Scenario-Based Access Control

G.S. Knight

A thesis submitted to the
Department of Computing and Information Science
in conformity with the requirements for
the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada
January, 2000

copyright © George Scott Knight, 2000



i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ofttawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothé¢que nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronmique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-c1 ne doivent éfre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54421-4

Canada



Abstract

This work describes an access-control modeling scheme for secure systems that is
based on the object interaction specifications used in contemporary object-oriented
analysis and design methods. The scheme is primarily intended to model integrity
and legitimate-use in commercial systems. The primary concern of these systems is to
prevent fraud and errors. Access controls are usually based on hierarchical delegation
of authority and separation of duty. Security policies and control mechanisms can be
based on the tasks and business activities that are performed by the system. Object-
oriented analysis and design techniques are commonly used to model systems using
abstractions and interactions closely related to the actual tasks and business activities
of the problem domain. This makes these techniques an attractive basis for access-
control modeling. The proposed model makes extensive use of data that is already
collected by commercial object-oriented analysis and design tools. The motivation
is the productivity gains that may be realized through reducing the effort required
in the maintenance of separate security and design models and in ensuring there is
consistency between security models and other system models. In object-oriented
modeling the description of a problem and its solution are in terms of interacting
objects. Object-oriented models specify the kinds of objects that can exist in a
system and the kinds of interactions that they can take part in. The models describe
the possible interactions in terms of object scenarios. Each scenario has a limited
number of ways in which it can be combined with other scenarios. This can be
the basis for defining a security policy. The proposed scenario-based access-control
model extends current object-oriented models to bring more rigour to the relationship
between scenarios. The limited ways in which objects interact in these scenarios
provide the basis of a technique for safety analysis. In the security models produced,
the set of access authorizations held by system entities is inherently non-monotonic
over system execution. A decidable safety analysis method is provided for instances
of non-monotonic scenario-based security models. It is expected that for a broad class
of useful systems the analysis is tractable.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

One can view a commercial organization as a system that is required to maintain
a certain state (or standard) of integrity. Organizational procedures and internal
controls then have to ensure that the tasks carried out in the organization preserve
such a state of integrity [San96]. To maintain such an integrity state there must
be some assurance that users can only use their access to an information system
(and through it access to corporate data/information assets) for legitimate purposes.
Users should be limited to data accesses required to perform tasks for which they
have authorization. The tasks should be statically defined and form the basis of a
mandatory security policy for the system. Specific tasks should be authorized for an
individual based on the duties of that person in fulfilling the corporation’s business
objectives. The authorized tasks should be sufficient for individuals to accomplish
their duties but should not provide superfluous access to data. I.e., the performance
of a task must be a legitimate use of the information system.

The first section of this chapter defines the goals of this dissertation with respect
to providing modeling support for the capture of the legitimate use properties of a
system. The next section provides motivation for these goals and for scenario-based
access control modeling. The last section provides an outline of the research presented

in the remaining chapters of the thesis.



1.2 Goals

The development of scenario-based access control is driven by two main goals. The
first goal is to provide a scheme that will provide efficient safety analysis for systems
modeling legitimate use policies. This implies efficient analysis of non-monotonic sys-
tems. This follows because legitimate use policies that employ just-in-time availability
of access control permissions are inherently non-monotonic. The reasons for this will
become apparent later in the dissertation. The second goal is to provide a modeling
scheme that complements contemporary software engineering modeling techniques.
The objective is to leverage the information that is already being captured by such
techniques and to provide security modeling as an extension to existing software engi-
neering methods. This eliminates duplication of effort in security modeling and may
serve to encourage the use of security modeling.

The scope of this research is directed toward achieving these goals and is reported
on in the dissertation. This includes the definition of a modeling scheme for capturing
legitimate-use policies based on just-in-time availability of access-control permissions.
The primary abstraction in the modeling scheme is the scenario. A scenario is a formal
description of a set of actions permitted by a group of objects. The modeling scheme
is called scenario-based access control (SBAC). The research also includes a safety
analysis scheme for scenario-based models. A security model design capture and
analysis tool has been implemented based on the SBAC modeling and safety analysis
schemes. The SBAC tool is used to develop example models that are representative
of some interesting classes of information system applications. The analysis of these
systems is tractable and the tool is used to gather some empirical data about the
efficiency of the analysis algorithm. The results do not provide a proof of tractability
for SBAC modeling in general, but it is expected that there is a large class of systems
for which analysis based on the unfolding algorithm is tractable.



1.3 Motivation

The modeling scheme is intended to specify commercial and application-based security
policies. The control of the access to information is usually divided into principal areas
of concern: secrecy, integrity, availability, and legitimate-use. The modeling technique
presented here is particularly appropriate for specifying integrity and legitimate-use
policies. Clark and Wilson in [CW87], Moffet and Sloman in [MS88], and more re-
cently Thomas and Sandhu’s task-based access control in [TS94] have asserted that
commercial security concerns should mirror an organization’s internal control systems
and work flows. These controls are usually based on hierarchical delegation of au-
thority and separation of duty. The primary concern of commercial systems is usually
to prevent fraud and errors. The problem domain statements of requirement for an
organization’s information systems tend to be task based. Therefore, role and task-
based access control seems to be a promising direction of research and is motivation
for modeling legitimate-use policies. “The fact that authorization is transient and
dependent on organizational circumstances” [TS94] means that such policies tend to
be non-monotonic in the generation of access rights as system execution evolves. That
is, the entities in a system can both gain and lose access rights as the evolution of
the system progresses.

There are modeling schemes in the literature that can be used to express systems
with monotonic security policies that also have efficient safety analysis [San88, San89,
San92]. There are also modeling schemes in the literature that can be used to express
systems with non-monotonic security policies [HRU76, SS92, San92, SG94]. How-
ever, there has been less success in providing an efficient safety analysis for modeling
schemes used to express systems with non-monotonic security policies. The ability
to provide efficient safety analysis for such systems would significantly expand the

classes of system for which access-control modeling and safety analysis can provide



assurance for security critical design.

Object-oriented analysis and design (OOA/OOD) techniques are commonly used
to model systems using abstractions and interactions closely related to the actual
problem domain. This makes these techniques an attractive basis for access-control
modeling. The system specification can be captured in terms of high-level abstract
tasks that meet an organization’s business objective. This provides intuitive seman-
tic content that takes advantage of natural human cognitive skills [Boo94]. Another
motivation for the use of object-oriented (OO) modeling techniques is that they scale
well over varying levels of abstraction. The same basic philosophy of object-oriented
decomposition can be applied during system analysis, design, and implementation.
Although OO models can be used at various levels of abstraction this does not imply
model correspondence between the levels. Model correspondence between the lev-
els is not straightforward and is itself a separate area of research. Correspondence
notwithstanding, the ability to use the same basic techniques to model systems at
various levels of abstraction is an attractive property. Current security models tend
to work at a relatively low level of abstraction [TS94|. Security modeling based on
OO techniques should allow modeling at higher levels of abstraction.

Security modeling using OO techniques also has the advantage of allowing secu-
rity modeling to complement the system requirements and design modeling techniques
used in contemporary software engineering practice. It is expected that much of the
data required for security modeling is routinely captured by OOA/OOD methods.
The data captured by contemporary modeling tools can be augmented to provide a
security model compatible with current analysis and design methods. This should
provide the basis for an access-control modeling and analysis capability that is com-
patible with the way system architects and designers do their work. This should
result in productivity gains, as it reduces the effort required in the maintenance of

separate security models and in ensuring there is consistency between security models



and other system specifications. A security-modeling tool that works with familiar

system design tools also increases the likelihood that such modeling will be done.
This dissertation explores development of an access-control modeling scheme based

on contemporary OO analysis and design methods to capture and provide efficient

analysis for non-monotonic task-based models for secure systems.

1.4 Thesis Outline

Chapter 2 provides a literature review and the contextual information necessary to
provide background for the area of research, to provide foundations and inspirations
for the work, and to provide contrasting examples for comparison. Chapter 3 de-
scribes the modeling of scenarios of interacting objects. The models provide rigor to
the relationships between types of scenarios and for the relationships between scenario
instances. Chapter 4 defines the concepts of security policy and system. This chapter
presents a scheme for safety analysis of scenario-based access-control models. Chap-
ter 5 presents a series of worked examples. The examples presented are representative
of some interesting classes of system for which analysis is tractable. Finally Chap-
ter 6 provides some comparisons between SBAC and other security modeling schemes
found in the literature. This chapter also provides a discussion that summarizes the

contributions of the research and conclusions.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides a review of existing literature which is relevant to the presen-
tation of material in later chapters. A review of previous research in the modeling of
secure systems serves to provide for the reader an understanding of the relevant is-
sues surrounding access-control modeling schemes. The review outlines how previous
authors have contributed to the topic area. The various modeling schemes illustrate
the need to balance the ability of a modeling scheme to specify a wide variety of
useful systems with the ability to perform an analysis of the security properties of
those systems. The primary type of analysis considered is safety analysis, which is
described later in the chapter. The review material also provides a brief description
of some concepts associated with software engineering and object-oriented analysis
and design. The scenario-based access-control modeling scheme proposed in this dis-
sertation is built on and inspired by ideas arising from previous literature presented
in this chapter.

The first section of the chapter presents a review of computer security issues and
modeling schemes. The next section provides a review of object-oriented analysis and
design issues. The end of that section provides an example of a system taken from
the literature. The example has been reworked in a presentation format convenient
for expressing scenario-based access control. The example will be used to provide an
intuitive counterpoint to the formal presentation of the components of the modeling

scheme in Chapter 3.



2.2 Review of Computer Security Issues

Security models can be used to transform security requirements into technical spec-
ifications and as a means to provide acceptance criteria for evaluating a system or
system component. “Without such models, system developers are forced to apply
ad hoc security related techniques throughout the design and implementation of the
system. This approach inevitably leads to exploitable flaws, and makes the security
assessments necessary for certification virtually impossible.” [And72] This section
will examine fundamental aspects of computer system security and present the rel-
evant research issues and seminal models used to address the control of access to
information and computing resources.

In general, secure systems will control, through use of specific security features,
access to data such that only pmperiy authorized individuals, or processes operating
on their behalf, will have access to read, write, create, or delete data elements [Dep85].
Through the control of access to data the system endeavors to protect and preserve
the information represented by the data. The set of rules and procedures governing
this use of information is called the security policy. A system can be said to control
the access of subjects (individuals, or processes operating on their behalf) to objects
(information being held on the system, e.g. files). The control of access to information
is usually divided into three areas of concern: secrecy, integrity, and availability
[Gas88]. To this traditional set of areas of concern can be added legitimate-use.

Secrecy (confidentiality) concerns restricting the flow of information such that it
does not become available or is not disclosed to some set of subjects. For example,
the flow of information can be restricted such that a subject without an appropriate
security classification, or need-to-know, is not permitted to read from a specific ob-
ject (or have the information contained in that object written to it). Integrity issues

concern the control of information such that information objects are not exposed to



accidental or malicious alteration. For example, objects can be controlled to prevent
unauthorized subjects from modifying (writing, deleting) a specific object. Availabil-
ity of information is a property of the flow of information that requires information
contained in an object to be accessible to a subject, and requires that the flow does
in fact occur when needed. A failure of this property, for example denial of service,
would occur when a subject acts in a way that prevents or delays the valid flow of
information between other subjects and objects on the system. Legitimate-use per-
tains to the prevention of the unauthorized use of system resources. For example,
a subject may have access to an object but only within the context of some defined
and authorized business task or workflow. Even though a subject has access to an
object for a specific task, the access permission should not be able to be used by that
subject for other purposes.

References to “information contained within an object” in the descriptions of
the properties above can also be viewed as characterizing the services provided by an
object. For instance, access to information can also be construed as access to a service
(program, device, etc.). Given these definitions of security and the control of the
flow of information, it should be understood that there are differing interpretations,
and some concepts are less well-understood than others. The historic focus of the
research community has been on confidentiality. This is because much of the research
and system procurement activity was driven by the government/military. Integrity
and availability were only generally defined in the literature and then usually in
relation to a specific secure system implementation and its associated security policy.
Recently there has been more emphasis placed on integrity as the interests of the
research community have shifted to commercial information systems. This trend also
drives the interest in legitimate-use issues. The modeling scheme proposed in this
dissertation provides direct support for considering legitimate-use issues.

This section is organized in the following way. The first subsections present fun-



damental aspects of computer system security as a foundation for the discussions
in following subsections. The next set of subsections present the safety problem as
defined in the context of computer security, and seminal models are introduced to
explore tractable analysis of the migration of access rights. Later subsections discuss
the flow of information, access-control models conceived to restrict information flow

in secure systems, and role-based access-control models.

2.2.1 Security Policy

The rules and procedures of a security policy are designed to meet the confidentiality,
integrity, availability and legitimate-use requirements for the specific circumstances of
users of the system. This can include regulating the processing, storage, distribution,
and presentation of information [Com88]. The following paragraphs describe some
common policies that will be referenced later in this dissertation.

Military/Government Security Policy. The military/government security policy
[Gas88] is primarily concerned with confidentiality. The policy defines an ordered set
of security levels (e.g. Unclassified < Confidential < Secret < Top Secret) and a set
of categories (e.g. Atomic, NATO, Alpha). A user has a clearance for a certain level
and is also cleared for some number (possibly zero) of categories. Information has
a classification which is composed of a security level and some designated number
(possibly zero) of categories. A user is never allowed access to any information for
which he is not cleared. Clearance implies the information’s classification level < (is
dominated by) the user’s clearance level, and the information’s set of classification
categories C user’s set of clearance categories.

Need-to-know. This policy is also associated with the military/government and
can operate in parallel to, or separately from, the clearance-based policy described

above. The policy specifies that a user is not allowed access, regardless of his classi-
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fication, to any information unless he has a legitimate need to use the information.
When operating in parallel with the military/government security policy, need-to-
know access can only be extended to a subject which is already authorized access
under the clearance-based policy.

ORCON. The originator controlled policy is again associated with the
military/government. This policy is usually implemented in parallel with the stan-
dard clearance-based military/government security policy. As described in [San92]
the creator of a document retains control over granting access to the information in
the document. For example, if the creator of a document grants another user the
authorization to read the document, that user cannot propagate the information in
the document to a third user. It is prohibited for propagation to occur either directly
by granting the third user the right to read the document, or indirectly by granting
the third user the right to read a copy of the information in the document.

Separation of Roles. Security in the commercial environment often requires that
more than one person be involved with some operation in order to reduce the proba-
bility of the occurrence of fraud. Such separation might involve a division of responsi-
bilities. In some cases, the users perform separate functions. For example, the system
administrator’s role may be separated from the system security officer’s role so there
is no one person who can subvert the system. In other cases, the users cooperate
in performing some task. In a business application a clerk and a manager may be
required to cooperate to draft a cheque. This concept of a two-person rule can be
generalized into n-person rules for synergistic authorization.

Chinese Wall. The Chinese wall policy has its origins in the business community
[BN89]. In the financial services sector, a consultant must not divulge information
pertaining to a client to a competitor. Thus, if a consultant is advising one com-
pany in a business sector (e.g. banking) he is not permitted to become privy to any

knowledge about any other company in that sector, or to impart his insider knowl-
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edge to any other company in that sector. The consultant’s firm may represent a
number of companies in a number of business sectors. The analyst may work with
companies in sectors which are not in competition with each other (e.g. oil companies,
insurance brokers, etc.), but only one in each sector. The choice of which companies
the consultant will become involved with is unconstrained provided these rules are

followed.

2.2.2 The Reference Monitor Concept

In a secure system there are a number of different system services that work together
to provide security. Access controls are one of these services but others include
identification, authentication, and audit. Identification and authentication (I&A) are
closely related. The identification service ensures that a user is uniquely identified
to the system. This unique identity can be used later to make decisions about what
that user should be allowed to do. The authentication service is used to establish the
validity of the claimed identity of a user. A user claiming a unique identity must prove
that he is who he says he is by providing information known only to that user. Such
information can be about something he knows, something he has, or something he is
[Com88]. Examples of these types of proofs might be a password, a smart card token,
and a biometric fingerprint scan respectively. Audit services are used to track events
in the system and record what user identity initiated or is otherwise responsible for
their occurrence. The logs produced are used to provide accountability of the users
for their actions and to provide a posteriori evidence relating to breaches in system
security.

Access control is closely related to the concept of the reference monitor. With
the advent of multiuser systems, the reference monitor was introduced to control the

sharing of resources. The reference monitor validates all references made by a program
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in execution against those authorized for the subject by the system security policy
[And72]. The references might be to programs, data, devices, etc. The effectiveness of
the reference monitor depends on a trustworthy I1&A mechanism to positively identify
a user with a unique identity upon which access-control authorizations will be based.
The actual mechanism (Reference Validation Mechanism) that implements a reference
monitor may be a combination of hardware, software, and firmware and must have

the following fundamental properties:
1. the Reference Validation Mechanism must be tamper proof,
2. the Reference Validation Mechanism must always be invoked, and

3. the Reference Validation Mechanism must be small enough to be subjected to

analysis and tests to ensure that it is correct.

The requirement to subject the reference validation mechanism to analysis can be
facilitated by the use of modeling techniques. In this way modeling can be used to
support a reference validation mechanism. Models can be used to provide validation
of security policy, to provide assurance of correctness, as a language of specification,
and as a basis for refinement leading to design and implementation. The following
sections will outline some of the major security modeling techniques used to express

the control of access to information and computing resources.

2.2.3 The Access Matrix

One of the most basic abstractions used in dealing with access control is the access
matrix [Lam71]. The model is defined as a state-machine. The state of the system is
represented by an access matrix and a set of commands which operate on the matrix
define the state transitions [Den82]. A state of the system is defined by a triple
(S, 0, A) where: S is a set of subjects, O a set of objects to be protected, and A is
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a matrix with rows corresponding to subjects and columns corresponding to objects.
A cell of the matrix A[s, o] is the set of rights of subject s for object 0. Depending on
the model being used, subjects may also be objects, S C O, to support modeling of
subject-to-subject communication. The rights specify the type of access allowed by
a subject for a specific object, and can include the familiar read, write, execute and
other privileges/properties such as own, copy, etc. as defined by the model.

The access matrix tends to be sparsely populated as each subject usually only has
access to a restricted number of objects. Therefore, systems modeled in this way are
seldom actually implemented as a matrix [SS94a]. A means of reducing the resource
requirement is to associate a list of the filled cells in a column with its related object,
or conversely a list of the filled cells in a row with its related subject. The first
scheme is said to use access-control lists (ACLs), the second scheme is said to use
lists of capabilities.

In ACL-based systems, each object in the system has an ACL and each entry in
an ACL identifies a specific subject in the system and describes the type of access
allowed by that subject. The list only contains entries for those subjects with some
type of access. When access for an object is requested, the list is checked to verify that
the requesting subject has the appropriate access right. The basic ACL scheme can
be modified to include group names, or to limit the specification of subjects to simple
classes such as owner, group, or world. The latter case allows the representation of
ACLs as a regular concise set of bits, such as the familiar UNIX protection bits. ACLs
have the disadvantage that if there is a need to find all the objects to which a subject
has access, it is necessary to examine the ACL for every object in the system.

The converse approach is to associate a set of capabilities with each subject, each
of which identifies a specific object in the system and describes the type of access
which is permitted for that object. The subject can be thought to have a ticket or

capability to access an object in a certain way. The disadvantage here is that to
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find all the subjects who may have access to a specific object, all the subjects in the
system must be checked for the capability.

A third way to handle access matrix information is to maintain a table (autho-
rization relation) which contains a record for each permitted access. i.e. for each
right present in each filled cell of the matrix. ACL-style or capability-style results
can be obtained by sorting the table by object or subject as appropriate. This scheme
is popular for relational database management systems which provide built-in sup-
port for record sorting and selection. An approach presented in [BSS*95] proposes
a high-level language to capture the semantics of the access authorizations stored in
tables without using the actual tables. The reference monitor will interpret these
language-defined security attributes as access requests are made.

So far the model we have presented deals with the representation of a single state.
This is suitable to describe a snapshot in time but not a dynamic system where access
rights, or the number of subjects and objects, can vary with time. Some mechanism
must be provided to allow state transitions. A set of commands can be provided in
the model to allow operations on the access matrix. The commands may add (or
remove) rows or columns and thereby subjects or objects to the system. They also
control the entry (and deletion) of access rights into matrix cells. Such commands
can be conditioned on other matrix entries. For example, it is common that if a
subject owns an object (i.e. has the ownership right for that object), it is allowed to
grant other rights for that object either to itself or to other subjects. E.g. an owner
of a file, at his discretion, might grant the right to read that file to another user. An
access-control policy which allows such commands at the discretion of a user is a form
of a Discretionary Access Control (DAC) policy.

The primary purpose of multiuser systems is the sharing of resources. Objects
contained in the system are valuable resources to be shared and manipulated (by

authorized users). To unnecessarily limit sharing would be to defeat the purpose of
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such systems. On the surface it might appear that an owner-based DAC policy is
sufficient for most security concerns and would provide for adequate resource sharing.
If the owner only passes rights to authorized trustworthy users what could be the
harm? The harm lies in the possibility that although the user may be trustworthy, the
processes (subjects) executing on his behalf may not be. This is the classic downfall
of DAC. The problem is that the user is not generally aware of all of the behaviour
of a process. A user may unwittingly execute a process which has been designed or
altered to perform some malicious action in addition to the action desired by the user.
Such a program is called a Trojan horse. A Trojan horse may be planted, given to,
or copied by an unaware user. A Trojan horse embedded within a subject runs with
all the rights of that subject. Once running, the Trojan horse may exploit the access-
control mechanism to cause a transfer of information or a transfer of access rights
in violation of the security policy. We will return to the problem of unauthorized
transfer of information later. There are also problems associated with revocation of
rights under DAC [San96]. The issue arises when considering the case where an access
right is passed from the original owner to another user and then passed on again to
further users. There is more than one interpretation for what it means to revoke
such a right. That is, it is not clear whether the revocation of the right by the owner
should pass beyond the user to which the right was originally given, and also revoke
that right from all the other users to which it had subsequently been given by that

user (a cascading revoke).

2.2.4 The Safety Problem

In the next few subsections we will look at the unauthorized transfer of rights. In a
protection scheme such as the matrix model described in this subsection, an untrusted

process may directly, or though a series of operations on the access matrix pass a right
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to some other subject. In accomplishing this it may collaborate with other trusted
and untrusted processes. This migration of rights may not be consistent with the
system security policy. Given an initial system state we would like to characterize
the protection states that are reachable in the system [San92]. This is the safety

problem.

2.2.5 The HRU Model

Harrison, Ruzzo and Ullman in [HRU76] offer a formalized general model of protection
systems based on the concept of an access matrix. In their work they address the
issue of the migration of access rights by unreliable subjects. The safety problem in
this context is to determine whether in a given situation a right can be passed to a
subject that did not already have it. The HRU model has states, as described above,
(S,0, A), with set S of current subjects, O of current objects (S € O), and matrix
A. The model also includes:

R a finite set of generic rights (e.g. read, write, ownership, etc.)
C a finite set of commands of the form:
command (X, Xs, ..., Xk)
if 7 in (X, X,) and
ro in (X2, X,2) and

T W (Xm, Xom)
then
Op1; 0P2; --- ;0Dn
end
or if m is zero,

command a(X;, Xo, ... , Xk)
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Op1;0P2; ... ; 0Dy

end
Where o is a name, Xi,..., X are formal parameters, r,7y,... , T, are generic
rights, and sy,... , Sm,01,. .. ,O0m are integers between 1 and k. Each op; is one of the

following primitive operations which define a transition from some state (S, 0, 4) to
another state (S',0’, A’). When actual parameters (e.g. s, 0) have been substituted

for formal parameters (X,:, X,;) they have the described effect on the access matrix.

enter r into (s,0) S'=85,0' =0, A'[s;, 0;] = A[s;, 05] for all (s;,05) # (s,0),
and A'[s,0] = A[s,o]Ur, wherer € R,s € S,0€ O
delete r from (s,0) S' = S,0' =0, A'[s;, 0;] = Als;, 05] for all (s;, 05) # (s,0),
and A'[s,0] = A[s,0] — T, whereT € R,s € S,0€ O
create subject s S’ ' =SU,0'=0U¢¥,
for all (s,0) € S x O, A'[s,0] = Als, 0],
for all 0 € O', A'[s", 0] = {} and A'[¢',s'] = {},
where s’ € O
create object o S'=50=0U/d,
for all (s,0) € S x O, A'[s, 0] = Als, o}, and
for all s € §', A'[s, 0] = {}, where o' € O
destroy subject s’ S'=S5-¢,0'=0— ¢, and
for all (s,0) € §' x O, A'[s, 0] = A[s, 0], where s' € §
destroy object o' S'=S5,0'=0 -0/, and
for all (s,0) € §' x O', A'[s,0] = Als, 0], where o' € O — S

Each command will execute a sequence of primitive operations (the body of &) on
the access matrix, conditioned on the presence of certain access rights in certain cells

of the access matrix (the conditions of ). All conditions must be valid to invoke the
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body. For example, the ownership-based DAC scheme described above might have a
command CONFER,:

command CONFER,(owner, friend, file)
if own in (owner, file)
then enter 7 into (friend, file)

end

for which if the subject owner has the own right for object file, will grant the r
right (read) to the subject friend.

Now consider the safety problem: to determine whether, in a given situation, a
right 7 for an object can be passed to a subject that did not already have it. Le., 7 is
said to leak to a subject that did not already have it. Subjects in the system which
are known to be trustworthy and have the ability to grant 7 should not be considered
as they make the system trivially unsafe. For example the owner of the object may
be able to grant r to another subject. If the owner is trustworthy, he should not be
considered in the safety analysis. What really needs to be known is this: if a subject
is about to give away a right, could that action lead to further leakage of the right
to untrusted subjects. The problem is therefore considered with trustworthy subjects
remaining passive.

There may be a complex chain of operations involving a number of subjects and
objects which may lead to such a leak. We say Q +, @' if there exists a command
o and actual parameters a;, ... ,a; for a protection system in state @ such that @
yields @ under a(ai,.-.. ,ar). @ F* @' indicates that there is a sequence of commands
o,B,...wsuch that Q =QoFa Q15 ..., @n=Q'.

A command a(Xj,... ,Xx) leaks a generic right r from state Q = (S, 0, P) if ¢,
when run on @, can execute a primitive operation which enters r into a cell of A

which did not previously contain r. Given a particular protection system, an initial
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configuration @y is unsafe for r if there is a state Q and a command « such that
Qo F* @, and « leaks r from (. State @y is safe for r if it is not unsafe for r.
By reduction to the Halting Problem it is proved in [HRU76] that it is undecidable
whether a given configuration of a given protection system is safe for a given generic
right. Undecidable in this case means that for any algorithm for deciding the safety
of arbitrary protection systems, either some unsafe system is found safe or it cannot
be established that a system is safe when in fact it is.

Given that the safety problem is in general undecidable, useful progress in the

control of the migration of rights can only be made by:

1. dealing with more restricted systems for which specific tractable solutions are

possible, or

2. building incomplete but sound modeling systems which will not misidentify a
system as being safe, even though they cannot identify all safe systems.

Thus, the theme of research on the safety problem is to provide access-control mod-
els expressive enough to specify useful systems which will also allow tractable safety
analysis of the system being modeled. For example, given that a computer system
has limited resources, it might be natural to limit the number of subjects and objects
that can be created to some finite number, or to prohibit the use of create operations
altogether. The latter restriction, as noted in [HRU76], does yield decidable results,
although the solution is PSPACE-complete and is therefore likely to be computation-
ally intractable. Another example of a restriction is to limit the number of operations
in HRU commands to a single operation [HRU76]. This also yields decidable re-
sults. A decision procedure for mono-operational HRU is NP-complete although a

polynomial algorithm can be devised for a given protection problem.
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2.2.6 Monotonic Protection Systems

Harrison and Ruzzo in [HR78] explore a class of systems which, as before, have
primitive create and enter operations but do not have delete or destroy operations.
Such a system is monotonic, in that it only increases in size and in entries in the
access matrix. As it turns out, there is no real gain in the decidability of the safety
of such systems. They prove that even if the number of conditions allowed in the
operations of the system is reduced to a maximum of two, the solution to the safety
problem is still undecidable. However, for the class of monotonic systems which are
restricted to one condition (Z.e. they may only check for one right in one cell of the
access matrix), safety is decidable. The decision procedure in their proof has an NP
complexity, but the authors propose a solution in linear time in the size of the access
matrix which may yield a tractable solution for some cases.

Mono-conditional HRU and mono-operational HRU are of limited utility. In gen-
eral, more than one condition and operation is needed in commands in order to
express useful policies. For example, a mono-conditional system would not let a par-
ent subject grant a right for an object it owns to a child subject. This would require
testing for both an ownership right for the object and for an appropriate parent/child
right. Mono-operational systems can be even more restrictive as it is not possible to
both create an object and grant any right(s) associated with that object. A differ-
ent approach is to restrict the transfer of rights based on a subject’s possession of
special rights which allow the propagation of rights. The following model is both bi-
conditional and multi-operational (in contrast to the decidable cases of HRU above)

but has an efficient safety analysis.
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2.2.7 The Take-Grant Model

Jones, Lipton, and Snyder have proposed the Take-Grant model which is summarized
in [Den82]. The authors prefer a graphical representation of system state with sub-
jects and objects as nodes and a directed edge (z,y) representing the set of access
rights = has for y. In this model, subjects are not objects. However, subjects can
have access rights for each other and self referentially. There are two special rights
take (t) and grant (g). t € (z,y) allows z to take any of y’s rights, and if g € (z,v),
z can share any of its rights with y. ¢ and g themselves can be propagated in this
way. Any transfer of a right in a system is constrained by the possession of ¢ and g.
Where 7 is a right, s is a subject, z and y are nodes, the primitive operations allowed

in a system are :

s take r for y from z for t € (s,z),7 € (z,y) adds r to (s,y)
sgrantr fory to r for g € (s,z),7 € (s,y) adds r to (z,¥)
s create p for new [subject | object] z for p C graph adds new node z,

where (s,z) =p

s remove 7 for = removes 7 from (s,z)

Note that such systems are not strictly monotonic in that although a system can
only increase in number of nodes, rights can be removed from the system. This model
is expressive enough to solve certain protection problems. Subjects and objects in
the model are naturally interpreted as possessing a set of rights for other subjects or
objects. Since the rights are interpreted as being associated with the accessing entity
rather than the accessed entity, this is a useful paradigm for use with capability-based
systems. A shortcoming of the expressiveness of the model is that either all rights
may be granted to another subject or none of them may be granted. This restriction

is limiting in application to actual protection systems. The general safety question of
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whether any other subject can obtain a right r given some initial state is solvable in
O(n3) for an initial state with n nodes. Although this is a cubic complexity, only the
initial size of the system affects complexity. The more specific question of whether a
right 7 for a specific object can be transferred to some specific subject is solvable in
linear time in the size of the initial state. All commands that would be possible in
the general case (an HRU style matrix) are not possible here due to the take-grant
restrictions on the propagation of access rights. This sacrifice in expressiveness by
the modeling scheme yields a tractable analysis.

The concept of restricting the migration of rights to some set of links, identified
by an assortment of control rights, has been investigated by other researchers. In
the attempt to expand the useful class of systems which can be modeled, various
refinements and modified schemes have been proposed, such as Minsky’s Send-Receive
Transport model [Min84]. Sandhu proposed in his Schematic Protection Model a
unified way of dealing with such links. This has lead to a series of stronger protection

models. The succession of these models will be discussed in the next subsections.

2.2.8 The Schematic Protection Model (SPM)

Previous subsections have described the inherent tension between the generality of
a protection model and tractable analysis of the safety problem. The Schematic
Protection Model [San88] proposes a different set of restrictions on the model to
expand the class of systems which can be defined. SPM borrows from the Take-Grant
model the concept of using tickets (capabilities) to control the dynamic migration of
access rights. To this, the model adds static restrictions based on the protection
type of subjects and objects. The use of typing to control security policy is the most
important aspect of this model. In more general models, the unrestricted ability of

a system to create subjects greatly increases the complexity of analysis. The SPM
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model, therefore, places type-based restrictions on subject creation.

Again in this model subjects are not objects. Objects do not possess access rights;
however, passive entities that possess rights, such as file system directories, can be
modeled as a kind of subject. Subjects and objects are jointly referred to as entities.
Each subject and object is created with a specific unchanging protection type which
is a member of the set T'S or T'O respectively (let T = T'SUTQ). This strong typing
is used to specify many of the major features of the system security policy. Decisions
on entity creation and access right migration are based on type. Protection types are
defined by the security administrator and cannot be changed during the operation of
the system. They are therefore static. The ability of a specific subject to access some
specific entity during system operation is represented by its possession of a ticket for
that entity. For example, a subject A may have a ticket allowing it right r for some
entity X. Such a ticket would be in the domain of A, dom(A). The ticket specifies
an entity and an access right and can be denoted as X/r. Tickets can be specified
with or without a copy flag. The existence of the copy flag indicates that the ticket is
copyable. The absence of the copy flag indicates that the ticket cannot be copied. A
ticket with a copy flag can be denoted with a ‘¢’ (e.g. X/rc). Each ticket has a type
which is an element of T x R. That is, the ticket type is specified by the type of the
entity and the right denoted by the ticket.

The only operations which can operate on the protection state of a system are:
copy, demand, and create. The copy operation requires three elements to be suc-
cessful. For example, to copy a ticket X/r from subject B to subject A there must
first be a ticket X/rc in the domain of subject B. Next there must be a link from
B to A. The existence of a link is predicated on the existence of control rights, such
as take/grant, in the domains of A and/or B. The model allows the flexibility to
specify a number of different kinds of link based on different control rights and where
they must exist. The following two examples define links for the Take-Grant model
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described above and for the Send-Receive model [Min84]:

link(X,Y) Y/g € dom(X) vV X/t € dom(Y)
link(X,Y) = Y/s€dom(X)AX/redom(Y)

The third element which needs to be satisfied is that the type of ticket being
copied must be allowed by a filter defined for the link being used. Each kind of link
has a filter function: T'S x T'S — 2T*E_ I e., from TS x T'S to the power set of ticket
types. That is, for the type of subjects participating in a copy on some kind of link,
only certain types of tickets can be transferred. Filter functions depend only on the
static typing scheme and restrict the discretionary behaviour of subjects.

The demand operation allows a subject to be granted a right by asking for that
right. To be successful, the subject’s access to that right must be authorized by the
demand function: TS — 2T7*E. The demand function maps a subject type to a set
of ticket types. For a subject to gain a right by demand, the right must be one of
those associated with that type of subject in that set. This implicit distribution of
tickets by type is very useful for the distribution of control tickets used for setting up
standard links.

The create operation is the only other operation allowed and is the most interest-
ing. The create operation allows a subject to create a new subject or object in the
system. A relation can-create (cc) and entity creation-rules (cr) control the creation
of entities in the system. The cc relation is a subset of 7'S x T". For example, subject
A of type a can create entity B of type b iff cc(a, ). To make efficient analysis possible
the creation of entities can be further restricted to ensure that the graph resulting
from the cc relation is acyclic. That is, there can be no cycles in the graph except
self-loops, where a subject may be allowed to create other subject of its own type.
The acyclic nature of the creation graph produces a hierarchical structure, which

proves to be a useful property for the analysis of safety. There is a create rule for
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every pair in cc. For the creation of an entity B of type b by a subject A of type
a, the rule cr(a,b) would specify what tickets for B are placed in dom(A) and what
tickets for A are placed in dom(B). The model places restrictions on what rights
may be specified. The rules must be attenuating for loops of the form cr(a,a). This
means that for loops, a subject which has been created must not have more rights
that the subject that created it. For example, when subject A is creating subject
A’, dom(A") C dom(A); also if a ticket for A’ is placed in dom(A) the corresponding
ticket for A must be placed in dom(A). The second condition ensures that the creator
subject can not set up links for created subject that it cannot set up for itself. The
attenuation property also proves useful in analysis. Together the acyclic and attenu-
ating restrictions on subject creation ensure that the number of subjects that can be
created in the system can be bounded for the purposes of the analysis.

In safety analysis we are concerned with the migration of rights as the system
transitions from one state to another. The migration of rights by way of demand
and create operations is dependent on the static typing scheme only and not on the
distribution of tickets associated with any state. Of more interest to safety analysis
is the migration of access ﬁghts associated with the copy operation. This depends on
the initial set of entities and distribution of tickets, the initial state, and the evolution
of state thereafter. Link predicates and filter functions control ticket copy. In a worst
case scenario, all subjects cooperate in the migration of rights where possible.

A ticket can flow from one subject to another if there is path (a set of links) which
connects the two subjects and the ticket is authorized by the filter function associated
with each link on the path. In any state then, the capacity of all paths for some ticket
is defined by the transitive closure of the links which are authorized for that ticket
existing in that state.

Safety analysis for SPM is based on the concept of a mazimal state. If there is

some maximal state beyond which any state transitions provide no new migration of
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tickets, then the analysis of this state provides a solution to the safety problem. As it
turns out, such a maximal state does exist. Actually, there are many such states which
are isomorphic for the purposes of the following analysis. One such maximal state
can be produced by allowing each subject in the initial state to create a child subject
for each pair in cc associated with it. These children are then recursively allowed to
create their own children as authorized by cc. The acyclic restriction on cc ensures
that this process terminates, provided loops of the type cc(a,a) are only allowed
a depth of one recursion. The intuition here is that the subjects in this creation
hierarchy can act as the surrogates for any other subject of the same type that might
be created by the parent. They will hold any right that might have been granted to
another sibling in a different sequence of execution. Once the initial subjects have
been fully unfolded by creation of their child surrogates, allowed demand operations
can be executed and flows of the resulting system examined. The resulting flows
will be the only flows possible for the initial set of entities and distribution of tickets
under the specific typing scheme. Time complexity of this analysis is polynomial
in the number of subjects in the initial state. Depending on the complexity of the
cc graph, a worst case could yield complexity exponential in the number of subject
types, T'S. This is likely to be tractable in most cases, since cc is likely to be sparse.
[VC94] demonstrates a similar result for an extension to SPM which allows ticket
authorization to be qualified by an uninterpreted set of conditions characterized by
the system environment.

Note that this model is monotonic. Entities can be created but not destroyed and
subjects can gain tickets via the defined operations but they cannot be revoked. To
allow this restriction on models to be more applicable to practical systems, Sandhu
proposes the restoration principle. The restoration principle is applied in a safety
analysis based on a worst case scenario. As long as a ticket which has been revoked

can be restored or an entity which has been deleted can be replaced by an equivalent
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entity then such an operation will not effect the outcome of the analysis. Therefore,
any policy which allows revocation within the limits of the restoration principle can
be overlooked in safety analysis.

The advantage of this model is the number of useful models/policies that can
be represented in the decidable cases. This model has expressive power approaching
that of more general models such as HRU and also provides a tractable solution to
safety. The model subsumes Take-Grant type models. The introduction of typing
allows the specification of static security policy schemes within a mechanism flexible
enough to be broadly applicable. The SPM model can support policies which employ
amplification (used by some models in implementing abstract data types), copy flags,
n-person rules, and some forms of separation of duties [San88].

Further progress in this work follows two distinct but related tracks. The first
direction reduces the work to a more basic model based on the fundamental notion
of the transformation of access rights as the basis of access control. A model called
Transform, and its derivatives are proposed in [San89]. The second direction recap-
tures the basic intuitive appeal of the HRU access matrix but with the advantages of
strong typing to restrict the evolution of a system and provide a tractable solution to

safety. This work introduces the Typed Access Matriz (TAM) model [San92].

2.2.9 Transform

[San89] proposes the principle of transformation of access rights as a unified way of
specifying various access-control mechanisms. The aim of the model is to provide
an abstraction of the basic behaviour of access-control mechanisms. The principle
of transformation is that the propagation of access rights for an object by a subject
should depend only on the subject’s existing rights for the object. This contrasts
with more general models like HRU and SPM where the propagation of rights can
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also depend on the rights associated with other subjects in the system or involved
in the transfer. Access control-mechanisms based on such a model lend themselves
to implementation using ACLs. Sandhu claims that a protection model which has
general applicability should be able to instantiate Transform. Transform has a simpler
construction than SPM but maintains the protection type innovations of that model.
In common with SPM, Transform has a set of rights, R, and disjoint sets of subject
types, T'S, and object types, TO. There is also a function cc : TS — 279, and
create rules cr : TS x TO — 2% which specify the rights the creator obtains for
the object created. Note that in this model subjects cannot be created and can
only be introduced as part of the initial state. To provide for migration of access
rights, instead of the operations demand and copy, Transform defines transformation
functions itrans and grant. itraens is the internal, or self, transformation function,
TS x TO x 2% — 2%, The function allows a subject that possesses certain access
rights for an object to obtain for itself additional access rights for that object. For
example, a subject that possesses write access for an object may be able to transform
that right into an append right for the object. grant is the external transformation
function, TS x T'S x TO x 28 — 2%, The function allows one subject that possesses
certain access rights for an object to grant to another subject some specific access
rights. For example, a subject with the own right for an object might grant the read
right to another subject. A grant from a subject to itself may not be allowed for some
systems. In fact, the security policy in some cases depends on the fact that self grant
(as opposed to itrans) is not allowed.

The transformation of an access right can be either attenuating or amplifying. A
transformation is attenuating if it does not grant a right that the granting subject
does not itself possess. This agrees with the notion of attenuation discussed in the
context of SPM. A transformation that is not attenuating is amplifying. It is readily
apparent that itrans must be amplifying to be useful. Amplifying transformations
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are very powerful. In fact they may be too powerful and lead to difficulties in safety
analysis [Min78]. In [San89] it is shown that Transform with only attenuating grants
is as powerful as general Transform. It is also shown that amplifying itrans can
actually be implemented using only attenuating mechanisms as long as the required
rights exist somewhere in the system.

Transform can be instantiated by HRU or SPM. In the case of HRU, transform
cannot be instantiated within those cases known to be decidable as it is necessary to
have multiple terms in the conditions of the model’s commands. In the case of SPM,
Transform can be instantiated within the efficiently decidable acyclic attenuating
cases. The Transform model described so far is monotonic, in that access rights may
be added to the system but there is no provision for removing a right. There are,

however, some important security policies which require non-monotonicity.

2.2.10 Non-Monotonic Transform (NMT)

A policy might require non-monotonicity in that some rights for an object may be
transfer only. For example, normally there is only one owner for an object. If transfer
of ownership is to be allowed then the own right must be granted to the new owner
and deleted from the old owner. The restoration principle does not apply to such
revocations as the original owner cannot be regranted the own right as long as the
new owner also retains ownership. Some separation-of-roles-based policies are also
inherently non-monotonic. These policies require that a subject is allowed to access
and modify an object during some step in a transaction; however, once the subject
has played its role in the transaction, further access is denied.

The NMT model [SS92] defines the sets R, T'S, and T'O familiar from SPM and
Transform. Although the original paper employs a procedural notation for the com-
mands used to change the protection state (similar to those of HRU) the model can
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be defined using the same set theoretic notation employed for SPM and Transform
above. cc and cr are defined as for Transform. itrans is also defined as before except
that, in addition to specifying a set of new rights to be added to the domain of the
transforming subject, a set of rights to be deleted from that subject’s domain is also
specified. Similarly with grant, in addition to the set of new rights specified for the
grantee subject, a set of rights is specified for deletion from the domain of the grantor
subject. In addition to these transformations, new commands are defined for deletion
of access rights. For each of the commands, the subject doing the revoking must
possess the own right for the object. The commands allow the owner of an object
to revoke from another subject any specified right or all rights to the object. Some
government evaluation criteria [Dep85] specify a requirement that a subject may be
denied any kind of access to an object. To facilitate this total denial of access require-
ment, there is also a version of the revoke command which will grant to any specified
subject the null right, 1, for an object. This special right implies that the object is
totally inaccessible to the subject possessing that right.

The safety analysis for NMT in [SS92] shows that it can be subsumed by HRU
with no subject creation. Such models still allow the unlimited creation of objects and
Lipton and Snyder [LS78] have shown that such cases are decidable. The decision
procedure of [LS78] for the general case has exponential complexity; however, the
authors of [SS92] comment that the simplicity and strong typing of NMT may lead
to a more efficient safety analysis. A more recent paper [AS94] provides a better
safety analysis for one-representative cases of NMT. One-representative cases mean
that only a single subject of any type need be considered in the analysis. These cases,
in spite of the restrictions, have significant expressive power. The worst case safety
analysis is still exponential in the number of subject types and rights. These values
are constant; so, by itself this represents an improvement. As well, the analysis of

actual model instances is often much easier than the worst case.
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Transform and NMT have grown out of the concept of strong typing introduced
by SPM by using the principle of transformation to provide a simpler, more abstract
and expressive model. In related work, the strong typing of SPM is integrated with
the intuitively straightforward matrix-based HRU model to produce a typed access

matrix.

2.2.11 Typed Access Matrix (TAM)

Sandhu’s TAM model [San92] grows out of two observations. The first is that the
addition of strong typing should add strength to matrix-based protection models
(specifically HRU) and provide a basis for decidable safety analysis. The second is
that the ability to perform multiple parent entity creation makes HRU more expressive
than SPM. One of the reasons HRU is more general and expressive than SPM is its
capacity to have more than one parent entity (subject or object) responsible for the
creation of a new entity. For example command «(S1, Sz, O1, O2) might allow subject
S to create a new object O, such that subject S, is the new object’s owner and O, isa
file containing the initial data to be contained by the new object. Si, S, and O; are all
parents to the new object O,. Multi-parent creation allows the specification of policies
not possible in single parent creation models. For example, the ORCON policy seems
to require multi-parent creation. The requirement to provide multi-parent creation
led to the development of an Extended Schematic Protection Model (ESPM) [AS90].
With multi-parent creation, the expressive power of ESPM is formally equivalent to
monotonic HRU, however, ESPM has the same positive safety results as SPM. TAM
is a matrix-based model incorporating strong typing but retaining the expressiveness
of ESPM.

The TAM modeling scheme combines these properties. TAM is constructed using
a set of objects, OBJ, a set of subjects, SUB, (SUB C OBJ), and an access matrix.



32

This is the same as HRU. In addition, TAM also includes sets of types, T'S and T'O,
(TS C TO) as defined for SPM. A state in TAM, (SUB,OBJ,t, AM), is the same
as HRU with the addition of a type function t : OBJ — TO, which defines the type
of every object (including subjects) in the system state. TAM commands are similar
in construction to HRU commands with the added requirement that every formal
parameter specifies the type of object that must be specified as an actual parameter.
Type mismatches between formal and actual parameters are not allowed. The prim-
itive operations which form the body of the commands defined for a model instance
are the same as before: enter right, delete right, create subject, destroy subject, create
object, and destroy object. The create subject and create object operations now also
specify the type of the entity to be created.

An interesting derivative of this modeling scheme is monotonic TAM (MTAM)
which is the same as TAM but with the delete, destroy subject, and destroy object
primitive operations omitted. MTAM has the properties of SPM’s strong typing
and the expressiveness of monotonic HRU. As well, strong typing allows another
dimension of expressiveness that is not present in monotonic HRU. Monotonic HRU
can be thought of as a special case of MTAM that has only two types: subject
and object. Unfortunately, and not surprisingly, the safety of MTAM is no more
decidable than for monotonic HRU. The nature of the MTAM model, however, allows
the definition of useful restrictions that lead to decidable safety analysis with little
sacrifice of expressive power. MTAM can be restricted to a ternary version, where
all commands are limited to three parameters. As it turns out, ternary MTAM is
equivalent in expressive power to MTAM. Analysis of safety is tractable for ternary
MTAM provided creation of entities is acyclic. As with SPM, an MTAM scheme
is acyclic if its creation graph is acyclic. Safety analysis is again based on a worst
case and is very similar to the safety analysis of SPM. The commands defined for

an instance of the model can be placed in a canonical form. The canonical form
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separates commands that contain subject/object creation operations into two new,
related commands, which have the same effect on protection state. The creation
operations are placed into unconditional commands. The remaining, non-creating
commands may be conditional. There is an unfolding of the initial state by applying
the creation commands to the initial state entities where possible. This unfolded
state contains a surrogate for any entity that might be created in the system. All
non-creation commands are then performed until the state no longer changes. The
resulting state is a maximal state and any system evolution from the initial state can
be mapped onto this maximal state. This safety analysis for acyclic ternary MTAM
is polynomial in time in the size of the initial access matrix. This surprising result
is due to the restrictions imposed by strong typing and the local authorization of
commands resulting from the restriction to three command parameters. The limit
to three parameters means that the conditions authorizing a command are limited
to examining only a small portion of the access matrix. Ternary commands lead to
no loss in expressiveness as multi-parent creation is still possible, i.e. two parents
and a child object can be specified. Unary and binary MTAM, although they yield a
tractable safety analysis, do not allow multi-parent creation and are, therefore, weaker
than ternary MTAM.

The safety analysis for acyclic MTAM without the ternary restriction does not
have the same polynomial time result for complexity. Consider that, monoconditional
monotonic HRU with no creation has NP-complete safety [HRU76, San92] and it can
be seen that acyclic MTAM can subsume monoconditional monotonic HRU with
no creation. Therefore, safety analysis for acyclic MTAM can be no better than NP-
complete. A summary of these results indicates that safety analysis for acyclic MTAM
is of complexity no better than NP-complete. Safety analysis for acyclic ternary
MTAM is of polynomial complexity. Ternary MTAM is equivalent in expressive power
to MTAM. This is not a claim that NP = P because in these results nothing has
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been asserted about what can be expressed in the acyclic cases of MTAM and ternary
MTAM. The two models differ in the instances that can be modeled using acyclic

creation.

2.2.12 Transformation Model (TRM)

The next model to be examined, TRM, fuses the desirable qualities of the two pre-
vious directions of development, which started with SPM and resulted in NMT and
TAM. TRM generalizes NMT by adapting the principle of transformation to the more
expressive structure of TAM. TRM also focuses on the capability to express policies
that require non-monotonic changes to system state.

The construction of the TRM model [SG94] is much like TAM. The main difference
is the application of the principle of transformation. Where TAM, like HRU and SPM,
can base a change in access rights for an object on the current rights of a number of
subjects or objects, TRM is restricted to examining only the rights for the object in
question. The new model, like NMT, is non-monotonic and does not allow subject
creation. So far TRM, as described, is a special case of TAM. However, TRM also
allows for the testing for absence of rights, which is not allowed in the standard version
of TAM.

The TRM mode! defines the sets R, T'S, and TO (T'SNTO = {}) as for SPM and
NMT. States and the access matrix are as they are for TAM. A finite set of commands
is specified for the creation and destruction of objects and the transformation of access

rights. A command has one of the following formats:

command create(S; : 51,0 : 0)
create object O
enter own in (S;,0)

end
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or

command destroy(S; : 51,0 : 0)
if own € (S51,0) then
destroy object O

end
or
command a(S; : 51,52 : S2,... ,5k : S, 0 :0)
if predicate then
Op1; OD2;5 - - .5 OPn
end.
S1,...,Sk are the formal parameters corresponding to the subjects involved in

the transformation. O is the object for which access rights are to be transformed.
S1,--. , Sk and o are the types of the respective formal parameters which must match
the types of the actual parameters used in invoking the command. The predicate is
the condition of the command and is a propositional expression containing terms of
the form: r € (S,0) or r & (S,0), where S and O are formal parameters of the
command. Each op; is a primitive operation: enter r into (S, 0O), or delete r from
(S,0). The following example of a command might form part of a transaction-based
policy where a clerk can obtain the right to issue a cheque only if he does not have

the right to prepare or approve the cheque.

command issueCheque(S; : clerk, O : payCheque)
if prepare & (S1,0) A approve &€ (S, 0) then
enter issue into (S;, O)

end

Two versions of TRM are specified in [SG94] which restrict the number of matrix

cells that can be examined by a command. Unary TRM (UTRM) and binary TRM
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(BTRM) only allow the predicate of a command to test one or two cells respectively.
The predicate may still be composed of a number of terms checking for the presence
or absence of rights in the cell(s), but the number of cells checked is restricted. For
example, NMT is a restricted version of UTRM, as it checks only one cell and modifies,
at most, two. It can be shown that BTRM can express any policy expressible in TRM.
In fact, ternary BTRM (BTRM restricted to commands with three parameters) is
strong enough to model any system which can be modeled in TRM. Although [SG94]
claims that BTRM allows the expression of some policies that cannot be conveniently
expressed by UTRM (and therefore NMT) a later paper [SS94b] proves BTRM and
UTRM equivalent in expressive power, and therefore to TRM.

TRM is a matrix-based model with no subject creation. TRM restricted to check
only for the presence of access rights can be subsumed by HRU with no subject
creation. As stated before such cases are decidable with a decision procedure for
the general case having exponential complexity. We can also note that the model is
restricted by strong typing, is trivially acyclic, and we only really need to consider the
UTRM cases. These factors may lead to a more efficient analysis. On the other hand,
the fact that the model is non-monotonic and has the added intricacy of checking
for the absence of access rights, as well as their presence, will likely add to the
complexity of safety analysis. Presently, TRM has no efficient non-monotonic safety
results. Tractable safety analysis for useful non-monotonic systems has been a difficult

problem.

2.2.13 The Information Flow Problem

The motivation for looking at the issue of migration of access rights and safety was
that although processes/subjects in the system are executing on behalf of users we

trust, we don’t necessarily trust the processes themselves. Unless a program is known
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to be trustworthy, it may harbour a Trojan horse. A Trojan horse acting with the
trusted user’s privileges might propagate access rights in some insecure way. The
safety analysis will tell us if the model instance we are examining will allow propa-
gation of rights inconsistent with the security policy. If a system is ‘safe’ it may still
not be secure. For example, when confidentiality is an issue, the overriding concern is
the possible flow of information to a user who should not have it. If the system is to
protect the information in a file, it does not really matter that an unauthorized user
cannot obtain rights for the file if he can obtain the information in the file. Suppose
that a Trojan horse, instead of trying to grant access rights for a file to an unautho-
rized user, copies the content of the file to anociher file which can be accessed by the
unauthorized user. The access rights associated with the original file do not apply to
the new file. In fact, the unauthorized user may own the new file. The propagation
of information cannot adequately be controllled by a system where access decisions
are solely at the discretion of the user (DAC).

One approach to the information flow problem is to apply a mandatory access
control (MAC) scheme. Under a MAC scheme some access decisions are built into
the system and cannot be overridden by the user even if it is the user’s desire to do
so. The strong typing schemes we have seen in the previous models are an example
of MAC. The definition of protection types and the restrictions on entity creation
and access right propagation based on type are built into the system. The user
is constrained by the static policy decisions embodied in this typing scheme. The
use of MAC in sysfem modeling predates the introduction of protection types, and
the formalization of the access matrix and the safety problem in [HRU76]. Initially,
MAC controls were applied as an analogue to military/government security policy as
an attempt to overcome the weaknesses associated with DAC.

Systems which support the military/government security policy are usually called
multi-level secure (MLS) systems. MLS systems are probably the best known MAC-
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based systems. Objects in such systems have a label corresponding to their classifi-
cation permanently bound to them. Subjects have a clearance level associated with
them. The control of information flow is provided by reference monitor based access
control. The reference monitor of such systems has a MAC component which ensures
that a subject is never allowed access to any information for which he is not cleared.
Usually, the system will also have a DAC component which authorizes need-to-know
accesses based on the discretion of the owner of the information. The next few sub-
sections discuss modeling schemes designed to address the information flow problem.
Some aproaches apply formal modeling to MAC while others try to prove information
flow properties for a system. Information flow approaches have been applied in both

the military/government sector and in the commercial sector.

2.2.14 Bell and LaPadula Model (BLP)

The first formalization of an MLS system was by Bell and LaPadula [BL73a, BL73b,
Bel74]. The model explored the access-control properties required of a reference
monitor to enforce military/government security policy. The model, BLP, is defined

below:

a set of subjects
a set of objects
an ordered set of classifications

a set of categories

" Q O @

a set of security levels with a partial order relation <,

where L C C x 2K

b

a set of rights { r, e, w, a}, where

is read (read-only)

Lx]

is execute (no read, no write)

{®
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w is write (read and write)

a is append (write-only)

An element of L is a security level which is made up of a classification component

and a category component, e.g. (Top Secret, NATO, ALPHA). The pairs of L form a

partial order given the access rules for military/government security policy described

previously. In the models previously described, the set of access rights was defined

for a model instance, depending on the implementation being modeled. I.e., rights

are specifically defined in the context of an application being modeled. Here the set

of rights, A, is defined for the model itself and is not changed for model instances. In

this model system states are ordered triples from a set V = (B X M x F'), where

B

the set of possible sets of current accesses 25%9%4, where b € B
defines a current set of accesses
a set of access matrices, a matrix AM € M defines the current
set of access rights each subject holds for each object
a set of security level vectors FF C L° x L° x LS, where f € F is a
triple (fs, fo, fc) where,

fs subject security level function (clearance)

fo object security level function (classification)

fe current security level function
a set of possible requests to change the security state of the system
a set of possible responses to a request indicating an access decision result
(i.e. yes, no, error (ambiguous request), ? (request not recognized))
the set of positive integers, t € T is a time index for request, decision,
and state sequences:

X RT | request sequences, where z; € X

Y DT, decision sequences, where y; € Y
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VA VT, state sequences, where z; € Z

A tuple of a current access set b, b € B, defines an access some subject is making
to some object in the present state. In any particular state, a subject rarely has
current access for all the objects which it may be authorized to access, only for those
objects specific to the subject’s current processing. The security level functions which
compose F' map subjects and objects to security levels. fo designates a subject’s
current security level, such that for a subject s, fc(s) < fs(s). A subject may
currently not be accessing any objects at the upper limit of its security clearance
level. fc thus provides a security level based on a subject’s current accesses. Elements
of R can, for example, be requests to get or to release current access to an object,
requests to give an access right to another subject (or rescind the right), create
or destroy objects, etc. Requests can be used to attempt to modify the security
state of the system. Depending on the current system state the request will yield a
response and possibly a modified system state. An action of the system (r,d, vz, v1)
describes a request r yielding a decision d and moving the system from state v; to
vo. W C (Rx D xV x V) is a relation defining the possible actions of a system.
Actions are the primitives for inductively defining an appearance of the system (a
sequence of actions) and a system (a set of possible system appearances). A system
is defined, > (R, D, W, zy) C X xY x Z, where an appearance of the system (z,y, z) €
ST(R,D,W, zo) iff (z¢, ye, ze, 2e-1) € W, for all £ € T', and z is a specified initial state.

What remains is to define the characteristics of the system which must be main-
tained to ensure security. The three aspects of security which are considered are: the
simple security property (ss-property), the *-property (star-property), and the discre-
tionary security property (ds-property). A state satisfies the ss-property if for every
current access, (S, O, x) € B, which allows a subject to read data in an object (i.e.

x =rorw), fo(O) < fs(S). This means that for a subject to access an object such
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that it is able to read data from the object, then the clearance of the subject must
dominate the classification of the object.

The ss-property may seem to be enough. On the surface, this is a direct im-
plementation of military/government security policy. This might be enough if all
processes run by a user are as trustworthy as the user himself. As we have seen,
real processes may not be and could write data to an object at a security level lower
than the user. It is to counter this threat that the *-property is introduced. A state
satisfies the *-property if for every current access, b = (S, 0, x ), b € B, which allows
a subject to write data into an object (¢.e. x = a or w), and for every current access
b = (5,0, ¥'), b € B which allows a subject to read data in an object (i.e. X’ =
or w), fo(O') < fo(O). This means that if a subject has simultaneous access to more
than one object, the classification of all of the objects it can read data from must be
dominated by the classification of all the objects it can write to. Note that w implies
both read and write. Therefore, all objects to which a subject has w access must be
at the same level, and the current security level of the subject, fc(S), must be at the
level of those objects. Most subjects in a system are bound by the *-property. Those
that are not are called trusted subjects. Usually such subjects must be guaranteed
trustworthy (i.e. no errors, no Trojan horses, etc.) by some verification technique.

A state satisfies the ds-property if every current access, b € B, is permitted by
the current access matrix AM € M as we have seen for matrix-based models such as
HRU.

A state v € V is a secure state iff v satisfies the ss-property, the *-property (trusted
subjects excepted), and the ds-property. A state sequence z € Z is a secure sequence
iff z; is secure for each £ € T. An appearance (z,y,2) € Y_(R,D,W, z) is a secure
appearance iff z is a secure sequence and a system >_ (R, D, W, z) is a secure system iff
every appearance (z,y,2) € > (R, D, W, z) is secure. A valuable property of secure

systems in the BLP model is that they can be proved secure inductively. Preservation
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of security from one state to the next guarantees total system security [BL75]. An
action of a system, (r,d,v;41,v;) € W, transitions the system from one state to the
next. An action (r,d, (biy1, Mit1, fiv1), (bi, M;, f;)) is security preserving iff it adds no
new elements to b; that would violate the ss-property, the *-property (trusted subjects
excepted), or the ds-property, and removes any elements of b; that, following the state
change, would violate these properties [McL87]. If the system begins in a secure state
zo and all actions, (7, d,v;y1,v;) € W, of the system are security preserving, then the
system > (R, D, W, z) is secure. This is the Basic Security Theorem. Construction
of a secure system proceeds by defining operations, or rules, for changing the system
protection state. The rules are proven to be security preserving with respect to any
action they define. The system can then be proven secure inductively, given that it
starts in a secure state. Bell and LaPadula provide an interpretation of the model for
the Multics security kernel in [BL75].

BLP is probably the most widely known model for computer security. In 1985 the
US government published the Trusted Computer System Evaluation Criteria (TC-
SEC) [Dep85], or Orange Book as it is commonly known, as a standard for the pro-
curement of government information systems. Although the standard is supposed
to accommodate a variety of models, its structure enshrines the concept of security
through ACL-based DAC, and security-label-based MAC. Security labels are data
classifications bound to and stored with the data elements/objects and are used as
a basis for reference monitor access-control decisions. Although the Orange Book
criteria for labelled MAC do not specify a modeling standard, it is heavily influenced
by BLP. Later European standards and the Canadian Trusted Computer Product
Evaluation Criteria [Com88]| are broader in their consideration of integrity and avail-
ability issues but their confidentiality specifications are similar to, and compatible
with, the TCSEC. These standards have significantly influenced the direction of se-

cure system development. There are currently a number of secure products which
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have been evaluated against the criteria; however, diminishing government/military
budgets are beginning to move the focus of developers toward more generic solutions

which combine government and commercial requirements [Ada95].

2.2.15 The Lattice Model

Denning, in [Den76], models security levels as a lattice structure consisting of a partial
order of security levels and least upper and greatest lower bound operators. Most
security models based on security classifications use a similar lattice structure to define
the security level relation, including later descriptions of BLP-style MAC models. As
we have seen, BLP models a run-time mechanism which enforces flow restrictions on
the dissemination of information by use of a reference monitor. The lattice model
is also applicable to other run-time models and also to compile-time certification
mechanisms. The latter are useful in that they can provide assurance that a process
is trusted at the component level (i.e. the process as a system component is trusted to
behave in compliance with some security specification). Such processes are excluded
from run-time access-control checks on the assumption that they can be trusted not
to disseminate information in a manner inconsistent with the system security policy.
In a real system, such processes are often necessary. For example, a useful system
probably has mechanisms for trusted downgrade of data, multi-level mail handling,
multi-level networking, etc. Trusted processes are required to handle data at more
than one level and may be required to write to low-level objects without allowing the

inadvertent flow of high-level information into those objects.

2.2.16 Lattice-based Integrity

Biba in [Bib77] proposes a model for integrity in information systems which is essen-

tially the dual of the BLP model. The military/government security policy, which
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drives BLP, is based on the control of flow of information for confidentiality reasons.
Information is allowed to flow from lower secrecy levels to higher secrecy levels. Biba's
model is based on the observation that information should not flow from low integrity
objects to high integrity objects. To allow information to do so would compromise
confidence in the high integrity object. A simple integrity property and integrity
*_property are defined which are duals to the respective BLP properties. The simple
integrity property allows a subject only to read objects at an integrity level which
dominates the subject. The integrity *-property only allows a subject to write to ob-
jects which are dominated by the integrity level of each of the objects for which the
subject has read access. The integrity lattice has been proposed as a MAC paradigm
for commercial security on its own and also in conjunction with a BLP-style lattice
for secrecy [Lip82]. Operating systems having MAC lattices for both secrecy and
integrity have been produced commercially. In [San93], it has been shown that such a
composite scheme can be modeled as the product of lattices, (the BLP lattice and an
inversion of the Biba lattice) which is itself a lattice. [San93] also proposes a lattice

solution to Chinese Wall security policies.

2.2.17 Information Flow Analysis

The lattice-based security models we have just been examining are useful in providing
access control for the objects identified by the model. A significant weakness of these
systems is that it is difficult to have a model granularity detailed enough to identify
(and thereby control) all objects in the system and still provide efficient analysis.
Processes are not restricted to using the legitimate communication channels provided
for interprocess communication (e.g. files, messages, etc.). Legitimate channels can be
identified as objects, and usually are controlled in accordance with the system security

policy. In an actual implemented system, many observations a process may make do
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not lend themselves to such control. The inclusion of every implementation specific
entity in the system which can hold a bit of data will also unreasonably complicate
the model. Any action by a process that is observable by another process is a possible
communication channel. The flow of information by other than a normal channel is by
a covert channel. A covert storage channel is any communication resulting from the
ability of one process to observe another process modifying the state of the system.
The information observed may be object attributes, object existence, or the state of
shared resources. The observation may be direct, e.g. the appearance of a new file
name in a directory (whether or not the observer has read access to the new file or
not). The observation may also be indirect. For example, the fact that the use of a
peripheral is denied because it is already in use by another process, provides a bit of
information about that process. A covert timing channel results from communication
by means of observing the effect another process may have on system performance,
measured against some timing base such as a real-time clock {Gas88]. A Trojan horse
can modulate a covert channel to leak information out of the host process.

A means to identify possible covert channels is information-flow analysis based
on information flow models. Information flow models also stand by themselves as
modeling techniques for secure systems in general, and some believe that the correct
explication of security should be formulated in terms of information flow [McL90]. To
this end, information flow models can be used to provide system specifications. Some
models provide methods for the refinement of specifications to provide system design
and implementation. Information flow analysis and models are based on detailed
formal specification, rather than on an abstract state machine [Gas88]. This is because
the variables that participate in covert channels are not necessarily represented in an
abstract model. The basic form of such models is of state or trace-based specifications
which specify what a subject can observe of the system. For example, a model might

specify that information cannot flow to one user from a second user if the purging
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of the second user’s input from the system has no effect on the outputs the first can
observe of the system, i.e. the second user does not interfere with the first. Another
model might specify that no observations one user can make of the system reflect the
actions of a second user of the system, and thus represent a flow of information from
that user to the first, i.e. the first user is unable to deduce anything about the inputs
of the second user. In theory, as a system evolves to implementation, proof that
the specifications still hold for each new more detailed level of abstraction provides
assurance that the security policy is being met.

A profile of research in information flow models for covert channel analysis and sys-
tem specification includes the following work [Den76, FLR77, Den82, GM82, GM84,
McC87, McC88, Jac88, McL90, GMP92, BC92, BCC94, BY95, Ros95]. As this dis-
sertation is primarily concerned with access control, these models will not be explored

in detail here.

2.2.18 Role-based Security (RBAC)

Role-based security models have currently become the object of more interest as the
focus of security research moves more from government/military environments to the
commercial environment. It has been recognized above that DAC-based security may
be adequate for cooperative environments but is too weak in environments subject to
malicious attack. Rigid classification-label based MAC environments as defined by
Orange Book criteria and implemented in a number of operational systems are based
on government/military policy for confidentiality of information. These mechanisms
do not lend themselves well to commercial security requirements [MS88, SS94a]. Clark
and Wilson in [CW87], Moffet and Sloman in [MS88], and Smith in [Smi93] have as-
serted that commercial security concerns should mirror an organization’s internal

control systems (as Orange Book criteria mirror internal government/military con-
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fidentiality controls). Commercial control systems are usually based on hierarchical
delegation of authority and separation of duty. The primary concern of commercial
systems is usually to minimize fraud and errors. The policy must ensure that no user
can create or modify data in such a way that assets or accounting records can be lost
or corrupted [CW87]. These are primarily integrity issues.

Role-based access controls (RBAC) address commercial security requirements by
focusing on how users interact with data. A role is a semantic construct around which
access control policy is formulated [San98]. In an RBAC policy, users are assigned
to roles and permissions/rights are assigned to roles. Role authorizations are granted
to users, or groups of users, based on what activities they are allowed to perform on
system data. This differs from government/military DAC and MAC controls which
allow, or disallow, access without regard to the use that the subject is going to make
of the data. Usually under RBAC a user is authorized to take on different roles
at different times during his interaction with the system (a discretionary property).
While in a specific role, the user is restricted to the data accesses and activities
authorized for that role. A role should provide just enough permission for the user
to perform the tasks associated with the role. This is the principle of least privilege
(a mandatory policy). This differs from classic DAC ‘user groups’. Such groups are
primarily sets of users. A system usually allows discretionary assignment of rights to
a group. Roles explicitly define a set of rights available to the role. Therefore the type
of data available to a role is fixed in the policy scheme by the system administrator
and is non-discretionary. As well, in the type of rights allocated by RBAC there is
usually a greater degree of data abstraction. The rights defined for a system using
RBAC imply more complex interfaces than the standard read, write, and execute of
DAC user groups. The authorizations typically allow a subject to perform a specific
action on a specific type of data items [SCFY94]. Thus, a clerk role may be authorized

to post an entry to a bank account while a secretary role may be authorized to edit a
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letter.

Clark and Wilson in [CW87] define a model which identifies certain objects as
Constrained Data Items (CDIs). Access to these objects is provided solely through
Transformation Procedures (TPs). A TP is a kind of well-formed transaction which
will move a CDI from one valid state to another. TPs are defined to operate on a
specific set of CDI types. Users are restricted to a certain set of TPs. The definition
of, and access to, TPs is defined by the security administrator and is a static scheme.
Although the paper does not explicitly define its model in terms of abstract data
types and role-based access control, these concepts seem implicitly to be a natural
context. The various typed access-control models we have examined provide support
for such a model.

There have also been authors who have proposed models which support RBAC
based on Orange-Book-style DAC and MAC (e.g. [Lee88]). These models tend to be
awkward and [SCFY94] notes that awkward models can lead to awkward implemen-
tations and a model better suited to the implementation of RBAC policies can lead
to easier implementation.

There are a number of RBAC models proposed to handle disparate user environ-
ments and policies. Many of these models can be unified under the RBAC96 family
of access-control models proposed by [San98]. A specific role-based policy can then
be matched to RBAC mechanisms defined by one of the models in the family. Four
models are defined in RBAC96: RBACy, RBAC,, RBAC,, and RBAC;.

RBAGC, is the base model and includes a minimal set of features to allow a system
to support RBAC. Included in these features is support for the concept of sessions. A
user may have multiple sessions running simultaneously (e.g. in different windows).
Each session may be assigned a different combination of the user’s authorized roles.

RBAC,; and RBAC, add to the features of RBAC,. RBAC, adds support for

hierarchical roles. The intuition behind role hierarchies is that roles form a partial
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order. Roles higher up the hierarchy inherit all the permissions for authorized roles
below them in the hierarchy.

RBAC:; adds constraints, which impose restrictions on acceptable configurations of
the RBAC models. The features introduced in RBAC, and RBAC, are independent,
i.e. the features can be added orthogonally to each other. RBAC; consolidates the
features of RBAC; and RBAC,. The RBAC; model has the following components:

UR,P,and S sets of users, roles, permissions and sessions respectively
PACPxR a many-to-many permission to role assignment relation
UACUXR a many-to-many user to role assignment relation

user : S > U a function mapping each session s; to the single

user user(s;) (constant for the session’s lifetime)
RHCRERXR is a partial order on R called the role hierarchy
or role dominance relation, also written as > in infix
notation
roles : S — 2F a function mapping each session s; to a set of roles
roles(s;) C {r|@r' > r)[(user(s;), ") € UA]}
(which can change with time) and session s; has the

permissions Ureroes(s;) {2|(3r” < 7)[(p, ") € PA]}

Constraints are added to the basic model in RBAC,; and RBAC; to enforce higher
level organizational policy. For example two roles may be declared as being mutually
disjoint, i.e. the same user can not be assigned both roles. This particular constraint
would define a separation of duties. Constraints can apply to all aspects of the RBAC

model.
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2.2.19 Task-based Security (TBAC)

Recent work [TS94, TS97] has proposed a shift in the focus of security models toward
the representation of authorizations as a higher level of abstraction for the security
requirements of an application or business enterprise. As it has been presented so far,
the usual approach to access-control modeling is subject-object based. The models
defined which subjects had access to which objects, and what kind of access they
had. For the most part, the intent of the access by the subject, or in what context
the access is being made, has not been considered as part of the model. Once access
is available the subject seems free to use that access for any purpose. Under these
kinds of policy models it is difficult to model legitimate-use security properties.

Role-based access control provides an initial step toward the ability to capture
legitimate-use policies. RBAC by its nature encourages the definition of fine-grained
rights/permissions. This support for data abstraction lends itself to task-oriented
permissions such as the post and edit rights examples in the RBAC subsection, Sec-
tion 2.2.18. RBAC also supports least privilege through the use of sessions. By
controlling which roles are active for the user sessions the user is provided with just
those permissions required to accomplish the work needing to be done.

But the specification mechanisms available in RBAC are not able to model the
order in which the permissions are to be used or how many times they should be
permitted to be used. There is still the notion that once a permission becomes
available to a subject, the subject can use that permission for any purpose, and
as often as it desires. To restrict the use of a permission to legitimate purposes
it is desirable to be able to specify when in the execution of some business task a
permission should become available, what that permission can be used for, and how
many times it can be used. i.e. provide a context for the legitimate use of that

permission. The permissions are provided on a just-in-time basis as required by the
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task at hand.

The work on Task-based Authorization (TBA) and Task-based Authorization
Control (TBAC) presented in [T'S94, TS97] proposes a framework for active security
models and enforcement from the perspective of activities and tasks. Permissions are
constantly monitored, and activated and deactivated in accordance with emerging
context associated with the progress of the tasks being performed.

As noted in the introduction to the dissertation, internal controls of an enter-
prise, and therefore the information system supporting that enterprise, are normally
designed to ensure that the tasks carried out in the enterprise preserve a certain
standard of integrity. In the classic paper-based systems an authorization is required
to proceed with a task. An authorization is often captured as a signature on an
archival document and represents permission to proceed with the task as well as the
acceptance of some liability by the authorizer for the execution of the task. The
task may also involve the requirement for separate authorizations for its subtasks.
An authorization results in the enabling of one or more activities and related per-
missions. Authorization management is central to TBAC models. The fundamental
abstraction is an authorization-step. An authorization-step represents a primitive au-
thorization processing step and is the analog of a single act of granting a signature
in a paper-based system.

Part of the motivation for this work is to provide modeling techniques for more
abstract representations of security requirements. These higher-level models are ap-
propriate for capturing an organization’s policy requirements that pertain to security,
and the interfaces between the organization and the computer system.

In classical subject-object access control models the information associated with
a permission can be thought of as an element of a cross product, P € § x O x A.
S is the set of subjects, O is the set of objects, and A is the set of actions or access

rights. Under TBAC, access control also involves task-based contextual information.



52

Two more sets are introduced. AS is the set of authorization-steps. U is a set of
usage and validity counts. The members of U control usage, validity, and expiration
characteristics that may be tracked at runtime. e.g. how many times a permission
is used. A permission under TBAC now becomes an element of P C S x O x A x
U x AS. For example, a permission specifies a certain kind of access to a specific
object by a specific subject, as was the case for matrix-based schemes (the A, O, and
S components). The permission also specifies that an access can only be made in the
context of a specific authorization-step and perhaps that the access can only be made
n times (the AS and U components).

Permissions are associated with exactly one instance of an authorization-step.
An instance of an authorization-step is associated with exactly one instance of a
task. Each authorization-step maintains a protection state that is the set of permis-
sions currently valid for the authorization-step. The members of the set will change
with time as the authorization-step is processed. For each kind of authorization-step
there is defined a frustee-set. The trustee-set represents the individuals/entities that
are permitted to invoke and grant an authorization-step. For every instance of an
authorization-step there is a single trustee from this set that invokes and grants the
authorization-step.

A family of models for TBAC is proposed which is similar in spirit to the family
of models proposed by RBAC96. Four models are defined: TBAC,, TBAC,;, TBAC,,
and TBAC;. TBAC, is the base model and includes a minimal set of features to allow
a system to support TBAC. The TBAC; model adds support for composite autho-
rizations. The TBAC,; model adds support for constraints which impose restrictions
on acceptable configurations of the TBAC models. As with RBAC96 the features
introduced in TBAC; and TBAC, are independent, i.e. the features can be added
orthogonally to each other. TBAC; consolidates the features of TBAC; and TBAC,.

The TBAC; model defines the components that make up every authorization-
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step, the life-cycle of an authorization-step, and dependencies that are used to model
authorization policies.

Every authorization-step has to specify the following attributes:

Step-name This is the name of the authorization-step.

Processing-state The current processing state indicates how far the
authorization-step has progressed in its life-cycle
(discussed below).

Protection-state The protection-state defines all potential active
permissions that can be checked-in by the authorization-
step. The current value of the protection-state, at any
given time, gives a snapshot of the active permissions
at the time. Associated with every permission is a
validity-and-usage specification. The validity-and-usage
specification specifies the validity and usage aspects
of the permissions associated with an authorization-step.
It will thus specify how the usage of the permissions
will relate to the authorization remaining valid (or
becoming invalid).

Trustee-set This contains relevant information about the set of
trustees that can potentially grant/invoke the
authorization-step, such as their user identities and
roles.

Ezecutor-trustee This records the member of the trustee-set that
eventually grants the authorization-step.

Task-handle This stores relevant information such as the task and

the event identifiers of the task from which the
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abort-f,
term-f

revoke,
last-use

suspend reinstate

revoke

FIGURE 2.1. Basic processing states for an authorization-step

authorization-step is invoked.

An authorization is not static under TBAC. Each authorization-step has a life-
cycle associated with it. An authorization step moves through a series of processing
states during its lifetime. Figure 2.1 illustrates a simplified set of processing states.
An authorization step is dormant (or non-existent) when it has not been invoked (re-
quested) by any task. Once invoked an authorization-step begins to be processed by
moving to the invoked state. If invocation completes successfully the authorization-
step moves to the valid state. If the invocation fails (e.g. some criteria for autho-
rization are not satisfied) the authorization-step moves to the invalid state. While in
the valid state the authorization-step and its permissions may be used as specified
by the validity-and-usage specifications in the protection-state. At some point the
authorization-step will reach the end of its lifetime and enter the invalid state. It is
also permitted that a valid authorization-step be put on hold temporarily. While on
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hold the permissions associated with the authorization-step are inactive and cannot
be used to provide access to an object.

The authorization-steps do not stand alone in a system specification. They are
related to and depend on each other in order to fulfill higher level security policy
requirements. There are existential, temporal and concurrency dependencies defined
for the model. In the following definitions let A1 and A2 be authorization-steps
and statel and state? be some processing state for these two authorization-steps

respectively.

Alstatel _, A9state2  Tf A] transitions into statel, then A2 must transition
into state2.

Alstatel < Agstate2  Tf hoth A1 and A2 transition into states state! and
state2 respectively, then A1l’s transition must occur
before A2’s

Alstately A9state2  A] cannot be in statel concurrently when A2 is in
statel.

Alstatel||| A2state2 A1 must concurrently be in statel when A2 is in state?.

TBAC,; adds support for composite authorizations. A composite authorization
consists of a set of component authorization-steps. The component authorization-
steps are related to each other via dependencies. Component authorization-steps are
visible only within the scope of their containing authorization-step.

TBAC, includes static and dynamic constraints. Static constraints are speci-
fied for a kind of authorization-step and all instances of that kind of authorization-
step must meet the constraint. Dynamic constraints apply to an instance of an

authorization-step and can be evaluated only as the authorization-step is processed.
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2.3 Review of Object-oriented Analysis and Design Issues
2.3.1 Information Captured by Current OO Methods

The object-oriented paradigm is based on a logical view of a system as a set of
cooperating objects (a more general use of the term object than the subject-object
relationship of the previous section). The objects in the system are vehicles for
information hiding [Par72] and each encapsulates some information. That information
can be a data structure, device, algorithm, etc. Access to the object is provided only
via a well-defined interface. Usually the interface is defined as a set of methods that
can be used to manipulate the object. The interface methods can be thought of
as operations that can be invoked on the object or alternatively as messages that
an object can receive. The messages may carry information to the receiving object
via message parameters and can provide information back to the sending object by
way of return parameters. Messages can be used to alter the state of an object in
some well-defined way, or to provide some information about the state of an object.
Objects can only interact via message passing and an object only responds to the
messages defined for its interface. The net result is that access to an object’s secret
is controlled. In object-oriented analysis and design the description of a problem
and its solution are entirely in terms of objects passing messages. Object-oriented
models specify the kinds of objects which exist in a system, the kinds of messages
which make up the object interfaces, and how objects can be combined to cooperate
in message exchange scenarios that solve some portion of the larger problem. The
problem specification can be captured in terms of these scenarios.

Current object-oriented analysis (OOA) and design (OOD) methods such as Booch
[Boo94], OMT [R*91], and UML [RJB98] provide notations and procedures for spec-
ifying object-oriented models. There are also automated tools associated with most

OOA/OOD methods to facilitate model building. The models produced usually have
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a view that describes the types or kinds of objects that may be instantiated in the sys-
tem (i.e. classes in a class diagram [RJB98]). This view also describes how the types
of objects are related to each other, e.g. containment, sub-typing, interface use. Other
views in the model describe how objects interact (z.e. what messages are exchanged
in a message sequence diagram or an object interaction diagram [RJB98]) in a given
scenario. The information being captured by these modeling methods is similar to
the components of typed access-control models. If the specification and modeling of
the security aspects of a system are to become routine and efficient then they must
commplement and extend contemporary practices in system analysis and design. It
seems likely that much of the data needed to model security (concerning the classes
of objects, their components, the relationships between interacting objects, and the
kinds of messages they can exchange) is already routinely captured by contemporary
OOA/OOD methods.

There is usually a limited number of different kinds of scenarios in an object-
oriented model and each kind of scenario has a limited number of ways in which
it can be combined with other scenarios. This is because human beings design the
various scenarios and the ways the scenarios are to be combined. They must be able
to cope with the complexity of system design. Object-oriented decomposition and
object interaction scenarios are organized with the purpose of restricting the com-
plexity of system design. Essentially, it is the scenario-to-scenario interaction which
specifies, and limits, the behaviour of the system. This can be the basis for defin-
ing a security policy. Scenario-scenario relationships are not always captured well
in current object-oriented modeling methods and therefore it is difficult to tell with
assurance what object will have access to any other object in the system as execu-
tion unfolds. The scenario-based access-control model proposed extends the current
object-oriented models to bring more rigor to the relationship between scenarios. The

limited ways in which objects interact in these scenarios are used later to form the
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basis of a technique for safety analysis.

A strength of OO modeling is that it allows specification of the system in terms of
the entities and interactions of the problem domain [Boo94]. This makes OO model-
ing in general, and the scenario-based access-control modeling technique specifically, a
suitable tool for representing problem domain tasks. Problem domain tasks are spec-
ified in terms of scenarios. Since the scenarios drive the security policy, the policy is

task-based.

2.3.2 Message Sequence Charts (MSCs)

Object-oriented analysis and design methods have borrowed the notation of message
sequence charts (MSCs) from the telecommunications protocol design community.
Message sequence charts are used, often in combination with the Specification De-
scription Language (SDL), in the specification of system protocol requirements, and
for testing [Mau96]. The International Telecommunications Union (ITU) has stan-
dardized both SDL and MSCs [Int88, Int94]. This subsection provides a brief intro-
duction to message sequence charts. MSCs are related to the scenarios used in SBAC
modeling so some background is presented and some of the issues associated with
MSCs are addressed here.

MSCs have both a textual and graphical representations. The graphical represen-
tation is most commonly used. A system is represented by a set of communicating
processes. Processes are represented by vertical lines. Signals sent between processes
are represented by arrows connecting the vertical process lines. Each process’s verti-
cal line is a time-line. Ie., send and receive events for signals are ordered temporally
from the top of the line to the bottom. Communication can be synchronous or asyn-
chronous as defined for the system. Figure 2.2 presents an example of a simple MSC.

The first process sends a signal of type a to the second process, which after receiving
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FIGURE 2.2. A Simple MSC

it sends a signal of type b to the third process, a signal of type c is then sent back to
the first process, and finally a signal of type d is sent to the third process.

Multiple MSCs may be used to specify a system. In [LL94] MSCs are ‘joined’ by
the use of conditions. A condition is represented as an elongated symbol spanning
the process axes. The conditions have labels and are constrained to be placed as the
first event or last event on the process time-lines. The system is defined to behave
as though MSCs with identically-labeled conditions are joined at the condition. A
MSC may be joined to itself at these conditions to create a non-terminating loop.
Conditions may also be used to specify non-determined behaviour, such as conditional
branching or conditional loops. This occurs if a terminal condition of one MSC shares
a label with the initial condition of two or more MSCs. The time-lines for the processes
can branch at that point taking one of the possible paths represented by the joined
MSCs.

The meanings of MSCs have been formalized by Mauw [Mau96] and by Ladkin
and Leue [LL94, LL95b]. The definition of the semantics of MSCs was addressed after
the original publication of the standards for MSCs [Int88, Int94]. The original MSC
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specification included only a semi-formal description of the meaning of the charts.
The syntactic features of MSCs raise some issues concerning the interpretation of the
charts. [LL95a] presents some specific issues with respect to the semantics of MSCs
which have some significance in the context of scenario-based access-control modeling
since there are strong parallels between the two. The issues are introduced here and
will be revisited in the discussion presented in Chapter 6.

One of the concerns is whether systems represented by MSCs have some finite
set of global states with respect to message passing behaviour. Even given a finite
number of control states for the participating processes, there may be an unbounded
number of asynchronous messages ‘in the system’ (i.e. sent but not received). This
could be an argument for a non-finite set of global states. It is demonstrated for
MSCs that the set of global states is in fact finite [LL95a]. Transitions between
states are effected by atomic message-passing actions, which can be used to define a
state transition function. This is a useful property for analysis of the systems being
specified. This issue needs to be addressed in the context of scenario-based access
control as an unbounded number of current permissions for object interactions is
possible.

For general MSCs the use of conditions to join MSCs introduces non-determinism.
At a condition, individual processes must continue with behaviour as specified by one
of the joined MSCs. In some cases this requires a choice of behaviours by a process
that does not depend solely on its own process state. Such non-local choices require
either un-bounded history variables to keep track of control choices (non-finite-state
control) or MSCs which lead to non-local choices must be considered as ill-formed.
SBAC proposes a type of joining mechanism on message sequences. The issue of
non-local choices will be considered in the context of this thesis.

In the brief description of MSCs above there was no restriction specified that

would preclude the crossing of message arrows. Crossings can lead to messages being
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received in a different order than that in which they were sent (an ‘overtaking’ of one
message by another). This is allowed in the MSC specification. In some cases it may
not be possible to detect the possible occurrence of such an overtaking by using the
process specifications alone. If the possibility of a crossing is not an aspect of the
process specifications then it must be a property of the system environment. ILe., a
property of the environment must account for the crossover but is unspecified in the
system specification. Environmental properties are not usually explicit in the system
specifications. The existence of such undefined system properties is not desirable in
a specification language.

The last issue addressed in [LL95a] relates to the completeness of the information
available in MSCs to specify liveness properties. The authors argue that liveness
properties are difficult to specify with MSCs alone and such properties are better
specified in many cases by temporal logic formulae provided in addition to the MSCs.

2.3.3 Document Release Example

This sub-section provides an example using a set of scenarios to illustrate ways in
which objects can interact to provide the solution to a problem. The example is a
non-monotonic security policy (¢f. Sandhu, {SG94]). A company scientist prepares a
paper for publication. Before the scientist is allowed to publish his work he must clear
it with a patent officer. The patent officer can authorize the paper for publication or
she can return it to the scientist for revision. The scientist is initially able to modify
the content of the paper but loses that right while the paper is under review. The
scientist is also not able to alter the content of a paper authorized for publication by
the patent officer. Figures 2.3 to 2.10 provide a simple set of diagrams that specify
the object interactions that might be allowed in such a system. The diagrams are

presented as a complete set here so that they can be understood in context with each
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FIGURE 2.3. Scenario Type Sinitail

other. The diagrams are used in examples later in this dissertation and a deeper
understanding of their meaning will come as a result of referring to them in the
context of those examples.

The diagrams are UML [RJB98] message sequence diagrams. The diagrams have
been produced using Rational Rose [Rat98], a popular industrial OOA/OOD tool.
The tool captures basic information about a model, e.g. object types, object identi-
fiers, message types, message parameter types, and the ordering of messages.

Message sequence diagrams (MSDs) are a standard notation for specifying object
interactions in a system. Message sequence diagrams are a restricted form of message
sequence chart (Section 2.3.2). Information from these diagrams can be combined
with additional information to describe how scenarios combine and interact.

The vertical lines with boxes at the top represent objects. The boxes are labelled
with an object identifier and an object type. The dashed line extending below the

box is the life-line for the object. The arrows between object life-lines are object in-
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teractions (messages). As with MSCs the life-lines are time-lines, so messages further
down a life-line occur after messages further up the life-line.

Each message sequence diagram by itself describes a particular type of scenario
consisting of one or more messages. The messages may only occur between objects
of the types specified by that scenario type. The messages may only occur in an
order consistent with the order specified by the scenario type. For example, scenario
SdocEdit in Figure 2.4 specifies that an author of a document may, in sequence, read
from and then write to some document.

The MSC standard allows modular design via sub-MSCs and decomposed process
instances [Mau96]. This decomposition is process-based, and does not move across
well to UML-style message sequence diagrams since the diagram is object-based and
not process based. Many objects in an MSD can (and often do) belong to the same

process. Modular design is denoted in the context of SBAC modeling by using what
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FIGURE 2.10. Scenario Type SdocRevision

are in effect sub-scenarios (or child scenarios), which in MSCs (if allowed) would be
interpreted as decomposed message events. This is the intent of the messages marked
here with the <scenario> tag. In these cases the tag indicates the creation of another
scenario. For example the scenario Sinitial in Figure 2.3 indicates that a SdocFEdit
scenario is created followed by the creation of an SforwardDecision scenario. This
notation for capturing the composition of message sequence diagrams is not part of
UML or of ITU message sequence charts. It is used to support the scenario compo-
sition mechanism proposed in this dissertation for scenario-based access control. In
Rational Rose, the <scenario> tags are normally captured in a data structure asso-
ciated with the message documentation, but in this example they are presented on
the message sequence diagrams to make them visible to the reader. Other features of
the diagrams will become apparent later in the dissertation.

The semantics of MSDs can be interpreted using the proposed scenario-based



68

access-control modeling scheme. One can then use instances of the modeling scheme
to provide a safety analysis for the system being specified. This ties security modeling
to contemporary software engineering techniques. This dissertation does not provide a
formal semantics for MSDs based on SBAC modeling (although this is likely possible
and worthwhile). It focuses on the presentation of SBAC modeling and uses the
vehicle of message sequence diagrams as a tool for intuitive understanding of SBAC
models. That is, MSDs are intuitively straightforward and useful for thinking about
and describing object scenarios, which are then captured by the SBAC models. As
well, the analysis tool developed as part of this dissertation uses the support for
message sequence diagrams built into the Rational Rose modeling tool to help with
capture of SBAC models.
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Chapter 3

MODELING SCENARIOS

3.1 Introduction

With the shift in emphasis in research on access-control modeling away from security
requirements for confidentiality in government/military systems towards integrity-
based requirements in commercial systems, there is an increasing requirement to
model legitimate use in secure systems. This can been seen in the motivation for
RBAC and TBAC presented in Chapter 2. The development of the scenario-based
access-control scheme presented here is driven by two main goals. The first is to
provide a scheme that will provide efficient safety analysis for systems modeling le-
gitimate use policies. This implies efficient analysis of non-monotonic systems. This
is because legitimate use policies that employ some kind of just-in-time availabil-
ity of access-control permissions are inherently non-monotonic. The second goal is
to provide a modeling scheme that complements contemporary software engineering
modeling techniques. The objective is to leverage the information that is already
being captured by such techniques and to provide security modeling as an extension
to existing software engineering methods. This eliminates duplication of effort in
security modeling and may serve to encourage the wider use of security modeling.
Significant success in providing safety analysis for security models for monotonic
systems has been achieved by exploiting the concept of maximal state. As can be seen
in many of the modeling schemes presented in Chapter 2, the strategy for analysis is
to allow system state to expand (permissions to be added) until no further expansion
is possible. The resulting maximal state can then be inspected to provide the safety

analysis. The analysis scheme must show that expansion of the permission state is
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controlled, to ensure that a maximal state always exists and is computable.

One of the chief difficulties in modeling non-monotonic systems is that the ex-
istence of a maximal state does not seem likely. In fact, the concept of maximal
state seems counter-intuitive in such systems. If access permissions are allowed to
be created and revoked then it seems that many mutually exclusive evolutions of
execution for the system are possible. For example many different users may come to
be the owner of an object, but none of them may be owners of it simultaneously. As
well, the nature of the safety problem seems to change slightly. History, or context,
becomes important in non-monotonic systems. It is important to know not only if
a permission for a subject to access an object is possible but when that permission
becomes available. By ‘when’ it is meant ‘when in relation to the existence of other
permissions.’ For example, two subjects may both be allowed to have a certain access
to an object, but they may only be able to have that access when they also have the
owner permission for the object. A single maximal permission state does not seem to
be an adequate basis for analysis of such safety criteria.

This dissertation was inspired by the progression of access-control models culmi-
nating in Sandhu’s SPM [San88] and Sandhu and Ganta’s TRM [SG94]. In particular,
the unfolding mechanism used by these modeling schemes to control the state explo-
sion inherent in subject creation is a very powerful technique. It seemed that a
successful adaptation of this technique might be to use such an unfolding scheme to
limit the state explosion problem inherent in the expanding histories of non-monotonic
systems. That is, to try to define some maximal set of possible histories instead of a
maximal set of permissions.

Scenario-based access control was developed independently from, but is related
to, task-based access control [TS94, TS97]. As is the case with TBAC, this research
recognizes that an obvious basis for secure workflow management is a just-in-time

policy of granting permission, based on providing just those rights that are needed,
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when they are needed, to accomplish a legitimate task. Role-based access control
and Clark-Wilson-based models [CW87] provide for least privilege and the fine grain
definition of permission types. Clark-Wilson goes as far as to specify transformation
procedures which limit the kinds of operation that can be applied to data. What
is missing from these modeling schemes is the notion of context, or order, in which
operations are permitted to take place.

SBAC begins with the observation that when using object-oriented techniques,
software analysts and designers may specify a system by describing a set of scenarios.
The amount of detail presented in the scenarios depends in part on the level of
abstraction of the specification. Early in the system life cycle analysts use scenarios
to describe the nature of the problem they are working on. Later in the system life
cycle designers use scenarios to describe how they are going to solve the problem, z.e.
the specification of the software solution. In both cases they use scenarios to specify a
set of mechanisms that describe how objects will interact. As the OOA/OOQOD review
material of Section 2.3 highlighted, scenarios are specifications of a particular set
of object interactions. More generally, a specific kind (or type) of scenario can be
used to describe what kinds (classes/types) of objects are involved and what kinds
of messages are exchanged. Many objects are instantiated in the life of a system but
they are intended to follow a set of behaviours as laid out in the scenario descriptions.
The designers use scenarios to describe what object interactions are necessary to meet
system requirements. With a change of perspective these scenarios provide the basis
for security modeling. Under SBAC, the designer is also using scenarios to describe
what object interactions are permitted by the system. That is, the designer is now
specifying scenarios that are necessary and sufficient to meet the system requirements;
no other object interactions will be permitted. A permission can be generated for
each step in a scenario and consumed as the specified object interaction takes place.

Such scenario-based security models are inherently non-monotonic.
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This approach seems to have several strengths. In SBAC scenarios are seen as a
natural vehicle for the specification of the context required in expressing a just-in-time
security policy. One of the stated goals of this research was to provide efficient anal-
ysis for non-monotonic systems. As will be seen, the creation relationship between
scenarios may be exploited to provide control over the state explosion of expanding
histories of non-monotonic systems. The use of contemporary OO modeling tech-
niques and tools meets the second goal stated for this research; information that is
already being captured by using OO methods can be used to provide security mod-
eling as an extension to an existing software engineering process. OQ techniques
are used at high and low levels of abstraction. An advantage of OO methods and
SBAC security models based on such methods is that model constructions tend to
remain closely related to problem domain entities. Especially at the higher levels of
abstraction, designers strive to make the objects and their behaviours abstractions of
problem domain entities. This provides intuitive semantic content that takes advan-
tage of natural human cognitive skills [Boo94]. This makes it easier for the designer
to cope with the complexity inherent in a system.

The chapter is organized in the following way. The sections at the beginning of
the chapter present the comporents of basic SBAC modeling. The sections define the
basic components necessary to model scenarios, scenario types, and the interaction
between scenarios. Each set of components will be discussed first, then a formal defini-
tion of the components will be presented. An example based on the document release
example of Chapter 2 will be included in each case to help develop intuition for the
modeling scheme. Later sections of the chapter add complexity to the basic modeling
scheme. Components will be added to provide support for representing visibilities be-
tween objects, for representing object creation, and for supporting information hiding

between scenario types.
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3.2 Modeling Scenarios

The usual approach in security modeling is to define sets of subjects (entities which
require access to information, devices, programs, etc.) and objects (entities that can
be accessed). In SBAC an object-oriented decomposition of system entities is used
and all entities in the system will be referred to as objects. Objects here may serve in
either of the usual security model roles of subject or object. An object might possibly
request a service of another object in the system, or might itself be accessed by other
objects; i.e. an object may play the role of message sender or receiver at different
times. Each object has an object type. Object types are fixed for the life of the
object.

The most basic or primitive scenario describes a single message pass between two
objects. To send a message to an object, visibility is required. That is, the sending
object must know the name of, or have a reference to, the receiving object. The
message being sent must also conform to the interface of the receiving object. The
basic element of access control is based on a primitive scenario describing exactly one
message pass. The scenario will specify which two objects are involved, the types of
those objects, and the type of the message to be passed. The concept of a message
here is general and describes the interaction of a sending object with an interface
of the receiving object. A message can carry information to the receiving object,
modify the state of the receiving object, and return information dependent on the
state of the receiving object. The receipt of a message can invoke some behaviour in
the receiving object. This definition provides fine-grain access control similar to the
permissions defined by RBAC modeling or the transformation procedures described
by Clark-Wilson. Note that although messages may alter the state of an object, the
state of objects is not directly modeled in SBAC. The state of an object is hidden,

but the interface of an object is modeled through the specification of the messages it
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exchanges with other objects.

Complex scenarios (non-primitive scenarios) are defined using collections of sub-
scenarios (child scenarios). Child scenarios can be primitive or non-primitive. Each
child scenario can have at most one parent scenario. This allows the model to describe
the relationship between scenarios. Each scenario has a scenario type, which is fixed
for the life of the scenario. A scenario type specifies the types of the objects which
participate, or interact, in a scenario instance of its type. A scenario type also specifies
the types of the scenario’s children and the order in which the child scenarios are
permitted to be created.

A complex scenario can be thought of as the root of a tree of child scenarios with
primitive scenarios at the leaves of the tree. Such a tree specifies a permissible set
of interactions for a collection of system objects. The tree describes which objects
are allowed to participate, the types of the objects, the message instances involved,
the types of the messages, and the ordering of messages. The topology of the tree
is constrained by the scenario types involved. This is because each scenario type
specifies what type of child scenarios it can create and the order in which the scenario
creations are permitted to take place. Ultimately the tree specifies the message passes
which are permitted to take place, the objects participating in the message passes,
and the order in which they can occur. Scenario types and object types are statically

defined and form the basis of a mandatory security policy.

3.2.1 Objects and Object Types

The object is one of the most fundamental abstractions in the scheme being described.
Every object in a system has a type. Presentation of the modeling scheme will begin
by defining sets of object types and objects. A set of identifiers is also defined.

Identifiers are used to name individual instances of object types and objects as well
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as other model constructions.

An object type is assigned when an object is created (instantiated). The assign-
ment does not change. In the document release example presented in Chapter 2
object types might be specified for Oscientist, OpatentOfficer, Orelease Auth and
Odocument. The function 7o defines type assignments for specific objects. The set
‘PB defines the domain of parameter binding pairs, 7.e. identifier-object pairs. In such
a pair an identifier is bound to a specific object in a model. A pair (author, oalice)
denotes that the identifier author is bound to the object oalice in some context. A
similar set of binding pairs is defined by the set P7TB. In this case the identifiers
are bound to object types. For example the pair (author, Oscientist) denotes that
the identifier author is bound to the object type Oscientist in some context. The

following definition formalizes these components of the model.

oT a finite set of object types

o a finite set of objects

To object type function, 70 : O — OT

VA a finite set of identifiers

PB a finite set of parameter binding pairs, Z x O

PTB a finite set of parameter type binding pairs, Z x OT

3.2.2 Scenario Types

The static structure of a security policy is based on how objects are permitted to
interact in scenarios. The modeling scheme defines a set of scenario types that are
used to specify how different types of objects may interact. Scenario types typically
specify common or recurring kinds of behavior. A scenario type can be thought of as
a template. The template specifies how actual objects may combine and interact in

an actual instance of a scenario of that type during the evolution of a system. As a
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system evolves, real objects can only interact in scenario instances defined using one
of these scenario types.

The authorization of a scenario of some scenario type means that a new scenario
of that type is instantiated (created). Newly authorized scenarios are added to the
set of existing scenarios, §. Authorization of a scenario permits security relevant
actions to take place. Two kinds of security relevant actions may be permitted by a
scenario. They are, the authorization of another new scenario, and the authorization
of a message pass between two specific objects. The authorization of a message pass
means that a specific kind of message is permitted to be sent from one specific object
to another specific object. The only other security-relevant action is the sending of a
message. Scenarios are not directly involved in the sending of messages. The actual
system objects collaborate in the sending of messages. The mechanism of message
passing is not directly modeled by SBAC.

When a new scenario is authorized an initial set of actions is permitted. The
occurrence of an action in the system can cause the permitted actions associated with
a scenario to change. le., some actions may no longer be permitted and new actions
may become permitted. A scenario is authorized when there are security relevant
actions permitted by it. A scenario is terminated (no longer authorized) when there
are no longer any permitted actions associated with a scenario. Once terminated
a scenario cannot become authorized again. The discussion of the SBAC modeling
scheme will usually refer to scenario authorization instead of scenario creation because
authorization implies creation or instantiation of a new scenario, and the permissions
for an initial set of actions.

In this modeling scheme, primitive scenario types model a single message pass
between objects. Primitive scenario types describe the types of the two objects in-
volved with the message pass and the types of parameter objects associated with the

message. The only security relevant action permitted for an instance of a primitive
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scenario type is the authorization of a message pass between two specific objects.
Only instances of a primitive scenario type can authorize a message pass between two
objects. The only action permitted by non-primitive scenarios is the authorization of
new scenarios. The message authorization is consumed (revoked) when the message
pass takes place. Revoked authorizations are not necessarily recoverable. This is
why the scheme is inherently non-monotonic. Message passes which are not currently
permitted by some scenario (i.e. do not occur in the model) are prohibited. Primitive
scenarios and primitive scenario types are described in more detail in Section 3.2.4.

Each scenario type is a member of a finite set S7. A scenario type has a number
of properties associated with it. There is a set of parameters that specify the types of
the objects which participate in the scenario. The function parasr(®) specifies a finite
set of parameter bindings for a given scenario type ®. The scenario type provides a
context, or namespace which acts as a scope for these bindings. Since scenario types
are meant to describe the interactions among objects of specific types, the identifiers
can be thought of as roles that certain types of objects play in the context of the
scenario type in which they are defined, with one, and only one, object for each role.
The type of the object which plays the role is specified by the parameter binding.
More than one binding to the same object type is allowed in a scenario type. This
corresponds to different objects of the same type interacting in a scenario instance
by filling different roles. Conversely, the same object may play multiple roles in a
scenario instance provided the roles are of the same type.

A finite set of scenario descriptors specifies the child scenarios that may be autho-
rized by scenarios of each type. Each descriptor specifies the type of a child scenario
and a mapping between the parameters of the parent scenario and the child scenario.
Scenario descriptors are triples. The first two elements of a scenario descriptor spec-
ify a scenario type and a parameter mapping to be used in authorizing a scenario of

that type. A finite set of identifier pairs maps parameter identifiers in the context of
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the parent scenario to parameter identifiers in the context of the child scenario being
authorized. Effectively, this maps roles played by objects in the parent scenario to
roles played by objects in the child scenario. The type bindings of the identifiers in
the context of their respective scenarios must agree. Also, for a scenario descriptor
defining a scenario of type ®, there must be an identifier mapping provided for each
binding defined in set parasr(®). The scenario descriptor identifier mappings and the
parent scenario’s actual parameters uniquely identify the objects that will participate
in the child scenario (the child scenario’s parameter set).

The third element of the scenario descriptor triple is a boolean value that indicates
whether the child scenario is concurrent (7True) or not concurrent (False) with the
parent. A concurrent scenario allows a separate thread of authorization orderings to
begin with that scenario. The evolution of authorization orderings is described in
more detail in the definition of the ordersr function below.

The function childsr specifies a sequence of scenario descriptors. The descriptors
specify the kind of child scenarios that may be authorized by the parent scenario.

Each scenario type also has an ordering that specifies whether the child scenarios
are executed in sequence, are mutually exclusive (only one child authorization can
occur), or are all authorized without particular regard to order. The function ordergr
specifies the ordering of child scenarios. The ordering specifies when the authorization
of a child scenario occurs. The ordering of message pass actions depends on the
evolution of the system execution. The pattern and combination of child scenarios
which may be authorized by a scenario are constrained by the ordering specified by
the scenario’s type. When a certain set of conditions is met, a scenario terminates. A
terminated scenario is no longer permitted to perform any action. A primitive scenario
terminates when its message authorization is consumed (i.e. when the message pass
takes place). The termination of non-primitive scenarios depends on the ordering

specified by their scenario type. There are three kinds of orderings defined by the
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modeling scheme (seq, or, and and).

Upon authorization of a scenario which has a sequential, seq, ordering, the child
scenario defined by the first scenario descriptor in the childsr sequence is immediately
authorized. When this child scenario terminates, the child scenario defined by the
second scenario descriptor in the childsr sequence is authorized, and so on for the rest
of the sequence. A seg ordered scenario terminates when the child scenario defined
by the last scenario descriptor in the childsr sequence terminates.

Upon authorization of a scenario which has an or ordering, all scenarios defined
by the scenario descriptors in the childsr sequence are immediately authorized. A
message pass action associated with any one of these child scenarios (or the child’s
descendants) causes the termination of all the other child scenarios. That is, messages
are effectively only permitted for one of the child scenarios defined by the childsr
sequence. This is because message pass authorizations associated with the other child
scenarios are revoked when the scenarios are terminated. An or ordered scenario
terminates when the one remaining child scenario terminates.

Upon authorization of a scenario which has an and ordering, all scenarios defined
by the scenario descriptors in the childsr sequence are immediately authorized. A
message pass action authorized by any one of these child scenarios (or the child’s
descendants) may occur in any order. An and ordered scenario terminates when all
its child scenarios terminate.

By construction there can be no outstanding authorizations for a scenario when
it terminates.

The following definition formalizes these components of the model.

ST a finite set of scenario types.

parasrt a function defining the parameter type bindings associated

1The symbol — is used to denote a partial function
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with a scenario type; paragsy : ST — 2P78 such that for
® € ST, parasr(®) : T — OT
SD a finite set of scenario descriptors, ST x 27*Z x 21
childst a function defining the scenario descriptors associated with a
scenario type, childsr : ST — SD", where n is finite
ordersr a function defining the ordering of child scenarios associated

with a scenario type, ordersr : ST — {segq, or, and}

As an example of scenario type specification, the scenario type SdocReview from
the document release example in Chapter 2 is defined in the following way. This

scenario type is repeated in Figure 3.1 with some additional detail.

SdocReview € ST
paragr(SdocReview) =
{(reviewer, OpatentOfficer), (report, Odocument)}
childgr(SdocReview) =
((Pread, {(reviewer, sender), (report, recetver)}, False),
(SreleaseDecision, {(reviewer, reviewer), (report, report) }, False))

ordergr(SdocReview) = seq

The scenario type has two parameter roles reviewer and report of types
OpatentOfficer and Odocument respectively. These roles can be seen in Figure 3.1 as
object boxes at the top of the figure.?2 The scenario type specifies the authorization
of two child scenarios. The first is a primitive scenario of type Pread. When creating
this child, the reviewer role of SdocReview is mapped to the sender role of the child

and the report role is mapped to the receiver role of the child. These role mappings

2The MSDs presented in this chapter are intended to be an aid to the reader in developing intu-
ition for scenario-based modeling. The MSDs and their interpretation are not part of the formalism
but provide a set of parallel examples. Introducing MSDs here also provides familiarity with the
notation. Later, examples of SBAC modeling will be expressed using MSDs.
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OpatentOfficer Odocument
1: Pread() l
g |
1 Scenario Ordering: <SEQ> B
Parameters:
| reviewer:OpatentOfficer

The reviewer reads the document
and then makes a decision on

;’

2: SreleaseDecis_-i_-on(OpatentOfﬁcer, Odocument) reportOdocument
|

T whether or not to release the
| \ document for publication.

<scenario>

<mappings {

(reviewer -> reviewer),
(report -> report)}>

FIGURE 3.1. Scenario SdocReview with detail

are implicit in the topology of the diagram and are not marked as parameters of
Pread. More detail with respect to the reviewer and sender role mappings of prim-
itive scenarios will be presented in Section 3.2.4. The Pread child is non-concurrent
with its parent as indicated by the third element of its scenario descriptor, F'alse. The
second child to be created is of type SreleaseDecision. The comment box associated
with this child scenario in the figure contains information that is normally contained
in a message description data structure in the Rational Rose model from which the
figure was generated. To make it visible to the reader the information is shown here in
a comment box. The <scenario> tag indicates that this is a non-primitive scenario.
Such a distinction is not required in the formal presentation above. In the formal
presentation and in the corresponding mappings presented in the comment box it can
be seen that the reviewer and report roles of SdocReview are mapped to reviewer
and report roles of the child. The roles just happen to have the same names in this

case. The SreleaseDecision child is also non-concurrent. Concurrency would be
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indicated in the figure by specifying the <concurrent> flag for the message in much
the same way as the <scenario> flag is specified. The ordering of the SdocReview
scenario type is seq. Therefore, the authorization of the SreleaseDecision child will

occur only upon termination of the Pread child.

3.2.3 Scenario Instances

Scenario types provide static restrictions on the interactions permitted in a system
between objects of various types. Evolution of the system proceeds via the autho-
rization of actual scenarios and performing the permitted security-relevant actions.
Each scenario is a member of the finite set S. A scenario has a number of properties
associated with it.

Every scenario in a system has a type specified by the scenario type function 7s.
Scenario types are assigned when a scenario is authorized and do not change. For
each scenario there is a set of parameters which specify the objects which participate
in the scenario. paras specifies bindings to the object instances participating in the
scenario. A scenario is a context, or namespace which acts as a scope for these
bindings. Again, the identifiers can be thought of as roles certain objects play in
the context of the scenario in which they are defined. The identifiers are the same
identifiers used in the specification of parasr for the scenario’s type. That is, for each
parameter binding of a scenario instance there will be a parameter type binding in
its scenario type such that the bindings have the same identifier. The type of the
object specified for an identifier in a binding in parag must agree with the object
type specified for the same identifier in paragsy.

Each scenario also has a set of child scenarios which it has authorized. childs is a
function mapping scenarios to sequences that specify the children the scenarios have

created. As child scenarios are authorized they are appended to the sequence mapped
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to the parent scenario by childs (initially null). A new scenario is authorized using a
scenario descriptor belonging to the parent’s type. The scenario descriptor(s) used to
authorize a new scenario(s) at a particular point in a scenario’s life depends on the
scenario’s ordering. A scenario descriptor specifies the type of the child scenario and
the parameter mapping to be used in authorizing that scenario. The set of identifier
pairs in the scenario descriptor maps identifiers in the context of a parent scenario
to identifiers in the context of a child scenario being authorized. Since the role
identifiers are the same for the bindings of the scenario types and scenarios instances
this maps objects playing roles in the parent scenario to objects playing roles in the
child scenario. New parameter bindings are created, which bind role identifiers for
the child scenario to the identified objects participating in the parent scenario. These
new bindings specify the members of parag for the child scenario.

The actions permitted by a child scenario may proceed within the parent’s se-
quence of actions, or those actions may proceed concurrently with the parent sce-
nario’s sequence of actions. The predicate cons defines whether a separate, concurrent
sequence of authorization orderings begins with a specific scenario (T'rue), or whether
the scenario’s authorization orderings are part of the parent’s sequence (False).

The following definition formalizes these components of the model.

S a finite set of scenarios.
TS scenario type function, 75 : § = ST
parag a function defining the parameter bindings associated with

a scenario; parag : S — 278, such that for
¢ €S8, paras(¢) : T —~ O

childg a function defining the child scenarios associated with
a scenario, childs : S — | U, S' , where n is finite

cong a predicate defining the concurrency associated with
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a scenario, cong : S — 2!

To illustrate how scenarios are specified, and how the scenario creation mechanism
works, an example will be presented, which is based on the SdocReview scenario
type presented at the end of Section 3.2.2 and in Figure 3.1. First an instance of
a SdocReview scenario type will be modeled, then a new SreleaseDecision scenario
will be created using the appropriate scenario descriptor. An instance sdocReviewl

is modeled as follows:

sdocReviewl € §

Ts(sdocReviewl) = SdocReview

parag(sdocReviewl) = {(reviewer, oalice), (report, odoc)}
childs(sdocReviewl) = (pread2)

cons(sdocReviewl) = False

Scenario sdocReviewl is of type SdocReview. The reviewer role is mapped to an
object instance oalice and the report role is mapped to an object instance odoc. It
can be seen here that the scenario has already authorized one child scenario, pread2.
Although the example does not provide detail for pread?, it is presumably a primitive
scenario that would authorize a read message from the object oalice to the object odoc.
From its scenario type sdocReviewl has a seq scenario ordering. Therefore when the
read message from oalice to odoc takes place, and consumes its authorization (termi-
nating pread?), sdocReviewl will authorize a new scenario. The authorization of the
new scenario will be based on the second scenario descriptor in childsr(SdocReview).
The new scenario will be of type SreleaseDecision. The role reviewer of the new sce-
nario will be mapped to the object playing the role of reviewer in sdocReviewl, i.e.
oalice. The role report of the new scenario will be mapped to the object playing the

role of report in sdocReviewl, i.e. odoc. Again, note that the identifiers for the roles
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in the parent and child scenario do not have to be the same, as they are here. The
mapping between roles is provided by the scenario descriptor. The new scenario will
not have authorized any new scenarios itself yet. Its set of child scenarios is initially
null. The authorizations generated by the newly authorized scenario will not proceed
concurrently with those of sdocReviewl. ILe., in this case sdocReviewl will not pro-
ceed with its own actions until the new scenario terminates. Let the new scenario be

sreleaseDecisiond. It is modeled as follows:

sreleaseDecision3 € S

Ts(sreleaseDecision3) = SreleaseDecision
parag(sreleaseDecision3) = {(reviewer, oalice), (report, odoc)}
childg(sreleaseDecision3) = ()

cong(sreleaseDecision3) = False

3.2.4 Primitive Scenario Types

As noted above, messages in SBAC modeling are primitive scenarios that describe
a single distinct interaction between objects. Scenario types for these primitive sce-
narios describe the types of the two objects involved with the message pass and the
types of parameter objects associated with the message. These are specified by the
parameter type bindings defining the roles participating in the scenario. Each primi-
tive scenario type is associated with a particular kind of message. paragr defines the
object roles and types associated with the message. paras defines the actual object
parameters. With respect to paragr the identifiers sender and receiver are reserved
for the object types filling the role of the message sender and receiver respectively.
With respect to paras, identifiers sender and receiver are reserved for the actual ob-
jects filling the roles of message sender and receiver. Any other bindings specified by

parast (paras) specify the object types for remaining message parameters. childsy
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and childs for primitive scenario types are always the null set. ordersy for primitive
scenario types is undefined.

Upon authorization of an instance of a scenario of a primitive type, a message of
the kind associated with that primitive type is authorized to be sent from the sender
to the receiver. The message parameters are specified by parags for the primitive
scenario. The authorization for the message is consumed when the associated message
is sent. A primitive scenario is considered to be terminated when the associated
message is sent (i.e. when the authorization for the message is consumed).

The modeling scheme does not explicitly model message types or messages. The
mapping from primitive scenario types to message types is a bijection. The authoriza-
tion for a primitive scenario is immediately followed by an authorization for the re-
spective message. The termination of a primitive scenario (revoking its authorization)
occurs immediately following the revocation of the authorization for the associated
message. For access-control modeling purposes, there is no loss in expressiveness in
only considering primitive scenario types and leaving the messages as implicit entities

to be defined in the implementation of the access-control mechanism.

3.3 Object Visibilities

As described so far in the modeling scheme, the objects participating in a child
scenario have all been specified by the parent scenario when the child scenario is
authorized. Using a scenario descriptor, the authorization mechanism maps objects
filling roles in the parameter set of the parent to objects filling roles in the new child
scenario. So far, these parent supplied objects are the only objects specified to fill
roles in the child. Therefore, all subsequent scenario authorizations by the child must
use these objects to fill scenario roles. ILe., the set of objects provided as parameters

to a child scenario must be a subset of those provided to its parent. Viewed in a
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different way, every object which is involved in some interaction in a system must be
specified in a parameter binding of the system's initial scenario.

This is a cumbersome and restrictive way of managing a scenario’s access to system
objects. Scenarios would be obliged to carry object roles as placeholders for children
further down the scenario tree, even if those roles are not involved in any action in the
current scenario. Also, so far, the modeling scheme does not allow for the creation
of objects. All objects involved in system interactions must be available in the initial

system scenario. Providing objects with visibilities mitigates these problems.

3.3.1 Defining Object Visibility

This section expands the modeling scheme to allow the expression of object vistbilities
and object creation. It would be convenient if objects could play roles with respect to
each other. Objects might be provided with bindings to other objects in association
with these roles. These bound objects would be wvisible to the object holding the
bindings. Consequently, when an object is provided as a parameter in the creation of
a scenario, not only could it become involved in the interactions of the scenario, but
any objects visible to that object could be named and could participate.

New functions are defined which allow the modeling scheme to define the visibility
objects have of other objects, and to identify an object by using an identifier associated
with a set of parameter bindings. The function visp defines the visibility between
objects by specifying a set of parameter bindings for each object. Objects are a
context, or namespace, for a set of parameter bindings. Again, the binding identifiers
can be thought of as roles certain objects play in the context of the object in which
the binding is deﬁged. The object which plays the role is specified by a parameter
binding. A similar relationship is defined for object types.

The types of objects for which a specific object type may have visibility and the
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roles those object types can play are defined by the function visgr. For each object
type, the roles other objects are permitted to play in the context of that object type
and the types of objects which may fill those roles are specified by parameter type
bindings. The identifiers specified for an object’s visibility bindings by viso are the
same identifiers used in the specification of visor for the object’s type. That is, for
each parameter binding of an object instance there will be a parameter type binding
in its object type such that the bindings have the same identifier. The type of the
object specified for an identifier in a binding in visp must agree with the object type
specified for the same identifier in vispr.

The function objid dereferences parameter bindings by returning the object being
referred to by a specific identifier in the context of a set of parameter bindings. The
context providing the parameter bindings may be an object’s visibilities (defined by
viSp), Or it may be a scenario’s parameters (defined by paras). The parameter binding
context for some object a defined by vispo(a) is specified by a partial function from
identifiers to objects. Similarly, the parameter binding context for some scenario ¢
defined by paras(¢) is specified by a partial function from identifiers to objects.

The following definition formalizes these components of the model.

viSor A function defining the types of objects visible to
objects of a specific type, visor : OT — 2P75

viso A function defining the visibility between objects,
visg : O — 2PB

objid A function which provides an object given an identifier

and parameter binding context, objid : T x (T — O) — O

In the document release example a document might have a role associated with it
called author. A specific document odoc, written by the scientist oalez, might have a

parameter binding (author, oalex) € visp(odoc). Now, given the document, odoc, and
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the role, author, the scientist object filling the author role can be dereferenced using
objid, objid(author,viso(odoc)) = oalex. Constructions having this syntax may be
abbreviated as odoc.author = oalex.

In a related example suppose that the document object, odoc, takes part in a
scenario, sdocumentReleasel, of type SdocRelease. Assume that odoc is already
bound to an identifier in the scenario, (report, odoc) € paras(sdocumentReleasel).
An author of the document can be dereferenced using the identifier binding for the
document. In the context of the example scenario, objid(author, viso(objid(report,
parag(sdocumentReleasel)))) = oalex. Constructions having this syntax may also
be abbreviated as report.author = oalez.

Although the ‘dot’ syntax is similar to that used in the last example, there is
a difference. In the first example the dot denotes dereferencing an identifier in the
context of an object, odoc. In the second case the dot denotes dereferencing an
identifier in the context of an identifier for an object, report. This context identifier
is then itself used to specify an object in the scenario sdocumentReleasel. The second
form of using the dot syntax only makes sense when it is obvious what scenario is
appropriate for the context. The two usages can be differentiated by the type of the
first operand (object or identifier).

3.3.2 Defined Scenario Parameters

Adding object visibilities to the modeling scheme means they can be used in the
specification of scenarios. The approach taken is to partition the set of parameter
type bindings specified for some scenario type ® by parasr(®) into two disjoint
subsets. One subset specifies the parameters that are part of the external interface
for the scenario type and the other subset specifies the parameters that are defined

internally for the scenario type and are not part of the external interface for the
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scenario type. These are respectively called paraeztsr(®), and paraintsr(®). The
parameters of the external interface for the scenario type are the parameters used
when defining scenario descriptors for that scenario type. ILe., they are used by a
parent to define a new child scenario of that type. The internal parameters are not
used by the parent to define a new child. These parameters, how they are used, and
the fact that they are used at all are a secret of their own scenario type.

For some scenario ¢, the set paras(¢) is also partitioned into two disjoint subsets.
The two subsets are acquiredparas($) and definedparas and respectively reflect object
bindings acquired from the parent scenario and bindings defined in terms of object
visibilities.

The bindings in the set acquiredparas(¢) are created using objects from the par-
ent’s context. That is, the set of identifier pairs in the scenario descriptor of the
parent is used to map objects in the context of a parent scenario to objects in the
context of a child scenario being authorized. Scenario descriptors in parent scenario
types must specify mappings for all identifiers in paraeztsr(®). This means that for
every binding in paraeztsr(P) there will be a binding in acquiredparag(¢) with the
same identifier.

The objects specified in parameter bindings in definedparas(¢) are defined in terms
of other identifiers available to the scenario. Objects in definedparas(¢) are specified
using identifiers found in parasr(®). By using objid in the context of the actual
scenario instance ¢ these identifiers can be used to identify an object instance, which
is playing a role in ¢. That object in turn can be used as a parameter bindings context
that can be used to indirectly identify another object by using objid to dereference
an object visibility. To do this, a parameter definition is specified using objid and
an identifier from visor. In the context of the actual object instance the identifier
refers to some other object instance. A parameter definition specified in this way uses

identifiers provided by parameter type bindings and the definition is not dependent
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on a specific scenario or object instance.® In the context of an actual scenario instance

the parameter definition refers to an object instance when objid is applied using the

actual objects filling the roles for that instance. Therefore, the parameter definitions

in de finedparas are specified once for a scenario type and used by instances of every

actual scenario of that type. For every binding in paraintsy there must be a binding

specified in definedparas.

The following definitions formalize these components of the model.

paraextst

paraintst

acquiredparag

definedparags

a function defining the external parameter type bindings
associated with a scenario type;

paraeztsr : ST — 2P78, such that for

® € ST, paraeztsr(®) : T — OT

a function defining the internal parameter type bindings
associated with a scenario type;

paraintst : ST — 2P78, such that for

® € ST, paraintsr(®) : T — OT

a function defining the parameter bindings associated
with a scenario that are acquired from the scenario’s
parent; acquiredparas : S — 275, such that for

¢ € S, acquiredparas(¢) : T — O

a function defining the parameter bindings associated
with a scenario type that are defined using identifiers available
to the scenario; definedparas : ST — 278, such that for

® € ST, definedparas(®) : T —~ O

for ® € ST, ¢ € S, 15(¢p) = &:

3Note that the creation of scenarios and objects requires that roles defined by the parameter type
bindings in scenario and object types be filled by object instances specified by parameter bindings
that use the same role identifiers. This one-to-one correspondence using the same identifier name
makes parameter definition using scenario and objects types possible.
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parag(P)

TN

paraint (D) paraext (D)

paray(®)
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definedpara () acquiredpara{(®)

—»_--—--—-——-—’

_______________’

—>  Subset relationship
----%  Identifier dependency

FIGURE 3.2. Relationship between parasr and paras modified for defined scenario
parameters, where 75(¢) = ®

parast(®) = paraeztsr(P) U paraintsr(P)
paras(p) = acquiredparas(¢) U definedparas(®)
paraextsy(®) N paraintsr(®) = {}
acgquiredparas(¢) N definedparas(®) = {}

The relationships among the described parameter sets are illustrated in Figure 3.2.
The diagram indicates the subset relationships and the identifier dependencies among
the sets. The identifier dependencies between acquiredparas and paraeztsr, and
between definedparas and paraintsr are defined to mean that they must respectively
have the same sets of identifiers. As before, the types of the actual objects in parag
must agree with the object type specified in paragr for its role.

Consider again an example based on a scenario sdocumentReleasel of scenario type
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SdocRelease. The message sequence diagram for this scenario type is presented again
in Figure 3.3 with added detail. Comment boxes have been added to the diagram
to illustrate how defined parameters may be specified. There are four objects that
participate in any scenario of this type. The object which plays a role reportAuthor
1s associated with a report object via a visibility relationship. Perhaps it is not
desirable to explicitly define the object playing the author role each time we authorize
a scenario of type SdocRelease. Specifying the report object should be sufficient
because it has its author associated with it. A defined scenario parameter allows
this to be specified. The parameter type bindings for the role reportAuthor is a
member of the set paraintsr(SdocRelease). The set definedparas(SdocRelease)
must specify a parameter binding using this identifier. The parameter definition
corresponding to the reportAuthor identifier is shown in the comment boxes using the
<DEFPARA> tag. In this case the <DEFPARA> tag indicates that that object is a
defined parameter bound to report.author. We will ignore the other comment boxes
and the <PARAIN> tag for now.

More formally, when the scenario sdocumentReleasel was created it would have

been provided the following object bindings from the parent’s external environment:
(reviewer, oalice), (report, odoc) € acquiredparas(sdocumentReleasel)

definedparag for sdocumentReleasel would specify an object binding for the author

of report in this way:
(reportAuthor, report.author) € definedparas(SdocRelease)

In scenario sdocumentReleasel the identifier report Author refers to the object play-
ing the author role with respect to the object bound to the identifier report. In the
previous example (Section 3.3.1) the report author was oalez, so report Author would

refer to oalex in this case.



94

<PARAN> L\Z
—7 E\
S e f/’ B T~ -
. reviewer : | relAuth : reportAuthor : : report ;
- OpatentOfficer | OreleaseAuth Oscientist | ¢ Odocume
N
l1 : F'create(Odocurnent)l N ' \ l
>F \ \ l
T \| <DEFPARA reportauthor> ﬁ
2: PrelP OreleaseAuth
T re e{ﬂ( release )>L\
| h |
3: PrelDoc() \
< i N |

i
<DEFPARA create(OraleaseAuth, {(report, document)})> >

4 P:read()

|

| |
| N
| r

i Scenario Ordering: <SEQ> ‘

[The reviewer creates a new release authorization object for the report. The reviewer
i passes the release authorization to the report's author. The author can then pass a
'message to the release authorization to effect the publication of the report. The
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FIGURE 3.3. Scenario SdocRelease with detail
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3.3.3 Object Creation

New objects created by a scenario to be used in its interactions can be handled
by the same mechanism introduced to support defined scenario parameters. A new
function is introduced in the modeling scheme to specify object creation. The create
function is applied to an object type and a set of identifier mappings. It returns a
new object of the specified type. This object is added to the set O@. At creation
time the visibilities of the new object are specified by the set of identifier mappings.
The identifier mappings map roles specified by paras of the creating scenario to roles
in the new object. The parameter bindings of visp for the new object are created
accordingly. A mapping must be specified for each identifier of visor for the object
type being created. The following definition formalizes the create function.

create A function returning a new object of a specified type,

create : OT x 22xT 5 ©

To introduce a new object into a scenario, a parameter binding in definedparas
is specified using the create function. Consider again the SdocRelease example of Fig-
ure 3.3. A scenario sdocumentReleasel, of type SdocRelease, requires the creation
of an object of type OreleaseAuth (a release authorization). The following specifi-
cation indicates that an OreleaseAuth object is created and bound to the identifier

rel Auth.

(rel Auth, create(Orelease Auth, {(report, el Doc)}))

€ definedparas(sdocumentReleasel)

For this new object the role identifier rel Doc will be bound to the object specified
by the role identifier report of the sdocumentReleasel scenario. Note in Figure 3.3

the comment box associated with the object relAuth contains a <DEFPARA> tag.
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In this case the tag indicates that the object is a newly created object with the neces-

sary identifier mapping to provide the required object binding. Figure 3.4 illustrates

graphically the parameter bindings specified for the sdocumentReleasel example.

3.3.4 Acquiring Object Bindings from a Child Scenario

The addition of object visibilities and object creation to the modeling scheme allows

the expression of a richer set of models. Specifically the modeling scheme can now

express models in which scenarios have interactions with objects which are not pro-
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vided explicitly by the scenario’s creator. Scenarios can now be specified to interact
with newly created objects, and with any object visible to an object provided as a
parameter to scenario authorization. However, there are still classes of systems which
are difficult to express with the modeling scheme. Consider the case of a parent sce-
nario which authorizes a number of child scenarios. It may be desirable to have an
object created in one child scenario take part in the object interactions specified for
a subsequent scenario in the parent. This is not expressible in the present scheme be-
cause a parent scenario cannot acquire object bindings from a child. Child scenarios
acquire object bindings from their parent upon authorization, but there is so far no
flow of object visibility in the other direction. Being able to acquire object bindings
from a child scenario is the only way in which visibility to newly created objects can
be moved back up the scenario creation hierarchy.

This feature also helps to support information hiding [Par72] in the decomposition
of scenarios in the requirements or design model being specified, in the following
way. With the exception of newly created objects, all objects which take part in the
interactions of a child scenario are theoretically visible to the creator of that scenario,
as are the objects of its children and its children’s children, etc. This is because the
parent scenario can see all the objects it provided to the child scenario as parameters.
It can also use any of the indirect object visibilities those parameters have in the
same way the child can. However, the interactions that take place in a child scenario
should be a secret of that scenario. The internal objects which participate in the
interactions and the mechanism by which their visibility is acquired should also be
a secret. The use of an object by a child scenario may be possible by exploiting
visibilities associated with an external parameter object. It is not appropriate for
the parent to do so as well in order to gain access to an object being used by the
child. This is because the parent scenario would have to understand the nature of

the object visibility and therefore something of the nature of the child scenario’s
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interactions. This is information about the implementation of a child scenario and
should be protected. If a child scenario needs to identify some object for use by the
parent there should be a mechanism which does not require the parent scenario to
understand how the child came to have visibility of the object.

The binding mechanism, as discussed so far, is for object bindings to be made
at scenario authorization time. The bindings have two sources. The members of
acquiredparags are specified when the scenario is authorized using bindings supplied
by the scenario’s parent. As well, after authorization the members of de finedparas
specified for the new scenario type can be used to refer to objects in the context of
the new scenario. Another mechanism is now introduced such that bindings can be
made at a child scenario’s termination. Ie., a scenario can acquire bindings after
its own creation from its children as they terminate. For some scenario ¢ of type &,
acquiredparas(p) is extended to include both those bindings acquired from ¢’s parent
and those bindings acquired from ¢’s children. To separate the bindings acquired
from the parent and those acquired from a child scenario the set of acquired bindings,
acquiredparas(¢) is divided into two disjoint subsets, childacquiredparas(¢$) and
parentacquiredparas(@).

For scenario ¢, the set parag(¢) is decomposed into three subsets: childacquired-
paras(@), parentacquiredparas($), and definedparas(ts(¢)). The basis of decom-
position for paras(¢) is the source of the object bindings for a scenario. For a scenario
type @ the definition of parameter type bindings is decomposed into an external com-
ponent and and internal component, paraeztsr(®) and paraintst(®) respectively.
The basis of the decomposition is different in this case. The basis of decomposition
for parasr(®) is information hiding.

There are some parameter roles that are used directly by the parent of a scenario
of type ®. There are other parameter roles that are secrets of scenarios of that type.

This decomposition is further refined to reflect the effects of child-acquired bindings.
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The internal bindings specified by parameter definitions are separated from those
which are to be acquired from a child scenario. The set of parameter type bindings,
paraintsr(®P) is divided into two subsets, definedparasr(®) and childparasy(®).
The parameter type bindings specified in paraeztsr(®) define the kinds of objects
which are presented as the external interface to a scenario of type ®. I.e., the objects
provided by a parent scenario as parameters for the authorization of a scenario of
type ® or those objects passed back to the parent as the scenario terminates. To
separate the external bindings acquired from the parent when a scenario of type ® is
authorized and those provided to the parent when the scenario terminates the set of
parameter type bindings, paraezisr is divided into two disjoint subsets, paraingr(®)
and paraoutsr(®). The actual objects which fill the parainsr(®) parameter roles
for an instance of a scenario are provided as before, by the parent at authorization
time. The actual objects which fill the paraoutsr(®) parameter roles are defined by

definedparas(®) at scenario termination time.

parainsT a function defining the in parameter type bindings
associated with a scenario type;
paraingr : ST — 2P7B, such that for
® € ST, parainsr(®) : Z = OT

paraoutsy a function defining the out parameter type bindings
associated with a scenario type;
paraoutgy : ST — 2P7B, such that for
® € ST, paraoutsr(®) : T — OT

definedparagr a function defining the internal parameter type
bindings associated with roles specified by defined
parameters; definedparasr : ST — 2F75, such that

for ® € ST, definedparasr(®) :Z — OT
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childparagr a function defining the internal parameter type
bindings associated with roles specified by terminating
child scenarios; childparasr : ST — 2P78, such that
for ® € 8T, childparasr(®) : Z — OT
parentacquiredparas a function defining the parameter bindings associated
with a scenario that are acquired from the scenario’s
parent; parentacquiredparas : S — 275, such that for
¢ € S, parentacquiredparas(¢) : Z — O
childacquiredparas a function defining the parameter bindings associated
with a scenario that are acquired from the scenario’s
children; childacquiredparas : S — 278, such that for
¢ € S, childacgquiredparas(¢) : T — O
for ® e 8T, ¢ € S:
paraeztsr(®) = paraingr(®) U paraoutsr(P)
paraintst(®) = definedparasr(®) U childparasr(®)
acquiredparas(¢) = childacquiredparas(¢)U
parentacquiredparas(p)
parainst(®) N pareoutsr(®) = {}
definedparast(®) N childparasr(®) = {}
childacquiredparas($) N parentacquiredparas(d) = {}

The relationships between the described parameter sets are illustrated in Fig-
ure 3.5. The diagram indicates the subset relationships and the identifier dependen-
cies between the sets. The subsets of the parasr(®) hierarchy specify the type of
objects which may participate in a scenario of type ®. This structure is static for
a system. Since the scenarios for a system describe all its permitted object inter-

actions, this hierarchy restricts the ways in which types of objects can interact in a
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given system. The subsets of the paras(¢) hierarchy provide a mechanism for model-
ing the relationships between an instance ¢ of a scenario of type ® and its parameter
object instances as a system evolves. An object parameter in ¢ bearing some specific
identifier (i.e. a member of the paras(¢$) hierarchy) may exist iff there exists in & an
object type parameter bearing the same identifier (7.e. a member of the parasr(®)
hierarchy). This is an identifier dependency. As always, the type of an object instance
in paras(¢$) must agree with the object type specified in parasr(®) for its role.

The identifier dependencies between parentacquiredparas($) and paraingr(®),
and between childacquiredparas(¢) and childparasr(®) indicate that they must have
the same sets of binding identifiers. I.e., a scenario acquires an object from its parent
for each of the bindings specified in parainsr(®) and a scenario acquires an object
from a child for each of the bindings specified in childparasr(®). The parentacquired-
paras(¢) bindings are made at authorization time and the childacquiredparas(®)
bindings are made as the scenario evolves and child scenarios terminate.

The identifier dependency between the set de finedparas(®) and the sets defined-
parasT(®) and paraoutsr(®) indicates that for every binding identifier in the union
of definedparasr(®) and paraoutsr(®) there must be a parameter definition with
the same identifier in definedparas(®) and vice versa.

The construction of scenario descriptors is modified to accommodate mappings for
both the parainsr parameters and the paraoutsr parameters of a new child scenario.
A scenario descriptor is now a 4-tuple. The first and last elements of the 4-tuple are
as before.

The set of identifier mappings provided as the second element of the tuple is the
paraingr parameter mapping. The mapping behaves as before. The set of identifier
pairs maps identifiers in the context of a parent scenario to identifiers in the context
of a child scenario being authorized, at the time the child scenario is being authorized.

New parameter bindings are created, which bind role identifiers for the child scenario



103

to the identified objects participating in the parent scenario. These new parameter
bindings become members of the parentacquiredparas function for the new child
scenario. Again, for a scenario descriptor defining a scenario of type ®, there must
be an identifier mapping provided for each identifier role defined in set parainsr(®).

The set of identifier mappings provided as the third element of a scenario descrip-
tor 4-tuple contains paraoutsr parameter mappings. These behave in the following
way. As before, the set of identifier pairs maps identifiers in the context of a parent
scenario to identifiers in the context of a child scenario. However, in this case the new
parameter bindings bind role identifiers of the parent scenario to objects participat-
ing in the child scenario. The bindings are created at the time the child terminates.
The newly created parameter bindings become members of the childacquiredparas
function for the parent scenario. For a scenario descriptor defining a new scenario of
type ®, there must be an identifier mapping provided for each identifier role defined
in set childparasr(®).

The following definition formalizes the construction of the modified scenario de-

scriptor.
SD Set of scenario descriptors, ST x 27*T x 2T*Z x 21

With these modifications to the modeling scheme, visibility of an object provided
by an ‘out’ parameter when a scenario terminates can be used by scenarios created
after that termination. The visibility of that object is also available to pass on to the
parent’s parent scenario by providing it again as an ‘out’ parameter.

The document release example as specified in Chapter 2 does not include a case
where a scenario acquires an object binding from a child. To illustrate such a case
the scenario type SdocRelease can be modified so that it provides an object binding
to its parent scenario. The object playing the role relAuth will now be provided as a

paraoutsr parameter. In the existing example there is already a parameter definition
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for this role because the object bound to this identifier is created by the scenario.
Because the object is currently an internal object for the scenario (hidden by the
scenario) the parameter type binding for this role is currently in de finedparasy. With
the proposed modification the object bound to the relAuth role will become available
to the parent (an external object). This is achieved by moving the parameter type
binding for this role to paraoutsr. In the example, scenario type SreleaseDecision
specifies the authorization of a scenario of type SdocRelease (i.e. it is a parent for
SdocRelease). With the proposed modification to the example, SreleaseDecision will
have to specify a mapping for a relAuth object in the paraoutsr parameter mappings
of its scenario descriptor for its SdocRelease child. A specification for the two scenario

types is as follows.

SreleaseDecision € ST
paraingr(Srelease Decision) =

{(reviewer, OpatentOfficer), (report, Odocument)}
childparasr(SreleaseDecision) = {(release Auth, Orelease Auth)}
childsr(SreleaseDecision) =

((SdocReview, {(reviewer, reviewer), (report, report)}, {}, False),

(SdocRelease, {(reviewer, reviewer), (report, report)},

{(release Auth, relAuth)}, False),
(SdocRevision, {(reviewer, reviewer), (report, report) }, {}, False))

ordersr(SreleaseDecision) = or

SdocRelease € ST
paraingr(SdocRelease) =

{(reviewer, OpatentOfficer), (report, Odocument)}
paraoutst(SdocRelease) = {(rel Auth, Orelease Auth)}
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de finedparasr(SdocRelease) = {(reportAuthor, Oscientist)}
de finedparas(SdocRelease) =
{(reportAuthor, report.author),
(rel Auth, create(Orelease Auth, {(report,relDoc)})) }
childsT(SdocRelease) =
((Pcreate, {(reviewer, sender), (rel Auth, receiver), (report, doc) },
{}, False),
(Prel Perm, {(reviewer, sender), (reportAuthor, recetver),
(rel Auth, authorization)}, {}, False),
(PrelDoc, {(reportAuthor, sender), (rel Auth, receiver)}, {}, False),
(Pread, {(rel Auth, sender), (report, receiver)}, {}, False))

ordersr(SdocRelease) = seq
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Chapter 4

SAFETY ANALYSIS

4.1 Introduction

In the safety analysis of a system model it is important to be able to determine
whether or not it is possible for a certain message to be authorized and in what order
it can be sent relative to other messages. The existence and ordering of messages
in the model can be analyzed by inspection of the scenario tree. This may not be
computationally feasible for large scenario trees but it can form the conceptual basis
of an analysis method. In any state the leaves of the tree will be either primitive
scenarios or scenarios which are authorized to perform some action. Child scenarios
are added to the childs sequence of the parent in order (denoted here as left to right)
as they are authorized. The intuition for examining message sequencing is to perform
a depth-first left-to-right search of the scenario tree. The order in which primitive
scenarios are discovered is the order of messages as the system evolves. This intuition
works well for scenarios with seq ordering. The definition of the message ordering
relation must be modified to capture the semantics of all three scenario ordering
properties (seg, or, and and).

The rest of this chapter starts with a definition of how security properties of
systems are modeled using scenario-based access control. The next section defines
the authorization properties for a specific evolution of system execution. Equivalence
will be defined for system states based on the authorization properties associated with
the states. It will be shown that for any system, there exists a maximal system state
that describes all possible authorizations that can be generated by the system and all

possible orderings. An algorithm is presented which provides for the construction of
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a scenario tree which is a maximal system state. Inspection of this maximal scenario

tree provides safety analysis for the system being modeled.

4.2 Modeling a System

Recall from the scenario modeling scheme that an evolution of execution for a system
depends on the authorization of scenarios. Each message between objects is autho-
rized by an instance of a primitive scenario type. These primitive scenario instances
are authorized as children to a parent scenario which specifies a context for their
interaction. The parent in turn is authorized as a child to another scenario; and so
on back to some initial scenario. When a parent scenario becomes authorized to cre-
ate a new scenario, this authorization is associated with a scenario descriptor. The
scenario descriptor specifies the type of the new scenario, parameter mappings from
the parent to the child, and whether or not there is concurrency. The new scenario is
then authorized to perform some action(s) as specified by its scenario ordering, and
its own set of scenario descriptors. As new scenarios are authorized they are added,
in order, to the childs sequence of the parent. Thus at any point in the evolution of
a system model, the scenarios form a tree structure.

The evolution of a system model is restricted by the security policy for the system
and the initial state of the model. A security policy, P, is defined by the sets OT,
and ST, and the functions parasr, definedparas, childsr, ordersr, and visor. The
security policy is static. It is defined only in terms of type and is independent of any
actual objects, messages, or scenarios in a specific instance of a system. Formally a

security policy is a 7-tuple.
P = (OT, ST, visor, parasr, definedparas, childst, ordersr)

For some security policy a protection state (or state) is defined by the membership
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of the sets S and @, and the functions specifying the attributes of subjects and objects

in those sets. Formally a protection state is a member of the set V, where
)4 set of states, O X 8 X 7o X Ts X visp X paras X childs X cong

The evolution of the system proceeds from an initial state with the occurrence
of security relevant actions. The security relevant actions defined for the modeling
scheme are the authorization of a new scenario, the authorization of a. message pass
between two specific objects, and the sending of a message. In modeling protection
state it is not necessary to model the three kinds of action explicitly. Protection state
can be modeled by considering the only authorization of new scenarios explicitly. The
effects of the other actions is captured implicitly.

Recall from the discussion in Section 3.2.4 that for access-control modeling pur-
poses, there is no loss in expressiveness in only considering primitive scenario types
and leaving the messages as implicit entities to be defined in the implementation of
the access-control mechanism. This can be done because the modeling scheme is con-
cerned with modeling protection state and not with modeling the actual execution
of a system. The actual ordering of the message events with respect to other events
in the evolution of an actual system is not relevant. What is relevant is the possible
ordering of the message events. The authorization properties defined in Section 4.3
model the ordering of the message events by considering when the associated primitive
scenario becomes authorized.

The occurrence of a scenario authorization moves the system from one state to
a new state. A scenario authorization involves the creation of a new scenario, and
possibly the creation of new objects as scenario parameters. The creation of scenarios
and objects adds members to the sets S and O, and adds new mappings to the

functions specifying the attributes of subjects and objects in those sets.
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The convention of superscripting a set or function identifier with a state will be
used to identify the evolution context being considered. For example, S9 and paral
signify the set S and the function paras in the states g and h respectively. State 0
is used to signify the initial state. Where there is no confusion S° may be used to
denote the initial scenario.

The initial state for the model of a system is defined by the initial membership of
the sets O and S, the type functions 7o and 75, and the functions paras and visg. In
the initial state there is one and only one member of §. This is the initial scenario for
the model. childs is initially null for the initial scenario and cong is defined as true.
Thus, a system model is an implementation of a security policy for some specific set

of objects involved in some initial scenario. Formally a system, ¥, is a 7-tuple.
T = (P,0%S8° 73, 73, paral, visd)

An evolution of system execution is represented by a sequence of system states.
There is a specific instance of a scenario tree associated with a system state. There-
fore, the evolution of the protection state of a system can thought of as an evolving
scenario tree. A scenario tree defines a history for a system in a specific state. The
evolutions of execution possible for a system, beginning at its initial state are its pos-
stble histories. A history captures all the actions that have taken place in the system
evolution. If a scenario or object creation action takes place as a result of a scenario
authorization it is said to be permitted. When a system state evolves such that all
scenario and object creations giving rise to the state are permitted, the state is said

to be a derivable state and the associated scenario tree a derivable scenario tree.

4.3 Authorization Properties

When considering what is permitted by a system, the kinds of messages that may be

authorized, and their order, must be determined. The message ordering relation for a
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scenario tree is a pre-order of the authorized messages defined by the tree. Messages
on a scenario tree are always associated with a primitive scenario. The authorization
properties of the tree can therefore be described by a pre-order on the primitive
scenarios present in the tree.

As described in the previous section, when seq orderings for scenario authoriza-
tion are considered, a depth-first left-to-right search produces an acceptable ordering.
This is because the childs sequence is defined be a left-to-right ordering of scenario
authorization. In the seq ordering one child scenario must terminate before the next
scenario is authorized. Recursively, the entire sub-tree of scenarios must therefore
have terminated before the next scenario is authorized.

This intuition does not hold for scenario trees with or and and scenario orderings
or with concurrent scenarios. In the case of and scenario orderings, all child scenarios
are authorized at the same time. It is not a requirement for this ordering that one
child scenario terminate before another may begin. This means that the messages
associated with the sub-tree of one child scenario do not necessarily precede messages
associated with the sub-tree of another child scenario. The situation is similar for
concurrent scenarios. The concurrent child scenario begins a new thread of scenario
authorization orderings that continues in parallel with the original thread of scenario
authorization orderings. So again, messages associated with the sub-tree of the child
scenario do not necessarily precede messages associated with the sub-tree of the parent
scenario after the action authorizing the child. The difference between and-ordered
scenarios and concurrent scenarios is that an and-ordered scenario is not able to
terminate until all its children have terminated, while in the case of a parent with
one or more concurrent children, the termination state of the children has no bearing
on the termination state of the parent. [I.e., the parent authorizes each child and
carries on with its specified ordering of actions without regard to the termination of

the concurrent child.
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The case for or scenario orderings is different. In this case the child scenarios of
the parent are mutually exclusive. Only one child scenario may generate messages so
the messages associated with the sub-tree of one child scenario are not comparable to
messages associated with the sub-tree of another child scenario. In actual derivable
scenario trees only one sub-tree can exist so it may not seem important to consider
how two mutually exclusive sub-trees are related. However, it is an advantage later to
be able to consider non-derivable scenario trees during analysis so the rules for such
associations are defined when considering authorization ordering.

The following definitions and rules describe the pre-order on permitted authoriza-

tions more formally. For a state h,

PA set of primitive scenarios permitted to be authorized by a
system, PA = {¢ € S*| ¢ is a primitive scenario}

R scenario pre-order relation on PA, R C PA x PA

For primitive scenarios ¢,% € PA, consider their respective paths through the
tree hierarchy to the tree root, S°. At some point the paths to root for ¢ and ¥ must
join. Say they join at some scenario o. @R denotes that the message associated

with ¢ may precede the message associated with .

1. If the scenario ordering of o is or and ¢ and % belong to sub-trees of different

children of o then ¢ and % are not comparable.
2. If the scenario ordering of o is and then ¢RyY and ¥y Re.

3. If the scenario ordering of o is seq then:
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FIGURE 4.1. Scenario ordering example

(a) ¢RY if for oy, a; € childs(o), ¢ belongs to the sub-tree rooted at scenario
o; and 1 belongs to the sub-tree rooted at scenario «;, and o; precedes «;
in childs(o);

(b) YR if for a4, ; € childs(o), ¢ belongs to the sub-tree rooted at scenario
o; and 1 belongs to the sub-tree rooted at scenario ¢;, and «; precedes o

in childs(o) and there is a concurrent scenario on the path to root from ¢

to o.

It is apparent that PA and R are monotonic with respect to a system history.
Scenarios are added to the scenario tree but are not removed.
As an example consider the scenario tree presented in Figure 4.1. In the example

primitive scenarios are denoted p? and non-primitive scenarios are denoted sj. The
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scenario ordering has been specified for non-primitive scenarios. s0 is the initial
scenario (root). The following are some of the authorization properties that apply
to this example. The scenarios pl0, pll, and p5 will always be the first primitive
scenarios authorized by the system and the authorizations will occur in that order.
These scenarios will always precede the scenarios associated with the sub-trees of
scenario s2 and s3. Scenario pl2 will always precede scenario p13. Scenario p10 will
always precede scenario pl2. All of these cases involve a seq ordering at the scenario
where the paths to root join, and a depth-first left-to-right ordering applies. In the
case of scenarios p7 and pl2 their paths to root join at scenario s2, which has a and
ordering. This means p7 and pl12 can come in either order with respect to each other.
The same applies for p7 and p13. In the case of p8 and pl4 their paths to root join at
scenario s3, which has an or ordering. In a derivable scenario tree p8 and pl4 could
not both occur because the permitted possible histories will allow only the actions
associated with either the sub-tree of p8 or the sub-tree of s9. Therefore scenarios p8
and pl4 are incomparable under the pre-order relation R.

If it was the case that s4 was a concurrent scenario then pl0 and pll may be
delayed for some arbitrary length of time. Therefore, this would allow p5 to proceed
before pl0 and pll. It is also possible in this case that pl0, or pl0 and pll could

occur before p5.

4.4 Safety Analysis
4.4.1 Scenario Equivalence

Consider the safety problem. The objective is to determine in a given situation
whether or not a subject can acquire a particular access right to an object. When
considering the safety problem in the context of scenario-based access-control models

the basic element of access control is based on a primitive scenario describing exactly
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one message pass. Therefore, a solution to the safety problem must identify the
primitive scenarios that may be generated as a system evolves. The safety question

can be formulated by the following definition.

Definition 1. The simple saftey question is defined as: for some system, ¥, ® € ST,
{01,09,...,0,} € O° is there a possible history such that there erists a state h, a

scenario ¢ and ¢ € PA®, where 75(¢) = @ and parentacquiredparas(¢) = {(idy,01),
(Z-d27 02)1 L] ('idna oﬂ.)}

If such a question can be answered it could be used to identify the occurrence
of a specific primitive scenario (i.e. authorization of a specific message type). The
sending and receiving objects of the message instance are specified by the scenario’s
parent-acquired parameter bindings (i.e. the objects bound to the identifiers sender
and receiver). All other parameters to the message that make it unique are also
specified by the object bindings.

For non-monotonic security policies the ordering of messages must also be con-
sidered. In such cases a version of the safety question which accounts for message

ordering can be formulated by the following definition.

Definition 2. The saftey question for non-monotonic security policies is defined as:
for some system, &, {®,¥} € ST, {01, 02,-.. ,0n, 0}, O5,... ,00,} € O is there a
possible history such that there erists a state h, scenarios ¢ and ¥, {p, v} € PA*,
and ¢R™p, where 75(¢) = ®, 15(x¢) = ¥ and parentacquiredparag(¢) = {(idy,01),
(ida, 02), ... , (idn, 0n) } and parentacquiredparag () =
{(idy, o), (id3, 05),... , (2dn,0m)}

Note that the specified parameters in both of these definitions are members of O°.

A safety question is formulated in terms of objects that exist in the initial state.
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Objects that may be created during the evolution of the system do not yet exist
and cannot be named. The types of objects that might be involved in system in-
teractions may be interesting but only O° objects can be specified for a particular
analysis.

Many different evolutions of the system are possible in which different objects are
created after the initial state. Similar scenarios can be repeated a number of times.
However, many of the states produced may agree on the existence and ordering of
messages with respect to how O° objects are involved.

For example, in the document release example an initial state might include an
Oscientist object, an Odocument object, and an OpatentOfficer object. The scientist
author is allowed to read then write to the document. Then the author makes a
decision whether to continue to edit the document or to forward the document for
review. The scenario creation and ordering constraints for the scenario types Sinitial,
SdocFEdit, and SforwardDecision allow an arbitrary number of creations of a SdocEdit
scenario instance (the scenario which authorizes the read and write messages) before
proceeding to document review. After the author has performed a read/write on the
document a few times any further instances of SdocEdit do not add any messages
that involve ©° objects in new or different ways. As well, similar kinds of messages
involving O° objects are not presented in a new order by the repeated scenario in-
stances. Therefore, only a limited number of instances of SdocEdit are interesting
from a safety analysis perspective.

Messages can be considered to be equivalent when reduced to their relationship
to OY objects. That is, they can be considered equivalent if they treat O° objects
in the same way. O-reducible equivalence will be defined for messages by defining
O-reducible equivalence on primitive scenarios. O-reducible equivalence for primitive
scenarios is subsumed by the definition of 0-reducible equivalence for scenarios in

general. 0-reducible equivalence will also be defined for other model constructions.
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Often when it is not confusing 0-reducible will be dropped and model constructions
will be referred to as being equivalent.

Before defining 0-reducible equivalence for scenarios it is necessary to define 0-
reducible equivalence for objects. The messages authorized by a scenario tree can
depend on the object visibilities of the objects participating in the scenarios. If
objects of the same type have the same direct and indirect visibility of @° objects
they are said to be 0-reducible equivalent.

The intuition behind object equivalence follows from the fact that object visibil-
ities are specified at object creation time. The visibilities therefore refer to objects
existing at the time of creation. The transitive visibility relationships for an object
therefore form a finite tree structure. If two objects of the same type have the same
visibility tree topology and the same O° objects occupying the same positions in their
respective trees, then the objects are 0-reducible equivalent. @° objects are trivially

equivalent to themselves. Object equivalence is formally defined as follows.

Definition 3. Two objects a and b are 0-reducible equivalent, written a =y b, iff

To(a) = 10(b) and either,
1. a,be O anda =10, or

2. a,b &€ O° and for each parameter binding (i,,c,) € viso(a), there exists a

parameter binding (iy, c3) € viso(b) such that i, =i, and ¢, =q Cb-

The definition of object equivalence is recursive. For any object the depth of the
recursion is finite. This can be proven inductively by noting that all objects are either

O° objects or are created during system evolution.

Lemma 4. For a system ¥, and any two objects a,b € O, the definition of a =¢ b is

finite.
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Proof. The fan out of any node in the visibility tree is finite because the size of
visor for any object type is defined to be finite. The proof of finite depth of recursion
of the definition is by induction on the number of object creations which have taken
place in the system history. The inductive hypothesis is that for any system state
in which n new objects have been created the lemma holds. The basis case holds
trivially. In a state in which the n + 1st object is created its equivalence to another
object is defined by determining an equivalence for the finite set of objects in its
visibility set, visp. These objects must have been created before the n + 1st object.
By the induction hypothesis the lemma holds for each of these objects. Therefore the
lemma holds for systems with n + 1 object creations. O

Now 0-reducible equivalence of scenarios can be defined. Scenarios are 0-reducible
equivalent iff they agree on type and their parameter bindings are equivalent. Scenario

equivalence is formally defined as follows.

Definition 5. Two scenarios ¢ and i are equivalent, written ¢ =y ¥, iff 75(¢) =
Ts() and for each parameter binding (iy,ays) € parag(p), there exists a parameter

binding (iy,ay) € parag(y) such that iy =iy and ap =p ay.

Given this definition, three useful properties of scenario equivalence are presented
as lemmas. The first property is that equivalent scenarios will produce equivalent
child scenarios. The child scenarios may evolve in different ways, but they will be
equivalent at the time of creation. This follows because by definition the construction
of child scenarios depends only upon the type of the parent scenario and the parent’s
parameter bindings. The property that equivalent scenarios will produce equivalent

child scenarios is proven for the following lemma.

Lemma 6. For a system X, and scenarios ¢ and i, if ¢ =o ¢ at the time of their

ith child creations, ¢' is the scenario produced using the ith scenario descriptor in
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childst(7s(9)), and ¢’ is the scenario produced using the ith scenario descriptor in

childsr(1s(¥)), then ¢ =o 9.

Proof. From the cquivalence of ¢ and ¥, 7s(@) = 75(¥). Therefore ¢ and ¥
share the ith scenario descriptor and 75(¢’') = 7s(¥'). Recall that pares(¢’) =
parentacquiredparas(¢’) U childacquiredparas(¢’) Ude finedparas(¢') and similarly
for paras(y’). Bindings in parentacquiredparas(¢’) and parentacquiredparas(y’)
are defined by identifier mappings in the shared scenario descriptor and the sets
paras(¢) and paras(y) respectively. By the equivalence of ¢ and v, if these map-
pings must generate bindings (i4,a4) € paras(¢’) and (iy,ay) € paras(y’), then
ip = iy — Gy =p Gy- At the time of creation of ¢’ and ¢/, childacquiredparas(¢’) =
childacquiredparas(y’) = {}. Since 715(¢") =7s5(¥’), definedparas(ts(¢’)) =
de finedparag(rs(¢')). Therefore, an object defined by a definedparas binding for
¢’ will be equivalent to an object defined for 7' using the same binding. This fol-
lows from parentacquiredparas(¢’) =y parentacquiredparag(y’) and Definition 3.
Therefore, the lemma holds. O

Scenarios can change state over time and with the change in state their equivalence
class may change. More precisely, the mapping specified by paras for a scenario may
change as child-acquired scenario bindings are added, mapping the scenario to a new
function. It can now be proven that it is possible for scenarios that are equivalent
upon creation to evolve in such a way that they remain equivalent. The property that

equivalent scenarios can evolve in equivalent ways is proven for the following lemma.

Lemma 7. For a system X, and scenarios ¢ and 1), where ¢ =y 1 at the time of their

creation, for any derivable state h there ezists a derivable state g such that ¢" =q 9.

Proof. The proof is by induction on the depth of the scenario sub-tree rooted

at ¢. The induction hypothesis is that for a derivable state h where the depth of
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the scenario sub-tree rooted at ¢ is n there exists a derivable state g such that for
any (%,a) € childacquiredpara’(¢) there exists (,a’) € childacquiredpara$ () and

= d’. The basis case for sub-tree depth of 0 holds trivially since there are no
children to contribute to childacquiredparas(¢$). Consider the case where sub-tree
depth equals n + 1. By Lemma 6, for any child scenario created by ¢ an equivalent
scenario can be created by ¥. By the induction hypothesis there exists a state g such
that these children have equivalent termination states. Therefore an equivalent child
acquired binding is available to % as required and the lemma holds. O

Another useful property associated with the equivalence of scenarios arises from
the observation that equivalent scenarios should have an equivalent set of possible
histories. By equivalent possible histories it is meant that it should be possible to
derive scenario sub-trees from equivalent scenarios such that the sub-trees rooted at
those scenarios have the same topology and equivalent scenarios at each position in
the sub-trees. The property that equivalent scenarios can evolve equivalent sub-trees

is proven for the following lemma.

Lemma 8. For a system ¥, and scenarios ¢ and v, if ¢ =¢ ¥, and ¢’ is a scenario in
a derivable sub-tree rooted at ¢, then for the sequence (¢, wr,wa, ... ,Wn, ') describing
the path in the sub-tree from ¢' to @, it is possible to derive a state such that there exists
a sub-tree of 1 which contains a path defined by the sequence (¢, w},ws, ... ,wh,,¥’)

and w; Sgwi foralliel...n, and ¢ =o Y'.

Proof. The proof is by induction on the length of the sequence describing the
path in the sub-tree from ¢’ to ¢. The induction hypothesis is that the lemma holds
for sequences of length n. The basis case for sequences of length 0 holds trivially.
Consider the case where the length of the sequence is n+ 1. The sequence would have
the form, (@, w;,ws, ... ,wn_1,¢’). From the equivalence of ¢ and %, Lemma 6, and

Lemma 7, a sceanrio wj is derivable such that wi is a child of % and w] =¢ w;. By
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the induction hypothesis the required sequence (wj,ws, ... ,w,_;,%’) is derivable and
the lemma holds. O
0-reducibility and equivalence are also defined for states. 0-reducibility is defined

with respect to the permitted authorization pre-order on PA.

Definition 9. A state h is 0-reducible to a state g, written h <, g, iff

1. for all primitive scenarios ¢ € PAR, there ezists ¢' € PA? such that ¢ =¢ ¢’

and
2. for all $RMp, there erists ¢' R9Y' such that ¢ =¢ ¢' and ¥ =o V'.

Two states g and h are O-reducible equivalent, written g =q h, iff h <o g and
g<oh.

Note that equivalent states would generate equivalent messages and the possible

orderings of equivalent messages with respect to each other would be the same.

4.4.2 Maximal States

Recall that PA and R are monotonic. Scenarios trees grow from an initial scenario.
Branches are added as scenario authorization actions occur, moving the system from
state to state. Branches are never removed. This is why a history for the system is
associated with a specific scenario tree.

For some system ¥, if there exist histories with derivable scenario trees represented
by states g and h, such that the scenario tree for state h is an extension of the scenario
tree for state g through a series of permitted scenario authorizations, it can be said
that h can be derived from g. h can be derived from g will be written g — h.

It would be useful for safety analysis if there existed some derivable mazimal
state such that for any further messages generated by the system there are already

equivalent messages in PA and equivalent pairs in R.
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Definition 10. For a system X, m is a mazimal state iff m is derivable and for
all derivable states h such that h — m and all derivable states g such that m — g,

h <¢m and g <o m.

For any system there may be more than one such maximal state. All maximal
states are not necessarily equivalent. The existence of maximal states is proven by

the following lemma.

Lemma 11. For a system ¥, for every derivable state h there exists a mazimal state

m such that h — m.

Proof. Let S* be the set of states derivable from A. For the case in which S* = {},
h is a maximal state derivable from itself in zero steps. The number of equivalence
classes of states in S is finite. This is because the number of equivalence classes of
primitive scenarios in PA is finite since there are a finite number of scenario types
and O° objects. There are a finite number of possible orderings (for a representative
member of each of these scenario equivalence classes) that can be represented in R.
Therefore, for a state h there are a finite number of equivalence classes of derivable
states. Let T" be a set of states such that there is a representative member from each
of the equivalence classes of S*. If for every g € T*, g <o h, then h is a maximal
state. Otherwise there exists some state g € T" such that g £o h. Consider evolving
the system to state g. Form S¢ and T similarly to S* and T*. S9 C S*. By the
monotonicity of PA any state in 79 previously 0-reducible to A is O-reducible to g.
Since the number of elements in 79 must be finite the system can continue to be
evolved in a similar way until all derivable equivalence classes can be reduced. This
state will be a maximal state for A. OO

It is apparent that for any system state, there may be one or more non-equivalent

maximal states. This is because as a scenario tree for a system evolves some scenarios
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may have orderings of type or. These scenarios are decision making scenarios and the
resulting possibilities for scenario tree evolution are mutually exclusivel Therefore,
as a system evolves, the set of derivable states it can reach may decrease. Different
decisions at a scenario with an or ordering may lead to different sets of reachable states
and therefore to different maximal states which are not equivalent. For example,
consider a system in a state for which it is possible to authorize a scenario with an or
ordering. When this scenario becomes authorized it is possible for further evolution of
the system to continue with the actions associated with any one of the child scenarios.
In this state there is a possible history associated with each one of the child scenarios.
Once an action is taken on one of these possible history paths the other paths are
no longer possible. I.e., some of the possible histories of the previous state are no
longer possible. A different maximal state may have been associated with each of
the mutually exclusive possible histories. Once the system begins to evolve along one
of these paths the maximal states associated with the other possible histories may
no longer be reachable. Ie., some kinds of messages, or message orderings, may no
longer be possible to generate.

It would be more useful for safety analysis if there was a system mazimal state
which would describe all possible occurrences of messages and their respective order-
ings. Inspection of PA and R for such a state would yield an answer to the safety
problem. However, it seems that such a state would not be derivable if there are
scenarios with or orderings.

Consider construction of a scenario tree for a state in the normal way but allowing
authorization of scenarios which are normally mutually exclusive by way of an or
ordering. Such a state would not be derivable but the set PA would include all
messages possible on either mutually exclusive branch of the tree. The message
ordering relation R for this new scenario tree would not contain any orderings which

were not possible in some derivable scenario tree. This is because, by the definition
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of R, messages on the mutually exclusive branches are not comparable and would not
contribute new pairs to the relation.

It is possible that such a non-derivable state could be constructed such that all
maximal states for a system could be 0-reducible to that state. The existence of such

a state is proven for the following theorem.

Theorem 12. For a system X, there is a state m*, which may not be derivable, such

that:

1. there exists ¢',vp' € PA™ and ¢’ R™ %' where ¢' =¢ ¢ and ' = ¥ if there
ezists ¢, € PA™ and ¢R™Y for some mazimal state m, and

2. there exists ¢',¢' € PA™ and ¢'R™ o' only if there exists ¢, € PA™ and

PR™p for some mazimal state m, where ¢ =q ¢' and oy =y ¥'.

Proof. The proof is by induction over the number of equivalence classes of maximal
states in a system. The basis case is one equivalence class of maximal states and in
this case m* can be any member of the equivalence class. Consider a set 7" which
contains one member from each equivalence class. Assume the theorem holds for T
of size n and consider T of size n + 1. T = S + {r} where [S| is n. By the induction
hypothesis there is a state, m, which satisfies the theorem for S. Create a new state,
m' by superimposing the scenario tree for m and the tree for state r. ILe., add to
the tree for m any branches which exist in » but do not already exist in m. Adding
such branches means that where there is a path between a scenario and root in the
tree for r, equivalent scenarios corresponding to that path are created in the tree for
scenario m if they do not already exist. This is possible by Lemma 8. For the if
case, the induction step must show that for m (or r) , such that ¢,9 € PA™ (or
€ PA") and ¢R™ (or ¢R™%), there exists ¢', ¢’ € PA™ and ¢R™ ) where ¢ = ¢'

and ¢ =g 9'. This is so because, by the construction of m’' and the definition of PA
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and R, m' and m (or r) have equivalent paths joining at equivalent scenarios. For
the only-if case of the induction step it must be shown that for ¢',74’ € PA™* and
¢’ R™*1)/ there exist an m such that @,9 € PA™ and ¢R™ such that ¢ = ¢' and
1 = ¢'. Again, this case follows by the construction rules for scenario trees and the
definitions of PA and R. Consider the paths from ¢’ and ' to root. If ¢’ R™* 9’ exists
then the paths are not mutually exclusive and it is possible to construct a derivable
state h with equivalent paths. Let m be a maximal state for h. By the definition of

maximal state, Definition 10, ¢ and ¥ exist in m as required. O

Corollary 13. State m* as defined in Theorem 12 is a system mazimal state such

that for all mazimal states of the system, m, m <o m*.

For a system there may be more than one system maximal state but it is evident

from Corollary 13 that all such states are equivalent.

4.4.3 Unfolded State

Theorem 12 proves the existence of system maximal states but does not provide
an algorithm for construction of such a state. To proceed with safety analysis, an
algorithm will be proposed to construct a characteristic state for a system under
analysis. It will then be proven that such a state produced by the algorithm is
equivalent to the system maximal states for the system. Safety analysis can then be
conducted by inspecting this state. The analysis strategy presented here owes much
to Sandhu’s work on the Schematic Protection Model [San88]. In SPM, analysis
proceeds using an unfolding algorithm which creates a representative of any subject
that might exist in the system. The mechanism for transfer of access rights is applied
iteratively wherever allowed until the systems stabilizes. This results in a worst case

which identifies what access rights a subject might possibly get. This analysis must



125

assume monotonic security policies as rights are continually added to the system to
reach the worst case, a maximal state.

The strategy here is different in that the unfolding algorithm is not creating repre-
sentative subjects but instead creates representative scenarios. As system execution
evolves, scenarios are created but are never destroyed. Scenarios that are not currently
active are just past history. History cannot be destroyed. Therefore, the unfolding
algorithm is monotonic in scenario creation over time. Each scenario represents an
ordering of child scenarios. These scenarios are by definition only authorized at a cer-
tain time during the evolution of the parent scenario. The set of currently authorized
scenarios is non-monotonic over system execution. This change in focus allows the
use of an analysis strategy similar to that used with SPM to be used with systems
with non-monotonic security policies.

The possible histories for actual systems can grow arbitrarily large. To provide
efficient analysis an algorithm is needed to provide a method for the construction of
an unfolded state. The algorithm should be designed to limit the complexity of the
scenario tree that is produced for the purpose of safety analysis.

The intuition behind the construction of the unfolding algorithm is based on the
property that equivalent scenarios may result in equivalent scenario trees (Lemma 8).
If this is the case then recursive occurrences of equivalent scenarios may lead to
redundancies in the unfolded state tree. I.e., the redundant portions of the tree do
not contribute to PA or R and need not be represented. Consider the following cases.

In the first case consider the occurrence of more than two equivalent concurrent
scenarios on a path to root. Note that a message associated with a primitive scenario
in a sub-tree rooted at a concurrent scenario can occur before or after any message
associated with a primitive scenario in a sub-tree rooted at another concurrent sce-
nario. If there are already two such equivalent scenarios on a path to root, another

occurrence of a scenario from this equivalence class will not add to PA or R. This is
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because the sub-trees rooted at these two scenarios will act as surrogates for sub-trees
rooted at any arrangement of preceding and following equivalent scenarios along a
path to root. By the concurrency of the sub-trees, scenarios from the equivalence
classes of primitive scenarios represented in the sub-trees can come in any order with
respect to each other. Further occurrences of equivalent sub-trees would not add any
new orderings.

In the second case consider the occurrence of more than two equivalent non-
concurrent scenarios on a path to root. Consider specifically the case where there
are no intervening concurrent scenarios between the occurrences of the equivalent
scenarios. If there are already two such equivalent scenarios on a path to root, another
occurrence of a scenario from this equivalence class will not add to PA or R. Again,
this is because the sub-trees rooted at these two scenarios will act as surrogates for
sub-trees rooted at any arrangement of preceding and following equivalent scenarios
along a path to root unbroken by a concurrent scenario.

The following definition describes a fully unfolded state that captures all possible

scenario equivalence classes and eliminates redundant, recursive scenarios.

Definition 14. For a system %, the fully unfolded state u is defined by applying the
unfolding algorithm to the initial scenario, S°. The unfolding algorithm is defined by
the following pseudo code:

unfold(S9)
Where:
unfold(Sperent : Scenario)
begin
for(each scenario descriptor, d, in childsy(7s(Sparent)) in turn)
begin

create a child, Sgpi14, using d and paras(Sparent)



127

if(cons(Schiig) and 3 scenarios ¢, ¥ on the path to root for Suiq
s.t. @ =¢ ¥ =¢ Scnita and cons($) and cons(z))) then
continue
elseif (—cons(Schia) and 3 scenarios ¢, 1 on the path to the last concurrent

scenario s.t. ¢ =p ¥ =¢ Schig) then

continue
else
unfold(Scniia)
end
end

The algorithm halts the evolution of a branch of the scenario tree when recurring

scenarios are detected. This ensures termination of the algorithm.
Lemma 15. The construction of definition 14 terminates.

Proof. The scenarios created by the application of the algorithm form a tree rooted
at the initial scenario S°. By the definitions of childs and scenario authorization each
scenario can only have a finite number of children. At the most, a scenario can have
a child corresponding to each of the scenario descriptors specified by the function
childsr for that type of scenario. The evolution of tree branches is halted whenever
more than two concurrent equivalent scenarios are on the path to root or if more
than two non-concurrent equivalent scenarios are on the path to the last concurrent
scenario. There are a finite number of equivalence classes of equivalent scenarios since
there is a finite number of scenario types and a finite number of objects in @°. The
length of every path in the construction must therefore be finite. O

An important property of state u is that it contains all possible sequences of non-

repeating scenarios (up to the point of scenario equivalence). This property becomes
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important later in proving that u is a system maximal state. The property of u

containing all possible scenario sequences is proven for the following lemma.

Lemma 16. For a system X, let u be the state produced by definition 14. For a
sequence of scenarios, (41, @2, - - - , dn), that defines a path through the scenario tree for
some state h, such that there are no equivalent scenarios in the sequence; there exists

a sequence of scenarios, (¢}, dh, ... ,d,), that defines a path through the scenario tree

for u, where ¢, =¢ ¢}, ¢2 =0 ¢5,.-., én =0 ..

Proof. Consider a point in the execution of the algorithm where evolution beyond
a scenario ¢ is halted because it is equivalent to some scenario ¥ on the path to root
for ¢. By lemma 7, for any sub-tree rooted at ¢ an equivalent sub-tree is also possible
for 7. By definition 14, for each scenario all possible children are authorized (up to the
point of repetition) in the unfolding of state beyond 1. Therefore, any path sequence
created by unfolding the state beyond ¢ (again up to the point of repetition) has an
equivalent path sequence beginning at . ILe., further repetitions do not produce any
new equivalence classes of non-repeating sequences, and state u contains all possible
equivalence classes of non-repeating sequences. State h and state u are both evolved
from S°. Therefore, for any non-repeating sequence in h an equivalent sequence can

be found in ». O

4.4.4 Proof of u as a Maximal State

Now, it must be proven that a fully unfolded state u produced by the algorithm of
definition 14 yields a state equivalent to a system maximal state. That is, it must be
proven both that a state h, which is a system maximal state, is 0-reducible to u and

that u is O-reducible to such an A.
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Lemma 17. For o system 3, let u be the state produced by definition 14. For any

state h, which is a system mazimal state, h <y u.
Proof. 1t must be proven that:
1. for all § € PA", there exists ¢’ € PA* such that ¢ =¢ ¢’ and
2. for all pR"p, there exists ¢' R*y)’ such that ¢ =¢ ¢’ and ¥ = ¥'.

Part 1 follows directly from lemma 16. u has equivalent sequences for all non-
repeating sequences that are present in h. u must then have equivalent scenarios for
all scenarios that are present in A.

The proof for part 2 is more involved. All elements of PA and R in a system
maximal state can be produced by some derivable state. It will suffice then to prove
part 2 true for any derivable state ~A. Proof is by induction on the number of scenario
authorization operations resulting in state h. The induction hypothesis is that part
2 holds for n scenario authorizations. The basis holds for the initial state and zero
scenario authorization operations. Consider a state, h, with n + 1 scenario autho-
rizations. S"* = 89 U {¢}, where state g has n authorizations and ¢ is the n + 1%
scenario authorized. By the induction hypothesis, part 2 holds for R and there-
fore for any pair in R* which does not involve scenario ¢. If ¢ is not a primitive
scenario then R* = RY9 and the induction step holds. If ¢ is a primitive scenario
consider 9 € PA9. Now for the induction step it must be shown that part 2 holds
for pRMp or Yy R"¢ if they exist (those pairs involving the new scenario). Let the
paths to root for ¢ and % join at scenario o. On the paths from ¢ and % to ¢ and on
the path to root from o there may be zero or more equivalent scenarios. Construct
new paths for these three path segments by eliminating the segments of the paths
between concurrent equivalent scenarics. For example, consider a path sequence

from o to @, (0, A1, ... 3 An, @1 Y1s - 5 Yes 02,81, --. ,Om, @), where 6; =q 6> and 6,
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and 0, are concurrent. By lemma 8, it is possible to create a derivable scenario se-
quence (o, A1,... ,An, 01,81,...,0,,,¢"), where &] = 6,,...,8], =¢ 0m and ¢" =) ¢.
Continue to eliminate segments of paths between concurrent equivalent scenarios un-
til no such segments remain. Apply the same technique to eliminate segments of

paths between non-concurrent equivalent scenarios that lie between any two concur-

rent scenarios. I.e., for a path sequence (0, A, ..., An, s Ang1s -+ 3 Ams 01, Y10+ -- 5 Y45
02,61, -.. ,0k, W,0k41,---,01,¢), where u and w are concurrent, form a new sequence
(G ALy oo Any By Angry ooy Amy B0, 600,00, 6%, W0k, ..., 07, @”). Again, continue to

eliminate segments until no such segments remain. In a similar way create new path
sequences between o and 1", and S° and ¢”. By lemma 8 it is possible to construct
equivalent path sequences between ¢” and ", and ¢” and %", where ¢" =, ¢",
and ¥ =y ¢". The resulting paths to root for ¢ and " have no more than two
concurrent scenarios from any equivalence class. As well there will be no more than
one scenario from any equivalence class between two concurrent scenarios. By the
construction of definition 14 and lemma 16 there must be equivalent paths to root
from ¢' and ¢’ in the scenario tree for u, where o =¢ ¢’ =¢ 0", ¢ =¢ ¢' =¢ ¢, and
P =g ¥ =¢ ¥". Therefore by the definition of R¥, ¢’ R*y’ or ¢/ R*¢' will exist as

required. O

Lemma 18. For a system X, let u be the state produced by definition 14. For any

state h, which is a system mazimal state, u <y h.
Proof. It must be proven that:
1. for all ¢' € PA*, there exists ¢ € PA" such that ¢ =g ¢’ and
2. for all ¢' R¥1)/, there exists ¢R"1) such that ¢ =; ¢’ and ¥ =¢ 9.

To prove part 1 consider a primitive scenario ¢’ € PA*. By definition 14 the path

to root for ¢’ is derivable. Therefore, there exists a state A’ for which the scenario tree
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contains an equivalent path. From lemma 11 and theorem 12 there exists a system
maximal state h such that h’ <y h. Therefore, there exists a scenario ¢ € PA" as
required.

To prove part 2 consider a pair (¢',1’') € R*. The paths to root for ¢’ and %' join
at scenario o’. By definition 14 the paths to root for ¢’ and 7’ are derivable. By the
definition of R, ordersr(7s(c)) # or. Therefore, the branch paths to ¢’ and 7' are
not mutually exclusive. A derivable state A’ can be constructed such that its scenario
tree has paths equivalent to these two. The new tree will contain scenarios ¢, ¥ and
o such that ¢ =¢ ¢', ¥ =¢ ¥’ and 0 = ¢’, and the paths to root for ¢ and % join at
o. From lemma 11 and theorem 12 there exists a system maximal state i such that

h' <q h. Therefore, there exists a scenario pair (¢, ) € R* as required. O

Theorem 19. For a system X, let u be the state produced by definition 14. For any

state h, which is a system mazimal state, u = h.

Proof. The proof follows directly from lemmas 17 and 18, and definition 9 for

state equivalence. O

4.4.5 Complexity of Safety Analysis

The fully unfolded state u is a system maximal state. The safety question formulated
by definition 2 can be answered by constructing v and inspecting the authorization
properties PA* and R*. This method will determine whether it is possible for two
scenarios ¢ and 1 (or their equivalents) to exist and if the ordering ¢ R is possible.
The corresponding paths in the scenario tree for state u (the analysis tree) also provide
a history of system events that make such an occurrence possible.

The complexity of performing such an analysis depends on the complexity of the
two main operations, construction of the analysis tree and inspection of the analysis

tree.
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The unfolding algorithm described by definition 14 that produces the analysis tree
is controlled by the procedure unfold(). The procedure has a main loop that creates a
child for each scenario descriptor belonging to the childsr set defined for the scenario
passed as a parameter to the procedure. The body of this loop performs two searches
along the path to root for the newly created child scenario and may recursively invoke
itself on the new scenario. The searches along the paths to root for repetitions of
scenario equivalence classes can be done in constant time by maintaining a hash of
the equivalence classes along the current path to root. Due to the recursive procedure
call, the main loop of the procedure will be executed once for each scenario created
by the construction of the analysis tree. This is in the order of [S|. |S] is constrained
by the number of child scenarios that can be created by each parent scenario (the
fan-out at each node of the tree) and the depth of the paths in the tree (controlled by
the parent-child relationships defined by childsr and the conditions controlling the
recursion of the procedure).

The fan-out for a particular scenario, ¢, is defined by the cardinality of
childst(7s(¢)). This is finite by definition but is otherwise unconstrained by the
modeling scheme. However, it is not normal for human designers to work with sce-
narios that have more than a few child scenarios.

The depth of the paths in the analysis tree are controlled by the parent-child
scenario-type-to-scenario-type relationships defined statically by the scenario descrip-
tors in childsy. These relationships control how the analysis tree unfolds. The depth
of the tree in bounded by the termination of evolution paths associated with the
detection of repeated scenario equivalence classes on a path back through the tree
to root. An upper bound for tree depth depends on the (finite) number of equiva-
lence classes for scenarios possible in the system. The number of possible equivalence
classes is characterized by the number of scenario types defined for a system, and the

number of ©@° objects which can act as parent acquired parameters to the scenarios.
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The number of parent acquired parameters is defined by the modeling scheme to
be finite but is otherwise unconstrained. There can be at the most two concurrent
equivalent scenarios on a path to root and a maximum of two non-concurrent equiv-
alent scenarios between any two concurrent scenarios on a path to root. Therefore
the maximum path length (tree depth) is (2 X Teeguiv)?, Where nggiy is the number of
possible equivalence classes for scenarios in a system.

The worst case analysis tree can be approximated by a k-ary tree. The number of
internal nodes in a complete k-ary tree, where all nodes have degree (fan-out) &, and
the depth of the tree is h is (k* — 1)/(k — 1). Clearly, the worst case upper bound
is intractable even for small systems. However, it is expected that in actual systems
the number of parent-child scena.rio-type—to—scenﬁrio—type relationships defined by
chzldsr will be very much smaller than the complete connectivity implied by the worst
case. This is the case for inter-scenario relationships in contemporary object-oriented
analysis and design. There may be a large class of systems for which production of
the analysis tree is tractable. The examples presented in Chapter 5 are representative
of some interesting classes of system for which analysis is tractable.

The second of the two main operations that contribute to the complexity of per-
forming safety analysis is the inspection of the analysis tree. In formulating a safety
question in the format of definition 2 two scenarios, ¢ and % are defined. Occurrences
of scenarios ¢’ and v’ are identified in u, where ¢' =¢ ¢ and 9’ =y ¥. The joining
scenario on the paths to root for each such ¢’ and ¢ is a scenario o’. ordersr(rs(c”))
and childs(o) are inspected to determine if the conditions are met for ¢'R*7)’. A full
walk of an analysis tree of n scenarios (|S*|) visits each scenario twice and requires
two scenario comparisons for each of the n scenarios (once each for ¢ and 7). This
complexity may be reduced by using an indexing scheme at the time of analysis tree
creation. For a search that produces [ scenarios ¢’ and m scenarios 7/, there are [ xm

checks required to determine if there exists a pair ¢' R*%¢’. For each of these cases the
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paths to root must be searched to find the appropriate ¢’. This would require in the
worst case h comparisons, where 4 is the depth of the paths to root. The complexity
of the inspection operation is in the order of 2n + [ X m x h. The size of [, m, and
h will be small relative to n. For an analysis tree that has tractable construction the

inspection of the tree is also tractable.
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Chapter 5

WORKED EXAMPLES

5.1 Introduction

This chapter presents a set of examples. The SBAC modeling scheme is applied to
specific kinds of problems. The first four examples are taken from the literature. They
provide a small set of interesting security policies that have been used in other work to
demonstrate the ability of a modeling scheme to express useful system models. This
is also the purpose of including such examples here. The last example is an SBAC
adaptation of an object-oriented analysis for a military message system. The original
non-SBAC model was done by a graduate student as part of the requirement for
completion of a course in object-oriented analysis and design. This model provides an
example of SBAC being used in conjunction with contemporary software engineering
analysis and design techniques. This example also provides an example of a model of
a larger system, and an example of how the safety analysis scheme performs with a
larger size model.

A design capture and analysis tool was implemented to explore the definition of
SBAC models and the construction of analysis trees for specific system instances of a
model. The tool can be used to specify a security model directly using a windowing
interface or it can accept a specially marked-up Rational Rose model file as input.
This tool was used in the development of some of the examples presented. The last

section of the chapter describes the modeling tool and some of the results achieved.
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5.2 Document Release Example

The document release example was presented in Section 2.3.3 (¢f. Sandhu, [SG94]).
Recall that a scientist prepares a paper for publication. Before the scientist is allowed
to publish the paper it must be cleared for publication by a patent officer. The patent
officer can authorize the paper for publication or she can return it to the scientist for
revision. The scientist is initially able to modify the content of the paper but loses
that right while the paper is under review. The scientist is also not able to alter the
content of a paper authorized for publication by the patent officer.

An SBAC analysis specification for this problem was presented in Chapter 2,
Figures 2.3 to 2.10. The work flow of a document begins with a period allowing the
scientist to work on the document, moves to a review period by the patent officer, and
then back to the scientist, either for publication or rework. The first three scenario
types presented in the set of figures are: Sinitial, SdocEdit, and SforwardDecision.
These control the scientist’s initial editing of the document and decision to forward
the document for review. Sinitial is a sequential scenario and specifies that the sci-
entist be allowed to edit the document. This is authorized by an SdocEdit scenario,
which in turn authorizes a read of the document followed by a write (primitive sce-
narios). When an edit is complete Sinitial authorizes the scientist to make a decision
about forwarding the document. I e., authorization of a SforwardDecision scenario.
An SforwardDecision scenario authorizes both a recursive return to editing by autho-
rization of another Sinitial scenario, and the forwarding of the document for review
by authorization of an SdocForward scenario. The SforwardDecistion scenario has an
or ordering so the actions involved in these two child scenarios are mutually exclu-
sive. Given this set of scenarios the scientist can continue to edit the document an
arbitrary number of times before finally making the decision to forward it for review.

The next scenario type presented is SdocForward in Figure 2.6. This scenario type
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specifies a message pass from the scientist to his assigned patent officer requesting
a review of the document. Following this message a scenario of type SdocReview is
authorized, Figure 2.7. This scenario allows the patent officer to read the document
and then authorizes a scenario of type SreleaseDecision, Figure 2.8. The SreleaseDe-
cision scenario has an or ordering. This allows the patent officer to make one of three
choices. She can continue to review the document (recursive authorization of another
SdocReview scenario), or she can approve the document for release, or she can return
it to the scientist for revision (authorization of scenarios of types SdocRelease and
SdocRevision respectively). An SdocRelease scenario, Figure 2.9 creates a new release
authorization object and passes it back to the scientist. The scientist can use this
object to indirectly publish the document. An SdocRevision scenario, Figure 2.10
passes the document back to the scientist and recursively starts the whole editing
and review process over again by authorizing another Sinitial scenario.

The only actions permitted by the system are those authorized by scenario in-
stances. The example has been designed such that the scientist can either submit
the document for review or continue to edit. One action prohibits the other. The
scientist gets the authorization to edit back only if the document is returned for revi-
sion. If the document is approved for release, the scientist has no direct access to the
document to edit. This is because there is no way to generate an SdocEdit scenario
after the document has been approved for release. The only authorized action is to
release the document for publication. Note that the role parameters for a scenario
cannot be changed after the scenario is authorized. Therefore, the construction of
scenario type SdocRelease ensures that the creation of the release authorization binds
the approved document to the release authorization, and that the document release

authorization is returned to the author of that document.
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5.3 Project Management Example

The project management example is an example of role-based access control using
hierarchical roles. Role-based access-control models are characterized by the definition
of SBAC roles. Such roles were described in Section 2.2.18 and are separate from the
concept of scenario/object roles associated with the scenario and object bindings
defined for SBAC modeling in Chapter 3. In RBAC models a role is associated with
a set of permissions. Users are associated with roles at the discretion of the system
administrator. Users perform all activities within the scope of a session. A session
may have one or more of the user’s permitted roles active at any time.

The project management example (c¢f. [San98]) considers a system where there
are multiple people working together on a project. There are a number of shared
objects the different team members will interact with in different ways. The kinds of
permissions the team members have for the shared objects can be broken down into
three groups that can be associated with three different roles. Permissions needed by
all team members can be held by a role project member. There are also roles for test
engineer and programmer. An administrative role, project supervisor should inherit
all permissions available for the shared project objects. This role hierarchy is a partial
order and is depicted in Figure 5.1.

The permissions associated with roles are statically assigned and represent ab-
stract authorizations. Typically, the permissions allow a subject to execute a specific
program on a specific type of data item. It seems natural to model such permissions
as an authorization to invoke an interface method of an abstract data type, ¢.e. an
object. In this example permissions will be authorizations for primitive scenarios.

An RBAC role will be represented as a scenario type. Scenarios are defined by the
modeling scheme to authorize a number of other scenarios. In this case a scenario rep-

resenting an RBAC role authorizes a number of primitive scenarios that represent the
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project supervisor

test engineer programmer

project member

FIGURE 5.1. Project Management Role Hierarchy
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FIGURE 5.5. Scenario Type SprojectSupervisor

permissions associated with the RBAC role. A scenario representing an RBAC role
has an or ordering. This allows all the permissions in a role to be authorized simul-
taneously, as is normal in RBAC. Roles may be arranged in hierarchies by including
one RBAC role scenario type as a child of another. For example, see Figures 5.2
to Figures 5.5. The scenario type SprojectMember specifies that the role user can
invoke operation3() on object2 and and operation5() on object3. The object roles is
present here only as a mechanism to provide visibility of the objects under access
control. Scenario types StestEngineer and Sprogrammer also specify operations that
a role user can invoke. These are different operations that are reserved for users who
are acting as test engineers or programmers respectively. These scenario types also
specify the authorization of a child scenario of type SprojectMember. The inclusion of
this child makes the permissions speciﬁéd for all project members available to users
acting in the test engineer or programmer role. The scenario type SprojectSupervisor
provides the role user with all available permissions by authorizing children of types

StestEngineer and Sprogrammer.
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An active role also has associated with it a role regenerator scenario. When any
one of the primitive scenarios representing an RBAC role permission is terminated
(i.e. the permission is used) all the RBAC role scenarios in the hierarchy terminate
because of the or scenario ordering specified for the scenario types. It is normal
for a user to have all the permissions associated with a role for as long as the role is
active in a session. Therefore, the role hierarchy needs to be regenerated to restore the
permissions after one is used. Consider the scenario type SprojSuperRegen specified in
Figure 5.6. This scenario type has a seq ordering. The first child scenario authorized is
an RBAC role scenario (an SprojectSupervisorscenario in this case). If a permission is
used some place in this role hierarchy the SprojectSupervisor scenario terminates and
the SprojSuperRegen scenario recursively authorizes a new SprojSuperRegen instance,
which restores the role permissions. For each role that a user may directly assume, a
corresponding role regenerator is specified.

A session is managed in this example by a session controller object and set of
role initiator scenario types. There is one role initiator for each RBAC role that a

user may directly assume. A user controls what roles are active by sending mes-
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sages to a session controller. An activate message is sent when the user wants to
make a role active. Each of these messages, which activate different roles, is autho-
rized by a different role initiator. The role initiator is a scenario type with a seq
ordering. When an initiation message is sent, the authorization for that message is
consumed and a role regenerator scenario for the associated role becomes authorized.
For example, see Figure 5.7. This scenario type activates the SprojectSuperuvisor role.
When the user sends an activateProjectSupervisor() message to the sessionController
the SprojSuperlInitiator scenario authorizes a SprojSuperRegen scenario that provides
the required permissions.

The mappings from users to roles are specified by a role selector scenario type de-
fined for each user. A role selector scenario authorizes a role initiator child scenario for
each one of the roles permitted for the associated user. The role selector has an and
scenario ordering. This means all the role initiators associated with the role selector
are authorized at the same time. A role is not active until the activation message for
its role initiator occurs. The recursive nature of the role regenerators authorized by

role initiators means that the role initiators will never terminate. Therefore, a user’s
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role selector scenario is specified in this example to be a concurrent scenario. This is
so that the scenario that spawns the role selector is not dependent on the selector’s
termination before it is able to carry on with other authorizations. Figure 5.8 illus-
trates a role selector for some user, Bob. Suppose Bob is authorized by his company
to act as both the project supervisor and as a programmer on the project. He is
also a member of the project team. Note that a scenario of type SprojSuperInitia-
tor, which was defined above, is a child of a SbobsRoleSelector. Scenarios of type
SprogrammerlInitiator and SprojectMemberInitiator are also specified as children and
would be defined similarly.

This example provides a model for a specific role-based security policy. The ex-
ample also provides a general strategy for approaching RBAC style systems using an
SBAC modeling scheme. The role hierarchy lattice can be captured by using hierar-
chical parent-child relationships between scenarios that are modeling role permissions.
A security administrator can specify a set of user types, roles based on the set of user
types, roles an individual user is permitted to activate, and permissions associated
with each role. Although this example did not consider deactivation of roles in a
user’s session, it is easy to include such a requirement as part of the role regeneration

mechanism.

5.4 Sales-order Processing Example

The purpose of this example is to demonstrate the use of SBAC to model task-based
access control. A version of the classic sales-order processing example is presented
in [TS94] to illustrate the modeling and management of task-based authorizations.
One of the primary goals of scenario-based access control is to provide efficient safety
analysis for systems modeling legitimate use policies. Legitimate-use is also a moti-

vation for TBAC. A version of the sales-order processing example is used here as a
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demonstration of SBAC being used to capture task-based access-control requirements.

Recall from Section 2.2.19 that the fundamental abstraction is an authorization-
step. An authorization-step represents a primitive authorization processing step and
is the analog of a single act of granting a signature in a paper-based system. A
permission in TBAC is an element of P C S x O X A x U x AS, where S is the
set of subjects, O is the set of objects, A is the set of actions or access rights,
U is a set of usage and validity counts, and AS is the set of authorization-steps.
Permissions are associated with exactly one instance of an authorization-step. An
instance of an authorization-step is associated with exactly one instance of a task.
Each authorization-step maintains a protection state that is the set of permissions
currently valid for that authorization-step.

In this example primitive scenarios are used to model TBAC permissions. Scenar-
ios are used to model authorization-steps. Tasks are groupings of authorization-steps
and are also modeled in SBAC by scenarios. The task grouping relationship is mod-
eled by the scenario parent-child relationship. A primitive scenario specifies a sender,
a receiver, and a message type. This corresponds to the S, O, and A components of
a TBAC permission. An SBAC primitive scenario authorizes a single message pass,
which can be considered its usage and validity count. SBAC primitive scenarios are
associated with the scenario that created them and provide an authorization for a
message pass in the context of that scenario. This models the relationship between a
TBAC permission and its associated authorization-step.

TBAC provides for existential, temporal and concurrency dependencies between
authorization-steps. There are related dependencies explicitly specified in SBAC
models. An existential dependency in TBAC specifies that the change in state of
one authorization-step implies a change in state of some other authorization-step. In
SBAC, the creation of a scenario can imply the creation of one or more of its children.

As well, the termination of a child scenario can imply a change of state in its parent,
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t.e. the creation of another child. A temporal dependency in TBAC specifies that a
state transition for one authorization-step necessarily occurs before some state transi-
tion for some other authorization-step. Temporal dependencies in SBAC are specified
by the order of occurrence of scenario descriptors in childsr and the scenario ordering
specified by ordergr. Temporal dependencies between primitive scenarios (permis-
sions) can be discerned by inspection of the authorization properties defined by the
pre-order R on the set PA. Concurrency is modeled in SBAC by specifying that a
child scenario is concurrent to its parent.

The sales-order processing example presented here is composed of five main autho-
rization tasks: sale-terms, credit-terms, goods-removal, shipping-terms, and billing.
These tasks track and control the progress of a merchandise order through the busi-
ness structure of a vendor. There are one or more authorization-steps associated with
each task. It is important that the steps occur in the correct order and that only
certain specific people authorize the progress of an order through the various steps of
the business process. An SBAC model for each of the five tasks will be presented in
turn.

The task sale-terms is modeled by the scenario type SsaleTerms. There are three
authorization-steps associated with this task. They are the creation of a new sales
order, negotiation and authorization of the price, and negotiation and authorization
of the delivery date. The steps must occur in this order. See Figure 5.9. The
authorization-steps are modeled here as primitive scenarios. I.e., in this case there is
only one permission associated with the authorization-step, so it is not modeled as a
separate scenario type containing a single primitive scenario. This can be thought of
as an abstract representation of the authorization-step. If more detail is provided as
the model is refined, these primitive scenarios may become complex and hide a number
of permissions (or sub-authorizations) as required. Each of these authorization-steps

is authorized by a sales clerk. Only the clerk associated with this task may make the
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FIGURE 5.9. Scenario Type SsaleTerms

appropriate authorization. The last child specified is a non-primitive scenario of type
ScreditTerms. This is an authorization for the next task, credit-terms.

The task credit-terms is modeled by the scenario type ScreditTerms, Figure 5.10.
The task is composed of four authorization-steps. First, the sales clerk who prepared
the order is authorized to forward the order to a credit clerk for credit checking.
Next, the credit clerk is authorized to read and then perform a credit check on the
client. Notice that PperformCreditCheck is a primitive scenario (it is not marked with
a <scenario> tag). The credit clerk is sending a message to itself. This is an abstract
operation and a likely candidate for further elaboration. The fourth authorization-
step is modeled by a child of scenario type ScreditCheck and its children. ScreditCheck
has an or scenario ordering. This is used to capture the non-determinism involved in
the decision by the credit clerk to grant or not to grant credit to the customer. This
would presumably be based on the customer’s credit rating and account history which

cannot be known until run-time. ScreditCheck results in two authorizations; however,
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only one will be actioned. Effectively the credit clerk is authorized to either grant
credit or refuse credit, but not both. The associated children are scenarios of types
ScreditPassed and ScreditFailed, Figures 5.12 and 5.13. In the case of ScreditPassed
the sales order is annotated as passed and the next task, goods-removal, becomes
authorized. In the case of ScreditFailed, the sales order is annotated as failed and
the scenario terminates. This causes its parents to terminate as well, backing up the
scenario tree to the original SsaleTerms scenario. This happens because there are no
more children to create in accordance with their scenario descriptor sets and scenario
orderings. This effectively revokes all authorizations for the sales order. As the model
is presented, the sales order is not able to participate in any further scenarios. The
failed credit step stops any other processing of the sales order.

Note that the visibility for the credit clerk in this scenario type is provided by an
object visibility from the sales clerk, i.e. via a defined parameter. This is a simple
mechanism to illustrate this example. A more complex mechanism such as the role-
based access-control scheme in the previous example is possible.

The task goods-removal is modeled by the scenario type SgoodsRemouval, Fig-
ure 5.14, and its children. The assumption in this example is that there are two
warehouses associated with the merchandise vendor. For any sales order some prod-
uct may come from each warehouse. The purpose of scenario type SgoodsRemowval is
to create two sub-tasks to handle authorizations at the two warehouses. The autho-
rizations at a warehouse are controlled by scenarios of type Swarehouse, Figure 5.15.
Two instantiations of this scenario type are created for each sales order, one for each
warehouse. The difference between the two instantiations is the warehouse manager
provided as parameter to the scenario. The task is composed of three authorization-
steps. Each Swarehouse scenario authorizes the credit clerk to forward the sales order
to the warehouse manager. The warehouse manager is then permitted to read the

sales order. The last authorization-step allows the warehouse manager to check the
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inventory of the warehouse and fill the order. This authorization-step is modeled by
scenarios of type SgoodsAvailable, Figure 5.16. Scenario type SgoodsAwvailable has an
or scenario ordering to account for the non-deterministic possibilities of goods being
available to fill the order, and goods being temporarily unavailable to fill the order
(backordered). The warehouse manager is authorized to fill the order or place the or-
der on backorder, but cannot perform both actions. The associated child scenarios are
SfillOrder and SgoodsBackorder, Figures 5.17 and 5.18. Scenarios of type SfillOrder
authorize the warehouse manager to unstock the goods from the warehouse inventory,
and annotate the sales order as having been filled. The last child specified is a non-
primitive scenario of type SshippingTerms. This is an authorization for the next task,
shipping-terms. Scenarios of type SgoodsBackorder authorize the warehouse manager
to annotate the sales order as having backordered goods. At some point the goods
will become available and a scenario of type SfillOrder will be created. Both the case
that goods are immediately available and the case that goods are backordered lead
eventually to the creation of a SfillOrder scenario, which terminates with a scenario

authorizing the next task, shipping-terms.
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The task shipping-terms is modeled by the scenario type SshippingTerms, Fig-
ure 5.19. This task is a straight forward set of authorization-steps that allow the
warehouse manager to forward a sales order for which goods have been allocated to
a shipping clerk. The shipping clerk can read the sales order, create a shipping slip
for this portion of the order, and authorize insurance approval and carrier approval.
These authorizations are to be carried out in this order. The last child specified is a
non-primitive scenario of type Sbilling. This is an authorization for the next and last
task, billing.

Billing is modeled by the scenario type Sbhilling, Figure 5.20. Again this is a
straightforward task. The first authorization-step allows the shipping clerk to forward
the shipping slip to the billing clerk. The shipping slip provides visibility to the
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associated sales order. The billing clerk is authorized to read both and then to create
an invoice corresponding to the shipment. The billing clerk is then authorized to send
the invoice to the customer. This is the last step in this task. The scenario type does
not authorize any other tasks so it terminates. This causes its parents to terminate
as well, backing back up the scenario tree to the original SsaleTerms scenario. This
is because there are no more children to create in accordance with their scenario
descriptor sets and scenario orderings. This effectively revokes all authorizations for
the sales order. As the model is presented, the sales order is not able to participate
in any further scenarios. This represents the completion of a successful sales order in
this example.

This sales processing system provides an example of a task-based authorization
scheme modeled using SBAC. The example illustrates control over the order of autho-
rizations, control over the type of user and specific user that can authorize a step in
the sales process, and branching exceptional case processing (e.g. failed credit terms,
backorders). Composite authorizations are also supported by nested scenarios. The

example exhibits all the fundamental requirements for TBAC;.

5.5 BLP Example

The Bell and LaPadula model will only be treated briefly here. SBAC was designed
primarily to provide a modeling scheme for legitimate use but is essentially policy
neutral. BLP was designed primarily to provide a modeling scheme for confidentiality.
BLP inherently models one way information flow on a classification-clearance lattice.
However, it is possible to model BLP style lattice-based policies using SBAC. Detailed
models will not be presented here, but brief sketches of how BLP can be realized by

SBAC will be illustrated.
BLP with tranquility is defined in the literature to be BLP where classifications
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of objects and clearances of users cannot be changed once they have been assigned.
L e., security labels (MAC labels) are fixed. There is a strong correlation between
tranquility and the strong typing defined for SBAC. The relationship between strong
typing and MAC labeling has been previously explored in [SG94]. The strategy is
to provide a type associated with each security level. Objects have interface opera-
tions corresponding to the basic BLP rights, i.e. read, write, append, and execute.
Scenarios can be defined that provide authorization for senders (BLP subjects) of
the appropriate clearance level (as defined by the lattice) to invoke one of the basic
interface operations of a receiver (BLP object). Where an access is prohibited by
the lattice, no scenario is defined. That is, scenarios are only defined such that the
simple security property and *-property hold. Accesses not defined by a scenario are
prohibited by SBAC.

Alternatively, Sandu shows in [San98] that RBAC is general enough to implement
lattice-based models, such as BLP. RBAC can be used to implement static policies
based on confidentiality lattices, policies based on Biba style integrity lattices, and
Brewer and Nash style Chinese wall policies. It has been demonstrated that SBAC
can be used to model RBAC, which is general enough to support these policies.

5.6 Battlefield Information System Example

The last example presented in this chapter is an SBAC adaptation of an object-
oriented analysis for a military message system. The original non-SBAC model
([Cos98]) was done by a graduate student as part of the requirement for completion of
a course in object-oriented analysis and design, which was taught by the author. The
system requirement for the Battlefield Information System (BIS) is to support the
electronic dissemination of tactical military message traffic. This traffic is currently

handled primarily by voice radio networks and transcription to and from a standard-
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ized set of paper message forms. The system will permit units to compose and send
messages to other units, view messages, and to receive messages. Messages will be in
the standard format specified in Canadian Army publications. The graduate student
completed a requirement specification for the system.

This model provides an example of SBAC being used in conjunction with con-
temporary software engineering analysis and design techniques. The student used
object-oriented analysis methods and captured his design using UML [RJB98] as an
OO modeling language. This model was then modified by the author of this disser-
tation to include the additional information required to complete an SBAC model of
the system requirement specification.

The BIS provides an example of a model of a larger system and an example of how
the safety analysis scheme performs with a larger size model. By ‘larger’ it is meant
here that the Battlefield Information System example is larger than the pedagogical
examples presented earlier in the chapter. It represents a simple requirement speci-
fication for a system with a real requirement. The BIS model contains 90 primitive
scenarios and 58 complex scenarios, so its security policy, P, is about an order of
magnitude larger than the policy for the Document Release example.

The scope of the Battlefield Information System can be briefly illustrated by
presenting its use cases. Use cases are used to model the interactions or dialog a user
has with a system. They define the functional capabilities a system should have, from

the viewpoint of the user. The following list describes the use cases for BIS.

Initialize system The system is initialized on startup. All messages, codes, users,
and logs are retrieved from backup storage and stored in the BIS system data

structures.

Login-logout Users must log in to start using the message system. A record of

valid users and passwords is kept, and the User/Administrator/Security Officer
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provided login name and password is verified against this list. Users may logout
when they are finished. This does not shut the system down but only means that
a valid user must login before the system may be used again. Login attempts,
successful and not, are recorded in the system log. Logouts are recorded in the
system log. Before completing any requested action from any user the BIS must

first verify the type of user that is logged in to see if it is a valid request.

Compose new message A user is able to compose a message and save it for later
transmission. Message format will be chosen from a message in the prototype
message list. A new message is created from the prototype and placed in the
draft message list. Default values may be preset for some fields of the prototype
message by the system administrator.

Send message A user is able to send one or more of the current messages in the
list of draft messages. All mandatory fields will be filled in before the message
is sent. The message will be tagged as transmitted. All messages must be

encrypted before being transmitted.

Receive message A message arrives on the network and becomes a system object.

The received message is added to the list of received messages.

View message A user is able to view any message in the system currently held at
his node, i.e. a message from the received message list, sent message list, draft
message list, or the prototype message list. The user will not be able to make

changes to a message while it is being viewed.

Edit message A user is able to edit any message in the draft message list. At the
end of each edit, when complete, a message remains as a draft message on the

draft message list.
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View message log A user is able to view the message log. A user is not allowed to

make any changes to the log.

View system log The administrator is able to view the system log but may not
make any changes to it.

Set message defaults The administrator is able to edit any message in the proto-
type message list. When complete the message remains as a prototype message

on the prototype message list.

Add-remove user The administrator is able to add new users to the system, and

remove users from the system.

View user The administrator is able to view a list of the users permitted to use the

system.

Add-remove code The Security officer may add and delete message encryption

codes.
View codes The security officer may view the list of message encryption codes.

Backup system The administrator can backup all system messages, codes, users,
and logs to backup storage. On shutdown the system automatically performs a

backup.

To separate the capabilities of the various kinds of user, the general strategy for
elaborating the Login-logout use case is to use roles. The mechanism used in this
example to separate roles is similar to that presented for the Project Management
example in Section 5.3. In this example a user logging into the system must select a
single role (corresponding to User, Administrator, or Security Officer) which will be

active for the login session. At the time of role selection the user would be challenged
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for an ID and password. In the role-based access-control specification for the Project
Management example, the roles authorized primitive scenarios, which were used to
invoke specialized operations on data objects. This provided an implementation for
RBAC style permissions. In this example, the roles authorize a specific set of non-
primitive scenarios. These scenarios are more than specialized operations on data
objects. They define complex interactions between a number of system objects. The
scenarios authorized by a role correspond to the use cases permitted for that role. The
use cases are tasks that involve a specific set of object interactions, which must be
processed in a specific order. The scenario type that defines the role usually specifies
the authorization of a number of child scenarios. The scenario types of these child
scenarios specify sub-tasks associated with the use case. Together, this set of scenario
types elaborates a use case. For example, the View message use case is composed of
five scenario types that permit the user to select one of the message lists and one of
the messages on that list for viewing. The Login-logout use case itself is composed
of fifteen scenario types that permit the user to select a role, select a task from those
permitted for a role, regenerate the set of task permissions when a task is completed,
and allow the user to logout from the system.

Most of the original object-oriented design for the BIS is preserved when SBAC
modeling is applied to the system. The decomposition of the functional requirement
into its use cases is essentially unchanged. The logical flow of the main scenarios
that elaborate the use cases is for the most part unchanged. The original scenarios
have been decomposed in many cases to provide more rigor in the description of the
ordering of messages. Formal detail describing the relationship between scenarios has
been added as it is not a part of the standard object-oriented analysis method.

There are some specific places were changes are required to accommodate the
SBAC modeling. The original design uses polymorphism and object sub-typing rela-
tionships. This is to be expected iz OO analysis, but object sub-typing relationships
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are not supportied by the current version of SBAC. Objects in the SBAC modeling
scheme described require that an object has one fixed object type. The parame-
ter binding mechanisms do not allow sub-type substitutions. Similarly changes were
needed to accormmodate parameterized types (sometimes called templates or gener-
ics). In such cases a scenario mechanism has been repeated for the individual types of
objects in the sub-type relationship. In some cases the analysis has been made more
abstract to submnerge the detail requiring sub-types in the original.

Modeling thiis larger system exposed some areas where the expressiveness of the
SBAC modeling technique seems weak. OO analysis and design models often make
use of indirection in handling object visibility. The relationships between objects are
allowed to changge during the execution of the system. For example, in some scenarios
a single message viewer object can be made to display different messages by changing
a viewer object visibility role from one message to another. In the SBAC modeling
scheme, object visibilities are defined at the time of creation and are fixed. This
leads to some d.ifficulty in expressing object visibility through indirection. The same
situation is encountered when using lists of objects, where the contents of the list
may grow or ch.ange. In some cases, a work around is possible by regenerating a new
scenario in which one of the roles is played by a different object. In other cases, a
new object is created which acts as a surrogate for the original, except that one of
the object visibsility roles is played by a different object.

Analysis for- this larger model was tractable and the results are presented in the

next section.

5.7 SBAC Model Capture and Analysis Tool

To support the investigation of scenario-based access-control modeling, a model cap-

ture and analysis tool has been constructed. The tool is a feasibility demonstrator



164

used to support the research. The tool can be used in conjunction with an object-
oriented analysis or design process to capture an SBAC security model.

The tool provides a menu driven, multi-window interface that can be used to
capture all elements defined in the modeling scheme for modeling a static security
policy, P, and an initial state. Therefore, a complete model captured by the tool
models a system, 3.

The tool also produces an analysis tree for the modeled system. The creation of an
analysis tree provides metric information about the topology of the tree. There is also
a rudimentary tree browser that provides the user with a visual representation of the
tree. The analysis portion of the tool was developed to provide metric information
about the size of analysis trees. The purpose of the metrics is to provide some
empirical investigation of the tractability of generating analysis trees. Presently, the
tool does not capture the parameters of a safety question nor does it perform a
search on an analysis tree to answer a safety question. These are straightforward
modifications to the tool.

The user can use the tool in a standalone mode to develop and analyze SBAC
models. The tool can also be used in conjunction with the Rational Rose [Rat98|
modeling tool. The user can provide additional SBAC annotations to a UML model
as he is using Rose. The resulting Rose model file can be imported by the SBAC tool.
A complete static security policy, P, can be captured this way. The SBAC tool can
then be used to define an initial state and generate an analysis tree. An imported

model can also be displayed and modified using the SBAC tool interface.

5.7.1 Specification and Implementation of the SBAC Tool

The scope of the SBAC model capture and analysis tool can be briefly illustrated

by presenting its use cases. Use cases are used to model the interactions or dialog
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a user has with a system. They define the functional capabilities a system should
have, from the viewpoint of the user. The following list describes the use cases for
the SBAC tool. Each use case specifies a specific requirement for the tool from the
user’s perspective. These use cases were used to drive the development of the SBAC

model capture and analysis tool.

Specify Security Policy To specify the system security policy the user shall be able

to provide the modeling information for each of the following model components:

e object types
e object visibilities
e scenario types
e scenario parameter type bindings, including:
— paraingr
- paraoutsr
— definedparasrt
— childparasr
— definedparag

e scenario descriptors

The user shall interact with a set of window-based forms to provide the modeling
information. When data is present in the system model it shall be displayed to

the user as a set of choices in a list or pop-up box (e.g. object types, scenario

types, etc.).

Parse Rose Model The user shall be able to populate the security model by spec-
ifying a Rose model file for parsing. The tool shall read and parse the file to
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identify and load the model components. This is an alternative method for

specifying the system security policy.

Browse Security Policy The user shall be able to pick a scenario type from the
list of scenario types in the model. This scenario type and all of its associated
components (e.g. parameters, scenario descriptors, ordering, etc.) shall be dis-
played. The user shall be able to pick an object type from the list of object
types in the model. This object type and all of its associated components (eg.
visibilities, etc.) shall be displayed. While browsing a scenario type or object
type the user shall be able to select the name of another scenario type or object
type being presented. The user shall then be able to request that the specifica-
tion for the selected model component be displayed concurrently with the first

specification.

Specify Initial State To specify the system initial state the user will provide the
modeling information for each of the following model components:
e initial objects and their types
e initial object visibilities
e the initial scenario and its type
e the parent-acquired parameter bindings for the initial scenario
The user shall interact with a set of window-based forms to provide the modeling

information. When data is already in the system model it shall be presented to

the user as a set of choices in a list or pop-up box (e.g. object types, scenario

types, etc.).

Browse Initial State The user shall be able to choose to display the initial scenario.

The scenario and all of its associated components (e.g. para, order, etc.) shall
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be displayed. The user shall be able to pick an object from the list of objects
in the model. This object and all of its associated components (eg. visibilities,
etc.) shall be displayed. While browsing the initial scenario or an initial object
the user shall be able to select the name of another scenario type, object type,
or object being presented. The user shall then be able to request that the

specification for the selected model component be displayed.

Generate Analysis Tree When requested, the tool shall generate the fully un-
folded state from the current system security policy and initial state. The
SBAC unfolding algorithm shall be used. A visual indication (heartbeat) shall
be displayed to the user to indicate that the program is working and has not
halted. This heartbeat might take the form of a running count of the number

of scenarios generated.

Browse Analysis Tree The tool shall provide a graphical representation of the
analysis tree. The user shall be able to expand or collapse branches of the

tree by selecting a tree node with the mouse pointer.

The tool interface windows present existing model components in lists, and pro-
vide visual representations of the specific model components and their parameters.
The user can edit the model using text fields, action buttons, pick lists, and menu
selections.

The tool is implemented in Java 1.1.7 and Swing 1.0.3. The implementation is
decomposed into 191 classes. There is a Rational Rose UML model for the imple-
mented design. The tool implementation includes approximately 16 K-lines of source

code.
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5.7.2 Results of Model Analysis

The SBAC tool was used to capture security models for the examples presented earlier
in the chapter. Specifically, the tool was used with the document release, project
management, sales-order processing, and battlefield information system examples.
The Rational Rose tool [Rat98] was used with the SBAC tool to develop the examples.
The message sequence diagrams included in this chapter and in Chapter 2 are copied
from the Rose models. The specially annotated Rose models provide the complete
security policy for the examples. The examples were imported into the SBAC tool and
initial states were defined in order to specify a complete system model for analysis.
The initial states for the example systems were chosen such that the resulting
analysis tree exercised all of the scenario types specified for the example. In the case
of the BIS example two different initial states are presented. In the first, BIS #1, the
system is allowed to initialize itself. In this case the model creates all of the system
objects, ¢.e. there are no O° objects. This models the system reinitializing itself from
stored state information. In this case the current state of all the message lists, codes,
etc. comes from recovering their state from secondary storage. The modeled system
in BIS #1 is set up to recover two messages in each message list, two codes in the
code list, and two users in the user list. The analysis of this model exercises the
state recovery mechanism, which is useful, but it does not provide much room for
formulating a safety question based on O° objects. The second BIS model, BIS #2,
provides an initial state in which O° objects are specified for each of the lists (three
objects per list). This provides a basis for formulating safety questions. In this case
the initial scenario specified for the model is a scenario that occurs after the system
initialization. I.e., the model begins analysis in the middle of system execution. This
choice of initial scenario allows the security modeler to isolate a portion of the system

for detailed analysis.
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TABLE 5.1. SBAC Analysis Results
Example Name [ST,| [ST.] [0° [(S*] Am ha km ko [S*/|ST|
8

Doc. Release 9 3 88| 12 | 8.1 411.9 5.2
Proj. Mgmt. 8 9 11 38 7152 4125 2.2
Sales-order 23 12 6 8 | 11 |85| 613.5 2.5
BIS #1 90 58 0|1325| 12 (94| 13 {27 8.9
BIS #2 90 58 47 581 | 13 (88| 11| 3.3 3.9

Table 5.1 presents the results of the modeling and analysis of the example systems.
For each of the systems, the number of primitive scenario types (|STp|), and the
number of complex scenario types (|ST|) in the static policy are presented in the
table in order to provide an indication of the relative size and complexity of the
model. The table also presents the number of objects specified by the initial state
(|O°)). The analysis results presented include the size of the analysis tree (|S*|), the
maximum and average path depth in the tree (h,, and h,), and the maximum and
average fan-out of the tree nodes (k,, and k,). A ratio of analysis tree size (|S*|) to
the number of scenario types specified for the model (|ST|) is also presented in the
table. This ratio is included to provided an indication of the effect of model size and
complexity on the size of the resulting analysis tree.

This small set of examples provides some encouragement for the tractability of
SBAC analysis. The size of the analysis trees is quite manageable in all of the exam-
ples presented here. This is much betiter than the theoretical worst case complexity.
As discussed in Section 4.4.5, the worst case complexity for generation of the analysis
tree is in the order O(2""), where n is [ST|. The time complexity for generation
of the tree has a linear relationship to tree size. With this complexity, even the
smallest of the examples here is intractable in the worst case and would produce an
unmanageable tree. The actual results here exhibit tree sizes that are quite manage-
able, and therefore also have efficient running times for tree generation. This result

might be expected considering that the human designers that fashion a system use
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object-oriented decomposition of the system requirements as a mechanism to control
the complexity of the design. The standard approach is to capture these ideas in-
formally or semi-formally in an object-oriented design notation such as UML. The
object-oriented decomposition and object interaction scenarios the designers produce
are organized with the purpose of restricting the complexity of the system design so
that the designers can understand the system, communicate the design to others, and
develop a understanding of the execution properties of the system. The designers
tend to keep the relationships between their object interaction scenarios sparse in
order to restrict the complexity of the design. SBAC formalizes these relationships
by statically defining scenario-type-to-scenario-type relationships using scenario de-
scriptors in childsr. The sparse inter-scenario type relationships greatly reduce the
analysis tree growth when compared to the worst case.

These empirical results do not provide a proof of tractability for SBAC modeling
in general, but it is expected that there is a large class of systems for which analysis

based on the unfolding algorithm is tractable.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Introduction

The first part of this chapter presents some brief comparisons between the SBAC
modeling scheme and other models in the literature. A comparison with the Typed
Access Matrix approach [San92] and the Transformation Models [SG94] is presented
because the techniques used in these models provide a foundation and inspiration for
SBAC. There are also comparisons made between Clark-Wilson [CW87], RBAC and
TBAC style modeling and SBAC. These comparisons are made because, like SBAC,
these modeling schemes also address commercial integrity and legitimate-use policies.
The similarities between SBAC scenarios and message sequence charts is also briefly
discussed. By design, SBAC is closely related to OO modeling techniques. Message
sequence charts and message sequence diagrams have been used by the OO community
to capture object interactions. The discussion addresses why these are not felt to be
adequate by themselves for expression of scenario specifications in SBAC.

The next section of the chapter discusses the advantages of SBAC modeling and
its relevance to security modeling and to information system modeling in general.
This is followed by an examination of some areas for future work, including direct
extensions of the work presented and applications to related areas.

The final section of the chapter presents a summary of the research work and the

conclusions.
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6.2 Comparisons
6.2.1 A Comparison to TAM and TRM

The Typed Access Matrix approach [San92] and the Transformation Models [SG94]
use strong typing (protection types) to specify static security policies for a system.
This is a form of mandatory access control (MAC). Protection types are specified for
subjects and objects. The commands that are able to modify the security state of the
system require that type checking be done on all parameters. The immutability of
protection types once subjects and object have been created, and the type checking on
commands provide enforcement of the static policy. SBAC makes no differentiation
between subjects and objects. Object types are used for the same purpose in SBAC
as they are in the earlier modeling schemes, i.e. to specify static security policies
for a system. Security state in a system changes as scenarios are authorized and
terminated. Object and scenario types in SBAC are immutable. Type checking is
applied to scenario parameters to provide enforcement of the static policy. The main
difference between the earlier models and SBAC is that SBAC also includes an aspect
of history checking to influence changes in security state. In TAM and TRM a change
in security state is predicated upon the current set of access rights. In SBAC this is
true also; an authorization is needed to perform a security relevant action. In SBAC
however, an authorization is part of a scenario tree. The scenario tree provides a
context for the authorization. The existence of an authorization by itself does not
lead to any other authorization being possible. The authorization in the context of
a scenario leads to other authorizations being possible. The same authorization can
lead to different changes in security state in the context of different scenarios. Thus,
history is important. To decide what is possible given a certain set of authorizations
(access rights), the system must take into account how it arrived at the current state,

i.e. what scenarios are currently active.
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As are TAM models, SBAC models are expressive enough to specify multi-parent
creation of objects. This is because the creation of a new object may have any
number of other objects as parameters. Additionally, when a new object is created,
other objects may immediately have permission to send it messages. The ability to
express multi-parent creation allows SBAC to express polices like ORCON, which
seem to require multi-parent creation.

One of the most important contrasts to make between SBAC and TAM is in their
respective analysis schemes. Monotonic-TAM and its predecessor, the Schematic Pro-
tection Model (SPM), use an unfolding algorithm to construct a maximal state. The
unfolding technique in these models is applied to subject creation and restrictions
are applied to the subject-type-to-subject-type creation function to ensure that the
resulting graph size is tractable. Subjects in the graph act as surrogates for all other
subjects of the same type that may be in similar circumstances with respect to the
protection state. The strategy in SBAC is similar but the unfolding algorithm does
not create representative subjects; instead, it creates representative scenarios. Sce-
narios that are not currently active are past history, but are not destroyed. Scenario
authorization is monotonic over time. The set of currently authorized scenarios is
non-monotonic over time. This change in focus allows the use of an analysis strategy
similar to that used with TAM and SPM to be used with systems with non-monotonic

security policies.

6.2.2 A Comparison to Clark-Wilson

Clark-Wilson security models [CW87] identify certain objects as Constrained Data
Items (CDIs). Access to these objects is provided solely through Transformation
Procedures (TPs). SBAC is object-based. Objects are instances of abstract data
types. As such all objects can be thought to be CDIs, and interface operations for
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the objects to be TPs. In Clark-Wilson, TPs are defined to operate on a specific set
of CDI types. In SBAC, interface operations are specified for an object type.

SBAC differs from Clark-Wilson in that Clark-Wilson does not constrain the type
of the subject accessing a TP. SBAC does provide such type constraints. Also, Clark-
Wilson does not specify when TPs become permitted for a subject and in what order
they can become permitted. Such an ordering specification is explicit in SBAC models

and is considered to be an essential aspect of modeling legitimate use.

6.2.3 A Comparison to RBAC

Recall from Section 2.2.18 that a role is a semantic construct around which access-
control policy is formulated. In an RBAC policy, users are assigned to roles and
permissions/rights are assigned to roles. Role authorizations are granted to users, or
groups of users, based on the activities they are allowed to perform on system data.
The Project Management Example presented in Section 5.3 is an example of SBAC
being used to express a role-based security policy. A role-based policy also underlies
the security policy of the Battlefield Information System Example, Section 5.6. These
examples exhibit the basic requirements of models of type RBAC,;. They provide
support for user to RBAC role mappings, for RBAC role to permission mappings, and
for user sessions. The Project Management Example also illustrates how hierarchical
RBAC roles can be modeled using SBAC. Thus, SBAC can directly express RBAC;
security policies.

The permissions allocated by RBAC can have a high degree of data abstraction.
The permissions typically allow a subject to execute a specific program on a specific
type of data item. SBAC provides this kind of data abstraction and also provides
a richer kind of procedural abstraction. The RBAC style roles modeled in SBAC

authorize scenarios. A primitive scenario is similar to an RBAC permission. Le., it
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can authorize a specific sender object to invoke an interface operation on a specific
receiver object. An RBAC style role modeled in SBAC can also authorize a more
complex scenario. This means the role can authorize that a specific set of tasks may
be performed by users filling a specific set of roles. Ie., where an RBAC permission
can authorize that a specific task be done by a specific user filling a specific role, an
SBAC permission can authorize that a specific set of tasks be done by a specific set
of users filling a specific set of roles in a specific order.

RBAC; and RBAC; add constraints, which impose restrictions on acceptable
configurations of the RBAC models. SBAC does not provide direct support for con-
straints, but in some cases the safety analysis scheme might be used to provide as-

surance that a constraint holds for a specific system model.

6.2.4 A Comparison to TBAC

Recall from Section 2.2.19 that TBAC provides a framework for active security mod-
els and enforcement from the perspective of activities and tasks. Permissions are
constantly monitored, and activated and deactivated in accordance with emerging
context associated with the progress of the tasks being performed. Permissions arise
just in time for their use in the context of some authorized task. The fundamental
abstraction is an authorization-step. An authorization-step represents a primitive
authorization processing step and is the analog of a single act of granting a signature
in a paper-based system. Permissions are associated with exactly one instance of an
authorization-step. An instance of an authorization-step is associated with exactly
one instance of a task. Each authorization-step maintains a protection state that
is the set of permissions currently valid for that authorization-step. The concept
of ordering of permissions is explicit in TBAC (through the specification of depen-
dencies). All of these components (the components of TBAC,) and the concept of
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hierarchical tasks (TBAC;) have explicit representations in SBAC. The relationship
between TBAC and SBAC model components is described in the presentation of the
Sales-order Processing Example in Section 5.4.

As with the RBAC, and RBAC; models, TBAC, and TBAC; add constraints
that impose restrictions on acceptable configurations of the TBAC models. Again,
SBAC does not provide direct support for constraints, but in some cases the safety
analysis scheme might be used to provide assurance that a constraint holds for a
specific system model.

The similarity between the SBAC and TBAC models derives from their similar
goals, i.e. the modeling of legitimate use. Although developed separately from the
framework of models described by TBAC, SBAC can be considered to be a modeling
scheme that fits within this framework. SBAC additionally provides model represen-
tations that are complementary to contemporary object-oriented analysis and design
methods and also provides a safety analysis scheme. An SBAC model is a detailed
instance of a modeling scheme that fits within the TBAC framework.

6.2.5 A Comparison to MSCs

Object-oriented analysis and design methods have borrowed the notation of message
sequence charts (MSCs) from the telecommunications protocol design community.
The OO community uses a variant of MSCs, in some cases called message sequence
diagrams (MSDs), to specify object interactions, or scenarios. SBAC augments the
concept of scenarios in OO by adding rigor to the scenario-scenario relationships.
This is a semantic issue that involves the interpretation of scenarios. Therefore, it is
possible that some of the semantic issues related to MSCs also have some relevance
to scenario-based access control. There are four semantic issues raised with respect

to MSCs in Section 2.3.2.
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One of the semantic issues raised is whether systems represented by MSCs have
some finite set of global states with respect to message passing behaviour. There is
unbounded creation of objects possible in SBAC. Therefore there are an unbounded
number of global control states. However, by the arguments presented in Chapter 4
there are a finite number of protection states; i.e. there are maximal states for the pre-
order on PA. The purpose of the semantic analysis of the security models presented
here is not to provide an analysis of system evolution in general (global control state),
but to provide an analysis of the evolution of system protection state. This is finite-
state.

Another of the issues raised with respect to MSCs is that the structure of indi-
vidual MSCs or the structure resulting from the composition of MSCs can result in
non-local choices. That is, an MSC process may be required to execute a behaviour
(or chose between behaviours) as a result of the occurrence of a message pass it could
not itself observe. The structure of SBAC scenarios have the same properties leading
to the possibility of non-local choice. The result is the same; non-local choices require
either unbounded history variables to keep track of control choices (non-finite-state
control) or MSCs which lead to non-local choices must be considered to be ill-formed.
However, this is again a global control-state issue. It does not effect the safety analysis
of the system.

The issue of messages being received in a different order than that in which they
are sent is also presented as a difficulty with the semantics of MSCs. Such message
crossings are not possible by the rules for construction of SBAC scenarios. This is
not an issue in SBAC.

The last issue raised with respect to the semantics of MSCs was related to the
completeness of the information available in MSCs to specify liveness properties.
The authors of [LL95a] argue that liveness properties are difficult to specify with

MSCs alone and in many cases such properties are better specified by temporal logic
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formulae provided in addition to the MSCs. This work focuses primarily on safety
properties and does not address liveness properties directly; however, the analysis
tree may provide some assurance with respect to liveness properties. An analysis tree
is a statement about possible histories of a system. One may test whether a temporal
logic formula. is satisfied by an analysis tree.

SBAC scenarios are similar to MSCs but there are significant differences. Sce-
narios allow messages to self, which are not allowed by MSCs. The most significant
difference is in the respective composition mechanisms. The MSC standard allows
modular design via sub-MSCs and decomposed process instances. This decomposition
is process based. SBAC scenarios are object based and not process based. Modular
design is denoted in the context of SBAC modeling by using child scenarios, which
in MSCs would appear to be decomposed message events. This mechanism is more
expressive than MSC conditions, which are another mechanism for composition of
MSC diagrams. Specifically, the child scenario authorization mechanism allows more

control with respect to scenario parameterization and ordering.

6.3 Discussion

The access-control modeling scheme proposed by this work provides a rich, expressive
modeling capability that can be used to capture a broad range of useful security
policies. SBAC supports policies that include least privilege, separation of duties,
fine grained data abstraction, lattice-based MAC policies, role-based policies, and
workflow policies.

SBAC also provides a safety analysis method. The analysis scheme can be used to
characterize properties of the protection states that are possible for a specific model
instance. The types of security policy to which the analysis method can be applied

include non-monotonic policies.
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The model comparisons earlier in this chapter emphasize that a major difference
between SBAC and other modeling schemes is its support for considering the ordering
of permissions when formulating a safety question. For a system, a safety question
in SBAC considers not only if some subject may gain an access right to some object,
but also the order of such an occurrence with respect to the occurrence of other
access rights. It is a tenet of this work that specification and analysis of the order in
which access rights occur is an essential aspect of modeling legitimate use. This is
really a refinement of the principle of least privilege. The least privilege properties
of SBAC models are more fine grained than those expressed by Clark-Wilson and
role-based access-control polices. In this case more fine grained means that not only
is a subject restricted to invoking a specific kind of operation on a specific kind of
data type, but also that the permission to invoke the operation only arises at the
moment it is required in the context of a statically defined scenario or task. This
adds a just-in-time aspect to the concept of least privilege.

The theoretical worst case complexity for the analysis method indicates an in-
tractable analysis even for small systems. However, the running time for analysis of
an actual model instance is very sensitive to the scenario-type-to-scenario-type rela-
tionships defined by childsr. It is expected that for a broad class of useful systems
the connectivity between scenario types will be very much less than the complete
connectivity implied by the worst case. The examples presented in Chapter 5 are
representative of some interesting classes of system for which analysis is tractable.

The sparse connectivity between scenario types should be expected. Object-
oriented decomposition and object interaction scenarios are organized with the pur-
pose of restricting the complexity of system design. The standard approach is to
capture scenarios informally or semi-formally using an object-oriented design nota-
tion. A contribution of this dissertation is the formalization of these relationships.

Security modeling using SBAC can be a complementary component of object-
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oriented analysis and design. The proposed model makes extensive use of data that
is already collected by commercial object-oriented analysis and design tools. The
motivation is the productivity gain that may be realized through reducing the ef-
fort required in the maintenance of separate security and design models and in en-
suring there is consistency between security models and other system models. A
security-modeling tool that works with familiar system design tools also increases
the likelihood that such modeling will be done. The SBAC analysis tool described
in Section 4.4.5 is integrated with the Rational Rose [Rat98] OO modeling tool. A
complete static SBAC security policy can be captured using the Rose tool. Much of
the data needed for the security policy specification is provided by the OO analysis or
design itself. Additional SBAC specific information is added as Rose documentation
mark-ups. The resulting Rose model file can be imported by the SBAC tool. The
SBAC tool can then be used to define an initial state and generate an analysis tree.
An imported model can also be displayed and modified using the SBAC tool interface.
The SBAC tool can also be used in a stand alone mode to develop and analyze SBAC
models.

Another motivation for the relationship between SBAC modeling and OO analysis
and design is that OO techniques model systems using abstractions and interactions
closely related to the actual problem domain. Scenario-based descriptions of tasks
and workflows provide an abstract and an intuitive way of specifying the access per-
missions required to complete a business process. Scenario-based models can be used
at different levels of abstraction as the development of a system progresses from anal-
ysis to design to implementation. Although SBAC can be used at various levels of
abstraction, model correspondence between the levels is a difficult problem that is

not addressed by this dissertation.
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6.4 Future Work

This section proposes directions for future research involving scenario-based access
control. Several areas of research will be briefly discussed, including direct extensions
of the work presented and applications to related areas.

An obvious opportunity for research is the continued development of the SBAC
modeling and analysis tool. Presently the analysis tool has been used in support of
gathering empirical data on the size of anzlysis trees for specific model instances. The
tool does not provide support for formulating a safety question nor does it perform
a search on the analysis tree to answer a safety question. Rudimentary support for
these operations would be very easy to introduce into the tool. However, this kind
of support should be based on an investigation of how a security engineer would use
the tool to perform safety analysis. The selection of interesting, safety critical initial
states for a system model is important. How the security engineer should be guided
in defining a set of models that provide assurance of safety in a system is not clear.
There needs to be a better understanding of what models and what safety questions
provide a sufficient level of assurance that a system is safe.

It becomes apparent when discussing the degree of safety in a system or a level
of assurance, that the behaviour of the system is measured against some security
meta-policy. Investigation of a language for the expression of such policies is another
area of future research. The security behaviour of an SBAC model could be analyzed
with respect to the soundness of security axioms expressed by the meta-policy. For
example, the designer of a system may want to express that for any initial state of the
system it is not possible for someone to cash a cheque before it has been authorized
for payment. It seems that a combination of deontic! and temporal logic would be

useful to capture both what actions should be permitted by a system and in what

1Deontic logic is the logic of norms or morals. The logic provides expression for concepts such as
‘what ought to be,’ ‘what is permitted,” ‘what is obligated,’ etc. For reference see [GMP92]
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order those actions should be permitted.

When modeling the examples in Chapter 5 one finds that there is some difficulty
in modeling certain aspects of object-oriented designs when using the current version
of SBAC. One of the weaknesses is in the inability of SBAC to account for the be-
haviours associated with the type hierarchies present in the examples. The use of type
hierarchies allows the reuse of scenarios to capture object interactions across families
of related object types. Support for type hierarchies was not included in the SBAC
modeling scheme in order to reduce the complexity of the modeling scheme during
the initial stages of research. In keeping with the goal of providing a security mod-
eling scheme that is complementary to contemporary analysis and design techniques,
SBAC should be enhanced to handle type hierarchies.

Another place where there is some difficulty in modeling certain aspects of object-
oriented designs is where design models make use of indirection in handling object
visibility. It is common for the relationships between objects to change during the
evolution of a system. The current version of SBAC requires that object visibilities be
assigned at object creation time, that only existing objects can be visible to a newly
created object, and that object visibilities cannot be changed after cbject creation.
These restrictions simplify the computation of scenario equivalence class, and the
complexity of the analysis tree. A weaker set of restrictions would allow the modeling
scheme to be more expressive and is an interesting avenue for future research.

Another direction for future work is in the simplification of the analysis tree.
Presently the analysis tree graph does not allow cycles. By design, the analysis tree
graph contains redundant information. This allows the analysis tree to model the
permission ordering relationships arising from multiple occurrences of equivalent sce-
narios. Simplifications and efficiencies are possible in the analysis graph by allowing
cycles. The current graph is finite and tractable but a broader class of systems may

be candidates for analysis if greater efficiencies are found. In simplifying the analysis
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graph by allowing cycles, one would have to be careful to preserve the authorization

properties of the original analysis tree.

6.5 Conclusions

The development of scenario-based access control is driven by two main goals. The
first goal is to provide a scheme that will provide efficient safety analysis for systems
modeling legitimate-use policies. This implies efficient analysis of non-monotonic
systems. This is because legitimate-use policies that employ just-in-time availabil-
ity of access-control permissions are inherently non-monotonic. The second goal is
to provide a modeling scheme that complements contemporary software engineering
modeling techniques. The objective is to leverage the information that is already
being captured by such techniques and to provide security modeling as a extension
to existing software engineering methods. This eliminates duplication of effort in
security modeling and may serve to encourage the wider use of security modeling.
These goals are met by the scenario-based access-control scheme presented by the

dissertation. The contributions of this dissertation are:

e a scheme for the modeling of legitimate-use in information system security poli-

cies,

e a scheme for the safety analysis of inherently non-monotonic, legitimate-use-

based security policy models,

e formal rigor applied to scenario diagrams of the relationships between interact-

ing objects, and

e a security modeling scheme that is complementary to contemporary analysis

and design techniques.
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Chapter 2 provides a literature review and the contextual information necessary
to provide background for the area of research, to provide foundations and inspira-
tions for the work, and to provide examples for comparison. Chapter 3 describes
the modeling of scenarios of interacting objects. The models provide rigor to the
relationships between types of scenarios and for the relationships between scenario
instances. Chapter 4 defines the concepts of security policy and system. This chapter
presents a scheme for safety analysis of scenario-based access-control models. The
analysis scheme has an intractable running time in the worst case. However, it is
expected that for a broad class of useful systems the analysis is tractable. Chapter 5
presents a series of worked examples. The examples presented are representative of

some interesting classes of system for which analysis is tractable.
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