge and skills about different 

paradigms and methods are required, investigation and cornparison of alternative 

solutions is necessary, and suitable software environment and simulation equipment is 

needed (Kasabov 1996). 



2.7 E. L. Smith W P  Description 

The E.L. Smith WTP was built in 1976 and is owned and operated by EPCOR. It is 

located on the western side of the city of Edmonton, AB, and it draws water from the 

North Saskatchewan River, which is fed by the Saskatchewan Glacier on the Columbia 

Icefields. The plant was expanded in 1984 and it currently has a design capacity of 

approximately 200 MUd, but it can be firther expanded to a capacity of 800 ML/d. 

The first stage in water treatrnent involves adding alurn for coagulation / flocculation and 

powdered activated carbon (PAC) for colour removal and taste and odour control to 

water pumped in from the North Saskatchewan River upstream of the clarifiers. Rapid 

mixing occurs by means of an inline mixer. Raw water then enters one of bvo upflow 

solids-contacting clarifiers m i n g  parallel. Polyrner is introduced to the clarifiers to 

assist in flocculation. Entry of the influent raw water is through a circular draught tube 

with an impeller mixer in the clarifier basin, and recirculated sludge is mixed in with the 

raw water. Water is forced upward and out of the draught tube and into the basin because 

of the recirculated flow generated by the mixer. Water may then re-enter the draught 

tube through the bottom or exit the clarifier through tube settlers. Afier leaving the 

clarifiers, lime is added for sofiening (soda ash is also added seasonally for the same 

purpose) to the reaction zone of the third clarifier. After exiting the third clarifier, pH is 

adjusted by the addition of CO1, and chlorine is added for disinfection as well as for 

M e r  taste and odour control. Fluoride is added at this point as well. Water then flows 

by gravity through one of twelve filters in parallel with some polymer added as a filter 

aid. The filters are dual media rapid sand filters consisting of 475 mm of anthracite 



supported on 300 mm of sand and are approximately 18.9 m by 6.7 m length by width. 

M e r  leaving the filters, chlorine and arnmonia (for disinfection through the distribution 

system) and caustic soda (for pH adjusment) is added to the cornbined filter eMuent 

before being pumped out to the reservoirs and into the distribution system. A schematic 

of the treatment process at E.L. Smith WTP is shown in Figure 2-6. 
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3.0 Methodology 

3.1 lnfroduction 

Described in this section are the steps and tasks that were completed in order to develop 

an ANN model of filtration performance. There were three main steps involved in 

creating a model: 1) source data analysis, 2) data preparation, and 3) rnodel development 

and optimisation. 

Source data analysis involves the evaluation of the mailable data in terms of what data 

are available and determining the inputs and outputs to be used in the mode1 based on 

availability and significance as discussed in section 2.4. Also part of source data analysis 

was the time scale analysis to determine which time scale of data readings was most 

appropriate whether every minute, an hourly average, or a daily average. Characteristics 

of the data set of the chosen factors were also exarnined. 

Data preparation involves setting up the data patterns in preparation for model 

development and optimisation, with data patterns defined as the set of input values and 

output value(s) for the one day. Part of the preparation of the data is to divide the 

patterns into a training set, a testing set, and a production set as explaineci in section 

3.3.4. Normally, mode1 development would commence afier this point. However, 

preliminary attempts at development were unsuccessful due in part to large variations 

within the data making it diff~cult for the models to converge and generalise. The data 

was therefore M e r  processed to aid in model development. Part of the processing was 

the categorisation of the data patterns into a nurnber of sets. The purpose of this was to 



address the problems of large variations in the data by grouping together data patterns 

that shared similar characteristics. A mode1 could then be developed for each category. 

Another problem contributing to poor model development was the presence of noise 

patterns. Noise is defined here as data patterns with similar input values, but greatly 

different output values, and this results in difficulties in model convergence and 

generdisation. The occurrence of noise can arise from poor readings due to 

instrumentation error. It can afso arise from operational activities at the WTP in which 

abnormal operations are occurring on particular days such as the shutdown of a clarifier 

or filter. Therefore, such data patterns can be removed since they do not represent the 

normal operations of the WTP, which is what the model represents. Consequently, the 

removal of such noise patterns should result in improved model development. 

Finally, with the data set prepared, model development and optimisation can take place. 

In this case, models of each category were developed. This involved testing various 

network architectures and numerous network pararneters, such as number of neurons and 

type of activation function, until the best model performance is achieved for each model. 

The final overall model configuration was also examined to determine how each model 

would work together as an overall predictor of filtration performance. 



3.2 Source Data Analysis 

One of the initial tasks to perfom prior to modelling is the malysis of the data set to be 

used for rnodelling. This uicludes identi@ng what data are available, determining what 

inputs to include in the model, and analysing the appropriateness of the data for 

modelling. It is also important to determine how much data are available. 

3.2.7 Data Availability 

Table 3-1 lists data that are recorded and available at the E.L. Smith WTP. At the time of 

model developrnent, data from March 14, 1998 to Aprïl30, 1999 was utilised. 

3.2.2 Input and Output Selection 

For the output, reservoir influent particle counts (>2 pm) was chosen, and this is based on 

the fact that particle counts are more sensitive to changes in the treatment process 

compared to turbidity as explained in section 2.2. The size range of >2 pm was chosen 

over the size range of 2-1 5 pm since the >2 pn size range essentially is a measure of total 

counts, whereas 2-15 pm is a more limited range in cornparison. Therefore, the size 

range of >2 pm is a more accurate measure of finished water quality. Filter effluent 

particle counts of each filter was not chosen as outputs for a number of reasons. One 

reason is that it makes the configuration of the mode1 unnecessarily complicated in using 

twelve outputs compared to using just one output, or altematively developing twelve 

models for each filter compared to just one model. More importantly is the idea behind 

developing this model, which is to generate a model that encompasses al1 unit processes 

within water treatment rather than isolating filtration by itself and modelling that process. 



Table 3-1. AvailabIe data at E.L. Smith WTP. 

Description of Data 
Raw wa ter particle 

Data Type 
Water 

counts (2-15 pm) 
Raw water particle 

characteristics 
Water 

counts (>2 Lm) 
Recarbonation influent 

characteristics 
Water 

particle counts (2-1 5 pm) 
Recarbonation influent 

characteristics 
Water 

particle counts (>2 pm) 
Filters 1-12 effluent 

characteristics 
Performance 

particle counts (2-1 5 pm) 
Filters 1-12 effluent 

particle counts (2-15ym) Icharacteristics 
Clarifier 3 effluent 1 ~a ter 

parameter 
Performance 

particle counts (>2 pm) 
Clarifier 3 effluent 

parameter 
Water 

particle counts (>2 pm) 
Reservoir influent 

characteristics 
Performance 

particle counts (2-1 5 prn) 
Reservoir influent 

parameter 
Performance 

particle counts (>2 pm) 
Raw water turbidity (daily 

parameter 
Water 

high) 
Raw water turbidity 

characteristics 
Water 

(bench test) 
Raw water turbidiîy 

characteristics 
Water 

turbidity - (onstream) 
Filters 1-1 2 effiuent 

parameter 
Performance 

turbidity - (bench test) 
Clarifier 3 effiuent 

turbiciity Jparameter I 

parameter 
Water 

turbidity 
Reservoir influent 

characteristics 
Performance 

1 Description of Data 1 Data Type --l 

Raw water temperature 

Raw water colour (daily 

(Raw water colour (daily 1 ~ a t e r  1 

Water 
characteristics 
Water 

average) 

Total hardness 

Recarbonation influent Water 1 DH Icharacteristics 1 

characteristics 
Water 
characteristics 

TotaI alkalinity 
Water 
characteristics 

4 

Recarbonation effluent Water 

Filter influent pH 

l~hlor ine dose l ~ ~ e r a t i o n a l  data 1 

p H  characteristics 
7 

Water 
characteristics 

Alum dose 

Lime dose 

1 PAC dose l ~ ~ e r a t i o n a l  data 1 

Operational data 

Operational data 

l ~ i l t e r  1-1 2 effluent flow l ~ ~ e r a t i o n a l  data 1 

I 
hrnrnonia dose 

Soda ash dose 

Primary polymer dose 

Raw water flow 

1 Noon air temperature llvliscellaneous 1 

- - - -  

Operational data 

Operational data 

Operational data 

Operational data 

- - 
Lhig h) 1 characteristics 1 

In taking this approach, reservoir influent particle counts is a better measure for taking 

into account the overdl effectiveness of water treatment rather than each filter 

individually. Moreover, it is the finished water quality that proceeds out into the 

distribution system that is of greater importance than the effluent of each filter. In terms 

of operations, changes in operations upstream generally are performed in reaction to 



overall frnished water quality rather than individual filter performance, and this is another 

reason for using reservoir influent particle counts rather than individual filter effluent 

particle counts. 

The following inputs were chosen to be included in the model: raw water turbidity (bench 

test), raw water temperature, total hardness, total alkalinity, recarbonation effluent pH, 

alum dose, lime dose, PAC dose, polymer dose, raw flow (total flow through the plant). 

As discussed in section 2.4, al1 of these parameters have a significant impact on filtration 

performance, and since al1 of these readings were available, these ten parameters were 

chosen on this basis. The appendix section on pages 140-144 descnbes how they were 

measured and the related protocols for measurement. 

The other data were not included as inputs for several reasons. Filter media size and 

depth are considered to be important factors in influencing filtration performance. 

However, since these factors are fixed in an operational water treatment plant, they 

cannot be changed nor controlled and therefore is not suitable to be included in a neural 

network model. The type of coagulant and polymer is also not a significant factor since it 

does not change during operation at E.L. Smith WTP, therefore they were not included as 

inputs. However, this type of parameter would be included in WTPs that change 

coagulants or polyrners during the year. Ionic strength, particle size and size distribution 

were not included as inputs because they are not measured. Maximum conductivity has 

an influence on filtration performance, however the accuracy of the instrumentation 

readings is questionable, thus it was not included as an input. As a measure of levels of 



particulate matter entering the plant, turbidity was chosen over particle counts. The main 

reason for this is that at high levels of particulate matter, turbidity is a fairly accurate 

measure. Particle counts are less accurate in this case in that the particle counters 

themselves are limited in accuracy at high levels of particulate matter. Therefore, particle 

counts was not included as an input. Clarifier 3 (C3) effluent turbidity could have been a 

potential input rather than raw turbidity. However, preliminary model nins indicated 

better model performance with raw turbidity rather than C3 effluent turbidity, therefore it 

was decided to stay with raw turbidity. Little information regarding the impact of 

chlorine dose and ammonia dose on filtration performance was encountered in the 

literature, therefore they were not included as inputs. Raw colour, which is related to 

organic matter concentration, was also not included as an input. Since PAC dose, which 

impacts colour and organic matter concentration, is already included as an input, it would 

be redundant to include colour as an input as well as PAC dose. Soda ash dose was not 

included because it was rarely used during treatment, therefore it was unnecessary to 

include it. Noon air temperature was not inchded since raw water temperature has a 

direct impact on filtration performance rather than air temperature. Effluent flow fiom 

filters 1-12 was not included as inputs since each individual filter was not being 

modelled. 

pH readings are available at various points in the treatrnent process, thus choosing 

between the different sets of pH readings was not straightforward. As discussed in 

section 2.4.2.3, pH impacts filtration performance by influencing the solubility of alum 

for coagulation and by affecting the surface charge of particles. However, since al1 pH 



readings that are available are post coagulation, the effect of pH on the particles 

themselves should be more greatly considered. Furthemore, such effects on particle 

surface charge are important because it will influence how the particle interacts with the 

filter media grains. Therefore, this effect would more likely be represented by pH 

readings nearer to filtration. With recarbonation for pH adjustrnent taking place, C3 

influent and effluent pH and recarbonation influent pH is not as significant compared to 

recarbonation effluent pH and filter influent pH. Since filtration follows recarbonation, 

there should be little difference between the Iatter two pH readings. Some preliminary 

ANN models were therefore trained using one or the other to determine the impact each 

input had on prediction performance of the models. The result was that recarbsnation 

effluent pH had a more significant positive impact in model prediction than filter influent 

pH, therefore recarbonation effluent pH was retained as an input. 

3.2.3 Time Scale Analysis 

Another factor to be considered is deterrnining for what time scale the models should be 

developed. In other words, it shouId be considered if particle counts are to be predicted 

by the minute, as an hourly average, or as a daily average since data are available i n  each 

of these time scales. Developing a model to predict particle counts by the minute is 

impractical and unnecessary. Since water quality does not change drastically by the 

minute, a longer time scale is more relevant. The time scale up fiom minutes would be 

hourly average particle counts. However, a problem with hourly predictions is with the 

total retention time of water within the entire treatrnent process. The finished water that 

is measured for particle counts over an hour is not going to be the sarne as the raw water 



that is measured for turbidity and other raw water characteristics over that sarne hour. 

Thus, to compensate for this problem would require increasing the t h e  scale, and daily 

averaged readings could accomplish this. The main concern is if particle count readings 

would be variable enough for ANN modelling to pick up the trends. In addition, it would 

need to be checked if trends in variability in hourly averaged readings are visible in daily 

averaged readings. 

Figures 3-1 and 3-2 compare particle count readings by the minute, hourly averaged 

particle counts, and daily average particle counts. In Figure 3-1, which compares 

readings every minute versus the hourly average, it can be seen that the hourly average 

follows the definite trend displayed by the minute readings. The main difference is that 

there is more instrumentation noise associated with readings every minute. In Figure 3-2, 

which compares hourly average and daily average, it c m  also be seen that the daily 

average follows trends displayed by the hourly average. The main difference in this 

graph is that peaks are not as high for the daily average as for the hourly average. 

However, the daily average still demonstrates a fair amount of varîability and therefore 

provides a sufficient description of the water quality. Furthermore, the peaks and trends 

that are observed in the daily average values are more likely to characterise the normal 

behaviour of treatrnent operations rather than hourly average values, in which peaks are 

more likely to be the result of upsets in the normal treatment process. 



Minutes -Hourly Average, 

14/04/1998 15/04/1998 15104/1998 16/04/1998 161041 998 17/04/1998 17/(34/1998 18104/1998 
12:oo 0:OO 12:oo 0:oo 12:oo 0:OO 12:oo 0:oo 

Time 

Figure 3-1. Minute readings vs. hourty average filter effluent particle counts from April 15-17, 1998 
for filter 5 at E.L. Smith WTP. 

- Houriy Average - Daily Average -- - - - - - - - - - - 

Figure 3-2. Hourly average vs. daily average reservoir influent particle counts from E.L. Smith WTP. 

3.2.4 Data C haracteristics 

Table 3-2 lists some statistical information on each input and output that is used in mode1 

development. 



Table 3-2. Statistics of input and output data to be used. 

râw fiow (MUd) 187.9 22.4 
recarb- effluent pH 1 7.61 - 8.37 7-96 0.1 6 
reservoir M u e n t  
particle coun ts 
(COU n ts/m L) 

As it c m  be seen, there is much variability in raw water quality throughout an entire year, 

and in response. operational parameters can Vary just as much. With raw water turbidity 

varying between 2-1967 NTU and temperature varying between 0.1-24.g°C, it is clear 

that variability is very high. These are not the sorts of conditions that are normally 

encountered for water treatment in other regions, and therefore it is difficult to mode1 

under such conditions. Finished water quality, however, tends to remain at a constant 

level rarely exceeding 50 particle counts/mL. 



3.3 Methodology of Data Categorisation and Preparation 

With the available data andysed and the inputs and output chosen, the next stage is to 

prepare the data for model development. As previously mentioned, data pattems would 

normally be divided into a training set, a testing set, and a production set followed by 

model development. However, initial attempts at model development were unsuccessfid, 

therefore the data pattems needed to be M e r  processed. As part of the processing, the 

data patterns are to be categorised to group together similar pattems to deal with large 

variations thereby assisting in model convergence and generdisation. This procedure is 

outlined in this section. 

A total of 410 data pattems were available starting fiom March 14, 1998 up to April 30, 

1999. Data were categorised in two stages using a Kohonen network followed by a noise 

analysis. An explanation of how the network performs the categorisation is given in 

section 2.5.4, and it is used because it allows for classification based on multiple inputs as 

opposed to graphical techniques that only allow for three inputs in thee  dimensions. 

3.3.1 First Stage Categorisation 

The first categorisation was based on raw water data inputs of raw turbidity, temperature, 

total hardness, and total alkalinity, and the result was two categories of data patterns. Of 

the 410 data patterns, 22 1 o r  53.9% of the data patterns went into category 1, 13 8 or 33.7 

% of the data patterns went into category 2, and 5 1 or 12.4% did not go strictly into either 

category. TabIe 3-3 shows the values of each category, and it can be seen that main 

differences between the categories are raw water turbidity and temperature. 



Table 3-3. Statistical vafues of input data in each category. 

Of the 51 data patterns that were not categonsed by the Kohonen network. 44 patterns 

could be placed in either category 1 or 2, while the remaining 7 were extreme values that 

could not go into either category. In Figure 3-3 below, category 1 data are shown as 

circles, category 2 data are shown as squares, extreme values are shown as triangles, and 

patterns which can be pIaced in either category are shown as an X. The distinction 

between the two categories is clearly illustrated to be based on temperature. 

Inputs 
raw turbidity 
( N W  
temperature 
(OC) 
hardness 
(mg/L) 
alkalininty 
(mg/L) 

A-- - - 
a Category 1 data 8 Category 2 data Extreme Values x Cat 1 or Cat 2 -- - ..-. - 

O 5 1 O 15 20 25 30 

T m  perature ('C) 

*calculated after placement of the non-specific data 

Figure 3-3. Distinction between category 1 and 2 based on turbidity and temperature. 

category 1 

range 

- 841 

0.1 - 9.5 

126-184 

108-144 

-- 

category 2 
range 

2 - 720 

9.1 - 24.9 

140-181 

111 - 143 

average 

22.2 

std dev 

76.8 

average 

56.8 

16.8 

153.6 

126.2 

std dev 

107.0 

3.7 

8.0 

5.7 

1.5 

161.3 

126.8 

2.1 

12.2 

7-2 



The 44 data patterns that could go into either category were placed according to 

whichever category the pattern was closest to as determined by the Kohonen network. 

As a result, 19 of these patterns were placed in category 1 for a total of 240 patterns in 

that category, and 25 were placed in category 2 for a total of 163 patterns in that 

category. This resulted in the definition of the categories shown in Figure 3-4. 

Category 1 data - Category 2 data Extreme Values 

2000 

O 5 10 15 20 25 30 

Ternperature ('C) 

Figure 3-4. Distinction between category I and 2 based on turbidity and temperature after manual 
placement. 

Although there is slight overlap between the two categories, the boundaries are still fairly 

well defined. 

The remaining seven extreme data patterns include: 

1 Date 1 Description 
I 

July 1-2, 1998 1 Extrernely high raw turbidity 

April 12-16, 1999 
values 
Low alkalinity and hardness 



These patterns have input vaiues beyond fhe domain of the two defined categories. 

Figure 3-5 graphically shows how far out their values are compared to the categones 

themselves. 

Category 1 Category 2 Extreme Values 

80 100 120 140 160 180 200 

Hardness (mglL) 

Figure 3-5. Cornparison o f  extreme data points to category 1 and 2 based on alkalinity and hardness. 

Table 3-4 shows the input values of the extremities, and it clearly shows that they are 

indeed extreme cases when compared to the average values of each category. 

Table 3-4. Values o f  extreme cases corn pared to category average. 



Since these patterns do not represent the typicd scenarios encountered in water treatment, 

these patterns would hinder model development. Therefore, these patterns were excluded 

fiom the data set at this point in model development. However, these patterns may be 

incorporated into the model after fùrther development. 

3.3.2 Second Stage Categorisation 

The second stage categorisation was based on the operational parameters of alum dosage, 

lime dosage, PAC dosage, polymer dosage, raw flow, and the water characteristic 

parameter of recarbonation effluent pH. This categorisation was done to each of the two 

categories that resulted from first stage categorisation, and this further processing was 

done to fùrther assist in preparing data for data set extraction, which will be discussed in 

section 3 -3 -4. 

3.3.2.1 Ca fegory 1 

Out of 240 patterns, 75 or 3 1.3% went into sub-category 1, 75 or 3 1.3% went into sub- 

category 2, and 90 or 37.5% were not pIaced in either sub-category. The reasons for non- 

placement are the sarne as in the first stage. Either it was unclear as to which sub- 

category the pattern solely belonged to in that it could go into either sub-category, or the 

pattern did not fit into either sub-category at all. 

72 of the 90 uncategorised data were manually placed into one or the other sub-category 

based on whichever sub-category the pattern was closest to as cakulated by the Kohonen 

network. 47 patterns went to sub-category 1 for a total of 122 patterns, and 25 patterns 



went into sub-category 2 for a total of 100 patterns. Table 3-5 shows the values of the 

inputs of each sub-category. 

Table 3-5. Statistical values of input data in each sub-category of categoty 1. 

The main differences seem to be a lower average lime dose, higher PAC dose, and higher 

raw flow in sub-category 1 than in sub-category 2. As well, alurn dose in sub-category 1 

is more scattered with a wider range than in sub-category 2, which is shown in Figure 3- 

6 .  Sub-category 1 is shown as circles, sub-category 2 is shown as squares, and the 

extreme cases are shown as triangles. Since only two dimensions are shown in the graph, 

it does not provide a complete illustration of how each sub-category is defined in n- 

dimensional space seeing as there are six inputs in total. However, the graph does show 

why the extreme values do not fit into either sub-category. The one exception that 

appears in the midst of sub-category 2 is an extreme value because of its low raw flow 

and high pH. Table 3-6 lists al1 18 extreme cases with the extreme values highlighted, 

and when it is compared to the domain of each sub-category, it is clear that they do not fit 

into either category. 

Inputs 
aium dose 
,mm 
lime dose 
(mg/L) 
PAC dose 
OWL)  
polymer dose 
OWL)  
raw flow 
, ( M u a  

PH 

sub-category 1 
range 

18-77 

43 - 68 

0 - 44.6 

0-1 3 - 0.36 

149-222 

7.66 - 8.1 5 

- 

sub-category 2- 
average 

34.7 

53.0 

7.6 

0.23 

190.4 

7.93 

std- dev- 

1.3 

5.4 

0.7 

0.04 

9.9 

0.12 

range 

31 - 39 

52 - 77 

0 - 3.2 

0.26 - 0.43 

156-199 

7.61 - 8-05 

std. dev. 

10.5 

6-4 

12.2 

0-04 

16.4 

0.12 

average 

34.3 

62.7 

0.2 

0.33 

169.9 

7.88 



I SubGtl Sub-Cat 2 ExtremeValues : 

O 20 40 60 80 100 120 140 160 180 200 

Alum Dose (mg&) 

Figure 3-6. Cornparison of extreme values to sub-category 1 and 2 of category 1 based on PAC dose 
and alum dose. 

Table 3-6. Values of extreme cases cornpared to sub-category average. 



These values are not typical conditions encountered in water treatment within either sub- 

category, therefore they are excluded fiom M e r  mode1 development at this point to 

prevent hindrance of model deveiopment. They may, however, be used and incorporated 

into a model at a later point. 

3.3.2.2 Category 2 

Out of 163 patterns, 41 or 25.2% went into sub-category 1 and 54 or 33.1 % went into 

sub-category 2. 68 or 41.7% were Ieft uncategorised either because they could fit in both 

sub-categories or because they could not fit into either sub-category. 

58 of the 68 uncategorised data patterns were manually placed into either sub-category 

depending on which sub-category was closest as calculated by the Kohonen network. 37 

patterns were placed in sub-category 1 for a total of 78 patterns in that sub-category, and 

21 patterns were placed in sub-category 2 for a total of 75 patterns. Table 3-7 shows the 

input values of each sub-category. 

Table 3-7. Statistical vaIues of input data in each sub-category of category 2. 

1 nputs 
alum dose 
(mg/L) 
lime dose  
OWL) 
PAC dose 
mu 
polymer dose  
( m m  
raw flow 
(Mua  
PH 

sub-category 1 sub-category 2 
std. dev. 

24.8 

9.6 

0.43 

0.02 

18.6 

0.10 

range 

26 - 124 

45 - 90 

0 - 3.6 

0.12 - 0.18 

1 O0 - 235 

7.73 - 8.20 

std. dev. 

14.3 

7- 1 

0.00 

0.02 

24.8 

0.21 

range 

23 - 80 

38 - 72 

0 - 0  

0.16 - 0.22 

170 - 253 

7.66 - 8.35 

average 

51 -7 

60.4 

0.07 

0.15 

195.8 

7.95 

average 

35.4 

47.0 

0.00 

0-19 

206.6 

8.10 



The most significant differences between the two sub-categones are that a lun dose and 

lime dose is higher in sub-category 1 than in sub-category 2. 

In Figure 3-7 showing the graph of aium dose vs. lime dose, sub-category 1 patterns are 

shown as circles, sub-category 2 patterns are s h o w  as squares, and extreme cases are 

s h o w  as triangles. Since this graph only shows two dimensions, it does not show a 

complete illustration defîning each sub-category. However, even though there is some 

overlap between the sub-categories, which is due to the fact that the other four inputs are 

not represented in this graph, the extreme cases are clearly shown to stand out fiom the 

defined sub-categories. The four extreme cases that appear to be in the domain of the 

sub-categories are defined as extrerne in that the raw flow and pH are beyond the domain 

in one case, and PAC dose and pH are beyond the sub-category domains in the other 

three cases. This is more clearly shown in Table 3-8 with the extrerne input values 

highlighted, 

~- ~ - 

O 20 40 60 80 100 120 140 160 la0 200 

Alurn Dose (mglL) 

Figure 3-7. Cornparison of extreme values to sub-category 1 and 2 o f  sategory 2 based on lime dose 
and alurn dose. 



Since these 10 patterns are extreme cases and are not typically encountered, they were 

excluded from the data set fkom further model development at this point. However, they 

rnay be incorporated into the model at a later point after models have been developed 

further . 

3.3.3 Noise Analysis 

As discussed in section 3.1, noise patterns are a problem that hinders model development. 

Noise is defined as data patterns with similar input values but vastly different output 

values. This would cause model predictions to be less accurate because there is conflict 

with the input-output cause-effect relationships the model is trying to capture. Therefore, 

with the removal of such patterns, convergence and generalisation should improve. 

This analysis was performed on each sub-category separately and done in the following 

manner. A Kohonen network was used to categorise the data set into 20 different 

categories based on the 10 input parameters of raw turbidity, temperature, hardness, 



alkalinity, alurn dose, lime dose, PAC dose, polymer dose, raw flow, and pH. This 

resulted in approximately 2-10 patterns in each category. The values of the input 

parameters of the pattems within a category should theoretically be quite similar. To 

determine if a pattern is considered to be noise, the value of the output parameter, 

reservoir influent particle count, was cornpared between the patterns within a category. 

The normalised value of the output was used to assist in evaluation with an explanation 

of its calculation given in section 3.3.4. If a data pattern had a significantly different 

value for its output parameter than the other patterns, then it was considered to be noise 

and is removed from the data set. Al1 noise patterns were set aside to later be 

incorporated into a model depending on whether or not the data had an adverse effect on  

model predictions. Table 3-9 shows the total nurnber of noise patterns that were removed 

from each category data set. 

Table 3-9. Number of noise patterns removed from the category data sets. 

The following pages provide an exarnple of the noise analysis that was done for the cat 1 

Category 

cat 1 sub-cat 1 
cat 1 sub-cat 2 
cat 2 sub-cat 1 
cat 2 sub-cat 2 

sub-cat 1 data set. Patterns removed are highlighted in grey. 

% of total 
removed 

9.0% 
12.0% 
10.3% 
10.7% 

Number of 
total patterns 

122 
100 
78 
75 

Number of 
noise patterns 

removed 
11 
12 
8 
8 



Noise analysis exarnple for cat 1 sub-cat 1 
Category 1 Res, Inf, 

Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polyrner Raw Recarb counts 

DATE La b ( O C )  mglL mglL Plant #4 Plant #cl Plant #4 plant #M Flow Effl pH ( plm L) 
120 3 3 5 5 4,9 0.21 199 8.03 5.8 

24-Mar-99 3 
25-Mar-99 4 
26-Mar-99 5 
27-Mar-99 6 
28-Mar-99 8 

Normalised values 
23-Mar-99 0.00 
24-Mar-99 0.00 
25-Mar-99 0.01 
26-Mar-99 0.01 
27-Mar-99 O. 02 
28-Mar-99 0.03 

Category 2 
29-Mar-99 8 

Normalised values 
29-Mar-99 0.01 

Category 3 
16-Mar-98 2 
17-Mar-98 2 
18-Mar-98 2 
20-Mar-98 4 

Normalised values 
16-Mar-98 0,OO 
17-Mar-98 0.00 
18-Mar-98 0.00 
20-Ma r-98 0.01 



Category 4 Res. Inf, 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE La b (OC) mglL mglL Plant ##4 Plant #II Plant #II Plant #4 Flow Effl pH ( plm L) 
163 

15-Mar-98 2 
Norrnalised values 

14-Mar-98 0,OO 
15-Mar-98 0,OO 

Category 5 
2 1 -Mar-98 7 
22-Mar-98 5 
12-NOV-98 3 

Normalised values 
2 1 -Mar-98 0.02 
22-Mar-98 0.01 
1 2-NOV-98 0.00 

Category 6 
17-Mar-99 3 
18-Mar-99 6 
19-Mar-99 4 

Normalised values 
17-Mar-99 0.00 
18-Mar-99 0.02 
19-Mar-99 0.01 



Category 7 Res. Inf. 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE Lab (OC) mglL mglL Plant #4 Plant #4 Plant #4 Plant #4 Flow Effi pH (plm L) 
20-Mar-99 3 0.5 173 132 3 1 56 O O, 18 199 8.1 123 
2 1 -Mar-99 3 
10-Mar-99 2 
1 1 -Mar-99 3 
12-Mar-99 2 
13-Mar-99 3 

Normalised values 
20-Mar-99 0.00 
21 -Mar-99 0.00 
10-Mar-99 0.00 
1 1 -Mar-99 0,OO 
12-Mar-99 0.00 
13-Mar-99 0.00 

Category 8 
06-Apr-98 15 O, 5 143 113 32 47 13 O, 32 180 8.00 6.1 

Normalised values 
06-Apr-98 0.06 0.04 0,21 0.08 0.24 0.21 0.30 1 .O0 0.31 0.70 O, 13 



Category 9 Res. Inf. 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE Lab (OC) mglL mglL Plant #4 Plant # Plant # Plant #4 Flow Effl pH (plmL) 
10-Ott-98 8 5.9 155 129 26 45 O 0.18 21 5 8,O 17.5 

.< .t. .. . - .c  - - ..J ..,,,-... , , . ,....,p.." . - n r . r l i ; < , -  . . * 

i,,;;(;;qj +oct;g8:.: . , ~ L  !:if= .IL - 0 00 ,;;::~.!!;:$$3 . .;; -; 2 . . 0;59 . . . -: 3 . :;O; , 72 . . ;:,S.:;;I . - :;:i6,2of . a : .  . . t,.;j,i;;:~,2~$$3~ ..,..,‘m, ,,. 0 ; ~ 0 ~ f i ~ p 0 : 2 6 ~ 9 : 5 : ~ @ ~ @ ~  .... .. . Lk. 2. .S.>. 

noise pattern marked in grey largely different from the lowest value (Oct. 12) 



Category 10 Res. Inf. 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE La b (OC) mglL mg IL Plant #4 Plant #4 Plant #4 Plant #4 Flow Effl pH ( plm L) 
08-Oct-98 4 9.5 159 131 24 44 O 0.18 217 7.9 5.4 
09-Oct-98 4 7.9 160 132 24 44 O 0.18 220 8.0 9.8 

Normalised values 
08-Ott-98 0.01 1 .O0 0.62 0.80 0.10 0.05 0.00 0.26 0.92 0.42 0.1 1 
09-Ott-98 0.01 0.83 0.64 0.84 0.10 0.05 0.00 0.26 0,97 0.73 0.23 

Category 11 
20-Apr-98 54 7.6 157 123 49 58 4.9 0.16 189 7,7 15,9 
02-Oct-98 2 9.1 161 136 24 49 O 0.2 179 7.7 256  
03-Oct-98 4 9.3 158 130 24 48 O 0.21 189 7.7 25.5 

5' 04-Oct-98 3 9 160 128 24 47 O 0.22 21 1 7.8 255 
05-0ct-98 3 8.6 159 131 24 46 O 0.22 212 7-8 25.3 
06-Oct-98 2 9.1 157 24 48 O 0.21 21 1 7.8 18.0 

Normalised values 
20-Apr-98 0.25 0.80 O. 56 0.48 0.53 0.79 0.1 1 0.16 0.46 0.08 0.40 
02-Oct-98 0.00 0.96 0.67 1 .O0 O, 10 O. 32 0.00 0,37 0,30 0.02 0.67 
03-Oct-98 0.01 0.98 0,59 0.76 0.10 0.26 0.00 0.42 0.46 0.06 0.67 
04-Ott-98 0,OO 0.95 0,64 0.68 0,IO 0,21 0.00 0.47 0,82 0.20 0.67 
05-Oct-98 0.00 0.90 0.62 0.80 O. 1 O 0,16 0.00 0,47 0.84 0.21 0.66 
06-Oct-98 0,00 0,96 0.56 0.72 0.10 0,26 0.00 0.42 0.82 0.21 0.46 

noise pattern marked in grey lower than the rest of the category 



Category 12 Res. Inf. 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE Lab malL malL Plant #4 Plant #t4 Plant #4 Plant #4 Flow Effl DH [~lrnL) 

25-Oct-98 4 4.3 157 133 3 1 51 O 0.26 22 1 7.8 13.7 
26-Oct-98 4 4.4 1 56 129 30 51 O 0.25 220 7,8 13.3 
27-Ott-98 5 4 5  157 129 30 50 O 0,25 220 7,8 135 
28-Oct-98 5 4.8 158 131 30 49 O 0.25 221 7.8 15,5 
29-Oct-98 4 3.9 155 128 30 49 O 0.25 209 7.7 9,3 

Normalised values 

noise pattern marked in grey higher than rest of category 



Category 13 
Raw TEMP TOTAL TOTAL 
Turb HARD ALK, Alum 

DATE Lab (OC) mg/L mg IL Plant ü4 
18-Oct-98 15 4.1 159 129 35 
19-Ott-98 11 
20-Oct-98 10 
2 1 -0ct-98 8 
22-Oct-98 7 
23-Oct-98 5 
24-Oct-98 6 

Normalised values 
18-Ott-98 0.06 

CD 
19-Ott-98 O, 04 

O 20-Ott-98 O, 04 
21 -0~ t -98  0.03 
22-Ott-98 0.02 
23-Ott-98 0.01 
24-Ott-98 0.02 

Lime 
Plant #4 

54 
54 
55 
55 
54 
54 
53 

0.58 
0.58 
0.63 
0.63 
058 
0.58 
0.53 

Res. Inf. 
particle 

Carbon Polymer Raw Recarb counts 
Plant #4 Plant #4 Flow Effl pH ( p/m L) 

O 0.22 209 7.8 17.2 



Category 14 

DATE 
1 5-NOV-98 
1 6-NOV-98 
1 7-NOV-98 
1 8-Nw-98 
21 -Nov-98 
22-NOV-98 
23-NOV-98 

Raw 
Tu rb 
La b 

3 
7 
10 
14 
5 
5 
3 

TEMP 

O 
0.9 
0.7 
0.5 
0.5 
0.5 
0.5 
0.5 

TOTAL 
HAUD 
mglL 

161 
1 62 
164 
167 
166 
163 
161 

TOTAL 
ALK. 
mglL 

126 
128 
132 
129 
131 
129 
128 

Alum Lime 
Plant #4 Plant #4 

32 5 1 

Carbon Polymer 
Plant #4 Plant #4 

O 0.25 
O 0,25 
O 0.25 
O 0-24 
O 0.25 
O 0.26 
O 0,26 

Raw 
Flow 

199 
199 
199 
199 
199 
199 
190 

Recarb 
Effl pH 

7.80 
7,79 
7.81 
7.81 
7.81 
7.85 
7.86 

Res. Inf, 
particle 
counts 
( plm L) 

14.9 
12.7 
6.0 
12,9 
11.5 
7.8 
7.2 

K Normalised values 

1 3-NOV-98 0.00 0.05 0,72 0.92 0.29 0.42 0,OO 0.63 0.45 0.24 

noise patterns marked in grey higher than rest of category 



Category 15 Res. Inf. 
Raw TEMP TOTAL TOTAL particle 
Turb HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 

DATE Lab (OC) mglL mg IL Plant #4 Plant #4 Plant #4 Plant #4 Flow Effi pH ( plm L) 
30-Oct-98 6 3.4 154 125 29 46 O 0.25 20 1 7.68 18.7 
06-NOV-98 3 
07-NOV-98 3 
08-NOV-98 3 
09-NOV-98 2 
1 4-NOV-98 3 

Normalised values 
30-0ct-98 0.02 
06-NOV-98 0.00 
07-NOV-98 0.00 
08-NOV-98 0.00 
09-NOV-98 0.00 
14-NOV-98 0.00 



Category 16 
Raw 
Turb 

DATE La b 
31 -0ct-98 6 
01 -Nov-98 5 
02-NOV-98 4 
03-NOV-98 4 
04-NOV-98 4 
05-NOV-98 3 

Norrnalised values 
31 -0ct-98 0.02 
O1 -Nov-98 0.01 
02-NOV-98 0.01 
03-NOV-98 0.01 
04-NOV-98 0.01 
05-NOV-98 0.00 

TEMP 
Res. Inf. 

TOTAL TOTAL particle 
HARD ALK. Alum Lime Carbon Polymer Raw Recarb counts 
mglL mgl l  Plant #4 Plant #4 Plant #4 Plant #4 Flow Effl pH ( plm L) 

157 1 24 30 45 O 0.25 20 1 7.79 22.2 





Category 18 
Raw TEMP 
Turb 

DATE Lab (OC) 

23-Mar-98 4 0.5 
24-Mar-98 3 
25-Mar-98 4 
26-Mar-98 4 
27-Mar-98 5 
28-Mar-98 4 
29-Mar-98 5 

Normalised values 
23-Mar-98 0.01 

03 
24-Mar-98 0.00 

(n 25-Mar-98 0.01 
26-Mar-98 0.07 
27-Mar-98 0.01 
28-Mar-98 0.01 
29-Mar-98 0.01 

Category 19 
30-Mar-99 5 O. 5 
01 -Apr-99 6 O. 5 
02-Apr-99 8 0,5 

Normalised values 
30-Mar-99 0.01 0.04 
01 -Apr-99 0.02 0.04 
02-Apr-99 0,03 0.04 

TOTAL 
HARO 
mglL 

157 
152 
149 
150 
150 
149 
145 

TOTAL 
ALK. 
mglL 

1 24 
120 
I l 7  
I l 9  
I l 9  
122 
I l 9  

Alum 
Plant #4 

Lime 
Plant #4 

Carbon 
Plant #4 

Polymer 
Plant #4 

Res. Inf. 
particle 

Raw Recarb counts 
Flow Effl pH ( plm L) 

182 8.10 8.2 
187 8.15 8.0 
182 8.12 6.1 
181 8.1 1 4,8 
181 8.09 4.2 
182 8.02 11.1 
190 8.1 O 12,4 
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3.3.4 Data Set Extraction Preparation 

Before models are to be trained, the data set of each sub-category was to be extracted into 

a training set, a testing set, and a production set. The training set is the set of data that the 

mode1 is trained with, and it is tested on the testing set during training. The production 

set is data that is not presented to the model during training. Instead, it is used on the 

model after training is complete to deterrnine the accuracy and robustness of the model. 

Variability of the data within each sub-category data set should no longer be too 

extensive as a result of categorisation. However, to ensure that distribution of patterns 

was even between each set, preparation of the data set was required. Essentially, the n- 

dimensional distance of each data pattern was calculated relative to the mean of the data 

set, and each pattern was subsequently ranked fiom furthest distance to the mean to the 

closest distance to the mean. Finally, data were extracted in that every third pattern was 

placed in the testing set and every fifih pattern was placed in the production set. 

N-dimensional distance between two points is calculated using the following formula: 

where, Dm is the n-dimensional distance between pattern A and B, 

X, Y,. . ., Z are values of each input for either pattern A or B. 

Before the n-dimensional distance of a data pattern is calculated, the data set needs to be 

normalised, which scales the range of al1 input values between O and 1. The purpose of 

this is to ensure that each input value has an equal contribution or impact on determining 
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the n-dimensional distance. Therefore, a significant change in one input will not be 

masked by changes in other inputs. Normalisation of an input value is calculated in the 

following way: 

where, Xnom(A) is the normalized value of XA 

XA is the actual value of input X of pattern A 

XmiR is the minimum value of input X in the data set 

XmaK is the maximum value of input X in the data set. 

Once this was calculated for each input value in each sub-category data set, the n- 

dimensional distance relative to the mean of the data set was calculated for each pattern. 

The next step was to rank each pattern. In order to do that, the z-score of each pattern 

was calculated utilising the n-dimensional distance in the following way: 

where, 

- 
(Dnonn(A) D n o m ( m y )  ) Zscore, = 

ZscoreA is the 2-score of pattern A 

Dnorm(A) is the normalized n-dimensional distance of pattem A 

D.,,(,, is the average normalized n-dimensional distance of the 

data set 

Dnom~rrd.~cv.~ is the standard deviation of the data set- of normalized 

n-dimensional distances. 
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Once ranked and Iisted in descending order, every third pattern was placed in the testing 

set, every fifth pattern was placed in the production set, and the rest was placed in the 

training set. 



3.4 Mode1 Development and Optimisation 

With the data sets now prepared mode1 developrnent is the next step. Using the software 

NeuroShell 2 version 4.0, models were set up and trained. Training citeria were kept 

constant in dl modelling. Pattern selection was set at random, weights were updated by 

mornenturn, and training was stopped either if the number of ~ a i n i n g  epochs reached 

10000 or if the average error for the test set reached 0.002. Modei performance was 

measured by the R~ value, the coefficient of multiple determination, and by the mean 

squared error, both of which were calculated by the software. The appendix section on 

pages 145- 146 describes how these were calculated. 

3.4.1 Architecture 

The architecture of a neural network is the overall structure of the network, which 

includes the number of hidden layers and the types of comections between the layers. 

Backpropagation networks were the type of networks to be used, however there are four 

types of backpropagation networks to choose fiom with three variations of each for a 

total of twelve choices in the NeuroShell 2 software. Standard net is the first type in 

which each layer is connected only to the previous layer. Variations include three layers 

(one hidden layer), four layers (two hidden layers), and five layers (three hidden layers). 

The next type of backpropagation network is the Jordan-Elman net. These are recurrent 

networks with dampened feedback. Variations include input layer feedback, hidden layer 

feedback, and output layer feedback. The third type of backpropagation network is the 

Ward net, which has rnultipIe hidden slabs with different activation functions. Variations 

include two hidden slabs with different activation fünctions, two hidden slabs with 



different activation fbctions and a jump connection, and three hidden slabs with 

different activation functions. The final type of backpropagation network is the jurnp 

connection net where each Iayer is connected to every previous layer. Variations here 

include three, four, or five Iayers. Each type of network was tried and tested with the 

results presented in Table 3-1 0. 

Table 3-10. Model performance results testing various network architectures. 

14-layer standard net 

3-layer standard net r 
feedback 
recurrent net. hidden laye1 
feedback 
rewrrent net. output layer t---- feedback 

lward net. 3 hidden slabs 

ward net. 2 hidden slabs. 

(net 
4-layer jump connection 

R-squared value 
Production 1 Test Training 1 Entire 

Default settings were used in ruming these rnodels, and the number of hidden neurons 

were set to be twice the number of input neurons in each hidden layer. The resuIts from 

the table are from the category 1, sub-cat 1 rnodel. It can be seen that the two best results 

are the 5-layer standard net and the ward net with two hidden slabs (no jump connection). 

Since the standard net is a comrnon and virtually universal architecture for most problem 

domains, it was decided to use the 5-Iayer standard net exclusively. 



3.4.2 Modelling Parameters 

M e r  determinhg the best architecture, other parameters can be exarnined and optimised. 

These parameters include the scale function, activation function, number of hidden 

neurons, leaming rate, momenturn, and initial weights. The category 1, sub-cat 1 model 

was used in examining each pararneter. 

One of the first parameters tested was the number of hidden neurons. With three layers 

of hidden neurons, many combinations of numbers are available, thus multiple arbitrary 

combinations were tested. Table 3-1 1 shows what was tested and the results- 

Table 3-1 1. Model performance results testing various combinations o f  numbers of hidden neurons. 

Default settings were used in each model. Out of the combinations that were tested, the 

configuration of twenty neurons in each hidden layer had the best overall results when 

tested using the production set, training set, testing set and the entire data set. 

The next parameter tested and examined was the activation function of the hidden layers 

with eight different activation fimctions available to choose fiom in NeuroShell2. These 

include logistic, symmetric logistic, linear, tanh, tanhlj, Gaussian, Gaussian 

complernent, and sine. With a 5-layer standard net being used, there are three hidden 



layers whose activation h c t i o n  can be changed. Default seîîings for initial weights, 

momentum, learning rate and scaling function was used. After some extensive testing 

with various combinations, it was found that the best statisticd results were obtained with 

a logistic function set for the first hidden layer, a Gaussian function for the second hidden 

layer, and a tanhl 5 fûnction for the third hidden layer compared to the default setting of 

logistic fûnction for each of the three hidden layers. This is shown in TabIe 3-12. 

However, problems arose with the actual predictions of the rnodel. 

Table 3-12. Best mode1 performance results from the testing of various combinations of activation 
functions. 

l~ctivation 1 R-sauared value 1 Mean Sauared Error 1 
~ -~ 

function I~ roduc t ion  1 Test 1 Training 1 Entire [ Production / Test ( Training 1 Entire 

As can be seen in Figure 3-8 below, which is production set data, network predictions are 

fixated around two points: 18 particle counts/mL and 9 particle counts/mL. This is even 

more apparent when running the entire data through the mode1 as shown in Figure 3-9. In 

contrast, this behaviour was not observed in the mode1 using the logistic function soiely 

as the activation function, and this is demonstrated in Figure 3-10 using production set 

data and Figure 3-1 1 using the entire data set. 

logistic 

Gaussian 1 
tanhl 5 

- 

0.68 

0.76 

-- 

0.61 

0.63 

13.8 

9.9 

-- -- 

0.45 

0.47 

9.5 18.4 14.9 

9.3 18.3 14.2 

- . 

0.54 

0.59 



0.0 - 
O 5 1 O 15 20 

Pattern t 

Figure 3-8. Actual vs. mode1 predicted particle counts using a Gaussian and tanh 15 activation - 
function and production set data. 

O 20 40 60 BO 100 120 

Pattern # 

Figure 3-9. Actual vs. mode1 predicted partide counts using a Gaussian and tanh 15 activation 
function and the entire cat 1, sub-cat ldata set. 



10 15 

Pattern # 

Figure 3-10. Actual vs. model predicted particle counts using the logistic activation function and 
production set data. 

O 20 4 0 60 80 1 O 0  120 

Pattern # 

Figure 3-1 1. Actual vs. mode1 predicted particle counts using the logistic activation function and the 
entire cat 1, sub-cat ldata set. 

The main reason for these results is the different mapping charactenstics of each 

activation function. The Gaussian function maps values between O and 1, therefore the 

output of that fûnction will always be positive. The Tanhl5 function maps positive 

values between O and 1 while negative values are mapped berween -1 and 0. Since these 
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two activation fûnctions are quite different, using them in subsequent order is what is 

causing the network predictions to fixate around the two values illustrated in Figures 3-8 

and 3-9. Using one consistent activation function such as the logistic function does not 

result in this probIem as illustrated in Figures 3-10 and 3-1 1. Therefore, it was decided to 

keep using the logistic function, which is a commonly used in many neural network 

applications, as the activation fùnction in al1 models in each hidden layer. 

Learning rate, rnomentum, and initial weights of the links between each layer are other 

factors that can be modified. Each of the four links was changed individually at first. 

Initial weights were set at 0.3 or 0.7. Learning rate and momentum were set at 

combinations of  0.1 or 0.7 as well as setting both at only 0.4. Two, three, and four links 

were then changed at a time based on the best results of changing each link by itself. 

Table 3-13 shows the statistical results of the optimal combination compared to the 

default setting. As it tumed out, the best overall result was obtained by setting link 3 

with a learning rate and momentum of 0.4 and the initial weight at 0.7 while keeping the 

other links at default settings. Al1 the results are shown in the appendix on pages 146- 

149. 

Table 3-13. Best model performance resutt after testing various combinations of  learning rate, 
momentum, and initial weights. 

al1 links (default) 
leaming rate = 0.1. 
rnornentum = 0.1. 
initial wt = 0.3 
link 3 
leaming rate = 0.4. 
momentum = 0.4. 
initial wt = 0.7 
links 1.2.4 = default 

R-squared value 1 Mean Squared Error 
Produdion 

0.68 

0.77 

Test 

0.61 

0.64 

Training 

0.45 

0.47 

Entire 

0.54 

0.58 

Production 

13.8 

9.8 

Entire 

14.9 

14.1 

Test 

9.5 

9.2 

Training 

18.4 

18.1 



The final parameter to ïnvestigate is the scaiing function for which there are seven 

options available in NeuroShell2. These inchde linear fhctions scaled from zero to one 

or minus one to one. Each of these ranges c m  be set with closed brackets, 0, or open 

brackets, <O>. The closed brackets mean that later data values beyond a given range are 

scaled to O or 1 or -1, whereas the open brackets would allow data beyond a given range 

to be scaled beyond O, 1, or -1. The remaining options for scaling functions include a 

logistic function, a tanh function, both of which are non-linear, or no scaling function at 

d l .  Each scaling function was tested and it was found that there was no significant 

difference in mode1 performance between each h c t i o n  as shown in Table 3-14. Using 

no scaling function was the only option that resulted in poor performance. Therefore, it 

was decided to use a Iinear fünction that scaled <<-1,1», which provides a larger range 

than 0,1, and the open brackets allow for future data that may go beyond the defined 

range to be scaled more accurately and relevantIy. 

Table 3-14. .Mode1 performance results of testing various scale functions. 

fufl~tion for R-squared value 

iinear [0.1] 

tinear CO. 1 > 

Mean Squared Error 

logistic 

tan h 

slab 1 Production 

linear [-1 .l j 0.77 

linear c-1 . l> 0.77 

0.80 

0.80 

Test 

0.64 

0.64 

Training 

0.47 

0.47 

Produaion 

9.8 

9.8 

0.81 

0.78 

Entire 

0.58 

0.58 

Test 

9.2 

9.2 

Training 

18.1 

18.1 

0.63 0.45 

0.63 1 0.45 

Entire 

14.1 

14.1 

0.60 

0.55 

0.57 

0.57 

0.49 

0.47 

8.5 

8.5 
- - 

0.59 

0.56 

9.6 

9.6 
- 

8.2 

9.06 

18.7 

18.7 

14.3 

14.3 

10.3 

11.5 

- 

17.4 

18.2 

13.7 

14.7 



3.4.3 Model Amalgamation 

With parameters set at optimal settings, the next step is to combine the resulting models 

from each sub-category. The sub-category models within category 1 were to be 

combined as well as the sub-category models within category 2. Therefore, the data set 

for each model to be combined was made into one data set. Then, extraction into the 

training, testing, and production set was done with every third pattern placed in the 

testing set and every fifth pattern placed in the production set with the rest going into the 

training set. A model was then developed using this combined data set and using the 

same settings as before for the various modelling parameters. Tables 3 - 15 and 3- 16 show 

mode1 performance results of the models for category 1 and 2 using the different data sets 

to test performance compared to the results of combining the sub-category models. As 

shown in Table 3-15, combining the category 1 sub-category models resulted in a mode1 

that performed more poorly than the separate sub-category models. Therefore, it kvas 

decided to keep them separate as the category 1, sub-cat 1 (C 1 S 1) model and category 1, 

sub-cat 2 (C lS2) model. On the other hand, Table 3-16 shows that the combined model 

outperforms the category 2, sub-cat 1 (C2S 1) model and is comparable to the category 2, 

sub-car 2 (C2S2) model. Therefore, it was decided to keep the two sub-category models 

as one combined model, the category 2 model (C2). 



Table 3-15. Mode1 performance results of the category 1 sub-category models compared to the 
combined model. 

R squared I 
squared 
error 

1 C1S1 1 C1S2 1 cornbined 

test set 0.59 
training set 1 0.40 

production set 

test set 
training set 
entire set 

mode1 
0.80 

entire set 
production set 

Table 3-16. Mode1 performance results of the category 2 sub-category models compared to the 

0.51 
8-7 

mode1 
0.51 

C2S2 
model 

mode1 
0.33 

com bined model. 

combined 
model 
0.42 
0.24 
0.78 
0.49 
5.8 
24.5 
3 -4 
9.8 

At this point, data that were set aside during categorisation and noise analysis were 

inserted into the relevant data set and the mode1 was retrained. If the insertion of these 

additional patterns did not affect model performance too adversely, they were kept in the 

model. R~ values and rnean squared error were evaluated and cornpared using not only 

the production set, but also the training, testing and entire set for evaluation just as for 

evaluating the combined models as listed in Tables 3-15 and 3-16. I f  there was 

significant overall deterioration in rnodel performance, the pattems were removed. 

Tables 3- 17, 3-1 8, and 3- 19 list performance results of the Cl  S 1, Cl S2, and C2 models 

when noise patterns and extreme case pattems were included in the model data set. AS it 

can be seen, performance generally deterïorated in most cases. However, the case in 

102 

C2S1 
model 
0.29 
0.1 1 
0.34 
0.22 
7.2 
41 -5 
7.3 
16.6 

R squared 

mean 
squared 
error 

production set 
test set 
training set 
entire set 
production set 
test set 
training set 
entire set 



which four extreme patterns were included in the ClS  l mode1 data set did not show 

significantly negative impacts on mode1 performance. In fact, convergence improved 

slightly as s h o m  by the slightly higher R' and lower mean squared error values when 

using the training and testing set to test mode1 performance. Therefore, these four data 

patterns were kept as part of the C 1 S 1 model data set. 

Table 3-17. ClSl model performance results with the inclusion o f  noise patterns and extreme case 
patterns. 

Table 3-18. C1S2 model performance results with the inclusion o f  noise patterns and extreme case 
patterns. 

R squared 

mean 
squared 
error 

C1sl 
model 

0.80 
0.59 
0.40 
0.51 
8.7 
10.5 
22.9 
17.5 

production set 
test set 
training set 
entire set 
production set 
test set 
training set 
entire set 

I 

R squared 

mean 
squared 
error 

6 noise 
patterns 
added 
0.50 
0.43 
0.39 
0.42 
22.5 
15.8 
27.1 
23.5 

'* 
model 

0.51 
0.18 
0.28 
0.29 
11.0 
24.5 
37.2 
29.0 

production set 
test set 
training set 
entire set 
production set 
test set 
training set 
entire set 

11 noise 
patterns 
added 
0.53 
0.45 

0.39 
20.6 
15.0 
35.5 
28.0 

6 noise 
patterns 
added 
0.30 
0.35 
0.52 
0.38 
23.3 
41.1 
12.4 
25.2 

4-extreme .>,- -,.> ..*y.-+.< 

.:paüegjs~ 
-&&&$' 
:.k?g,0;78F2... --.- ..,.i. 
-2 .A EN T O.^^^ 
._ ,, , __. . - . - . ,.". 
.. : :.~:0.54:;:~:: 
..A:.-. . . 8.9.2'5-,:-: 
. . 

- .-. . .-i ' . . 
2 1  3 .-. . 
.: 6:6t;:;-.: 

12 noise 
patterns 
added 
-0.39 
0.35 
0.64 
0.44 
106.1 
258.0 
141 -1 
167.7 

6 extrerne 
patterns 
added 
0.13 
0.07 
0.1 1 
0.10 
28.5 
57.7 
23.3 
35.9 

10 extreme 
patterns 
added 
0.60 
0.61 
0.40 
0.48 
17.0 
10.6 
22.6 
18.6 

17 extrerne 
patterns 
added 
0.62 
0.63 
0.45 
0.53 
16.6 
11.6 
20.3 
17.4 



Tabte 3-19. C2 model performance results with the inclusion o f  noise patterns and extrerne case 
patterns. 

R squared 

mean 
squared 
e m r  

production set 
test set 
training set 
en  tire set 
'production set 
test set 
training set 
entire set 

added added 

0.78 0.22 0.00 -0.03 0.71 



4.0 Results 

At the end of model development and optimisation, three models were produced; models 

for sub-category 1 and 2 of category 1 (CI S 1 and C 1S2) and a model for category 2 (C2). 

Section 4.1 presents performance results of these models while exarnples of predictions 

of each model as a resdt of varying different input values are presented in section 4.2. In 

addition, the significance of the prediction results will also be discussed. Performance 

was measured by the R~ value, mean squared error, and mean and maximum absolute 

error. The appendix on pages 145-146 describes each parameter and how it was 

calculated by the software. 

4.1 Mode1 Performance Results 

Table 4-1 shows the statistics of the data set used for the ClSl  model, which contains 

115 patterns in total. The vast majority of patterns corne from the months of October, 

November, March, and April corresponding with fa11 and spring. This is also reflected in 

the observations of the average raw turbidity and temperature being slightly higher than 

the average for the data set of the ClS2 model shown in Table 4.3. PAC dose is also 

significantly higher. Therefore, the ClS 1 mode1 will be referred to as the spnng/fall 

model. 

The spnng/fail model is a 5-layer backpropagation network with twenty hidden neurons 

in each hidden layer, ten input neurons, and one output neuron. A linear scale function 

that scales <<-1,1>> as explained in section 3.4.2 was used along with a Iogistic 

activation function. Each link between each layer was set with a leaming rate of O. 1, a 



moment& of 0.1, and an initial weight of 0.3, except for link 3, which links slab 3 and 4, 

where learning rate is set to 0.4, momenturn to 0.4 and initial weight to 0.7. 

Table 4-1. Spring/fall (CISI) data set characteristics 

l~emperature ('C) 1 2.3 1 0.1 - 9.5 1 2-6 1 
Raw Turbidity 
(NTU) 

Mean 1 Range 

14.6 2 -  172 

Alum Dose (mg/L) 

Lime Dose (mg/L) 

I ~ a w  Flow (MUd) 1 190.4 1 149 - 222 1 16.3 1 

Std. Dev. 

29.3 

Polymer Dose 
(mg/L) 

).H 1 17.64-8.151 CL: 1 
Reservoir Influent 
Particte Counts 1.5 - 27.9 
(caunts/mL) 

36.6 

53.8 

Table 4-2. Spring/fall (ClS1) mode1 performance results. 

0.23 

18 - 117 

43 - 81 

15.4 

7.4 

0.12 - 0.36 

Mean Squared Error 
Mean Absolute Error 
Maximum Absolute Error 

0.04 

8 -9 
2.3 counts/rnL 
6.7 counts1mL 
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Figure 4-1. Spring/fall (CISI) modet predictions vs. actual particle count data. 

Table 4-2 shows the statistical results of the spring/fall model performance based on the 

production set. The R~ value is quite good and errors are quite low. Figure 4-1 compares 

model predictions to actual particle count data, which are fiom the production set. As 

can be seen, trends in the data tend to be followed well by the model. 

88 data patterns were used as the data set for the Cl S2 model. Table 4-3 shows the 

statistics of this data set. The rnajority of patterns corne fiom the months of December, 

January, and February, which corresponds with winter, and this is associated with 

consistently low raw turbidity and low temperatures. Therefore, the C1S2 model will be 

referred to as the winter mode1 from this point onward. 



Table 4-3. Winter (ClS2) data set characteristics. 

( Mean 1 Range 1 Std-Dev, 1 
Raw ~urbidity 
(N'TU) 

- - -- 

[PAC dose (rngR) 1 0.09 1 O -2.40 1 0.28 1 

Alum Dose (mgk) 

Lime Dose (mg/L) 

2.6 

Reservoir influent 
Partide Counts 
(countslml) 

34.3 

62.6 

Poiymer Dose 
J m g W  

The winter model is a 5-layer backpropagation network with twenty hidden neurons in 

each of the three hidden layers, ten input neurons, and one output neuron. A logistic 

activation function was used for each hidden layer, and a linear scale function in the input 

layer that scaIes <<-l,l>> was also used. Al1 links between each layer were set with a 

Iearning rate of 0.1, a momenturn of O. 1, and an initial weight of 0.3. 

2.0 - 5.0 

Table 4-4. Winter (C1S2) model performance results. 

- -  - 

0.8 

31 - 39 

52 -71 

0.33 

1.2 

5.1 

0.26 -0.43 

R~ 
Mean Squared Error 
Mean Absolute Error 
Maximum Absolute Enor 

0.04 

0.5 1 
11.0 
2.8 counts/mL 
6.9 countdml 
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Figure 4-2. Winter (ClS2) model predictions vs. actuai particte count data. 

Table 4-4 shows the statistical results of the winter model performance based on the 

production data set. The R~ value is somewhat low, but the errors are quite low. Figure 

4-2 compares model predictions to actual particle count data from the production set. 

Although peaks in the data were missed in some cases, the general trends in the data still 

tend to be folIowed by the model. 

Statistical characteristics of the data set of 137 patterns used for the C2 model is shown in 

Table 4-5. Data patterns generally corne from between May and September, which 

corresponds with summer weather. The main difference in the data set compared to 

category 1 is that average temperature and raw turbidity are higher in category 2 than in 

category 1. In addition, the range of raw turbidity encountered in category 2 is higher 

than the range of the data sets in category 1. Therefore, th- C2 model will be referred to 

as the summer mode1 from this point onward. 



Table 4-5. Summer (C2) data set characteristics, 

Total Hardness 

Total AlkalinÏty 

Raw Turbidity 
(MU) 

l ~ l u r n  Dose (mglL) 1 45.0 1 23 - 124 1 22.5 1 
l ~ i m e  Dose (mgk) 1 54.4 1 38 - 90 1 1 1 .O 1 

Mean 

51 -1 

Polymer Dose 
0.17 0-12 -0.22 0.02 

I 

l ~ a w  Flow (MUd) 1 200.5 1 100 - 253 1 22.6 1 

1 

Range 

2 - 720 
Std. Dev. 

98.7 

The surnrner mode1 is a 5-layer backpropagation network with eighteen hidden neurons in 

each of the three hidden layers and a Iogistic function as the activation function for each 

1 

4.4 

1 1 

hidden layer. The scale function in the input layer is a linear function that scales <<- 

Resetvoir Influent 
Particle Counts 
(counts1mL) 

1,1», and links between each layer was set with a learning rate of 0.1, a momentum of 

0.1 and an initial weight of 0.3. The summer model also differs frorn the spring/fall and 

7.8 

winter models in that there are nine inputs in the summer model compared to ten in the 

2.5 - 26.3 

other two models. This is because PAC dose was not included as an input. Only two 

patterns out of the 137 in total contained a value of PAC other than O mg/L, therefore it 

was decided not to include this parameter as an input. The output parameter of reservoir 

influent particle counts remains the same, but eighteen hidden neurons were used instead 

of twenty to follow an arbitrary rule of two times the number of input neurons for each 

hidden layer used in the spring/fall and winter models. 



Table 4-6. Summer fC2) model performance results. 

O 5 10 15 20 25 

Pattern # 

Figure 4-3. Summer (C2) mode1 predictions vs. actual particle count data. 

RL 
Mean Squared Error 
Mean Absolute Errm 
Maximum Absolute Error 

Table 4-6 shows the statistical results of the sumrner mode1 performance based on 

0.42 
5.8 
2.0 comts/mL 
5.4 counts/mL 

production set data. Although the R' value is low, the absolute errors are low as well. 

Figure 4-3 shows how well the model predicts compared to the actual particle count 

values. Some peaks are missed and sometimes trends are not followed precisely, which 

accounts for the relatively low R2 value. 



4.2 Mode! Predictions 

Now that the models have been trained and developed, they can be used to determine the 

impact any of the parameters used in the model has on the reservoir influent (combined 

filter effluent) particle counts. Presented in this section are the results of model 

predictions made by each model in response to varying different inputs. From these 

results, the effect of the varied input on particle counts can be examined. The difference 

of this effect under different seasonal conditions can be examined as well since each 

rnodel represents different seasonal conditions with the C 1 S 1 model representing spring 

and fall, the C1S2 model representing winter, and the C2 model representing surnmer. 

Section 4.2.1 presents results of varying a single input and cornparisons are made 

between the three models. Section 4.2.2 presents the resulting effects of varying two 

parameters at a time. 

In order to use the models to make predictions, a dynarnic link library was created for 

each model, which allows for the rnodel to be called and utilised from a spreadsheet 

program such as Microsoft Excel. Therefore, using the spreadsheet as an interface, 

values of each input c m  be typed ont0 the spreadsheet, and then these values are fed 

through a given model with the model predicted output written to the spreadsheet. 

Listed in Table 4-7 are the values of each input when that input was held constant while 

varying one or two other inputs. For exarnple, if model predictions were made with the 

springlfall model while varying alum dose, raw turbidity would be set at 10 NTU, 

temperature at 2OC, hardness at 160 mg/L, a1kaIinity at 125 mg/L, lime dose at 55 mg/L, 



PAC dose at O mg/L, polymer dose at 0.25 mg& raw fiow at 190 ML/d, and pH at 7.90. 

These set values were chosen based on the statistical average of each model's data set 

(shown in Tables 4-1, 4-3, and 4-5) with the values chosen as the average or near the 

average. 

Table 4-7. Values of inputs held constant during examination o f  effects of inputs on particle counts. 

It should be noted, however, that model predictions are limited by the boundaries of the 

range of data values used to train the models. If presented with data beyond this range, 

model predictions are extrapolated and are not necessarïly as accurate as opposed to 

predictions based on data within the trained range. 

4.2.1 Model Predictions With One Varied Input 

The parameters that were varied and examined for their effect on particle counts are aium 

dose, lime dose, PAC dose, and polymer dose. These factors were chosen based on the 

fact that these are pararneters that can be modified and changed during operation of a 

WTP. 

Summer (C2) 
model 

50 
20 
155 
130 
50 
60 
- 

0.18 
200 

Winter (Cl  S2) 
model 

2 
0-5 
170 
130 
35 
60 
O 

0.30 
170 

SpringJFall 

Raw Turbidity (NTU) 
Temperature (OC) 
Total Hardness (mg/L) 
Total Alkalinity (rngIL) 
Alum Dose (mg/L) 
Lime Dose (mgJL) 
PAC dose (mgIL) 
Polymer Dose (mg/L) 
Raw Flow (MUd) 

(Cl S1) model 
I O  
2 

160 
125 
35 
55 
O 

0.25 
190 
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Figure 4-4. The effect of alum dose on particle counts as predicted by each model. 

Shown in Figure 4-4 is the effect of alum dosage on particle counts predicted by each 

model. As it can be seen, the spring/fall model predicts that there is a decrease in particle 

counts as alum dosage is increased, however, the effect is not very big. The winter model 

predicts the opposite where increasing alum dose increases particle counts particularly 

when alum dose is greater than 35 mg/L. The reason for this is that under winter 

conditions, temperature and turbidity are quite low. With such a low turbidity, adding 

excess alum may be adding particles to the system. Moreover, lower temperatures 

decrease the efficiency of filtration as discussed in section 2.4.2.9. Therefore, these two 

factors combined may account for the observed increase in particle counts with 

increasing alun dosage. Another reason could be that excess alun is causing charge 

reversai in which particles result in having a positive charge from a negative charge 

rather than being neutralised. Consequently, coagulation~flocculation is less effective 

ultimately resulting in more particles passing through the filters. The surnmer model also 

predicts that as alum dose increases, particle counts increase but not by as much. This is 



likely due to the effect of adding particles to the system with excess Ioading of alun or 

possibly due to charge reversa1 as was described. 

30 40 50 60 70 80 90 100 110 

Lime Dose (rnglL) 

Figure 4-5. The effect of  lime dose on particle counts as predicted by each model. 

Figure 4-5 shows the effect ofvarying lime dose on particle counts while other inputs are 

held constant as predicted by each model. The trend predicted by the spring/fall model of 

decreasing particle counts with increasing lime dose couId be attributed to extensive 

removal of calcium and magnesium particies associated with hardness. It is also possible 

that with high amounts of calcium carbonate precipitating, more particles that did not 

settle during coaguIation/flocculation are being removed in secondary sedirnentation by 

adhering to the calcium carbonate precipitate. With the winter model, it can been seen 

that there is a gradua1 increase in particle counts with an increase in lime dosage. The 

reason for this is likely similar to the one described for observations for alurn dose. 

Although water is harder on average in the winter model than in the spring/fall model, the 

temperature is lower, and reaction kinetics are slower. Thus, calcium carbonate rnay not 

be precipitating out as fast as when temperatures are warmer resulting in particle 



formation beyond sedimentation and ultimately resulting in higher particle counts. For 

the summer model, it can be seen that generally, particle counts increase as lime dose 

increases at doses greater than 70 mgL. The reason for this is likely due to particles 

being added to the system fiom excess dosages of lime. 

: -spring/fall model -winter mode1 
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Figure 4-6. The effect of PAC dose on particle counts as predicted by each model. 

Figure 4-6 shows the effect of PAC dose on particle counts while keeping the other input 

values constant. The summer model does not include PAC dose as an input as discussed 

in section 4.1, therefore it is not shown in the graph. It can be seen that increasing the 

PAC dose results in increased particle counts, minimally for the spring/fall model and 

more significantly for the winter model. Since particles are being added to the system, 

the extra particles detected are likely PAC particles, and adding more PAC therefore 

increases particle counts. 



! -springfiall mode4 e w i n t e r  rnodel -+sumrner modei ! 
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Figure 4-7. The effect of polymer dose on particle counts as predicted by each model. 

The effect of polyrner dose on particle counts as predicted by each model is s h o w  in 

Figure 4-7. For the spring/fall mode!, it can be clearly seen that the use of polyrners 

reduces particle counts in finished water. However, the curve levels off indicating that it 

is unnecessary to have high levels of polymer to further reduce particle counts below 5 

counts/mL. The opposite is obsewed for the winter model where increased polymer 

dosage results in increased particle counts. The likely reason for this observation is 

similar to the one given for the trend observed with varying alun doses. With low 

turbidity, less coagulant is necessary and excess polyrner added may be adding particIes 

to the system. Together with lower filtration efficiency due to lower temperatures, the 

result would be an increase in particle counts with increased polyrner dosage. The 

summer mode1 shows a much different curve in which particle count levels peak at a 

dosage of 0.15 mg& decreases for a bit before increasing again and levelling off. The 

reason for this behaviour is unknown. 



Table 4-8. Overview of the impact of parameters on finished water particle counts, 

Table 4-8 provides an overview of the extent of impact each of the four parameters that 

were examined has on finished water particle counts according to the models developed. 

Essentially, information fiom Figures 4-4 to 4-7 is summarised in Table 4-8. The 

parameter range indicates the range in which the parameters were varied. The predicted 

particle count range lists the range of particle counts that were predicted by each model 

within the parameter range. 

Under spnng and fa11 conditions (C 1 S 1 model), polymer dose appears to have the largest 

impact on particle counts followed by alum and lime dose. PAC dose does not appear to 

have a relatively significant impact. Under winter conditions (C 1 S2 model), alum, lime, 

and PAC dose appear to have the most impact on particle counts with polymer dose 

having a relatively smaller impact. Under summer conditions (C2 model), alurn, lime, 

and polymer dose does have an impact on particle counts, but not to the same extent as 

under spring, fall, or winter conditions. 

4.2.2 Model Predictions With Two Varied Inputs 

The effects of varying aiurn and lime dose plus alum and polymer dose at the same time 

on partide counts are presented in this section. These factors were chosen to be 



examined because they can be changed operationally in a WTP, therefore these results 

serve as a demonstration of the usefulness to operators of utilising these models in 

determining operating conditions. The other inputs are held constant as listed in Table 4- 

! +lime dose = 40 rngR -lime dose = 45 mgA --lime dose = 50 m a  . 

j -u- lime dose = 55 mgR -lime dose = 60 mgR -4- lime dose = 65 m$L 

20.0 
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Figure 4-8. The effect of alum and lime dose on particle counts as predicted by the springlfall mode]. 

In Figure 4-8, the spring/fall model predicts the effect of alum dose and lime dose on 

particle counts while the other inputs are held constant. It is observed that particle counts 

decrease as alum dose and lime dose increases, and the trends are similar to those 

obsewed in Figures 4-4 and 4-5. 

The sarne inputs are examined in Figure 4-9, but the winter model was used. It can be 

seen that with both increasing alum and tirne dosage, particle counts increase due to the 

same reasons described in section 4.2. I . 
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Figure 4-9. The effect of alum and lime dose on particle counts as predicted by the winter modeL 

Figure 4-10 also shows the effect of alurn and lime dose but as predicted by the summer 

model. 

-lime dose = 40 mgR 4- lime dose = 50 rngL 4- lime dose = 60 mgll 

-x - lime dose = 70 mg& -lime dose = BO mgR -a - lime dose = 90 mgL 
p.--- -- 
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Figure 4-10. The effect o f  alum and lime dose on  partide counts as predicted by the summer model. 

It is generally seen in Figure 4-10 that increasing both alurn and lime doses increases 

particle counts likely due to the effect of the addition of particles to the system at high 

doses of these chemicals. 



An operator can use the type of information that can be generated such as those presented 

in Figures 4-8 to 4-10 to help determine the amount of chernicals to use. If the main goal 

is to reduce particle count levels, the operator can try different levels and combinations of 

alum and lime dose and determine fiom the mode! predictions the optimal combination of 

dosages. For example, under spring conditions, if an alum dose of 40 mgL is to be used, 

a lime dose of 40 m& will result in 18 particle counts/mL or a lime dose of 65 m g L  

would result in 10 particle counts/mL based on the spring/fall model in Figure 4-8. The 

operator could then decide which option is more optimal when factoring in chernical 

costs. However, under winter conditions shown in Figure 4-9, although lime dose has a 

rninor effect on particle counts, the choice for alum dose needs to be considered carefully 

as too high a dose would result in high particle count levels. Summer conditions shown 

in Figure 4-10 indicate that different doses do not significantly Vary the resulting water 

quality, therefore it is up to the operator to decide the economically optimal choice. 

- - - 

e p o l y m e r  dose = 0.1 6 rngA -polyrner dose = 0.20 rngR --A- polymer dose = 024 mg5 

- - x  - polymer dose = 0.28 mgR -polymer dose = 0.32 m g 5  - -- polymer dose = 0.36 mg5 
-.- pp.p------p-p - -- - 

20 30 40 50 60 70 80 
Alum Dose (rngfL) 

Figure 4-1 1. The effect of alum and polymer dose on particle counts as predicted by the spring/fall 
model. 



Figure 4-1 1 shows the eRect of alurn and polymer dose on particle counts as predicted by 

the springlfall model. The trend is apparent with a decrease in particie counts as alun 

dose and polymer dose increases. 

; e p o l y m e r  dose = 0.20 mgL -polyrner dose = 0.25 mgR -- polyrner dose = 0.30 mgR . 
; -x- polymer dose = 0.35 mgn - polymer dose = 0.40 mgR - * - polymer dose = 0.45 mgR 
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Figure 4-12. The effect of alum and polymer dose on particte counts as predicted by the winter 
model. 

Depicted in Figure 4-12 is the effect of a h m  and polymer dose as predicted by the winter 

model. It can be seen that an increase in alum dose can cause a significant increase in 

particle counts while an increase in polyrner dose causes a minor increase in particle 

counts. Reasons of this behaviour are the same as that described in section 4.2.1. 

A much more complex behaviour is observed in Figure 4-13 in which the effect of alum 

and polymer dose is predicted by the surnrner model. With polyrner doses of 0.13 and 

0.14 mg& particle counts decrease with increasing alum doses. But with polymer doses 

of 0.1 6, 0.20, 0.22, and 0.24 mg& particle counts increase with increasing alum dose. 

Furtherrnore, the curve for 0.16 mg/L of polyrner is different from 0.20, 0.22, and 0.24 



mgL in that a peak is reached with particle counts actually decreasing after an alurn dose 

of 110 m g L  The reason ffor this behaviour is unknown, but it is important to note that 

the overall impact is nmt significant since particle counts Vary only between 

approxirnately 4 and 10 coumts/mL. 

' -polymerdose = 0.12 mgR -cpolymer dose =0.14 mgfL -+-polymer dose = 0.16 mgR; 

-+ polymer dose = 0.18 mgA - polymer dose = 0.20 mgn - * - polymer dose = 0.22 mgA' 
12.0 , 
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Figure 4-13. The effect of alum =and polymer dose on particle counts as predicted by the summer 
mode!. 

The information presented in Figures 4- 1 1 to 4-1 3 is another demonstration of the 

usefulness of utilising the models to assist the operator in determining the treatrnent 

action to take. For exarnple, it is significant to note the impact polymer dose has on 

particle counts compared to, alum dose under spring/fall conditions. For instance, if 

under these conditions a go-al of 10 particle countdml is desired, a combination of 50 

mg/L of alum and 0.28 mgl& of polyrner or 25 mg/L of alum and 0.32 mg/L of polyrner 

is required. In opting for the latter, a 50% reduction in alum dose along with only a 14% 

increase in polyrner dose i s  required as opposed to the former option. Under winter 

conditions, however, polymer dose is not as significant a factor in finished water particle 

123 



counts, and care must be taken not to use an alurn dose that is too high otherwise, particle 

counts may be hi&. Under summer conditions the effect of alun dose and polymer dose 

is not as significant since particle counts would Vary between 4 and 10 counts/ml, 

therefore the operator could choose a combination of doses that was economically 

optimal. 

Even though the results presented here were limited to operationally controllable 

parameters, any input used in the models can be exarnined in this way. This would 

provide more information to assist operators in determining treatrnent options. 

Furthermore, this provides insight into the behaviour of particle counts in response to 

various parameters, which would be beneficial to researchers in this field. 



5.0 Discussion 

5.1 Performance Summary 

Table 5-1. Statistical performance of the models that were developed. 

R squared 

Based on the model performance statistics as summarised in Table 5-1, the spring/fall 

model performs reasonably well. The winter and sumrner models have fairly low 

predicting errors as well, however their R~ values are not very high. By looking at the 

model performance graphs in Figures 4-1,4-2, and 4-3, however, one would have a better 

idea of how well the models predict. In Figure 4-1, it c m  be seen that the spring/fall 

model follows the trends in the data quite well and manages to reach the sarne peaks, and 

this is an indication of the model predicting reasonably well. The winter model, 

however, does not predict as well as the spring/fall model. It can be seen in Figure 4-2, 

that the model is able to follow the trends in the data but not to the same extent as the 

sprindfill model. In addition, some peaks are reached such as pattern 3, but others are 

not such as pattern 6. Altogether this accounts for why the R~ value is not as high. 

Nonetheless, it can also be seen that the differences between the actual and predicted 

particle counts are not that great, and this is reflected in the fairly !ow mean squared error 

and mean absolute error. The sumrner model also does not tend to predict as well as the 

Mean Squared Error 

Mean Absolute Error 
(particle coun ts/rnL) 

Maximum Absolute Error 
(particle coun tsImL) 

Spnnglfal' 
model 

0.79 

8.9 

2.3 

6.7 

winter rnodel 

0.51 

surnrner rnodel 

O -42 

11.0 

2.8 

6-9 

5.8 

2.0 

5.4 



spring/fall model. In examining Figure 4-3, it is observed that trends in the data are 

mostly followed except patterns 21-25, and when trends are followed, it is not to the 

same extent as the spring/fall model. Some peaks are reached such as at pattern 14, but 

others are missed such as at pattern 4. Since the trends are not being followed as closely 

and because of sorne missed peaks and over-predictions, a low R~ resulted just as for the 

winter model. However, the actual differences between actual and predicted particle 

counts are not very high as reflected by the mean squared error and mean absoiute error. 



5.2 Model Applications 

Once the models were developed, a series of examinations into the effects of various 

factors on particle counts were done using these models and presented in section 4.2. 

This served to illustrate the great potential these models have as powerfirl tools that are 

usefid for plant operators and researchers to use. These models are usefbl in two ways: 

as a means of determining optimal operational dosages and as a research tool in studying 

particle counts through the filtration process. 

Currently, it is standard practice at a WTP to run jar tests as a means of determining 

treatment options. Coupled with operator experience, operationai dosages are chosen, 

and this is how process contrd in the treatment process is achieved. One problem with 

jar tests is that they do not directly predict filtration performance. Instead, clarification 

performance of chernicals is measured, which does not necessarily mean that the filters 

wîll behave in the sarne way. Not only are these tests time consuming and inconvenient, 

but decisions based on experience are not as reliable considering al1 the variables that are 

involved that influence filtration performance. Despite the fact that this level of process 

control generally works for controlling turbidity, particle counts are more variable and 

harder to control using traditional process control. ANN, on the other hand, can improve 

process control and has a number of advantages. One major advantage of using the ANN 

models is that a wet laboratory is not required for perfoming these tests. Instead, the 

mode1 acts as a virtual laboratory, and it is very easy to utilise through a spreadsheet 

program providing treatment options immediately. In addition, there is no concem with 

problems of scaling up fiom bench or pilot plant to a hll-scale plant because the data that 



is used to train the models is full-scale data. Figure 4-1 1 is a strong example of the 

modelys use for determuiing operational dosages. From the graph, an operator can 

evaluate and decide the optimal dosage to use. In this example, if an operator wanted a 

finished water quality of 10 particle counts/mL, the person has the option of using 50 

m g / '  of alun and 0.28 mg/L of polyrner or half as much alurn at 25 mg/L and only 14% 

more polyrner at 0.32 mg/L. From this, the operator can decide which option is more 

economical and yet produces the same result. Process control is achieved quickly and 

efficiently compared to using jar tests. Furthermore, such determinations are more 

comprehensive since the impact of multiple parameters can be exarnined rather than 

relying on operator experience. A WTP could go one step m e r  and integrate the ANN 

models as part of the process control system. In a fùlly automated system, not onfy does 

the model give treatment options, but it could also initiate the action providing even more 

immediate process control action. 

Besides providing treatment options, the ANN models are useful as research tools in 

studying particle counts through the filtration process. Figure 4-4 provides a good 

example of using the model as a means of researching factors affecting particle counts 

through filtration. In Figure 4-4, the effect of alum dose on particle counts is examined. 

In comparing each of the three cuves, it can be seen that alum dose affects particle 

counts differently in different seasons. Researchers can use this information as well as 

study other factors as dernonstrated in Figures 4-5 to 4-13 and make some conclusions as 

to the extent of effect different factors have on particle counts under different conditions. 

With an improved understanding of how particle counts are affected, water utilities 



would be better able to control and reduce particle counts and therefore comply with 

strict water quality standards, 



5.3 Conclusions 

It can be concluded that an ANN mode1 of  filtration performance can be feasibly 

deveioped as s h o w  by the results of the models developed in this study. Given a similar 

amount of data or more and the sarne availability of data, the sarne type o f  mode1 can be 

developed for other WTPs. 

Another conciusion is that the ANN models developed are usefûl as tools to assist 

researchers and WTP operators. As a research tool, the models can be used to study 

particle counts as demonstrated in this study. It is also useful to WTP operators for 

determining optimal chemical dosages or to assist in deterrnining courses of action for 

treatrnent, thereby improving process control. Not onIy that, the models that have been 

developed are unique in that complete plant models are not available. ANN models that 

have been developed for water treatment focused on unit processes, therefore this was a 

different modelling approach to encompass an entire plant. 

Conclusions can also be made regarding the behaviour of particle counts in response to 

various conditions. One general conclusion is that particle count behaviour is complex 

and not necessarily simple and linear. With several factors having an infiuential effect 

both individually and combined, it is difficult to rnake conclusive remarks on overall 

particle count behaviour. Another general conclusion is that different water conditions 

result in different particle count behaviour. This can be seen in predictions between the 

three models, which predict based on data fiom different seasons. The settings that were 

used in predictions were those typically occurring within that data set and thus that 



season. As a result, different curves were observed between each model exarnining the 

sarne factor. For example, in Figure 4-4, the effect of a lun dose was examined using 

each model. The result is three different shaped curves, and it appears to be due to the 

fact that the set conditions used for each model are different and dependent on season. 

More specific conclusions could be made about particle count behaviour as well. Adding 

non-coagulation/flocculation related chernical to the system, such as PAC and lime, 

generally increases the amount of particle counts in the finished water. This is illustrated 

in Figures 4-5 and 4-6. This observation is likely due to the fact that adding these 

chemicals is equivalent to adding particles to the system, and therefore it is these particles 

that are contributing to the particle count. The exception appears to be lime dose in the 

spr-ing and fa11 where adding more Iime decreases particle counts. This may be due to 

hardness being extensively removed and more particles seîtling out by adhering to the 

calcium carbonate precipitate. It could also be concluded that adding excess alum or 

polyrner increases particle counts under winter conditions as illustrated in Figure 4-12. 

This may be due to particles being added to the system coming from the excess a lun and 

polymer. However, the same behaviour is not observed under spnng and fa11 conditions 

shown in Figure 4-8 where increased dosages result in decreased particle counts. Particle 

count behaviour is even more complex under summer conditions and is shown in Figure 

4-13. Depending on the polymer dose, excess alurn could increase or decrease particle 

counts. This illustrates the general conclusion that different water conditions result in 

different particle count behaviour. To be more specific, it appears that temperature and 

raw turbidity, two major factors that differentiate between the different seasonal 



conditions, play a crucial role in the way particle counts react to other factors. And this is 

part of the generd conclusion that particle count behaviour is complex because of the 

multiple factors involved and the possible interactions that occur between the factors. 

It is important to stress, however, that the mode1 predictions are limited by the boundaries 

of the range of data values used to train the models as was previously mentioned in 

section 4.2. If data that is presented to the models is beyond this range, the resulting 

predictions are extrapolated and are not necessarily as accurate as opposed to predictions 

based on data within the trained range. For exarnple, the range of alurn dose in the data 

set for the winter model is between 31-39 mg/L. Thus, in Figure 4-4, the winter 

predictions outside that range were extrapolated, and particle counts may not necessarily 

behave in the manner presented in that graph. Therefore, conclusions made based on 

model predictions outside these boundaries may not be accurate. It would be necessary 

to study and determine how well the models c m  predict beyond these boundaries. 



5.4 Recommendations 

There are a number of issues that would need to be examined in M e r  study. One is the 

testing of model limits and boundaries as just discussed previously. Another area in 

association with testing model Iirnits is the verification of model predictions and the 

conclusions of particle count behaviour made based on these predictions. This would 

need to be done in the laboratory either bench-scale, pilot-plant scale, or by use of full- 

scale plants if available. Another issue, particuIarly with the winter and surnmer models, 

is mode1 performance. The winter and summer rnodels do not follow trends as well in 

the data as the spring/fall model, and this is reflected in their low R~ values. With the 

collection of more data providing more data pattems for the models to train from and 

therefore providing a better representation of the cause-effect relationships in place, 

rnodel performance should improve especially considering approximately only a year's 

worth of data is used and split between three models. Another area of improvement 

would be the Kohonen classification of data. The main problem that arose, mainly in the 

second stage of categorisation, was the unclear categorisation of some of the data. In 

other words, the Kohonen classifier could not place certain data patterns into one 

exclusive category because they possessed characteristics that could have placed thern in 

either category. The determination of the final mode1 configuration is still in question. If 

an overall model were to be implemented at E.L. Smith WTP, the input data would first 

pass through a Kohonen classifier and then be fed through to whichever of the three 

models developed would be appropriate. This is shown in Figure 5-1. However, if the 

three models were to be combined into one model, the need for a data classifier would be 

eliminated, and the overall configuration would be much simpler as shown in Figure 5-2. 



Associated with that area of study is the need to develop better protocols for merging 

models since atternpts to amalgamate the spring/fall (Cl S 1) and winter (C 1 S2) models 

were unsuccessfid. 

Input 
Data 

SpringIFall ANN - 1  mode 1- 
Classifier 

Summer ANN 

Overall predictive model 

Figure 5-1. Overall configuration of the predictive mode[. 

Output = 
predicted 
particle count w 

I I 1 particle count 

Figure 5-2. Configuration of predictive rnodel with al1 ANN models combined into one. 
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Once these issues are resolved, the next area of concern would be the integration of the 

ANN model with the WTP SCADA system. It would need to be detemined in what 

capacity the model would be inserted whether as part of the process control system or as 

a separate interface apart from the system for the operator to perform "virtual" jar tests. 

Amalgamated ANN model 

Although M e r  study is required before full implementation of the models could be 

done, the study that was done has shown that an ANN model of particle counts through 



filtration can be feasibly developed. Provided that there is enough data, other WTPs can 

also develop their own ANN models based on the ones developed in this case. The 

potential of the model as a useful tool for WTP operators to determine optimal chernical 

dosages was also demonstrated. Process control would therefore improve, and a water 

utility could go so far as to incorporating the ANN model as part of the process control 

system to automate the system thereby improving it. Furthemore, the models developed 

were shown to be potentially valuable research tools in studying the effects of various 

factors on particle counts; a field in which much more research needs to be done. With 

an increased understanding of particle counts, a water utility will be better able to reduce 

counts and comply with stricter water quality standards. 
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Appendix 

Hach Mode1 2100N Laboratory Turbidimeter 

Principle of Operation 

This instrument is a Nephelometer with the capability to measure with either the Ratio on 
or Ratio off. It meets the design critena of the United States Environmental Protection 
Agency and is acceptable for cornpliance reporting. The optical system is comprised of a 
hmgsten-filament lamp, lenses and apertures to focus the light, a 90 degree detector, 
fonvard-scatter light detector, and a transmitted-light detector. Turbidity measurements 
at less than 40 NTU are perfonned utilising only the 90 degree scattered-light detector or 
using the complete set of detectors (ratio). With the Ratio ON (necessary for samples 
greater than 40 NTUs), the instrument's microprocessors uses a mathematical calculation 
to ratio signals fiom each detector. 

Specifications 

Principle of Operation: Nephelometric 

Measurement Units: Nephelometric Turbidity Units (NTU), Nephelos, Europem 
Brewery Convention (EBC) 

Ranges (With Ratio ON) 
NTU Mode: 0-4000 NTU with automatic decimal point placement or 0-0.999, 0- 
9.99,O-99.9, and 0-4000 with manual range selection 
Nephelo Mode: 0-26 800 with automatic decimal point placement or 0-9.99, 0- 
99.9 and 0-26 800 with manuaI range selection 
EBC Mode: 0-980 with automatic decimal point placement or 0-0.999, 0-9.99, 0- 
99.9, and 0-980 with manual range selection 

Ranges (With Ratio OFF) 
NTU Mode: 0-40 
Nephelo Mode: 0-268 
EBC Mode: 0-9.8 

Accuracy: *2% of reading plus stray light from 0-1000 NTU; *5% of reading from 1 O00 
to 4000 NTU based on Formazin primary standards and with Ratio ON, *2% of 
reading plus stray light fiom 0-40 with Ratio OFF 
E.L. Smith Acceptable Limits: *20% at < 1 O NTU and *IO% at > 10 NTU 
Reference Conditions: O to 40°C, O to 90% RH Noncondensing @ 25"C, 115/230 
Vac *17%, 50/60 Hz 

Resolution: 0.001 on lowest range 
Repeatability: A l %  of reading or + 0.0 1 NTU, whichever is greater 



Reference Conditions: O to 40°C, O to 90% RH Noncondensing @ 25OC, 115/230 
Vac *17%, 50/60 ]Hz 

Response T h e :  6.8 s with signal averaging off or 14 s with signal averaging on 

Standardisation: Forrnazin Primary Standards 

Display: 5-character LED, 13.7 mm high digits with custom annunciators 

Light Source: Tungsten filament larnp. Lamp life 8800 h (typical) 

Signal Averaging: Operator selectable on or off 

Sarnple Cefls: 95 mm high x 25 mm diam. Borosilicate glass with rubber-lined screw 
caps. 

Sarnple Required: 30 mL minimum 

Secondq  Standards: Gelex Secondary Standards 

Temperature 
Storage Temperature: -40 to 60°C 
Operating Temperature: O to 40°C 
Sarnple Temperature: O to 95°C 

Operating Humidity Range: O to 90% RH Noncondensing @ 25°C; O to 75% RH 
Noncondensing @ 40°C 

Instrument Stabilisation Time: 30 min with ratio on, 60 min with ratio off, typical 
applications Ieaves instrument on 24 h/d. 

Measurement Procedure 

Collect a representative sarnple in clean container. Fil1 sarnple ce11 to the line 
(Approx. 30 rnL) and cap the sampie cell. 

Hold sarnple ce11 by the cap and wipe to remove water spots and fingerprints. 

Apply a thin bead of silicone oil fiom the top to the bcttom of the ce11 enough to coat 
ce11 with a thin layer of oil- Use provided oiling cloth to spread oil uniformly and 
wipe off excess. 

Place the sarnple ce11 in the instrument ce11 cornpartment and dose the lid. 

Select manual or automatic ranging by pressing the Range key. 



6 .  Select the appropriate signai averaging setting (on or off) by pressing the Signal Avg 
key. 

7. Select the appropriate Ratio setting (on or off) by pressing the Ratio key 

8. Select the appropriate measurement unit (NTU, EBC, or NEPH) by pressing the Units 
key . 

9. Read and record the results. 

Met One Mode! PCX Particle Counter (with local display) 

Principle of Operation 

Particle count rneasurement is online and continuous. Water is directed into the sensor 
and funnelled through an optical flow ce11 measuring 750 x 750 microns. Flow rate 
through the sensor is at 100 d / r n i n .  Each particle that passes through the sensor 
generates a signal corresponding to its size. Each sensor cornes with a calibration curve 
showing the signal response versus size of each sensor. NIST-traceable spheres of 
known size are used to calibrate each sensor. Information is stored in the memory of the 
sensor and is used to separate the particle counts into the proper size category. 

Specifications 

Srnailest Particles Counted: down to 2 microns 

Largest Particles Counted: up to 750 microns 

Distance from Cornputer to Sensor: 4000' maximum (for entire RS-485 signal path) 

Power: 1 15 VAC (Al 0%); Optional 220 VAC (*IO%; 50/60 Hz) 

Enclosure: NEMA 4X-Rated 

Indicators: Power, Particle/Alarm, Calibration Status, Count Display 

Flow Rate: 1 00 mL/rnin, nominal 

Max. Pressure: 65 psi, not more than 1 min duration; 55 psi continuous 

Fluid Connections: 
Inlet: Quick disconnect. Connects to !A inch OD Tubing 



Outlet: Quick discomect. Comects to % inch OD Tubing 

Accuracy : 
Manufacturer: k 5 counts 1 mL for a sample of blank water 
E.L. Smith: * 10 counts /mL for filtered water, * 10% for raw water 

Other Parameter Measuremenfs 

Raw Water Temperature 

An online thermometer measures the temperature at an accuracy of *2%. 

Total Hardness and Total Alkalinity 

Readings are based on a colorimetric titration by a Tytronics FPA 400 series analyser 
with an accuracy of h5 mg/L 

The following steps outline a typical analysis cycle: 

1. Fluid from the sample Stream is used to wash out the reaction ce11 by 
exchanging several volumes of fluid 

2. The sample is captured using a syphon method that assures volume 
repeatability better than 1 % 

3. The appropriate reagent(s) is added and the solution is mixed 
4. Titrant is slowIy added, and the time to reach an end point is measured 
5. The sample concentration is calcdated and results displayed 

Readings are measured by a Rosemount Mode1 1054 online pH analyser, which utilises a 
g las  electrode. The manufacturer's stated accuracy is *0.01 pH units, however E.L. 
Smith's acceptable limit is + O 2  pH units. 

Alum Dose and Polyrner Dose 

Alum and polymer feed is measured with a magrneter (magnetic flow meter) with an 
accuracy of &OS%, 



Lime Dose and PAC Dose 

Lime and PAC feed is measured with a massmeter ( m a s  flow meter) with an accuracy of 
*0.25 to 0.5% 

Raw Flow 

Measured using a magmeter (magnetic flow meter) with an accuracy of 0.5% except at 
low flows in which accuracy slightly decreases. 

Calculafion of # 

The formula that NeuroSh 

where 

s for calculating R' is: 

y is the actual value (particle counts in this case), 

j7 is the predicted value ofy, 

j? is the rnean of the y values 

R~ is defined as the coefficient of multiple determination. It compares the accuracy of the 
model to the accuracy of a trivial benchmark model wherein the prediction is just the 
mean of al1 of the sarnples. A perfect fit would result in an R~ value of 1, a very good fit 
near 1, and a very poor fit fess than O. If mode1 predictions are worse than one could 
predict by just using the mean of the sample case outputs, the R' value will be Iess than O. 

Definition of Mean Squared Error, Mean Absolute Error, Maximum Absolute 
Error 

Mean squared error is defined by NeuroShell 2 as a statistical measure of the differences 
between the values of the outputs in the data set and the output values the network is 
predicting. This is calculated as the mean of the s uare of the actual values minus the 4 predicted values, Le., the mean of (actual - predicted) . The errors are squared to penalise 



the larger errors and to cancel the effect of the positive and negative values of the 
differences. 

Mean absolute error is the mean of the series of absolute errors calculated, which is 
defmed as absolute value of the difference between the value the network is predicting 
for an output and the actual value of that output. In other words, it is the mean of lactual - 
predictedl. 

Maximum absolute error is the maximum of the series of absolute errors calculated. 

The lower or nearer to O these errors are, the more accurate the mode1 predictions. 




