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Abstract 

This work describes an access-control modehg scheme for secure systems that is 
based on the object interaction speciücations used in contemporary object-oriented 
analysis and design methods. The scheme is primanly intended to model integrity 
and legitimate-use in commercial systems. The primary concern of these systems is to 
prevent fraud and errors. Access controls are usually based on hierarchical delegation 
of authority and separation of duty. Security policies and control mechanisms can be 
based on the ta& and business activities that are performed by the system. Object- 
oriented analysis and design techniques are commonly used to model systems using 
abstractions and interactions closely related to the actual tasks and business activities 
of the problem domain. This makes these techniques an attractive basis for access- 
control modeiing. The proposed model makes extensive use of data that is already 
collected by commercial ob ject-oriented analysis and design tools. The motivation 
is the productivity gains that may be reaiized through reducing the effort required 
in the maintenance of separate security and design models and in ensuring there is 
consistency between security models and other system models. In ob ject-oriented 
modeling the description of a problem and its solution are in terms of interacting 
objects. Object-oriented models specify the kinds of objects that can exist in a 
system and the h d s  of interactions that they can take part in. The models describe 
the possible interactions in terms of object scenanos. Each scenario has a limited 
number of ways in which it can be cornbined with other scenarios. This can be 
the basis for definhg a security policy. The proposed scenario-based access-control 
model extends current object-oriented models to bring more rigour to the relationship 
between scenarios. The lirnited ways in which objects interact in these scenarios 
provide the basis of a technique for safety analysis. In the security models produced, 
the set of access authorizations held by system entities is inherently non-monotonie 
over system execution. A decidable safety andysis method is provided for instances 
of non-monotonic scenario-based security models. It is expected that for a broad class 
of usefid systems the analysis is tractable. 
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Chapter 1 

INTRODUCTION AND MOTIVATION 

1.1 Introduction 

One can view a commercial organization as a system that is required to maintain 

a certain state (or standard) of integrity. Organizational procedures and intemal 

controls then have to ensure that the tasks carried out iri the organization preserve 

such a state of integrity [San96]. To maintain such an integrity state there must 

be some assurance that users can only use their access to an information system 

(and through it access to corporate data/information assets) for legitimate purposes. 

Users should be limited to data accesses required to perform fasks for which they 

have authorization: The tasks should be staticdy dehed  and form the basis of a 

mandatory security policy for the system. Specific ta& should be authorized for an 

individual based on the duties of that person in fulfilling the corporation's business 

objectives. The authoked tasks should be sufbicient for individuah to accomplish 

their duties but should not provide superfluous access to data. I.e., the performance 

of a task must be a legitimate use of the information system. 

The first section of this chapter defines the goals of this dissertation with respect 

to providing modeling support for the capture of the legitimate use properties of a 

system. The next section provides motivation for these goals and for scenario-based 

access control modehg. The last section provides an outline of the research presented 

in the remaining chapters of the thesis. 



1.2 Goals 

The development of scenaJrio-based access control is driven by two main goals. The 

h t  goal is to provide a scheme that will provide efficient safety analysis for systems 

modeling legitimate use policies. This implies efficient analysis of non-monotonic sys- 

tems. This follows because legitimate use policies that employ just-in-the availability 

of access control permissions are inherently non-monotonie. The reasons for this will 

become apparent later in the dissertation. The second goal is to provide a modeling 

scheme that complements contemporary software engineering modeling techniques. 

The objective is to leverage the information that is already being captured by such 

techniques and to provide security modeling as an extension to exïsting software engi- 

neering methods. This elirninates duplication of effort in security modeling and may 

serve to encourage the use of security modeling. 

The scope of this research is directed toward acbieving these goals and is reported 

on in the dissertation. This includes the deflnition of a modeling scheme for capturing 

legitirnate-use policies based on just-in-time availability of access-control permissions. 

The primary abstraction in the modeling scheme is the scenario. A scenario is a formal 

description of a set of actions permitted by a group of objects. The modeling scheme 

is called scenan'o-based access control (SBAC). The research also includes a safety 

analysis scheme for scenario-based models. A security mode1 design capture and 

analysis tool has been implemented based on the SBAC modeling and safety analysis 

schemes. The SBAC tool is used to develop example models that are representative 

of some interesting classes of information system applications. The analysis of these 

systems is tractable and the tool is used to gather some empirical data about the 

efficiency of the analysis algorithm. The results do not provide a proof of tractability 

for SBAC modeling in general, but it is expected that there is a large class of systems 

for which analysis based on the unfolding algonthm is tractable. 



1.3 Motivation 

The modeling scheme is intended to spec* commercial and application-based securiiy 

policies. The control of the access to information is usudy  divided into principal areas 

of concem: secrecy, integrity, availability, and legitimat e-use. The modeling technique 

presented here is particdarly appropriate for s p e c m g  integrity and legitimate-use 

policies. Clark and Wilson in [CW87], Moffet and Sloman in [MS88], and more re- 

cently Thomas and Sandhu7s task-based access control in [TS94] have asserted that 

commercial security concerns shodd mirror an organization's internal control systems 

and work flows. These controls are usudy based on hierarchical delegation of au- 

thority and separation of duty. The primary concem of commercial systems is usually 

to prevent fraud and errors. The problem domain staternents of requirement for an 

organization7s information systems tend to be task based. Therefore, role and task- 

based access control seems to be a promising direction of research and is motivation 

for modehg  legitimate-use policies. "The fact that authorization is transient and 

dependent on organizational circumstances" [TS94] means that such policies tend to 

be non-monotonie in the generation of access rights as system execution evolves. That 

is, the entities in a system can both gain and lose access rights as the evolution of 

the system progresses. 

There are modeling schemes in the literature that can be used to express systems 

with monotonie security policies that also have efficient safeQ analysis [San88, San89, 

San921. There are also modeling schemes in the literature that can be used to express 

systems with non-monotonie security policies [HRU76, SS92, San92, SG941. How- 

ever, there has been less success in providing an efficient safety analysis for modehg 

schemes used to express systems with non-monotonie security policies. The ability 

to provide efficient safety analysis for such systems would significantly expand the 

classes of systern for which access-control modeling and safety ihnalysis can provide 



assurance for security critical design. 

Ob ject-oriented analysis and design (OOA/OOD) t ethniques are comrnonly used 

to model systems using abstractions and interactions closely related to the actual 

problem domain. This malces these techniques an attractive basis for access-control 

modeling. The system specification c m  be captured in terms of high-level abstract 

tasks that meet an organization's business objective. This provides intuitive seman- 

tic content that takes advantage of natural human cognitive skills [Boo94]. Another 

motivation for the use of object-oriented (00) modeling techniques is that they scale 

weU over varying levels of abstraction. The same basic philosophy of object-oriented 

decomposit ion can be applied during syst em analysis, design, and implementation. 

Although 00 models can be used at various levels of abstraction this does not imply 

model correspondence between the levels. Mode1 correspondence between the lev- 

els is not straightforward and is itself a separate area of research. Correspondence 

notwithstanding, the ability to use the same basic techniques to model systems a t  

varioris levels of abstraction is an attractive property. Current security models tend 

to work at a relatively low level of abstraction [TS94]. Security modeling based on 

00 techniques should allow modeling at higher levels of abstraction. 

Security modeling using 00 techniques also has the advantage of allowing secu- 

rity modeling to complement the system requirements and design modeling techniques 

used in contemporaxy software engineering practice. It  is expected that much of the 

data required for security modeling is routinely captured by 00A/OOD methods. 

The data captured by contemporary modeling tools can be augmented to provide a 

security model compatible with current analysis and design methods. This should 

provide the basis for an access-control modeling and analysis capability that is com- 

patible with the way system architects and designers do their work. This should 

result in productivity gains, a s  it reduces the effort required in the maintenance of 

separate security models and in ensuring there is consistency between secuiQ models 



and other system specifications. A securiiy-modeling tool that works with familiar 

system design tools also increases the likelihood that such modeling will be done. 

This dissertation explores development of an access-control modeling scheme based 

on contemporary 00 analysis and design methods to capture and provide efficient 

analysis for non-monotonic ta&-based models for secure systems. 

1.4 Thesis Outline 

Chapter 2 provides a literature review and the contextual information necessaxy to 

provide background for the area of research, to provide foundations and inspirations 

for the work, and to provide contrasting examples for cornparison. Chapter 3 de- 

scribes the modeling of scenarios of interacting objects. The models provide rigor to 

the relationships between types of scenarios and for the relationships between scenaxïo 

instances. Chapter 4 defines the concepts of security policy and system. This chapter 

presents a scheme for safety analysis of scenario-based access-control models. Chap- 

ter 5 presents a series of worked examples. The examples presented are representative 

of some interesting classes of system for which analysis is tractable. Finally Chap- 

ter 6 provides some cornparisons between SBAC and other security modeling schemes 

found in the literature. This chapter also provides a discussion that summarizes the 

contributions of the research and conclusions. 



Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a review of existing Iiterature which is relevant to the presen- 

tation of material in later chapters. A review of previous research in the modeling of 

secure systems serves to provide for the reader an understanding of the relevant is- 

sues surrounding access-control modehg schemes- The review outlines how previous 

authors have contributed to the topic area. The various modeling schemes illustrate 

the need to balance the ability of a modeling scheme to speciS. a wide variety of 

useful systems with the ability to perform an analysis of the security properties of 

those systems. The primary type of analysis considered is safety analysis, which is 

described later in the chapter. The review material also provides a brief description 

of some concepts associated with software engineering and object-oriented analysis 

and design. The scenario-based access-control modehg scheme proposed in this dis- 

sertation is built on and inspired by ideas arising kom previous literature presented 

in this chapter. 

The f i s t  section of the chapter presents a review of cornputer security issues and 

modeling schemes. The next section provides a review of object-oriented analysis and 

design issues. The end of that section provides an example of a system taken from 

the literature. The example has been reworked in a presentation format convenient 

for expressing scenario-based access control. The example will be used to provide an 

intuitive counterpoint to the formal presentation of the components of the modeling 

scheme in Chapter 3. 



2.2 Review of Computer Security Issues 

SecuriQ models can be used to transform security requirements into technical spec- 

ifications and as  a means to provide acceptance criteria for evaluating a system or 

system component . 'Without such models, system developers are forced to apply 

ad hoc secuxitsf related techniques throughout the design and implementation of the 

system. This approach inevitably leads to exploitable flaws, and makes the security 

assessments necessary for certïfkation Wtually impossible." [And721 This section 

will examine fundamental aspects of computer system security and present the rel- 

evant research issues and seminal models used to address the control of access to 

information and computing resources. 

In general, secure systems will control, through use of specific securïty features, 

access to data such that only properly authorized individuals, or processes operating 

on their behalf, will have access to read, write, create, or delete data elements [Dep85]. 

Through the control of access to data the system endeavors to protect and preserve 

the information represented by the data. The set of rules and procedures governing 

this use of information is c d e d  the security policy. A systern can be said to control 

the access of subjects (individuals, or processes operating on their behalf) to objects 

(information being held on the system, cg. mes). The control of access to information 

is usually divided into three areas of concern: secrecy, i n t e g ~ i t y ,  and availability 

[Gas88]. To this traditional set of areas of concern c m  be added legitimate-use. 

Secrecy (confidentiality) concerns restrïcting the flow of information such that it 

does not become available or is not disclosed to some set of subjects. For example, 

the flow of information can be restricted such that a subject without an appropriate 

security classification, or need-to-know, is not permitted to read fkom a specSc ob- 

ject (or have the information contained in that object written to it). Integrity issues 

concern the control of information such that information objects are not exposed to 



accidental or malicious alteration. For example, objects can be controlled to prevent 

unauthorized subjects fkom m o d w g  (writing, deleting) a specific ob ject . Availabil- 

ity of information is a property of the flow of information that requires information 

contained in an object to be accessible to a subject, and requires that the flow does 

in fact occur when needed. A failure of this property, for example denial of service, 

would occur when a subject acts in a way that prevents or delays the valid flow of 

information between other subjects and objects on the system. Legitimate-use per- 

tains to the prevention of the unauthorized use of system resources. For example, 

a subject may have access to an object but oniy within the context of some defined 

and authorized business task or workfiow. Even though a subject has access to an 

object for a specific task, the access permission shodd not be able to be used by that 

subject for other purposes. 

References to "information contained within an object" in the descriptions of 

the properties above can also be viewed as characterizkg the services provided by an 

object. For instance, access to information c m  also be construed as access to a service 

(program, device, etc.). Given these definitions of secd ty  and the control of the 

flow of information, it should be understood that there are differing interpretations, 

and some concepts are less well-understood than others. The historic focus of the 

research communîty has been on confidentiali@ This is because much of the research 

and system procurement activity was driven by the government/miütary. Integrity 

and availability were only generally defined in the fiterature and then usually in 

relation to a specific secure system implernentation and its associated securiS policy- 

Recently there has been more emphasis placed on integrity as the interests of the 

research cornmuni@ have shifted to commercial information systems. This trend also 

drives the interest in legitimate-use issues. The modeling scheme proposed in this 

dissertation provides direct support for considering legïtimate-use issues. 

This section is organized in the following way. The first subsections present fun- 



damental aspects of computer system security as a foundation for the discussions 

in following subsections. The next set of subsections present the safety problem as 

defhed in the context of computer security, and seminal models are introduced to 

explore tractable analysis of the migration of access rights. Later subsections discuss 

the flow of information, access-control models conceived to restrict information flow 

in secure systems, and roie-based access-control rnodels. 

2.2.1 Security Policy 

The d e s  and procedures of a securïty policy are designed to meet the confidentiality, 

integrity' availability and legitimat e-use requirement s for the specific circumst ances of 

users of the system. This can include regulating the processing, storage, distribution, 

and presentation of information [Com88]. The following paragraphs descrïbe some 

common policies that will be referenced later in this dissertation. 

MiZitary/Govement Security Policy. The rnilitary/government security poiicy 

[Gas88] is primarily concerned with confidentiality. The policy defines an ordered set 

of security levels (e.g. Unclassified < Confidenthl < Secret < Top Secret) and a set 

of categon'es (e.g. Atomic, NATO, Alpha). A user has a clearance for a certain level 

and is also cleared for some number (possibly zero) of categories. Information has 

a class.ification which is composed of a security level and some designated number 

(possibly zero) of categories. A user is never allowed access to any information for 

which he is not cleared. Clearance implies the information's classification level 5 (is 

dominated by) the user's clearance level, and the information's set of classification 

categories C user's set of clearance categories. 

Need-to-know. This policy is also associated with the military/government and 

can operate in parallel to, or separately hom, the clearance-based policy described 

above. The policy specifies that a user is not allowed access, regardless of his classi- 



fication, to any information unless he has a legitimate need to use the information. 

When operating in pardel  with the military/govenunent security policy, need-te 

know access can only be extended to a subject which is already authorized access 

under the clearance-based policy. 

ORCON. The originator controlled policy is again associated with the 

militaiy/government. This policy is usually implemented in parde l  with the stan- 

dard clearance-based milit ary/government security p olicy. As described in [San921 

the creator of a document retains control over granting access to the information in 

the document. For example, if the creator of a document gants  another user the 

authorization to read the document, that user cannot propagate the information in 

the document to a third user. If is prohibited for propagation to occur either directly 

by granting the third user the right to read the document, or indirectly by granting 

the third user the right to read a copy of the information in the document. 

Separation of Roles. Security in the commercial environment often requires that 

more than one person be involved with some operation in order to reduce the proba- 

bility of the occurrence of fraud. Such separation might involve a division of responsi- 

bilities. In some cases, the users perform separate functions. For example, the system 

administrator's role may be separated from the system security officer's role so there 

is no one person who can subvert the system. In other cases, the users cooperate 

in performing some task. In a business application a clerk and a manager rnay be 

required to cooperate to draft a cheque. This concept of a two-person rule can be 

generalized into n-person rules for synergistic authorizat ion. 

Chinese Wall. The Chinese wall policy has its ongins in the business community 

[BN89]. In the financial services sector, a consultant must not divulge information 

pertaining to a client to a cornpetitor. Thus, if a consultant is advising one corn- 

pany in a business sector (e.g. banking) he is not permitted to become privy to any 

knowledge about any other Company in that sector, or to impart his insider knowl- 



edge to any other company in that sector. The consultant's fkm may represent a 

number of companies in a number of business sectors. The analyst may work with 

companies in sectors which are not in competition with each other (e-g. oil cornpanies, 

insurance brokers, etc.), but only one in each sector. The choice of which companies 

the consultant will become involved with is unconstrained provided these d e s  are 

followed. 

2.2.2 The Reference Monitor Concept 

In a secure system there are a number of different system services that work together 

to provide security. Access controls are one of these services but others include 

identification, authentication , and audit. Identification and authentication (I&A) are 

closely related. The identification service ensures that a user iç uniquely identified 

to the system. This unique identity can be used later to make decisions about what 

that user should be allowed to do. The authentication service is used to establish the 

validity of the claimed identity of a user. A user claiming a unique identity must prove 

that he is who he says he is by providing information known only to that user. Such 

information can be about something he knows, something he has, or sornething he is 

[Com88]. Examples of these types of proofs might be a password, a smart card token, 

and a biometric fingerprint scan respectively. Audit services are used to track events 

in the system and record what user identiw initiated or is otherwise responsible for 

their occurrence. The logs produced are used to provide accountability of the users 

for their actions and to provide a posteriori evidence relating to breaches in system 

security. 

Access control is closely related to the concept of the reference monitor. With 

the advent of multiuser systems, the reference monitor was introduced to control the 

sharing of resources. The reference monitor validates all references made by a program 



in execution agâinst those anthorized for the subject by the system security policy 

[And72]. The references might be to programs, data, devices, etc. The effectiveness of 

the reference monitor depends on a trustworthy I&A mechanism to positively identie 

a user with a unique identity upon which access-control authorizations will be based. 

The actual mechanism (Reference Validation Mechanism) that implements a reference 

monitor may be a combination of hardware, softwctre, and h w a r e  and must have 

the following fundamental properties: 

1. the Reference Validation Mechanism must be tamper proof, 

2. the Reference Validation Mechanism must always be invoked, and 

3. the Reference Validation Mechanism must be small enough to be subjected to 

analysis and tests to ensure that it is correct. 

The requirement to subject the reference validation mechanism to analysis can be 

facilitated by the use of modeling techniques. In this way modeling c m  be used to 

support a reference validation mechanism. Models can be used to provide validation 

of secuity policy, to provide assurance of correctness, as a language of specification, 

and as a basis for refinernent leading to design and implementation. The following 

sections will outline some of the major securiiy modeling techniques used to express 

the control of access to information and computing resources. 

2.2.3 The Access Matrix 

One of the most basic abstractions used in dealing with access control is the access 

matrix [Lam7l]. The mode1 is defined as a state-machine. The state of the systern is 

represented by an access matrix and a set of cornrnands which operate on the matrix 

define the state transitions [Den82]. A state of the system is defmed by a triple 

(S, O, A) where: S is a set of subjects, O a set of objects to be protected, asd A is 



a matrix with rows corresponding to subjects and columns corresponding to objects- 

A cell of the matrix A[s, O] is the set of rights of subject s for object o. Depending on 

the model being used, subjects may also be objects, S C O, to support modeling of 

subject-to-subject communication. The rights specify the ty-pe of access allowed by 

a subject for a specïfic object, and c m  include the familiar r a d ,  m e t e ,  ezecute and 

other privileges/properties such as own, copy, etc. as defined by the model. 

The access matrix tends to be sparsely populated as each subject usually only has 

access to a restricted number of objects. Therefore, systems modeled in this way are 

seldom a c t u d y  implernented as a matrix [SS94a]. A means of reducing the resource 

requirement is to associate a list of the filled cells in a column with its related object, 

or conversely a list of the filled cells in a row with its related subject. The f i s t  

scheme is said to use access-control lists (ACLs), the second scheme is said to use 

lists of capa bilities- 

In ACLbased systems, each object in the system has an ACL and each entry in 

an ACL identifies a specXc subject in the system and describes the type of access 

allowed by that subject. The list only contains entries for those subjects with some 

type of access. When access for an object is requested, the list is checked to veri& that 

the requesting subject has the appropriate access right. The basic ACL scheme can 

be modified to include group names, or to limit the specification of subjects to simple 

classes such as owner, group, or world. The latter case allows the representation of 

ACLs as a regular concise set of bits, such as the familiar UNM protection bits. ACLs 

have the disadvantage that if there is a need to find al1 the objects to which a subject 

has access, it is necessary to examine the ACL for every object in the system. 

The converse approach is to associate a set of capabilities with each subject, each 

of which identifies a specific object in the system and describes the S p e  of access 

which is permitted for that object. The subject can be thought to have a ticket or 

capability to access an object in a certain way. The disadvantage here is that to 



find aII the subjects who may have access to a specific object, all the subjects in the 

system must be checked for the capability. 

A third way to handle access matrix information is to maintain a table (autho- 

rization relation) which contains a record for each permitted access. Ce. for each 

right present in each filled cell of the matrix. ACL-style or capability-style results 

can be obtained by sorting the table by object or subject as appropriate. This scheme 

is popular for relational database management systems which provide built-in s u p  

port for record sorting and selection. An approach presented in [BSSC95] proposes 

a high-level language to capture the semantics of the access authorizations stored in 

tables without using the actual tables. The reference monitor will interpret these 

language-defined security attribut es as access requests are made. 

So far the model we have presented deals with the representation of a single state. 

This is suitable to describe a snapshot in time but not a dynarnic system where access 

rights, or the number of subjects and objects, can Vary wîth time. Some mechanism 

must be provided to allow state transitions. A set of commands c m  be provided in 

the model to allow operations on the access matrix. The commands may add (or 

remove) rows or columns and thereby subjects or objects to the system. They also 

control the entry (and deletion) of access rights into matrix cells. Such commands 

can be conditioned on other matrix entries. For example, it is common that if a 

subject owns an object (i. e. has the ownership right for that object), it is allowed to 

grant other rights for that object either to itself or to other subjects. E.g. an owner 

of a Be, at his discretion, might grant the right to read that Be to another user. An 

access-control policy which allows such commands at the discretion of a user is a form 

of a Discretionary Access Control (DAC) policy. 

The primary purpose of multiuser systems is the sharing of resources. Objects 

contained in the system are valuable resources to be shared and manipulated (by 

authorized users). To unnecessarily limit sharing would be to defeat the purpose of 



such systems. On the surface it might appear that an orner-based DAC policy is 

sufficient for most secULity concerns and would provide for adequate resource sharing. 

If the owner only passes rights to authorized trustworthy users what could be the 

h m ?  The harm lies in the possibiliw that although the user may be trustworthy, the 

processes (subjects) executing on his behalf may not be. This is the classic downfd 

of DAC. The problem is that the user is not generally aware of a l l  of the behaviour 

of a process. A user may unwittingly execute a process which has been designed or 

altered to perforrn sorne malicious action in addition to the action desired by the user. 

Such a program is called a 13-ojan horse. A Trojan horse may be planted, given to, 

or copied by an unaware user. A Trojan home embedded within a subject runs with 

ail the rïghts of that subject. Once running, the Trojan horse may exploit the access- 

control mechanism to cause a transfer of information or a transfer of access rights 

in violation of the security policy. We will retum to the problem of unauthorized 

transfer of information later. There are dso problems associated with revocation of 

rights under DAC [San96]. The issue arises when considering the case where an access 

right is passed fkom the original owner to another user and then passed on again to 

further users. There is more than one interpretation for what it means to revoke 

such a right. That is, it is not clear whether the revocation of the right by the owner 

should pass beyond the user to which the right was originally given, and also revoke 

that right fkom all the other users to which it had subsequently been given by that 

user (a cascading revoke) . 

2.2.4 The Safety Problem 

In the next few subsections we will look at the unauthorized transfer of rights. In a 

protection scheme such as the matrix mode1 described in this subsection, an untrusted 

process may directly, or though a series of operations on the access matrix pass a right 



to some other subject. In accomplishing this it may collaborate with other trusted 

and untrusted processes. This migration of rights may not be consistent with the 

system security policy. Given an initial system state we would like to characterïze 

the protection states that aie reachable in the system [San92]. This is the safety 

problern. 

2-2.5 The HRU Mode1 

Hamison, Ruzzo and Ullman in [HRU76] offer a formalized general model of protection 

systems based on the concept of an access rnatriu. IR their work they address the 

issue of the migration of access rights by unreliable subjects. The safety problem in 

this context is to determine whether in a given situation a right can be passed to a 

subject that did not already have it. The HRU model has states, as described above, 

(S, O, A), with set S of current subjects, O of current objects (S C O), and mat* 

A. The model also includes: 

R a finite set of generic rights (e-g. read, write, ownership, etc.) 

C a finite set of comrnands of the form: 

command &(XI, XZ, . . . , Xk) 
if rl in (XsL, Xol) and 

r2 in (Xs2, X o 2 )  and 

... 

rm in (Xsm 1 Xan) 

then 

Wl; OP2; - ; OPn 
end 

or if m is zero, 

command &(XI, X Î ,  . - . , Xk) 



Where a! is a name, Xi,. . . , Xk are formal parameters, r, r l ,  . . . , Tm are generic 

rights, and si,  . . . , Sm, 01,. . . , O, are integers befxeen 1 and k. Each opi is one of the 

following primitive operations which define a transition from some state (S, O, A) to 

another state (Sr, Of, A'). When actual parameters (e-g. s, O) have been substituted 

for formal parameters (X,, X,) they have the described effect on the access matrix. 

enterrinto (s,o) S ' = S , O 1 = O , A f [ ~ i , ~ j ] = A [ ~ i , ~ i ] f ~ ~ d ( ~ i , ~ j ) # ( ~ , o ) ,  

and A' [s, O] = A[s, O] U r ,  where r E R, s E S, o E O 

delete r from (s,o) S = S,O' = O,Af[si, oj] = A[si,oj] for d (si,oj) # (s,  O ) ,  

and Af[s, O] = A[s, O] - r,  where T E R, s E S, O E 0 

create subject s' S = S U s', O' = O u s', 

for dl (s, O) E S x O, A'[s, O] = A[s, O], 

for all O E Of, A1[s', O] = {} and A'[sl, s ]  = 0, 
where s' O 

create object O' Sr = S, O' = O U o', 

for all (s, O) E S x O, Af[s, O] = A[s, O], and 

for all s E SI, A1[s, 0'1 = {), where O' # O 

destroy subject sr S' = S - sr, 0' = O - s', and 

for al1 (s, O) E S x 0') A' [s, O] = A[s, O], where s' E S 

destroy object O' S' = S, O' = O - of, and 

for ail (s, O)  E S' x Of, A'[s, O] = A[s, O], where O' E O - S 

Each command will execute a sequence of primitive operations (the body of a) on 

the access matrix, conditioned on the presence of certain access rights in certain cells 

of the access matrix (the conditions of a). All conditions must be valid to invoke the 



body. For example, the ownership-based DAC scheme described above might have a 

command CONFEK:  

command CONFE&(owner, f riend, f ile) 

if awn in (owner, file) 

then enter 1- into (friend, file) 

end 

for which if the subject owner has the own right for object file, will grant the r 

right (read) to the subject f riend. 

Now consider the safety problem: to determine whether, in a given situation, a 

right r for an object can be passed to a subject that did not already have it. Le., r is 

said to leuk to a subject that did not already have it. Subjects in the system which 

are h o w n  to be trustworthy and have the ability to g a n t  r should not be considered 

a s  they make the system trivially unsafe. For example the owner of the object may 

be able to g a n t  r to another subject. If the owner is trustworthy, he should not be 

considered in the safety analysis. What really needs to be known is this: if a subject 

is about to give away a right, could that action lead to further leakage of the right 

to untrusted subjects. The problem is therefore considered with tmtworthy subjects 

remaining passive. 

There may be a complex chah of operations involving a number of subjects and 

objects which may Iead to such a leak. We Say Q i-, Q' if there exists a command 

a and actual parameters al , .  . . , al, for a protection system in state Q such that Q 

yields Q' under a(al, .  . . , a*). Q i-* Q' indicates that there is a sequence of commands 

a, f i , .  . . w such that Q = Qo ka Q1 FB . . . l-, Q, = Q'. 

A cornrnand a ( X l , .  . . , Xk) leaks a generic right r fkom state Q = (S, O, P) if a, 

when run on Q, can execute a primitive operation which enters r into a cell of A 

which did not previousiy contain r. Given a particular protection system, an initial 



coizfiguration Qo is unsafe for r if there is a state Q and a command cr such that 

Qo l-• Q, and a leaks r kom Q. State Qo is safe for r if it is not unsafe for r. 

By reduction to the Halting Problem it is proved in [Hm761 that it is undecidable 

whether a given configuration of a given protection system is safe for a given generic 

right. Undecidable in this case means that for any algorithm for deciding the safety 

of arbitrary protection systems, either some unsafe system is found safe or it cannot 

be established that a system is safe when in fact it is. 

Given that the safety problem is in general undecidable, useful progress in the 

control of the migration of rights can only be made by: 

1. dealing with more restricted systems for which specific tractable solutions are 

possible, or 

2. building incomplete but sound modeling systems which wïU not misidente a 

system as being safe, even though they cannot identiS. all safe systems. 

Thus, the theme of research on the safety problem is to provide access-control mod- 

els expressive enough to specify useful systems which will also allow tractable safety 

analysis of the system being modeled. For example, given that a computer system 

has limited resources, it might be natural to limit the number of subjects and objects 

that can be created to some hnite number, or to prohibit the use of create operations 

altogether. The latter restriction, as noted in [HRU76], does yield decidable results, 

although the solution is PSPACEcomplete and is therefore likely to be computation- 

ally intractable. Another example of a restriction is to limit the number of operations 

in HRU commands to a single operation [HRU76]. This also yields decidable re- 

sults. A decision procedure for mono-operational HRU is NP-complete although a 

polynornial algonthm can be devised for a given protection problem. 



2.2.6 Monotonie Protection Systems 

Harrison and Ruzzo in [HR78] explore a class of systems which, as before, have 

primitive create and enter operations but do not have delete or destroy operations. 

Such a system is monotonic, in that it only increases in size and in entries in the 

access matrix. As it t u s  out, there is no real gain in the decidabüity of the safety 

of such systems. They prove that even if the number of conditions allowed in the 

operations of the system is reduced to a maximum of two, the solution to the safety 

problem is still undecidable. However, for the class of monotonic systems which are 

restricted to one condition (ie. they may only check for one right in one ceU of the 

access matrix), safety is decidable. The decision procedure in their proof has an NP 

complexity, but the authors propose a solution in linear time in the size of the access 

matrix which may yield a tractable solution for some cases. 

Mono-conditional HRU and mono-operational HRU are of limited utility. In gen- 

eral, more than one condition and operation is needed in commands in order to 

express useful policies. For example, a mono-conditionai system would not let a par- 

ent subject grant a right for an object it owns to a child subject. This would require 

testing for both an ownership right for the object and for an appropriate parent/child 

right. Mono-operational systems can be even more restrictive as it is not possible to 

both create an object and grant any right(s) associated with that object. A differ- 

ent approach is to restrict the transfer of rights based on a subject's possession of 

special rights which allow the propagation of rights. The following mode1 is both bi- 

conditional and multi-operational (in contrast to the decidable cases of HRU above) 

but has an efficient safety analysis. 



2.2.7 The Take-Grant Model 

Jones, Lipton, and Snyder have proposed the Take-Grant model which is summarized 

in [Den82]. The authon prefer a graphical representation of system state with sub- 

jects and objects as nodes and a directed edge (x, y) representing the set of access 

rights x has for y. In this model, subjects are not objects. However, subjects can 

have access rights for each other and self referentidy. There are two special rïghts 

take (t) and grant (g)  . t E (x, y) allows x to take any of y's rights, and if g E (x, y), 

x can share any of its rights with y. t and g themselves can be propagated in this 

way. Any transfer of a right in a system is constrained by the possession of t and g. 

Where r is a right, s is a subject, x and y are nodes, the primitive operations allowed 

in a system are : 

s take r for y from x for t E (s, x) , r E (x, y) adds r to (s, y) 

s grant r for y to x for g E ( s , x ) , r  E (s, y) adds r to (2, y) 

s create p for new [subject ( object] x for p C graph adds new node x, 

where (s, x) = p 

s remove r for x removes r from (s, x) 

Note that such systems are not strictly monotonic in that although a system can 

only increase in number of nodes, rights can be removed from the system. This model 

is expressive enough to solve certain protection problems. Subjects and objects in 

the model are naturally interpreted as possessing a set of rights for other subjects or 

objects. Since the rights are interpreted as being associated with the accesshg entity 

rather than the accessed entity, this is a usefid paradigm for use with capabiliw-based 

systems. A shortcoming of the expressiveness of the model is that either all rights 

may be granted to another subject or none of them may be granted. This restriction 

is limiting in application to actual protection systems. The general safety question of 



whether any other subject c m  obtain a right r given some initial state is solvable in 

0(n3)  for an initial state with n nodes. Although this is a cubic complexity, only the 

initial size of the system d e c t s  complexity- The more speciûc question of whether a 

right r for a specific object can be transferred to some specific subject is solvable in 

linear time in the size of the initial state. All commands that would be possible in 

the general case (an HRU style matrix) are not possible here due to the take-gant 

restrictions on the propagation of access rights. This sacrifice in expressiveness by 

the modeling scheme yields a tractable analysis. 

The concept of restricting the migration of rights to some set of links, identïfied 

by an assortment of control rights, has been investigated by other researchers. In 

the attempt to expand the useful class of systems which can be modem, various 

refinements and modified schemes have been proposed, such as Minsky's Send-Receive 

Transport model [Min84]. Sandhu proposed in his Schernatic Protection Model a 

unified way of dealing with such links. This has lead to a senes of stronger protection 

models. The succession of these models will be discussed in the next subsections. 

2.2.8 The Schematic Protection Model (SPM) 

Previous subsections have described the inherent tension between the generality of 

a protection model and tractable analysis of the safety problem. The Schematic 

Protection Model [San881 proposes a différent set of restrictions on the model to 

expand the class of systems which can be defined. SPM borrows from the Take-Grant 

mode1 the concept of using tickets (capabilities) to control the dynamic migration of 

access rights. To this, the model adds static restrictions based on the protection 

type of subjects and objects. The use of typing to control security policy is the most 

important aspect of this model. In more general models, the unrestricted ability of 

a system to create subjects greatly increases the complexity of analysis. The SPM 



model, therefore, places type-based restrictions on subject creation. 

Again in this model subjects are not objects. Objects do not possess access rights; 

however, passive entities that possess rights, such as file system directories, can be 

modeled as a kind of subject. Subjects and objects are jointly referred to as entities. 

Each subject and object is created with a specific unchanging protection type which 

is a member of the set TS or TO respectively (let T = TS U TO) . This strong typing 

is used to specie many of the major features of the system security policy. Decisions 

on entity creation and access right migration are based on type. Protection types are 

defined by the security administrator and cannot be changed during the operation of 

the systern. They are therefore static. The abilifq of a specific subject to access some 

specific entity during system operation is represented by its possession of a ticket for 

that entity. For example, a subject A may have a ticket allowing it right r for some 

entity X. Such a ticket would be in the domain of A, d m ( A ) .  The ticket specifies 

an entity and an access right and can be denoted as X/r.  Tickets can be specified 

with or without a copy flag. The existence of the copy flag indicates that the ticket is 

copyable. The absence of the copy flag indicates that the ticket cannot be copied. A 

ticket with a copy flag can be denoted with a 'c' (e.g. Xlrc) . Each ticket has a type 

which is an element of T x R. That is, the ticket type is specified by the type of the 

entity and the right denoted by the ticket. 

The only operations which can operate on the protection state of a system are: 

copy, demand, and create. The copy operation requires three elements to be suc- 

cessful. For example, to copy a ticket X / r  from subject B to subject A there must 

first be a ticket X/rc in the domain of subject B. Next there must be a link from 

B to A. The existence of a link is predicated on the existence of control rights, such 

as takelgrant, in the domains of A and/or B. The model allows the flexibility to 

specify a number of difFerent kinds of link based on different control rights and where 

they must ex&. The following two examples define links for the Take-Grant model 



described above and for the Send-Receive mode1 [Mh84]: 

The third element which needs to be satkfied is that the type of ticket being 

copied must be allowed by a filter defined for the link being used. Each kind of link 

has a filter function: T S  x TS  + 2TxR.  Le., kom T S  x TS to the power set of ticket 

types. That is, for the type of subjects participating in a copy on some kind of link, 

only certain types of tickets can be transferred. Filter functions depend ody  on the 

static typing scheme and restrict the discretionary behaviour of subjects. 

The dernand operation dows  a subject to be granted a right by asking for that 

right. To be successful, the subject's access to that right must be authorized by the 

demand function: TS + 2TxR. The demand function maps a subject type to a set 

of ticket types. For a subject to gain a right by demand, the right must be one of 

those associated with that type of subject in that set. This implicit distribution of 

tickets by t ype is very useful for the distribution of control tickets used for setting up 

standard links. 

The create operation is the only other operation allowed and is the most interest- 

ing. The create operation allows a subject to create a new subject or object in the 

system. A relation can-create (cc) and entity creation-mles (cr) control the creation 

of entities in the systern. The cc relation is a subset of TS x T. For exarnple, subject 

A of type a can create entity B of type b if£ cc(a, b ) .  To make efficient analysis possible 

the creation of entities can be m h e r  restricted to ensure that the graph resulting 

fiom the cc relation is acyclic. That is, there can be no cycles in the graph except 

self-loops, where a subject may be allowed to create other subject of its own type. 

The acyclic nature of the creation graph produces a hierarchical structure, which 

proves to be a useful property for the analysis of safety. There is a create d e  for 



every pair in cc. For the creation of an entity B of type b by a subject A of type 

a, the nile ~ ( a ,  b) would specify what tickets for B are placed in dom(A) and what 

tickets for A are placed in dom@). The mode1 places restrictions on what rights 

may be specsed. The rdes must be attenuating for loops of the f o m  cr(a, a). This 

means that for loops, a subject which has been created must not have more rights 

that the subject that created it. For example, when subject A is creating subject 

A', dom(A1) C dom(A); also if a ticket for A' is placed in dam(A) the corresponding 

ticket for A must be placed in dom(A).  The second condition ensures that the creator 

subject can not set up links for created subject that it cannot set up for itself. The 

attenuation property also proves useful in analysis. Together the acyclic and attenu- 

ating restrictions on subject creation ensure that the number of subjects that c m  be 

created in the system c m  be bounded for the purposes of the analysis. 

In safety analysis we are concerned with the migration of rights as the system 

transitions from one state to another. The migration of rights by way of demand 

and create operations is dependent on the static fiyping scheme only and not on the 

distribution of tickets associated with any state. Of more interest to safety analysis 

is the migration of access rights associated with the copy operation. This depends on 

the initial set of entities and distribution of tickets, the initial state, and the evolution 

of state thereafter. Link predicates and filter functions control ticket copy. In a worst 

case scenarïo, al1 subjects cooperate in the migration of rights where possible. 

A ticket can flow fiom one subject to another if there is path (a set of links) which 

connects the two subjects and the ticket is authorized by the flter function associated 

with each link on the path. In any state then, the capaciw of all paths for some ticket 

is defined by the transitive closure of the links which are authorized for that ticket 

existing in that state. 

Safety analysis for SPM is based on the concept of a maximal state. If there is 

some maximal state beyond which any state transitions provide no new migration of 



tickets, then the andysis of this state provides a solution to the safety problem. As it 

turns out, such a maximal state does exist. ActualIy, there are many such states which 

are isomorphic for the purposes of the following analysis. One such maximal state 

can be produced by allowing each subject in the initial state to create a child subject 

for each pair in cc associated with it. These children are then recursively allowed to 

create their own children as authorized by cc. The acyclic restriction on cc ensures 

that this process terminates, provided loops of the type cc(a, a) are only allowed 

a depth of one recursion. The intuition here is that the subjects in this creation 

hierarchy c m  act as the surrogates for any other subject of the same type that might 

be created by the parent. They will hold any right that might have been granted to 

another sibling in a different sequence of execution. Once the initial subjects have 

been fully unfolded by creation of their child surrogates, allowed demand operations 

can be executed and flows of the resulting system examined. The resulting flows 

will be the only flows possible for the initial set of entities and distribution of tickets 

under the specific typing scheme. Time complexity of this analysis is polynomial 

in the number of subjects in the initial state. Depending on the complexiS of the 

cc graph, a worst case could yield complexity exponential in the number of subject 

types, TS. This is likely to be tractable in most cases, since cc is likely to be sparse. 

[VC94] demonstrates a similar result for an extension to SPM which allows ticket 

authorization to be qualified by an uninterpreted set of conditions characterized by 

the system environment. 

Note that this mode1 is monotonie. Entities c m  be created but not destroyed and 

subjects can gain tickets via the defined operations but they cannot be revoked. To 

allow this restriction on models to be more applicable to practical systems, Sandhu 

proposes the res torat ion prénciple. The restoration principle is applied in a safety 

analysis based on a worst case scenario. As long as a ticket which has been revoked 

can be restored or an entity which has been deleted c m  be replaced by an equivalent 



entity then such an operation will not effect the outcome of the analysis. Therefore, 

any policy which dows  revocation within the limits of the restoration principle can 

be overlooked in safety anas i s .  

The advantage of this model is the number of useful models/policies that c m  

be represented in the decidable cases. This model has expressive power approaching 

that of more general models such as HRU and also provides a tractable solution to 

safety. The mode1 subsumes Take-Grant type models. The introduction of typhg 

allows the specification of static security policy schemes within a mechanism flexible 

enough to be broadly applicable. The SPM model can support policies which employ 

amplification (used by some models in implementing abstract data types), copy ff ags, 

n-person d e s ,  and some forms of separation of duties [San88]. 

E'urther progress in this work follows two distinct but related tracks. The fkst 

direction reduces the work to a more basic model based on the findamental notion 

of the transformation of access nghts as the basis of access control. A model called 

Bansfonn,  and its derivatives are proposed in [San89]. The second direction recap 

tures the basic intuitive appeal of the HRU access matrix but with the advantages of 

strong typing to restrict the evolution of a system and provide a tractable solution to 

safety. This work introduces the Typed Access Matriz (TAM) model [San92]. 

[San891 proposes the principle of transformation of access rights as a unified way of 

s p e c e n g  various access-control mechanisms. The aim of the model is to provide 

an abstraction of the basic behaviour of access-control mechanisms. The principle 

of transformation is that the propagation of access rights for an object by a subject 

should depend only on the subject's existing rights for the object. This contrasts 

with more general models like HRU and SPM where the propagation of rights can 



also depend on the rights associated with other subjects in the system or involved 

in the transfer. Access control-mechanisms based on such a model lend themselves 

to irnplementation using ACLs. Sandhu claims that a protection model which has 

general applicability should be able to instantiate Transform. Transform has a simpler 

construction than SPM but maintains the protection type innovations of that model. 

In common with SPM, Tcansforrn has a set of rights, R, and disjoint sets of subject 

types, TS, and object types, TO. There is also a function cc : TS +- 2T0, and 
create d e s  cr : TS x TO -t 2R which s p e c e  the rights the creator obtains for 

the object created. Note that in this model subjects cannot be created and can 

o d y  be introduced as part of the initial state. To provide for migration of access 

rights, instead of the operations demand and copy, Transforrn defines transformation 

functions itrans and grant. &ans is the intemd, or self, transformation function, 

TS x TO x 2R + 2R. The function allows a subject that possesses certain access 

rights for an object to obtain for itself additional access rights for that object. For 

example, a subject that possesses mite  access for an object may be able to transform 

that ~ g h t  into an append right for the object. grant is the externd transformation 

function, TS x TS x 2'0 x 2R -t 2R. The function allows one subject that possesses 

certain access rights for an object to g a n t  to another subject some spec5c access 

rights. For example, a subject with the o v n  right for an object might gan t  the r a d  

right to another subject . A grant from a subject to itself may not be allowed for some 

systems. In fact, the security policy in some cases depends on the fact that self grant 

(as opposed to itrans) is not allowed. 

The transformation of an access right can be either attenuating or amplifying. A 

transformation is attenuating if it does not grant a right that the granting subject 

does not itself possess. This agrees with the notion of attenuation discussed in the 

context of SPM. A transformation that is not attenuating is amplifving. It is readily 

apparent that itrans must be amplifying to be useful. Amplifying transformations 



are very powerfid. In fact they may be too powerfuI and lead to cWiculties in s a f e ~  

analysis [Min78]. In [San891 it is shown that Transform with only attenuating grants 

is as powerfid as general Transform. It is also shown that ampli&ing &ans can 

actually be implemented using only attenuating mechanisms as long as the required 

rights exist somewhere in the system. 

Tramforrn can be instantiated by HRU or SPM. In the case of HRU, transfonn 

cannot be instantiated within those cases known to be decidable as  it is necessaxy to 

have multiple terms in the conditions of the model's commands. In the case of SPM, 

'ïransform can be instantiated within the efficiently decidable acyclic attenuating 

cases. The 'Iiansform model described so far is monotonie, in that access rights may 

be added to the system but there is no provision for removing a right. There are, 

however, some important security poiicies which require non-monotonici@. 

2.2.10 Non-Monotonie Transform (NMT) 

A policy might require non-monotonicity in that some rights for an object may be 

transfer only. For example, normally there is only one owner for an object. If transfer 

of ownership is to be allowed then the own rîght must be granted to the new orner 

and deleted fiom the old owner. The restoration principle does not apply to such 

revocations as the original owner cannot be regranted the own right as long as the 

new owner also retains ownership. Some separation-of-roles-based policies are ako 

inherently non-monotonic. These policies require that a subject is allowed to access 

and modüy an object during some step in a transaction; however, once the subject 

has played its roIe in the transaction, further access is denied. 

The NMT model [SS92] defines the sets R, TS, and TO familiar from SPM and 

Transfom. Although the original paper employs a procedural notation for the com- 

mands used to change the protection state (similar to those of HRU) the mode1 can 



be defined using the same set theoretic notation employed for SPM and Tramform 

above. cc and cr are defined as for Transfom. itrans is also defined as before except 

that, in addition to s p e c m g  a set of new rights to be added to the domain of the 

transfonning subject, a set of rights to be deleted h m  that subject's domain is also 

specified. Similarly with grant, in addition to the set of new rights specified for the 

grantee subject, a set of rights is specified for deletion fkom the domain of the grantor 

subject. In addition to these transformations, new commands are defined for deletion 

of access rights. For each of the commands, the subject doing the revoking must 

possess the own right for the object. The commands allow the owner of an object 

to revoke from another subject any specified right or all rights to the object. Some 

govenunent evaluation criteria [Dep85] s p e c e  a requirement that a subject may be 

denied any kind of access to an object. To facilitate this total denial of access require- 

ment, there is also a version of the revoke command which will grant to any specified 

subject the nul1 right, 1, for an object. This special right implies that the object is 

totally inaccessible to the subject possessing that right. 

The safety analysis for NMT in [SS92] shows that it can be subsumed by HRU 

with no subject creation. Such models still d o w  the itnlimited creation of objects and 

Lipton and Snyder [LS78] have shown that such cases are decidable. The decision 

procedure of [LS78] for the general case has exponential cornplexity; however, the 

authors of [SS92] comment that the simplicity and strong typing of NMT may lead 

to a more efficient safety analysis. A more recent paper [AS941 provides a better 

safety analysis for one-representative cases of NMT. One-representative cases mean 

that only a single subject of any type need be considered in the analysis. These cases, 

in spite of the restrictions, have significant expressive power. The worst case safety 

analysis is still exponential in the number of subject types and rights. These values 

are constant; so, by itself this represents ai improvement. As well, the analysis of 

actual mode1 instances is often much easier than the worst case. 



~ â 1 1 ~ f o r m  and NMT have grown out of the concept of strong typing introduced 

by SPM by using the principle of transformation to provide a simpler, more abstract 

and expressive model. In related work, the strong typing of SPM is integrated with 

the intuitively straightforward matrix-based HRU model to produce a typed access 

matrix. 

2.2.11 Typed Access Matrix (TAM) 

Sandhu's TAM model [San921 grows out of two observations. The first is that the 

addition of strong typing should add strength to matrix-based protection models 

(specificdy HRU) and provide a basis for decidable safety analysis. The second is 

that the ability to perfonn multiple parent entity creation mabes HRU more expressive 

than SPM. One of the reasons HRU is more general and expressive than SPM is its 

capacity to have more than one parent entity (subject or object) responsible for the 

creation of a new entity. For example command cr(Sl, Sz, 0 1 ,  Oz) might allow sub ject 

SI to create a new object O2 such that subject S2 is the new object7s owner and Ol is a 

file containkg the initial data to be contained by the new object . SI, S2, and O= are all 

parents to the new object O*. Mdti-parent creation allows the speciücation of policies 

not possible in single parent creation models. For example, the ORCON policy seems 

to require multi-parent creation. The requirernent to provide multi-parent creation 

led to the development of an Extended Schematic Protection Mode1 (ESPM) [ASgQ]. 

With multi-parent creation, the expressive power of ESPM is formally equivalent to 

monotonic HRU, however, ESPM has the same positive safety results as SPM. TAM 

is a matrix-based model incorporating strong ming but retaining the expressiveness 

of ESPM. 

The TAM modeling scheme combines these properties. TAM is constmcted using 

a set of objects, OB J, a set of subjects, SUB, (SUB E OB J), and an access matrix. 



This is the same as HRU. In addition, TAM also includes sets of types, TS and TO, 

(TS Ç TO) as defined for SPM. A state in TAM, (SUB, OBJ, t , A M ) ,  is the same 

as HRU with the addition of a type function t : OBJ + TO, which defines the type 

of every object (including subjects) in the system state. SAM commands are similar 

in constmction to HRU commands with the added requirement that every forma1 

parameter specifies the type of object that rnust be speciûed as an actual parameter. 

Type mismatches between forma1 and actual parameters are not allowed. The prirn- 

itive operations which form the body of the commands defined for a model instance 

are the same as before: enter right, delete right, create subject, destroy subject, create 

object, and destro y object. The create subject and create object operations now also 

speci& the type of the entity to be created. 

An interesting derivative of this modeling scheme is monotonic SAM (MTAM) 

which is the same as TAM but with the delete, destroy subject, and destroy object 

primitive operations omitted. MTAM has the properties of SPM7s strong typing 

and the expressiveness of monotonic HRU. As well, strong Wing allows another 

dimension of expressiveness that is not present in monotonic HRU. Monotonie HRU 

can be thought of as a special case of MTAM that has oniy two types: subject 

and object. Unfortunately, and not surprisingly, the safety of MTAM is no more 

decidable than for monotonic HRU. The nature of the MTAM model, however, allows 

the definition of useful restrictions that lead to decidable safew analysis with little 

sacrifice of expressive power. MTAM can be restricted to a ternary version, where 

all commands are limited to three parameters. As it turns out, ternary MTAM is 

equivalent in expressive power to MTAM. Analysis of safety is tractable for ternaxy 

MTAM provided creation of entities is acyclic. As with SPM, an MTAM scheme 

is acyclic if its creation graph is acyclic. Safew analysis is again based on a worst 

case and is very similar to the safety andysis of SPM. The commands defined for 

an instance of the model can be placed in a canonical form. The canonical form 



separates commands that contain subject/object creation operations into two new, 

related commands, which have the same effect on protection state. The creation 

operations are plôced into unconditional commands. The remaining, non-creating 

commands may be conditional. There is an unfolding of the initial state by applying 

the creation commands to the initial state entities where possible. This unfolded 

state contains a surrogate for any entity that might be created in the system. All 

non-creation commands are then performed until the state no longer changes. The 

resulting state is a maximal state and a.ny system evolution from the initial state can 

be mapped onto this maximal state. This safety analysis for acyclic ternary MTAM 

is polynomial in time in the size of the initial access matrix. This surprising result 

is due to the restrictions imposed by strong typing and the local authonzation of 

commands resulting £rom the restriction to three command parameters. The limit 

to three parameters means that the conditions authorizing a cornmand are limited 

to examining o d y  a s r n d  portion of the access mat*. Ternary commands lead to 

no loss in expressiveness as multi-parent creation is still possible, i.e. two parents 

and a child object can be specsed. Unary and binary MTAM, although they yield a 

tractable safety analysis, do not allow multi-parent creation and are, therefore, weaker 

than ternary MTAM. 

The safety analysis for acyclic MTAM without the ternazy restriction does not 

have the same polynomial time result for complexity. Consider that, monoconditional 

monotonic HRU with no creation h a  NP-complete safety [HRU76, San921 and it can 

be seen that acyclic MTAM can subsume monoconditional monotonic HRU with 

no creation. Therefore, safety analysis for acyclic MTAM can be no better than NP- 

complete. A sumrnary of these results indicates that safety analysis for acyclic MTAM 

is of complexity no better than NP-complete. Safety analysis for acyclic ternary 

MTAM is of polynomial complexity. Ternary MTAM is equivalent in expressive power 

to MTAM. This is not a claim that NP = P because in these results nothing has 



been asserted about what c m  be expressed in the acyclic cases of MTAM and t e r n a .  

MTAM- The two models d s e r  in the instances that can be modeled using acyclic 

creation. 

2.2.12 Transformation Mode1 (TRM) 

The next model to be examined, TRM, fuses the desirable qualities of the two pre- 

vious directions of development, which started with SPM and resulted in NMT and 

TAM. TRM generalizes NMT by adapting the principle of transformation to the more 

expressive structure of TAM. TRM dso focuses on the capability to express policies 

that require non-monotonie changes to system state. 

The construction of the TRI  model [SG94] is much like TAM. The main difference 

is the application of the principle of transformation. Where TAM, like HRU and SPM, 

can base a change in access rights for an object on the current rights of a number of 

subjects or objects, TRM is restricted to exnmining only the rights for the object in 

question. The new model, like NMT, is non-rnonotonic and does not allow subject 

creation. So far T M ,  as described, is a special case of TAM. However, TRM also 

allows for the testing for absence of rights, which is not dowed in the standard version 

of TAM. 

The TRM model defines the sets R, TS, and TO (TSîiTO = {)) as for SPM and 

NMT. States and the access matrix are as they are for TAM. A finite set of comrnands 

is specified for the creation and destruction of objects and the transformation of access 

rights. A command has one of the following formats: 

command create(Sl : SI, 0 : O )  

create object O 

enter own in (&,O) 

end 



or 

command destroy(Sl : sl, O : O) 

if cnun E (SI, O) then 

destroy object O 

end 

or 

command a(& : sl, S2 : ~ 2 , .  . . , S k  : Sk7 O : O) 

if predicate then 

Wl; Op2; - ; OPn 

end. 

SI, . . . , Sk are the formal parameters correspondhg to the subjects involved in 

the transformation. O is the object for which access rights are to be transformed. 

si, . . . , SF: and O are the types of the respective formd parameters which must match 

the types of the actual parameters used in invoking the command. The predicate is 

the condition of the command and is a propositional expression containhg t ems  of 

the form: r E (S, O) or r # (S, O), where S and O are formal parameters of the 

command. Each opi is a primitive operation: enter r into (S, O), or delete r from 

(S, O). The following example of a command might form part of a transaction-based 

policy where a clerk can obtain the right to issue a cheque only if he does not have 

the right to prepare or approve the cheque. 

command issueCheque(S1 : clerk, 0 : payCheque) 

if prepare (SI, O) A approve # (SI, O) then 

enter issue into (Si, O) 

end 

Two versions of TRM are specified in [SG94] which restrict the number of mat* 

ceils that can be examined by a command. Unary TRM (UTRM) and binary TRM 



(BTRM) only allow the predicate of a command to test one or two cells respectively. 

The predicate may still be composed of a number of terms checking for the presence 

or absence of rights in the cell(s), but the number of cells checked is restricted. For 

example, NMT is a restricted version of UTRM, as it checks only one cell and modifies, 

at  most, two. It can be shown that BTRM can express m y  policy expressible in TRM. 

In fact, ternary BTRM (BTRM restricted to comrnands with three parameters) is 

strong enough to model any system which can be modeled in TRM. Although [SG94] 

claims that BTRM d o w s  the expression of some policies that camnot be conveniently 

expressed by UTRM (and therefore NMT) a later paper [SS94b] proves BTRM and 

UTRM equivalent in expressive power, and therefore to TRM. 

TRM is a matrix-based model with no subject creation. TRM restricted to check 

only for the presence of access rights can be subsumed by HRU with no subject 

creation. As stated before such cases are decidable with a decision procedure for 

the generd case having exponential complexity. We can also note that the model is 

restricted by strong Wing, is trivially acyclic, and we only really need to consider the 

UTRM cases. These factors may lead to a more efficient analysis. On the other hand, 

the fact that the model is non-monotonic and has the added intricacy of checking 

for the absence of access rights, as well as their presence, will likely add to the 

complexity of safety analysiç. Presently, TRM has no efficient non-monotonie safety 

results. Tractable safety analysis for useful non-monotonie systems has been a difficult 

problem. 

2.2.13 The Information Flow Problem 

The motivation for looking at the issue of migration of access rights and safety was 

that although processes/subjects in the system are executing on behalf of users we 

trust, we don't necessarily trust the processes thernselves. Unless a program is known 



to be trustworthy, it may harbour a Trojan horse. A Trojan horse acting with the 

trusted user's privileges might propagate access rights in some insecure way. The 

safety analysis will tell us if the mode1 instance we are examining will allow propa- 

gation of rights inconsistent with the securïty policy. If a system is ' d e '  it may stiU 

not be secure. For example, when confidentialiw is an issue, the ovemding concern is 

the possible flow of information to a user who should not have it. If the system is to 

protect the information in a file, it does not really matter that an unauthorized user 

cannot obtain rights for the file if he can obtain the information in the file. Suppose 

that a Trojan horse, instead of trying to grant access rights for a file to an unautho- 

~ z e d  user, copies the content of the file to arioiher file which can be accessed by the 

unauthorized user. The access rights associated with the original file do not apply to 

the new file. In fact, the unauthorized user may own the new file. The propagation 

of information cannot adequately be controllled by a system where access decisions 

are solely at the discretion of the user (DAC). 

One approach to the information fiow problem is to apply a mandatory access 

control (MAC) scheme. Under a MAC scheme some access decisions are built into 

the system and cannot be ovemdden by the user even if i t  is the user's desire to do 

so. The strong typing schemes we have seen in the previous rnodels are an example 

of MAC. The definition of protection types and the restrictions on entity creation 

and access right propagation based on type are built into the system. The user 

is constrained by the static policy decisions embodied in this typing scheme. The 

use of MAC in system modehg  predates the introduction of protection types, and 

the formalization of the access matrix and the safety problem in [HRU76]. Initially, 

MAC controls were applied a s  an analogue to military/government security policy as 

an attempt to overcome the weaknesses associated with DAC. 

Systerns which support the military/government security policy are usually called 

multi-level secure (MLS) systems. MLS systems are probably the best known MAC- 



based systems. Objects in such systems have a label corresponding to their classifi- 

cation permanently bound to them. Subjects have a clearance level associated with 

them. The control of information flow is provided by reference monitor based access 

control. The reference monitor of such systems has a MAC component which ensures 

that a subject is never allowed access to any information for which he is not cleared. 

Usually, the system will also have a DAC component which authorizes need-to-know 

accesses based on the discretion of the owner of the information. The next few sub- 

sections discuss modeling schemes designed to address the information flow problem. 

Some aproaches apply formal modehg to MAC while others try to prove information 

flow properties for a system. Information flow approaches have been applied in both 

the milit ary/government sect or and in the commercial sector . 

2.2.14 Bell and LaPadula Mode1 (BLP) 

The first formalization of an MLS system was by Bell and LaPadula [BL73a, BL73b, 

Be1741. The model explored the access-control properties required of a reference 

monitor to enforce military/govemment security policy. The model, BLP, is dehed  

below : 

S a set of subjects 

O a set of objects 

C an ordered set of classifications 

K a set of categories 

L a set of security levels with a partial order relation 5, 

where L c C x 2K 

A a set of rights { g, g, TV, a), where 

r - is read (read-only) 

e - is execute (no read, no write) 



w is write (read and write) - 
a - is append (write-only) 

An element of L is a security Ievel which is made up of a classi£ication component 

and a category component, e.g. (Top Secret, NATO, ALPHA). The pairs of L form a 

partial order given the access d e s  for military/government security policy described 

previously. In the models previously described, the set of access rights was defined 

for a model instance, depending on the implementation being modeled. 1. e., rights 

are specifically d e h e d  in the context of an application being modeled. Here the set 

of rights, A, is defined for the model itself and is not changed for model instances. In 

this model system states are ordered triples £rom a set V = (B x M x F), where 

B the set of possible sets of curent accesses 2Sx0xA, where b E B 

defines a current set of accesses 

M a set of access matrices, a matrix AM E M defines the current 

set of access rights each subject holds for each object 

F a set of security level vectors F C LS x L" x LS, where f E F is a 

triple (fs, fo, fc) where, 

fs subject security level function (clearance) 

fo object security level function (classi.fication) 

fc current securiw level function 

R a set of possible requests to change the security state of the system 

D a set of possible responses to a request indicating an access decision result 

(i. e. y es, no, error (ambiguous request), ? (request not recognized)) 

T the set of positive integers, t E T is a time index for request, decision, 

and state sequences: 

X RT, request sequences, where xi E X 

Y D ~ ,  decision sequences, where yi E Y 



Z p, state sequences, where zi E Z 

A tuple of a current access set à, b E B, defines an access some subject is making 

to some object in the present state. Xn any particular state, a subject rarely has 

current access for aU the objects which it may be authorized to access, only for those 

objects specific to the subject's current processing. The s e c d t y  level functions which 

compose F map subjects and objects to security levels. fc designates a subject's 

current secUn@ level, such that for a subject s, f&) 5 fs(s)- A subject may 

currently not be accessing any objects at the upper limit of its security clearance 

level. fc thus provides a security level based on a subject's current accesses. Elements 

of R can, for example, be requests to get or to release current access to an object, 

requests to give an access right to another subject (or rescind the nght), create 

or destroy objects, etc. Requests can be used to attempt to mod* the security 

state of the system. Depending on the current system state the request will yield a 

response and possibly a modified system state. An action of the system (r, d, v2, ul) 

describes a request r yielding a decision d and rnoviag the system fiom state vl to 

vz. W C (R x D x V x V) is a relation defining the possible actions of a system. 

Actions are the primitives for inductively defining an appearance of the system (a 

sequence of actions) and a system (a set of possible system appemances). A system 

is defined, C(R, D, W, zo) c X x Y x 2, where an appearance of the system (x, y, r )  E 

C ( R ,  D, W, zo) iff (x,, yt, q, q-,) E W, for all t E T, and zo is a specified initial state. 

What remains is to define the characteristics of the system which must be main- 

tained to ensure security. The three aspects of security which are considered are: the 

simple security property (ss-property), the *-property (star-property) , and the déscre- 

t ionary  security property (ds-property) . A state satisfies the ss-property if for every 

current access, (S, O, s) E B, which allows a subject to read data in an object (i. e. 

x = g or IV), fo (O) fs(S). This means that for a subject to access an object such 



that it is able to read data from the object, then the clearance of the subject must 

dominate the classification of the object. 

The ssproperty may seem to be enough. On the surface, this is a direct im- 

plementation of military/government security policy. This might be enough if all 

processes run by a user are as tmstworthy as the user himself. As we have seen, 

real processes may not be and could mite data to an object at a security level lower 

than the user. It is to counter this threat that the *-property is introduced. A state 

satisfies the *-property if for every current access, b = (S, O, 5 ), b E B, which alIows 

a subject to write data into an object (ie. - = a or w), and for every current access 

bf = (Sr,  Of, g), b1 E B which allows a subject to read data in an object (Le. = 

or w), fo (Of) 5 fo (O). This means that if a subject has simultaneous access to more 

than one object, the classiiication of all of the objects it can read data fkom must be 

dominated by the classification of al1 the objects it can mite to. Note that implies 

both read and write. Therefore, all objects to which a subject has access must be 

at the same level, and the current secuity level of the subject, fc(S), must be at the 

level of those objects. Most subjects in a system are bound by the *-property. Those 

that are not are called tmsted subjects. Usually such subjects rnust be guaranteed 

tmstworthy (i.e. no errors, no Trojan horses, etc.) by some verification technique. 

A state satisfies the ds-property if every current access, b E B, is permitted by 

the current access matrix AM E M as we have seen for matrix-based models such as 

HR,U. 

A state v E V is a secure state iff v satisfies the ss-property, the *-property (trusted 

subjects excepted), and the ds-property. A state sequence z E Z is a secure sequence 

ifF a is secure for each t E T. An appearaace (x, y, z) E C ( R ,  D,  W, zo) is a secure 

appearance iff z is a secure sequence and a system C(R, D, W, zo) is a secure system ifF 

every appearance (x, y, z)  E C(R, D, W, zo) is secure. A valuable property of secure 

systems in the BLP mode1 is that they can be proved secure inductively. Presenmtion 



of security from one state to the next guarantees total system security [BL75]. An 

action of a system, (r, d, vi+l, vi) E W, transitions the system £rom one state to the 

next . An action (r, d, (bi+i, Mi,i , fi+l), (bi, Mi, fi)) is security preseMng iff it adds no 

new elements to bi that would violate the ss-property, the *-prope* (trusted subjects 

excepted), or the ds-property, and removes any elements of bi that, following the state 

change, would violate these properties [McL87]. If the system begins in a secure state 

zo and al l  actions, (r, d, vi+l, vi) E W, of the system are security presenring, then the 

system C(R, D, W, zO) is secure. This is the Basic Security Theorem. Construction 

of a secure system proceeds by defining operations, or rules, for changing the system 

protection state. The rules are proven to be security preserving with respect to any 

action they define. The system can then be proven secure inductively, given that it 

starts in a secure state. Bell and LaPadula provide an interpretation of the model for 

the Multics security kernel in [BL75]. 

BLP is probably the most widely known model for computer security. In 1985 the 

US government published the Trusted Computer System Evaluation Criteria (TG 

SEC) [Dep85], or Orange Book as it is commonly known, as a standard for the pro- 

curernent of government information systems. Although the standard is supposed 

to accommodate a variety of models, its structure enshnnes the concept of security 

through ACEbased DAC, and security-label-based MAC. Security labels are data 

classifications bound to and stored with the data elements/objects and are used as 

a basis for reference rnonitor access-control decisions. Although the Orange Book 

criteria for labelled MAC do not specify a modeling standard, it is heavily influenced 

by BLP. Later European standards and the Canadian Trusted Computer Product 

Evaluation Criteria [Corn881 are broader in their consideration of integrity and avail- 

ability issues but their confidentiality speci6cations are similar to, and compatible 

with, the TCSEC. These standards have significantly influenced the direction of se- 

cure system development. There are currently a number of secure products which 



have been evaluated against the critena; however, diminishing government/military 

budgets are beginning to move the focus of developers toward more generic solutions 

which combine government and commercial requirements [Ada95]. 

2.2.15 The Lattice Mode1 

Denning, in [Den76], models security levels as a lattice structure consisting of a partial 

order of securï@ levels and least upper and greatest lower bound operators. Most 

security models based on securiw ciassifications use a similar lattice structure to define 

the security level relation, including later descriptions of BLP-style MAC models. As 

we have seen, BLP models a run-tirne mechanism which enforces flow restrictions on 

the dissemination of information by use of a reference monitor. The lattice model 

is also applicable to other run-time models and also to compile-time certification 

mechnniçrns. The Iatter are useful in that they can provide assurance that a process 

is trusted at the component level (i. e. the process as a system component is trusted to 

behave in cornpliance with some security specification). Such processes are excluded 

from run-time access-control checks on the assumption that they can be trusted not 

to disseminate information in a manner inconsistent with the system security policy. 

In a real system, such processes are of2en necessary. For example, a useful system 

probably has mechanisms fur trusted downgrade of data, multi-level mail handling, 

multi-level networking, etc. Trusted processes are required to handle data a t  more 

than one level and may be required to write to low-level objects without allowing the 

inadvertent flow of high-level information into those objects. 

2.2.16 Lattice-based Integrity 

Biba in [Bib77] proposes a model for integrity in information systems which is essen- 

tially the dual of the BLP model. The militaryjgovernment securiw policy, which 



drives BLP, is based on the control of flow of information for confidentiality reasons. 

Information is allowed to flow £rom lower secrecy levels to higher secrecy Levels. Biba's 

model is based on the observation that information should not flow from low integrity 

objects to high integrity objects. To allow information to do so would compromise 

confidence in the high integrity object. A simple integrity property and integrity 

*-property are defined which are duals to the respective BLP properties. The simple 

integriw property allows a subject only to read objects at an integrity level which 

dominates the subject. The integrity *-prope- only d o w s  a subject to write to o b  

jects which are dominated by the integrity level of each of the objects for which the 

subject has read access. The integriw lattice has been proposed as a MAC paradigm 

for commercial security on its own and also in conjunction with a BLP-style Iattice 

for secrecy [Lip82]. Operating systems having MAC Iattices for both secrecy and 

integrity have been produced commercially In [San93], it has been shown that such a 

composite scheme c m  be modeled as the product of lattices, (the BLP lattice and an 

inversion of the Biba lattice) which is itself a lattice. [San931 also proposes a lattice 

solution to Chinese Wall security policies. 

2.2.17 Information Flow Analysis 

The lattice-based security models we have just been examining are useful in providing 

access control for the objects identified by the model. A significant weakness of these 

systems is that it is difficult to have a model granularity detailed enough to i d e n t e  

(and thereby control) all objects in the system and still provide efficient analysis. 

Processes are not restricted to using the legitimate communication channels provided 

for interprocess communication (e-g. files, messages, etc.). Legitimate channels can be 

identitied as objects, and usually are controlled in accordance with the system securify 

policy. In an actual implemented system, many observations a process may make do 



not lend themselves to such control. The inclusion of every implementation specific 

entity in the system which can hold a bit of data wiU also unreasonably complicate 

the model. Any action by a process that is observable by another process is a possible 

communication channel. The flow of information by other than a normal channel is by 

a covert channel. A cove7-t storage channel is any communication resulting fiom the 

abiliQ of one process to observe another process modifying the state of the system- 

The information observed may be object attributes, object existence, or the state of 

shared resources. The observation may be direct, e.g. the appearance of a new file 

name in a directory (whether or not the observer has read access to the new file or 

not). The observation may also be indirect. For example, the fact that the use of a 

peripheral is denied because it is already in use by another process, provides a bit of 

information about t hat process. A covert timing channel results £rom communication 

by means of observing the effect another process may have on system performance, 

measured against some timing base such as a real-time clock [Gas88]. A Trojan horse 

can modulate a covert channel to leak information out of the host process. 

A means to identi& possible covert channels is information-flow analysis based 

on information flow models. Information flow models also stand by themselves as 

modeling techniques for secure systems in general, and some believe that the correct 

explication of security should be formulated in terms of information flow [McLSO] . To 

this end, information flow models can be used to provide system specifications. Some 

models provide methods for the refinement of specifications to provide system design 

and Mplementation. Information fiow analysis and models are based on detailed 

formal specification, rather than on an abstract state machine [Gas88]. This is because 

the variables that participate in covert channels are not necessarily represented in an 

abstract model. The basic form of such models is of state or trace-based specifications 

which specify what a subject can observe of the system. For example, a model might 

spec* that information cannot %ow to one user fiom a second user if the purging 



of the second user's input from the system has no effect on the outputs the first can 

observe of the system, Le. the second user does not interfere with the fbt. Another 

mode1 might speci& that no observations one user can make of the system reflect the 

actions of a second user of the system, and thus represent a fiow of information from 

that user to the first, i. e. the first user is unable to deduce anything about the inputs 

of the second user. In theory, as a system evolves to implementation, proof that 

the specifications still hold for each new more detailed level of abstraction provides 

assurance that the security policy is behg met. 

A profde of research in information flow models for covert channel analysis and sys- 

tem specification includes the following work [Den76, FLR77, Den82, GM82, GM84, 

McC87, McC88, Jac88, McL90, GMP92, BC92, BCC94, BY95, Ros951. As this dis- 

sertation is primarily concerned with access control, these models will not be explored 

in detail here. 

2.2.18 Role-based Security (RBAC) 

Role-based security models have currently become the object of more interest as the 

focus of security research moves more fkom government/milifary environments to the 

commercial environment. It  has been recognized above that DAC-based securiw may 

be adequate for cooperative environments but is too weak in environments subject to 

malicious attack. Rigid classification-label based MAC environments as d e h e d  by 

Orange Book criteria and implemented in a number of operational systems are based 

on government/military policy for confidentiali~ of information. These rnechanisms 

do not lend themselves well to commercial security requirements [MS88, SS94aI. Clark 

and Wilson in [CW87], Moffet and Sloman in [MS88], and Smith in [Srni931 have as- 

serted that commercial security concerns should mirror an organization7s internal 

control systems (as Orange Book criteria mirror internal government/military con- 



fidentiality controls) . Commercial control systems are usually based on hierarchicd 

delegation of authority and separation of duty. The primaxy concern of commercial 

systems is usually to minimize fraud and errors. The policy must ensure that no user 

can create or morlifv data in such a way that assets or accounting records can be lost 

or cormpted [CW87]. These are primarily integrity issues. 

Role-based access controls (RBAC) address commercial security requirements by 

focusing on how users interact with data. A role is a semantic constmct around which 

access control policy is formulated [San98]. In an RBAC policy, users are assigned 

to roles and permissions/rights are assigned to roles. Role authorizations are granted 

to users, or groups of users, based on what activities they are allowed to perform on 

system data. This M e r s  from government/military DAC and MAC controls which 

allow, or disallow, access without regard to the use that the subject is going to make 

of the data. Usually under RBAC a user is authorized to take on different roles 

at different times during his interaction with the system (a discretionary property). 

While in a specific role, the user is restricted to the data accesses and activities 

authorized for that role. A role should provide just enough permission for the user 

to perform the tasks associated with the d e .  This is the principle of Zemt privilege 

(a mandatory policy). This differs from classic DAC 'user groups'. Such groups are 

primarily sets of users. A system usually allows discretionary assignment of rights to 

a group. Roles explicitly define a set of rights availabie to the role. Therefore the type 

of data available to a role is fùred in the policy scheme by the system administrator 

and is non-discretionary. As well, in the type of rights allocated by RBAC there is 

usually a greater degree of data abstraction. The rights dehed  for a system using 

RBAC imply more complex interfaces than the standard read, write, and execute of 

DAC user groups. The authorizations typically allow a subject to perfom a specific 

action on a specific type of data items [SCFY94]. Thus, a clerk role may be authorized 

to post an entry to a bank account while a secretarg role rnay be authorized to edit a 



letter. 

Clark and Wilson in [CWB?] define a model which identifies certain objects as 

Constrained Data Items (CDIs) . Access to these objects is prov~ded solely through 

Transformation Procedures (TPs). A TP is a kind of well-formed transaction which 

will move a CD1 fiom one valid state to another. TPs are defined to operate on a 

specific set of CD1 types. Users are restricted to a certain set of TPs. The definition 

of, and access to, TPs is defined by the security administrator and k a static scheme. 

Although the paper does not explicitly define its model in terms of abstract data 

types and role-based access control, these concepts seem implicitly to be a natural 

context. The various typed access-control models we have examined provide support 

for such a model. 

There have also been authors who have proposed models which support RBAC 

based on Orange-Book-style DAC and MAC (e.g. [Lee88]). These models tend to be 

awkward and [SCFY94] notes that awkward models can lead to awkward implemen- 

tations and a mode1 better suited to the implementation of RBAC policies can lead 

to easier implementation. 

There are a number of RBAC models proposed to handle disparate user environ- 

ments and policies. Many of these models can be unified under the RBAC96 family 

of access-control models proposed by [San98]. A specific role-based policy can then 

be matched to RBAC mechanisms defined by one of the models in the family. Four 

models are deked in RBAC96: RBACo, RBAC1, RBAC*, and RBAC3. 

RBACo is the base model and includes a minimal set of features to allow a system 

to support RBAC. Included in these features is support for the concept of sessions. A 

user may have multiple sessions running simultaneously (e.g. in different windows). 

Each session may be assigned a different combination of the user's authorized roles. 

RBACl and RBAC:, add to the features of FU3ACo. RBACl adds support for 

hierarchical roles. The intuition behind role hierarchies is that roles forrn a partid 



order- Roles higher up the hierarchy inherit all the permissions for authorized roles 

below them in the hierarchy. 

-AC2 adds constrauits, which impose restrictions on acceptable configurations of 

the RBAC models. The features introduced in FU3ACl and RBACz are independent, 

Le. the features can be added orthogonally to each other. RBAC3 consolidates the 

features of RBACl and RBAC2. The RBACl model has the foIIowing components: 

U, R, P, and S sets of users, roles, permissions and sessions respectively 

P A C P x R  a many-to-many permission to role assignrnent relation 

U A c U x R  a many-to-mmy usêr to role assignment relation 

user : S + U a function mapping each session si to the single 

user U S ~ ~ ( S ~ )  (constant for the session's lifetime) 

R H C R x R  is a partial order on R called the role hierarchy 

or role dominance relation, also written as > in i d k  

notation 

roles : S + 2R a function mapping each session si to a set of roles 

roles(si) {rl (3rf 2 r )  [(user(y), 7') E UA])  

(which can change with t h e )  and session si has the 

permissions U r ~ r o l e s ( s ~ )  { p  1 (gr" 5 r ) [(PY r") E PA] ) 

Constraints are added to the basic model in RBAC2 and RBAC3 to enforce higher 

level organizational policy. For example two roles may be declared as being mutually 

disjoint, ie. the same user can not be assigned both roles. This particular constraint 

would define a separation of duties. Constraints can apply to all aspects of the M A C  

model. 



2.2.19 Task-based Security (TBAC) 

Recent work [TS94, TS97] has proposed a shift in the focus of security models toward 

the representation of authorizations as a higher level of abstraction for the security 

requirements of an application or business enterprise. As it has been presented so far, 

the usuaI approach to access-control modeling is subject-object based. The models 

defined which subjects had access to which objects, and what kind of access they 

had. For the most part, the intent of the access by the subject, or in what context 

the access is being made, has not been considered as part of the model. Once access 

is available the subject seems fÎee to use that access for any purpose. Under these 

kinds of policy models it is difEicult to model legitimate-use security properties. 

Role-based access control provides an initial step toward the ability to capture 

legitimate-use policies. RBAC by its nature encourages the definition of fine-grained 

rights/permissions. This support for data abstraction lends itself to ta&-oriented 

permissions such as the post and edit rights examples in the RBAC subsection, Sec- 

tion 2.2.18. RBAC also supports least privilege through the use of sessions. By 

controlling which roles are active for the user sessions the user is provided with just 

those permissions required to accomplish the work needing to  be done. 

But the specification mechanisms available in RBAC are not able to model the 

order in which the permissions are to be used or how many times they should be 

permitted to be used. There is still the notion that once a permission becomes 

available to a subject, the subject can use that permission for any purpose, and 

as often as it desires. To restrict the use of a permission to legitimate purposes 

it is desirable to be able to  spe& when in the execution of some business task a 

permission should become available, what that permission can be used for, and how 

many times it can be used. i.e. provide a context for the legitimate use of that 

permission. The permissions are provided on a just-in-time basis as required by the 



task at hand. 

The work on Task-based Authorization (TBA) and Task-based Authorization 

Control (TBAC) presented in [TS94, TS97] proposes a fiamework for active security 

models and enforcement from the perspective of activities and tasks. Permissions are 

constantly monitored, and activated and deactivated in accordance with emerging 

context associated with the progress of the tasks being performed. 

As noted in the introduction to the dissertation, intemal controls of an enter- 

prise, and therefore the information system supporting that enterprise, are normally 

designed to ensure that the tasks carried out in the enterprise preserve a certain 

standard of integrity. In the classic paper-based systems an authorization is required 

to proceed with a task. An authorization is often captured as a signature on an 

archival document and represents permission to proceed with the task as well as the 

acceptance of some liability by the authorizer for the execution of the task. The 

task may also involve the requirement for separate authorizations for its subtasks. 

An authorkation results in the enabling of one or more activities and related per- 

missions. Authorization management is central to TBAC models. The fundamental 

abstraction is an authorkation-step. An authorization-step represents a primitive au- 

thorization processing step and is the analog of a single act of granting a signature 

in a paper-based system. 

Part of the motivation for this work is to provide modeling techniques for more 

abstract representations of security requirements. These higher-level models are a p  

propriate for capturing an organization's policy requirements that pertain tu security, 

and the interfaces between the organization and the computer system. 

In classical subject-object access control models the information associated with 

a permission can be thought of as an element of a cross product, P C S x O x A. 

S is the set of subjects, O is the set of objects, and A is the set of actions or access 

rights. Under TBAC, access control also involves task-based contextual information. 



Two more sets are introduced. AS is the set of authorization-steps. U is a set of 

usage and validiw counts. The members of U control usage, validity, and expiration 

characteristics that may be tracked at mtime. e.g. how many times a permission 

is used. A permission under TBAC now becomes an element of P C S x O x A x 

U x AS. For example, a permission specifies a certain kind of access to a specific 

object by a specific subject, as was the case for matrix-based schemes (the A, 0, and 

S components) . The permission also specifies that an access can only be made in the 

context of a specific authorization-step and perhaps that the access can o d y  be made 

n times (the AS and U components). 

Permissions are associated with exactly one instance of an authorization-step. 

An instance of an authorization-step is associated with exactly one instance of a 

task. Each authorization-step maintains a protection state that is the set of permis- 

sions currently valid for the authorization-step. The members of the set will change 

with time as the authorization-step is processed. For each kind of authorization-step 

there is defined a trwtee-set. The trustee-set represents the individuals/entities that 

are permitted to invoke and g a n t  an authorization-step. For every instance of an 

authorization-step there is a single trustee from this set that invokes and gants  the 

authorization-step. 

A family of models for TBAC is proposed which is similar in spirit to the family 

of models proposed by RBAC96. Four models are defined: TBACo, TBAC1, TBAC2, 

and TBAC3. TBACo is the base model and includes a minimal set of features to allow 

a system to support TBAC. The TBACl model adds support for composite autho- 

nzations. The TBACz model adds support for constraints which impose restrictions 

on acceptable configurations of the TBAC models. As with RBAC96 the features 

introduced in SBACi and TBAC2 are independent, i.e. the features can be added 

orthogonally to each other. TBAC3 consolidates the features of TBACl and TBAC2. 

The TBACo mode1 defines the components that make up every authorization- 



step, the life-cycle of an authorization-step, and dependencies that are used to model 

authorization policies. 

Every aut horization-step has to s p e c e  the following attribut es: 

Step-name This is the name of the authorization-step. 

Processing-state The current processing state indicates how far the 

authorization-step has progressed in its Me-cycle 

(discussed below) . 

Protection-state The protection-state defkes all potential active 

permissions that can be checked-in by the authorization- 

step. The current value of the protection-state, at any 

given t h e ,  gives a snapshot of the active permissions 

at the tirne. Associated with every permission is a 

validity-and-usage specification. The validity-and-usage 

specification speci6es the validity and usage aspects 

of the permissions associated with an authorization-step. 

It will thus specify how the usage of the permissions 

will relate to the authorkation remaining valid (or 

b ecoming invalid). 

This contains relevant information about the set of 

trustees that can potentiaJly grant/invoke the 

authorization-step, such as their user identities and 

roles. 

Executor-trustee This records the member of the trustee-set that 

eventually grants the authorization-step. 

Task-handle This stores relevant information such as the task and 

the event identifiers of the task from which the 
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FIGURE 2.1. Basic processing states for an authorization-step 

authorization-step is invoked. 

An authorization is not static under TBAC. Each authorization-step has a life- 

cycle associated with it. A n  authorization step moves through a series of processing 

states during its lifetime. Figure 2.1 illustrates a simplifed set of processing states. 

An authorization step is dormant (or non-existent) when it has not been invoked (re- 

quested) by any task. Once invoked an authorization-step begins to be processed by 

moving to the invoked state. If invocation completes successfully the authorization- 

step moves to the valid state. If the invocation fails (e.g. some criteria for autho- 

rization are not satisfied) the authorization-step moves to the invalid state. While in 

the valid state the authorization-step and its permissions may be used as specified 

by the validity-and-usage specifications in the protection-state. At some point the 

authorkation-step will reach the end of its lifetime and enter the Uzvalid state. It is 

also permitted that a valid authorization-step be put on hold temporarily. While on 



hold the permissions associated wit h the authorization-step are inactive and cannot 

be used to provide access to an object. 

The authorkation-steps do not stand alone in a system specification. They are 

related to and depend on each other in order to fulfill higher level security policy 

requirements. There are exïstential, temporal and concurrency dependencies defined 

for the model. In the following definitions let A l  and A2 be authorization-steps 

and statel and state2 be some processing state for these two authorization-steps 

respe~t ive l~  

Alstote' + A2State2 If A l  transitions into statel, then A2 must transition 

into state2. 
Aistatel < ~2state2 If both A l  and A2 transition into states statel and 

state2 respectively, then Al's transition must occur 

before A2's 
AlState'# AYtate2 A l  cannot be in statel concurrently when A2 is in 

state2. 
AIState'l 1 1  A2state2 A l  must concurrently be in statel when A2 is in state2. 

TBACl adds support for composite authom'xations. A composite authorization 

consists of a set of component aut horization-steps. The component aut horization- 

steps are related to each other via dependencies. Component aut horization-steps are 

visible only within the scope of their containing authorization-step. 

TBAC2 includes static and dynamic constraints. Static constraints are speci- 

fied for a kind of authorization-step and ad instances of that kind of authorization- 

step must meet the constraint. Dynamic constraints apply to an instance of an 

authorization-step and can be evaluated only as the authorization-step is processed. 



2.3 Review of Ob ject-oriented Analysis and Design Issues 

2.3.1 Information Captured by Current 00 Methods 

The object-oriented paradigm is based on a logical view of a system as a set of 

cooperating objects (a more general use of the term object than the subject-object 

relationship of the previous section). The objects in the system are vehicles for 

information hiding [Par721 and each encapsulates some information. That information 

can be a data structure, device, algorithm, etc. Access to the object is provided only 

via a well-defined interface. Usually the interface is defbed as a set of methods that 

can be used to manipulate the object. The interface methods can be thought of 

as operations that can be invoked on the object or alternatively as messages that 

an object can receive. The messages may carry information to the receiving object 

via message parameters and can provide information back to the sending object by 

way of return parameters. Messages can be used to alter the state of an object in 

some weU-defined way, or to provide some information about the state of an object. 

Objects can only interact via message passing and an object only responds to the 

messages defined for its interface. The net result is that access to an object's secret 

is controlled. In object-oriented analysis and design the description of a problem 

and its solution are entirely in terms of objects passing messages. Object-oriented 

models specify the Ends of objects which exist in a system, the kinds of messages 

which make up the object interfaces, and how objects can be combined to cooperate 

in message exchange scenarios that solve some portion of the larger problem. The 

problem specification can be captured in terms of these scenarios. 

Current object-oriented analysis (OOA) and design (OOD) methods such as Booch 

[Boo94], OMT [R+91], and UML [RJB98] provide notations and procedures for spec- 

ifying object-oriented models. There are also automated tools associated with most 

00A/OOD methods to facilitate mode1 building. The models produced usually have 



a view that describes the types or kinds of objects that may be instantiated in the sys- 

tem ( i .e .  classes in a class diagram [RJB98]). This view alço describes how the types 

of objects are related to each other, e-g. containment, sub-typing, interface use. Other 

views in the model descnbe how objects interact (ie. what messages are exchanged 

in a message sequence diagram or an object interaction diagram [RJB98]) in a given 

scenario. The information being captured by these rnodeling methods is sirnilar to 

the components of typed access-control models. If the specification and modeling of 

the security aspects of a system are to become routine and efficient then they must 

complement and extend contemporary practices in system andysis and design. It 

seems likely that much of the data needed to model security (concerning the classes 

of objects, their components, the relationships between interacting objects, and the 

Ends of messages they can exchange) is alreildy routinely captured by contemporary 

00A/OOD methods. 

There is usually a limited number of different kinds of scenarios in an object- 

oriented model and each kind of scenario has a limited number of ways in which 

it can be combined with other scenarios. This is because human beings design the 

various scenarios and the ways the scenarios are to be combined. They must be able 

to cope with the complexity of system design. Object-oriented decomposition and 

object interaction scenarios are organized with the purpose of restricting the com- 

plexity of system design. Essentially, it is the scenario-to-scenario interaction which 

specifies, and Iimits, the behaviour of the system. This can be the basis for defin- 

ing a security policy. Scenario-scenario relationships are not always captured well 

in current object-oriented modeling methods and therefore it is diflicult to tell with 

assurance what object will have access to any other object in the system as execu- 

tion unfolds. The scenario-based access-control model proposed extends the current 

object-oriented models to bring more rigor to the relationship between scenarios. The 

limited ways in which objects interact in these scenarios are used later to form the 



basis of a technique for safety analysis. 

A strength of 00 modeling is that it allows specifkatibn of the system in terms of 

the entities and interactions of the problem domain [ B o o ~ ~ ] .  This makes 00 model- 

ing in general, and the scenario-based access-control modeling technique specifically, a 

suitable tool for representing problem domain tasks. Problem domain tasks are spec- 

ified in terms of scenarios. Since the scenaxios drive the secUri@ poficy, the policy is 

task-based. 

2.3.2 Message Sequence Charts (MSCs) 

Object-onented analysis and design methods have borrowed the notation of message 

sequence charts (MSCs) fiom the telecommunications protocol design community. 

Message sequence charts are used, often in combination with the Specification De- 

scription Language (SDL) , in the specification of system protocol requirements, and 

for testing [Mau96]. The International Teleco~~ll~lunications Union (ITU) has stan- 

dardized both SDL and MSCs [Int88, ht941. This subsection provides a brief intro- 

duction to message sequence charts. MSCs are related to the scenarios used in SBAC 

modeling so some background is presented and some of the issues associated with 

MSCs are addressed here. 

MSCs have both a textual and graphical representations. The graphical represen- 

tation is most commonly used. A system is represented by a set of communicating 

processes. Pro cesses are represented by vertical lines. Signds sent between processes 

are represented by arrows connecting the vertical process lines. Each process's verti- 

cal line is a tirne-line. I.e., send and receive events for signals are ordered temporally 

from the top of the line to the bottom. Communication can be synchronous or asyn- 

chronous as defined for the system. Figure 2.2 presents an example of a simple MSC. 

The fkst process sends a signal of type a to the second process, which after receiving 



FIGURE 2.2. A Simple MSC 
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it sends a signal of type b to the third process, a signal of type c is then sent back to 

the &st process, and finally a signal of type d is sent to the third process. 

Multiple MSCs may be used to specify a system. In [LL94] MSCs are 'joined' by 

the use of conditions. A condition is represented as an elongated symbol spanning 

the process axes. The conditions have labels and are constrained to be placed as the 

first event or last event on the process the-lines. The system is defined to behave 

as though MSCs with identicdy-labeled conditions are joined at the condition. A 

MSC may be joined to itself at these conditions to create a non-terminating loop. 

Conditions rnay also be used to specify non-determined behaviour, such as conditional 

branching or conditional loops. This occurs if a terminal condition of one MSC shares 

a label with the initial condition of two or more MSCs. The tirne-Lines for the processes 

can branch at that point taking one of the possible paths represented by the joined 

MSCs. 

The meanings of MSCs have been formalized by Mauw [Mau961 and by Ladkin 

and Leue [LL94, LL95bl. The definition of the semantics of MSCs was addressed after 

the onginal publication of the standards for MSCs [Tnt88, Int941. The original MSC 
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specifkation included only a semi-formal description of the meaning of the charts. 

The syntactic features of MSCs raise some issues concerning the interpretation of the 

charts. [LL95a] presents some specific issues with respect to the semantics of MSCs 

which have some significance in the context of scenario-based access-control modeling 

since there are strong parallels between the two. The issues are introduced here and 

will be revisited in the discussion presented in Chapter 6 .  

One of the concerns is whether systems represented by MSCs have some finite 

set of global states with respect to message passing behaviour. Even given a h i t e  

number of control states for the participating processes, there may be an unbounded 

number of asynchronous messages 'in the system' ( i e .  sent but not received). This 

could be an argument for a non-finite set of global states. It is demonstrated for 

MSCs that the set of global states is in fact Gnite [LL95a]. Transitions between 

states are effected by atomic message-passing actions, which can be used to define a 

state transition function. This is a usehl  property for analysis of the systems being 

specified. This issue needs to be addressed in the context of scenario-based access 

control as an unbounded number of current permissions for object interactions is 

possible. 

For general MSCs the use of conditions to join MSCs introduces non-determinism. 

At a condition, individual processes must continue with behaviour as specified by one 

of the joined MSCs. In some cases this requires a choice of behaviours by a process 

that does not depend solely on its own process state. Such non-local choices require 

either un-bounded history variables to keep track of control choices (non-finite-state 

control) or MSCs which lead to non-local choices must be considered as ill-fomed. 

SBAC proposes a type of joining mechanism on message sequences. The issue of 

non-local choices will be considered in the context of this thesis. 

In the brief description of MSCs above there was no restriction specified that 

would preclude the crossing of message arrows. Crossings can lead to messages being 



received in a dîfïerent order than that in which they were sent (an 'overtaking' of one 

message by another). This is allowed in the MSC specification. In some cases it may 

not be possible to detect the possible occurrence of such an overtaking by using the 

process specifications alone. If the possibility of a crossing is not an aspect of the 

process spec%cations then it must be a property of the system environment. Le., a 

property of the environment must account for the crossover but is unspecified in the 

system specification. Environmental properties are not usually explicit in the system 

specifications. The existence of such undefined system properties is not desirable in 

a specification language. 

The last issue addressed in [LL95a] relates to the completeness of the information 

available in MSCs to specify liveness properties. The authors argue that liveness 

properties are dïfEcult to specify with MSCs alone and such properties are better 

specified in many cases by temporal logic f o d a e  provided in addition to the MSCs. 

2-3.3 Document Release Example 

This sub-section provides an example using a set of scenarios to illustrate ways in 

which objects can interact to provide the solution to a problem. The example is a 

non-monotonic security policy (cf. Sandhu, [SG94]). A Company scientist prepares a 

paper for publication. Before the scientist is allowed to publish his work he must clear 

it with a patent oEcer. The patent officer c m  authorize the paper for publication or 

she can return it to the scientist for revision. The scientist is initially able to m o d e  

the content of the paper but loses that right while the paper is under review. The 

scientist is also not able to alter the content of a paper authorized for publication by 

the patent officer. Figures 2.3 to 2.10 provide a simple set of diagrams that speciSl 

the object interactions that might be dowed in such a system. The diagrams are 

presented as a complete set here so that they can be understood in context with each 



The author edits oie report and 
then makes a decision on whether 
tu continue editing or foiward the , 
report for review. 

FIGURE 2.3. Scenario Type Sinitail 

other. The diagrams are used in examples later in this dissertation and a deeper 

understanding of their meaning will corne as a result of referring to them in the 

context of those examples. 

The diagrams are UML [RJB98] message sequence diagrarns. The diagrams have 

been produced using Rational Rose [Rat98], a popular industh1 00A/OOD tool. 

The tool captures basic information about a model, e.g. object m e s ,  object identi- 

fiers, message types, message parameter types, and the ordering of messages. 

Message sequence diagrams (MSDs) are a standard notation for specî&ing object 

interactions in a system. Message sequence diagrams are a restricted form of message 

sequence chart (Section 2.3.2). Information fiom these diagrams can be combined 

with additional information to describe how scenarios combine and interact. 

The vertical lines with boxes at the top represent objects. The boxes are labelled 

with an object identifier and an object type. The dashed line extending below the 

box is the life-line for the object. The arrows between object life-lines are object in- 
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teractions (messages). As with MSCs the He-lines are tirne-lines, so messages further 

down a Me-line occur after messages further up the life-line. 

Each message sequence diagram by itself describes a particular type of scenario 

consisting of one or more messages. The messages may only occur between objects 

of the types specified by that scenario type. The messages may only occur in an 

order consistent with the order specified by the scenario type. For example, scenario 

SdocEdit in Figure 2.4 specifies that an author of a document may, in sequence, read 

from and then write to some document. 

The MSC standard dows  rnodular design via sub-MSCs and decomposed process 

instances [Mau96]. This decomposition is process-based, and does not move across 

well to UML-style message sequence diagrams since the diagram is object-based and 

not process based. Many objects in an MSD can (and often do) belong to the same 

process. Modular design is denoted in the context of SBAC modeling by using what 
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are in effect sub-scenarios (or child scenarios), which in MSCs (if allowed) would be 

interpreted as decomposed message events. This is the intent of the messages marked 

here with the <scenario> tag. In these cases the tag indicates the creation of another 

scenario. For example the scenario Sinitial in Figure 2.3 indicates that a SdocEdit 

scenario is created followed by the creation of an SfomuardDecission scenario. This 

notation for capturing the composition of message sequence diagrams is not part of 

UML or of ITU message sequence charts. It is used to support the scenario compo- 

sition mechanism proposed in this dissertation for scenario-based access control. In 

Rational Rose, the <scenario> tags are normally captured in a data structure asso- 

ciated with the message documentation, but in this example they are presented on 

the message sequence diagrams to make them visible to the reader. Other features of 

the diagrams WU becorne apparent later in the dissertation. 

The semantics of MSDs c m  be interpreted using the proposed scenario-based 



accesscontrol modeling scheme. One can then use instances of the modeling scheme 

to provide a safety analysis for the system being speciiied. This ties security modeling 

to contemporaq software engineering techniques. This dissertation does not provide a 

formal semantics for MSDs based on SBAC modeling (although this is likely possible 

and worthwhile). It focuses on the presentation of SBAC modeling and uses the 

vehicle of message sequence diagrarns as a tool for intuitive understanding of SBAC 

models. That is, MSDs are intuitively straigbtforwaxd and useful for thinking about 

and describing object scenarios, which are then captured by the SBAC models. As 

well, the analysis tool developed as part of this dissertation uses the support for 

message sequence diagrams built into the Rational Rose modeling tool to help with 

capture of SBAC models. 



Chapter 3 

3.1 Introduction 

With the shift in emphasis in research on access-control modeling away fkom security 

requirements for confident ia3ity in govemment/miüt ary sys tems t owards integrity- 

based requirements in commercial systems, there is an increasing requirement to 

model legitimate use in secure systems. This c m  been seen in the motivation for 

RBAC and TBAC presented in Chapter 2. The development of the scenario-based 

access-control scheme presented here is driven by two main goals. The first is to 

provide a scheme that will provide efficient safety andysis for systems modeling le- 

gitirnate use policies. This implies efficient analysis of non-mono tonic systems . This 

is because legitimate use policies that employ some kind of just-in-time availabil- 

ity of access-control permissions are inherently non-monotonie. The second goal is 

to provide a modeling scheme that complements contemporary software engineering 

modeling techniques. The objective is to leverage the information that is already 

being captured by such techniques and to provide security modeling as an extension 

to existing software engineering rnethods. This eliminates duplication of effort in 

security modeling and may serve to encourage the wider use of security modeling. 

Significant success in providing safety andysis for secunty models for monotonic 

systems has been achieved by exploithg the concept of maximal state. As c m  be seen 

in many of the modeling schemes presented in Chapter 2, the strategy for analysis is 

to d o w  system state to expand (permissions to be added) until no further expansion 

is possible. The resulting maximal state can then be inspected to provide the safew 

analysis. The analysis scheme must show that expansion of the permission state is 



controlled, to ensure that a maximal state always exists and is computable. 

One of the chief difEculties in modeling non-monotonie systems is that the ex- 

istence of a maximal state does not seem likely. In fact, the concept of maximal 

state seems counter-intuitive in such systems. If access permissions are dowed to 

be created and revoked then it seems that many rnutually exclusive evoiutions of 

execution for the system are possible. For example many Merent  users may come to 

be the owner of an object, but none of them may be owners of it simultaneously. As 

well, the nature of the safefy problem seems to change slightly. History, or context, 

becomes important in non-monotonie systems. It is important to know not only if 

a permission for a subject to access an object is possible but when that permission 

becomes available. By 'when' it is m e n t  'when in relation to the existence of other 

permissions.' For example, two subjects may both be allowed to have a certain access 

to an object, but they may o d y  be able to have that access when they also have the 

owner permission for the object. A single maximal permission state does not seem to 

be an adequate basis for analysis of such safety criteria. 

This dissertation was inspired by the progression of access-control models culmi- 

nating in Sandhu's SPM [San881 and Sandhu and Ganta's T M  [SG94]. In particular, 

the unfolding mechanism used by these modeling schemes to control the state explo- 

sion inherent in subject creation is a very powerfui technique. It seemed that a 

successful adaptation of this technique might be to use such an unfolding scheme to 

limit the state explosion problem inherent in the expanding histories of non-monotonie 

systems. That is, to try to define some maximal set of possible histories instead of a 

maximal set of permissions. 

Scenario-based access control was developed independently Tom, but is related 

to, task-based access control [TS94, TS97). As is the case with TBAC, this research 

recognizes that an obvious basis for secure worldlow management is a just-in-time 

policy of granting permission, based on providing just those rights that are needed, 



when they are needed, to accomplish a legitimate task. Role-based access control 

and Clark-Wiion-based models [CW87] provide for least privilege and the fine grain 

definition of permission types. Clark-Wson goes as far as to specZy transformation 

procedures which lirnit the kinds of operation that can be applied to data. What 

is missing firom these modeling schemes is the notion of context, or order, in which 

operations are permitted to take place. 

SBAC begins with the obsemation that when using object-oriented techniques, 

software analysts and designers may specify a system by descnbing a set of scenarios. 

The amount of detail presented in the scenarios depends in part on the level of 

abstraction of the specification. Early in the system life cycle analysts use scenarios 

to describe the nature of the problem they are working on. Later in the system life 

cycle designers use scenarios to describe how they are going to solve the problem, ie. 

the specifkation of the software solution. In both cases they use scenarios to spec* a 

set of mechanisms that describe how objects will interact. As the 00A/OOD review 

material of Section 2.3 highlighted, scenarios are specifications of a particular set 

of object interactions. More generally, a specific kind (or type) of scenario can be 

used to describe what kinds (classes/types) of objects are involved and what kinds 

of messages are exchanged. Many objects are instantiated in the life of a system but 

they are intended to  follow a set of behaviours as laid out in the scenario descriptions. 

The designers use scenarios to describe what object interactions are necessary to meet 

system requirements. With a change of perspective these scenarios provide the basis 

for security modeling. Under SBAC, the designer is also using scenarios to describe 

what object interactions are permitted by the system. That is, the designer is now 

specifying scenarios that are necessary and sufficient to meet the system requirements; 

no other object interactions will be permitted. A permission can be generated for 

each step in a scenario and consumed as the specified object interaction takes place. 

Such scenario-based security models are inherently non-monotonic. 



This approach seems to have several strengths. In SBAC scenaxios are seen as a 

natural vehicle for the specification of the context required in expressing a just-in-the 

security policy. One of the stated goals of this research was to provide efficient anal- 

ysis for non-monotonie systems. As will be seen, the creation relationship between 

scenarios may be exploited to provide control over the state explosion of expanding 

histories of non-monotonic systems. The use of contemporary 00 modeling tech- 

niques and tools meets the second goal stated for this research; idormation that is 

already being captured by using 00 methods c m  be used to provide sec- mod- 

eling as an extension to an existing software engineering process. 00 techniques 

are used a t  high and low levels of abstraction. An advantage of 00 methods and 

SBAC security models based on such methods is that mode1 constructions tend to 

remain closely related to problem domain entities. Especially at the higher levels of 

abstraction, designers strive to make the objects and their behaviours abstractions of 

problem domain entities. This provides intuitive semantic content that takes advan- 

tage of naturd human cognitive skills [ B o o ~ ~ ] .  This makes it easier for the designer 

to cope with the complexity inherent in a system. 

The chapter is organized in the following way. The sections a t  the begiming of 

the chapter present the components of basic SBAC modeling. The sections d e h e  the 

basic components necessary to mode1 scenarios, scenario types, and the interaction 

between scenarios- Each set of components will be discussed first, then a forma1 defini- 

tion of the components will be presented. An example based on the document release 

example of Chapter 2 will be included in each case to help develop intuition for the 

modeling scheme. Later sections of the chapter add complexity to the basic modeling 

scheme. Components will be added to provide support for representing visibilities b e  

tween objects, for representing object creation, and for supporting information hiding 

between scenario types. 



3.2 Modeling Scenarios 

The usual approach in security modeling is to define sets of subjects (entities which 

require access to information, devices, programs, etc.) and objects (entities that can 

be accessed). In SBAC an object-oriented decomposition of system entities is used 

and a l l  entities in the system will be referred to as objects. Objects here may serve in 

either of the usual security mode1 roles of subject or object. An object might possibly 

request a service of another object in the system, or might itself be accessed by other 

objects; ie. an object may play the role of message sender or receiver a t  different 

times. Each object has an object type. Object types are fixed for the life of the 

ob ject. 

The most basic or primitive scenario describes a single message pass between h o  

objects. To send a message to an object, visibility is required. That is, the sending 

object must know the name of, or have a reference to, the receiving object. The 

message being sent must also conform to the interface of the receiving object. The 

basic element of access control is based on a primitive scenarîo describing exactly one 

message pass. The scenario will specify which two objects are involved, the types of 

those objects, and the type of the message to be passed. The concept of a message 

here is general and describes the interaction of a sending object with an interface 

of the receiving object. A message can cary information to the receiving object, 

monifv the state of the receiving object, and return information dependent on the 

state of the receiving object. The receipt of a message can invoke some behaviour in 

the receiving object. This definition provides fine-grain access control similar to the 

permissions defined by B A C  modeling or the transformation procedures described 

by Clark-Wilson. Note that although messages may alter the state of an object, the 

state of objects is not directly modeled in SBAC. The state of an object is hidden, 

but the interface of an object is modeled through the specification of the messages it 



exchanges with other objects. 

Complex scenarios (non-primitive scenarios) are defbed using collections of sub- 

scenaxios (child scenarios) . ChiId scenarios can be primitive or non-primitive. Each 

child scenario can have at most one parent scenario. This allows the mode1 to describe 

the relationship between scenarios. Each scenario has a scenario type, which is k e d  

for the life of the scenario. A scenario type specifies the types of the objects which 

participate, or interact , in a scenario instance of its type. A scenario type also specifies 

the types of the scenario7s children and the order in which the child scenarios are 

permitted to be created. 

A complex scenario can be thought of as the root of a tree of child scenarios with 

primitive scenazios a t  the leaves of the tree. Such a tree speciiies a permissible set 

of interactions for a collection of system objects. The tree describes which objects 

are dowed to participate, the types of the objects, the message instances involved, 

the types of the messages, and the ordering of messages. The topology of the tree 

is constrained by the scenario types involved. This is because each scenario type 

specifies what type of child scenarios it can create and the order in which the scenario 

creations are permitted to take place. Ultimately the tree specifies the message passes 

which are pennitted to take place, the objects participating in the message passes, 

and the order in which they can occur. Scenario types and object types are statically 

defined and form the basis of a mandatory security policy. 

3.2.1 Objects and Object Types 

The object is one of the most fundamental abstractions in the scheme being described. 

Every object in a system has a type. Presentation of the modeling scheme will begin 

by defining sets of object types and objects. A set of identifiers is also defined. 

Identifiers are used to name individual instances of object types and objects as well 



as other model constructions. 

An object type is assigned when an object is created (instantiated). The assign- 

ment does not change. In the document release example presented in Chapter 2 

object types might be specified for Oscientist, OpatentOficer, OreleaseAuth and 

Odocument. The function 7-0 defines type assignments for specific objects. The set 

P B  defines the domain of parameter binding pairs, i. e. identifier-object pairs. In such 

a pair an identifier is bound to a specific object in a model. A pair (author, oalice) 

denotes that the identifier author is bound to the object oalice in some context. A 

similar set of binding pairs is defined by the set P T U .  In this case the identifiers 

are bound to object types. For example the pair (author, Oscientist) denotes that 

the identifier author is bound to the object type Oscientist in some context. The 

following definition formalizes these components of the model. 

or a finite set of object types 

O a finite set of objects 

70 object @pe function, TO : O + 07 
Z a finite set of identifiers 

PB a finite set of parameter binding pairs, Z x O 

PTB a finite set of parameter type binding pairs, Z x 07 

3.2.2 Scenario Types 

The static structure of a security policy is based on how objects are permitted to 

interact in scenarios. The modeling scheme defines a set of scenario types that are 

used to speci& how different types of objects may interact. Scenario types typically 

speciSr common or recurring kinds of behavior. A scenario type can be thought of as 

a template. The template specifies how actual objects may combine and interact in 

an actual instance of a scenario of that type during the evolution of a system. As a 



system evolves, real objects can only interact in scenario instances d e h e d  using one 

of these scenario types. 

The aztthorization of a scenamo of some scenario type means that a new scenario 

of that m e  is instantiated (created). Newly authorized scenarios are added to the 

set of existing scenarios, S. Authorization of a scenario permits security relevant 

actions to take place. Two kinds of çecuriw relevant actions may be permitted by a 

scenario. They are, the authorization of another new scenario, and the authorization 

of a message pass between tsvo specific objects. The authonzation of a message pass 

means that a specific kind of message is permitted to be sent £rom one specific object 

to another specific object. The only other security-relevant action is the sending of a 

message. Scenarios are not directly involved in the sending of messages. The actual 

system objects collaborate in the sending of messages. The mechanism of message 

passing is not directly modeled by SBAC. 

When a new scenario is authorized an initial set of actions is permitted. The 

occurrence of an action in the system can cause the pennitted actions associated with 

a scenario to change. Le., some actions rnay no longer be permitted and new actions 

may become permitted. A scenario is authorixed when there are sec- relevant 

actions permitted by it. A scenario is tenninated (no longer authorized) when there 

are no longer any permitted actions associated with a scenario. Once terminated 

a scenario cannot become authorized again. The discussion of the SBAC rnodeling 

scheme will usually refer to scenario authorizat ion inst ead of scenario creation because 

authorization implies creation or instantiation of a new scenario, and the permissions 

for an initial set of actions. 

In this rnodeling scheme, primitive scenario types mode1 a single message pass 

between objects. Primitive scenario m e s  describe the types of the two objects in- 

volved with the message pass and the types of parameter objects associated with the 

message. The only security relevant action permitted for an instance of a primitive 



scenario type is the authorization of a message pass between two specific objects. 

Only instances of a primitive scenarïo m e  can authorize a message pass between two 

objects. The o d y  action permitted by non-primitive scenarios is the authorization of 

new scenarios. The message authorization is consumed (revoked) when the message 

pass takes place. Revoked authorizations are not necessarily recoverable. This is 

why the scheme is inherently non-monotonic. Message passes which are not currently 

permitted by some scenario (i. e. do not occur in the model) are prohibited. Primitive 

scenarios and primitive scenario types are described in more detail in Section 3.2.4. 

Each scenario type is a member of a h i t e  set ST. A scenario type has a number 

of properties associated with it. There is a set of parameters that speciSr the types of 

the objects which participate in the scenaxio. The function parasT(@) specifies a h i t e  

set of parameter bindings for a given scenario type @. The scenario type provides a 

context, or namespace which acts as a scope for these bindings. Since scenario m e s  

are meant to describe the interactions among objects of specific types, the identifiers 

can be thought of as roles that certain types of objects play in the context of the 

scenario type in which they are deked,  with one, and only one, object for each role. 

The type of the object which plays the role is specified by the parameter binding. 

More than one binding to the same object S p e  is allowed in a scenario type. This 

corresponds to different objects of the same m e  interacting in a scenario instance 

by filling different roles. Conversely, the same object may play multiple roles in a 

scenario instance provided the roles are of the sarne type. 

A finite set of scenario descriptors specifies the child scenarios that may be autho- 

rized by scenarios of each type. Each descriptor specifies the type of a child scenario 

and a mapping between the parameters of the parent scenario and the child scenario. 

Scenario descriptors are triples. The kst two elements of a scenario descriptor spec- 

iS. a scenario m e  and a parameter mapping to be used in authorizing a scendo of 

that type. A finite set of identifier pairs maps parameter identifiers in the context of 



the parent scenario to parameter identifiers in the context of the child scenario being 

authorized. Effectively, this maps roles played by objects in the parent scenario to 

roles played by objects in the child scenario. The type bindings of the identifien in 

the context of their respective scenarios must agree. Also, for a scenario descriptor 

defining a scenario of type @, there must be an identifier mapping provided for each 

binding defined in set parasT(@). The scenario descriptor identifier mappings and the 

parent scenario's actual parameters uniquely identifjr the objects that will participate 

in the child scenario (the child scenario's parameter set). 

The third element of the scenario descriptor triple is a boolean vdue that indicates 

whether the child scenario is concurrent (True) or not concurrent (False) with the 

parent. A concurrent scenario allows a separate thread of authorization orderings to 

begin with that scenario. The evolution of authorization orderings is described in 

more detail in the definition of the mdersT function beiow. 

The function child- specses a sequence of scenario descriptors. The descriptors 

spec* the kind of child scenarios that may be authorized by the parent scenario. 

Each scenario type also has an ordering that specifies whether the child scenarios 

are executed in sequence, are mutuauy exclusive (only one child authorization can 

occur), or are all authorized without particular regard to order. The function ordersr 

specifies the ordering of child scenarios. The ordering specifies when the authorization 

of a child scenario occurs. The ordering of message pass actions depends on the 

evolution of the system execution. The pattern and combination of child scenarios 

which may be authorized by a scenario are constrained by the ordering specified by 

the scenario's type. When a certain set of conditions is met, a scenario terminates. A 

tenninated scenario is no longer permitted to perform any action. A primitive scenario 

terminates when its message authorization is consumed (ie. when the message pass 

takes place). The termination of non-primitive scenarios depends on the ordering 

specified by their scenario type. There are three kinds of orderings defined by the 



modeling scheme (seq, ot, and and).  

Upon authorization of a scenario which has a sequential, seq, ordering, the child 

scenarïo defined by the first scenario descriptor in the chddsT sequence is immediately 

authorized. When this child scenario terminates, the child scenario defined by the 

second scenario descriptor in the childsT sequence is authorized, and so on for the rest 

of the sequence. A seq ordered scenario terminates when the child scenario defined 

by the last scenario descriptor in the childsT sequence terminates. 

Upon authorization of a scenario which has an or ordering, all scenarios defmed 

by the scenario descriptors in the childsT sequence are immediately authorized. A 

message pass action associated with any one of these child scenarios (or the childys 

descendants) causes the termination of all the other child scenarios. That is, messages 

are effectively only perrnitted for one of the child scenarios defined by the chddsT 

sequence. This is because message pass authorizations associated with the other child 

scenarios are revoked when the scenarios are terminated. An or ordered scenario 

terminates when the one remaining child scenario terminates. 

Upon authorization of a scenario which has an and ordering, aU scenarios defined 

by the scenario descriptors in the childsT sequence are immediately authorized. A 

message pass action authonzed by any one of these child scenarios (or the child's 

descendants) may occur in any order. An and ordered scenario terminates when all 

its child scenarios terminat e. 

By construction there can be no outstanding authorizations for a scenario when 

it terminates. 

The following definition formalizes these components of the model.' 

ST a finite set of scenario types. 

 paras^ a hnction defining the parameter type bindings associated 

lThe symbol is used t o  denote a partial function 



with a scenaxio type;  paras^ : S'T + zPT8, such that for 

O E 57, parasr(@) : Z 07 

SD a fkite set of scenario descriptors, ST x 2ZXT x 2' 

childsT a function definhg the scenario descriptors associated with a 

scenazio type, childsr : S'T + SVn, where n is finite 

mdersT a function definhg the ordering of child scenarios associated 

with a scenario type, ordersT : S 7  -t {seq, ur, a n d )  

As an example of scenario type specifxation, the scenario type SdocReview kom 

the document release example in Chapter 2 is dehed  in the following way. This 

scenario S p e  is repeated in Figure 3.1 with some additional detail. 

SdocReview E ST 

parasT(SdocReview) = 

{(reviewer, OpatentOficer), (report, Odomrnent)) 

childsT (SdocReview ) = 

((Pread, {(reviewer, sender), (report, receiver)), False), 

(SreleaseDecision, {(reviewer, reviewer), (report, report)), False)) 

ordersT (SdocReview) = seq 

The scenario type has two parameter roles reviewer and report of types 

OpatentOficer and Odomment respectively. These roles can be seen in Figure 3.1 as 

abject boxes at the top of the figure.2 The scenario type specifies the authorization 

of two child scenarios. The first is a primitive scenario of type Pread. When creating 

this child, the reviewer role of SdocReview is mapped to the sender role of the child 

and the report role is mapped to the receiver role of the child. These role mappings 

2The MSDs presented in this chapter are intended to be an aid to the reader in developing intu- 
ition for scenariebased modeling. The MSDs and thei. interpretation are not part of the formalism 
but provide a set of paralle1 examples. Introducing MSDs here also provides familiarity with the 
notation. Later, examples of SBAC modeling dl be expressed using MSDs. 



emappings ( 
(reuiewer -> reuiewer), 
(report -> report)}> 

Parameters: 
reviewe~ûpatentOfiÏcer 
reportOdocument 

The reviewer reads the docunent 
and then makes a decision on 
whettier or not b release the 
docunent for publication- 

FIGURE 3.1. Scenario SdocReview with detail 

are implicit in the topology of the diagram and are not marked as parameters of 

Pread. More detail with respect to the reviewer and sender role mappuigs of prim- 

itive scenarios will be presented in Section 3.2.4. The Pread child is non-concurrent 

with its parent as indicated by the third element of its scenario descriptor, False. The 

second child to be created is of type SreleaseDecision. The comment box associated 

with this child scenôrio in the figure contains information that is normally contained 

in a message description data structure in the Rational Rose mode1 fiom which the 

figure was generated. To make it visible to the reader the information is shown here in 

a comment box. The <scenario> tag indicates that this is a non-primitive scenario. 

Such a distinction is not required in the formal presentation above. In the formal 

presentation and in the corresponding mappings presented in the comment box it can 

be seen that the reviewer and report roles of SdocReview are mapped to reviewer 

and report roles of the child. The roles just happen to have the same names in this 

case. The SreleaseDecision child is also non-concurrent. Concurrency would be 



indicated in the figure by s p e c w g  the <concurrent> flag for the message in much 

the same way as the <scenario> flag is specined. The ordering of the SdocReview 

scenario type is seq. Therefore, the authorization of the SreleaseDecz'sion child will 

occur only upon termination of the Pread child- 

3.2.3 Scenario Instances 

Scenario types provide static restrictions on the interactions permitted in a system 

between objects of various types. Evolution of the system proceeds via the autho- 

rization of actual scenarios and perfonning the permitted security-relevant actions. 

Each scenario is a nember of the finite set S. A scenario has a number of properties 

associated with it. 

Every scenario in a system has a type speciûed by the scenario S.pe function rs. 

Scenario m e s  are assigned when a scenario is authonzed and do not change. For 

each scenario there is a set of parameters which specify the objects which participate 

in the scenario. paras specifies bindings to the object instances participating in the 

scenario. A scenario is a context, or namespace which acts as a scope for these 

bindings. Again, the identifiers can be thought of as roles certain objects play in 

the context of the scenario in which they are deked. The identsers are the same 

identifiers used in the specScation of parasT for the scenario's type. That is, for each 

parameter binding of a scenaxio instance there will be a parameter type binding in 

its scenario type such that the bindings have the same identifier. The type of the 

object specified for an identifier in a binding in paras must agree with the object 

type specified for the same identifier in  paras^. 

Each scenario also has a set of child scenarios which it has authorized. childs is a 

function mapping scenarios to sequences that specify the children the scenarios have 

created. As child scenarios are authorized they are appended to the sequence mapped 



to the parent scenario by childs (initidy n d ) .  A new scenario is authorized using a 

scenario descript or belonging to the parent's type. The scenario descriptor (s) used t O 

authorize a new scenario(s) a t  a particular point in a scenario's Me depends on the 

scenario's ordering. A scenario descriptor specifies the type of the cMd scenario and 

the parameter mapping to be used in authorizing that scenario. The set of identifier 

pairs in the scenario descriptor maps identifiers in the context of a parent scenario 

to identifiers in the context of a child scenario being authorized. Since the role 

identifiers are the same for the bindings of the scenario types and scenarios instances 

this maps objects playing roles in the parent scenario to objects playing roles in the 

child scenario. New parameter bindings are created, which bind role identifiers for 

the child scenazio to the identified objects participating in the parent scenario. These 

new bindings specify the members of paras for the child scenario. 

The actions permitted by a child scenario may proceed withuz the parent's se- 

quence of actions, or those actions may proceed concurrently with the parent sce- 

nario's sequence of actions. The predicate cons defines whether a separate, concurrent 

sequence of authorization orderings begins with a specific scenario (True), or whether 

the scenario's authorization orderings are part of the parent's sequence (False). 

The following defmition formalizes these components of the model. 

S a finite set of scenarios. 

rs scenario type function, T ,  : S + ST 

Paras a function deking the parameter bindings associated with 

a scenario; paras : S -t 2pB,  such that for 

4 E S,  para^(+) : - O 
childs a function defiahg the child scenarios associated with 

a scenario, childs : S + S' , where n is fmite 

cons a predicate d e m g  the concurrency associated with 



a scenario, cons : S + 2' 

To illustrate how scenarius are specified, and how the scenario creation rnechanism 

works, an example will be presented, which is based on the SdocReview scenario 

type presented at the end of Section 3.2.2 and in Figure 3.1. First an instance of 

a SdocReview scenario type wïU be modeled, then a new SreleuseDecision scenario 

will be created using the appropriate scenario descript or. An instance sdocReview1 

is modeled as follows: 

sdocReview1 E S 

rs (sdocReview1) = SdocReview 

paras (sdocReview 1) = {(reuiewer, oalâce), (report, odoc) ) 

childs (sdocReuiew 1) = (pread2) 

cons (sdocReview 1) = False 

Scenario sdocReview1 is of S p e  SdocReviezu. The reviewer role is mapped to an 

object instance oalice and the report role is mapped to an object instance odoc. It 

can be seen here that the scenario has already authorized one child scenario, pread2. 

Although the example does not provide detail for pread2, it is presumably a primitive 

scenario that would authonze a read message fkom the object oalice to the object odoc. 

Rom its scenario type sdocReviezu1 has a seq scenario ordering. Therefore when the 

read message from oalice to odoc takes place, and consumes its authorization (termi- 

nating preadz), sdocReview1 will authorize a new scenario. The authorization of the 

new scenario will be based on the second scenario descriptor in childsT(SdocReview). 

The new scenario will be of type SreleaseDecision. The role reviewer of the new sce- 

nario will be mapped to the object playing the role of reviewer in sdocReview1, i-e. 

oalice. The role report of the new scenario will be mapped to the object playing the 

role of report in sdocReview1, Le. odoc. Again, note that the identifiers for the roles 



in the parent and child scenario do not have to be the same, as they are here. The 

mapping between roles is provided by the scenario descriptor. The new scenario will 

not have authorized any new scenarios itself yet. Its set of child scenarios is initially 

null. The authorizations generated by the newly authorized scenario will not proceed 

concurrently with those of sdocReviewl. Le., in this case sdmReview1 will not pro- 

ceed with its o m  actions until the new scenario terminates, Let the new scenario be 

srele&seDecision3. It is modeled as follows: 

sreleaseDecz'sion3 E S 

TS (sreleaseDecision3) = SreleuseDecision 

paras(sreleaseDecis20n3) = {(reviewer, oalice), (report, odoc)) 

childs (sreleuseDecision3) = () 

wns (sreEeaseDecision3) = False 

3.2.4 Primitive Scenario Types 

As noted above, messages in SBAC modeling are primitive scenarios that describe 

a single distinct interaction between objects. Scenario types for these primitive sce- 

na.rios describe the types of the two objects involved with the message pass and the 

types of parameter objects associated with the message. These are specified by the 

parameter type bindings defining the roles participating in the scenario. Each primi- 

tive scenario type is associated with a particular kind of message. paras= defines the 

object roles and types associated with the message. paras defines the actual object 

parameters. With respect to  paras^ the identifiers sender and receiver are reserved 

for the object types filling the role of the message sender and receiver respectively. 

With respect to paras, identifiers sender and receiver are reserved for the actual ob- 

jects filling the roles of message sender and receiver. Any other bindings specified by 

 paras^ (paras) specify the object types for remaining message parameters. childsr 



and childs for primitive scenario types are always the null set. ordersr for primitive 

scenario types is undefmed. 

Upon authorization of an instance of a scenario of a primitive type, a message of 

the kind associated with that primitive type is authorized to be sent fkom the sender 

to the receiver. The message parameters are speciûed by paras for the primitive 

scenazio. The authorization for the message is conswned when the associated message 

is sent. A primitive scenario is considered to be tenninated when the associated 

message is sent (ie. when the authorization for the message is consumed). 

The modeling scheme does not explicitly mode1 message m e s  or messages. The 

mapping £rom primitive scenario types to message types is a bijection. The authoriza- 

tion for a primitive scenario is immediately followed by an authorization for the re- 

spective message. The telmination of a primitive scenario (revoking its authorization) 

occurs immediately following the revocation of the authorization for the associated 

message. For access-control modehg purposes, there is no loss in expressiveness in 

only considering primitive scenario types and leaving the messages as implicit entities 

to  be defined in the implementation of the access-control mechanism. 

3.3 Object Visibilities 

As described so far in the modeling scheme, the objects participating in a child 

scenaxio have all been specified by the parent scenario when the child scenario is 

authorized. Using a scenario descriptor, the authorization mechanisrn maps objects 

filling roles in the parameter set of the parent to objects filhg roles in the new child 

scenario. So far, these parent supplied objects are the only objects speciiied to fiIl 

roles in the child. Therefore, all subsequent scenario authorizations by the child must 

use these objects to £ill scenario roles. Le., the set of objects provided as parameters 

to a child scenario must be a subset of those provided to its parent. Viewed in a 



different way, every object which is involved in some interaction in a system must be 

specified in a parameter binding of the system's initial scenario. 

This is a cumbersome and restrictive way of rnanaging a scenariols access to system 

objects. Scenarios would be obliged to cary object roles as placeholders for children 

M h e r  down the scenario tree, even if those roles are not involved in any action in the 

current scenario. Also, so far, the modeling scheme does not allow for the creation 

of objects. All objects involved in system interactions must be available in the initial 

system scenario. Providing ob jects with visibilities mitigates these problems. 

3.3.1 Defining Object Visibility 

This section expands the modeling scheme to allow the expression of object visibilities 

and object creation. It would be convenient if objects could play roles with respect to 

each other. Objects might be provided with bindings to other objects in association 

with these roles. These bound objects wouid be visible to the object holding the 

bindings. Consequently, when an object is provided as a parameter in the creation of 

a scenario, not only could it become involved in the interactions of the scenario, but 

any objects visible to that object could be named and could pwticipate. 

New functions are defined which allow the modeling scheme to dehne the visibdity 

objects have of other objects, and to ident* an object by using an identifier associated 

with a set of parameter bindings. The function viso defines the visibiIity between 

objects by s p e c m g  a set of parameter bindings for each object. Objects are a 

context, or namespace, for a set of parameter bindings. Again, the binding identifiers 

can be thought of as roles certain objects play in the context of the object in which 

the binding is defined. The object which plays the role is specified by a pazameter 

binding. A similar relationship is defined for object types. 

The types of objects for which a specific object type may have visibility and the 



roles those object types can play are defined by the function vism. For each object 

type, the roles other objects are permitted to play in the context of that object type 

and the types of objects which may fill those roles are specified by parameter type 

bindings. The identifiers specified for an object's visibility binduigs by viso are the 

same identifiers used in the specification of visor for the object's type. That is, for 

each parameter binding of an object instance there WU be a parameter type binding 

in its object type such that the bindings have the same identifier. The type of the 

object specified for an identifier in a binding in viso must agree with the object type 

specified for the same identifier in visoT. 

The function objid dereferences parameter bindings by retuming the ob ject being 

referred to by a specific identifier in the context of a set of pwameter bindings. The 

context providing the parameter bindings may be an object's visibilities (defined by 

viso), or it may be a scenario's parameters (defined by paras). The parameter binding 

context for some object a defined by viso(a) is specified by a partial function fiom 

identsers to objects. Similarly, the parameter binding context for some scenario q5 

defined by paras(q5) is specified by a partial function fiom identifiers to objects. 

The following definition formalizes these components of the model. 

visoT A function dehing the types of objects visible to 

objects of a specific type, visoT : 07 + 2PTB 

viso A function defining the visibility between objects, 

viso : O + 2P8 
objid A function which provides an object given an identifier 

and parameter binding context, objid : Z x (Z - 0) -+ O 

In the document release example a document might have a role associated with it 

c d e d  author. A specific document odoc, written by the scientist oalex, might have a 

parameter binding (author, oalex) E viso(odoc). Now, given the document, odoc, and 



the role, author, the scientist object fiLling the author role c m  be dereferenced using 

objid, objid(author, viso(odoc)) = oalex. Constructions having this syntax may be 

abbreviated as odoc.author = oalex. 

In a related example suppose that the document object, odoc, takes part in a 

scenaxio, sdocumentRelease1, of type SdocRelease. Assume that odoc is already 

bound to an identifier in the scenario, (report, odoc) E paras (sdommentRelease1) . 
An author of the document can be dereferenced using the identifier binding for the 

document. In the context of the example scenario, ob jid (author, viso (ob jid(report, 

paras(sdommentReleasel)))) = oalex. Constructions having this syntax may also 

be abbreviated as report-author = oalex. 

Although the 'dot7 syntax is similar to that used in the la& example, there is 

a Merence. In the first example the dot denotes dereferencing an identifier in the 

context of an object, odoc. In the second case the dot denotes dereferencing an 

identifier in the context of an identifier for an object, report. This context identifier 

is then itselfused to specify an object in the scenario sdomentRelease1. The second 

f o m  of using the dot syntax only makes sense when it is obvious what scenario is 

appropriate for the context. The two usages can be differentiated by the type of the 

first operand (object or identifier). 

3.3.2 Defined Scenario Parameters 

Adding object visibilities to the modeling scheme means they can be used in the 

specification of scenarios. The approach taken is to partition the set of parameter 

type bindings specified for some scenario m e  <P by parasT(@) into two disjoint 

subsets. One subset specifies the parameters that are part of the external interface 

for the scenaxio type and the other subset specifies the parameters that are defined 

internally for the scenario type and are not part of the external interface for the 



scenario type. These axe respectively called paraextST(<P), and paraintsT(0). The 

parameters of the external interface for the scenario type are the parameters used 

when defining scenario descriptors for that scenario Spe.  Le., they are used by a 

parent to define a new child scenario of that type. The interna1 parameten are not 

used by the parent to define a new child. These parameters, how they are used; and 

the fact tha t  they are used at all are a secret of their own scenario type. 

For some scenario 4, the set paras($) is aIso partitioned into two disjoint subsets. 

The two subsets are acquiredparas(q5) and definedparas and respectively reflect object 

bindings acquired fiom the parent scenario and bindings defined in terms of object 

visibilities. 

The bindings in the set acquiredparas(q5) are created using objects fiom the par- 

ent's context. That is, the set of identifier pairs in the scenario descriptor of the 

parent is used to map objects in the context of a parent scenario to objects in the 

context of a child scenario being authorized. Scenario descriptors in parent scenario 

types must specify mappings for all identïfiers in paraeztsr(0). This means that for 

every binding in paraextsT(@) there will be a binding in acquiredparas(+) with the 

same identifier. 

The objects specified in parameter bindings in definedparas (4) are defined in terms 

of other identifiers available to the scenario. Objects in definedparas(q5) are specified 

ushg identifias found in parasT(@). By using objid in the context of the actual 

scenario instance 4 these identsers cm be used to identiS. an object instance, which 

is playing a role in 4. That object in turn can be used as a parameter bindings context 

that can be used to indirectly iden@ another object by using objid to dereference 

an object visibility. To do t h ,  a parameter definition is specified using objid and 

an identifier from visoT. In the context of the actual object instance the identifier 

refers to some other object instance. A parameter definition specified in this way uses 

identifiers p~ovided by parameter type bindings and the definition is not dependent 



on a specifk scenazio or object in~tance.~ In the context of an actual scenario instance 

the parameter definition refen to an object instance when objid is applied using the 

actual objects filling the roles for that instance. Therefore, the parameter definitions 

in de f inedparas are specified once for a scenario type and used by instances of every 

actual scenario of that type. For every binding in paraintsr there must be a binduig 

specified in de f inedparas. 

The following defuitions formalize these components of the model. 

par aextsT a function defining the external parameter type bindings 

associated with a scenario type; 

paraexts* : S 7  -t 2p7B, such that for 

O E ST, paraextsT(0) : Z 07 

a function defming the interna1 parameter type bindings 

associated with a scenario type; 

paraintsT : ST -t 2pTB, such that for 

O E 57, paraintsT (@) : Z A 07 

aupireciparas a hnction definhg the parameter bindings associated 

with a scenario that are acquired from the scenario's 

parent; acquiredparas : S -t 2p8, such that for 

$ E S, acquiredparas($) : Z - O 
de f inedparas a function definhg the parameter bindings associated 

with a scenario type that are defined using identifiers available 

to the scenario; de f inedparas : S7 + 2PB, such that for 

E ST, de  f inedparas(@) : Z -' O 

for 0 E ST, 4 E S ,  rs(q5) = @: 

3Note that the creation of scenarios and objects requires that roles defined by the parameter type 
bindings in scenario and ob ject types be f%ed by object instances specified by parameter bindings 
that use the same role identifiers. This one-to-one correspondence ushg the same identifier name 
makes parameter definition using scenario and objects types possible. 



- Subset relationship 
-----) Identifier dependenc y 

FIGURE 3.2. Relationship between  paras^ and paras modSed for defined scenario 
parameters, where rs@) = 

The relationships among the described parameter sets are illustrated in Figure 3.2. 

The diagram indicates the subset relationships and the identifier dependencies among 

the sets. The identifier dependencies between acqu i~edpara~  and paraextsT, and 

between de f inedparas and paraintsr are defined to mean that they m u t  respectively 

have the same sets of identifiers. As before, the types of the actud objects in paras 

must agree with the object type specified in paras= for its role. 

Consider again an example based on a scenario sdocumentReZeasel of scenario type 



SdocRelease. The message sequence diagram for this scenario type is presented again 

in Figure 3.3 with added detail. Comment boxes have been added to the diagram 

to illustrate how defined parameters may be specified. There are four objects that 

participate in any scena,rïo of this type. The object which plays a role reportAuthor 

is associated with a report object via a visibility relationçhip. Perhaps it is not 

desirable to explicitly define the object playing the author role each time we authorize 

a scenario of type SdocRelease. Speci&hg the report object should be suaicient 

because it has its author associated with it. A defined scenario parameter allows 

this to be specified. The parameter type bindings for the role reportAuthor is a 

member of the set paraintsr(SdocRelease). The set definedparas(SdocRelease) 

must s p e c e  a parameter binding using this identifier. The parameter definition 

correspondhg to the reportAuthor identifier is shown in the comment boxes using the 

<DEFPARA> tag. In this case the <DEFPARA> tag indicates that that object is a 

defined parameter bound to report.author. We will ignore the other comment boxes 

and the <PARAIN> tag for now. 

More formally, when the scena,rio sdoczlrnentRelease1 was created it would have 

been provided the foollowing object bindings from the parent's extemal environment: 

(reuiewer, oalice) , (repoit, odoc) E a~quiredpara~ (sdocumentRelease1) 

de  f inedparas for sdocumentRelease1 would specw an object binding for the author 

of report in this way: 

In scenario sdocumentRelease1 the identifier reportAuthor refers to the object play- 

ing the author role with respect to the object bound to the identifier report. In the 

previous example (Section 3.3.1) the report author was oalex, so reportAuthor would 

refer to oalex in this case. 



i Scenano Ordering: <SE* L'! 

1 The reviewer creates a new release auîhorizalion abject for the repot lhe reviewer 
i passes the release authonzan'on b the report's author. The author can then p a s  a 
! message to ttie release authorimb'on to effect the publication of the report The 
i release authorization will mad the report during the process of publication. 

FIGURE 3 -3. Scenario SdocRelease with det ail 



3.3.3 Object Creation 

New objects created by a scenaxio to be used in its interactions can be handled 

by the same mechanism introduced to support defined scenario parameters. A new 

function is introduced in the modehg scheme to specify object creation. The create 

function is applied to an object type and a set of identifier mappings. It returns a 

new object of the speciiied type. This object is added to the set 0. At creation 

time the visibilities of the new object are specified by the set of identifier mappings. 

The identifier mappings map roles specified by paras of the creating scenario to roles 

in the new object. The parameter bindings of viso for the new object are created 

accordingly. A mapping must be specSed for each identifier of visoT for the object 

s p e  being created. The following definition formalizes the create function. 

create A function returning a new object of a specified type, 

create : 07- x 2ZXZ + O 

To introduce a new object into a scenario, a parameter binding in de f inedparas 

is specified using the create function. Consider again the SdocRelease example of Fig- 

ure 3.3. A scenario sdocumentRelease1, of type SdocRelease, requires the creation 

of an object of type OreleaseAuth (a release authorization). The following specifi- 

cation indicates that an OreleaseAuth object is created and bound to the identifier 

relAuth. 

(relAuth, create(0re~easeAuth {(report, reEDoc)))) 

E de f inedparas(sdocumentReleasel) 

For this new object the role identifier relDoc will be bound to the object specified 

by the role identifier r epo~ t  of the sdocumentRelease1 scenario. Note in Figure 3.3 

the comment box associated with the object relAuth contains a <DEFPARA> tag. 
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FIGURE 3.4. Parameter bindings for SdocRelease example 
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In this case the tag indicates that the object is a newly created object with the neces- 

s a q  identifier mapping to provide the required object binding. Figure 3.4 illustrates 

graphically the parameter bindings specified for the sdocumentRelease1 example. 

3.3.4 Acquiring Object Bindings from a Child Scenario 
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vided explicitly by the scenario's creator. Scenarios can now be specified to interact 

with newly created objects, and with any object visible to an object provided as a 

parameter to scenario authorization. However, there are still classes of systems which 

are diflicult to express with the modeling scheme. Consider the case of a parent sce- 

nario which authorïzes a number of child scenarios. It may be desirable to have an 

object created in one child scenario take part in the object interactions specified for 

a subsequent scenario in the parent. This is not expressible in the present scheme be- 

cause a parent scenario cannot acquire ob ject bindings kom a child. Child scenarios 

acquire object bindings Tom their parent upon authorization, but there is so far no 

flow of object visibility in the other direction. Being able to acquire object bindings 

fkom a child scenario is the only way in which visibiliw to newly created objects can 

be moved back up the scenario creation hierarchy. 

This feature also heIps to support information hiding [Par721 in the decomposition 

of scenarios in the requirements or design mode1 being specified, in the following 

way. With the exception of newly created objects, all objects which take part in the 

interactions of a child scenario are theoretically visible to the creator of that scenario, 

as are the objects of its children and its children's children, etc. This is because the 

parent scenario can see all the objects it provided to the child scenario as parameters. 

It can also use any of the indirect object visibiIities those parameters have in the 

same way the cWd can. However, the interactions that take place in a child scenazio 

should be a secret of that scenario. The internal objects which participate in the 

interactions and the mechanism by which their visibility is acquired should also be 

a secret. The use of an object by a child scenario may be possible by exploiting 

visibilities associated with an external parameter object. It is not appropriate for 

the parent to do so a s  well in order to gain access to an object being used by the 

child. This is because the parent scenario wouId have to understand the nature of 

the object visibility and therefore something of the nature of the child scenario's 



interactions. This is information about the implementation of a child scenario and 

should be protected. If a child scenario needs to identify some object for use by the 

parent there should be a rnechanism which does not require the parent scenario to 

understand how the child came to have visibility of the object. 

The binding rnechanism, as discussed so far, is for object bindings to be made 

at scenario authorization time. The bindings have two sources. The members of 

acq~ i redpara~  are specified when the scenario is authorized using bindings supplied 

by the scenario's parent. As well, after authorization the members of defineclparas 

specified for the new scena.rio iype can be used to refer to objects in the context of 

the new scenario. Another mechanism is now introduced such that bindings can be 

made at  a child scenario's termination. Le., a scenario c m  acquire buidings after 

its own creation from its children as they terminate. For some scenario Q1 of type a, 
acquiredparas(q5) is extended to include both those bindings acquired from 4's parent 

and those bindings acquired from 4's children. To separate the bindings acquired 

from the parent and those acquired £rom a child scenario the set of acquired bindings, 

acquiredparas(g5) is divided into two disjoint subsets, childacquiredpa~a~(q5) and 

pa~entacquiredpara~ (4) - 
For scenario 4, the set paras@) is decornposed into three subsets: childacquired- 

paras (4) y parentacq~iredpara~(q5) y and de f inedparas (rs(#)). The basis of decom- 

position for paras(#) is the source of the object bindings for a scenario. For a scenario 

type the dehition of parameter type bindings is decomposed into an external com- 

ponent and and interna1 component, paraextsT(Q>) and paraintsT(@) respectively. 

The b a i s  of the decomposition is different in this case. The basis of decomposition 

for parasr (O) is information hiding. 

There are some parameter roles that are used directly by the parent of a scenario 

of type <P. There are other parameter roles that are secrets of scenarios of that type. 

This decomposition is further refined to reflect the effects of child-acquired bindings. 



The internal bindings specified by parameter definitions are separated from those 

which are to be acquired fiom a child scenario. The set of parameter type bindings, 

paraintsT (a) is divided into two subsets, de f inedparasT(<P) and childparasT(q). 

The parameter type bindings specified in paraeztsT(<P) define the kinds of objects 

which are presented as the external interface to a scenario of type a. I. e., the objects 

provided by a parent scenario as parameters for the authorization of a scenario of 

type @ or those objects passed back to the parent as  the scenario terminates. To 

separate the external bindings acquired from the parent when a scenario of type is 

authorized and those provided to the parent when the scenario terminates the set of 

parameter type bindings, paraextsT is divided into two disjoint subsets, parainsr(@) 

and paraoutsr(@). The actual objects which fill the parainST(.r(O) parameter roles 

for an instance of a scenario are provided as before, by the parent at authorization 

tirne. The actual objects which fill the paraoutsT(@) parameter roles are defined by 

de f inedparas (a) a t  scenario termination time. 

par aoutsT 

parainsT a function defining the i n  parameter type bindings 

associated with a scenario type; 

parainsT : 57 + 2pTB, such that for 

8 E ST, parainsr(@) : Z A 07 

a function defhing the out parameter type bindings 

associated with a scenario type; 

paraoutm : ST + 2pTB, such that for 

O E S7, paraoutsr(@) : Z A 07 

de f inedparasT a function definhg the interna1 parameter type 

bindlligs associated with roles specified by defined 

parameters; de f ZnedparasT : S7 -t 2'", such that 

for E S'T, de f inedparasT(0) : Z -' 07 



a h c t i o n  defining the intemal parameter type 

bindings associated with roles specihed by terminating 

child scenarios; childparasr : S'T -+ 2'7B, such that 

for E Sr, chiZdparasT(0) : Z 67 

parent~cquiredpara~ a function definhg the parameter bindings associated 

childacq~iredpara~ 

for f ST, q5 E S: 

with a scenario that are acquired £rom the scenario's 

parent; parentacq~iredpara~ : S + zP*, such that for 

4 E S, parentacquiredparas(#) : Z - O 

a function defining the parameter bindings associated 

with a scenario that are acquired £kom the scenario's 

children; childacq~iredpara~ : S + zPB, such that for 

4 E S, childa~quiredpara~(4) : Z A O 

The relationships between the described parameter sets are ihstrated in Fig- 

ure 3.5. The diagram indicates the subset relationships and the identifier dependen- 

cies between the sets. The subsets of the parasT(@) hierarchy s p e c e  the type of 

objects which may participate in a scenario of type a. This structure is static for 

a system. Since the scenanos for a system describe a l l  its perrnitted object inter- 

actions, this hierarchy restricts the ways in which types of objects can interact in a 



Subset relationship 
-----) Identifier dependency 

FIGURE 3.5. Relationship between p a r a s  and paras modified for object bindings 
acquired from child scenarios, where T&) = <P 



given system. The subsets of the para&) hieraxchy provide a mechanism for model- 

ing the relationships between an instance 4 of a scenario of type a and its parameter 

ob ject instances as a system evolves. An object parameter in # bearing some spec5c 

identifier (i. e. a member of the paras (4)  hierarchy) may exist iff there exists in <P an 

object type parameter bearing the same identifier (i. e. a member of the parasT(@) 

hierarchy). This is an identifier dependency. As always, the type of an object instance 

in paras(@) must agree with the object type specified in parasT(@) for its role. 

The identifier dependencies between parentacquzr edparas (4) and parainsT (@) , 
and between childacquiredparas(r$) and c h i l d p a ~ a ~ ~ ( b )  indicate that they must have 

the same sets of binding identifiers. 1. e., a scenario acquires an object fiom its parent 

for each of the bindings specified in parainsr(@) and a scenario acquires an object 

fkom a child for each of the bindings specined in childparasT(@). The parentacquired- 

paras(#) bindings are made at  authorbation tirne and the childacquiredparas(~) 

bindings are made as the scenario evolves and child scenarios tenninate. 

The identifier dependency between the set de f inedparas (@) and the sets de f ined- 

parasr(@) and paraoutsr(@) indicates that for every binding identifier in the union 

of de f inedparan(0) and parauutsT(O) there must be a parameter definition with 

the same identifier in definedparas(@) and vice versa. 

The construction of scenario descriptors is modified to accommodate mappings for 

both the paruinsT parameters and the paraoutsT parameters of a new child scenario- 

A scenario descriptor is now a 4-tuple. The first and last elements of the 4tuple are 

as before. 

The set of identifier rnappings provided as the second element of the tuple is the 

parainsr parameter mapping. The mapping behaves as before. The set of identifier 

pairs maps identifiers in the context of a parent scenario to identifias in the context 

of a child scenario being authorized, a t  the time the child scenario is being authorized. 

New parameter bindings are created, which bind role identifiers for the child scenario 



to the identified objects participating in the parent scenario. These nem parameter 

bindings become members of the parentacquiredp~ra~ function for the new child 

scenario. Again, for a scenario descriptor defining a scenario of type a, there must 

be an identifier mapping provided for each identifier role defined in set p a ~ a i n ~ ~ ( O ) .  

The set of identifier mappings provided as the third element of a scenario descx-ip 

tor Ctuple contains parantsT parameter mappings. These behave in the following 

way. As before, the set of identifier pairs maps identifiers in the context of a parent 

scenario to identiiiers in the context of a child scenario. However, in this case the new 

parameter bindings bind role identifiers of the parent scenario to objects participat- 

ing in the child scenario. The bindings are created at the time the child terminates. 

The newly created parameter bindings become members of the childacqui~edpara~ 

function for the parent scenario. For a scenario descriptor defining a new scenario of 

type a, there must be an identifier mapping provided for each identifier role dehed  

in set chddparasT(<P). 

The following definition formalizes the construction of the modified scenario de- 

scriptor. 

SV Set of scenario descriptors, 57 x 2*Xz x 21XZ x 2' 

With these modifications to the modeling scheme, visibility of an object provided 

by an 'out' parameter when a scenario terminates c m  be used by scenaxios created 

after that termination. The visibility of that object is also available to pass on to the 

parent's parent scenario by providing it again as an 'out' parameter. 

The document release example as specified in Chapter 2 does not include a case 

where a scenario acquires an object binding Çom a child. To illustrate such a case 

the scenaxio type SdocRelease can be modified so that it provides an object binding 

to its parent scenario. The object playing the role relAuth will now be provided as a 

paraoutsr parameter. In the existing example there is already a parameter definition 



for this role because the object bound to this identifier is created by the scenario. 

Because the object is currently an interna1 object for the scenario (hidden by the 

scenario) the parameter type binding for this role is currently in de f inedparasT. With 

the proposed modification the object bound to the relAuth role will become available 

to the parent (an external object). This is achieved by moving the parameter type 

binding for this role to paraoutsT. In the example, scenario type SreleuseDecision 

specifies the authorization of a scenario of type SdocRelease (i.e. it is a parent for 

SdocRelease). With the proposed modification to the example, SreleuseDecision WU 

have to speci€y a mapping for a relAuth object in the paraoutsT parameter mappings 

of its scenario descriptor for its SdocRelease child. A specification for the two scenario 

types is as follows. 

SreleaseDecz'sion E ST 

parainsT (SreleaseDecisim) = 

{(reviewer, OpatentOficer) , (report, Odomment))  

childparasT (SreleaseDecision) = { (releaseAuth, OreleaseAuth) ) 

childsr (SreleaseDecz'sion) = 

((SdocReview , {(reviewer, reuiewer) , (report, report)), {), Fa1 se), 

(SdocRelease, { (review er, reviewer ) , (report, report)), 

{ (releaseAuth, relAuth)), False) , 
(SdocRevision, {(reviewer, reviewer), (report, report)), (), False)) 

ordersT(SreleaseDecision) = or 

SdocRelease E ST 

parainsr (SdocRelease) = 

((reviewer, OpatentOficer) , (report, Odocument) } 

paraoutsT(Sdocfielease) = {(relAuth, Orelease Auth) ) 



def inedp~ra~(SdocRe1ease)  = {(reportAuthor, Oscientist)) 

de f inedparas (SdocReZease) = 

{(reportAuthor, report.author) , 
(relAuth, create(OreleaseAuth, {(report, relDoc))))) 

childsT(SdocRelease) = 

((Pcreate, {(reviewer, sender),   elA Au th, receiver), (report, doc)), 

{} , F a W ,  

(PreZPerm, {(reviewer, sender), (reportAuthor, receiver) , 
(rel Auth, authorization) ), {), False) , 

(PrelDoc, {(reportAuthor, sender), (relAuth, receive~) ), {), False), 

(Pread, {(relAuth, sender), (report, receiver)), {), False)) 

ordersr(SdocRelease) = seq 



Chapter 4 

SAFETY ANALYSIS 

4.1 Introduction 

In the safety analysis of a system model it is important to be able to determine 

whether or not it is possible for a certain message to be authorized and in what order 

it can be sent relative to other messages. The existence and ordering of messages 

in the model can be analyzed by inspection of the scenario tree. This may not be 

computationally feasible for large scenario trees but it can form the conceptual basis 

of an analysis method. In any state the leaves of the tree will be either primitive 

scenarios or scenarios which are authorized to perform some action. Child scenarios 

are added to the childs sequence of the parent in order (denoted here as left to right) 

as they are authorized. The intuition for examining message sequencing is to perform 

a depth-6rst left-to-right search of the scenario tree. The order in which primitive 

scenarios are discovered is the order of messages as the system evolves. This intuition 

works well for scenarios with seq ordering. The definition of the message ordering 

relation must be modified to capture the semantics of aJ.l three scenario ordering 

properties (seq, or, and and). 

The rest of this chapter starts with a definition of how security properties of 

systems are modeled using scenario-based access control. The next section defines 

the authorization properties for a specific evolution of syst em execut ion. Equivalence 

will be dehed  for system states based on the authorization properties associated with 

the states. It will be shown that for any system, there exists a maximal system state 

that describes all possible authorizations that can be generated by the system and all 

possible orderings. An algorithm is presented which provides for the construction of 



a scenario tree which is a maximal system state. Inspection of this maxÏmal scenario 

tree provides safety analysis for the system being modeled. 

4.2 Modeling a System 

Recall fkom the scenario modeling scheme that an evolution of execution for a system 

depends on the authorization of scenarios. Each message between objects is autho- 

rized by an instance of a primitive scenario fiype. These primitive scenario instances 

are authorized as children to a parent scenario which specifies a context for their 

interaction. The parent in tum is authorized as a child to another scenario; and so 

on back to some initial scenario. When a parent scenario becomes authorized to cre- 

ate a new scenario, this authorization is associated with a scenario descriptor. The 

scenario descriptor specifies the type of the new scenario, parameter mappings fiom 

the parent to the child, and whether or not there is concurrency. The new scenario is 

then authorized to perform some action(s) as specified by its scenario ordering, and 

its own set of scenario descriptors. As new scenarios are authorized they are added, 

in order, to the childs sequence of the parent. Thus at any point in the evolution of 

a system model, the scenarios form a tree structure. 

The evolution of a system model is restrïcted by the securiw policy for the system 

and the initiai state of the model. A security policy, P, is dehed by the sets 07, 

and Sr, and the functions para-, definedparas, childsT, ordersT, and visoT. The 

security policy is static. It is defined only in terms of type and is independent of any 

actual objects, messages, or scenarios in a specific instance of a system. Formally a 

security policy is a 7-tuple. 

For some security policy a protection state (or state) is defined by the membership 



of the sets S and 0, and the functions speci&ing the attributes of subjects and objects 

in those sets. Formdy a protection state is a member of the set V, where 

V set of states, O x S x 7-0 x Q x viso x paras x childs x cons 

The evolution of the system proceeds from an initial state with the occurrence 

of security relevant actions. The security relevant actions defined for the modeling 

scheme are the authorization of a new scenario, the authorization of a message pass 

between two specific objects, and the sending of a message. In modeling protection 

state it is not necessaxy to mode1 the three kinds of action explicitly. Protection state 

can be modeled by considering the only authorization of new scenarios explicitly. The 

effects of the other actions is captured implicitly. 

Recall from the discussion in Section 3.2.4 that for access-control modeling pur- 

poses, there is no loss in expressiveness in only considering primitive scenario types 

and leaving the messages as irnplicit entities to be defined in the implementation of 

the access-control mechanism. This can be done because the modeling scheme is con- 

cerned with modeling protection state and not with rnodeling the actud execution 

of a system. The actual ordering of the message events with respect to other events 

in the evolution of an actual system is not relevant. What is relevant is the possible 

ordering of the message events. The authorization properties defined in Section 4.3 

mode1 the ordering of the message events by considering when the associated primitive 

scenario becomes authorized. 

The occurrence of a scenario authorization moves the system from one state to 

a new state. A scenario authorization involves the creation of a new scenario, and 

possibly the creation of new objects as scenario parameters. The creation of scenarios 

and objects adds members to the sets S and 0, and adds new mappings to the 

functions specifying the attributes of subjects and objects in those sets. 



The convention of superscripting a set or function identifier with a state will be 

used to i d e n t e  the evolution context being considered. For example, Sg and parah, 

signïfy the set S and the function paras  in the states g and h respectively. State O 

is used to si& the initial state. Where there is no confusion So may be used to 

denote the initial scenario. 

The initial state for the model of a system is defbed by the initial mernbership of 

the sets O and S, the type functions TQ and rs, and the functions paras and viso. In 

the initial state there is one and only one member of S. This is the initial scenario for 

the model. childs is initially null for the initial scenario and cons is defined as true. 

Thus, a system model is an implementation of a security policy for some specific set 

of objects involved in some initial scenario. Formally a system, C ,  is a 7-tuple. 

para: vis:) 

An evolution of system execution is represented by a sequence of system states. 

There is a specific instance of a scenario tree associated with a system state. There- 

fore, the evolution of the protection state of a system can thought of as an evolving 

scenario tree. A scenario tree defines a history for a system in a specific state. The 

evolutions of execution possible for a system, beguining at its initial state are its pos- 

sible histories. A history captures all the actioos that have taken place in the system 

evolution. If a scenario or object creation action takes place as a result of a scenario 

authorization it is said to be permittecl When a system state evolves such that ail 

scenario and object creations giving rise to the state are permitted, the state is said 

to be a derivable state and the associated scenario tree a derivable scenario tree. 

4.3 Aut horization Properties 

When considering what is permitted by a system, the kinds of messages that may be 

authorized, and their order, must be determined. The message ordering relation for a 



scenario tree is a pre-order of the authorized messages defined by the tree. Messages 

on a scenario tree are always associated with a primitive scenario. The authorization 

properties of the tree can therefore be described by a pre-order on the primitive 

scenarios present in the tree. 

As described in the previous section, when seq orderings for scenario authoriza- 

tion are considered, a depth-fist left-to-right search produces an acceptable ordering. 

This is because the chil& sequence is defined be a left-to-right ordering of scenario 

authorization. In the seq o r d e ~ g  one child scenario must terminate before the next 

scenario is authorized. Recursively, the entire sub-tree of scenarios must therefore 

have terminated before the next scenario is authorized. 

This intuition does not hold for scenario trees with or and and scenario orderings 

or with concurrent scenarios. In the case of and scenaxio orderings, all child scenarios 

are authorized a t  the same t h e .  It is not a requirement for this ordering that one 

child scenario terminate before another may begin. This means that the messages 

associated with the sub-tree of one child scenario do not necessarily precede messages 

associated with the sub-tree of another child scenario. The situation is similar for 

concurrent scenarios. The concurrent child scenario begins a new thread of scenario 

ailthorization orderings that continues in parallel with the original thread of scenario 

authorization orderings. So again, messages associated with the sub-tree of the child 

scenario do not necessarily precede messages associated with the sub-tree of the parent 

scenario after the action authorizing the child. The difference between and-ordered 

scenarios and concurrent scenarios is that an and-ordered scenario is not able to 

terminate until dl its children have terminated, while in the case of a parent with 

one or more concurrent children, the termination state of the children has no bearing 

on the termination state of the parent. I.e., the parent authorizes each child and 

carries on with its specified ordering of actions without regard to the termination of 

the concurrent child. 



The case for or scenario orderings is different. In this case the child scenarios of 

the parent are mutually exclusive. Ow one child scenazio may generate messages so 

the messages associated with the sub-tree of one child scenario are not comparable to 

messages associated with the sub-tree of another child scenario. In actual derivable 

scenario trees only one sub-tree can exist so it may not seem important to  consider 

how two mutually exclusive sub-trees are related. However, it is an advantage later to 

be able to consider non-derivable scenario trees during analysis so the rules for such 

associations are dehed  d e n  considering authorization ordering. 

The following definitions and rules describe the pre-order on permitted autho~za-  

tions more forma&. For a state h, 

PA set of primitive scenarios permitted to be authorized by a 

system, P A  = {+ E Shl 4 is a primitive scenario) 

R scenario pre-order relation on P A ,  R P A  x P A  

For primitive scenarios 4, + E PA, consider their respective paths through the 

tree hierarchy to the tree root, So. At some point the paths to root for q5 and must 

join. Say they join at some scenario a. +R@ denotes that the message associated 

with 4 may precede the message associated with +. 
1. If the scenario ordering of O is or and q5 and @ belong to sub-trees of different 

children of a then 4 and are not comparable. 

2. If the scenario ordering of a is and then c$R$ and +R4. 

3. If the scenario ordering of a is seq then: 



FIGURE 4.1. Scenario ordering example 

(a) q5R$ if for ai, aj E childs(o), # belongs to the sub-tree rooted at  scenario 

cri and belongs to the sub-tree rooted at scenario aj7 and precedes aj 

in childs(a); 

(b) $R4 if for cri, a, E childs(o), 4 belongs to the sub-tree rooted at scenario 

and îI, belongs to the sub-tree rooted at scenario aj, and precedes aj 

in childs(c) and there is a concurrent scenario on the path to root from q5 

to a. 

It is apparent that P A  and R are monotonic with respect to a system history. 

Scenarios are added to the scenario tree but are not removed. 

As an example consider the scenaxio tree presented in Figure 4.1. In the example 

primitive scenazios are denoted pi and non-primitive scenarios are denoted sj. The 



scenario ordering has been specified for non-primitive scenarios. sO is the initial 

scenario (root). The following are some of the authorization properties that apply 

to this example. The scenarios p10, p l l ,  and p5 wiU always be the fht  primitive 

scenarios authorized by the system and the authorizations will occur in that order. 

These scenarios will always precede the scenarios associated with the sub-trees of 

scenario s2 and s3. Scenario pl2 will always precede scenario p13. Scenario pl0 WU 

always precede scenario pl2. AU of these cases involve a seq ordering at the scenario 

where the paths to root join, and a depth-first left-to-right ordering applies. In the 

case of scenarios p7 and pl2 their paths to root join at scenario s2, which has a and 

ordering. This means p7 and pl2 can corne in either order with respect to each other. 

The same applies for p7 and p13. In the case of p8 and pl4  their paths to root join at 

scenario s3, which has an M. ordering. In a derivable scenario tree p8 and pl4 could 

not both occur because the permitted possible histories will allow only the actions 

associated with either the sub-tree of p8 or the sub-tree of s9. Therefore scenarios p8 

and pl4 are incomparable under the pre-order relation R. 

If it wa.  the case that s4 was a concurrent scenario then pl0  and pl1  may be 

delayed for some arbitrary length of t h e .  Therefore, this would allow p5 to proceed 

before pl0 and p l l .  It  is also possible in this case that p10, or pl0 and pl1 could 

occur before p5. 

4.4 Safety Analysis 

4.4- 1 Scenario Equivalence 

Consider the safety problem. The objective is to determine in a given situation 

whether or not a subject can acquire a particular access Rght to an object. When 

considering the safety problem in the context of scenario-based access-control models 

the basic element of access control is based on a primitive scenario describing exactly 



one message pas.  Therefore, a solution to the safety problem must i d e n t e  the 

primitive scenarios that may be generated as a system evolves. The safety question 

can be formulated by the folIowing definition. 

Definition 1. The simple saftey question is defined as: for some system, C ,  O E ST, 

(oI7  0 2 ~ .  . . ,on) E 0°, W there a possible history such that there exists a state h, a 

seenario q5 and # E PAh, where T ~ ( # )  = 0 and parentacquiredpara&) = { ( id l ,  01) , 
(id2,02) - - - , (idn 7 on) ) 

If such a question can be answered it could be used to identify the occurrence 

of a specific primitive scenario (i-e. authorization of a specific message type). The 

sending and receiving objects of the message instance are specified by the scenario's 

parent-acquired parameter bindhgs (i. e. the O bj ects bound to the identxers sender 

and receiver). Al1 other parameten to the message that make it unique are also 

specified by the object bindings. 

For non-monotonie security policies the ordering of messages must also be con- 

sidered. In such cases a version of the safety question which accounts for message 

ordering can be formulated by the following definition. 

Definition 2. The saftey question for non-monotonie security policies is defined as: 

for some sgstem, C ,  {a, a)  E ST, {oI7 02, . . . , on, 0i7 oh, . . . ,O;) E 0°, is there a 

possible history such that there &ts a state h, scenarios q5 and 111, {#,$) E pAh, 

and #Rh+, where rs(#) = O ,  q($) = il? and parentacquiredparas($) = { ( i d l ,  o l ) ,  

(id2, 9), , (idn 7 on)) and parent acquiredpar as (+) - - 

{ ( i d ; , ~ ; ) ,  (%,4), 7 (id;, o h ) }  

Note that the specified parameters in both of these definitions are members of 0'. 

A safety question is formulated in t ems  of objects that exist in the initial state. 



Objects that may be created during the evolution of the system do not yet exist 

and cannot be named. The types of objects that might be involved in system in- 

teractions may be interesting but only O0 objects can be specified for a particular 

analy sis, 

Many different evolutions of the system are possible in which different ob jects are 

created after the initial state. Similar scenarios can be repeated a number of times. 

However, many of the states produced may agree on the existence and ordering of 

messages with respect to how O0 objects are involved. 

For example, in the document release example an initial state might include an 

Oscientist  object, an Odocument object, and an OpatentOficer object. The scientist 

author is aiIowed to read then write to the document. Then the author rnakes a 

decision whether to continue to edit the document or to forward the document for 

review. The scenario creation and ordering constraints for the scenario types Sinitial, 

SdocEdit,  and SfomardDecision allow an arbitrary number of creations of a SdocEdit 

scenario instance (the scenarïo which authorizes the read and mite  messages) before 

proceeding to document review. After the author has performed a readlwite on the 

document a few times any further instances of SdocEdit do not add any messages 

that involve 0' objects in new or different ways. As well, similar kinds of messages 

involving O0 objects are not presented in a new order by the repeated scenario in- 

stances. Therefore, only a limited number of instances of SdocEdit are interesting 

from a safety analysis perspective. 

Messages can be considered to be equivalent when reduced to their relationship 

to 0' objects. That is, they can be considered equivalent if they treat 0' objects 

in the same way. O-reducible equivalence will be defined for messages by defining 

O-reducible equivalence on primitive scenarios. O-reducible equivalence for primitive 

scenarios is subsumed by the definition of O-reducible equivalence for scenarios in 

general. O-reducible equivalence will also be d e h e d  for other mode1 constructions. 



ORen when it is not confushg O-reducible wül be dropped and mode1 constructions 

will be referred to as being equivalent. 

Before definhg O-reducible equivalence for scenarios it is necessary to define O- 

reducible equivalence for objects. The messages authorized by a scenario tree can 

depend on the object visibilities of the objects participating in the scenarios. If 

objects of the same type have the same direct and indirect visibility of O0 objects 

they are said to be O-reducible equivalent. 

The intuition behind object equivalence foUows fiom the fact that object visibil- 

ities are speciiied at object creation time. The visibilities therefore refer to objects 

existing at the time of creation. The transitive visibility relationships for an object 

therefore fonn a h i t e  tree structure. If two objects of the same type have the same 

visibility tree topology and the same O0 objects occupying the same positions in their 

respective trees, then the objects are O-reducible equivalent. O0 objects are trivially 

equivdent to themselves. Object equivalence is formally defined as follows. 

Definition 3. Two objects a und b are O-reducible equivalent, written a b, iff 

ro (a)  = ro (b)  and either, 

1. a,b E 0' and a = b, or 

2. a ,  b fi! 0°, and f o r  each parameter binding (ia, ca) E viso(a),  there m k t s  a 

parameter binding (ib, cb) E vis&) such that i, = ib and c, ca. 

The definition of object equivalence is recursive. For any object the depth of the 

recursion is finite. This can be proven inductively by noting that dl objects are either 

O0 objects or are created during system evolution. 

Lemma 4. For a system C ,  and any tîuo objects a, b E 0, the definition of a r o  b is 

finite. 



Proof. The fan out of any node in the visibility tree is finite because the size of 

visoT for any object type is defhed to be finite. The proof of f i t e  depth of recursion 

of the definition is by induction on the number of object creations which have taken 

place in the system history. The inductive hypothesis is that for any system state 

in which n new objects have been created the lenima holds. The basis case holds 

trivially. In a state in which the n + 1st object is created its equivdence to another 

object is defhed by determining an equivalence for the f i t e  set of objects in its 

visibiliw set, viso. These objects must have been created before the n + 1st object. 

By the induction hypothesis the lemma holds for each of these objects. Therefore the 

lemma holds for systems with n + 1 object creations. 0 

Now O-reducible equivalence of scenarios can be defhed. Scenarios are O-reducible 

equivalent iff they agree on type and their parameter bindings are equivalent. Scenario 

equivalence is formally defined as follows. 

Definition 5. Two scenarios # and 3 are equivalent, wn'tten 4 $, i f f  ~ ~ ( 4 )  = 

rS($) and for each parameter binding (i4, a4) E paras(+), there exists a pammeter 

bindéng (&a*) E paras(+) such that i4 = y and a# a+. 

Given this definition, three useful properties of scenario equivalence are presented 

a .  lemmas. The first property is that equivalent scenarios will produce equivalent 

child scenarios. The child scenarios may evolve in diiferent ways, but they will be 

equivalent at the time of creation. This follows because by deibition the construction 

of child scenarios depends only upon the type of the parent scenario and the parent's 

parameter bindings. The property that equivalent scenarios will produca equivalent 

child scenarios is proven for the following lemma. 

Lemma 6. For a system C, and scenarios 4 and $, if 4 ro II) at the time of their 

i th  child creatz'ons, #' is the scenam'o produced using the i t h  scenan'o descriptor in 



childsT(rs(q5)), and +' is the scenariu pruduced wing the ith scenario descciptor in 

childsT(rs(@)), then 4' $'. 

Proof. From the cquivalence of q!~ and $, r&) = rs(S>)- Therefore q5 and $ 

share the i th scenario descriptor and ~ ~ ( 4 ' )  = rs(@). Recali that para&') = 

pa~entacquiredpara~ (Q) U ~hi ldacp iredpara~  (9') U de f inedparas (4') and similady 

for paras ($'). Bindhgs in parentacq~iredpara~ (4') and parentacquiredpa~a~ (#) 

are defined by identiner mappings in the shared scenario descriptor and the sets 

paras(q5) and paras(+) respectively. By the equivalence of q5 and @, if these m a p  

pings must generate bindings (im, ad) E paras(#') and (y, a*) E paras($'), then 

i4 = i* -+ a4 a*. At the time of creation of 4' and ?Ir,  childacquiredparas(#') = 

childacquiredparas(~') = 1). Since rS (4') =TS ($') , de f inedparas (7s (4')) = 

de f inedparas (TS(@')). Therefore, an object defined by a de f inedparas binding for 

#' WU be equivalent to an object dehed  for $' using the same binding. This fol- 

lows fkom parentacqui~edpara~ (@) parentacqui~edpara~ ($') and Definition 3. 

Therefore, the lemma holds. 0 

Scenarios can change state over time and with the change in state their equivalence 

class rnay change. More precisely, the mapping specified by paras for a scenario may 

change as child-acquired scenario bindings are added, mapping the scenario to a new 

function. It can now be proven that it is possible for scenarios that are equivalent 

upon creation to evolve in such a way that tiiey remain equivalent. The propem that 

equivalent scenarios can evolve in equivalent ways is proven for the foUowing lemma. 

Lemma 7. For a system C, and scenarios 4 und @, where 4 $ at the time of their 

creation, for any derivable state h there exists a derivBble state g such that q5h $g. 

Proof. The proof is by induction on the depth of the scenario sub-tree rooted 

at 4. The induction hypothesis is that for a derivable state h where the depth of 



the scenario sub-tree rooted at 4 is n there exists a derivable state g such that for 

any (i, a) E ch i ldacqu i redpara~  (4) there exists (i, a') E childacquiredpara~ ($) and 

a a'. The basis case for sub-tree depth of O holds trivially since there are no 

children to contribute to childacqzli~edpara~(q5). Consider the case where sub-tree 

depth equals n + 1. By Lemma 6, for any child scenario created by # an equivalent 

scenario can be created by $. By the induction hypothesis there exists a state g such 

that these children have equivalent tennination states. Therefore an equivalent child 

acquired binding is available to T) as required and the lemma holds. O 

Another useful property associated with the equivalence of scenarios arises from 

the observation that equivalent scenarios shodd have an equivalent set of possible 

histories. By equivalent possible histories it is meant that it should be possible to 

derive scenario sub-trees from equivalent scenarios such that the sub-trees rooted at 

those scenarios have the same topology and equivalent scenazios at each position in 

the sub-trees. The propem that equivalent scenarios can evolve equivalent sub-trees 

is proven for the following lemrna. 

Lemma 8. For a system C ,  and scenam'os and $, $ 4  0 $, and 4' is a scenario in 

a deràvable sub-tree rooted at #, then for the sequence (4, w l ,  wz, . . . , w,, 4') describing 

the path in the sub-tree from 4' to  4, it is possible to derive a state such that there m-s t s  

a sub-tree of î/, vhich contains a path defined b y the sequence (Q, w i  , wh, . . . , w k ,  $') 

and wi w: for al1 i E 1.. .n, and 4' $'. 

Proof. The proof is by induction on the length of the sequence describing the 

path in the sub-tree from q5' to 4. The induction hypothesis is that the lemma holds 

for sequences of length n. The basis case for sequences of length O hoIds trivially. 

Consider the case where the length of the sequence is n+ 1. The sequence would have 

the form, (4,  W I ,  w2, - . . , wn+ q5'). Rom the equivalence of # and q5, Lemma 6, and 

Lemma 7, a sceanrio w; is de~vable such that w; is a child of $ and w; wl. By 



the induction hypothesis the required sequence (w;, w;, . . . , wL-,, +') is derivable and 

the lemma holds. C1 

0-reducibility and equivalence are also defined for states. O-reducibility is defined 

with respect to the permitted authorization pre-order on PA. 

Definition 9. A state h is O-reducible to a state gJ written h s0 g ,  i# 

1. f o r  al1 primitive scenarios 4 E  PA^, there exists 4' E PA9 such that 4 4' 
and 

2. for all 41Zh$, there exists qSR9$' such that $ 4' and $ $'. 

Two states g and h are O-reducible quivalent, written g 0 h, i f l  h la g and 

g 50 h- 

Note that equivalent states would generate equivalent messages and the possible 

orderings of equivalent messages with respect to each other would be the same. 

4.4.2 Maximal States 

Recall that P A  and R are rnonotonic. Scenarios trees grow from an initial scenario. 

Branches are added as scenario authorization actions occur, moving the system fkom 

state to state. Branches are never removed. This is why a history for the system is 

associated with a specific scenario tree. 

For some system C ,  if there exist histories with derivable scenario trees represented 

by states g and h, such that the scenario tree for state h is an extension of the scenario 

tree for state g through a series of permitted scenario authorizations, it can be said 

that h can be derived from g. h can be derived frorn g will be written g + h. 

It would be useful for safety analysis if there existed some derivable maximal 

state such that for any further messages generated by the system there are already 

equivalent messages in P A  and equivalent pairs in R. 



Defmition 10- For a systern C ,  m is a maximal state i_tf m is deriuable and f o r  

all derivable states h such that h -t m and al1 derivable states g such that m + g,  

h So m a n d g 5 0  m. 

For any system there may be more than one such maximal state. A l l  maximal 

states are not necessarily equivalent. The existence of maximal states is proven by 

the following lemma. 

Lemma 11. For a system C, for every derivable state h there &sts a maximal state 

m such that h + m. 

Proof. Let Sh be the set of states derivable fiom h. For the case in which Sh = (1, 
h is a maximal state derivable from itself in zero steps. The number of equivalence 

classes of states in S is f i t e .  This is because the number of equidence classes of 

primitive scenarios in P A  is finite since there are a finite number of scenario m e s  

and 6' objects. There are a finite number of possible orderings (for a representative 

member of each of these scenario equivalence classes) that can be represented in R. 

Therefore, for a state h there are a f i t e  number of equivalence classes of derivable 

states. Let T~ be a set of states such that there is a representative rnember £rom each 

of the equivalence classes of Sh. If for every g E T ~ ,  g qo h, thetl h is a maximal 

state. Otherwise there exists some state g E T~ such that g go h. Consider evolving 

the system to state g. Form S g  and T9 similarly to sh and Th. Sg Ç sh. By the 

monotonicity of P A  any state in Tg previously O-reducible to h is O-reducible to g. 

Since the number of elements in Ts must be finite the system can continue to be 

evolved in a similar way until ail derivable equivalence classes can be reduced. This 

state WU be a maximal state for h. 

It is apparent that for any system state, there may be one or more non-equivalent 

maximal states. This is because as a scenario tree for a system evolves some scenarios 



rnay have orderings of type m. These scenarios are decision making scenarios and the 

resulting possibilities for scenario tree evolution are mutually exclusive? Therefore, 

as a system evolves, the set of derivable states it can reach may decrease. DifFerent 

decisions at a scenario with an or ordering may lead to different sets of reachable states 

and therefore to different maximal states which are not equivalent. For example, 

consider a system in a state for which it is possible to authorize a scenario with an or 

ordering. When this scenario becomes authorized it is possible for further evolution of 

the system to continue with the actions associated with m y  one of the child scenarios. 

In this state there is a possible history associated with each one of the child scenarios. 

Once an action is taken on one of these possible history paths the other paths are 

no longer possible. Le., some of the possible histories of the previous state are no 

longer possible. A different maximal state may have been associated with each of 

the mutually exclusive possible histories. Once the system begins to evolve dong one 

of these paths the maximal states associated with the other possible histories may 

no longer be reachable. Le., some kinds of messages, or message orderings, may no 

longer be possible to generate. 

It would be more useful for safety analysis if there was a system maximal state 

which would describe all possible occurrences of messages and their respective order- 

ings. Inspection of P A  and R for such a state would yield an answer to the safety 

problem. However, it seems that such a state would not be derivable if there are 

scenarios with or orderings. 

Consider construction of a scenario tree for a state in the normal way but allowing 

authorization of scenarios which are normally mutudy exclusive by way of an or 

ordering. Such a state would not be derivable but the set P A  would include al1 

messages possible on either mutually exclusive branch of the tree. The message 

ordering relation R for this new scenario tree would not contain any orderings which 

were not possible in some derivable scenario tree. This is because, by the definition 



of R, messages on the mutually exclusive branches are not comparable and would not 

contnbute new pairs to the relation. 

It is possible that such a non-derivable state could be constructed such that all 

maximal states for a system could be O-reducibie to that state. The existence of such 

a state is proven for the following theorem. 

Theorem 12. For a system C ,  there is a state m*, tuhich may not be deriuable, svch 

thut: 

1. there exists #,$' E PAm' and 4'Rm9$' where 4' 4 and $' y5 i f  there 

exists 4, E PAm and q5R"+ for some maxz*rnal state m, and 

2. there exists qS, $' E PAm' and tfRm'$' only i f  there &ts $, $ E PAm and 

@Rm$ for some mm-mal state m, where q5 =O 4' and $'. 

Proof. The proof is by induction over the nurnber of equivalence classes of maximal 

states in a system. The bais  case is one equivalence class of maximal states and in 

this case m* can be any member of the equivalence class. Consider a set T which 

contains one member fkom each equivalence class. Assume the theorem holds for T 

of size n and consider T of size n + 1. T = S + { r )  where [SI is n. By the induction 

hypothesis there is a state, m, which satisfies the theorem for S. Create a new state, 

m' by superimposing the scenario tree for m and the tree for state r. 1. e., add to 

the tree for m any branches which exist in r but do not already exist in m. Adding 

such branches means that where there is a path between a scenario and root in the 

tree for r ,  equivalent scenarios corresponding to that path are created in the tree for 

scenario m if they do not already exist. This is possible by Lemma 8. For the if 

case, the induction step must show that for m (or T )  , such that 4, II, E PAm (or 

E PAr) and @RmS (or @E$), there exists qY, 1C>' E  PA^ and q5Rrn'+' where 4 =O 4' 
and S, $JI. This is so because, by the construction of m' and the definition of P A  



and R, m' and m (or r) have equivalent paths joining at equident scenarios. For 

the only-if case of the induction step it must be shown that for q5', $' E PAm* and 

$'P*+' there exist an m such that 4, E PAm and 4 P $  such that 4 4' and 

$ +'. Again, this case fokws by the construction rules for scenario trees and the 

definitions of P A  and R. Consider the paths fiom 4' and $' to root. If 4'Rm*+' exists 

then the paths are not mutually exclusive and it is possible to construct a derivable 

state h with equivalent paths. Let m be a maximal state for h. By the definition of 

maximal state, Definition 10, q5 and exkt in m as required. O 

Corollary 13. State m* as defined in Theorem 12 is a system maximal state such 

that for al1 maxzirnal states of the systern, rn, m m*. 

For a system there may be more than one system maximal state but it is evident 

from Corollary 13 that all such states are equivalent. 

4.4-3 Unfolded State 

Theorem 12 proves the existence of system maximal states but does not provide 

an algorithm for construction of such a state. To proceed with safety analysis, an 

algorithm will be proposed to construct a characteristic state for a system under 

analysis. It will then be proven that such a state produced by the algorithm is 

equivalent to the system maximal states for the system. Safety analysis can then be 

conducted by inspecting this state. The analysis strategy presented here owes much 

to Sandhu's work on the Schematic Protection Mode1 [San88]. In SPM, analysis 

proceeds using an unfolding algorithm which creates a representative of any subject 

that might exist in the system. The mechanism for transfer of access rights is applied 

iteratively wherever allowed until the systems stabilizes. This results in a worst case 

which identifies what access rights a subject might possibly get. This analysis must 



assume monotonic s e c e  policies as rights are continually added to the system to 

reach the worst case, a maximal state. 

The strategy here is Werent in that the unfolding algorithm is not creating repre- 

sentative subjects but instead creates representative scenarios. As system execution 

evolves, scenarios are created but are never destroyed. Scenarios that are not currently 

active are just past history. History cannot be destroyed. Therefore, the unfolding 

algorithm is monotonic in scenario creation over time. Each scenario represents an 

ordering of child scenarios. These scenarios are by dehition only authorized at a cer- 

tain time during the evolution of the parent scenario. The set of currently authorized 

scenarios is non-monotonie over system execution. This change in focus allows the 

use of an analysis strategy similar to that used with SPM to be used with systems 

with non-monotonie security policies. 

The possible histories for actual systems c m  grow arbitrarily large. To provide 

efficient analysis an algorithm is needed to provide a method for the construction of 

an unfolded state. The algorithm should be designed to limit the complexity of the 

scenario tree that is produced for the purpose of safety analysis. 

The intuition behind the construction of the unfolding algorithm is based on the 

property that equivalent scenarios may result in equivalent scenario trees (Lernma 8). 

If this is the case then recursive occurrences of equivalent scenarios may lead to 

redundancies in the unfolded state tree. Le., the redundant portions of the tree do 

not contribute to P A  or R and need not be represented. Consider the following cases. 

In the first case consider the occurrence of more than two equivalent concurrent 

scenaxios on a path to root. Note that a message associated with a primitive scenario 

in a sub-tree rooted at a concurrent scenario can occur before or after any message 

associated with a primitive scenazio in a sub-tree rooted at another concurrent sce- 

nario. If there are already two such equivalent scenarios on a path to root, another 

occurrence of a scenario from this equivalence class will not add to P A  or R. This is 



because the sub-trees rooted at these two scenarios will act as surrogates for sub-trees 

rooted at any arrangement of preceding and following equivalent scenarios along a 

path to root. By the concurrency of the sub-trees, scenarios from the equidence 

classes of primitive scenarios represented in the sub-trees can come in any order with 

respect to each other. Fùrther occurrences of equivalent sub-trees would not add any 

new orderings. 

In the second case consider the occurrence of more than two equivalent non- 

concurrent scenarios on a path to root. Consider specifically the case where there 

are no intervening concurrent scenarios between the occurrences of the equivalent 

scenarios. If there are already two such equivalent scenarios on a path to root, another 

occurrence of a scenario fiom this equivalence cfass will not add to P A  or R. Again, 

this is because the sub-trees rooted a t  these two scenarios will act as surrogates for 

sub-trees rooted at any arrangement of preceding and following equivalent scenarios 

along a path to root unbroken by a concurrent scenario. 

The following definition describes a fully mfolded state that captures all possible 

scenario equivalence classes and eliminates redundant, recursive scenarios. 

Definition 14. For a systern C, the  fully unfolded state u is defined by applying the 

unfi lding algorithm t o  the initial scenario, So. The unfolding algorithm is def i lad by 

the following pseudo code: 

unfold(SO) 

Where: 

unfold(Sp,, : scenario) 

begin 

for(each scenario descriptor, d ,  in ~ h i l d ~ ~ ( ~ ~ ( S & ~ ~ ) )  in turn) 

begin 

create a child. SchiIdy using d and pa~a~(S,,,~) 



if(ms(Sdiiid) and 3 scenarios 4, $ on the path to root for SAild 

s-t. 4 =O q!~ Scmd and ams($) and cons(+)) then 

continue 

e l s e i f ( ~ ~ o n ~ ( S ~ ~ ~ ~ )  and 3 scenarios 4, 11> on the path to the last concurrent 

scenario s.t. 4 ?,b =O Schild) then 

continue 

else 

~ I I f o l d ( & ~ ~ ~ )  

end 

end 

The algorithm halts the evolution of a branch of the scenario tree when recurring 

scenarios are detected. This ensures termination of the algorithm. 

Lemma 15. The construction of definition 14 t emina tes .  

Proof. The scenarios created by the application of the algorithm form a tree rooted 

at the initial scenario So. By the definitions of childs and scenario authorkation each 

scenario can only have a finite number of children. At the most, a scenario can have 

a child correspondhg to each of the scenario descriptors specified by the function 

childsT for that type of scenazio. The evolution of tree branches is halted whenever 

more than two concurrent equivalent scenarios are on the path to root or if more 

than two non-concurrent equivalent scenarios are on the path to the last concurrent 

scenario. There are a finite number of equivalence classes of equivalent scenarios since 

there is a finite number of scenario types and a finite number of objects in 0'. The 

length of every path in the construction must therefore be finite. 

An important property of state z i  is that it contains all possible sequences of non- 

repeating scenarios (up to the point of scenario equivalence). This prope* becomes 



important later in proving that u is a system maximal state. The property of u 

containhg all possible scenazio sequences is proven for the folIowing lemma. 

Lernma 16. For a system C,  let u be the state produced by definition 14. For a 

sequence of scenan'os, . . . , #,.Ji that defines a path through the scenario tree for 

some state h, such that there are no equiualent scenarios in the sequence; there exists 

a sequence of scenan'os, (4;, c&, . . . , @:), that defines a path through the scenario tree 

for u, where di 0 4, 4 2  =O #;, . - - , 4n 4;. 

Proof. Consider a point in the execution of the algorithm where evolution beyond 

a scenario 4 is halted because it is equivalent to some scenario on the path to root 

for 4. By lemma 7, for any sub-tree rooted at q5 an equivalent sub-tree is also possible 

for $. By definition 14, for each scenario all possible children are authorized (up to the 

point of repetition) in the unfolding of state beyond +. Therefore, any path sequence 

created by unfolding the state beyond # (again up to the point of repetition) has an 

equivalent path sequence beginning at  +. 1. e., further repetitions do not produce any 

new equivalence classes of non-repeating sequences, and state u contains d l  possible 

equivalence classes of non-repeating sequences. State h and state u are both evolved 

from So. Therefore, for any non-repeating sequence in h an equivdent sequence can 

be found in u. Cl 

4.4-4 Proof of u as a Maximal State 

Now, it must be proven that a fully unfolded state u produced by the algorithm of 

definition 14 yields a state equivalent to a system maximal state. That is, it must be 

proven both that a state h, which is a system maximal state, is O-reducible to u and 

that u is O-reducible to such an h. 



Lemma 17. For a system C ,  let u be the state produced by aefinition 14. For any 

state h, which is a ssystem maximal state, h u. 

Proof. It must be proven that: 

1. for all + E PAh, there exïsts 6' E PAu such that q5 #' and 

2. for a l l  $Rh@, there exïsts #RU@' such that q5 4' and 1C> $JI.  

Part 1 follows directly fiom lemma 16. u has equivalent sequences for all non- 

repeating sequences that are present in h. u must then have equivalent scenaxïos for 

aLl scenarios that are present in h. 

The proof for part 2 is more involved. A l l  elements of P A  and R in a system 

maximal state c m  be produced by some derivable state. It will suffice then to prove 

part 2 true for any derivable state h. Proof is by inductio~l on the nurnber of scenario 

authorization operations resulting in state h. The induction hypothesis is that part 

2 holds for n scenario authorizations. The basis holds for the initial state and zero 

scenario authorization operations. Consider a state, h, with n + 1 scenario autho- 

rizations. Sh = S 9  U (41, where state g has n authorizations and 4 is the n + lst 

scenario authorized. By the induction hypothesis, part 2 holds for Rg and there- 

fore for any pair in Rh which does not involve scenario 4. If + is not a primitive 

scenario then Rh = R9 and the induction step holds. If 4 is a primitive scenario 

consider $J E PA9. Now for the induction step it must be shown that part 2 holds 

for +Rh$ or $Rh$ if they exist (those pairs involving the new scenario). Let the 

paths to root for 4 and 9 join at scenario a. On the paths fkom 9 and ?I> to O and on 

the path to root from a there may be zero or more equivalent scenarios. Construct 

new paths for these three path segments by elirninating the segments of the paths 

between concurrent equiwdent scenarios. For exampIe, consider a path sequence 

fiom a to 4, (a, XI,. . . , An, QI, %, . . - , yk, Oz, cii, - . . , +), where 81 02 and 81 



and O2 are concurrent. By lemma 8, it is possible to create a derivable scenario se- 

puence (o, Al, . . . , An, &, 6:, . . . , &, qY), where 6; &, . . . , & 6, and 4" #. 

Continue to eliminate segments of paths between concurrent equivalent scenarios un- 

til no such segments remain. Apply the same technique to eliminate segments of 

paths betmeen non-concurrent equivalent scenarios that lie between any two concur- 

rent scenarios. 1. e., for a path sequence (a, XI, . . . , A,, p, A,+l, . . . , Am: el, 3, . . . , yj, 

& , - . . , &, w , bk+l, . - . bl, 4) where p and w are concurrent, form a new sequence 

(O, Al,. . . , An, p, An+l,.. - , Am? 01, di,. . . , &, w', 6;+,, . . . ,cf;, v). Again, continue to 

eIiminate segments until no such segments remain. In a similar way create new path 

sequences between CT and @"' and So and dl. By lemma 8 it is possible to construct 

equivalent path sequences between O-'' and $"', and d' and $+'"" where 4"' 4", 
and +"' $". The resulting paths to root for #" and $"' have no more than two 

concurrent scenarios from any equivalence class. As well there will be no more than 

one scenario fiom any equivalence clam between two concurrent scenarios. By the 

construction of definition 14 and lemma 16 there must be equivalent paths to root 

from #' and $' in the scenario tree for u, where o ro d dl', 4 =O 4' =O q5"', and 

.tC, $' Sr'". Therefore by the definition of RU, #'Ru+' or $'PqS wiU exist as 

required- O 

Lemma 18. For a system C, let u be the state produced by  definition 14. For any 

state h, which is a system rna=c~~ntal state, TL h. 

Proof. It must be proven that: 

1. for ail# E PAU, there exists 4 E PAh such that q5 ro 4' and 

2. for all #RU$', there exists 4 ~ ~ $  such that qb GO 4' and $J mo $'. 

To prove part 1 consider a primitive scenario 4' E PAU. By definition 14 the path 

to root for 4' îs derivable. Therefore, there exïsts a state h' for which the scenario tree 



contains an equivalent path. Rom lernma 11 and theorem 12 there exists a systern 

maximal state h such that hf h. Therefore, there exists a scenaxio 4 E PAh as 

requhed. 

To prove part 2 consider a pair (#', q5') E P. The paths to root for 4' and $' join 

at scenario d. By definition 14 the paths to root for Q and $' are derivable. By the 

definition of R, urdersT(~s(cr)) # or. Therefore, the branch paths to 4' and +' are 

not mutuaUy exclusive. A derivable state h' c m  be constructed such that its scenario 

tree has paths equivalent to these two. The new tree WU contain scenarios 4, and 

O such that $ qS, II ,  $' and a cf, and the paths to root for q5 and + j ob  at 

. From lemma 11 and theorem 12 there exists a system maximal state h such that 

hf h. Therefore, there exists a scenario pair ($, +) E Rn as  required. U 

Theorem 19. For a system C ,  let a be the state produced by definition 14. For any 

state h, which is a system maximal state, u -0 h. 

Proof. The proof follows directly fiom lemmas 17 and 18, and defmition 9 for 

state equivalence. O 

4.4.5 Complexity of Safety Analysis 

The Mly unfolded state u is a system maximal state. The safety question formulated 

by definition 2 can be answered by constructing u and inspecting the authorization 

properties PAu and RU. This method will determine whether it is possible for two 

scenarios 4 and q5 (or their equivalents) to exist and if the ordering 4Rq5 is possible. 

The corresponding paths in the scenazio tree for state u (the analysis tree) also provide 

a history of system events that make such an occurrence possible. 

The complexity of performing such an analysis depends on the complexity of the 

two main operations, construction of the analysis tree and inspection of the analysis 

tree. 



The unfolding algorithm described by definition 14 that produces the analysis tree 

is controlled by the procedure unfoldo. The procedure has a main loop that creates a 

child for each scenario descriptor belonging to the childsT set defined for the scenario 

passed as a parameter to the procedure. The body of this loop performs two searches 

along the path to root for the newly created child scenario and may recursively invoke 

itself on the new scenario. The searches along the paths to root for repetitions of 

scenario equivalence classes can be done in constant time by maintainhg a hash of 

the equivalence classes dong the current path to root. Due to the recursive procedure 

caU, the main loop of the procedure will be executed once for each scenario created 

by the construction of the analysis tree. This is in the order of [SI. [SI is constrained 

by the number of child scenarios that c m  be created by each parent scenario (the 

fan-out at each node of the tree) and the depth of the paths in the tree (controlled by 

the parent-child relationships defined by childsT and the conditions cont rohg the 

recursion of the procedure). 

The fan-out for a particular scenario, 4, is defined by the cardinality of 

childsT(rs(4)). This is finite by definition but is otherwise unconstrained by the 

modeling scheme. However, it is not normal for human designers to work with sce- 

narios that have more than a few child scenarios. 

The depth of the paths in the analysis tree are controlled by the parent-child 

scenario-type-to-scenario-type relationships defined statically by the scenario descrip 

tors in child-. These relationships control how the analysis tree unfolds. The depth 

of the tree in bounded by the termination of evolution paths associated with the 

detection of repeated scenario equivalence classes on a path back through the tree 

to root. An upper bound for tree depth depends on the (finite) number of equiva- 

lence classes for scenarios possible in the system. The number of possible equivalence 

classes is characterized by the number of scenario types dehed for a system, and the 

number of O0 objects which can act as parent acquired parameters to the scenarios. 



The number of parent acquired parameters is defmed by the modeling scheme to 

be finite but is otherwise unconstrained. There can be a t  the most two concurrent 

equivalent scenarios on a path to root and a maximum of two non-concurrent equiv- 

dent  scenarios between any two concurrent scenarios on a path to root. Therefore 

the maximum path length (tree depth) is (2 x n,,)2, where ne,% is the number of 

possible equivalence classes for scenarios in a system. 

The worst case analysis tree can be approxkated by a k-ary tree. The number of 

interna1 nodes in a complete k-ary tree, where all nodes have degree (fan-out) k, and 

the depth of the tree is h is (kh - l)/(k - 1). Clearly, the worst case upper bound 

is intractable even for small systems. However, it is expected that in actual systems 

the number of parent-child scenario-type-to-scenario-me relationships defined by 

chddsT will be very much smaller than the cornplete connectivity implied by the worst 

case. This is the case for inter-scenario relationships in contemporary object-oriented 

analysis and design. There rnay be a large class of systems for which production of 

the analysis tree is tractable. The examples presented in Chapter 5 are representative 

of some interesting dasses of system for which analysis is tractable. 

The second of the two main operations that contribute to the complexity of per- 

forming safeSf analysis is the inspection of the analysis tree. In formulating a safety 

question in the format of dehition 2 two scenarios, 4 and are defined. Occurrences 

of scenarios q5' and $' are identified in u, where 4' =O 4 and $' $. The joining 

scenario on the paths to root for each such 4' and 11' is a scenario d.  ordersr(rS (d)) 

and childs(a) are inspected to determine if the conditions are met for ~'R"$J'. A full 

walk of an analysis tree of n scenarios ([SUI) visits each scenario twice and requires 

two scenario cornparisons for each of the n scenazios (once each for # and 11). This 

complexiity may be reduced by using an indexing scheme at  the time of analysis tree 

creation. For a search that produces 1 scenarios 4' and m scenarios +', there are 1 x m 

checks required to determine if there exists a pair @'R?,K For each of these cases the 



paths to root must be searched to find the appropriate d. This would requise in the 

worst case h comparisons, where h is the depth of the paths to root. The complexity 

of the inspection operation is in the order of 272 + 1 x m x h. The size of 1, m, and 

h will be small relative to n. For an analysis tree that has tractable construction the 

inspection of the tree is also tractable. 



Chapter 5 

WORKED EXAMPLES 

5.1 Introduction 

This chapter presents a set of examples. The SBAC modeling scheme is applied to 

specXc kinds of problems. The first four examples are taken fkom the literature. They 

provide a small set of interesting security policies that have been used in other work to 

demonstrate the ability of a modeling scheme to express useful system models. This 

is also the purpose of including such examples here. The Iast example is an SBAC 

adaptation of an ob ject-oriented analysis for a military message system. The original 

non-SBAC model was done by a graduate student as part of the requirernent for 

completion of a course in object-oriented analysis and design. This model provides an 

example of SBAC being used in conjunction with contemporary softwaxe engineering 

analysis and design techniques. This example dso provides a n  example of a model of 

a larger system, and an example of how the safety analysis scheme performs with a 

larger size model. 

A design capture and analysis tool was implemented to explore the deihition of 

SBAC modeIs and the construction of analysis trees for specific system instances of a 

model. The tool can be used to speciS. a security model directly using a windowing 

interface or it can accept a specially marked-up Rational Rose model f le as input. 

This tool was used in the development of some of the examples presented. The last 

section of the chapter describes the modeling tool and some of the results achieved. 



5.2 Document Release Example 

The document release example was presented in Section 2.3.3 (cf. Sandhu, [SG94]). 

Recall that a scientist prepares a paper for publication. Before the scientist is ailowed 

to publish the paper it must be cleared for publication by a patent officer. The patent 

officer can authorize the paper for publication or she can return it to the scientist for 

revision. The scientist is init idy able to m o d e  the content of the paper but loses 

that right while the paper is under review. The scientist is also not able to alter the 

content of a paper authorized for publication by the patent officer. 

An SBAC analysis specXcation for this problem was presented in Chapter 2, 

Figures 2.3 to 2.10. The work flow of a document begins with a perîod aIlowing the 

scientist to work on the document, moves to a review period by the patent officer, and 

then back to the scientist, either for publication or rework. The first three scenario 

types presented in the set of figures are: Sinitial, SdocEdit, and SforwardDecision. 

These control the scientist's initial editing of the document and decision to forward 

the document for review. Sinitial is a sequential scenario and specifies that the sci- 

entist be allowed to edit the document. This is authorized by an SdocEdit scenario, 

which in turn authorizes a read of the document followed by a write (primitive sce- 

narios). When an edit is complete Sinitial authorizes the scientist to make a decision 

about forwarding the document. Le., authorization of a Sforwa~dDecision scenario. 

An SforwardDecision scenario authorizes both a recursive return to editing by aut ho- 

rization of another Sinitial scenario, and the forwarding of the document for review 

by autho~zation of an SdocFomvard scenario. The SfonuardDecision scenario has an 

or ordering so the actions involved in these two child scenarios are mutually exclu- 

sive. Given this set of scenarios the scientist c m  continue to edit the document an 

arbitrary number of times before finally making the decision to forward it for review. 

The next scenario type presented is SdocForward in Figure 2.6. This scenario type 



specses a message pass fiom the scientist to his assigned patent officer requesting 

a review of the document. Following this message a scenario of type SdocReview is 

authorized, Figure 2.7. This scenario allows the patent officer to read the document 

and then authorizes a scenario of type SreleaseDecision, Figure 2.8. The SrelmeDe- 

cision scenario has an or ordering. This allows the patent officer to make one of three 

choices. She can continue to review the document (recursive authorization of another 

SdocReview scenario) , or she can approve the document for release, or she can retum 

it to the scientist for revision (authorization of scenarios of m e s  SdocRelease and 

SdocRevision respectively) . An SdocRelease scenario, Figure 2.9 creates a new release 

authorization object and passes it back to the scientist. The scientist can use this 

ob ject to indirectly publish the document. An SdocRevision scenario, Figure 2.10 

passes the document back to the scientist and recursively starts the whole editing 

and review process over again by authorizing another Sinitial scenario. 

The only actions permitted by the system are those authorized by scenario in- 

stances. The example bas been designed such that the scientist can either submit 

the document for review or continue to edit. One action prohibits the other. The 

scientist gets the authorization to edit back only if the document is returned for revi- 

sion. If the document is approved for release, the scientist has no direct access to the 

document to edit. This is because there is no way to generate an SdocEdit scenario 

after the document has been approved for release. The only authorized action is to 

release the document for publication. Note that the role parameters for a scenario 

cannot be changed after the scenario is authorized. Therefore, the construction of 

scenario type SdocRelease ensures that the creation of the release authorization binds 

the approved document to the release authorization, and that the document release 

authorization is returned to the author of that document. 



5.3 Pro ject Management Example 

The project management example is an example of role-based access control using 

hieruchical roles. Role-based access-control rnodels are characterized by the definition 

of SBAC roles. Such roles were described in Section 2.2.18 and are separate from the 

concept of scenario/object roles associated with the scenario and object bindings 

defined for SBAC modeling in Chapter 3. In B A C  models a role is associated with 

a set of permissions. Users are associated with roles at  the discretion of the system 

administrator. Users perform aiI activities within the scope of a session. A session 

may have one or more of the user's pennitted roles active at any time. 

The project management example (cf. [[San98]) considers a system where there 

are multiple people working together on a project. There are a nurnber of shared 

objects the different team members will interact with in different ways. The kinds of 

permissions the team rnembers have for the shared objects c m  be broken down into 

three groups that can be associated with three different roles. Permissions needed by 

al l  team members c m  be held by a role project member. There are also roles for test 

engineer and programmer. An administrative role, project supervisor should inherit 

al1 permissions available for the shared project objects. This role hierarchy is a partial 

order and is depicted in Figure 5.1. 

The permissions associated with roles are statically assigned and represent ab- 

stract authorizations. Typically, the permissions allow a subject to execute a specific 

program on a specific type of data item. It seems natural to mode1 such permissions 

as an authorization to invoke an interface method of an abstract data type, i.e. an 

object. In this example permissions will be authorizations for primitive scenarios. 

An RBAC role will be represented as a scenario type. Scenaxios are defined by the 

modeling scheme to authorize a number of other scenarios. In this case a scenario rep 

resenting an RBAC role authorizes a nurnber of primitive scenarios that represent the 
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permissions associated with the RB-4C role. A scenario representing an RBAC role 

has an or ordering. This doms  all the permissions in a role to be authorized simul- 

taneously, as is normal in RBAC. Roles may be arranged in hieraxchies by including 

one RBAC role scenario type as a child of another. For example, see Figures 5.2 

to Figures 5.5. The scenario type SprojectMember speczes that the role user can 

invoke operation30 on object2 and and operation50 on object3. The object roles is 

present here only as a mechanism to provide visibility of the objects under access 

control. Scenario types StestEngineer and Sprogrammer also specify op erations t hat 

a role user can invoke. These are different operations that are reserved for users who 

are acting as test engineers or programmers respectively. These scenario types also 

specify the authorization of a child scenario of type SprojectMember. The inclusion of 

this child rnakes the permissions specified for al1 project members available to users 

acting in the test engineer or programmer role. The scenario type SprojectSupemisor 

provides the role user with all available permissions by authorizing children of types 

StestEngineer and Sprogramrner. 
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FIGURE 5.6. Scenario Type SprojSuperRegen 

An active role also has associated with it a role regenerator scenario. When any 

one of the primitive scenarios representing an RBAC role permission is terminated 

(ie. the permission is used) all the RBAC role scenarios in the hierarchy terminate 

because of the or scenario ordering specified for the scenario types. It is normal 

for a user to have all the permissions associated with a role for as long as the role is 

active in a session. Therefore, the role hierarchy needs to be  regenerated to restore the 

permissions after one is used. Consider the scenario type SprojSuperRegen specîfied in 

Figure 5.6. This scenario type has a seq ordering. The first child scenaxio authorized is 

an RBAC role scenario (an Spro jectSupervisor scenario in this case). If a permission is 

used some place in this role hierarchy the SprojectSuperuisor scenario terminates and 

the Spro jSuperRegen scenario recursively authorizes a new Spro jSuperRegen instance, 

which restores the role permissions. For each role that a user rnay directly assume, a 

corresponding role regenerator is speciüed. 

A session is managed in this example by a session controller object and set of 

role initiator scenario types. There is one role initiator for each RBAC role that a 

user may directly assume. A user controls what roles are active by sending mes- 



FIGURE 5.7. Scenaxio Type SprojSuperInit iator 

sages to a session controller. An activate message is sent when the user wants to 

make a role active. Each of these messages, which activate different roles, is autho- 

rized by a different role initiator. The role initiator is a scenario type with a seq 

ordering. When an initiation message is sent, the authorization for that message is 

coasumed and a role regenerator scenario for the associated role becomes authorized. 

For example, see Figure 5.7. This scenario type activates the SprojectSupervisor role. 

When the user sends an activateProjectSupen/iMr() message to the sessionCont~oller 

the SprojSuperInitiator scenuio authorizes a SprojSuperRegen scenario that provides 

the required permissions. 

The mappings fiom users to roles are specified by a role selector scenario type de- 

h e d  for each user. A role selector scenario authorizes a role initiator child scenario for 

each one of the roles permitted for the associated user. The role selector has an and 

scenario ordering. This means a l l  the role initiators associated with the role selector 

are authorized a t  the same time. A role is not active until the activation message for 

its role initiator occurs. The recursive nature of the role regenerators authorized by 

role initiators means that the rule initiators will never terminate. Therefore, a user's 
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rok selector scenario is specified In this example to be a concurrent scenario. This is 

so that the scenario that spawns the role selector is not dependent on the selector's 

termination before it is able to c a r y  on with other authorizations. Figure 5.8 ilIus- 

trates a role selector for some user, Bob. Suppose Bob is authorized by his Company 

to act as both the project supervisor and as a programmer on the project. He is 

also a member of the project tearn. Note that a scenario of type SprojSuperInitia- 

tory which was defined above, is a child of a SbobsRoleSeEector. Scenarïos of type 

Sp rogramrnerlilétia ta r and Sp ro jectMem berhi t ia  to r are also speczed as children and 

would be d e h e d  similady. 

This example provides a model for a specific role-based security policy. The ex- 

ampie &O provides a general strategy for approaching RBAC style systems using an 

SBAC modeling scheme. The role hierarchy lattice can be captured by using hierar- 

chical parent-child relationships between scenarios that are modeling role permissions. 

A securiw administrator can specify a set of user types, roles based on the set of user 

types, roles an individual user is permitted to activate, and permissions associated 

with each role. Although this example did not consider deactivation of roles in a 

user's session, it is easy to include such a requirement as part of the role regeneration 

mechanism. 

5.4 Sales-order Processing Example 

The purpose of this example is to demonstrate the use of SBAC to model task-based 

access control. A version of the classic sales-order processing example is presented 

in [TS94] to illustrate the modeling and management of task-based authorizations. 

One of the primary goals of scenario-based access control is to provide efficient safety 

analysis for systems modeling legitimate use policies. Legitimate-use is also a moti- 

vation for TBAC. A version of the sales-order processing example is used here as a 



demonstration of SBAC being used to capture task-based access-control requirements. 

Recall from Section 2.2.19 that the fundamental abstraction is an authorization- 

step. An authorization-step represents a primitive authorization processing step and 

is the analog of a single act of granting a signature in a paper-based system. A 

permission in TBAC is an element of P S x O x A x U x AS, where S is the 

set of subjects, O is the set of objects, A is the set of actions or access rights, 

U is a set of usage and validity counts, and AS is the set of authorization-steps. 

Permissions are associated wit h exactly one instance of an aut horization-step. An 

instance of an authorkation-step is associated with exactly one instance of a task. 

Each authorization-step maintains a protection state that is the set of permissions 

currently valid for that authorization-step. 

In this example primitive scenarios are used to model TBAC permissions. Scenar- 

ios are used to model authorization-steps. Tasks are groupings of authorization-steps 

and are also modeled in SBAC by scenazios. The task grouping relationship is mod- 

eled by the scenario parent-child relationship. A primitive scenazio specifies a sender, 

a receiver, and a message type. This corresponds to the S, 0, and A components of 

a TBAC permission. An SBAC primitive scenario authorizes a single message pass, 

which can be considered its usage and vdidity count. SBAC primitive scenarios are 

associated with the scenario that created them and provide an authorization for a 

message pass in the context of that scenario. This models the relationship between a 

TBAC permission and its associated authorization-step. 

TBAC provides for existentid, temporal and concurrency dependencies between 

authorization-steps. Tnere are related dependencies explicitly specified in SBAC 

models. An existentid dependency in TBAC specines that the change in state of 

one authorization-step implies a change in state of some other authorization-step. In 

SBAC, the creation of a scenario can imply the creation of one or more of its children. 

As weU, the termination of a child scenario can imply a change of state in its parent, 



i-e- the creation of another child. A temporal dependency in TBAC specifies that a 

state transition for one authorization-step necessarily occurs before some state transi- 

tion for some other authorization-step. Temporal dependencies in SBAC are specified 

by the order of occurrence of scenario descriptors in childsT and the scenario ordering 

specified by or d e m .  Temporal dependencies between primitive scenarios (permis- 

sions) can be discerned by inspection of the authorization properties defined by the 

preorder R on the set PA. Concurrency is modeled in SBAC by specifying that a 

child scenario is concurrent to its parent. 

The salesorder processing example presented here is composed of five main autho- 

rization tasks: de-te=, credit-terms, goods-removal, shipping-terms, and billing. 

These tasks track and control the progress of a merchandise order through the busi- 

ness structure of a vendor. There are one or more authorization-steps associated with 

each task. It is important that the steps occur in the correct order and that only 

certain specific people authorize the progress of an order through the various steps of 

the business process. An SBAC model for each of the five tasks wiU be presented in 

tum. 

The task sale-tenns is modeled by the scenario fqpe SsaleTerns. There are three 

authorization-steps associated with this task. They are the creation of a new sales 

order, negotiation and authorization of the price, and negotiation and authorization 

of the delivery date. The steps must occur in this order. See Figure 5.9. The 

authorization-steps are modeled here as primitive scenarios. I. e., in this case there is 

only one permission associated with the authorization-step, so it is not modeled as a 

separate scenario type containing a single primitive scenario. This can be thought of 

as an abstract representation of the authorization-step. If more detail is provided as 

the mode1 is refined, these primitive scenarios may become complex and hide a number 

of permissions (or sub-authorizations) as required. Each of these authorization-steps 

is authorized by a sales clerk. Only the clerk associated with this task may make the 



FIGURE 5.9. Scenario Type SsaleTerms 

appropriate authorization. The 1 s t  child specified is a non-primitive scenario of type 

Scredit Tems. This is an authorization for the next task, credit-terms. 

The task credit-terms is modeled by the scenario type ScreditTenns, Figure 5.10. 

The task is composed of four authorization-steps. First, the sales clerk who prepared 

the order is authorized to forward the order to a credit clerk for credit checking. 

Next, the credit clerk is authonzed to read and then perform a credit check on the 

client. Notice that PperfonnCreditCheck is a primitive scenario (it is not marked with 

a <scenarïo> tag). The credit clerk is sending a message to itself. This is an abstract 

operation and a likely candidate for fwther elaboration. The fourth authorization- 

step is modeled by a child of scenario type Screditcheck and its children. ScreditCheck 

has an or scenario ordering. This is used to capture the non-determinism involved in 

the decision by the credit cierk to gant  or not to grant credit to the customer. This 

would presumably be based on the customer's credit rating and account history which 

cannot be known until run-time. ScreditCheck results in two authorizations; however, 
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only one wiU be actioned. Effectively the credit clerk is authorized to either g a n t  

credit or refuse credit, but not both. The associated children are scenarios of types 

ScreditPassed and ScreditFailed, Figures 5.12 and 5.13. In the case of ScreditPassed 

the sales order is annotated a s  passed and the next task, goods-removal, becornes 

authorized. In the case of ScreditFailed, the sales order is annotated as failed and 

the scenario terminates. This causes its parents to terminate as well, backing up the 

scenario tree to the original SsaleTerms scenario. This happens because there are no 

more children to create in accordance with their scenario descriptor sets and scenario 

orderings. This effectively revokes all authorizations for the sales order. As the mode1 

is presented, the sales order is not able to participate in any further scenarios. The 

failed credit step stops any other processing of the sales order. 

Note that the visibiliq for the credit clerk in this scenario type is provided by an 

object visibility kom the sales clerk, i-e. via a defhed parameter. This is a simple 

mechanism to illustrate this example. A more complex mechanisrn such as the role- 

based access-control scheme in the previous example is possible. 

The task goods-removd is modeled by the scenario type SgoodsRemoval, Fig- 

ure 5.14, and its children. The ctssumption in this example is that there are two 

warehouses associated with the merchandise vendor. For any sales order some prod- 

uct may corne fiom each warehouse. The purpose of scenario type SgoodsRemoval is 

to create two sub-tasks to handle authorizations a t  the two warehouses. The autho- 

rizations at a warehouse are controlled by scenarios of type Swarehouse, Figure 5.15. 

Two instantiations of this scenario type are created for each sales order, one for each 

warehouse. The difference between the two instantiations is the warehouse manager 

provided as parameter to the scenario. The tssk is composed of three authorization- 

steps. Each Szuarehowe scenario authorbes the credit clerk to fornard the sales order 

to  the warehouse manager. The warehouse manager is then permitted to read the 

sales order. The last authorization-step allows the warehouse manager to check the 
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inventory of the warehouse and i3.l the order. This authorization-step is modeled by 

scenarios of S p e  SgoodsAvailable, Figure 5.16. Scenario type SgoodsAvaiZa ble h a .  an 

OT scenario ordering to account for the non-deterministic possibilities of goods being 

available to fil1 the order, and goods being temporarily unavailable to fill the order 

(backordered). The warehouse manager is authorized to fi11 the order or place the or- 

der on backorder, but cannot perfonn both actions. The associated child scenarios are 

SfllOrder and SgoodsBackorder, Figures 5.17 and 5.18. Scenarios of type SfillOrder 

authorize the warehouse manager to unstock the goods from the warehouse iriventory, 

and annotate the sales order as having been Eiled. The last child specified is a non- 

primitive scenario of type SshippingTems. This is an authorization for the next task, 

shipping-terms. Scenarios of type SgoodsBackorder authorize the warehouse manager 

to annotate the sales order as having backordered goods. At some point the goods 

will become available and a scenario of type S'llOrder will be created. Both the case 

that goods are immediately available and the case that goods are backordered lead 

eventually to the creation of a SfillOrder scenario, which terminates with a scenario 

authorizing the next task, shipping-terms. 
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The task shipping-terms is modeled by the scenario type SshippângTems, Fig- 

ure 5.19. This task is a straight forward set of authorization-steps that d o w  the 

warehouse manager to forward a sales order for which goods have been allocated to 

a shipping clerk. The shipping clerk can read the sales order, create a shipping slip 

for this portion of the order, and authorize insurance approval and carrier approval. 

These authorizations are to  be carried out in this order. The last child specified is a 

non-primitive scenario of type Shilling. This is an authorization for the next and last 

task, billing. 

B i h g  is modeled by the scenario type SbiZZing, Figure 5.20. Again this is a 

straightforward task. The first authorization-step allows the shipping clerk to forward 

the shipping slip to the billing clerk. The shipping slip provides visibility to the 



associated sales order. The billing clerk is authorized to read both and then to create 

an invoice corresponding to the shipment. The billing clerk is then authorized to send 

the invoice to  the custorner. This is the last step in this task. The scenario type does 

not authorize any other tasks so it terminates. This causes its parents to terminate 

as weU, backing back up the scenario tree to the original SsaZeTemns scenario. This 

is because there are no more children to create in accordance with their scenario 

descript or sets and scenario orderings. This effectively revokes all authorizations for 

the sales order. As the model is presented, the sales order is not able to participate 

in any further scenarios. This represents the completion of a successful sales order in 

this example. 

This sales processing system provides an example of a task-based authorization 

scheme modeled using SBAC. The example illustrates control over the order of autho- 

rizations, control over the type of user and specific user that can authorize a step in 

the sales process, and branching exceptional case processing (e.g. failed credit terms, 

backorders). Composite authorizations are also suppoked by nested scenarios. The 

example exhibits al1 the fundamental requirements for TBAC1. 

5.5 BLP Example 

The Bell and LaPadula mode1 will only be treated briefly here. SBAC was designed 

primarily to provide a modeling scheme for legitimate use but is essentially policy 

neutral. BLP was designed primarily to provide a modeling çcheme for confidentiality. 

BLP inherently models one way information flow on a classification-clearance lattice. 

However, it is possible to model BLP style lattice-based policies using SBAC. Detailed 

models will not be presented here, but brief sketches of how BLP can be realized by 

SBAC will be illustrated. 

BLP with tranquility is defined in the literature to be BLP where classifications 



of objects and clearances of users cannot be changed once they have been assigned. 

Le., security labels (MAC labels) are fixed. There is a strong correlation between 

tranquility and the strong typing defined for SBAC. The relationship between strong 

typing and MAC labeling has been previously explored in [SG94]. The strategy is 

to provide a type associated with each security level. Objects have interface opera- 

tions corresponding to the basic BLP rights, i. e. read, write, append, and execute. 

Scenarios can be defined that provide authorkation for senders (BLP subjects) of 

the appropriate clearance level (as defined by the lattice) to invoke one of the basic 

interface operations of a receiver (BLP object). Where an access is prohibited by 

the lattice, no scenario is defined. That is, scenarios are only defined such that the 

simple security propem and *-property hold. Accesses not dehned by a scenario are 

prohibited by SBAC. 

Alternatively, Sandu shows in [San981 that RBAC is general enough to implement 

lattice-based models, such as BLP. RBAC can be used to implement static policies 

based on confidentiality lattices, policies based on Biba style integrity lattices, and 

Brewer and Nash style Chinese wall policies. It has been demonstrated that SBAC 

can be used to model RBAC, which is general enough to support these policies. 

5 -6 Battlefield Information System Example 

The last example presented in this chapter is an SBAC adaptation of an object- 

oriented analysis for a military message system. The original non-SBAC model 

([Cos98]) was done by a graduate student as part of the requirement for completion of 

a course in object-oriented analysis and design, which was taught by the author. The 

system requirement for the Battlefield Information System (BIS) is to support the 

electronic dissemination of tactical military message tra£6c. This traffic is currently 

handled primarily by voice radio networks and transcription to and fiom a standard- 



ized set of paper message forms. The system will permit units to compose and send 

messages to other units, vïew messages, and to receive messages. Messages will be in 

the standard format specified in Canadian Army publications. The graduate student 

completed a requirement specifrcation for the system. 

This model provides an example of SBAC being used in conjunction with con- 

temporary sofkware engineering andysis and design techniques. The student used 

object-oriented analysis methods and captured his design using UML [RJB98] as an 

00 modeling language. This model was then modified by the author of this disser- 

tation to include the additional information required to complete an SBAC model of 

the system requirement specifîcation. 

The BIS provides an example of a model of a larger system and an example of how 

the safety analysis scheme performs with a larger size model. By 'larger' it is meant 

here that the Battlefield Information S ystem example is larger than the pedagogical 

examples presented earlier hi the chapter. It represents a simple requirement speci- 

fication for a system with a real requirement. The BIS mode1 contains 90 primitive 

scenarios and 58 complex scenarios, so its security policy, P, is about an order of 

magnitude larger than the policy for the Document Release example. 

The scope of the Battlefield Information System can be briefly illustrated by 

presenting its use cases. Use cases are used to model the interactions or dialog a user 

has with a system. They define the functional capabilities a system should have, from 

the viewpoint of the user. The following list describes the use cases for BIS. 

Initialize system The system is initialized on startup. All messages, codes, users, 

and logs are retrieved kom backup storage and stored in the BIS system data 

structures. 

Login-logout Users must log in to start using the message system. A record of 

valid users and passwords is kept, and the User/Adrninistrator/Security OEcer 



provided login name and password is veriüed against this list. Users may logout 

when they are finished. This does not shut the system down but only means that 

a valid user must login before the system may be used again. Login attempts, 

successfd and not, are recorded in the system log. Logouts are recorded in the 

system log. Before completing any requested action from any user the BIS m u t  

first venfy the type of user that is logged in to see if it is a valid request. 

Compose new message A user is able to compose a message and Save it for later 

transmission. Message format will be chosen fkom a message in the prototype 

message Est. A new message is created from the prototype and placed in the 

draft message list. Default values may be preset for some fields of the prototype 

message by the system administrator. 

Send message A user is able to send one or more of the current messages in the 

list of draft messages. AU mandatory fields will be Med in before the message 

is sent. The message will be tagged as transmitted. AU messages must be 

encrypted before being transmitted. 

Receive message A message arrives on the network and becomes a system object. 

The received message is added to the list of received messages. 

View message A user is able to view any message in the system currentfy held at  

his node, i. e. a message fkom the received message list, sent message list, draft 

message list, or the prototype message list. The user will not be able to make 

changes to a message while it is being viewed. 

Edit message A user is able to edit any message in the draft message list. At the 

end of each edit, when complete, a message remains as a draft message on the 

draft message list. 



View message log A user is able to view the message log. A user is not allowed to 

make any changes to  the log. 

View system log The administrator is able to view the system log but may not 

make any changes to it. 

Set message defadts The administrator is able to edit any message in the proto- 

type message list. When complete the message remains as a prototype message 

on the prototype message list. 

Add-remove user The administrator is able to add new users to the system, and 

remove users from the system. 

View user The administrator is able to view a Est of the users permitted to use the 

system. 

Add-remove code The Security officer may add and delete message encryption 

codes. 

View codes The securîty officer may view the list of message encryption codes. 

Backup system The administrator can backup all system messages, codes, users, 

and logs to backup storage. On shutdown the system automatically performs a 

backup. 

To separate the capabilities of the various khds of user, the general strategy for 

elaborating the Login-logout use case is to use roles. The mechanism used in this 

example to separate roles is similar to that presented for the Project Management 

example in Section 5.3. In this example a user loggjng into the system must select a 

single role (corresponding to User, Administrator, or Security Officer) which will be 

active for the login session. At the time of role selection the user would be challenged 



for an ID and password. In the role-based access-control specification for the Project 

Management example, the roles authorized primitive scenarios, which were used to 

invoke specialized operations on data objects. This provided an implementation for 

RBAC style permissions. In this example, the roles authorize a specinc set of non- 

primitive scenarios. These scenarios are more than specialized operations on data 

objects. They define complex interactions between a number of system objects. The 

scenarios authorized by a role correspond to the use cases permitted for that role. The 

use cases are tasks that involve a specific set of object interactions, which must be 

processed in a specific order. The scenario type that defines the role usually specifies 

the authorization of a number of child scenarios. The scenario m e s  of these child 

scenarios specify sub-tasks associated with the use case. Together, this set of scenario 

types elaborates a use case. For example, the View message use case is composed of 

five scenario types that permit the user to select one of the message lists and one of 

the messages on that Iist for viewing. The Login-logout use case itself is composed 

of fifteen scenaxio types that permit the user to select a role, seIect a task fiom those 

permitted for a role, regenerate the set of task permissions when a task is completed, 

and allow the user to logout from the system. 

Most of the original object-oriented design for the BIS is preserved when SBAC 

modeling is applied to the system. The decomposition of the functional requirement 

into its use cases is essentially unchanged. The logical flow of the main scenarios 

that elaborate the use cases is for the most part unchanged. The original scenarios 

have been decomposed in many cases to provide more rigor in the description of the 

ordering of messages. Forma1 detail describing the relationship between scenarios has 

been added as it is not a part of the standard object-oriented analysis method. 

There are some specific places were changes are required to accommodate the 

SB AC modeling. The original design uses polymorphism and ob ject sub-typing rela- 

tionships. This is to be expected iii 90 analysis, but object sub-typing relationships 



are not supportied by the cux-rent version of SBAC. Objects in the SBAC modeling 

scheme described require that an object has one fixed object type. The parame- 

ter binding meehanisms do not allow sub-type substitutions. Similarly changes were 

needed to accommodate pararneterized types (sometimes called templates or gener- 

ics). ln such cases a scenario mechanism has been repeated for the individual types of 

objects in the smb-type relationship. In some cases the analysis has been made more 

abstract to submerge the detail requiring sub-types in the original. 

Modeling th& larger system exposed some areas where the expressiveness of the 

SBAC modeling technique seems weak. 00 analysis and design models often make 

use of indirection in handling object visibilim The relationships between objects are 

allowed to change during the execution of the system. For example, in some scenarios 

a single message viewer object can be made to display different messages by changing 

a viewer object visibility role from one message to another. In the SBAC modeling 

scheme, object visibilities are defined at the time of creation and are fked. This 

leads to sorne difEculty in expressing object visibility through indirection. The same 

situation is encountered when using lists of objects, where the contents of the List 

may grow or &.ange. In some cases, a work around is possible by regenerating a new 

scenario in whieh one of the roles is played by a different object. In other cases, a 

new object is created which acts as a surrogate for the original, except that one of 

the object visibility roles is played by a different object . 
Analysis for this larger model was tractable and the results are presented in the 

next section. 

5.7 SBAC Mode1 Capture and Analysis Tool 

To support the investigation of scenario-based access-control modeling, a model cap- 

ture and analysis tool has been constructed. The tool is a feasibility demonstrator 



used to support the research. The tool can be used in conjunction with an object- 

oriented analysis or design process to capture an SBAC security model. 

The tool provides a menu driven, multi-window interface that can be used to 

capture all elements defined in the modeling scheme for modeling a static security 

policy, P ,  and an initial state. Therefore, a complete model captured by the tool 

models a system, C. 

The tool also produces an analysis tree for the modeled system. The creation of an 

analysis tree provides metrîc information about the topology of the tree. There is also 

a mdimentary tree browser that provides the user with a visual representation of the 

tree. The analysis portion of the tool was developed to provide metric information 

about the size of analysis trees. The purpose of the metrics is to provide some 

empirical investigation of the tractability of generating analysis trees. Presently, the 

tool does not capture the parameters of a safety question nor does it perform a 

search on an analysis tree to answer a safety question. These are straightforward 

modifications to the tool. 

The usez can use the tool in a standalone mode to develop and analyze SBAC 

rnodels. The tool can also be used in conjunction with the Rational Rose [Rat981 

modeling tool. The user can provide additional SBAC annotations to a UML model 

as he is using Rose. The resulting Rose model file can be irnported by the SBAC tool. 

A complete static securiw policy, P, c m  be captured this way. The SBAC tool can 

then be used to define an initial state and generate an analysis tree. An imported 

model can also be displayed and modified using the SBAC tool interface. 

5.7.1 Specification and Implementation of the SBAC Tool 

The scope of the SBAC model capture and analysis tool can be briefly illustrated 

by presenting its use cases. Use cases are used to model the interactions or dialog 



a user has with a system. They define the functional capabilities a system should 

have, fkom the viewpoint of the user. The following list describes the use cases for 

the SBAC tool. Each use case specifies a specific requirement for the tool from the 

user's perspective. These use cases were used to drive the development of the SBAC 

model capture and analysis tool. 

Specie Security Policy To speciS. the system security policy the user shall be able 

to provide the modehg information for each of the following model components: 

object types 

0 object visibilities 

O scenario types 

O scenario paramet er type bindings, including: 

O scenario descriptors 

The user shall interact with a set of window-based forms to provide the modeling 

information. When data is present in the system model it shall be displayed to 

the user as a set of choices in a list or popup box (e.g. object types, scenario 

types, etc.). 

Parse Rose Mode1 The user shd l  be able to populate the security model by spec- 

ifj6ng a Rose model file for parsing. The tool shall read and parse the file to 



identify and load the model components. This is an alternative method for 

specifyhg the system sec- policy. 

Browse Security Policy The user shall be able to pick a scenario type fkom the 

list of scenario m e s  in the model. This scenario type and aU of its associated 

components (e.g. parameters, scenario descriptors, ordering, etc.) shall be dis 

played. The user shall be able to pick an object type from the list of object 

types in the model. This object type and all of its associated components (eg. 

visibilities, etc.) shaU be displayed. While browsing a scenario type or object 

type the user shall be able to select the name of another scenario type or object 

type being presented. The user shall then be able to request that the specSca- 

tion for the selected model component be displayed concurrently with the first 

specification. 

Specify Initial State To specify the system initial state the user will provide the 

modeling information for each of the following model components: 

initial objects and their types 

initial object visibilities 

the initial scenario and its type 

the parent-acquired parameter bindings for the initial scenario 

The user shall interact with a set of window-based forms to provide the modeling 

information. When data is aIready in the system mode1 it shall be presented to 

the user as a set of choices in a list or popup box (e-g. object types, scenario 

types, etc.). 

Browse Initial State The user shall be able to choose to display the initial scenario. 

The scenario and aJl of its associated components (e.g. para, order, etc.) shall 



be displayed. The user shall be able to pick an object fiom the list of objects 

in the model. This object and all of its associated components (eg. visibilities, 

etc.) shall be displayed. While browsing the initial scenario or an initial object 

the user shall be able to select the name of another scenario type, object type, 

or object being presented. The user shall then be able to request that the 

specïfication for the selected model component be displayed. 

Generate Analysis Tree When requested, the tool shall generate the fidly un- 

folded state fiom the current system security policy and initial state. The 

SBAC unfolding algorithm shall be used. A visual indication (heartbeat) shall 

be displayed to the user to indicate that the program is working and has not 

halted. This heartbeat might take the f o m  of a ninning count of the number 

of scenarios generated. 

Browse Analysis Tree The tool shall provide a graphical representation of the 

analysis tree. The user shall be able to expand or coUapse branches of the 

tree by selecting a tree node with the mouse pointer. 

The tool interface windows present existing model components in lists, and pro- 

vide visual representations of the specific model components and theù parameters. 

The user can edit the model using text fields, action buttons, pick lists, and menu 

selections. 

The tool is irnplemented in Java 1.1.7 and Swing 1.0.3. The implementation is 

decomposed into 191 classes. There is a Rational Rose UML model for the imple- 

mented design. The tool implementation includes approxhately 16 K-lines of source 

code. 



5.7.2 Resulfs of Model Analysis 

The SBAC tool was used to capture security models for the examples presented earlier 

in the chapter. Specifically, the tool was used with the document release, project 

management, sales-order processing, and bat tlefield information system examples. 

The Rational Rose tool [Rat981 w s  used with the SBAC tool to develop the examples. 

The message sequence diagrams included in this chapter and in Chapter 2 are copied 

from the Rose models. The specially annotated Rose models provide the complete 

security policy for the examples. The examples were imported into the SBAC tool and 

initial states were defined in order to speciSr a complete system medel for analysis- 

The initial states for the example systems were chosen such that the resulting 

analysis tree exercised all of the scenario types specified for the example. In the case 

of the BIS example two different initial states are presented. In the Grst, BIS #1, the 

system is allowed to initialize itçelf. In this case the model creates all of the system 

objects, i. e. there are no O* objects. This models the system reinitializing itseLf fkom 

stored state information. In this case the current state of aJl the message lists, codes, 

etc. cornes fiom recovering their state fiom secondary storage. The modeled system 

in BIS #l is set up to recover two messages in each message Est, two codes in the 

code list, and two users in the user list. The analysis of this model exercises the 

state recovery mechanism, which is useful, but it does not provide much room for 

formulating a safety question based on 0' objects. The second BIS model, BIS #2, 

provides an initial state in which O0 objects are specXed for each of the lists (three 

objects per list). This provides a basis for formulating safety questions. In this case 

the initial scenario specified for the model is a scenario that occurs after the system 

initialization. Le., the model begins analysis in the middle of system execution. This 

choice of initial scenario allows the security modeler to isolate a portion of the system 

for det ailed analysis. 



TABLE 5.1. SBAC Analysis Results 

Table 5.1 presents the results of the modehg and analysis of the example systems. 

For each of the systems, the number of primitive scenario types (IST,I), and the 

number of complex scenario types ( 1  STcI) in the static policy are presented in the 

table in order to provide an indication of the relative size and complexity of the 

model. The table also presents the number of objects specsed by the initial state 

(lOO1). The analysis results presented include the sbe of the analysis tree (ISuI), the 

maximum and average path depth in the tree (h, and ha), and the maximum and 

average fan-out of the tree nodes (km and ka). A ratio of aaalysis tree size ((SUI) to 

the number of scenario types specified for the model (ISTI) is also presented in the 

table. This ratio is included to provided an indication of the effect of model size and 

complexity on the size of the resulting analysis tree. 

This small set of examples provides some encouragement for the tractability of 

SBAC analysis. The size of the analysis trees is quite manageable in al1 of the exam- 

ples presented here. This is much better than the theoretical worst case complexity. 

As discussed in Section 4.4.5, the worst case cornplexity for generation of the analysis 

tree is in the order 0(2" ' ) ,  where n is ISTI. The time complexity for generation 

of the tree has a linear relationship to tree size. With this complexity, even the 

smallest of the exarnples here is intractable in the wont case and would produce an 

unmanageable tree. The actual results here exhibit tree sizes that are quite manage- 

able, and therefore also have efficient ninning times for tree generation. This result 

might be expected considering that the human designers that fashion a system use 



object-orïented decomposition of the system requirements as a mechanism to control 

the complexity of the design. The standard approach is to capture these ideas in- 

fomally or semi-formally in an object-oriented design notation such as UML. The 

object-oriented decomposition and object interaction scenarios the designers produce 

are organized with the purpose of restricting the complexity of the system design so 

that the designers can understand the system, communicate the design to others, and 

develop a understanding of the execution properties of the system. The designers 

tend to keep the reIationships between their object interaction scenarios sparse in 

order to restrict the complexity of the design. SBAC formalizes these relationships 

by statically d e m g  scenario-me-to-scenario-type relationships using scenario de- 

scriptors in childsT. The sparse inter-scenario type relationships greatly reduce the 

andysis tree growth when compared to the worst case. 

These empirical results do not provide a proof of tractability for SBAC modeling 

in general, but it is expected that there is a large cIass of systerns for which analysis 

based on the unfolding algorithm is tractable. 



Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Introduction 

The f i s t  part of this chapter presents some brief cornpansons between the SBAC 

modeling scheme and othcx models in the literature. A cornparison with the Typed 

Access Matrix approach [San921 and the Transformation Models [SG94] is presented 

because the techniques used in these models provide a foundation and inspiration for 

SBAC. There are also comparisons made between Clark-Wilson [CW87], RBAC and 

TBAC style modeling and SBAC. These comparisons are made because, like SBAC, 

these modeling schemes also address commercial integrity and legitimate-use policies. 

The similarities between SBAC scenarios and message sequence charts is also briefly 

discussed. By design, SBAC is closely related to 00 modehg techniques. Message 

sequence charts and message sequence diagrams have been used by the 00 community 

to capture object interactions. The discussion addresses why these are not felt to be 

adequate by themselves for expression of scenario specifications in SBAC. 

The next section of the chapter discusses the advantages of SBAC modeling and 

its relevance to security modeling and to information system modeling in general. 

This is followed by an examination of some areas for future work, includrng direct 

extensions of the work presented and applications to related areas. 

The final section of the chapter presents a summary of the research work and the 

conclusions. 



6.2 Cornparisons 

6.2.1 A Cornparison to TAM and TRM 

The Typed Access Matrix approach [San921 and the Transformation Models [SG94] 

use strong typing (protection types) to specZy static securïty policies for a system. 

This is a form of mandatory access control (MAC). Protection types are speciiied for 

subjects and objects. The commands that are able to modify the security state of the 

system require that type checking be done on all parameters. The immutability of 

protection types once subjects and object have been created, and the type checking on 

commands provide enforcement of the static policy. SBAC makes no differentiation 

between subjects and objects. Object types are used for the same purpose in SBAC 

as they are in the earlier modeling schemes, Le. to s p e c e  static security policies 

for a system. Security state in a system changes as scenarios are authorized and 

terminated. Object and scenario types in SBAC are immutable. Type checking is 

applied to scenario parameters to provide enforcement of the static policy. The main 

difference between the earlier models and SBAC is that SBAC also includes an aspect 

of history checking to influence changes in secux5t-y state. In TAM and TRM a change 

in security state is predicated upon the current set of access rights. In SBAC this is 

tme also; an authorization is needed to perform a security relevant action. In SBAC 

however, an authorization is part of a scenario tree. The scenario tree provides a 

context for the authorization. The existence of an authorization by itself does not 

lead to any other authorization being possible. The authorization in the context of 

a scenario leads to other authorizations being possible. The same authorization can 

lead to different changes in security state in the context of different scenarios. Thus, 

history is important. To decide what is possible given a certain set of authorizations 

(access rights), the system must take into account how it arrived at the current state, 

i.e. what scenarios are currently active. 



As are TAM models, SBAC models are expressive enough to specify rnulti-parent 

creation of objxts. This is because the creation of a new object may have any 

number of other objects as parameters. Addltiondy, when a new object is created, 

other objects may immediately have permission to send it messages. The ability to 

express multi-parent creation dows SBAC to express polices like ORCON, which 

seem to require multi-parent creation. 

One of the most important contrasts to make between SBAC and TAM is in their 

respective anailysis schemes. Monotonie-TAM and its predecessor, the Schematic Pro- 

tection Model (SPM), use an unfolding algorithm to construct a maximal state. The 

unfolding technique in these models is applied to subject creation and restrictions 

are applied to the subject-type-to-subject-type creation function to ensure that the 

resulting graph size is tractable. Subjects in the graph act as surrogates for all  other 

subjects of the same type that may be in similar circumstances with respect to the 

protection state. The strategy in SBAC is similar but the unfolding algorithm does 

not create representative subjects; instead, it creates representative scenarios. Sce- 

narios that are not currently active are past history, but are not destroyed. Scenario 

authorization is monotonie over time. The set of currently authorized scenarios is 

nou-monotonie over time. This change in focus allows the use of an analysis strategy 

similar to that used with TAM and SPM to be used with systems with non-monotonie 

security policies. 

6.2.2 A Cornparison to Clark-Wilson 

Clark-Wilson security models [CW87] identify certain objects as Constrained Data 

Items (CDIs). Access to these objects is provided solely through Transformation 

Procedures (TPs). SBAC is object-based. Objects are instances of abstract data 

types. As such all objects can be thought to be CDIs, and interface operations for 



the objects to be TPs. In Clark-Wilson, TPs are defined to operate on a specific set 

of CD1 types. In SBAC, interface operations are specified for an object type. 

SBAC differs fkom Clark-Wilson in that Clark-Wilson does not constrain the type 

of the subject accessing a TP. SBAC does provide such type constraints. Also, Clark- 

Wilson does not specify when TPs become permitted for a subject and in what order 

they can Secome permitted. Such an ordering specification is explicit in SBAC models 

and is considered to be an essentid aspect of modeling legitimate use. 

6.2.3 A Cornparison to RBAC 

Recail from Section 2.2.18 that a role is a semantic construct around which access- 

control policy is formulated. In an RBAC policy, users are assigned to roles and 

permissions/rights are assigned to roles. Role authorizations are granted to users, or 

groups of users, based on the activities they are allowed to perform on system data. 

The Project Management Example presented in Section 5.3 is an example of SBAC 

being used to express a robbased security policy. A role-based policy also underlies 

the security policy of the Battlefield Information System Example, Section 5.6. These 

examples exhibit the basic requirements of models of type RBACo. They provide 

support for user to RBAC role mappings, for RBAC role to permission mappings, and 

for user sessions. The Project Management Example also illustrates how hierarchical 

RBAC roles can be modeled using SBAC. Thus, SBAC can directly express =AC1 

security p olicies. 

The permissions allocated by RBAC can have a high degree of data abstraction. 

The permissions typically allow a subject to execute a specific program on a specific 

type of data item. SBAC provides this kind of data abstraction and also provides 

a richer kind of procedural abstraction. The RBAC style roles modeled in SBAC 

authonze scenarios. A primitive scenario is similar to an B A C  permission. I.e., it 



can authorize a specific sender object to invoke an interface operation on a specific 

receiver object. An RBAC style role modeled in SBAC can also authorize a more 

complex scenario. This means the role can authorize that a specific set of ta& may 

be performed by users W g  a specific set of roles. Le., where an RBAC permission 

can authorize that a specific task be done by a specific user W g  a specik role, an 

SBAC permission can authorize that a specific set of tasks be done by a specific set 

of users füJing a specSc set of roles in a specific order. 

RBACz and =AC3 add constraints, which impose restrictions on acceptable 

configurations of the RBAC models. SBAC does not provide direct support for con- 

straints, but in some cases the safety analysis scheme might be used to provide as- 

surance that a constraint holds for a specific system model. 

6.2.4 A Cornparison to TBAC 

Recall fiom Section 2.2.19 that TBAC provides a fkamework for active security mod- 

els and enforcement £rom the perspective of activities and tasks. Permissions are 

constantly monitored, and activated and deactivated in accordance with emerging 

context associated with the progress of the tasks being performed. Permissions arise 

just in time for their use in the context of some authorized task. The fundamental 

abstraction is an authorization-step. An authorization-step represents a primitive 

authorization processing step and is the analog of a single act of granting a signature 

in a paper-based system. Permissions are associated with exactly one instance of an 

authorization-step. An instance of an authorization-step is associated with exactly 

one instance of a task. Each authorization-step maintains a protection state that 

is the set of permissions currently valid for that authorization-step. The concept 

of ordering of permissions is explicit in TBAC (through the specification of depen- 

dencies). All of these components (the components of TBACO) and the concept of 



hierazchical t asks (TBACi) have explicit representations in SB AC. The relations hip 

between TBAC and SBAC model components is described in the presentation of the 

Sales-order Processing Example in Section 5.4. 

As with the RBACz and RBACB models, TBAC2 and TBACI add constraints 

t hat impose restrictions on acceptable configurations of the TBAC models. Again, 

SBAC does not provide direct support for constraints, but in some cases the safeS. 

analysis scherne might be used to provide assurance that a constraint hoids for a 

specïfic system model. 

The similarity between the SBAC and TBAC models derives fiom their similar 

goals, ie. the modeling of legitimate use. Although developed separately from the 

framework of models described by TBAC, SBAC can be considered to be a modeling 

scheme that fits within thïs framework. SBAC additiondy provides model represen- 

tations that are complementary to contemporary object-oriented analysis and design 

methods and also provides a safety analysis scheme. An SBAC model is a detailed 

instance of a modeling scheme that fits within the TBAC fkamework. 

6.2.5 A Cornparison to MSCs 

Object-onented analysis and design methods have borrowed the notation of message 

sequence charts (MSCs) from the telecommunications protocol design community- 

The 00 community uses a variant of MSCs, in some cases called message sequence 

diagram (MSDs), to specify object interactions, or scenarios. SBAC augments the 

concept of scenaxïos in 00 by adding rigor to the scenario-scenario relationships. 

This is a semantic issue that involves the interpretation of scenarios. Therefore, it is 

possible that some of the semantic issues related to MSCs also have some relevance 

to scenario-based access control. There are four semantic issues raised with respect 

to MSCs in Section 2.3.2. 



One of the semantic issues raised is whether systems represented by MSCs have 

some finite set of global states with respect to message passing behaviour. There is 

unbounded creation of objects possible in SBAC. Therefore there are an unbounded 

number of global control states. However, by the arguments presented in Chapter 4 

there are a finite number of protection states; i. e. there are maximal states for the pre- 

order on PA.  The purpose of the semantic analysis of the security models presented 

here is not to provide an analysis of system evolution in general (global control state), 

but to provide an analysis of the evolution of system protection state. This is finite- 

state. 

Another of the issues raised with respect to MSCs is that the structure of indi- 

vidud MSCs or the structure resulting from the composition of MSCs can result in 

non-local choices. That is, an MSC process may be required to execute a behaviour 

(or chose between behaviours) as a result of the occurrence of a message pass it could 

not itself observe. The structure of SBAC scenaxios have the same properties leading 

to the possibility of non-local choice. The result is the same; non-local choices require 

either unbounded history variables to keep track of control choices (non-finite-state 

control) or MSCs which lead to non-local choices must be considered to be ill-formed. 

However, this is again a global control-state issue. It does not effect the safety analysis 

of the system. 

The issue of messages being received in a different order than that in which they 

are sent is dso  presented as a diEculty with the semantics of MSCs. Such message 

crossingç are not possible by the rules for construction of SBAC scenarios. This is 

not an issue in SBAC. 

The last issue raised with respect to the semantics of MSCs was related to the 

completeness of the information available in MSCs to speci& liveness properties. 

The authors of [LL95a] argue that liveness properties are difficult to specify with 

MSCs alone and in many cases such properties are better specified by temporal logic 



formdae provided in addition to the MSCs. This work focuses primarily on safety 

properties and does not address liveness properties directly; however, the analysis 

tree may provide some assurance with respect to liveness properties. An analysis tree 

is a statement about possible histories of a system. One may test whether a temporal 

logîc formula is satisfied by an analysis tree. 

SBAC scenarios are simiIar to MSCs but there are significant clifFerences. Sce- 

narios d o w  messages to self, which are not allowed by MSCs. The most significant 

merence is in the respective composition rnechanisms. The MSC standard allows 

modular design via sub-MSCs and decomposed process instances. This decomposition 

is process based. SBAC scenarios are object based and not process based. Modular 

design is denoted in the context of SBAC modeling by using child scenarios, which 

in MSCs would appear to be decomposed message events. This mechanism is more 

expressive than MSC conditions, which are another mechanism for composition of 

MSC diagrams. Specificdy, the child scenario authorization mechanism allows more 

control with respect to scenario pararneterization and ordering. 

6.3 Discussion 

The access-control modeling scheme proposed by this work provides a rich, expressive 

modehg capability that can be used to capture a broad range of useful security 

policies. SBAC supports policies that include least privilege, separation of duties, 

fine grained data abstraction, lattice-based MAC policies, role-based policies, and 

workflow p olicies . 
SBAC also provides a safety analysis method. The analysis scheme c m  be used to 

characterize properties of the protection states that are possible for a specific mode1 

instance. The types of security policy to which the analysis method can be applied 

include non-monotonic policies. 



The mode1 cornparisons earlier in this chapter emphasize that a major difference 

between SBAC and other modeling schemes is its support for considering the ordering 

of permissions when formulating a safety question. For a system, a safety question 

in SBAC considers not only if some subject may gain an access right to some object, 

but also the order of such an occurrence with respect t o  the occurrence of other 

access rights. It is a tenet of this work that specification and analysis of the order in 

which access rights occur is an essential aspect of modeling legitimate use. This is 

really a rehement of the principle of least privilege. The least privilege properties 

of SBAC models are more fine grained than those expressed by Clark-Wilson and 

role-based access-control polices. In this case more fine grained means that not only 

is a subject restricted to invoking a specinc kind of operation on a specific kind of 

data type, but also that the permission to invoke the operation only arises at the 

moment it is required in the context of a statically defined scenario or task. This 

adds a just-in-time aspect to the concept of least pridege. 

The theoretical worst case complexiw for the analysis method indicates an in- 

tractable analysis even for small systems. However, the ninning time for analysis of 

an actual mode1 instance is very sensitive to the scenario-me-tescenarieme rela- 

tionships defined by childsr. It is expected that for a broad class of usehl systems 

the connectivity between scenario m e s  wiu be very much less than the complete 

connectivity implied by the worst case. The examples presented in Chapter 5 are 

representative of some interesting classes of system for which analysis is tractable. 

The sparse connectivity between scenario types should be expected. Object- 

oriented decomposition and object interaction scenaxios are organized with the pur- 

pose of restricting the complexiv of system design. The standard approach is to 

capture scenarios informally or semi-formally using an object-oriented design nota- 

tion. A contribution of this dissertation is the formalization of these relationships. 

Security modeling using SBAC can be a complementary component of object- 



oriented analysis and design. The proposed model makes extensive use of data ihat 

is already collected by commercial object-oriented analysis and design tools. The 

motivation is the productiviw gain that may be realized through reducing the ef- 

fort required in the maintenance of separate security and design modek and in en- 

suring there is consistency between security models and other system models. A 

security-modeling tool that works with f d i a r  system design tools also increases 

the likelihood that such modeling will be done. The SBAC analysis tool described 

in Section 4.4.5 is integrated with the Rational Rose [Rat981 00 modeling tool. A 

cornplete static SBAC security policy c m  be captured using the Rose tool. Much of 

the data needed for the security policy specification is provided by the 00 analysis or 

design itself. Additional S B K  specific information is added as Rose documentation 

mark-ups. The resulting Rose model file can be imported by the SBAC tool. The 

SBAC tool can then be used to define an initial state and generate an analysis tree. 

An imported model can also be displayed and modified using the SB AC tool interface. 

The SBAC tool can also be used in a stand alone mode to develop and analyze SBAC 

models- 

Another motivation for the relationship between SBAC modeling and 00 analysis 

and design is that 00 techniques model systems using abstractions and interactions 

closely related to the actual problem domain. Scenario-based descriptions of tasks 

and workffows provide an abstract and an intuitive way of specifying the access per- 

missions required to complete a business process. Scenario-based models can be used 

at difTerent levels of abstraction as the development of a sptem progresses from and- 

ysis to design to implementation. Although SBAC can be used at vanous levels of 

abstraction, model correspondence between the levels is a difncult problem that is 

not addressed by this dissertation. 



6.4 Future Work 

This section proposes directions for Mure research involving scenario-based access 

control. Several areas of research will be briefly discussed, including direct extensions 

of the work presented and applications to reiated areas. 

An obvious opportunity for research is the continued development of the SBAC 

modeling and analysis tool. Presently the analysis tool has been used in support of 

gathering empirical data on the size of andysis trees for specific mode1 instances. The 

tool does not provide support for f o d a t i n g  a safety question nor does it perform 

a search on the analysis tree to answer a safety question. Rudimentary support for 

these operations would be very easy to introduce into the tool. However, this kind 

of support should be based on an investigation of how a sec* engineer would use 

the tool to perform safety analysis. The selection of interesting, safety critical initial 

states for a system model is important. How the security engineer should be guided 

in d e k g  a set of models that provide assurance of safety in a system is not clear. 

There needs to be a better understanding of what models and what safety questions 

provide a sufEicient level of assurance that a system is safe. 

It becomes apparent when discussing the degree of safety in a system or a level 

of assurance, that the behaviour of the system is measured against some security 

meta-policy. Investigation of a language for the expression of such policies is another 

area of future research. The security behaviour of an SBAC model could be analyzed 

with respect to the soundness of security axioms expressed by the rneta-policy. For 

example, the designer of a system may want to express that for any initial state of the 

system it is not possible for someone to cash a cheque before it has been authorized 

for payment. It seems that a combination of deontic1 and temporal logic would be 

usefd to capture both what actions should be permitted by a system and in what 

lDeontic logic is the logic of noms or mords. The logic provides expression for concepts such as 
'what ought to be,' 'what is pennitted,' 'what is obligated,' etc. For reference see [GMP92] 



order those actions should be pennitted. 

When modehg the examples in Chapter 5 one finds that there is some difnculty 

in modehg certain aspects of object-oriented designs when using the current version 

of SBAC. One of the weaknesses is in the inability of SBAC to account for the be- 

haviours associated with the type hierarchies present in the examples. The use of type 

hierarchies dows  the reuse of scenarios to capture objeck kteractions across families 

of related object types. Support for type hierarchies was not uicluded in the SBAC 

modeling scheme in order to reduce the complexity of the modeiing scheme during 

the initial stages of research. In keeping with the goal of providing a security mod- 

eling scheme that is complementary to conternporary analysis and design techniques, 

SBAC should be enhanced to handle type hierarchies. 

Another place where there is some dEculty in modeling certain aspects of object- 

oriented designs is where design models make use of indirection in handling object 

visibility. It is cornmon for the relationships between objects to change during the 

evolution of a system. The current version of SBAC requires that object visibilities be 

assigned at object creation tirne, that only existing objects can be visible to a newly 

created object, and that object visibilities cannot be changed after cbject creation. 

These restrictions sirnplify the computation of scenario equivalence class, and the 

complexity of the analysis tree. A weaker set of restrictions would allow the modeling 

scheme to be more expressive and is an interesting avenue for future research. 

Another direction for future work is in the simpMcation of the analysis tree. 

Presently the andyysis tree graph does not allow cycles. By design, the analysis tree 

graph contains redundant information. This allows the analysis tree to mode1 the 

permission ordering relationships arising fi-om multiple occurrences of equivalent sce- 

nazios. Simplifications and efficiencies are possible in the analysis graph by dowing 

cycles. The curent graph is finite and tractable but a broader class of systems may 

be candidates for analysis if greater efficiencies are found. In simplûying the analysis 



graph by dowing cycles, one would have to be carefd to preserve the authorization 

properties of the original analysis tree. 

6.5 Conclusions 

The development of scenario-based access control is driven by two main goals. The 

f i s t  goal is to provide a scheme that will provide efficient safety analysis for systems 

modeling legitimate-use policies. This implies efficient analysis of non-monotonic 

systems. This is because legitimate-use policies that employ just-in-time availabil- 

ity of access-control permissions are inherently non-monotonie. The second goal is 

to provide a modeling scheme that complements contemporary software engineering 

modeling techniques. The objective is to leverage the information that is alreadv 

being captured by such techniques and to provide security modehg as a extension 

to existing software engineering methods. This eliminates duplication of effort in 

security modeling and may serve to encourage the wider use of security modeling. 

These goals are met by the scenario-based access-control scheme presented by the 

dissertation. The contributions of this dissertation are: 

a scheme for the modeling of legitimate-use in information system security poli- 

cies, 

a scheme for the safety analysis of inherently non-monotonic, legitimate-use- 

based security policy models, 

formal rigor applied to scenario diagrams of the relationships between interact- 

ing objects, and 

a security modeling scheme that is complementary to contemporary analysis 

and design t ethniques . 



Chapter 2 provides a literature review and the contextual information necessary 

to provide background for the area of research, to provide foundations and inspira- 

tions for the work, and to provide examples for cornparison. Chapter 3 describes 

the rnodeling of scenarios of interacting objects. The models provide rigor to the 

relationships between types of scenarios and for the relationships between scenario 

instances. Chapter 4 defines the concepts of securi* policy and system. This chapter 

presents a scherne for safety analysis of scenario-based access-corïtrol models. The 

analysis scheme has an intractable ninning t h e  in the worst case. However, it is 

expected that for a broad class of useful systerns the aoalysis is tractable. Chapter 5 

presents a series of worked examples. The examples presented are representative of 

some interesting cIasses of system for which andysis is tractable. 
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