
Scenario-Based Access Control

G.S. Knight

A thesis submitted to the
Department of Computing and Information Science

in conformi@ with the requirernents for
the degree of Doctor of Philosophy

Queen's University
Kingston, Ontario, Canada

J m u q 2000

copyright @ George Scott Knight, 2000

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON K1A O N 4 Ottawa ON K1A ON4
Canada Canada

Your fik Votre rdferenœ

Our nle Notre rBfBrence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otheMrise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

This work describes an access-control modehg scheme for secure systems that is
based on the object interaction speciücations used in contemporary object-oriented
analysis and design methods. The scheme is primanly intended to model integrity
and legitimate-use in commercial systems. The primary concern of these systems is to
prevent fraud and errors. Access controls are usually based on hierarchical delegation
of authority and separation of duty. Security policies and control mechanisms can be
based on the ta& and business activities that are performed by the system. Object-
oriented analysis and design techniques are commonly used to model systems using
abstractions and interactions closely related to the actual tasks and business activities
of the problem domain. This makes these techniques an attractive basis for access-
control modeiing. The proposed model makes extensive use of data that is already
collected by commercial ob ject-oriented analysis and design tools. The motivation
is the productivity gains that may be reaiized through reducing the effort required
in the maintenance of separate security and design models and in ensuring there is
consistency between security models and other system models. In ob ject-oriented
modeling the description of a problem and its solution are in terms of interacting
objects. Object-oriented models specify the kinds of objects that can exist in a
system and the h d s of interactions that they can take part in. The models describe
the possible interactions in terms of object scenanos. Each scenario has a limited
number of ways in which it can be cornbined with other scenarios. This can be
the basis for definhg a security policy. The proposed scenario-based access-control
model extends current object-oriented models to bring more rigour to the relationship
between scenarios. The lirnited ways in which objects interact in these scenarios
provide the basis of a technique for safety analysis. In the security models produced,
the set of access authorizations held by system entities is inherently non-monotonie
over system execution. A decidable safety andysis method is provided for instances
of non-monotonic scenario-based security models. It is expected that for a broad class
of usefid systems the analysis is tractable.

1 thank God for the succour and sustenance without which 1 would not
have completed.

I thank Deanna my d e for her support and her reviews of my work, and
I appreciate the additional load all this placed on her; her efforts were
essentid in allowing me to complete.

I thank Glenn MacEwen my supervisor and Terry Shepard of m y commit-
tee for their careful reviews that unquestionably improved the quality
of the dissertation.

. CWAPTER 1 . INTRODUCTION AND MOTIVATION
1.1. Introduction .
1.2. Goals .
1.3. Motivation .
1.4. Thesis Outline .

. CHAPTER 2 . LITERATURE REVIEW
2.1. Introduction .

. 2.2. Review of C o m p t e r Security Issues
. 2 -2.1. Security Policy

. 2.2.2. The Reference Monitor Concept
2.2.3. The Access Matrix .

. 2.2.4. The Safety Problem
. 2.2.5. The HRU Model

. 2.2.6. Monotonic Protection Systems
. 2.2.7. The Take-Grant Model

. 2.2.8. The Schematic Protection Model (SPM)
2.2.9. Transform .

. 2 -2.10. Non-Monotonie Sransform (NMT)
. 2.2.11. Typed Access Matrix (TAM)
. 2.2.12. Transformation Model (TRM)
. 2.2.13. The Information Flow Problem
. 2.2.14. Bell and LaPadula Model (BLP)

. 2.2.15 . The Lattice Mode1
. 2.2.16. Lattice-based liitegrity

. 2.2.17. Information Flow Andysis
. 2.2.18. Role-based Security (RBAC)
. 2.2.19. Task-based S e c d t y (TBAC)

. 2.3. Review of Object-oriented Analysis and Design Issues
. 2 .3 .l. Information Captured by Current 00 Methods

. 2.3.2. Message Sequence Charts (MSCs)

. 2.3.3. Document Release Example 61

. CHAPTER 3 . MODELING SCENARIOS 69
. 3.1. Introduction 69

. 3.2. Modeling Scenarios 73
. 3.2.1. Objects and Object Types 74

. 3.2.2. Scenario Types 75
. 3.2.3. ScenafoInstances 82

. 3.2.4. PrimitiveScenarioTypes 85
. 3.3. Object VisibiIities 86

. 3.3.1. Defining Object Visibility 87
3.3.2. Defined Scenario Parameters 89

. 3.3.3. Object Creation 95
. 3.3.4. Acquiring Object Bindings from a Child Scenario 96

. CHAPTER 4 . SAFETY ANALYSE 106
. 4.1. Introduction 106

. 4.2. Modeling a System 107
. 4.3. Authorïzation Properties 109

. 4.4. Safety Analysis 113
. 4.4.1. Scenario Equivalence 113

. 4.4.2. MaximalStates 120

. 4.4.3. Unfolded State 124
. 4.4.4. Proof of u as a Maximal State 128
. 4.4.5. Complexity of Safety Analysis 131

. CHAPTER 5 . WORKED EXAMPLES 135
. 5.1. Introduction 135

. 5.2. Document Release Example 136
. 5.3. Pro ject Management Example 138
. 5 .4 . Sales-order Processing Example 145

. 5.5. BLP Example 157
. 5.6. ~i t t lef ie ld Information System Example 158
. 5.7. SBAC Model Capture and Andysis Tool 163

. 5.7.1. Specification and Implementation of the SBAC Tool 164
. 5.7.2. Results of Mode1 Analysis 168

CHAPTER 6 . SUMMARY AND CONCLUSIONS 171
6.1. Introduction . 171
6.2. Cornparisons . 172

6.2.1. A Cornparison to TAM and TRM 172
6.2.2. A Cornparison to Clark-Wilson 173
6.2.3. A Cornparison to RBAC . 174
6.2.4. A Cornparison to TBAC . 175

. 6.2.5. A Cornparison to MSCs 176
. 6.3. Discussion 178
. 6.4. Future Work 181
. 6.5. Conclusions 183

Basic processing states for an authorkation-step
. A Simple MSC

. Scenario Type Sinitail
. Scenario Type SdocEdit

. Scenario Type SforwardDecision
. Scenario Type SdocFomard
. Scenario Type SdocReview

. Scenario Type SreleaseDecision
. Scenario Type SdocRelease
. Scenario Type SdocRevision

. FIGURE 3.1. Scenario SdocReview with detail
FIGURE 3.2. Relationship between parasr and paras modified for defined sce-

nario parameters, where ~ ~ (4) = Q .
. FIGURE 3.3. Scenario SdocRelease with detail

FIGURE 3.4. Parameter bindings for SdocRelease example
FIGURE 3 .5 . Relationship between parasr and paras modified for object bind-

ings acquired hom child scenarios, where rs(q5) = Q
. FIGURE 4.1. Scenario ordering example 112

. FIGURE 5.1. Project Management Role Hierarchy 139
. FIGURE 5.2. Scenario Type SprojectMember 139

. FIGURE 5.3. Scenario Type StestEngineer 140
. FIGURE 5.4. Scenario Type Sprogrammer 140

. FIGURE 5.5. Scenaxio Type SprojectSupeMsor 141

. FIGURE 5.6. Scenario Type SprojSuperRegen 142
. FIGURE 5.7. Scenario Type SprojSuperInitiator 143

. FIGURE 5.8. Scenario Type SbobsRoleSelector 144
. FIGURE 5.9. Scenario Type SsaleTerm 148
. FIGURE 5.10. Scenario Type ScreditTerms 149
. FIGURE 5.11. Scenario Type ScreditCheck 149
. FIGURE 5.12. Scenario Type ScreditPassed 150

. FIGURE 5.13. Scenario Type ScreditFailed 150
. FIGURE 5 .14 . Scenario Type SgoodsRemoval 152

. FIGURE 5.15. Scenario Type Swarehouse 152
. FIGURE 5.16. Scenario Type SgoodsAvailable 153

. FIGURE 5.17. Scenario Type SfillOrder 154

. FIGURE 5.18. Scenario Type SgoodsBackorder 154

. FIGURE 5.19. Scenario Type SshippingTerms 155
. FIGURE 5.20. Scenario Type Sbilling 156

LIST OF TABLES

TABLE 5.1. SBAC Andysis Results . 169

ACL

BIS

BLP

BTRM

CD1

DAC

ESPM

HRU

I&A

ITU

MAC

MLS

MSC

MSD

MTAM

NMT

00

OOA

OOD

ORCON

RBAC

RBAC96

RBACi

SBAC

access control Est

Battlefield Information System

the Bell and LaPadula model

binary variant of the TRM model

constrained data item

discretionary access control

Extended Schematic Protection Mode1

Harrison, Ruzzo and Ullman's protection mat+ model

ident Scat ion and authentication

International Telecommunications Union

mandatory access control

multi-level secure

message sequence chart

message sequence diagram

monotonic variant of the TAM mode1

Non-monotonic Transform model

object-oriented

object-oriented analysis

ob ject-oriented design

the originator controlled security policy

role-based access control

a family of role-based models

a model in FU3AC96, where i = 0-3

scenario-based access control

SDL

SPM

TAM

TBA

TBAC

TBACi

TP

TRM

UML

UTRM

Specincation Description Language

Schematic Protection Model

Typed Access Matrix model

task-based authorization

Task-Based Authorization Control f d y of rnodels

a model in TBAC, where i = 0..3

transformation procedure

Transformation Model

Unified Modeling Language

unary variant of the TRM model

Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

One can view a commercial organization as a system that is required to maintain

a certain state (or standard) of integrity. Organizational procedures and intemal

controls then have to ensure that the tasks carried out iri the organization preserve

such a state of integrity [San96]. To maintain such an integrity state there must

be some assurance that users can only use their access to an information system

(and through it access to corporate data/information assets) for legitimate purposes.

Users should be limited to data accesses required to perform fasks for which they

have authorization: The tasks should be staticdy dehed and form the basis of a

mandatory security policy for the system. Specific ta& should be authorized for an

individual based on the duties of that person in fulfilling the corporation's business

objectives. The authoked tasks should be sufbicient for individuah to accomplish

their duties but should not provide superfluous access to data. I.e., the performance

of a task must be a legitimate use of the information system.

The first section of this chapter defines the goals of this dissertation with respect

to providing modeling support for the capture of the legitimate use properties of a

system. The next section provides motivation for these goals and for scenario-based

access control modehg. The last section provides an outline of the research presented

in the remaining chapters of the thesis.

1.2 Goals

The development of scenaJrio-based access control is driven by two main goals. The

h t goal is to provide a scheme that will provide efficient safety analysis for systems

modeling legitimate use policies. This implies efficient analysis of non-monotonic sys-

tems. This follows because legitimate use policies that employ just-in-the availability

of access control permissions are inherently non-monotonie. The reasons for this will

become apparent later in the dissertation. The second goal is to provide a modeling

scheme that complements contemporary software engineering modeling techniques.

The objective is to leverage the information that is already being captured by such

techniques and to provide security modeling as an extension to exïsting software engi-

neering methods. This elirninates duplication of effort in security modeling and may

serve to encourage the use of security modeling.

The scope of this research is directed toward acbieving these goals and is reported

on in the dissertation. This includes the deflnition of a modeling scheme for capturing

legitirnate-use policies based on just-in-time availability of access-control permissions.

The primary abstraction in the modeling scheme is the scenario. A scenario is a formal

description of a set of actions permitted by a group of objects. The modeling scheme

is called scenan'o-based access control (SBAC). The research also includes a safety

analysis scheme for scenario-based models. A security mode1 design capture and

analysis tool has been implemented based on the SBAC modeling and safety analysis

schemes. The SBAC tool is used to develop example models that are representative

of some interesting classes of information system applications. The analysis of these

systems is tractable and the tool is used to gather some empirical data about the

efficiency of the analysis algorithm. The results do not provide a proof of tractability

for SBAC modeling in general, but it is expected that there is a large class of systems

for which analysis based on the unfolding algonthm is tractable.

1.3 Motivation

The modeling scheme is intended to spec* commercial and application-based securiiy

policies. The control of the access to information is usudy divided into principal areas

of concem: secrecy, integrity, availability, and legitimat e-use. The modeling technique

presented here is particdarly appropriate for s p e c m g integrity and legitimate-use

policies. Clark and Wilson in [CW87], Moffet and Sloman in [MS88], and more re-

cently Thomas and Sandhu7s task-based access control in [TS94] have asserted that

commercial security concerns shodd mirror an organization's internal control systems

and work flows. These controls are usudy based on hierarchical delegation of au-

thority and separation of duty. The primary concem of commercial systems is usually

to prevent fraud and errors. The problem domain staternents of requirement for an

organization7s information systems tend to be task based. Therefore, role and task-

based access control seems to be a promising direction of research and is motivation

for modehg legitimate-use policies. "The fact that authorization is transient and

dependent on organizational circumstances" [TS94] means that such policies tend to

be non-monotonie in the generation of access rights as system execution evolves. That

is, the entities in a system can both gain and lose access rights as the evolution of

the system progresses.

There are modeling schemes in the literature that can be used to express systems

with monotonie security policies that also have efficient safeQ analysis [San88, San89,

San921. There are also modeling schemes in the literature that can be used to express

systems with non-monotonie security policies [HRU76, SS92, San92, SG941. How-

ever, there has been less success in providing an efficient safety analysis for modehg

schemes used to express systems with non-monotonie security policies. The ability

to provide efficient safety analysis for such systems would significantly expand the

classes of systern for which access-control modeling and safety ihnalysis can provide

assurance for security critical design.

Ob ject-oriented analysis and design (OOA/OOD) t ethniques are comrnonly used

to model systems using abstractions and interactions closely related to the actual

problem domain. This malces these techniques an attractive basis for access-control

modeling. The system specification c m be captured in terms of high-level abstract

tasks that meet an organization's business objective. This provides intuitive seman-

tic content that takes advantage of natural human cognitive skills [Boo94]. Another

motivation for the use of object-oriented (00) modeling techniques is that they scale

weU over varying levels of abstraction. The same basic philosophy of object-oriented

decomposit ion can be applied during syst em analysis, design, and implementation.

Although 00 models can be used at various levels of abstraction this does not imply

model correspondence between the levels. Mode1 correspondence between the lev-

els is not straightforward and is itself a separate area of research. Correspondence

notwithstanding, the ability to use the same basic techniques to model systems a t

varioris levels of abstraction is an attractive property. Current security models tend

to work at a relatively low level of abstraction [TS94]. Security modeling based on

00 techniques should allow modeling at higher levels of abstraction.

Security modeling using 00 techniques also has the advantage of allowing secu-

rity modeling to complement the system requirements and design modeling techniques

used in contemporaxy software engineering practice. It is expected that much of the

data required for security modeling is routinely captured by 00A/OOD methods.

The data captured by contemporary modeling tools can be augmented to provide a

security model compatible with current analysis and design methods. This should

provide the basis for an access-control modeling and analysis capability that is com-

patible with the way system architects and designers do their work. This should

result in productivity gains, a s it reduces the effort required in the maintenance of

separate security models and in ensuring there is consistency between secuiQ models

and other system specifications. A securiiy-modeling tool that works with familiar

system design tools also increases the likelihood that such modeling will be done.

This dissertation explores development of an access-control modeling scheme based

on contemporary 00 analysis and design methods to capture and provide efficient

analysis for non-monotonic ta&-based models for secure systems.

1.4 Thesis Outline

Chapter 2 provides a literature review and the contextual information necessaxy to

provide background for the area of research, to provide foundations and inspirations

for the work, and to provide contrasting examples for cornparison. Chapter 3 de-

scribes the modeling of scenarios of interacting objects. The models provide rigor to

the relationships between types of scenarios and for the relationships between scenaxïo

instances. Chapter 4 defines the concepts of security policy and system. This chapter

presents a scheme for safety analysis of scenario-based access-control models. Chap-

ter 5 presents a series of worked examples. The examples presented are representative

of some interesting classes of system for which analysis is tractable. Finally Chap-

ter 6 provides some cornparisons between SBAC and other security modeling schemes

found in the literature. This chapter also provides a discussion that summarizes the

contributions of the research and conclusions.

Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides a review of existing Iiterature which is relevant to the presen-

tation of material in later chapters. A review of previous research in the modeling of

secure systems serves to provide for the reader an understanding of the relevant is-

sues surrounding access-control modehg schemes- The review outlines how previous

authors have contributed to the topic area. The various modeling schemes illustrate

the need to balance the ability of a modeling scheme to speciS. a wide variety of

useful systems with the ability to perform an analysis of the security properties of

those systems. The primary type of analysis considered is safety analysis, which is

described later in the chapter. The review material also provides a brief description

of some concepts associated with software engineering and object-oriented analysis

and design. The scenario-based access-control modehg scheme proposed in this dis-

sertation is built on and inspired by ideas arising kom previous literature presented

in this chapter.

The f i s t section of the chapter presents a review of cornputer security issues and

modeling schemes. The next section provides a review of object-oriented analysis and

design issues. The end of that section provides an example of a system taken from

the literature. The example has been reworked in a presentation format convenient

for expressing scenario-based access control. The example will be used to provide an

intuitive counterpoint to the formal presentation of the components of the modeling

scheme in Chapter 3.

2.2 Review of Computer Security Issues

SecuriQ models can be used to transform security requirements into technical spec-

ifications and as a means to provide acceptance criteria for evaluating a system or

system component . 'Without such models, system developers are forced to apply

ad hoc secuxitsf related techniques throughout the design and implementation of the

system. This approach inevitably leads to exploitable flaws, and makes the security

assessments necessary for certïfkation Wtually impossible." [And721 This section

will examine fundamental aspects of computer system security and present the rel-

evant research issues and seminal models used to address the control of access to

information and computing resources.

In general, secure systems will control, through use of specific securïty features,

access to data such that only properly authorized individuals, or processes operating

on their behalf, will have access to read, write, create, or delete data elements [Dep85].

Through the control of access to data the system endeavors to protect and preserve

the information represented by the data. The set of rules and procedures governing

this use of information is c d e d the security policy. A systern can be said to control

the access of subjects (individuals, or processes operating on their behalf) to objects

(information being held on the system, cg. mes). The control of access to information

is usually divided into three areas of concern: secrecy, i n t e g ~ i t y , and availability

[Gas88]. To this traditional set of areas of concern c m be added legitimate-use.

Secrecy (confidentiality) concerns restrïcting the flow of information such that it

does not become available or is not disclosed to some set of subjects. For example,

the flow of information can be restricted such that a subject without an appropriate

security classification, or need-to-know, is not permitted to read fkom a specSc ob-

ject (or have the information contained in that object written to it). Integrity issues

concern the control of information such that information objects are not exposed to

accidental or malicious alteration. For example, objects can be controlled to prevent

unauthorized subjects fkom m o d w g (writing, deleting) a specific ob ject . Availabil-

ity of information is a property of the flow of information that requires information

contained in an object to be accessible to a subject, and requires that the flow does

in fact occur when needed. A failure of this property, for example denial of service,

would occur when a subject acts in a way that prevents or delays the valid flow of

information between other subjects and objects on the system. Legitimate-use per-

tains to the prevention of the unauthorized use of system resources. For example,

a subject may have access to an object but oniy within the context of some defined

and authorized business task or workfiow. Even though a subject has access to an

object for a specific task, the access permission shodd not be able to be used by that

subject for other purposes.

References to "information contained within an object" in the descriptions of

the properties above can also be viewed as characterizkg the services provided by an

object. For instance, access to information c m also be construed as access to a service

(program, device, etc.). Given these definitions of secd ty and the control of the

flow of information, it should be understood that there are differing interpretations,

and some concepts are less well-understood than others. The historic focus of the

research communîty has been on confidentiali@ This is because much of the research

and system procurement activity was driven by the government/miütary. Integrity

and availability were only generally defined in the fiterature and then usually in

relation to a specific secure system implernentation and its associated securiS policy-

Recently there has been more emphasis placed on integrity as the interests of the

research cornmuni@ have shifted to commercial information systems. This trend also

drives the interest in legitimate-use issues. The modeling scheme proposed in this

dissertation provides direct support for considering legïtimate-use issues.

This section is organized in the following way. The first subsections present fun-

damental aspects of computer system security as a foundation for the discussions

in following subsections. The next set of subsections present the safety problem as

defhed in the context of computer security, and seminal models are introduced to

explore tractable analysis of the migration of access rights. Later subsections discuss

the flow of information, access-control models conceived to restrict information flow

in secure systems, and roie-based access-control rnodels.

2.2.1 Security Policy

The d e s and procedures of a securïty policy are designed to meet the confidentiality,

integrity' availability and legitimat e-use requirement s for the specific circumst ances of

users of the system. This can include regulating the processing, storage, distribution,

and presentation of information [Com88]. The following paragraphs descrïbe some

common policies that will be referenced later in this dissertation.

MiZitary/Govement Security Policy. The rnilitary/government security poiicy

[Gas88] is primarily concerned with confidentiality. The policy defines an ordered set

of security levels (e.g. Unclassified < Confidenthl < Secret < Top Secret) and a set

of categon'es (e.g. Atomic, NATO, Alpha). A user has a clearance for a certain level

and is also cleared for some number (possibly zero) of categories. Information has

a class.ification which is composed of a security level and some designated number

(possibly zero) of categories. A user is never allowed access to any information for

which he is not cleared. Clearance implies the information's classification level 5 (is

dominated by) the user's clearance level, and the information's set of classification

categories C user's set of clearance categories.

Need-to-know. This policy is also associated with the military/government and

can operate in parallel to, or separately hom, the clearance-based policy described

above. The policy specifies that a user is not allowed access, regardless of his classi-

fication, to any information unless he has a legitimate need to use the information.

When operating in pardel with the military/govenunent security policy, need-te

know access can only be extended to a subject which is already authorized access

under the clearance-based policy.

ORCON. The originator controlled policy is again associated with the

militaiy/government. This policy is usually implemented in parde l with the stan-

dard clearance-based milit ary/government security p olicy. As described in [San921

the creator of a document retains control over granting access to the information in

the document. For example, if the creator of a document gants another user the

authorization to read the document, that user cannot propagate the information in

the document to a third user. If is prohibited for propagation to occur either directly

by granting the third user the right to read the document, or indirectly by granting

the third user the right to read a copy of the information in the document.

Separation of Roles. Security in the commercial environment often requires that

more than one person be involved with some operation in order to reduce the proba-

bility of the occurrence of fraud. Such separation might involve a division of responsi-

bilities. In some cases, the users perform separate functions. For example, the system

administrator's role may be separated from the system security officer's role so there

is no one person who can subvert the system. In other cases, the users cooperate

in performing some task. In a business application a clerk and a manager rnay be

required to cooperate to draft a cheque. This concept of a two-person rule can be

generalized into n-person rules for synergistic authorizat ion.

Chinese Wall. The Chinese wall policy has its ongins in the business community

[BN89]. In the financial services sector, a consultant must not divulge information

pertaining to a client to a cornpetitor. Thus, if a consultant is advising one corn-

pany in a business sector (e.g. banking) he is not permitted to become privy to any

knowledge about any other Company in that sector, or to impart his insider knowl-

edge to any other company in that sector. The consultant's fkm may represent a

number of companies in a number of business sectors. The analyst may work with

companies in sectors which are not in competition with each other (e-g. oil cornpanies,

insurance brokers, etc.), but only one in each sector. The choice of which companies

the consultant will become involved with is unconstrained provided these d e s are

followed.

2.2.2 The Reference Monitor Concept

In a secure system there are a number of different system services that work together

to provide security. Access controls are one of these services but others include

identification, authentication , and audit. Identification and authentication (I&A) are

closely related. The identification service ensures that a user iç uniquely identified

to the system. This unique identity can be used later to make decisions about what

that user should be allowed to do. The authentication service is used to establish the

validity of the claimed identity of a user. A user claiming a unique identity must prove

that he is who he says he is by providing information known only to that user. Such

information can be about something he knows, something he has, or sornething he is

[Com88]. Examples of these types of proofs might be a password, a smart card token,

and a biometric fingerprint scan respectively. Audit services are used to track events

in the system and record what user identiw initiated or is otherwise responsible for

their occurrence. The logs produced are used to provide accountability of the users

for their actions and to provide a posteriori evidence relating to breaches in system

security.

Access control is closely related to the concept of the reference monitor. With

the advent of multiuser systems, the reference monitor was introduced to control the

sharing of resources. The reference monitor validates all references made by a program

in execution agâinst those anthorized for the subject by the system security policy

[And72]. The references might be to programs, data, devices, etc. The effectiveness of

the reference monitor depends on a trustworthy I&A mechanism to positively identie

a user with a unique identity upon which access-control authorizations will be based.

The actual mechanism (Reference Validation Mechanism) that implements a reference

monitor may be a combination of hardware, softwctre, and h w a r e and must have

the following fundamental properties:

1. the Reference Validation Mechanism must be tamper proof,

2. the Reference Validation Mechanism must always be invoked, and

3. the Reference Validation Mechanism must be small enough to be subjected to

analysis and tests to ensure that it is correct.

The requirement to subject the reference validation mechanism to analysis can be

facilitated by the use of modeling techniques. In this way modeling c m be used to

support a reference validation mechanism. Models can be used to provide validation

of secuity policy, to provide assurance of correctness, as a language of specification,

and as a basis for refinernent leading to design and implementation. The following

sections will outline some of the major securiiy modeling techniques used to express

the control of access to information and computing resources.

2.2.3 The Access Matrix

One of the most basic abstractions used in dealing with access control is the access

matrix [Lam7l]. The mode1 is defined as a state-machine. The state of the systern is

represented by an access matrix and a set of cornrnands which operate on the matrix

define the state transitions [Den82]. A state of the system is defmed by a triple

(S, O, A) where: S is a set of subjects, O a set of objects to be protected, asd A is

a matrix with rows corresponding to subjects and columns corresponding to objects-

A cell of the matrix A[s, O] is the set of rights of subject s for object o. Depending on

the model being used, subjects may also be objects, S C O, to support modeling of

subject-to-subject communication. The rights specify the ty-pe of access allowed by

a subject for a specïfic object, and c m include the familiar r a d , m e t e , ezecute and

other privileges/properties such as own, copy, etc. as defined by the model.

The access matrix tends to be sparsely populated as each subject usually only has

access to a restricted number of objects. Therefore, systems modeled in this way are

seldom a c t u d y implernented as a matrix [SS94a]. A means of reducing the resource

requirement is to associate a list of the filled cells in a column with its related object,

or conversely a list of the filled cells in a row with its related subject. The f i s t

scheme is said to use access-control lists (ACLs), the second scheme is said to use

lists of capa bilities-

In ACLbased systems, each object in the system has an ACL and each entry in

an ACL identifies a specXc subject in the system and describes the type of access

allowed by that subject. The list only contains entries for those subjects with some

type of access. When access for an object is requested, the list is checked to veri& that

the requesting subject has the appropriate access right. The basic ACL scheme can

be modified to include group names, or to limit the specification of subjects to simple

classes such as owner, group, or world. The latter case allows the representation of

ACLs as a regular concise set of bits, such as the familiar UNM protection bits. ACLs

have the disadvantage that if there is a need to find al1 the objects to which a subject

has access, it is necessary to examine the ACL for every object in the system.

The converse approach is to associate a set of capabilities with each subject, each

of which identifies a specific object in the system and describes the S p e of access

which is permitted for that object. The subject can be thought to have a ticket or

capability to access an object in a certain way. The disadvantage here is that to

find aII the subjects who may have access to a specific object, all the subjects in the

system must be checked for the capability.

A third way to handle access matrix information is to maintain a table (autho-

rization relation) which contains a record for each permitted access. Ce. for each

right present in each filled cell of the matrix. ACL-style or capability-style results

can be obtained by sorting the table by object or subject as appropriate. This scheme

is popular for relational database management systems which provide built-in s u p

port for record sorting and selection. An approach presented in [BSSC95] proposes

a high-level language to capture the semantics of the access authorizations stored in

tables without using the actual tables. The reference monitor will interpret these

language-defined security attribut es as access requests are made.

So far the model we have presented deals with the representation of a single state.

This is suitable to describe a snapshot in time but not a dynarnic system where access

rights, or the number of subjects and objects, can Vary wîth time. Some mechanism

must be provided to allow state transitions. A set of commands c m be provided in

the model to allow operations on the access matrix. The commands may add (or

remove) rows or columns and thereby subjects or objects to the system. They also

control the entry (and deletion) of access rights into matrix cells. Such commands

can be conditioned on other matrix entries. For example, it is common that if a

subject owns an object (i. e. has the ownership right for that object), it is allowed to

grant other rights for that object either to itself or to other subjects. E.g. an owner

of a Be, at his discretion, might grant the right to read that Be to another user. An

access-control policy which allows such commands at the discretion of a user is a form

of a Discretionary Access Control (DAC) policy.

The primary purpose of multiuser systems is the sharing of resources. Objects

contained in the system are valuable resources to be shared and manipulated (by

authorized users). To unnecessarily limit sharing would be to defeat the purpose of

such systems. On the surface it might appear that an orner-based DAC policy is

sufficient for most secULity concerns and would provide for adequate resource sharing.

If the owner only passes rights to authorized trustworthy users what could be the

h m ? The harm lies in the possibiliw that although the user may be trustworthy, the

processes (subjects) executing on his behalf may not be. This is the classic downfd

of DAC. The problem is that the user is not generally aware of a l l of the behaviour

of a process. A user may unwittingly execute a process which has been designed or

altered to perforrn sorne malicious action in addition to the action desired by the user.

Such a program is called a 13-ojan horse. A Trojan horse may be planted, given to,

or copied by an unaware user. A Trojan home embedded within a subject runs with

ail the rïghts of that subject. Once running, the Trojan horse may exploit the access-

control mechanism to cause a transfer of information or a transfer of access rights

in violation of the security policy. We will retum to the problem of unauthorized

transfer of information later. There are dso problems associated with revocation of

rights under DAC [San96]. The issue arises when considering the case where an access

right is passed fkom the original owner to another user and then passed on again to

further users. There is more than one interpretation for what it means to revoke

such a right. That is, it is not clear whether the revocation of the right by the owner

should pass beyond the user to which the right was originally given, and also revoke

that right fkom all the other users to which it had subsequently been given by that

user (a cascading revoke) .

2.2.4 The Safety Problem

In the next few subsections we will look at the unauthorized transfer of rights. In a

protection scheme such as the matrix mode1 described in this subsection, an untrusted

process may directly, or though a series of operations on the access matrix pass a right

to some other subject. In accomplishing this it may collaborate with other trusted

and untrusted processes. This migration of rights may not be consistent with the

system security policy. Given an initial system state we would like to characterïze

the protection states that aie reachable in the system [San92]. This is the safety

problern.

2-2.5 The HRU Mode1

Hamison, Ruzzo and Ullman in [HRU76] offer a formalized general model of protection

systems based on the concept of an access rnatriu. IR their work they address the

issue of the migration of access rights by unreliable subjects. The safety problem in

this context is to determine whether in a given situation a right can be passed to a

subject that did not already have it. The HRU model has states, as described above,

(S, O, A), with set S of current subjects, O of current objects (S C O), and mat*

A. The model also includes:

R a finite set of generic rights (e-g. read, write, ownership, etc.)

C a finite set of comrnands of the form:

command &(XI, XZ, . . . , Xk)
if rl in (XsL, Xol) and

r2 in (Xs2, X o 2) and

...

rm in (Xsm 1 Xan)

then

Wl; OP2; - ; OPn
end

or if m is zero,

command &(XI, X Î , . - . , Xk)

Where a! is a name, Xi,. . . , Xk are formal parameters, r, r l , . . . , Tm are generic

rights, and si, . . . , Sm, 01,. . . , O, are integers befxeen 1 and k. Each opi is one of the

following primitive operations which define a transition from some state (S, O, A) to

another state (Sr, Of, A'). When actual parameters (e-g. s, O) have been substituted

for formal parameters (X,, X,) they have the described effect on the access matrix.

enterrinto (s,o) S ' = S , O 1 = O , A f [~ i , ~ j] = A [~ i , ~ i] f ~ ~ d (~ i , ~ j) # (~ , o) ,

and A' [s, O] = A[s, O] U r , where r E R, s E S, o E O

delete r from (s,o) S = S,O' = O,Af[si, oj] = A[si,oj] for d (si,oj) # (s, O) ,

and Af[s, O] = A[s, O] - r, where T E R, s E S, O E 0

create subject s' S = S U s', O' = O u s',

for dl (s, O) E S x O, A'[s, O] = A[s, O],

for all O E Of, A1[s', O] = {} and A'[sl, s] = 0,
where s' O

create object O' Sr = S, O' = O U o',

for all (s, O) E S x O, Af[s, O] = A[s, O], and

for all s E SI, A1[s, 0'1 = {), where O' # O

destroy subject sr S' = S - sr, 0' = O - s', and

for al1 (s, O) E S x 0') A' [s, O] = A[s, O], where s' E S

destroy object O' S' = S, O' = O - of, and

for ail (s, O) E S' x Of, A'[s, O] = A[s, O], where O' E O - S

Each command will execute a sequence of primitive operations (the body of a) on

the access matrix, conditioned on the presence of certain access rights in certain cells

of the access matrix (the conditions of a). All conditions must be valid to invoke the

body. For example, the ownership-based DAC scheme described above might have a

command CONFEK:

command CONFE&(owner, f riend, f ile)

if awn in (owner, file)

then enter 1- into (friend, file)

end

for which if the subject owner has the own right for object file, will grant the r

right (read) to the subject f riend.

Now consider the safety problem: to determine whether, in a given situation, a

right r for an object can be passed to a subject that did not already have it. Le., r is

said to leuk to a subject that did not already have it. Subjects in the system which

are h o w n to be trustworthy and have the ability to g a n t r should not be considered

a s they make the system trivially unsafe. For example the owner of the object may

be able to g a n t r to another subject. If the owner is trustworthy, he should not be

considered in the safety analysis. What really needs to be known is this: if a subject

is about to give away a right, could that action lead to further leakage of the right

to untrusted subjects. The problem is therefore considered with tmtworthy subjects

remaining passive.

There may be a complex chah of operations involving a number of subjects and

objects which may Iead to such a leak. We Say Q i-, Q' if there exists a command

a and actual parameters al , . . . , al, for a protection system in state Q such that Q

yields Q' under a(al, . . . , a*). Q i-* Q' indicates that there is a sequence of commands

a, f i , . . . w such that Q = Qo ka Q1 FB . . . l-, Q, = Q'.

A cornrnand a (X l , . . . , Xk) leaks a generic right r fkom state Q = (S, O, P) if a,

when run on Q, can execute a primitive operation which enters r into a cell of A

which did not previousiy contain r. Given a particular protection system, an initial

coizfiguration Qo is unsafe for r if there is a state Q and a command cr such that

Qo l-• Q, and a leaks r kom Q. State Qo is safe for r if it is not unsafe for r.

By reduction to the Halting Problem it is proved in [Hm761 that it is undecidable

whether a given configuration of a given protection system is safe for a given generic

right. Undecidable in this case means that for any algorithm for deciding the safety

of arbitrary protection systems, either some unsafe system is found safe or it cannot

be established that a system is safe when in fact it is.

Given that the safety problem is in general undecidable, useful progress in the

control of the migration of rights can only be made by:

1. dealing with more restricted systems for which specific tractable solutions are

possible, or

2. building incomplete but sound modeling systems which wïU not misidente a

system as being safe, even though they cannot identiS. all safe systems.

Thus, the theme of research on the safety problem is to provide access-control mod-

els expressive enough to specify useful systems which will also allow tractable safety

analysis of the system being modeled. For example, given that a computer system

has limited resources, it might be natural to limit the number of subjects and objects

that can be created to some hnite number, or to prohibit the use of create operations

altogether. The latter restriction, as noted in [HRU76], does yield decidable results,

although the solution is PSPACEcomplete and is therefore likely to be computation-

ally intractable. Another example of a restriction is to limit the number of operations

in HRU commands to a single operation [HRU76]. This also yields decidable re-

sults. A decision procedure for mono-operational HRU is NP-complete although a

polynornial algonthm can be devised for a given protection problem.

2.2.6 Monotonie Protection Systems

Harrison and Ruzzo in [HR78] explore a class of systems which, as before, have

primitive create and enter operations but do not have delete or destroy operations.

Such a system is monotonic, in that it only increases in size and in entries in the

access matrix. As it t u s out, there is no real gain in the decidabüity of the safety

of such systems. They prove that even if the number of conditions allowed in the

operations of the system is reduced to a maximum of two, the solution to the safety

problem is still undecidable. However, for the class of monotonic systems which are

restricted to one condition (ie. they may only check for one right in one ceU of the

access matrix), safety is decidable. The decision procedure in their proof has an NP

complexity, but the authors propose a solution in linear time in the size of the access

matrix which may yield a tractable solution for some cases.

Mono-conditional HRU and mono-operational HRU are of limited utility. In gen-

eral, more than one condition and operation is needed in commands in order to

express useful policies. For example, a mono-conditionai system would not let a par-

ent subject grant a right for an object it owns to a child subject. This would require

testing for both an ownership right for the object and for an appropriate parent/child

right. Mono-operational systems can be even more restrictive as it is not possible to

both create an object and grant any right(s) associated with that object. A differ-

ent approach is to restrict the transfer of rights based on a subject's possession of

special rights which allow the propagation of rights. The following mode1 is both bi-

conditional and multi-operational (in contrast to the decidable cases of HRU above)

but has an efficient safety analysis.

2.2.7 The Take-Grant Model

Jones, Lipton, and Snyder have proposed the Take-Grant model which is summarized

in [Den82]. The authon prefer a graphical representation of system state with sub-

jects and objects as nodes and a directed edge (x, y) representing the set of access

rights x has for y. In this model, subjects are not objects. However, subjects can

have access rights for each other and self referentidy. There are two special rïghts

take (t) and grant (g) . t E (x, y) allows x to take any of y's rights, and if g E (x, y),

x can share any of its rights with y. t and g themselves can be propagated in this

way. Any transfer of a right in a system is constrained by the possession of t and g.

Where r is a right, s is a subject, x and y are nodes, the primitive operations allowed

in a system are :

s take r for y from x for t E (s, x) , r E (x, y) adds r to (s, y)

s grant r for y to x for g E (s , x) , r E (s, y) adds r to (2, y)

s create p for new [subject (object] x for p C graph adds new node x,

where (s, x) = p

s remove r for x removes r from (s, x)

Note that such systems are not strictly monotonic in that although a system can

only increase in number of nodes, rights can be removed from the system. This model

is expressive enough to solve certain protection problems. Subjects and objects in

the model are naturally interpreted as possessing a set of rights for other subjects or

objects. Since the rights are interpreted as being associated with the accesshg entity

rather than the accessed entity, this is a usefid paradigm for use with capabiliw-based

systems. A shortcoming of the expressiveness of the model is that either all rights

may be granted to another subject or none of them may be granted. This restriction

is limiting in application to actual protection systems. The general safety question of

whether any other subject c m obtain a right r given some initial state is solvable in

0(n3) for an initial state with n nodes. Although this is a cubic complexity, only the

initial size of the system d e c t s complexity- The more speciûc question of whether a

right r for a specific object can be transferred to some specific subject is solvable in

linear time in the size of the initial state. All commands that would be possible in

the general case (an HRU style matrix) are not possible here due to the take-gant

restrictions on the propagation of access rights. This sacrifice in expressiveness by

the modeling scheme yields a tractable analysis.

The concept of restricting the migration of rights to some set of links, identïfied

by an assortment of control rights, has been investigated by other researchers. In

the attempt to expand the useful class of systems which can be modem, various

refinements and modified schemes have been proposed, such as Minsky's Send-Receive

Transport model [Min84]. Sandhu proposed in his Schernatic Protection Model a

unified way of dealing with such links. This has lead to a senes of stronger protection

models. The succession of these models will be discussed in the next subsections.

2.2.8 The Schematic Protection Model (SPM)

Previous subsections have described the inherent tension between the generality of

a protection model and tractable analysis of the safety problem. The Schematic

Protection Model [San881 proposes a différent set of restrictions on the model to

expand the class of systems which can be defined. SPM borrows from the Take-Grant

mode1 the concept of using tickets (capabilities) to control the dynamic migration of

access rights. To this, the model adds static restrictions based on the protection

type of subjects and objects. The use of typing to control security policy is the most

important aspect of this model. In more general models, the unrestricted ability of

a system to create subjects greatly increases the complexity of analysis. The SPM

model, therefore, places type-based restrictions on subject creation.

Again in this model subjects are not objects. Objects do not possess access rights;

however, passive entities that possess rights, such as file system directories, can be

modeled as a kind of subject. Subjects and objects are jointly referred to as entities.

Each subject and object is created with a specific unchanging protection type which

is a member of the set TS or TO respectively (let T = TS U TO) . This strong typing

is used to specie many of the major features of the system security policy. Decisions

on entity creation and access right migration are based on type. Protection types are

defined by the security administrator and cannot be changed during the operation of

the systern. They are therefore static. The abilifq of a specific subject to access some

specific entity during system operation is represented by its possession of a ticket for

that entity. For example, a subject A may have a ticket allowing it right r for some

entity X. Such a ticket would be in the domain of A, d m (A) . The ticket specifies

an entity and an access right and can be denoted as X/r. Tickets can be specified

with or without a copy flag. The existence of the copy flag indicates that the ticket is

copyable. The absence of the copy flag indicates that the ticket cannot be copied. A

ticket with a copy flag can be denoted with a 'c' (e.g. Xlrc) . Each ticket has a type

which is an element of T x R. That is, the ticket type is specified by the type of the

entity and the right denoted by the ticket.

The only operations which can operate on the protection state of a system are:

copy, demand, and create. The copy operation requires three elements to be suc-

cessful. For example, to copy a ticket X / r from subject B to subject A there must

first be a ticket X/rc in the domain of subject B. Next there must be a link from

B to A. The existence of a link is predicated on the existence of control rights, such

as takelgrant, in the domains of A and/or B. The model allows the flexibility to

specify a number of difFerent kinds of link based on different control rights and where

they must ex&. The following two examples define links for the Take-Grant model

described above and for the Send-Receive mode1 [Mh84]:

The third element which needs to be satkfied is that the type of ticket being

copied must be allowed by a filter defined for the link being used. Each kind of link

has a filter function: T S x TS + 2TxR. Le., kom T S x TS to the power set of ticket

types. That is, for the type of subjects participating in a copy on some kind of link,

only certain types of tickets can be transferred. Filter functions depend ody on the

static typing scheme and restrict the discretionary behaviour of subjects.

The dernand operation dows a subject to be granted a right by asking for that

right. To be successful, the subject's access to that right must be authorized by the

demand function: TS + 2TxR. The demand function maps a subject type to a set

of ticket types. For a subject to gain a right by demand, the right must be one of

those associated with that type of subject in that set. This implicit distribution of

tickets by t ype is very useful for the distribution of control tickets used for setting up

standard links.

The create operation is the only other operation allowed and is the most interest-

ing. The create operation allows a subject to create a new subject or object in the

system. A relation can-create (cc) and entity creation-mles (cr) control the creation

of entities in the systern. The cc relation is a subset of TS x T. For exarnple, subject

A of type a can create entity B of type b if£ cc(a, b) . To make efficient analysis possible

the creation of entities can be m h e r restricted to ensure that the graph resulting

fiom the cc relation is acyclic. That is, there can be no cycles in the graph except

self-loops, where a subject may be allowed to create other subject of its own type.

The acyclic nature of the creation graph produces a hierarchical structure, which

proves to be a useful property for the analysis of safety. There is a create d e for

every pair in cc. For the creation of an entity B of type b by a subject A of type

a, the nile ~ (a , b) would specify what tickets for B are placed in dom(A) and what

tickets for A are placed in dom@). The mode1 places restrictions on what rights

may be specsed. The rdes must be attenuating for loops of the f o m cr(a, a). This

means that for loops, a subject which has been created must not have more rights

that the subject that created it. For example, when subject A is creating subject

A', dom(A1) C dom(A); also if a ticket for A' is placed in dam(A) the corresponding

ticket for A must be placed in dom(A). The second condition ensures that the creator

subject can not set up links for created subject that it cannot set up for itself. The

attenuation property also proves useful in analysis. Together the acyclic and attenu-

ating restrictions on subject creation ensure that the number of subjects that c m be

created in the system c m be bounded for the purposes of the analysis.

In safety analysis we are concerned with the migration of rights as the system

transitions from one state to another. The migration of rights by way of demand

and create operations is dependent on the static fiyping scheme only and not on the

distribution of tickets associated with any state. Of more interest to safety analysis

is the migration of access rights associated with the copy operation. This depends on

the initial set of entities and distribution of tickets, the initial state, and the evolution

of state thereafter. Link predicates and filter functions control ticket copy. In a worst

case scenarïo, al1 subjects cooperate in the migration of rights where possible.

A ticket can flow fiom one subject to another if there is path (a set of links) which

connects the two subjects and the ticket is authorized by the flter function associated

with each link on the path. In any state then, the capaciw of all paths for some ticket

is defined by the transitive closure of the links which are authorized for that ticket

existing in that state.

Safety analysis for SPM is based on the concept of a maximal state. If there is

some maximal state beyond which any state transitions provide no new migration of

tickets, then the andysis of this state provides a solution to the safety problem. As it

turns out, such a maximal state does exist. ActualIy, there are many such states which

are isomorphic for the purposes of the following analysis. One such maximal state

can be produced by allowing each subject in the initial state to create a child subject

for each pair in cc associated with it. These children are then recursively allowed to

create their own children as authorized by cc. The acyclic restriction on cc ensures

that this process terminates, provided loops of the type cc(a, a) are only allowed

a depth of one recursion. The intuition here is that the subjects in this creation

hierarchy c m act as the surrogates for any other subject of the same type that might

be created by the parent. They will hold any right that might have been granted to

another sibling in a different sequence of execution. Once the initial subjects have

been fully unfolded by creation of their child surrogates, allowed demand operations

can be executed and flows of the resulting system examined. The resulting flows

will be the only flows possible for the initial set of entities and distribution of tickets

under the specific typing scheme. Time complexity of this analysis is polynomial

in the number of subjects in the initial state. Depending on the complexiS of the

cc graph, a worst case could yield complexity exponential in the number of subject

types, TS. This is likely to be tractable in most cases, since cc is likely to be sparse.

[VC94] demonstrates a similar result for an extension to SPM which allows ticket

authorization to be qualified by an uninterpreted set of conditions characterized by

the system environment.

Note that this mode1 is monotonie. Entities c m be created but not destroyed and

subjects can gain tickets via the defined operations but they cannot be revoked. To

allow this restriction on models to be more applicable to practical systems, Sandhu

proposes the res torat ion prénciple. The restoration principle is applied in a safety

analysis based on a worst case scenario. As long as a ticket which has been revoked

can be restored or an entity which has been deleted c m be replaced by an equivalent

entity then such an operation will not effect the outcome of the analysis. Therefore,

any policy which dows revocation within the limits of the restoration principle can

be overlooked in safety anas i s .

The advantage of this model is the number of useful models/policies that c m

be represented in the decidable cases. This model has expressive power approaching

that of more general models such as HRU and also provides a tractable solution to

safety. The mode1 subsumes Take-Grant type models. The introduction of typhg

allows the specification of static security policy schemes within a mechanism flexible

enough to be broadly applicable. The SPM model can support policies which employ

amplification (used by some models in implementing abstract data types), copy ff ags,

n-person d e s , and some forms of separation of duties [San88].

E'urther progress in this work follows two distinct but related tracks. The fkst

direction reduces the work to a more basic model based on the findamental notion

of the transformation of access nghts as the basis of access control. A model called

Bansfonn, and its derivatives are proposed in [San89]. The second direction recap

tures the basic intuitive appeal of the HRU access matrix but with the advantages of

strong typing to restrict the evolution of a system and provide a tractable solution to

safety. This work introduces the Typed Access Matriz (TAM) model [San92].

[San891 proposes the principle of transformation of access rights as a unified way of

s p e c e n g various access-control mechanisms. The aim of the model is to provide

an abstraction of the basic behaviour of access-control mechanisms. The principle

of transformation is that the propagation of access rights for an object by a subject

should depend only on the subject's existing rights for the object. This contrasts

with more general models like HRU and SPM where the propagation of rights can

also depend on the rights associated with other subjects in the system or involved

in the transfer. Access control-mechanisms based on such a model lend themselves

to irnplementation using ACLs. Sandhu claims that a protection model which has

general applicability should be able to instantiate Transform. Transform has a simpler

construction than SPM but maintains the protection type innovations of that model.

In common with SPM, Tcansforrn has a set of rights, R, and disjoint sets of subject

types, TS, and object types, TO. There is also a function cc : TS +- 2T0, and
create d e s cr : TS x TO -t 2R which s p e c e the rights the creator obtains for

the object created. Note that in this model subjects cannot be created and can

o d y be introduced as part of the initial state. To provide for migration of access

rights, instead of the operations demand and copy, Transforrn defines transformation

functions itrans and grant. &ans is the intemd, or self, transformation function,

TS x TO x 2R + 2R. The function allows a subject that possesses certain access

rights for an object to obtain for itself additional access rights for that object. For

example, a subject that possesses mite access for an object may be able to transform

that ~ g h t into an append right for the object. grant is the externd transformation

function, TS x TS x 2'0 x 2R -t 2R. The function allows one subject that possesses

certain access rights for an object to g a n t to another subject some spec5c access

rights. For example, a subject with the o v n right for an object might gan t the r a d

right to another subject . A grant from a subject to itself may not be allowed for some

systems. In fact, the security policy in some cases depends on the fact that self grant

(as opposed to itrans) is not allowed.

The transformation of an access right can be either attenuating or amplifying. A

transformation is attenuating if it does not grant a right that the granting subject

does not itself possess. This agrees with the notion of attenuation discussed in the

context of SPM. A transformation that is not attenuating is amplifving. It is readily

apparent that itrans must be amplifying to be useful. Amplifying transformations

are very powerfid. In fact they may be too powerfuI and lead to cWiculties in s a f e ~

analysis [Min78]. In [San891 it is shown that Transform with only attenuating grants

is as powerfid as general Transform. It is also shown that ampli&ing &ans can

actually be implemented using only attenuating mechanisms as long as the required

rights exist somewhere in the system.

Tramforrn can be instantiated by HRU or SPM. In the case of HRU, transfonn

cannot be instantiated within those cases known to be decidable as it is necessaxy to

have multiple terms in the conditions of the model's commands. In the case of SPM,

'ïransform can be instantiated within the efficiently decidable acyclic attenuating

cases. The 'Iiansform model described so far is monotonie, in that access rights may

be added to the system but there is no provision for removing a right. There are,

however, some important security poiicies which require non-monotonici@.

2.2.10 Non-Monotonie Transform (NMT)

A policy might require non-monotonicity in that some rights for an object may be

transfer only. For example, normally there is only one owner for an object. If transfer

of ownership is to be allowed then the own rîght must be granted to the new orner

and deleted fiom the old owner. The restoration principle does not apply to such

revocations as the original owner cannot be regranted the own right as long as the

new owner also retains ownership. Some separation-of-roles-based policies are ako

inherently non-monotonic. These policies require that a subject is allowed to access

and modüy an object during some step in a transaction; however, once the subject

has played its roIe in the transaction, further access is denied.

The NMT model [SS92] defines the sets R, TS, and TO familiar from SPM and

Transfom. Although the original paper employs a procedural notation for the com-

mands used to change the protection state (similar to those of HRU) the mode1 can

be defined using the same set theoretic notation employed for SPM and Tramform

above. cc and cr are defined as for Transfom. itrans is also defined as before except

that, in addition to s p e c m g a set of new rights to be added to the domain of the

transfonning subject, a set of rights to be deleted h m that subject's domain is also

specified. Similarly with grant, in addition to the set of new rights specified for the

grantee subject, a set of rights is specified for deletion fkom the domain of the grantor

subject. In addition to these transformations, new commands are defined for deletion

of access rights. For each of the commands, the subject doing the revoking must

possess the own right for the object. The commands allow the owner of an object

to revoke from another subject any specified right or all rights to the object. Some

govenunent evaluation criteria [Dep85] s p e c e a requirement that a subject may be

denied any kind of access to an object. To facilitate this total denial of access require-

ment, there is also a version of the revoke command which will grant to any specified

subject the nul1 right, 1, for an object. This special right implies that the object is

totally inaccessible to the subject possessing that right.

The safety analysis for NMT in [SS92] shows that it can be subsumed by HRU

with no subject creation. Such models still d o w the itnlimited creation of objects and

Lipton and Snyder [LS78] have shown that such cases are decidable. The decision

procedure of [LS78] for the general case has exponential cornplexity; however, the

authors of [SS92] comment that the simplicity and strong typing of NMT may lead

to a more efficient safety analysis. A more recent paper [AS941 provides a better

safety analysis for one-representative cases of NMT. One-representative cases mean

that only a single subject of any type need be considered in the analysis. These cases,

in spite of the restrictions, have significant expressive power. The worst case safety

analysis is still exponential in the number of subject types and rights. These values

are constant; so, by itself this represents ai improvement. As well, the analysis of

actual mode1 instances is often much easier than the worst case.

~ â 1 1 ~ f o r m and NMT have grown out of the concept of strong typing introduced

by SPM by using the principle of transformation to provide a simpler, more abstract

and expressive model. In related work, the strong typing of SPM is integrated with

the intuitively straightforward matrix-based HRU model to produce a typed access

matrix.

2.2.11 Typed Access Matrix (TAM)

Sandhu's TAM model [San921 grows out of two observations. The first is that the

addition of strong typing should add strength to matrix-based protection models

(specificdy HRU) and provide a basis for decidable safety analysis. The second is

that the ability to perfonn multiple parent entity creation mabes HRU more expressive

than SPM. One of the reasons HRU is more general and expressive than SPM is its

capacity to have more than one parent entity (subject or object) responsible for the

creation of a new entity. For example command cr(Sl, Sz, 0 1 , Oz) might allow sub ject

SI to create a new object O2 such that subject S2 is the new object7s owner and Ol is a

file containkg the initial data to be contained by the new object . SI, S2, and O= are all

parents to the new object O*. Mdti-parent creation allows the speciücation of policies

not possible in single parent creation models. For example, the ORCON policy seems

to require multi-parent creation. The requirernent to provide multi-parent creation

led to the development of an Extended Schematic Protection Mode1 (ESPM) [ASgQ].

With multi-parent creation, the expressive power of ESPM is formally equivalent to

monotonic HRU, however, ESPM has the same positive safety results as SPM. TAM

is a matrix-based model incorporating strong ming but retaining the expressiveness

of ESPM.

The TAM modeling scheme combines these properties. TAM is constmcted using

a set of objects, OB J, a set of subjects, SUB, (SUB E OB J), and an access matrix.

This is the same as HRU. In addition, TAM also includes sets of types, TS and TO,

(TS Ç TO) as defined for SPM. A state in TAM, (SUB, OBJ, t , A M) , is the same

as HRU with the addition of a type function t : OBJ + TO, which defines the type

of every object (including subjects) in the system state. SAM commands are similar

in constmction to HRU commands with the added requirement that every forma1

parameter specifies the type of object that rnust be speciûed as an actual parameter.

Type mismatches between forma1 and actual parameters are not allowed. The prirn-

itive operations which form the body of the commands defined for a model instance

are the same as before: enter right, delete right, create subject, destroy subject, create

object, and destro y object. The create subject and create object operations now also

speci& the type of the entity to be created.

An interesting derivative of this modeling scheme is monotonic SAM (MTAM)

which is the same as TAM but with the delete, destroy subject, and destroy object

primitive operations omitted. MTAM has the properties of SPM7s strong typing

and the expressiveness of monotonic HRU. As well, strong Wing allows another

dimension of expressiveness that is not present in monotonic HRU. Monotonie HRU

can be thought of as a special case of MTAM that has oniy two types: subject

and object. Unfortunately, and not surprisingly, the safety of MTAM is no more

decidable than for monotonic HRU. The nature of the MTAM model, however, allows

the definition of useful restrictions that lead to decidable safew analysis with little

sacrifice of expressive power. MTAM can be restricted to a ternary version, where

all commands are limited to three parameters. As it turns out, ternary MTAM is

equivalent in expressive power to MTAM. Analysis of safety is tractable for ternaxy

MTAM provided creation of entities is acyclic. As with SPM, an MTAM scheme

is acyclic if its creation graph is acyclic. Safew analysis is again based on a worst

case and is very similar to the safety andysis of SPM. The commands defined for

an instance of the model can be placed in a canonical form. The canonical form

separates commands that contain subject/object creation operations into two new,

related commands, which have the same effect on protection state. The creation

operations are plôced into unconditional commands. The remaining, non-creating

commands may be conditional. There is an unfolding of the initial state by applying

the creation commands to the initial state entities where possible. This unfolded

state contains a surrogate for any entity that might be created in the system. All

non-creation commands are then performed until the state no longer changes. The

resulting state is a maximal state and a.ny system evolution from the initial state can

be mapped onto this maximal state. This safety analysis for acyclic ternary MTAM

is polynomial in time in the size of the initial access matrix. This surprising result

is due to the restrictions imposed by strong typing and the local authonzation of

commands resulting £rom the restriction to three command parameters. The limit

to three parameters means that the conditions authorizing a cornmand are limited

to examining o d y a s r n d portion of the access mat*. Ternary commands lead to

no loss in expressiveness as multi-parent creation is still possible, i.e. two parents

and a child object can be specsed. Unary and binary MTAM, although they yield a

tractable safety analysis, do not allow multi-parent creation and are, therefore, weaker

than ternary MTAM.

The safety analysis for acyclic MTAM without the ternazy restriction does not

have the same polynomial time result for complexity. Consider that, monoconditional

monotonic HRU with no creation h a NP-complete safety [HRU76, San921 and it can

be seen that acyclic MTAM can subsume monoconditional monotonic HRU with

no creation. Therefore, safety analysis for acyclic MTAM can be no better than NP-

complete. A sumrnary of these results indicates that safety analysis for acyclic MTAM

is of complexity no better than NP-complete. Safety analysis for acyclic ternary

MTAM is of polynomial complexity. Ternary MTAM is equivalent in expressive power

to MTAM. This is not a claim that NP = P because in these results nothing has

been asserted about what c m be expressed in the acyclic cases of MTAM and t e r n a .

MTAM- The two models d s e r in the instances that can be modeled using acyclic

creation.

2.2.12 Transformation Mode1 (TRM)

The next model to be examined, TRM, fuses the desirable qualities of the two pre-

vious directions of development, which started with SPM and resulted in NMT and

TAM. TRM generalizes NMT by adapting the principle of transformation to the more

expressive structure of TAM. TRM dso focuses on the capability to express policies

that require non-monotonie changes to system state.

The construction of the TRI model [SG94] is much like TAM. The main difference

is the application of the principle of transformation. Where TAM, like HRU and SPM,

can base a change in access rights for an object on the current rights of a number of

subjects or objects, TRM is restricted to exnmining only the rights for the object in

question. The new model, like NMT, is non-rnonotonic and does not allow subject

creation. So far T M , as described, is a special case of TAM. However, TRM also

allows for the testing for absence of rights, which is not dowed in the standard version

of TAM.

The TRM model defines the sets R, TS, and TO (TSîiTO = {)) as for SPM and

NMT. States and the access matrix are as they are for TAM. A finite set of comrnands

is specified for the creation and destruction of objects and the transformation of access

rights. A command has one of the following formats:

command create(Sl : SI, 0 : O)

create object O

enter own in (&,O)

end

or

command destroy(Sl : sl, O : O)

if cnun E (SI, O) then

destroy object O

end

or

command a(& : sl, S2 : ~ 2 , . . . , S k : Sk7 O : O)

if predicate then

Wl; Op2; - ; OPn

end.

SI, . . . , Sk are the formal parameters correspondhg to the subjects involved in

the transformation. O is the object for which access rights are to be transformed.

si, . . . , SF: and O are the types of the respective formd parameters which must match

the types of the actual parameters used in invoking the command. The predicate is

the condition of the command and is a propositional expression containhg t ems of

the form: r E (S, O) or r # (S, O), where S and O are formal parameters of the

command. Each opi is a primitive operation: enter r into (S, O), or delete r from

(S, O). The following example of a command might form part of a transaction-based

policy where a clerk can obtain the right to issue a cheque only if he does not have

the right to prepare or approve the cheque.

command issueCheque(S1 : clerk, 0 : payCheque)

if prepare (SI, O) A approve # (SI, O) then

enter issue into (Si, O)

end

Two versions of TRM are specified in [SG94] which restrict the number of mat*

ceils that can be examined by a command. Unary TRM (UTRM) and binary TRM

(BTRM) only allow the predicate of a command to test one or two cells respectively.

The predicate may still be composed of a number of terms checking for the presence

or absence of rights in the cell(s), but the number of cells checked is restricted. For

example, NMT is a restricted version of UTRM, as it checks only one cell and modifies,

at most, two. It can be shown that BTRM can express m y policy expressible in TRM.

In fact, ternary BTRM (BTRM restricted to comrnands with three parameters) is

strong enough to model any system which can be modeled in TRM. Although [SG94]

claims that BTRM d o w s the expression of some policies that camnot be conveniently

expressed by UTRM (and therefore NMT) a later paper [SS94b] proves BTRM and

UTRM equivalent in expressive power, and therefore to TRM.

TRM is a matrix-based model with no subject creation. TRM restricted to check

only for the presence of access rights can be subsumed by HRU with no subject

creation. As stated before such cases are decidable with a decision procedure for

the generd case having exponential complexity. We can also note that the model is

restricted by strong Wing, is trivially acyclic, and we only really need to consider the

UTRM cases. These factors may lead to a more efficient analysis. On the other hand,

the fact that the model is non-monotonic and has the added intricacy of checking

for the absence of access rights, as well as their presence, will likely add to the

complexity of safety analysiç. Presently, TRM has no efficient non-monotonie safety

results. Tractable safety analysis for useful non-monotonie systems has been a difficult

problem.

2.2.13 The Information Flow Problem

The motivation for looking at the issue of migration of access rights and safety was

that although processes/subjects in the system are executing on behalf of users we

trust, we don't necessarily trust the processes thernselves. Unless a program is known

to be trustworthy, it may harbour a Trojan horse. A Trojan horse acting with the

trusted user's privileges might propagate access rights in some insecure way. The

safety analysis will tell us if the mode1 instance we are examining will allow propa-

gation of rights inconsistent with the securïty policy. If a system is ' d e ' it may stiU

not be secure. For example, when confidentialiw is an issue, the ovemding concern is

the possible flow of information to a user who should not have it. If the system is to

protect the information in a file, it does not really matter that an unauthorized user

cannot obtain rights for the file if he can obtain the information in the file. Suppose

that a Trojan horse, instead of trying to grant access rights for a file to an unautho-

~ z e d user, copies the content of the file to arioiher file which can be accessed by the

unauthorized user. The access rights associated with the original file do not apply to

the new file. In fact, the unauthorized user may own the new file. The propagation

of information cannot adequately be controllled by a system where access decisions

are solely at the discretion of the user (DAC).

One approach to the information fiow problem is to apply a mandatory access

control (MAC) scheme. Under a MAC scheme some access decisions are built into

the system and cannot be ovemdden by the user even if i t is the user's desire to do

so. The strong typing schemes we have seen in the previous rnodels are an example

of MAC. The definition of protection types and the restrictions on entity creation

and access right propagation based on type are built into the system. The user

is constrained by the static policy decisions embodied in this typing scheme. The

use of MAC in system modehg predates the introduction of protection types, and

the formalization of the access matrix and the safety problem in [HRU76]. Initially,

MAC controls were applied a s an analogue to military/government security policy as

an attempt to overcome the weaknesses associated with DAC.

Systerns which support the military/government security policy are usually called

multi-level secure (MLS) systems. MLS systems are probably the best known MAC-

based systems. Objects in such systems have a label corresponding to their classifi-

cation permanently bound to them. Subjects have a clearance level associated with

them. The control of information flow is provided by reference monitor based access

control. The reference monitor of such systems has a MAC component which ensures

that a subject is never allowed access to any information for which he is not cleared.

Usually, the system will also have a DAC component which authorizes need-to-know

accesses based on the discretion of the owner of the information. The next few sub-

sections discuss modeling schemes designed to address the information flow problem.

Some aproaches apply formal modehg to MAC while others try to prove information

flow properties for a system. Information flow approaches have been applied in both

the milit ary/government sect or and in the commercial sector .

2.2.14 Bell and LaPadula Mode1 (BLP)

The first formalization of an MLS system was by Bell and LaPadula [BL73a, BL73b,

Be1741. The model explored the access-control properties required of a reference

monitor to enforce military/govemment security policy. The model, BLP, is dehed

below :

S a set of subjects

O a set of objects

C an ordered set of classifications

K a set of categories

L a set of security levels with a partial order relation 5,

where L c C x 2K

A a set of rights { g, g, TV, a), where

r - is read (read-only)

e - is execute (no read, no write)

w is write (read and write) -
a - is append (write-only)

An element of L is a security Ievel which is made up of a classi£ication component

and a category component, e.g. (Top Secret, NATO, ALPHA). The pairs of L form a

partial order given the access d e s for military/government security policy described

previously. In the models previously described, the set of access rights was defined

for a model instance, depending on the implementation being modeled. 1. e., rights

are specifically d e h e d in the context of an application being modeled. Here the set

of rights, A, is defined for the model itself and is not changed for model instances. In

this model system states are ordered triples £rom a set V = (B x M x F), where

B the set of possible sets of curent accesses 2Sx0xA, where b E B

defines a current set of accesses

M a set of access matrices, a matrix AM E M defines the current

set of access rights each subject holds for each object

F a set of security level vectors F C LS x L" x LS, where f E F is a

triple (fs, fo, fc) where,

fs subject security level function (clearance)

fo object security level function (classi.fication)

fc current securiw level function

R a set of possible requests to change the security state of the system

D a set of possible responses to a request indicating an access decision result

(i. e. y es, no, error (ambiguous request), ? (request not recognized))

T the set of positive integers, t E T is a time index for request, decision,

and state sequences:

X RT, request sequences, where xi E X

Y D ~ , decision sequences, where yi E Y

Z p, state sequences, where zi E Z

A tuple of a current access set à, b E B, defines an access some subject is making

to some object in the present state. Xn any particular state, a subject rarely has

current access for aU the objects which it may be authorized to access, only for those

objects specific to the subject's current processing. The s e c d t y level functions which

compose F map subjects and objects to security levels. fc designates a subject's

current secUn@ level, such that for a subject s, f&) 5 fs(s)- A subject may

currently not be accessing any objects at the upper limit of its security clearance

level. fc thus provides a security level based on a subject's current accesses. Elements

of R can, for example, be requests to get or to release current access to an object,

requests to give an access right to another subject (or rescind the nght), create

or destroy objects, etc. Requests can be used to attempt to mod* the security

state of the system. Depending on the current system state the request will yield a

response and possibly a modified system state. An action of the system (r, d, v2, ul)

describes a request r yielding a decision d and rnoviag the system fiom state vl to

vz. W C (R x D x V x V) is a relation defining the possible actions of a system.

Actions are the primitives for inductively defining an appearance of the system (a

sequence of actions) and a system (a set of possible system appemances). A system

is defined, C(R, D, W, zo) c X x Y x 2, where an appearance of the system (x, y, r) E

C (R , D, W, zo) iff (x,, yt, q, q-,) E W, for all t E T, and zo is a specified initial state.

What remains is to define the characteristics of the system which must be main-

tained to ensure security. The three aspects of security which are considered are: the

simple security property (ss-property), the *-property (star-property) , and the déscre-

t ionary security property (ds-property) . A state satisfies the ss-property if for every

current access, (S, O, s) E B, which allows a subject to read data in an object (i. e.

x = g or IV), fo (O) fs(S). This means that for a subject to access an object such

that it is able to read data from the object, then the clearance of the subject must

dominate the classification of the object.

The ssproperty may seem to be enough. On the surface, this is a direct im-

plementation of military/government security policy. This might be enough if all

processes run by a user are as tmstworthy as the user himself. As we have seen,

real processes may not be and could mite data to an object at a security level lower

than the user. It is to counter this threat that the *-property is introduced. A state

satisfies the *-property if for every current access, b = (S, O, 5), b E B, which alIows

a subject to write data into an object (ie. - = a or w), and for every current access

bf = (Sr, Of, g), b1 E B which allows a subject to read data in an object (Le. =

or w), fo (Of) 5 fo (O). This means that if a subject has simultaneous access to more

than one object, the classiiication of all of the objects it can read data fkom must be

dominated by the classification of al1 the objects it can mite to. Note that implies

both read and write. Therefore, all objects to which a subject has access must be

at the same level, and the current secuity level of the subject, fc(S), must be at the

level of those objects. Most subjects in a system are bound by the *-property. Those

that are not are called tmsted subjects. Usually such subjects rnust be guaranteed

tmstworthy (i.e. no errors, no Trojan horses, etc.) by some verification technique.

A state satisfies the ds-property if every current access, b E B, is permitted by

the current access matrix AM E M as we have seen for matrix-based models such as

HR,U.

A state v E V is a secure state iff v satisfies the ss-property, the *-property (trusted

subjects excepted), and the ds-property. A state sequence z E Z is a secure sequence

ifF a is secure for each t E T. An appearaace (x, y, z) E C (R , D, W, zo) is a secure

appearance iff z is a secure sequence and a system C(R, D, W, zo) is a secure system ifF

every appearance (x, y, z) E C(R, D, W, zo) is secure. A valuable property of secure

systems in the BLP mode1 is that they can be proved secure inductively. Presenmtion

of security from one state to the next guarantees total system security [BL75]. An

action of a system, (r, d, vi+l, vi) E W, transitions the system £rom one state to the

next . An action (r, d, (bi+i, Mi,i , fi+l), (bi, Mi, fi)) is security preseMng iff it adds no

new elements to bi that would violate the ss-property, the *-prope* (trusted subjects

excepted), or the ds-property, and removes any elements of bi that, following the state

change, would violate these properties [McL87]. If the system begins in a secure state

zo and al l actions, (r, d, vi+l, vi) E W, of the system are security presenring, then the

system C(R, D, W, zO) is secure. This is the Basic Security Theorem. Construction

of a secure system proceeds by defining operations, or rules, for changing the system

protection state. The rules are proven to be security preserving with respect to any

action they define. The system can then be proven secure inductively, given that it

starts in a secure state. Bell and LaPadula provide an interpretation of the model for

the Multics security kernel in [BL75].

BLP is probably the most widely known model for computer security. In 1985 the

US government published the Trusted Computer System Evaluation Criteria (TG

SEC) [Dep85], or Orange Book as it is commonly known, as a standard for the pro-

curernent of government information systems. Although the standard is supposed

to accommodate a variety of models, its structure enshnnes the concept of security

through ACEbased DAC, and security-label-based MAC. Security labels are data

classifications bound to and stored with the data elements/objects and are used as

a basis for reference rnonitor access-control decisions. Although the Orange Book

criteria for labelled MAC do not specify a modeling standard, it is heavily influenced

by BLP. Later European standards and the Canadian Trusted Computer Product

Evaluation Criteria [Corn881 are broader in their consideration of integrity and avail-

ability issues but their confidentiality speci6cations are similar to, and compatible

with, the TCSEC. These standards have significantly influenced the direction of se-

cure system development. There are currently a number of secure products which

have been evaluated against the critena; however, diminishing government/military

budgets are beginning to move the focus of developers toward more generic solutions

which combine government and commercial requirements [Ada95].

2.2.15 The Lattice Mode1

Denning, in [Den76], models security levels as a lattice structure consisting of a partial

order of securï@ levels and least upper and greatest lower bound operators. Most

security models based on securiw ciassifications use a similar lattice structure to define

the security level relation, including later descriptions of BLP-style MAC models. As

we have seen, BLP models a run-tirne mechanism which enforces flow restrictions on

the dissemination of information by use of a reference monitor. The lattice model

is also applicable to other run-time models and also to compile-time certification

mechnniçrns. The Iatter are useful in that they can provide assurance that a process

is trusted at the component level (i. e. the process as a system component is trusted to

behave in cornpliance with some security specification). Such processes are excluded

from run-time access-control checks on the assumption that they can be trusted not

to disseminate information in a manner inconsistent with the system security policy.

In a real system, such processes are of2en necessary. For example, a useful system

probably has mechanisms fur trusted downgrade of data, multi-level mail handling,

multi-level networking, etc. Trusted processes are required to handle data a t more

than one level and may be required to write to low-level objects without allowing the

inadvertent flow of high-level information into those objects.

2.2.16 Lattice-based Integrity

Biba in [Bib77] proposes a model for integrity in information systems which is essen-

tially the dual of the BLP model. The militaryjgovernment securiw policy, which

drives BLP, is based on the control of flow of information for confidentiality reasons.

Information is allowed to flow £rom lower secrecy levels to higher secrecy Levels. Biba's

model is based on the observation that information should not flow from low integrity

objects to high integrity objects. To allow information to do so would compromise

confidence in the high integrity object. A simple integrity property and integrity

*-property are defined which are duals to the respective BLP properties. The simple

integriw property allows a subject only to read objects at an integrity level which

dominates the subject. The integrity *-prope- only d o w s a subject to write to o b

jects which are dominated by the integrity level of each of the objects for which the

subject has read access. The integriw lattice has been proposed as a MAC paradigm

for commercial security on its own and also in conjunction with a BLP-style Iattice

for secrecy [Lip82]. Operating systems having MAC Iattices for both secrecy and

integrity have been produced commercially In [San93], it has been shown that such a

composite scheme c m be modeled as the product of lattices, (the BLP lattice and an

inversion of the Biba lattice) which is itself a lattice. [San931 also proposes a lattice

solution to Chinese Wall security policies.

2.2.17 Information Flow Analysis

The lattice-based security models we have just been examining are useful in providing

access control for the objects identified by the model. A significant weakness of these

systems is that it is difficult to have a model granularity detailed enough to i d e n t e

(and thereby control) all objects in the system and still provide efficient analysis.

Processes are not restricted to using the legitimate communication channels provided

for interprocess communication (e-g. files, messages, etc.). Legitimate channels can be

identitied as objects, and usually are controlled in accordance with the system securify

policy. In an actual implemented system, many observations a process may make do

not lend themselves to such control. The inclusion of every implementation specific

entity in the system which can hold a bit of data wiU also unreasonably complicate

the model. Any action by a process that is observable by another process is a possible

communication channel. The flow of information by other than a normal channel is by

a covert channel. A cove7-t storage channel is any communication resulting fiom the

abiliQ of one process to observe another process modifying the state of the system-

The information observed may be object attributes, object existence, or the state of

shared resources. The observation may be direct, e.g. the appearance of a new file

name in a directory (whether or not the observer has read access to the new file or

not). The observation may also be indirect. For example, the fact that the use of a

peripheral is denied because it is already in use by another process, provides a bit of

information about t hat process. A covert timing channel results £rom communication

by means of observing the effect another process may have on system performance,

measured against some timing base such as a real-time clock [Gas88]. A Trojan horse

can modulate a covert channel to leak information out of the host process.

A means to identi& possible covert channels is information-flow analysis based

on information flow models. Information flow models also stand by themselves as

modeling techniques for secure systems in general, and some believe that the correct

explication of security should be formulated in terms of information flow [McLSO] . To

this end, information flow models can be used to provide system specifications. Some

models provide methods for the refinement of specifications to provide system design

and Mplementation. Information fiow analysis and models are based on detailed

formal specification, rather than on an abstract state machine [Gas88]. This is because

the variables that participate in covert channels are not necessarily represented in an

abstract model. The basic form of such models is of state or trace-based specifications

which specify what a subject can observe of the system. For example, a model might

spec* that information cannot %ow to one user fiom a second user if the purging

of the second user's input from the system has no effect on the outputs the first can

observe of the system, Le. the second user does not interfere with the fbt. Another

mode1 might speci& that no observations one user can make of the system reflect the

actions of a second user of the system, and thus represent a fiow of information from

that user to the first, i. e. the first user is unable to deduce anything about the inputs

of the second user. In theory, as a system evolves to implementation, proof that

the specifications still hold for each new more detailed level of abstraction provides

assurance that the security policy is behg met.

A profde of research in information flow models for covert channel analysis and sys-

tem specification includes the following work [Den76, FLR77, Den82, GM82, GM84,

McC87, McC88, Jac88, McL90, GMP92, BC92, BCC94, BY95, Ros951. As this dis-

sertation is primarily concerned with access control, these models will not be explored

in detail here.

2.2.18 Role-based Security (RBAC)

Role-based security models have currently become the object of more interest as the

focus of security research moves more fkom government/milifary environments to the

commercial environment. It has been recognized above that DAC-based securiw may

be adequate for cooperative environments but is too weak in environments subject to

malicious attack. Rigid classification-label based MAC environments as d e h e d by

Orange Book criteria and implemented in a number of operational systems are based

on government/military policy for confidentiali~ of information. These rnechanisms

do not lend themselves well to commercial security requirements [MS88, SS94aI. Clark

and Wilson in [CW87], Moffet and Sloman in [MS88], and Smith in [Srni931 have as-

serted that commercial security concerns should mirror an organization7s internal

control systems (as Orange Book criteria mirror internal government/military con-

fidentiality controls) . Commercial control systems are usually based on hierarchicd

delegation of authority and separation of duty. The primaxy concern of commercial

systems is usually to minimize fraud and errors. The policy must ensure that no user

can create or morlifv data in such a way that assets or accounting records can be lost

or cormpted [CW87]. These are primarily integrity issues.

Role-based access controls (RBAC) address commercial security requirements by

focusing on how users interact with data. A role is a semantic constmct around which

access control policy is formulated [San98]. In an RBAC policy, users are assigned

to roles and permissions/rights are assigned to roles. Role authorizations are granted

to users, or groups of users, based on what activities they are allowed to perform on

system data. This M e r s from government/military DAC and MAC controls which

allow, or disallow, access without regard to the use that the subject is going to make

of the data. Usually under RBAC a user is authorized to take on different roles

at different times during his interaction with the system (a discretionary property).

While in a specific role, the user is restricted to the data accesses and activities

authorized for that role. A role should provide just enough permission for the user

to perform the tasks associated with the d e . This is the principle of Zemt privilege

(a mandatory policy). This differs from classic DAC 'user groups'. Such groups are

primarily sets of users. A system usually allows discretionary assignment of rights to

a group. Roles explicitly define a set of rights availabie to the role. Therefore the type

of data available to a role is fùred in the policy scheme by the system administrator

and is non-discretionary. As well, in the type of rights allocated by RBAC there is

usually a greater degree of data abstraction. The rights dehed for a system using

RBAC imply more complex interfaces than the standard read, write, and execute of

DAC user groups. The authorizations typically allow a subject to perfom a specific

action on a specific type of data items [SCFY94]. Thus, a clerk role may be authorized

to post an entry to a bank account while a secretarg role rnay be authorized to edit a

letter.

Clark and Wilson in [CWB?] define a model which identifies certain objects as

Constrained Data Items (CDIs) . Access to these objects is prov~ded solely through

Transformation Procedures (TPs). A TP is a kind of well-formed transaction which

will move a CD1 fiom one valid state to another. TPs are defined to operate on a

specific set of CD1 types. Users are restricted to a certain set of TPs. The definition

of, and access to, TPs is defined by the security administrator and k a static scheme.

Although the paper does not explicitly define its model in terms of abstract data

types and role-based access control, these concepts seem implicitly to be a natural

context. The various typed access-control models we have examined provide support

for such a model.

There have also been authors who have proposed models which support RBAC

based on Orange-Book-style DAC and MAC (e.g. [Lee88]). These models tend to be

awkward and [SCFY94] notes that awkward models can lead to awkward implemen-

tations and a mode1 better suited to the implementation of RBAC policies can lead

to easier implementation.

There are a number of RBAC models proposed to handle disparate user environ-

ments and policies. Many of these models can be unified under the RBAC96 family

of access-control models proposed by [San98]. A specific role-based policy can then

be matched to RBAC mechanisms defined by one of the models in the family. Four

models are deked in RBAC96: RBACo, RBAC1, RBAC*, and RBAC3.

RBACo is the base model and includes a minimal set of features to allow a system

to support RBAC. Included in these features is support for the concept of sessions. A

user may have multiple sessions running simultaneously (e.g. in different windows).

Each session may be assigned a different combination of the user's authorized roles.

RBACl and RBAC:, add to the features of FU3ACo. RBACl adds support for

hierarchical roles. The intuition behind role hierarchies is that roles forrn a partid

order- Roles higher up the hierarchy inherit all the permissions for authorized roles

below them in the hierarchy.

-AC2 adds constrauits, which impose restrictions on acceptable configurations of

the RBAC models. The features introduced in FU3ACl and RBACz are independent,

Le. the features can be added orthogonally to each other. RBAC3 consolidates the

features of RBACl and RBAC2. The RBACl model has the foIIowing components:

U, R, P, and S sets of users, roles, permissions and sessions respectively

P A C P x R a many-to-many permission to role assignrnent relation

U A c U x R a many-to-mmy usêr to role assignment relation

user : S + U a function mapping each session si to the single

user U S ~ ~ (S ~) (constant for the session's lifetime)

R H C R x R is a partial order on R called the role hierarchy

or role dominance relation, also written as > in i d k

notation

roles : S + 2R a function mapping each session si to a set of roles

roles(si) {rl (3rf 2 r) [(user(y), 7') E UA])

(which can change with t h e) and session si has the

permissions U r ~ r o l e s (s ~) { p 1 (gr" 5 r) [(PY r") E PA])

Constraints are added to the basic model in RBAC2 and RBAC3 to enforce higher

level organizational policy. For example two roles may be declared as being mutually

disjoint, ie. the same user can not be assigned both roles. This particular constraint

would define a separation of duties. Constraints can apply to all aspects of the M A C

model.

2.2.19 Task-based Security (TBAC)

Recent work [TS94, TS97] has proposed a shift in the focus of security models toward

the representation of authorizations as a higher level of abstraction for the security

requirements of an application or business enterprise. As it has been presented so far,

the usuaI approach to access-control modeling is subject-object based. The models

defined which subjects had access to which objects, and what kind of access they

had. For the most part, the intent of the access by the subject, or in what context

the access is being made, has not been considered as part of the model. Once access

is available the subject seems fÎee to use that access for any purpose. Under these

kinds of policy models it is difEicult to model legitimate-use security properties.

Role-based access control provides an initial step toward the ability to capture

legitimate-use policies. RBAC by its nature encourages the definition of fine-grained

rights/permissions. This support for data abstraction lends itself to ta&-oriented

permissions such as the post and edit rights examples in the RBAC subsection, Sec-

tion 2.2.18. RBAC also supports least privilege through the use of sessions. By

controlling which roles are active for the user sessions the user is provided with just

those permissions required to accomplish the work needing to be done.

But the specification mechanisms available in RBAC are not able to model the

order in which the permissions are to be used or how many times they should be

permitted to be used. There is still the notion that once a permission becomes

available to a subject, the subject can use that permission for any purpose, and

as often as it desires. To restrict the use of a permission to legitimate purposes

it is desirable to be able to spe& when in the execution of some business task a

permission should become available, what that permission can be used for, and how

many times it can be used. i.e. provide a context for the legitimate use of that

permission. The permissions are provided on a just-in-time basis as required by the

task at hand.

The work on Task-based Authorization (TBA) and Task-based Authorization

Control (TBAC) presented in [TS94, TS97] proposes a fiamework for active security

models and enforcement from the perspective of activities and tasks. Permissions are

constantly monitored, and activated and deactivated in accordance with emerging

context associated with the progress of the tasks being performed.

As noted in the introduction to the dissertation, intemal controls of an enter-

prise, and therefore the information system supporting that enterprise, are normally

designed to ensure that the tasks carried out in the enterprise preserve a certain

standard of integrity. In the classic paper-based systems an authorization is required

to proceed with a task. An authorization is often captured as a signature on an

archival document and represents permission to proceed with the task as well as the

acceptance of some liability by the authorizer for the execution of the task. The

task may also involve the requirement for separate authorizations for its subtasks.

An authorkation results in the enabling of one or more activities and related per-

missions. Authorization management is central to TBAC models. The fundamental

abstraction is an authorkation-step. An authorization-step represents a primitive au-

thorization processing step and is the analog of a single act of granting a signature

in a paper-based system.

Part of the motivation for this work is to provide modeling techniques for more

abstract representations of security requirements. These higher-level models are a p

propriate for capturing an organization's policy requirements that pertain tu security,

and the interfaces between the organization and the computer system.

In classical subject-object access control models the information associated with

a permission can be thought of as an element of a cross product, P C S x O x A.

S is the set of subjects, O is the set of objects, and A is the set of actions or access

rights. Under TBAC, access control also involves task-based contextual information.

Two more sets are introduced. AS is the set of authorization-steps. U is a set of

usage and validiw counts. The members of U control usage, validity, and expiration

characteristics that may be tracked at mtime. e.g. how many times a permission

is used. A permission under TBAC now becomes an element of P C S x O x A x

U x AS. For example, a permission specifies a certain kind of access to a specific

object by a specific subject, as was the case for matrix-based schemes (the A, 0, and

S components) . The permission also specifies that an access can only be made in the

context of a specific authorization-step and perhaps that the access can o d y be made

n times (the AS and U components).

Permissions are associated with exactly one instance of an authorization-step.

An instance of an authorization-step is associated with exactly one instance of a

task. Each authorization-step maintains a protection state that is the set of permis-

sions currently valid for the authorization-step. The members of the set will change

with time as the authorization-step is processed. For each kind of authorization-step

there is defined a trwtee-set. The trustee-set represents the individuals/entities that

are permitted to invoke and g a n t an authorization-step. For every instance of an

authorization-step there is a single trustee from this set that invokes and gants the

authorization-step.

A family of models for TBAC is proposed which is similar in spirit to the family

of models proposed by RBAC96. Four models are defined: TBACo, TBAC1, TBAC2,

and TBAC3. TBACo is the base model and includes a minimal set of features to allow

a system to support TBAC. The TBACl model adds support for composite autho-

nzations. The TBACz model adds support for constraints which impose restrictions

on acceptable configurations of the TBAC models. As with RBAC96 the features

introduced in SBACi and TBAC2 are independent, i.e. the features can be added

orthogonally to each other. TBAC3 consolidates the features of TBACl and TBAC2.

The TBACo mode1 defines the components that make up every authorization-

step, the life-cycle of an authorization-step, and dependencies that are used to model

authorization policies.

Every aut horization-step has to s p e c e the following attribut es:

Step-name This is the name of the authorization-step.

Processing-state The current processing state indicates how far the

authorization-step has progressed in its Me-cycle

(discussed below) .

Protection-state The protection-state defkes all potential active

permissions that can be checked-in by the authorization-

step. The current value of the protection-state, at any

given t h e , gives a snapshot of the active permissions

at the tirne. Associated with every permission is a

validity-and-usage specification. The validity-and-usage

specification speci6es the validity and usage aspects

of the permissions associated with an authorization-step.

It will thus specify how the usage of the permissions

will relate to the authorkation remaining valid (or

b ecoming invalid).

This contains relevant information about the set of

trustees that can potentiaJly grant/invoke the

authorization-step, such as their user identities and

roles.

Executor-trustee This records the member of the trustee-set that

eventually grants the authorization-step.

Task-handle This stores relevant information such as the task and

the event identifiers of the task from which the

abort-f,
term-f

reinstate 0)
revo ke

FIGURE 2.1. Basic processing states for an authorization-step

authorization-step is invoked.

An authorization is not static under TBAC. Each authorization-step has a life-

cycle associated with it. A n authorization step moves through a series of processing

states during its lifetime. Figure 2.1 illustrates a simplifed set of processing states.

An authorization step is dormant (or non-existent) when it has not been invoked (re-

quested) by any task. Once invoked an authorization-step begins to be processed by

moving to the invoked state. If invocation completes successfully the authorization-

step moves to the valid state. If the invocation fails (e.g. some criteria for autho-

rization are not satisfied) the authorization-step moves to the invalid state. While in

the valid state the authorization-step and its permissions may be used as specified

by the validity-and-usage specifications in the protection-state. At some point the

authorkation-step will reach the end of its lifetime and enter the Uzvalid state. It is

also permitted that a valid authorization-step be put on hold temporarily. While on

hold the permissions associated wit h the authorization-step are inactive and cannot

be used to provide access to an object.

The authorkation-steps do not stand alone in a system specification. They are

related to and depend on each other in order to fulfill higher level security policy

requirements. There are exïstential, temporal and concurrency dependencies defined

for the model. In the following definitions let A l and A2 be authorization-steps

and statel and state2 be some processing state for these two authorization-steps

respe~t ive l~

Alstote' + A2State2 If A l transitions into statel, then A2 must transition

into state2.
Aistatel < ~2state2 If both A l and A2 transition into states statel and

state2 respectively, then Al's transition must occur

before A2's
AlState'# AYtate2 A l cannot be in statel concurrently when A2 is in

state2.
AIState'l 1 1 A2state2 A l must concurrently be in statel when A2 is in state2.

TBACl adds support for composite authom'xations. A composite authorization

consists of a set of component aut horization-steps. The component aut horization-

steps are related to each other via dependencies. Component aut horization-steps are

visible only within the scope of their containing authorization-step.

TBAC2 includes static and dynamic constraints. Static constraints are speci-

fied for a kind of authorization-step and ad instances of that kind of authorization-

step must meet the constraint. Dynamic constraints apply to an instance of an

authorization-step and can be evaluated only as the authorization-step is processed.

2.3 Review of Ob ject-oriented Analysis and Design Issues

2.3.1 Information Captured by Current 00 Methods

The object-oriented paradigm is based on a logical view of a system as a set of

cooperating objects (a more general use of the term object than the subject-object

relationship of the previous section). The objects in the system are vehicles for

information hiding [Par721 and each encapsulates some information. That information

can be a data structure, device, algorithm, etc. Access to the object is provided only

via a well-defined interface. Usually the interface is defbed as a set of methods that

can be used to manipulate the object. The interface methods can be thought of

as operations that can be invoked on the object or alternatively as messages that

an object can receive. The messages may carry information to the receiving object

via message parameters and can provide information back to the sending object by

way of return parameters. Messages can be used to alter the state of an object in

some weU-defined way, or to provide some information about the state of an object.

Objects can only interact via message passing and an object only responds to the

messages defined for its interface. The net result is that access to an object's secret

is controlled. In object-oriented analysis and design the description of a problem

and its solution are entirely in terms of objects passing messages. Object-oriented

models specify the Ends of objects which exist in a system, the kinds of messages

which make up the object interfaces, and how objects can be combined to cooperate

in message exchange scenarios that solve some portion of the larger problem. The

problem specification can be captured in terms of these scenarios.

Current object-oriented analysis (OOA) and design (OOD) methods such as Booch

[Boo94], OMT [R+91], and UML [RJB98] provide notations and procedures for spec-

ifying object-oriented models. There are also automated tools associated with most

00A/OOD methods to facilitate mode1 building. The models produced usually have

a view that describes the types or kinds of objects that may be instantiated in the sys-

tem (i .e . classes in a class diagram [RJB98]). This view alço describes how the types

of objects are related to each other, e-g. containment, sub-typing, interface use. Other

views in the model descnbe how objects interact (ie. what messages are exchanged

in a message sequence diagram or an object interaction diagram [RJB98]) in a given

scenario. The information being captured by these rnodeling methods is sirnilar to

the components of typed access-control models. If the specification and modeling of

the security aspects of a system are to become routine and efficient then they must

complement and extend contemporary practices in system andysis and design. It

seems likely that much of the data needed to model security (concerning the classes

of objects, their components, the relationships between interacting objects, and the

Ends of messages they can exchange) is alreildy routinely captured by contemporary

00A/OOD methods.

There is usually a limited number of different kinds of scenarios in an object-

oriented model and each kind of scenario has a limited number of ways in which

it can be combined with other scenarios. This is because human beings design the

various scenarios and the ways the scenarios are to be combined. They must be able

to cope with the complexity of system design. Object-oriented decomposition and

object interaction scenarios are organized with the purpose of restricting the com-

plexity of system design. Essentially, it is the scenario-to-scenario interaction which

specifies, and Iimits, the behaviour of the system. This can be the basis for defin-

ing a security policy. Scenario-scenario relationships are not always captured well

in current object-oriented modeling methods and therefore it is diflicult to tell with

assurance what object will have access to any other object in the system as execu-

tion unfolds. The scenario-based access-control model proposed extends the current

object-oriented models to bring more rigor to the relationship between scenarios. The

limited ways in which objects interact in these scenarios are used later to form the

basis of a technique for safety analysis.

A strength of 00 modeling is that it allows specifkatibn of the system in terms of

the entities and interactions of the problem domain [B o o ~ ~] . This makes 00 model-

ing in general, and the scenario-based access-control modeling technique specifically, a

suitable tool for representing problem domain tasks. Problem domain tasks are spec-

ified in terms of scenarios. Since the scenaxios drive the secUri@ poficy, the policy is

task-based.

2.3.2 Message Sequence Charts (MSCs)

Object-onented analysis and design methods have borrowed the notation of message

sequence charts (MSCs) fiom the telecommunications protocol design community.

Message sequence charts are used, often in combination with the Specification De-

scription Language (SDL) , in the specification of system protocol requirements, and

for testing [Mau96]. The International Teleco~~ll~lunications Union (ITU) has stan-

dardized both SDL and MSCs [Int88, ht941. This subsection provides a brief intro-

duction to message sequence charts. MSCs are related to the scenarios used in SBAC

modeling so some background is presented and some of the issues associated with

MSCs are addressed here.

MSCs have both a textual and graphical representations. The graphical represen-

tation is most commonly used. A system is represented by a set of communicating

processes. Pro cesses are represented by vertical lines. Signds sent between processes

are represented by arrows connecting the vertical process lines. Each process's verti-

cal line is a tirne-line. I.e., send and receive events for signals are ordered temporally

from the top of the line to the bottom. Communication can be synchronous or asyn-

chronous as defined for the system. Figure 2.2 presents an example of a simple MSC.

The fkst process sends a signal of type a to the second process, which after receiving

FIGURE 2.2. A Simple MSC

Process 1 Process 2 Process 3
I I I I I I

it sends a signal of type b to the third process, a signal of type c is then sent back to

the &st process, and finally a signal of type d is sent to the third process.

Multiple MSCs may be used to specify a system. In [LL94] MSCs are 'joined' by

the use of conditions. A condition is represented as an elongated symbol spanning

the process axes. The conditions have labels and are constrained to be placed as the

first event or last event on the process the-lines. The system is defined to behave

as though MSCs with identicdy-labeled conditions are joined at the condition. A

MSC may be joined to itself at these conditions to create a non-terminating loop.

Conditions rnay also be used to specify non-determined behaviour, such as conditional

branching or conditional loops. This occurs if a terminal condition of one MSC shares

a label with the initial condition of two or more MSCs. The tirne-Lines for the processes

can branch at that point taking one of the possible paths represented by the joined

MSCs.

The meanings of MSCs have been formalized by Mauw [Mau961 and by Ladkin

and Leue [LL94, LL95bl. The definition of the semantics of MSCs was addressed after

the onginal publication of the standards for MSCs [Tnt88, Int941. The original MSC

a
b

C
4

b
F

d
b

I i 1 I I i

specifkation included only a semi-formal description of the meaning of the charts.

The syntactic features of MSCs raise some issues concerning the interpretation of the

charts. [LL95a] presents some specific issues with respect to the semantics of MSCs

which have some significance in the context of scenario-based access-control modeling

since there are strong parallels between the two. The issues are introduced here and

will be revisited in the discussion presented in Chapter 6 .

One of the concerns is whether systems represented by MSCs have some finite

set of global states with respect to message passing behaviour. Even given a h i t e

number of control states for the participating processes, there may be an unbounded

number of asynchronous messages 'in the system' (i e . sent but not received). This

could be an argument for a non-finite set of global states. It is demonstrated for

MSCs that the set of global states is in fact Gnite [LL95a]. Transitions between

states are effected by atomic message-passing actions, which can be used to define a

state transition function. This is a usehl property for analysis of the systems being

specified. This issue needs to be addressed in the context of scenario-based access

control as an unbounded number of current permissions for object interactions is

possible.

For general MSCs the use of conditions to join MSCs introduces non-determinism.

At a condition, individual processes must continue with behaviour as specified by one

of the joined MSCs. In some cases this requires a choice of behaviours by a process

that does not depend solely on its own process state. Such non-local choices require

either un-bounded history variables to keep track of control choices (non-finite-state

control) or MSCs which lead to non-local choices must be considered as ill-fomed.

SBAC proposes a type of joining mechanism on message sequences. The issue of

non-local choices will be considered in the context of this thesis.

In the brief description of MSCs above there was no restriction specified that

would preclude the crossing of message arrows. Crossings can lead to messages being

received in a dîfïerent order than that in which they were sent (an 'overtaking' of one

message by another). This is allowed in the MSC specification. In some cases it may

not be possible to detect the possible occurrence of such an overtaking by using the

process specifications alone. If the possibility of a crossing is not an aspect of the

process spec%cations then it must be a property of the system environment. Le., a

property of the environment must account for the crossover but is unspecified in the

system specification. Environmental properties are not usually explicit in the system

specifications. The existence of such undefined system properties is not desirable in

a specification language.

The last issue addressed in [LL95a] relates to the completeness of the information

available in MSCs to specify liveness properties. The authors argue that liveness

properties are dïfEcult to specify with MSCs alone and such properties are better

specified in many cases by temporal logic f o d a e provided in addition to the MSCs.

2-3.3 Document Release Example

This sub-section provides an example using a set of scenarios to illustrate ways in

which objects can interact to provide the solution to a problem. The example is a

non-monotonic security policy (cf. Sandhu, [SG94]). A Company scientist prepares a

paper for publication. Before the scientist is allowed to publish his work he must clear

it with a patent oEcer. The patent officer c m authorize the paper for publication or

she can return it to the scientist for revision. The scientist is initially able to m o d e

the content of the paper but loses that right while the paper is under review. The

scientist is also not able to alter the content of a paper authorized for publication by

the patent officer. Figures 2.3 to 2.10 provide a simple set of diagrams that speciSl

the object interactions that might be dowed in such a system. The diagrams are

presented as a complete set here so that they can be understood in context with each

The author edits oie report and
then makes a decision on whether
tu continue editing or foiward the ,
report for review.

FIGURE 2.3. Scenario Type Sinitail

other. The diagrams are used in examples later in this dissertation and a deeper

understanding of their meaning will corne as a result of referring to them in the

context of those examples.

The diagrams are UML [RJB98] message sequence diagrarns. The diagrams have

been produced using Rational Rose [Rat98], a popular industh1 00A/OOD tool.

The tool captures basic information about a model, e.g. object m e s , object identi-

fiers, message types, message parameter types, and the ordering of messages.

Message sequence diagrams (MSDs) are a standard notation for specî&ing object

interactions in a system. Message sequence diagrams are a restricted form of message

sequence chart (Section 2.3.2). Information fiom these diagrams can be combined

with additional information to describe how scenarios combine and interact.

The vertical lines with boxes at the top represent objects. The boxes are labelled

with an object identifier and an object type. The dashed line extending below the

box is the life-line for the object. The arrows between object life-lines are object in-

1 1 Scenario ordering: <SE- i' 1 : Pread())I, Parameters:
- authorOscienüst

1

I doc:Odocurnent
-r 2: Pwriteo

The author reads the doc and then
l I T writes to lhe doc.

FIGUFLE 2.4. Scenario Type SdocEdit

i
1 : Sinitial(Oscientist, Odocument)

kGLcD I I
2: SdocFo rward(0scientist, Od ocme) 4

I

Scenario Ordering: <OR> 11
Parameters:

author:Oçcienüst
reportodocune nt

The author has tfie choiœ of
contiming to edit the rieport or to
forward aie report for review by a
patent officer.

FIGURE 2.5. Scenario Type SforwardDecision

1

Scenario Ordering: <SE- 4
Parameters: i

author:Oçcienüçt j
reportodocument
revitwer =author.mwe~erOpa@~cer

The author fornards aie report to the reviewer, a patent !
officer, The teviewer reviews the docunent

FIGURE 2.6. Scenario Type SdocForward

I
2: SreleaçeDecision(Opaten~cer, Odocument)

n
I Scemrio Ordering: cSECb

Parameters:
rewewecOpatenK)nicer
repoROdocument

The reviewer reads the document
and then makes a decision on
whether or not to rekase aie
document for pliblication.

FIGURE 2.7. Scenario Type SdocReview

I
1 : SdocReview(Opatentûfficer, Odocument) - -- 7

I
4 < z

cscenarioz I
i

2: SdocRelease(OpatentOfficer, Odocument) 1
'1 : <

cscenario>
I
f

3: SdocRevis ion(Opa~ce r, Odocument)
7 I

Scenario Ordering: COR>
Paramebers:

reviewer:OpatientOnice r
rep0rt:Odocument

The reviewer has the choice of
contintang to review the report, releasing
the report for p&lication or mmng ttie
report b the author for review.

FIGURE 2.8. Scenario Type SreleaseDecision

teractions (messages). As with MSCs the He-lines are tirne-lines, so messages further

down a Me-line occur after messages further up the life-line.

Each message sequence diagram by itself describes a particular type of scenario

consisting of one or more messages. The messages may only occur between objects

of the types specified by that scenario type. The messages may only occur in an

order consistent with the order specified by the scenario type. For example, scenario

SdocEdit in Figure 2.4 specifies that an author of a document may, in sequence, read

from and then write to some document.

The MSC standard dows rnodular design via sub-MSCs and decomposed process

instances [Mau96]. This decomposition is process-based, and does not move across

well to UML-style message sequence diagrams since the diagram is object-based and

not process based. Many objects in an MSD can (and often do) belong to the same

process. Modular design is denoted in the context of SBAC modeling by using what

] reviewer : 1 1 rdAuth : j re-r: 1 j m~ort: 1

! Scenario Oid ering: CS€- I

! P arametie IS:
1 revieweilOpatentûfiicer
l reportOdocument
j reportAuthor = repoRauthor.Oscientiçt

relAuth = creabe(OreleaseAuth, {(report, r8lDoc))):OreleaseAuth

i &The reviewer cieaîes a new reiease auttionao'on object for the report The reviewer i
: the rdease authorhticm to ttie reps aribhor. The author can then pass a
/ message to the mlease authotkatïon to eff&tthe publication of the report The release j auihaization wil mad the report during the process of publicafion.
I

FIGURE 2 -9. Scenario Type SdocRelease

--
: I ~ e n a " o > I 1

Scenario Odering: <se-
Paramete is:

reviewe~OpatenKMic8r
report:Odocunent
author = reportauaiocOscientist

The revierrv reû,uns the report to its authtx for
revision.

FIGURE 2.10. Scenaxio Type SdocRevision

are in effect sub-scenarios (or child scenarios), which in MSCs (if allowed) would be

interpreted as decomposed message events. This is the intent of the messages marked

here with the <scenario> tag. In these cases the tag indicates the creation of another

scenario. For example the scenario Sinitial in Figure 2.3 indicates that a SdocEdit

scenario is created followed by the creation of an SfomuardDecission scenario. This

notation for capturing the composition of message sequence diagrams is not part of

UML or of ITU message sequence charts. It is used to support the scenario compo-

sition mechanism proposed in this dissertation for scenario-based access control. In

Rational Rose, the <scenario> tags are normally captured in a data structure asso-

ciated with the message documentation, but in this example they are presented on

the message sequence diagrams to make them visible to the reader. Other features of

the diagrams WU becorne apparent later in the dissertation.

The semantics of MSDs c m be interpreted using the proposed scenario-based

accesscontrol modeling scheme. One can then use instances of the modeling scheme

to provide a safety analysis for the system being speciiied. This ties security modeling

to contemporaq software engineering techniques. This dissertation does not provide a

formal semantics for MSDs based on SBAC modeling (although this is likely possible

and worthwhile). It focuses on the presentation of SBAC modeling and uses the

vehicle of message sequence diagrarns as a tool for intuitive understanding of SBAC

models. That is, MSDs are intuitively straigbtforwaxd and useful for thinking about

and describing object scenarios, which are then captured by the SBAC models. As

well, the analysis tool developed as part of this dissertation uses the support for

message sequence diagrams built into the Rational Rose modeling tool to help with

capture of SBAC models.

Chapter 3

3.1 Introduction

With the shift in emphasis in research on access-control modeling away fkom security

requirements for confident ia3ity in govemment/miüt ary sys tems t owards integrity-

based requirements in commercial systems, there is an increasing requirement to

model legitimate use in secure systems. This c m been seen in the motivation for

RBAC and TBAC presented in Chapter 2. The development of the scenario-based

access-control scheme presented here is driven by two main goals. The first is to

provide a scheme that will provide efficient safety andysis for systems modeling le-

gitirnate use policies. This implies efficient analysis of non-mono tonic systems . This

is because legitimate use policies that employ some kind of just-in-time availabil-

ity of access-control permissions are inherently non-monotonie. The second goal is

to provide a modeling scheme that complements contemporary software engineering

modeling techniques. The objective is to leverage the information that is already

being captured by such techniques and to provide security modeling as an extension

to existing software engineering rnethods. This eliminates duplication of effort in

security modeling and may serve to encourage the wider use of security modeling.

Significant success in providing safety andysis for secunty models for monotonic

systems has been achieved by exploithg the concept of maximal state. As c m be seen

in many of the modeling schemes presented in Chapter 2, the strategy for analysis is

to d o w system state to expand (permissions to be added) until no further expansion

is possible. The resulting maximal state can then be inspected to provide the safew

analysis. The analysis scheme must show that expansion of the permission state is

controlled, to ensure that a maximal state always exists and is computable.

One of the chief difEculties in modeling non-monotonie systems is that the ex-

istence of a maximal state does not seem likely. In fact, the concept of maximal

state seems counter-intuitive in such systems. If access permissions are dowed to

be created and revoked then it seems that many rnutually exclusive evoiutions of

execution for the system are possible. For example many Merent users may come to

be the owner of an object, but none of them may be owners of it simultaneously. As

well, the nature of the safefy problem seems to change slightly. History, or context,

becomes important in non-monotonie systems. It is important to know not only if

a permission for a subject to access an object is possible but when that permission

becomes available. By 'when' it is m e n t 'when in relation to the existence of other

permissions.' For example, two subjects may both be allowed to have a certain access

to an object, but they may o d y be able to have that access when they also have the

owner permission for the object. A single maximal permission state does not seem to

be an adequate basis for analysis of such safety criteria.

This dissertation was inspired by the progression of access-control models culmi-

nating in Sandhu's SPM [San881 and Sandhu and Ganta's T M [SG94]. In particular,

the unfolding mechanism used by these modeling schemes to control the state explo-

sion inherent in subject creation is a very powerfui technique. It seemed that a

successful adaptation of this technique might be to use such an unfolding scheme to

limit the state explosion problem inherent in the expanding histories of non-monotonie

systems. That is, to try to define some maximal set of possible histories instead of a

maximal set of permissions.

Scenario-based access control was developed independently Tom, but is related

to, task-based access control [TS94, TS97). As is the case with TBAC, this research

recognizes that an obvious basis for secure worldlow management is a just-in-time

policy of granting permission, based on providing just those rights that are needed,

when they are needed, to accomplish a legitimate task. Role-based access control

and Clark-Wiion-based models [CW87] provide for least privilege and the fine grain

definition of permission types. Clark-Wson goes as far as to specZy transformation

procedures which lirnit the kinds of operation that can be applied to data. What

is missing firom these modeling schemes is the notion of context, or order, in which

operations are permitted to take place.

SBAC begins with the obsemation that when using object-oriented techniques,

software analysts and designers may specify a system by descnbing a set of scenarios.

The amount of detail presented in the scenarios depends in part on the level of

abstraction of the specification. Early in the system life cycle analysts use scenarios

to describe the nature of the problem they are working on. Later in the system life

cycle designers use scenarios to describe how they are going to solve the problem, ie.

the specifkation of the software solution. In both cases they use scenarios to spec* a

set of mechanisms that describe how objects will interact. As the 00A/OOD review

material of Section 2.3 highlighted, scenarios are specifications of a particular set

of object interactions. More generally, a specific kind (or type) of scenario can be

used to describe what kinds (classes/types) of objects are involved and what kinds

of messages are exchanged. Many objects are instantiated in the life of a system but

they are intended to follow a set of behaviours as laid out in the scenario descriptions.

The designers use scenarios to describe what object interactions are necessary to meet

system requirements. With a change of perspective these scenarios provide the basis

for security modeling. Under SBAC, the designer is also using scenarios to describe

what object interactions are permitted by the system. That is, the designer is now

specifying scenarios that are necessary and sufficient to meet the system requirements;

no other object interactions will be permitted. A permission can be generated for

each step in a scenario and consumed as the specified object interaction takes place.

Such scenario-based security models are inherently non-monotonic.

This approach seems to have several strengths. In SBAC scenaxios are seen as a

natural vehicle for the specification of the context required in expressing a just-in-the

security policy. One of the stated goals of this research was to provide efficient anal-

ysis for non-monotonie systems. As will be seen, the creation relationship between

scenarios may be exploited to provide control over the state explosion of expanding

histories of non-monotonic systems. The use of contemporary 00 modeling tech-

niques and tools meets the second goal stated for this research; idormation that is

already being captured by using 00 methods c m be used to provide sec- mod-

eling as an extension to an existing software engineering process. 00 techniques

are used a t high and low levels of abstraction. An advantage of 00 methods and

SBAC security models based on such methods is that mode1 constructions tend to

remain closely related to problem domain entities. Especially at the higher levels of

abstraction, designers strive to make the objects and their behaviours abstractions of

problem domain entities. This provides intuitive semantic content that takes advan-

tage of naturd human cognitive skills [B o o ~ ~] . This makes it easier for the designer

to cope with the complexity inherent in a system.

The chapter is organized in the following way. The sections a t the begiming of

the chapter present the components of basic SBAC modeling. The sections d e h e the

basic components necessary to mode1 scenarios, scenario types, and the interaction

between scenarios- Each set of components will be discussed first, then a forma1 defini-

tion of the components will be presented. An example based on the document release

example of Chapter 2 will be included in each case to help develop intuition for the

modeling scheme. Later sections of the chapter add complexity to the basic modeling

scheme. Components will be added to provide support for representing visibilities b e

tween objects, for representing object creation, and for supporting information hiding

between scenario types.

3.2 Modeling Scenarios

The usual approach in security modeling is to define sets of subjects (entities which

require access to information, devices, programs, etc.) and objects (entities that can

be accessed). In SBAC an object-oriented decomposition of system entities is used

and a l l entities in the system will be referred to as objects. Objects here may serve in

either of the usual security mode1 roles of subject or object. An object might possibly

request a service of another object in the system, or might itself be accessed by other

objects; ie. an object may play the role of message sender or receiver a t different

times. Each object has an object type. Object types are fixed for the life of the

ob ject.

The most basic or primitive scenario describes a single message pass between h o

objects. To send a message to an object, visibility is required. That is, the sending

object must know the name of, or have a reference to, the receiving object. The

message being sent must also conform to the interface of the receiving object. The

basic element of access control is based on a primitive scenarîo describing exactly one

message pass. The scenario will specify which two objects are involved, the types of

those objects, and the type of the message to be passed. The concept of a message

here is general and describes the interaction of a sending object with an interface

of the receiving object. A message can cary information to the receiving object,

monifv the state of the receiving object, and return information dependent on the

state of the receiving object. The receipt of a message can invoke some behaviour in

the receiving object. This definition provides fine-grain access control similar to the

permissions defined by B A C modeling or the transformation procedures described

by Clark-Wilson. Note that although messages may alter the state of an object, the

state of objects is not directly modeled in SBAC. The state of an object is hidden,

but the interface of an object is modeled through the specification of the messages it

exchanges with other objects.

Complex scenarios (non-primitive scenarios) are defbed using collections of sub-

scenaxios (child scenarios) . ChiId scenarios can be primitive or non-primitive. Each

child scenario can have at most one parent scenario. This allows the mode1 to describe

the relationship between scenarios. Each scenario has a scenario type, which is k e d

for the life of the scenario. A scenario type specifies the types of the objects which

participate, or interact , in a scenario instance of its type. A scenario type also specifies

the types of the scenario7s children and the order in which the child scenarios are

permitted to be created.

A complex scenario can be thought of as the root of a tree of child scenarios with

primitive scenazios a t the leaves of the tree. Such a tree speciiies a permissible set

of interactions for a collection of system objects. The tree describes which objects

are dowed to participate, the types of the objects, the message instances involved,

the types of the messages, and the ordering of messages. The topology of the tree

is constrained by the scenario types involved. This is because each scenario type

specifies what type of child scenarios it can create and the order in which the scenario

creations are permitted to take place. Ultimately the tree specifies the message passes

which are pennitted to take place, the objects participating in the message passes,

and the order in which they can occur. Scenario types and object types are statically

defined and form the basis of a mandatory security policy.

3.2.1 Objects and Object Types

The object is one of the most fundamental abstractions in the scheme being described.

Every object in a system has a type. Presentation of the modeling scheme will begin

by defining sets of object types and objects. A set of identifiers is also defined.

Identifiers are used to name individual instances of object types and objects as well

as other model constructions.

An object type is assigned when an object is created (instantiated). The assign-

ment does not change. In the document release example presented in Chapter 2

object types might be specified for Oscientist, OpatentOficer, OreleaseAuth and

Odocument. The function 7-0 defines type assignments for specific objects. The set

P B defines the domain of parameter binding pairs, i. e. identifier-object pairs. In such

a pair an identifier is bound to a specific object in a model. A pair (author, oalice)

denotes that the identifier author is bound to the object oalice in some context. A

similar set of binding pairs is defined by the set P T U . In this case the identifiers

are bound to object types. For example the pair (author, Oscientist) denotes that

the identifier author is bound to the object type Oscientist in some context. The

following definition formalizes these components of the model.

or a finite set of object types

O a finite set of objects

70 object @pe function, TO : O + 07
Z a finite set of identifiers

PB a finite set of parameter binding pairs, Z x O

PTB a finite set of parameter type binding pairs, Z x 07

3.2.2 Scenario Types

The static structure of a security policy is based on how objects are permitted to

interact in scenarios. The modeling scheme defines a set of scenario types that are

used to speci& how different types of objects may interact. Scenario types typically

speciSr common or recurring kinds of behavior. A scenario type can be thought of as

a template. The template specifies how actual objects may combine and interact in

an actual instance of a scenario of that type during the evolution of a system. As a

system evolves, real objects can only interact in scenario instances d e h e d using one

of these scenario types.

The aztthorization of a scenamo of some scenario type means that a new scenario

of that m e is instantiated (created). Newly authorized scenarios are added to the

set of existing scenarios, S. Authorization of a scenario permits security relevant

actions to take place. Two kinds of çecuriw relevant actions may be permitted by a

scenario. They are, the authorization of another new scenario, and the authorization

of a message pass between tsvo specific objects. The authonzation of a message pass

means that a specific kind of message is permitted to be sent £rom one specific object

to another specific object. The only other security-relevant action is the sending of a

message. Scenarios are not directly involved in the sending of messages. The actual

system objects collaborate in the sending of messages. The mechanism of message

passing is not directly modeled by SBAC.

When a new scenario is authorized an initial set of actions is permitted. The

occurrence of an action in the system can cause the pennitted actions associated with

a scenario to change. Le., some actions rnay no longer be permitted and new actions

may become permitted. A scenario is authorixed when there are sec- relevant

actions permitted by it. A scenario is tenninated (no longer authorized) when there

are no longer any permitted actions associated with a scenario. Once terminated

a scenario cannot become authorized again. The discussion of the SBAC rnodeling

scheme will usually refer to scenario authorizat ion inst ead of scenario creation because

authorization implies creation or instantiation of a new scenario, and the permissions

for an initial set of actions.

In this rnodeling scheme, primitive scenario types mode1 a single message pass

between objects. Primitive scenario m e s describe the types of the two objects in-

volved with the message pass and the types of parameter objects associated with the

message. The only security relevant action permitted for an instance of a primitive

scenario type is the authorization of a message pass between two specific objects.

Only instances of a primitive scenarïo m e can authorize a message pass between two

objects. The o d y action permitted by non-primitive scenarios is the authorization of

new scenarios. The message authorization is consumed (revoked) when the message

pass takes place. Revoked authorizations are not necessarily recoverable. This is

why the scheme is inherently non-monotonic. Message passes which are not currently

permitted by some scenario (i. e. do not occur in the model) are prohibited. Primitive

scenarios and primitive scenario types are described in more detail in Section 3.2.4.

Each scenario type is a member of a h i t e set ST. A scenario type has a number

of properties associated with it. There is a set of parameters that speciSr the types of

the objects which participate in the scenaxio. The function parasT(@) specifies a h i t e

set of parameter bindings for a given scenario type @. The scenario type provides a

context, or namespace which acts as a scope for these bindings. Since scenario m e s

are meant to describe the interactions among objects of specific types, the identifiers

can be thought of as roles that certain types of objects play in the context of the

scenario type in which they are deked, with one, and only one, object for each role.

The type of the object which plays the role is specified by the parameter binding.

More than one binding to the same object S p e is allowed in a scenario type. This

corresponds to different objects of the same m e interacting in a scenario instance

by filling different roles. Conversely, the same object may play multiple roles in a

scenario instance provided the roles are of the sarne type.

A finite set of scenario descriptors specifies the child scenarios that may be autho-

rized by scenarios of each type. Each descriptor specifies the type of a child scenario

and a mapping between the parameters of the parent scenario and the child scenario.

Scenario descriptors are triples. The kst two elements of a scenario descriptor spec-

iS. a scenario m e and a parameter mapping to be used in authorizing a scendo of

that type. A finite set of identifier pairs maps parameter identifiers in the context of

the parent scenario to parameter identifiers in the context of the child scenario being

authorized. Effectively, this maps roles played by objects in the parent scenario to

roles played by objects in the child scenario. The type bindings of the identifien in

the context of their respective scenarios must agree. Also, for a scenario descriptor

defining a scenario of type @, there must be an identifier mapping provided for each

binding defined in set parasT(@). The scenario descriptor identifier mappings and the

parent scenario's actual parameters uniquely identifjr the objects that will participate

in the child scenario (the child scenario's parameter set).

The third element of the scenario descriptor triple is a boolean vdue that indicates

whether the child scenario is concurrent (True) or not concurrent (False) with the

parent. A concurrent scenario allows a separate thread of authorization orderings to

begin with that scenario. The evolution of authorization orderings is described in

more detail in the definition of the mdersT function beiow.

The function child- specses a sequence of scenario descriptors. The descriptors

spec* the kind of child scenarios that may be authorized by the parent scenario.

Each scenario type also has an ordering that specifies whether the child scenarios

are executed in sequence, are mutuauy exclusive (only one child authorization can

occur), or are all authorized without particular regard to order. The function ordersr

specifies the ordering of child scenarios. The ordering specifies when the authorization

of a child scenario occurs. The ordering of message pass actions depends on the

evolution of the system execution. The pattern and combination of child scenarios

which may be authorized by a scenario are constrained by the ordering specified by

the scenario's type. When a certain set of conditions is met, a scenario terminates. A

tenninated scenario is no longer permitted to perform any action. A primitive scenario

terminates when its message authorization is consumed (ie. when the message pass

takes place). The termination of non-primitive scenarios depends on the ordering

specified by their scenario type. There are three kinds of orderings defined by the

modeling scheme (seq, ot, and and).

Upon authorization of a scenario which has a sequential, seq, ordering, the child

scenarïo defined by the first scenario descriptor in the chddsT sequence is immediately

authorized. When this child scenario terminates, the child scenario defined by the

second scenario descriptor in the childsT sequence is authorized, and so on for the rest

of the sequence. A seq ordered scenario terminates when the child scenario defined

by the last scenario descriptor in the childsT sequence terminates.

Upon authorization of a scenario which has an or ordering, all scenarios defmed

by the scenario descriptors in the childsT sequence are immediately authorized. A

message pass action associated with any one of these child scenarios (or the childys

descendants) causes the termination of all the other child scenarios. That is, messages

are effectively only perrnitted for one of the child scenarios defined by the chddsT

sequence. This is because message pass authorizations associated with the other child

scenarios are revoked when the scenarios are terminated. An or ordered scenario

terminates when the one remaining child scenario terminates.

Upon authorization of a scenario which has an and ordering, aU scenarios defined

by the scenario descriptors in the childsT sequence are immediately authorized. A

message pass action authonzed by any one of these child scenarios (or the child's

descendants) may occur in any order. An and ordered scenario terminates when all

its child scenarios terminat e.

By construction there can be no outstanding authorizations for a scenario when

it terminates.

The following definition formalizes these components of the model.'

ST a finite set of scenario types.

 paras^ a hnction defining the parameter type bindings associated

lThe symbol is used t o denote a partial function

with a scenaxio type; paras^ : S'T + zPT8, such that for

O E 57, parasr(@) : Z 07

SD a fkite set of scenario descriptors, ST x 2ZXT x 2'

childsT a function definhg the scenario descriptors associated with a

scenazio type, childsr : S'T + SVn, where n is finite

mdersT a function definhg the ordering of child scenarios associated

with a scenario type, ordersT : S 7 -t {seq, ur, a n d)

As an example of scenario type specifxation, the scenario type SdocReview kom

the document release example in Chapter 2 is dehed in the following way. This

scenario S p e is repeated in Figure 3.1 with some additional detail.

SdocReview E ST

parasT(SdocReview) =

{(reviewer, OpatentOficer), (report, Odomrnent))

childsT (SdocReview) =

((Pread, {(reviewer, sender), (report, receiver)), False),

(SreleaseDecision, {(reviewer, reviewer), (report, report)), False))

ordersT (SdocReview) = seq

The scenario type has two parameter roles reviewer and report of types

OpatentOficer and Odomment respectively. These roles can be seen in Figure 3.1 as

abject boxes at the top of the figure.2 The scenario type specifies the authorization

of two child scenarios. The first is a primitive scenario of type Pread. When creating

this child, the reviewer role of SdocReview is mapped to the sender role of the child

and the report role is mapped to the receiver role of the child. These role mappings

2The MSDs presented in this chapter are intended to be an aid to the reader in developing intu-
ition for scenariebased modeling. The MSDs and thei. interpretation are not part of the formalism
but provide a set of paralle1 examples. Introducing MSDs here also provides familiarity with the
notation. Later, examples of SBAC modeling dl be expressed using MSDs.

emappings (
(reuiewer -> reuiewer),
(report -> report)}>

Parameters:
reviewe~ûpatentOfiÏcer
reportOdocument

The reviewer reads the docunent
and then makes a decision on
whettier or not b release the
docunent for publication-

FIGURE 3.1. Scenario SdocReview with detail

are implicit in the topology of the diagram and are not marked as parameters of

Pread. More detail with respect to the reviewer and sender role mappuigs of prim-

itive scenarios will be presented in Section 3.2.4. The Pread child is non-concurrent

with its parent as indicated by the third element of its scenario descriptor, False. The

second child to be created is of type SreleaseDecision. The comment box associated

with this child scenôrio in the figure contains information that is normally contained

in a message description data structure in the Rational Rose mode1 fiom which the

figure was generated. To make it visible to the reader the information is shown here in

a comment box. The <scenario> tag indicates that this is a non-primitive scenario.

Such a distinction is not required in the formal presentation above. In the formal

presentation and in the corresponding mappings presented in the comment box it can

be seen that the reviewer and report roles of SdocReview are mapped to reviewer

and report roles of the child. The roles just happen to have the same names in this

case. The SreleaseDecision child is also non-concurrent. Concurrency would be

indicated in the figure by s p e c w g the <concurrent> flag for the message in much

the same way as the <scenario> flag is specined. The ordering of the SdocReview

scenario type is seq. Therefore, the authorization of the SreleaseDecz'sion child will

occur only upon termination of the Pread child-

3.2.3 Scenario Instances

Scenario types provide static restrictions on the interactions permitted in a system

between objects of various types. Evolution of the system proceeds via the autho-

rization of actual scenarios and perfonning the permitted security-relevant actions.

Each scenario is a nember of the finite set S. A scenario has a number of properties

associated with it.

Every scenario in a system has a type speciûed by the scenario S.pe function rs.

Scenario m e s are assigned when a scenario is authonzed and do not change. For

each scenario there is a set of parameters which specify the objects which participate

in the scenario. paras specifies bindings to the object instances participating in the

scenario. A scenario is a context, or namespace which acts as a scope for these

bindings. Again, the identifiers can be thought of as roles certain objects play in

the context of the scenario in which they are deked. The identsers are the same

identifiers used in the specScation of parasT for the scenario's type. That is, for each

parameter binding of a scenaxio instance there will be a parameter type binding in

its scenario type such that the bindings have the same identifier. The type of the

object specified for an identifier in a binding in paras must agree with the object

type specified for the same identifier in paras^.

Each scenario also has a set of child scenarios which it has authorized. childs is a

function mapping scenarios to sequences that specify the children the scenarios have

created. As child scenarios are authorized they are appended to the sequence mapped

to the parent scenario by childs (initidy n d) . A new scenario is authorized using a

scenario descript or belonging to the parent's type. The scenario descriptor (s) used t O

authorize a new scenario(s) a t a particular point in a scenario's Me depends on the

scenario's ordering. A scenario descriptor specifies the type of the cMd scenario and

the parameter mapping to be used in authorizing that scenario. The set of identifier

pairs in the scenario descriptor maps identifiers in the context of a parent scenario

to identifiers in the context of a child scenario being authorized. Since the role

identifiers are the same for the bindings of the scenario types and scenarios instances

this maps objects playing roles in the parent scenario to objects playing roles in the

child scenario. New parameter bindings are created, which bind role identifiers for

the child scenazio to the identified objects participating in the parent scenario. These

new bindings specify the members of paras for the child scenario.

The actions permitted by a child scenario may proceed withuz the parent's se-

quence of actions, or those actions may proceed concurrently with the parent sce-

nario's sequence of actions. The predicate cons defines whether a separate, concurrent

sequence of authorization orderings begins with a specific scenario (True), or whether

the scenario's authorization orderings are part of the parent's sequence (False).

The following defmition formalizes these components of the model.

S a finite set of scenarios.

rs scenario type function, T , : S + ST

Paras a function deking the parameter bindings associated with

a scenario; paras : S -t 2pB, such that for

4 E S, para^(+) : - O
childs a function defiahg the child scenarios associated with

a scenario, childs : S + S' , where n is fmite

cons a predicate d e m g the concurrency associated with

a scenario, cons : S + 2'

To illustrate how scenarius are specified, and how the scenario creation rnechanism

works, an example will be presented, which is based on the SdocReview scenario

type presented at the end of Section 3.2.2 and in Figure 3.1. First an instance of

a SdocReview scenario type wïU be modeled, then a new SreleuseDecision scenario

will be created using the appropriate scenario descript or. An instance sdocReview1

is modeled as follows:

sdocReview1 E S

rs (sdocReview1) = SdocReview

paras (sdocReview 1) = {(reuiewer, oalâce), (report, odoc))

childs (sdocReuiew 1) = (pread2)

cons (sdocReview 1) = False

Scenario sdocReview1 is of S p e SdocReviezu. The reviewer role is mapped to an

object instance oalice and the report role is mapped to an object instance odoc. It

can be seen here that the scenario has already authorized one child scenario, pread2.

Although the example does not provide detail for pread2, it is presumably a primitive

scenario that would authonze a read message fkom the object oalice to the object odoc.

Rom its scenario type sdocReviezu1 has a seq scenario ordering. Therefore when the

read message from oalice to odoc takes place, and consumes its authorization (termi-

nating preadz), sdocReview1 will authorize a new scenario. The authorization of the

new scenario will be based on the second scenario descriptor in childsT(SdocReview).

The new scenario will be of type SreleaseDecision. The role reviewer of the new sce-

nario will be mapped to the object playing the role of reviewer in sdocReview1, i-e.

oalice. The role report of the new scenario will be mapped to the object playing the

role of report in sdocReview1, Le. odoc. Again, note that the identifiers for the roles

in the parent and child scenario do not have to be the same, as they are here. The

mapping between roles is provided by the scenario descriptor. The new scenario will

not have authorized any new scenarios itself yet. Its set of child scenarios is initially

null. The authorizations generated by the newly authorized scenario will not proceed

concurrently with those of sdocReviewl. Le., in this case sdmReview1 will not pro-

ceed with its o m actions until the new scenario terminates, Let the new scenario be

srele&seDecision3. It is modeled as follows:

sreleaseDecz'sion3 E S

TS (sreleaseDecision3) = SreleuseDecision

paras(sreleaseDecis20n3) = {(reviewer, oalice), (report, odoc))

childs (sreleuseDecision3) = ()

wns (sreEeaseDecision3) = False

3.2.4 Primitive Scenario Types

As noted above, messages in SBAC modeling are primitive scenarios that describe

a single distinct interaction between objects. Scenario types for these primitive sce-

na.rios describe the types of the two objects involved with the message pass and the

types of parameter objects associated with the message. These are specified by the

parameter type bindings defining the roles participating in the scenario. Each primi-

tive scenario type is associated with a particular kind of message. paras= defines the

object roles and types associated with the message. paras defines the actual object

parameters. With respect to paras^ the identifiers sender and receiver are reserved

for the object types filling the role of the message sender and receiver respectively.

With respect to paras, identifiers sender and receiver are reserved for the actual ob-

jects filling the roles of message sender and receiver. Any other bindings specified by

 paras^ (paras) specify the object types for remaining message parameters. childsr

and childs for primitive scenario types are always the null set. ordersr for primitive

scenario types is undefmed.

Upon authorization of an instance of a scenario of a primitive type, a message of

the kind associated with that primitive type is authorized to be sent fkom the sender

to the receiver. The message parameters are speciûed by paras for the primitive

scenazio. The authorization for the message is conswned when the associated message

is sent. A primitive scenario is considered to be tenninated when the associated

message is sent (ie. when the authorization for the message is consumed).

The modeling scheme does not explicitly mode1 message m e s or messages. The

mapping £rom primitive scenario types to message types is a bijection. The authoriza-

tion for a primitive scenario is immediately followed by an authorization for the re-

spective message. The telmination of a primitive scenario (revoking its authorization)

occurs immediately following the revocation of the authorization for the associated

message. For access-control modehg purposes, there is no loss in expressiveness in

only considering primitive scenario types and leaving the messages as implicit entities

to be defined in the implementation of the access-control mechanism.

3.3 Object Visibilities

As described so far in the modeling scheme, the objects participating in a child

scenaxio have all been specified by the parent scenario when the child scenario is

authorized. Using a scenario descriptor, the authorization mechanisrn maps objects

filling roles in the parameter set of the parent to objects filhg roles in the new child

scenario. So far, these parent supplied objects are the only objects speciiied to fiIl

roles in the child. Therefore, all subsequent scenario authorizations by the child must

use these objects to £ill scenario roles. Le., the set of objects provided as parameters

to a child scenario must be a subset of those provided to its parent. Viewed in a

different way, every object which is involved in some interaction in a system must be

specified in a parameter binding of the system's initial scenario.

This is a cumbersome and restrictive way of rnanaging a scenariols access to system

objects. Scenarios would be obliged to cary object roles as placeholders for children

M h e r down the scenario tree, even if those roles are not involved in any action in the

current scenario. Also, so far, the modeling scheme does not allow for the creation

of objects. All objects involved in system interactions must be available in the initial

system scenario. Providing ob jects with visibilities mitigates these problems.

3.3.1 Defining Object Visibility

This section expands the modeling scheme to allow the expression of object visibilities

and object creation. It would be convenient if objects could play roles with respect to

each other. Objects might be provided with bindings to other objects in association

with these roles. These bound objects wouid be visible to the object holding the

bindings. Consequently, when an object is provided as a parameter in the creation of

a scenario, not only could it become involved in the interactions of the scenario, but

any objects visible to that object could be named and could pwticipate.

New functions are defined which allow the modeling scheme to dehne the visibdity

objects have of other objects, and to ident* an object by using an identifier associated

with a set of parameter bindings. The function viso defines the visibiIity between

objects by s p e c m g a set of parameter bindings for each object. Objects are a

context, or namespace, for a set of parameter bindings. Again, the binding identifiers

can be thought of as roles certain objects play in the context of the object in which

the binding is defined. The object which plays the role is specified by a pazameter

binding. A similar relationship is defined for object types.

The types of objects for which a specific object type may have visibility and the

roles those object types can play are defined by the function vism. For each object

type, the roles other objects are permitted to play in the context of that object type

and the types of objects which may fill those roles are specified by parameter type

bindings. The identifiers specified for an object's visibility binduigs by viso are the

same identifiers used in the specification of visor for the object's type. That is, for

each parameter binding of an object instance there WU be a parameter type binding

in its object type such that the bindings have the same identifier. The type of the

object specified for an identifier in a binding in viso must agree with the object type

specified for the same identifier in visoT.

The function objid dereferences parameter bindings by retuming the ob ject being

referred to by a specific identifier in the context of a set of pwameter bindings. The

context providing the parameter bindings may be an object's visibilities (defined by

viso), or it may be a scenario's parameters (defined by paras). The parameter binding

context for some object a defined by viso(a) is specified by a partial function fiom

identsers to objects. Similarly, the parameter binding context for some scenario q5

defined by paras(q5) is specified by a partial function fiom identifiers to objects.

The following definition formalizes these components of the model.

visoT A function dehing the types of objects visible to

objects of a specific type, visoT : 07 + 2PTB

viso A function defining the visibility between objects,

viso : O + 2P8
objid A function which provides an object given an identifier

and parameter binding context, objid : Z x (Z - 0) -+ O

In the document release example a document might have a role associated with it

c d e d author. A specific document odoc, written by the scientist oalex, might have a

parameter binding (author, oalex) E viso(odoc). Now, given the document, odoc, and

the role, author, the scientist object fiLling the author role c m be dereferenced using

objid, objid(author, viso(odoc)) = oalex. Constructions having this syntax may be

abbreviated as odoc.author = oalex.

In a related example suppose that the document object, odoc, takes part in a

scenaxio, sdocumentRelease1, of type SdocRelease. Assume that odoc is already

bound to an identifier in the scenario, (report, odoc) E paras (sdommentRelease1) .
An author of the document can be dereferenced using the identifier binding for the

document. In the context of the example scenario, ob jid (author, viso (ob jid(report,

paras(sdommentReleasel)))) = oalex. Constructions having this syntax may also

be abbreviated as report-author = oalex.

Although the 'dot7 syntax is similar to that used in the la& example, there is

a Merence. In the first example the dot denotes dereferencing an identifier in the

context of an object, odoc. In the second case the dot denotes dereferencing an

identifier in the context of an identifier for an object, report. This context identifier

is then itselfused to specify an object in the scenario sdomentRelease1. The second

f o m of using the dot syntax only makes sense when it is obvious what scenario is

appropriate for the context. The two usages can be differentiated by the type of the

first operand (object or identifier).

3.3.2 Defined Scenario Parameters

Adding object visibilities to the modeling scheme means they can be used in the

specification of scenarios. The approach taken is to partition the set of parameter

type bindings specified for some scenario m e <P by parasT(@) into two disjoint

subsets. One subset specifies the parameters that are part of the external interface

for the scenaxio type and the other subset specifies the parameters that are defined

internally for the scenario type and are not part of the external interface for the

scenario type. These axe respectively called paraextST(<P), and paraintsT(0). The

parameters of the external interface for the scenario type are the parameters used

when defining scenario descriptors for that scenario Spe. Le., they are used by a

parent to define a new child scenario of that type. The interna1 parameten are not

used by the parent to define a new child. These parameters, how they are used; and

the fact tha t they are used at all are a secret of their own scenario type.

For some scenario 4, the set paras($) is aIso partitioned into two disjoint subsets.

The two subsets are acquiredparas(q5) and definedparas and respectively reflect object

bindings acquired fiom the parent scenario and bindings defined in terms of object

visibilities.

The bindings in the set acquiredparas(q5) are created using objects fiom the par-

ent's context. That is, the set of identifier pairs in the scenario descriptor of the

parent is used to map objects in the context of a parent scenario to objects in the

context of a child scenario being authorized. Scenario descriptors in parent scenario

types must specify mappings for all identïfiers in paraeztsr(0). This means that for

every binding in paraextsT(@) there will be a binding in acquiredparas(+) with the

same identifier.

The objects specified in parameter bindings in definedparas (4) are defined in terms

of other identifiers available to the scenario. Objects in definedparas(q5) are specified

ushg identifias found in parasT(@). By using objid in the context of the actual

scenario instance 4 these identsers cm be used to identiS. an object instance, which

is playing a role in 4. That object in turn can be used as a parameter bindings context

that can be used to indirectly iden@ another object by using objid to dereference

an object visibility. To do t h , a parameter definition is specified using objid and

an identifier from visoT. In the context of the actual object instance the identifier

refers to some other object instance. A parameter definition specified in this way uses

identifiers p~ovided by parameter type bindings and the definition is not dependent

on a specifk scenazio or object in~tance.~ In the context of an actual scenario instance

the parameter definition refen to an object instance when objid is applied using the

actual objects filling the roles for that instance. Therefore, the parameter definitions

in de f inedparas are specified once for a scenario type and used by instances of every

actual scenario of that type. For every binding in paraintsr there must be a binduig

specified in de f inedparas.

The following defuitions formalize these components of the model.

par aextsT a function defining the external parameter type bindings

associated with a scenario type;

paraexts* : S 7 -t 2p7B, such that for

O E ST, paraextsT(0) : Z 07

a function defming the interna1 parameter type bindings

associated with a scenario type;

paraintsT : ST -t 2pTB, such that for

O E 57, paraintsT (@) : Z A 07

aupireciparas a hnction definhg the parameter bindings associated

with a scenario that are acquired from the scenario's

parent; acquiredparas : S -t 2p8, such that for

$ E S, acquiredparas($) : Z - O
de f inedparas a function definhg the parameter bindings associated

with a scenario type that are defined using identifiers available

to the scenario; de f inedparas : S7 + 2PB, such that for

E ST, de f inedparas(@) : Z -' O

for 0 E ST, 4 E S , rs(q5) = @:

3Note that the creation of scenarios and objects requires that roles defined by the parameter type
bindings in scenario and ob ject types be f%ed by object instances specified by parameter bindings
that use the same role identifiers. This one-to-one correspondence ushg the same identifier name
makes parameter definition using scenario and objects types possible.

- Subset relationship
-----) Identifier dependenc y

FIGURE 3.2. Relationship between paras^ and paras modSed for defined scenario
parameters, where rs@) =

The relationships among the described parameter sets are illustrated in Figure 3.2.

The diagram indicates the subset relationships and the identifier dependencies among

the sets. The identifier dependencies between acqu i~edpara~ and paraextsT, and

between de f inedparas and paraintsr are defined to mean that they m u t respectively

have the same sets of identifiers. As before, the types of the actud objects in paras

must agree with the object type specified in paras= for its role.

Consider again an example based on a scenario sdocumentReZeasel of scenario type

SdocRelease. The message sequence diagram for this scenario type is presented again

in Figure 3.3 with added detail. Comment boxes have been added to the diagram

to illustrate how defined parameters may be specified. There are four objects that

participate in any scena,rïo of this type. The object which plays a role reportAuthor

is associated with a report object via a visibility relationçhip. Perhaps it is not

desirable to explicitly define the object playing the author role each time we authorize

a scenario of type SdocRelease. Speci&hg the report object should be suaicient

because it has its author associated with it. A defined scenario parameter allows

this to be specified. The parameter type bindings for the role reportAuthor is a

member of the set paraintsr(SdocRelease). The set definedparas(SdocRelease)

must s p e c e a parameter binding using this identifier. The parameter definition

correspondhg to the reportAuthor identifier is shown in the comment boxes using the

<DEFPARA> tag. In this case the <DEFPARA> tag indicates that that object is a

defined parameter bound to report.author. We will ignore the other comment boxes

and the <PARAIN> tag for now.

More formally, when the scena,rio sdoczlrnentRelease1 was created it would have

been provided the foollowing object bindings from the parent's extemal environment:

(reuiewer, oalice) , (repoit, odoc) E a~quiredpara~ (sdocumentRelease1)

de f inedparas for sdocumentRelease1 would specw an object binding for the author

of report in this way:

In scenario sdocumentRelease1 the identifier reportAuthor refers to the object play-

ing the author role with respect to the object bound to the identifier report. In the

previous example (Section 3.3.1) the report author was oalex, so reportAuthor would

refer to oalex in this case.

i Scenano Ordering: <SE* L'!

1 The reviewer creates a new release auîhorizalion abject for the repot lhe reviewer
i passes the release authonzan'on b the report's author. The author can then p a s a
! message to ttie release authorimb'on to effect the publication of the report The
i release authorization will mad the report during the process of publication.

FIGURE 3 -3. Scenario SdocRelease with det ail

3.3.3 Object Creation

New objects created by a scenaxio to be used in its interactions can be handled

by the same mechanism introduced to support defined scenario parameters. A new

function is introduced in the modehg scheme to specify object creation. The create

function is applied to an object type and a set of identifier mappings. It returns a

new object of the speciiied type. This object is added to the set 0. At creation

time the visibilities of the new object are specified by the set of identifier mappings.

The identifier mappings map roles specified by paras of the creating scenario to roles

in the new object. The parameter bindings of viso for the new object are created

accordingly. A mapping must be specSed for each identifier of visoT for the object

s p e being created. The following definition formalizes the create function.

create A function returning a new object of a specified type,

create : 07- x 2ZXZ + O

To introduce a new object into a scenario, a parameter binding in de f inedparas

is specified using the create function. Consider again the SdocRelease example of Fig-

ure 3.3. A scenario sdocumentRelease1, of type SdocRelease, requires the creation

of an object of type OreleaseAuth (a release authorization). The following specifi-

cation indicates that an OreleaseAuth object is created and bound to the identifier

relAuth.

(relAuth, create(0re~easeAuth {(report, reEDoc))))

E de f inedparas(sdocumentReleasel)

For this new object the role identifier relDoc will be bound to the object specified

by the role identifier r epo~ t of the sdocumentRelease1 scenario. Note in Figure 3.3

the comment box associated with the object relAuth contains a <DEFPARA> tag.

--------------- *
Parameter binding

oalice
Object

T ype:OpatentOfficer

FIGURE 3.4. Parameter bindings for SdocRelease example

,iodoc
i

oalex

In this case the tag indicates that the object is a newly created object with the neces-

s a q identifier mapping to provide the required object binding. Figure 3.4 illustrates

graphically the parameter bindings specified for the sdocumentRelease1 example.

3.3.4 Acquiring Object Bindings from a Child Scenario

Object
Type:Oscidst

0

J / / ---

1

The addition of object visibilities and object creation to the modeling scheme allows

the expression of a richer set of models. Specifically the modeling scheme can now

express models in which scenarios have interactions with objects which are not pro-

Type:Odocument

viso:
author ----------

Type:SdocRelease

acquiredpara+ /
reviewer ---'--

I :
sdocumentRelease f

I

,/ 9
8 0 +'\

J
I

0
f

,' I
/

/ \ J

/ /

/' l l

4

created object I
I

Scenario

/ d @ p

\

report -de@

I

Obiect
8

f
I f

J
1 J Type:OreleaseAuth I 1 I

defïnedpar%: I
1

f
1 f

8 8

0
0

#Cd0

1

reportAuthor --,-
8

f
OC ---------- 8 f

/
8

I
8

I

/'

*/

1
8

f I
I

vided explicitly by the scenario's creator. Scenarios can now be specified to interact

with newly created objects, and with any object visible to an object provided as a

parameter to scenario authorization. However, there are still classes of systems which

are diflicult to express with the modeling scheme. Consider the case of a parent sce-

nario which authorïzes a number of child scenarios. It may be desirable to have an

object created in one child scenario take part in the object interactions specified for

a subsequent scenario in the parent. This is not expressible in the present scheme be-

cause a parent scenario cannot acquire ob ject bindings kom a child. Child scenarios

acquire object bindings Tom their parent upon authorization, but there is so far no

flow of object visibility in the other direction. Being able to acquire object bindings

fkom a child scenario is the only way in which visibiliw to newly created objects can

be moved back up the scenario creation hierarchy.

This feature also heIps to support information hiding [Par721 in the decomposition

of scenarios in the requirements or design mode1 being specified, in the following

way. With the exception of newly created objects, all objects which take part in the

interactions of a child scenario are theoretically visible to the creator of that scenario,

as are the objects of its children and its children's children, etc. This is because the

parent scenario can see all the objects it provided to the child scenario as parameters.

It can also use any of the indirect object visibiIities those parameters have in the

same way the cWd can. However, the interactions that take place in a child scenazio

should be a secret of that scenario. The internal objects which participate in the

interactions and the mechanism by which their visibility is acquired should also be

a secret. The use of an object by a child scenario may be possible by exploiting

visibilities associated with an external parameter object. It is not appropriate for

the parent to do so a s well in order to gain access to an object being used by the

child. This is because the parent scenario wouId have to understand the nature of

the object visibility and therefore something of the nature of the child scenario's

interactions. This is information about the implementation of a child scenario and

should be protected. If a child scenario needs to identify some object for use by the

parent there should be a rnechanism which does not require the parent scenario to

understand how the child came to have visibility of the object.

The binding rnechanism, as discussed so far, is for object bindings to be made

at scenario authorization time. The bindings have two sources. The members of

acq~ i redpara~ are specified when the scenario is authorized using bindings supplied

by the scenario's parent. As well, after authorization the members of defineclparas

specified for the new scena.rio iype can be used to refer to objects in the context of

the new scenario. Another mechanism is now introduced such that bindings can be

made at a child scenario's termination. Le., a scenario c m acquire buidings after

its own creation from its children as they terminate. For some scenario Q1 of type a,
acquiredparas(q5) is extended to include both those bindings acquired from 4's parent

and those bindings acquired from 4's children. To separate the bindings acquired

from the parent and those acquired £rom a child scenario the set of acquired bindings,

acquiredparas(g5) is divided into two disjoint subsets, childacquiredpa~a~(q5) and

pa~entacquiredpara~ (4) -
For scenario 4, the set paras@) is decornposed into three subsets: childacquired-

paras (4) y parentacq~iredpara~(q5) y and de f inedparas (rs(#)). The basis of decom-

position for paras(#) is the source of the object bindings for a scenario. For a scenario

type the dehition of parameter type bindings is decomposed into an external com-

ponent and and interna1 component, paraextsT(Q>) and paraintsT(@) respectively.

The b a i s of the decomposition is different in this case. The basis of decomposition

for parasr (O) is information hiding.

There are some parameter roles that are used directly by the parent of a scenario

of type <P. There are other parameter roles that are secrets of scenarios of that type.

This decomposition is further refined to reflect the effects of child-acquired bindings.

The internal bindings specified by parameter definitions are separated from those

which are to be acquired fiom a child scenario. The set of parameter type bindings,

paraintsT (a) is divided into two subsets, de f inedparasT(<P) and childparasT(q).

The parameter type bindings specified in paraeztsT(<P) define the kinds of objects

which are presented as the external interface to a scenario of type a. I. e., the objects

provided by a parent scenario as parameters for the authorization of a scenario of

type @ or those objects passed back to the parent as the scenario terminates. To

separate the external bindings acquired from the parent when a scenario of type is

authorized and those provided to the parent when the scenario terminates the set of

parameter type bindings, paraextsT is divided into two disjoint subsets, parainsr(@)

and paraoutsr(@). The actual objects which fill the parainST(.r(O) parameter roles

for an instance of a scenario are provided as before, by the parent at authorization

tirne. The actual objects which fill the paraoutsT(@) parameter roles are defined by

de f inedparas (a) a t scenario termination time.

par aoutsT

parainsT a function defining the i n parameter type bindings

associated with a scenario type;

parainsT : 57 + 2pTB, such that for

8 E ST, parainsr(@) : Z A 07

a function defhing the out parameter type bindings

associated with a scenario type;

paraoutm : ST + 2pTB, such that for

O E S7, paraoutsr(@) : Z A 07

de f inedparasT a function definhg the interna1 parameter type

bindlligs associated with roles specified by defined

parameters; de f ZnedparasT : S7 -t 2'", such that

for E S'T, de f inedparasT(0) : Z -' 07

a h c t i o n defining the intemal parameter type

bindings associated with roles specihed by terminating

child scenarios; childparasr : S'T -+ 2'7B, such that

for E Sr, chiZdparasT(0) : Z 67

parent~cquiredpara~ a function definhg the parameter bindings associated

childacq~iredpara~

for f ST, q5 E S:

with a scenario that are acquired £rom the scenario's

parent; parentacq~iredpara~ : S + zP*, such that for

4 E S, parentacquiredparas(#) : Z - O

a function defining the parameter bindings associated

with a scenario that are acquired £kom the scenario's

children; childacq~iredpara~ : S + zPB, such that for

4 E S, childa~quiredpara~(4) : Z A O

The relationships between the described parameter sets are ihstrated in Fig-

ure 3.5. The diagram indicates the subset relationships and the identifier dependen-

cies between the sets. The subsets of the parasT(@) hierarchy s p e c e the type of

objects which may participate in a scenario of type a. This structure is static for

a system. Since the scenanos for a system describe a l l its perrnitted object inter-

actions, this hierarchy restricts the ways in which types of objects can interact in a

Subset relationship
-----) Identifier dependency

FIGURE 3.5. Relationship between p a r a s and paras modified for object bindings
acquired from child scenarios, where T&) = <P

given system. The subsets of the para&) hieraxchy provide a mechanism for model-

ing the relationships between an instance 4 of a scenario of type a and its parameter

ob ject instances as a system evolves. An object parameter in # bearing some spec5c

identifier (i. e. a member of the paras (4) hierarchy) may exist iff there exists in <P an

object type parameter bearing the same identifier (i. e. a member of the parasT(@)

hierarchy). This is an identifier dependency. As always, the type of an object instance

in paras(@) must agree with the object type specified in parasT(@) for its role.

The identifier dependencies between parentacquzr edparas (4) and parainsT (@) ,
and between childacquiredparas(r$) and c h i l d p a ~ a ~ ~ (b) indicate that they must have

the same sets of binding identifiers. 1. e., a scenario acquires an object fiom its parent

for each of the bindings specified in parainsr(@) and a scenario acquires an object

fkom a child for each of the bindings specined in childparasT(@). The parentacquired-

paras(#) bindings are made at authorbation tirne and the childacquiredparas(~)

bindings are made as the scenario evolves and child scenarios tenninate.

The identifier dependency between the set de f inedparas (@) and the sets de f ined-

parasr(@) and paraoutsr(@) indicates that for every binding identifier in the union

of de f inedparan(0) and parauutsT(O) there must be a parameter definition with

the same identifier in definedparas(@) and vice versa.

The construction of scenario descriptors is modified to accommodate mappings for

both the paruinsT parameters and the paraoutsT parameters of a new child scenario-

A scenario descriptor is now a 4-tuple. The first and last elements of the 4tuple are

as before.

The set of identifier rnappings provided as the second element of the tuple is the

parainsr parameter mapping. The mapping behaves as before. The set of identifier

pairs maps identifiers in the context of a parent scenario to identifias in the context

of a child scenario being authorized, a t the time the child scenario is being authorized.

New parameter bindings are created, which bind role identifiers for the child scenario

to the identified objects participating in the parent scenario. These nem parameter

bindings become members of the parentacquiredp~ra~ function for the new child

scenario. Again, for a scenario descriptor defining a scenario of type a, there must

be an identifier mapping provided for each identifier role defined in set p a ~ a i n ~ ~ (O) .

The set of identifier mappings provided as the third element of a scenario descx-ip

tor Ctuple contains parantsT parameter mappings. These behave in the following

way. As before, the set of identifier pairs maps identifiers in the context of a parent

scenario to identiiiers in the context of a child scenario. However, in this case the new

parameter bindings bind role identifiers of the parent scenario to objects participat-

ing in the child scenario. The bindings are created at the time the child terminates.

The newly created parameter bindings become members of the childacqui~edpara~

function for the parent scenario. For a scenario descriptor defining a new scenario of

type a, there must be an identifier mapping provided for each identifier role dehed

in set chddparasT(<P).

The following definition formalizes the construction of the modified scenario de-

scriptor.

SV Set of scenario descriptors, 57 x 2*Xz x 21XZ x 2'

With these modifications to the modeling scheme, visibility of an object provided

by an 'out' parameter when a scenario terminates c m be used by scenaxios created

after that termination. The visibility of that object is also available to pass on to the

parent's parent scenario by providing it again as an 'out' parameter.

The document release example as specified in Chapter 2 does not include a case

where a scenario acquires an object binding Çom a child. To illustrate such a case

the scenaxio type SdocRelease can be modified so that it provides an object binding

to its parent scenario. The object playing the role relAuth will now be provided as a

paraoutsr parameter. In the existing example there is already a parameter definition

for this role because the object bound to this identifier is created by the scenario.

Because the object is currently an interna1 object for the scenario (hidden by the

scenario) the parameter type binding for this role is currently in de f inedparasT. With

the proposed modification the object bound to the relAuth role will become available

to the parent (an external object). This is achieved by moving the parameter type

binding for this role to paraoutsT. In the example, scenario type SreleuseDecision

specifies the authorization of a scenario of type SdocRelease (i.e. it is a parent for

SdocRelease). With the proposed modification to the example, SreleuseDecision WU

have to speci€y a mapping for a relAuth object in the paraoutsT parameter mappings

of its scenario descriptor for its SdocRelease child. A specification for the two scenario

types is as follows.

SreleaseDecz'sion E ST

parainsT (SreleaseDecisim) =

{(reviewer, OpatentOficer) , (report, Odomment))

childparasT (SreleaseDecision) = { (releaseAuth, OreleaseAuth))

childsr (SreleaseDecz'sion) =

((SdocReview , {(reviewer, reuiewer) , (report, report)), {), Fa1 se),

(SdocRelease, { (review er, reviewer) , (report, report)),

{ (releaseAuth, relAuth)), False) ,
(SdocRevision, {(reviewer, reviewer), (report, report)), (), False))

ordersT(SreleaseDecision) = or

SdocRelease E ST

parainsr (SdocRelease) =

((reviewer, OpatentOficer) , (report, Odocument) }

paraoutsT(Sdocfielease) = {(relAuth, Orelease Auth))

def inedp~ra~(SdocRe1ease) = {(reportAuthor, Oscientist))

de f inedparas (SdocReZease) =

{(reportAuthor, report.author) ,
(relAuth, create(OreleaseAuth, {(report, relDoc)))))

childsT(SdocRelease) =

((Pcreate, {(reviewer, sender), elA Au th, receiver), (report, doc)),

{} , F a W ,

(PreZPerm, {(reviewer, sender), (reportAuthor, receiver) ,
(rel Auth, authorization)), {), False) ,

(PrelDoc, {(reportAuthor, sender), (relAuth, receive~)), {), False),

(Pread, {(relAuth, sender), (report, receiver)), {), False))

ordersr(SdocRelease) = seq

Chapter 4

SAFETY ANALYSIS

4.1 Introduction

In the safety analysis of a system model it is important to be able to determine

whether or not it is possible for a certain message to be authorized and in what order

it can be sent relative to other messages. The existence and ordering of messages

in the model can be analyzed by inspection of the scenario tree. This may not be

computationally feasible for large scenario trees but it can form the conceptual basis

of an analysis method. In any state the leaves of the tree will be either primitive

scenarios or scenarios which are authorized to perform some action. Child scenarios

are added to the childs sequence of the parent in order (denoted here as left to right)

as they are authorized. The intuition for examining message sequencing is to perform

a depth-6rst left-to-right search of the scenario tree. The order in which primitive

scenarios are discovered is the order of messages as the system evolves. This intuition

works well for scenarios with seq ordering. The definition of the message ordering

relation must be modified to capture the semantics of aJ.l three scenario ordering

properties (seq, or, and and).

The rest of this chapter starts with a definition of how security properties of

systems are modeled using scenario-based access control. The next section defines

the authorization properties for a specific evolution of syst em execut ion. Equivalence

will be dehed for system states based on the authorization properties associated with

the states. It will be shown that for any system, there exists a maximal system state

that describes all possible authorizations that can be generated by the system and all

possible orderings. An algorithm is presented which provides for the construction of

a scenario tree which is a maximal system state. Inspection of this maxÏmal scenario

tree provides safety analysis for the system being modeled.

4.2 Modeling a System

Recall fkom the scenario modeling scheme that an evolution of execution for a system

depends on the authorization of scenarios. Each message between objects is autho-

rized by an instance of a primitive scenario fiype. These primitive scenario instances

are authorized as children to a parent scenario which specifies a context for their

interaction. The parent in tum is authorized as a child to another scenario; and so

on back to some initial scenario. When a parent scenario becomes authorized to cre-

ate a new scenario, this authorization is associated with a scenario descriptor. The

scenario descriptor specifies the type of the new scenario, parameter mappings fiom

the parent to the child, and whether or not there is concurrency. The new scenario is

then authorized to perform some action(s) as specified by its scenario ordering, and

its own set of scenario descriptors. As new scenarios are authorized they are added,

in order, to the childs sequence of the parent. Thus at any point in the evolution of

a system model, the scenarios form a tree structure.

The evolution of a system model is restrïcted by the securiw policy for the system

and the initiai state of the model. A security policy, P, is dehed by the sets 07,

and Sr, and the functions para-, definedparas, childsT, ordersT, and visoT. The

security policy is static. It is defined only in terms of type and is independent of any

actual objects, messages, or scenarios in a specific instance of a system. Formally a

security policy is a 7-tuple.

For some security policy a protection state (or state) is defined by the membership

of the sets S and 0, and the functions speci&ing the attributes of subjects and objects

in those sets. Formdy a protection state is a member of the set V, where

V set of states, O x S x 7-0 x Q x viso x paras x childs x cons

The evolution of the system proceeds from an initial state with the occurrence

of security relevant actions. The security relevant actions defined for the modeling

scheme are the authorization of a new scenario, the authorization of a message pass

between two specific objects, and the sending of a message. In modeling protection

state it is not necessaxy to mode1 the three kinds of action explicitly. Protection state

can be modeled by considering the only authorization of new scenarios explicitly. The

effects of the other actions is captured implicitly.

Recall from the discussion in Section 3.2.4 that for access-control modeling pur-

poses, there is no loss in expressiveness in only considering primitive scenario types

and leaving the messages as irnplicit entities to be defined in the implementation of

the access-control mechanism. This can be done because the modeling scheme is con-

cerned with modeling protection state and not with rnodeling the actud execution

of a system. The actual ordering of the message events with respect to other events

in the evolution of an actual system is not relevant. What is relevant is the possible

ordering of the message events. The authorization properties defined in Section 4.3

mode1 the ordering of the message events by considering when the associated primitive

scenario becomes authorized.

The occurrence of a scenario authorization moves the system from one state to

a new state. A scenario authorization involves the creation of a new scenario, and

possibly the creation of new objects as scenario parameters. The creation of scenarios

and objects adds members to the sets S and 0, and adds new mappings to the

functions specifying the attributes of subjects and objects in those sets.

The convention of superscripting a set or function identifier with a state will be

used to i d e n t e the evolution context being considered. For example, Sg and parah,

signïfy the set S and the function paras in the states g and h respectively. State O

is used to si& the initial state. Where there is no confusion So may be used to

denote the initial scenario.

The initial state for the model of a system is defbed by the initial mernbership of

the sets O and S, the type functions TQ and rs, and the functions paras and viso. In

the initial state there is one and only one member of S. This is the initial scenario for

the model. childs is initially null for the initial scenario and cons is defined as true.

Thus, a system model is an implementation of a security policy for some specific set

of objects involved in some initial scenario. Formally a system, C , is a 7-tuple.

para: vis:)

An evolution of system execution is represented by a sequence of system states.

There is a specific instance of a scenario tree associated with a system state. There-

fore, the evolution of the protection state of a system can thought of as an evolving

scenario tree. A scenario tree defines a history for a system in a specific state. The

evolutions of execution possible for a system, beguining at its initial state are its pos-

sible histories. A history captures all the actioos that have taken place in the system

evolution. If a scenario or object creation action takes place as a result of a scenario

authorization it is said to be permittecl When a system state evolves such that ail

scenario and object creations giving rise to the state are permitted, the state is said

to be a derivable state and the associated scenario tree a derivable scenario tree.

4.3 Aut horization Properties

When considering what is permitted by a system, the kinds of messages that may be

authorized, and their order, must be determined. The message ordering relation for a

scenario tree is a pre-order of the authorized messages defined by the tree. Messages

on a scenario tree are always associated with a primitive scenario. The authorization

properties of the tree can therefore be described by a pre-order on the primitive

scenarios present in the tree.

As described in the previous section, when seq orderings for scenario authoriza-

tion are considered, a depth-fist left-to-right search produces an acceptable ordering.

This is because the chil& sequence is defined be a left-to-right ordering of scenario

authorization. In the seq o r d e ~ g one child scenario must terminate before the next

scenario is authorized. Recursively, the entire sub-tree of scenarios must therefore

have terminated before the next scenario is authorized.

This intuition does not hold for scenario trees with or and and scenario orderings

or with concurrent scenarios. In the case of and scenaxio orderings, all child scenarios

are authorized a t the same t h e . It is not a requirement for this ordering that one

child scenario terminate before another may begin. This means that the messages

associated with the sub-tree of one child scenario do not necessarily precede messages

associated with the sub-tree of another child scenario. The situation is similar for

concurrent scenarios. The concurrent child scenario begins a new thread of scenario

ailthorization orderings that continues in parallel with the original thread of scenario

authorization orderings. So again, messages associated with the sub-tree of the child

scenario do not necessarily precede messages associated with the sub-tree of the parent

scenario after the action authorizing the child. The difference between and-ordered

scenarios and concurrent scenarios is that an and-ordered scenario is not able to

terminate until dl its children have terminated, while in the case of a parent with

one or more concurrent children, the termination state of the children has no bearing

on the termination state of the parent. I.e., the parent authorizes each child and

carries on with its specified ordering of actions without regard to the termination of

the concurrent child.

The case for or scenario orderings is different. In this case the child scenarios of

the parent are mutually exclusive. Ow one child scenazio may generate messages so

the messages associated with the sub-tree of one child scenario are not comparable to

messages associated with the sub-tree of another child scenario. In actual derivable

scenario trees only one sub-tree can exist so it may not seem important to consider

how two mutually exclusive sub-trees are related. However, it is an advantage later to

be able to consider non-derivable scenario trees during analysis so the rules for such

associations are dehed d e n considering authorization ordering.

The following definitions and rules describe the pre-order on permitted autho~za-

tions more forma&. For a state h,

PA set of primitive scenarios permitted to be authorized by a

system, P A = {+ E Shl 4 is a primitive scenario)

R scenario pre-order relation on P A , R P A x P A

For primitive scenarios 4, + E PA, consider their respective paths through the

tree hierarchy to the tree root, So. At some point the paths to root for q5 and must

join. Say they join at some scenario a. +R@ denotes that the message associated

with 4 may precede the message associated with +.
1. If the scenario ordering of O is or and q5 and @ belong to sub-trees of different

children of a then 4 and are not comparable.

2. If the scenario ordering of a is and then cR and +R4.

3. If the scenario ordering of a is seq then:

FIGURE 4.1. Scenario ordering example

(a) q5R$ if for ai, aj E childs(o), # belongs to the sub-tree rooted at scenario

cri and belongs to the sub-tree rooted at scenario aj7 and precedes aj

in childs(a);

(b) $R4 if for cri, a, E childs(o), 4 belongs to the sub-tree rooted at scenario

and îI, belongs to the sub-tree rooted at scenario aj, and precedes aj

in childs(c) and there is a concurrent scenario on the path to root from q5

to a.

It is apparent that P A and R are monotonic with respect to a system history.

Scenarios are added to the scenario tree but are not removed.

As an example consider the scenaxio tree presented in Figure 4.1. In the example

primitive scenazios are denoted pi and non-primitive scenarios are denoted sj. The

scenario ordering has been specified for non-primitive scenarios. sO is the initial

scenario (root). The following are some of the authorization properties that apply

to this example. The scenarios p10, p l l , and p5 wiU always be the fht primitive

scenarios authorized by the system and the authorizations will occur in that order.

These scenarios will always precede the scenarios associated with the sub-trees of

scenario s2 and s3. Scenario pl2 will always precede scenario p13. Scenario pl0 WU

always precede scenario pl2. AU of these cases involve a seq ordering at the scenario

where the paths to root join, and a depth-first left-to-right ordering applies. In the

case of scenarios p7 and pl2 their paths to root join at scenario s2, which has a and

ordering. This means p7 and pl2 can corne in either order with respect to each other.

The same applies for p7 and p13. In the case of p8 and pl4 their paths to root join at

scenario s3, which has an M. ordering. In a derivable scenario tree p8 and pl4 could

not both occur because the permitted possible histories will allow only the actions

associated with either the sub-tree of p8 or the sub-tree of s9. Therefore scenarios p8

and pl4 are incomparable under the pre-order relation R.

If it wa. the case that s4 was a concurrent scenario then pl0 and pl1 may be

delayed for some arbitrary length of t h e . Therefore, this would allow p5 to proceed

before pl0 and p l l . It is also possible in this case that p10, or pl0 and pl1 could

occur before p5.

4.4 Safety Analysis

4.4- 1 Scenario Equivalence

Consider the safety problem. The objective is to determine in a given situation

whether or not a subject can acquire a particular access Rght to an object. When

considering the safety problem in the context of scenario-based access-control models

the basic element of access control is based on a primitive scenario describing exactly

one message pas. Therefore, a solution to the safety problem must i d e n t e the

primitive scenarios that may be generated as a system evolves. The safety question

can be formulated by the folIowing definition.

Definition 1. The simple saftey question is defined as: for some system, C , O E ST,

(oI7 0 2 ~ . . . ,on) E 0°, W there a possible history such that there exists a state h, a

seenario q5 and # E PAh, where T ~ (#) = 0 and parentacquiredpara&) = { (id l , 01) ,
(id2,02) - - - , (idn 7 on))

If such a question can be answered it could be used to identify the occurrence

of a specific primitive scenario (i-e. authorization of a specific message type). The

sending and receiving objects of the message instance are specified by the scenario's

parent-acquired parameter bindhgs (i. e. the O bj ects bound to the identxers sender

and receiver). Al1 other parameten to the message that make it unique are also

specified by the object bindings.

For non-monotonie security policies the ordering of messages must also be con-

sidered. In such cases a version of the safety question which accounts for message

ordering can be formulated by the following definition.

Definition 2. The saftey question for non-monotonie security policies is defined as:

for some sgstem, C , {a, a) E ST, {oI7 02, . . . , on, 0i7 oh, . . . ,O;) E 0°, is there a

possible history such that there &ts a state h, scenarios q5 and 111, {#,$) E pAh,

and #Rh+, where rs(#) = O , q($) = il? and parentacquiredparas($) = { (i d l , o l) ,

(id2, 9), , (idn 7 on)) and parent acquiredpar as (+) - -

{ (i d ; , ~ ;) , (%,4), 7 (id;, o h) }

Note that the specified parameters in both of these definitions are members of 0'.

A safety question is formulated in t ems of objects that exist in the initial state.

Objects that may be created during the evolution of the system do not yet exist

and cannot be named. The types of objects that might be involved in system in-

teractions may be interesting but only O0 objects can be specified for a particular

analy sis,

Many different evolutions of the system are possible in which different ob jects are

created after the initial state. Similar scenarios can be repeated a number of times.

However, many of the states produced may agree on the existence and ordering of

messages with respect to how O0 objects are involved.

For example, in the document release example an initial state might include an

Oscientist object, an Odocument object, and an OpatentOficer object. The scientist

author is aiIowed to read then write to the document. Then the author rnakes a

decision whether to continue to edit the document or to forward the document for

review. The scenario creation and ordering constraints for the scenario types Sinitial,

SdocEdit, and SfomardDecision allow an arbitrary number of creations of a SdocEdit

scenario instance (the scenarïo which authorizes the read and mite messages) before

proceeding to document review. After the author has performed a readlwite on the

document a few times any further instances of SdocEdit do not add any messages

that involve 0' objects in new or different ways. As well, similar kinds of messages

involving O0 objects are not presented in a new order by the repeated scenario in-

stances. Therefore, only a limited number of instances of SdocEdit are interesting

from a safety analysis perspective.

Messages can be considered to be equivalent when reduced to their relationship

to 0' objects. That is, they can be considered equivalent if they treat 0' objects

in the same way. O-reducible equivalence will be defined for messages by defining

O-reducible equivalence on primitive scenarios. O-reducible equivalence for primitive

scenarios is subsumed by the definition of O-reducible equivalence for scenarios in

general. O-reducible equivalence will also be d e h e d for other mode1 constructions.

ORen when it is not confushg O-reducible wül be dropped and mode1 constructions

will be referred to as being equivalent.

Before definhg O-reducible equivalence for scenarios it is necessary to define O-

reducible equivalence for objects. The messages authorized by a scenario tree can

depend on the object visibilities of the objects participating in the scenarios. If

objects of the same type have the same direct and indirect visibility of O0 objects

they are said to be O-reducible equivalent.

The intuition behind object equivalence foUows fiom the fact that object visibil-

ities are speciiied at object creation time. The visibilities therefore refer to objects

existing at the time of creation. The transitive visibility relationships for an object

therefore fonn a h i t e tree structure. If two objects of the same type have the same

visibility tree topology and the same O0 objects occupying the same positions in their

respective trees, then the objects are O-reducible equivalent. O0 objects are trivially

equivdent to themselves. Object equivalence is formally defined as follows.

Definition 3. Two objects a und b are O-reducible equivalent, written a b, iff

ro (a) = ro (b) and either,

1. a,b E 0' and a = b, or

2. a , b fi! 0°, and f o r each parameter binding (ia, ca) E viso(a), there m k t s a

parameter binding (ib, cb) E vis&) such that i, = ib and c, ca.

The definition of object equivalence is recursive. For any object the depth of the

recursion is finite. This can be proven inductively by noting that dl objects are either

O0 objects or are created during system evolution.

Lemma 4. For a system C , and any tîuo objects a, b E 0, the definition of a r o b is

finite.

Proof. The fan out of any node in the visibility tree is finite because the size of

visoT for any object type is defhed to be finite. The proof of f i t e depth of recursion

of the definition is by induction on the number of object creations which have taken

place in the system history. The inductive hypothesis is that for any system state

in which n new objects have been created the lenima holds. The basis case holds

trivially. In a state in which the n + 1st object is created its equivdence to another

object is defhed by determining an equivalence for the f i t e set of objects in its

visibiliw set, viso. These objects must have been created before the n + 1st object.

By the induction hypothesis the lemma holds for each of these objects. Therefore the

lemma holds for systems with n + 1 object creations. 0

Now O-reducible equivalence of scenarios can be defhed. Scenarios are O-reducible

equivalent iff they agree on type and their parameter bindings are equivalent. Scenario

equivalence is formally defined as follows.

Definition 5. Two scenarios # and 3 are equivalent, wn'tten 4 $, i f f ~ ~ (4) =

rS($) and for each parameter binding (i4, a4) E paras(+), there exists a pammeter

bindéng (&a*) E paras(+) such that i4 = y and a# a+.

Given this definition, three useful properties of scenario equivalence are presented

a . lemmas. The first property is that equivalent scenarios will produce equivalent

child scenarios. The child scenarios may evolve in diiferent ways, but they will be

equivalent at the time of creation. This follows because by deibition the construction

of child scenarios depends only upon the type of the parent scenario and the parent's

parameter bindings. The property that equivalent scenarios will produca equivalent

child scenarios is proven for the following lemma.

Lemma 6. For a system C, and scenarios 4 and $, if 4 ro II) at the time of their

i th child creatz'ons, #' is the scenam'o produced using the i t h scenan'o descriptor in

childsT(rs(q5)), and +' is the scenariu pruduced wing the ith scenario descciptor in

childsT(rs(@)), then 4' $'.

Proof. From the cquivalence of q!~ and $, r&) = rs(S>)- Therefore q5 and $

share the i th scenario descriptor and ~ ~ (4 ') = rs(@). Recali that para&') =

pa~entacquiredpara~ (Q) U ~hi ldacp iredpara~ (9') U de f inedparas (4') and similady

for paras ($'). Bindhgs in parentacq~iredpara~ (4') and parentacquiredpa~a~ (#)

are defined by identiner mappings in the shared scenario descriptor and the sets

paras(q5) and paras(+) respectively. By the equivalence of q5 and @, if these m a p

pings must generate bindings (im, ad) E paras(#') and (y, a*) E paras($'), then

i4 = i* -+ a4 a*. At the time of creation of 4' and ?Ir, childacquiredparas(#') =

childacquiredparas(~') = 1). Since rS (4') =TS ($') , de f inedparas (7s (4')) =

de f inedparas (TS(@')). Therefore, an object defined by a de f inedparas binding for

#' WU be equivalent to an object dehed for $' using the same binding. This fol-

lows fkom parentacqui~edpara~ (@) parentacqui~edpara~ ($') and Definition 3.

Therefore, the lemma holds. 0

Scenarios can change state over time and with the change in state their equivalence

class rnay change. More precisely, the mapping specified by paras for a scenario may

change as child-acquired scenario bindings are added, mapping the scenario to a new

function. It can now be proven that it is possible for scenarios that are equivalent

upon creation to evolve in such a way that tiiey remain equivalent. The propem that

equivalent scenarios can evolve in equivalent ways is proven for the foUowing lemma.

Lemma 7. For a system C, and scenarios 4 und @, where 4 $ at the time of their

creation, for any derivable state h there exists a derivBble state g such that q5h $g.

Proof. The proof is by induction on the depth of the scenario sub-tree rooted

at 4. The induction hypothesis is that for a derivable state h where the depth of

the scenario sub-tree rooted at 4 is n there exists a derivable state g such that for

any (i, a) E ch i ldacqu i redpara~ (4) there exists (i, a') E childacquiredpara~ ($) and

a a'. The basis case for sub-tree depth of O holds trivially since there are no

children to contribute to childacqzli~edpara~(q5). Consider the case where sub-tree

depth equals n + 1. By Lemma 6, for any child scenario created by # an equivalent

scenario can be created by $. By the induction hypothesis there exists a state g such

that these children have equivalent tennination states. Therefore an equivalent child

acquired binding is available to T) as required and the lemma holds. O

Another useful property associated with the equivalence of scenarios arises from

the observation that equivalent scenarios shodd have an equivalent set of possible

histories. By equivalent possible histories it is meant that it should be possible to

derive scenario sub-trees from equivalent scenarios such that the sub-trees rooted at

those scenarios have the same topology and equivalent scenazios at each position in

the sub-trees. The propem that equivalent scenarios can evolve equivalent sub-trees

is proven for the following lemrna.

Lemma 8. For a system C , and scenam'os and $, $ 4 0 $, and 4' is a scenario in

a deràvable sub-tree rooted at #, then for the sequence (4, w l , wz, . . . , w,, 4') describing

the path in the sub-tree from 4' to 4, it is possible to derive a state such that there m-s t s

a sub-tree of î/, vhich contains a path defined b y the sequence (Q, w i , wh, . . . , w k , $')

and wi w: for al1 i E 1.. .n, and 4' $'.

Proof. The proof is by induction on the length of the sequence describing the

path in the sub-tree from q5' to 4. The induction hypothesis is that the lemma holds

for sequences of length n. The basis case for sequences of length O hoIds trivially.

Consider the case where the length of the sequence is n+ 1. The sequence would have

the form, (4, W I , w2, - . . , wn+ q5'). Rom the equivalence of # and q5, Lemma 6, and

Lemma 7, a sceanrio w; is de~vable such that w; is a child of $ and w; wl. By

the induction hypothesis the required sequence (w;, w;, . . . , wL-,, +') is derivable and

the lemma holds. C1

0-reducibility and equivalence are also defined for states. O-reducibility is defined

with respect to the permitted authorization pre-order on PA.

Definition 9. A state h is O-reducible to a state gJ written h s0 g , i#

1. f o r al1 primitive scenarios 4 E PA^, there exists 4' E PA9 such that 4 4'
and

2. for all 41Zh$, there exists qSR9$' such that $ 4' and $ $'.

Two states g and h are O-reducible quivalent, written g 0 h, i f l h la g and

g 50 h-

Note that equivalent states would generate equivalent messages and the possible

orderings of equivalent messages with respect to each other would be the same.

4.4.2 Maximal States

Recall that P A and R are rnonotonic. Scenarios trees grow from an initial scenario.

Branches are added as scenario authorization actions occur, moving the system fkom

state to state. Branches are never removed. This is why a history for the system is

associated with a specific scenario tree.

For some system C , if there exist histories with derivable scenario trees represented

by states g and h, such that the scenario tree for state h is an extension of the scenario

tree for state g through a series of permitted scenario authorizations, it can be said

that h can be derived from g. h can be derived frorn g will be written g + h.

It would be useful for safety analysis if there existed some derivable maximal

state such that for any further messages generated by the system there are already

equivalent messages in P A and equivalent pairs in R.

Defmition 10- For a systern C , m is a maximal state i_tf m is deriuable and f o r

all derivable states h such that h -t m and al1 derivable states g such that m + g,

h So m a n d g 5 0 m.

For any system there may be more than one such maximal state. A l l maximal

states are not necessarily equivalent. The existence of maximal states is proven by

the following lemma.

Lemma 11. For a system C, for every derivable state h there &sts a maximal state

m such that h + m.

Proof. Let Sh be the set of states derivable fiom h. For the case in which Sh = (1,
h is a maximal state derivable from itself in zero steps. The number of equivalence

classes of states in S is f i t e . This is because the number of equidence classes of

primitive scenarios in P A is finite since there are a finite number of scenario m e s

and 6' objects. There are a finite number of possible orderings (for a representative

member of each of these scenario equivalence classes) that can be represented in R.

Therefore, for a state h there are a f i t e number of equivalence classes of derivable

states. Let T~ be a set of states such that there is a representative rnember £rom each

of the equivalence classes of Sh. If for every g E T ~ , g qo h, thetl h is a maximal

state. Otherwise there exists some state g E T~ such that g go h. Consider evolving

the system to state g. Form S g and T9 similarly to sh and Th. Sg Ç sh. By the

monotonicity of P A any state in Tg previously O-reducible to h is O-reducible to g.

Since the number of elements in Ts must be finite the system can continue to be

evolved in a similar way until ail derivable equivalence classes can be reduced. This

state WU be a maximal state for h.

It is apparent that for any system state, there may be one or more non-equivalent

maximal states. This is because as a scenario tree for a system evolves some scenarios

rnay have orderings of type m. These scenarios are decision making scenarios and the

resulting possibilities for scenario tree evolution are mutually exclusive? Therefore,

as a system evolves, the set of derivable states it can reach may decrease. DifFerent

decisions at a scenario with an or ordering may lead to different sets of reachable states

and therefore to different maximal states which are not equivalent. For example,

consider a system in a state for which it is possible to authorize a scenario with an or

ordering. When this scenario becomes authorized it is possible for further evolution of

the system to continue with the actions associated with m y one of the child scenarios.

In this state there is a possible history associated with each one of the child scenarios.

Once an action is taken on one of these possible history paths the other paths are

no longer possible. Le., some of the possible histories of the previous state are no

longer possible. A different maximal state may have been associated with each of

the mutually exclusive possible histories. Once the system begins to evolve dong one

of these paths the maximal states associated with the other possible histories may

no longer be reachable. Le., some kinds of messages, or message orderings, may no

longer be possible to generate.

It would be more useful for safety analysis if there was a system maximal state

which would describe all possible occurrences of messages and their respective order-

ings. Inspection of P A and R for such a state would yield an answer to the safety

problem. However, it seems that such a state would not be derivable if there are

scenarios with or orderings.

Consider construction of a scenario tree for a state in the normal way but allowing

authorization of scenarios which are normally mutudy exclusive by way of an or

ordering. Such a state would not be derivable but the set P A would include al1

messages possible on either mutually exclusive branch of the tree. The message

ordering relation R for this new scenario tree would not contain any orderings which

were not possible in some derivable scenario tree. This is because, by the definition

of R, messages on the mutually exclusive branches are not comparable and would not

contnbute new pairs to the relation.

It is possible that such a non-derivable state could be constructed such that all

maximal states for a system could be O-reducibie to that state. The existence of such

a state is proven for the following theorem.

Theorem 12. For a system C , there is a state m*, tuhich may not be deriuable, svch

thut:

1. there exists #,$' E PAm' and 4'Rm9$' where 4' 4 and $' y5 i f there

exists 4, E PAm and q5R"+ for some maxz*rnal state m, and

2. there exists qS, $' E PAm' and tfRm'$' only i f there &ts $, $ E PAm and

@Rm$ for some mm-mal state m, where q5 =O 4' and $'.

Proof. The proof is by induction over the nurnber of equivalence classes of maximal

states in a system. The bais case is one equivalence class of maximal states and in

this case m* can be any member of the equivalence class. Consider a set T which

contains one member fkom each equivalence class. Assume the theorem holds for T

of size n and consider T of size n + 1. T = S + { r) where [SI is n. By the induction

hypothesis there is a state, m, which satisfies the theorem for S. Create a new state,

m' by superimposing the scenario tree for m and the tree for state r. 1. e., add to

the tree for m any branches which exist in r but do not already exist in m. Adding

such branches means that where there is a path between a scenario and root in the

tree for r , equivalent scenarios corresponding to that path are created in the tree for

scenario m if they do not already exist. This is possible by Lemma 8. For the if

case, the induction step must show that for m (or T) , such that 4, II, E PAm (or

E PAr) and @RmS (or @E$), there exists qY, 1C>' E PA^ and q5Rrn'+' where 4 =O 4'
and S, $JI. This is so because, by the construction of m' and the definition of P A

and R, m' and m (or r) have equivalent paths joining at equident scenarios. For

the only-if case of the induction step it must be shown that for q5', $' E PAm* and

$'P*+' there exist an m such that 4, E PAm and 4 P $ such that 4 4' and

$ +'. Again, this case fokws by the construction rules for scenario trees and the

definitions of P A and R. Consider the paths fiom 4' and $' to root. If 4'Rm*+' exists

then the paths are not mutually exclusive and it is possible to construct a derivable

state h with equivalent paths. Let m be a maximal state for h. By the definition of

maximal state, Definition 10, q5 and exkt in m as required. O

Corollary 13. State m* as defined in Theorem 12 is a system maximal state such

that for al1 maxzirnal states of the systern, rn, m m*.

For a system there may be more than one system maximal state but it is evident

from Corollary 13 that all such states are equivalent.

4.4-3 Unfolded State

Theorem 12 proves the existence of system maximal states but does not provide

an algorithm for construction of such a state. To proceed with safety analysis, an

algorithm will be proposed to construct a characteristic state for a system under

analysis. It will then be proven that such a state produced by the algorithm is

equivalent to the system maximal states for the system. Safety analysis can then be

conducted by inspecting this state. The analysis strategy presented here owes much

to Sandhu's work on the Schematic Protection Mode1 [San88]. In SPM, analysis

proceeds using an unfolding algorithm which creates a representative of any subject

that might exist in the system. The mechanism for transfer of access rights is applied

iteratively wherever allowed until the systems stabilizes. This results in a worst case

which identifies what access rights a subject might possibly get. This analysis must

assume monotonic s e c e policies as rights are continually added to the system to

reach the worst case, a maximal state.

The strategy here is Werent in that the unfolding algorithm is not creating repre-

sentative subjects but instead creates representative scenarios. As system execution

evolves, scenarios are created but are never destroyed. Scenarios that are not currently

active are just past history. History cannot be destroyed. Therefore, the unfolding

algorithm is monotonic in scenario creation over time. Each scenario represents an

ordering of child scenarios. These scenarios are by dehition only authorized at a cer-

tain time during the evolution of the parent scenario. The set of currently authorized

scenarios is non-monotonie over system execution. This change in focus allows the

use of an analysis strategy similar to that used with SPM to be used with systems

with non-monotonie security policies.

The possible histories for actual systems c m grow arbitrarily large. To provide

efficient analysis an algorithm is needed to provide a method for the construction of

an unfolded state. The algorithm should be designed to limit the complexity of the

scenario tree that is produced for the purpose of safety analysis.

The intuition behind the construction of the unfolding algorithm is based on the

property that equivalent scenarios may result in equivalent scenario trees (Lernma 8).

If this is the case then recursive occurrences of equivalent scenarios may lead to

redundancies in the unfolded state tree. Le., the redundant portions of the tree do

not contribute to P A or R and need not be represented. Consider the following cases.

In the first case consider the occurrence of more than two equivalent concurrent

scenaxios on a path to root. Note that a message associated with a primitive scenario

in a sub-tree rooted at a concurrent scenario can occur before or after any message

associated with a primitive scenazio in a sub-tree rooted at another concurrent sce-

nario. If there are already two such equivalent scenarios on a path to root, another

occurrence of a scenario from this equivalence class will not add to P A or R. This is

because the sub-trees rooted at these two scenarios will act as surrogates for sub-trees

rooted at any arrangement of preceding and following equivalent scenarios along a

path to root. By the concurrency of the sub-trees, scenarios from the equidence

classes of primitive scenarios represented in the sub-trees can come in any order with

respect to each other. Fùrther occurrences of equivalent sub-trees would not add any

new orderings.

In the second case consider the occurrence of more than two equivalent non-

concurrent scenarios on a path to root. Consider specifically the case where there

are no intervening concurrent scenarios between the occurrences of the equivalent

scenarios. If there are already two such equivalent scenarios on a path to root, another

occurrence of a scenario fiom this equivalence cfass will not add to P A or R. Again,

this is because the sub-trees rooted a t these two scenarios will act as surrogates for

sub-trees rooted at any arrangement of preceding and following equivalent scenarios

along a path to root unbroken by a concurrent scenario.

The following definition describes a fully mfolded state that captures all possible

scenario equivalence classes and eliminates redundant, recursive scenarios.

Definition 14. For a systern C, the fully unfolded state u is defined by applying the

unfi lding algorithm t o the initial scenario, So. The unfolding algorithm is def i lad by

the following pseudo code:

unfold(SO)

Where:

unfold(Sp,, : scenario)

begin

for(each scenario descriptor, d , in ~ h i l d ~ ~ (~ ~ (S & ~ ~)) in turn)

begin

create a child. SchiIdy using d and pa~a~(S,,,~)

if(ms(Sdiiid) and 3 scenarios 4, $ on the path to root for SAild

s-t. 4 =O q!~ Scmd and ams($) and cons(+)) then

continue

e l s e i f (~ ~ o n ~ (S ~ ~ ~ ~) and 3 scenarios 4, 11> on the path to the last concurrent

scenario s.t. 4 ?,b =O Schild) then

continue

else

~ I I f o l d (& ~ ~ ~)

end

end

The algorithm halts the evolution of a branch of the scenario tree when recurring

scenarios are detected. This ensures termination of the algorithm.

Lemma 15. The construction of definition 14 t emina tes .

Proof. The scenarios created by the application of the algorithm form a tree rooted

at the initial scenario So. By the definitions of childs and scenario authorkation each

scenario can only have a finite number of children. At the most, a scenario can have

a child correspondhg to each of the scenario descriptors specified by the function

childsT for that type of scenazio. The evolution of tree branches is halted whenever

more than two concurrent equivalent scenarios are on the path to root or if more

than two non-concurrent equivalent scenarios are on the path to the last concurrent

scenario. There are a finite number of equivalence classes of equivalent scenarios since

there is a finite number of scenario types and a finite number of objects in 0'. The

length of every path in the construction must therefore be finite.

An important property of state z i is that it contains all possible sequences of non-

repeating scenarios (up to the point of scenario equivalence). This prope* becomes

important later in proving that u is a system maximal state. The property of u

containhg all possible scenazio sequences is proven for the folIowing lemma.

Lernma 16. For a system C, let u be the state produced by definition 14. For a

sequence of scenan'os, . . . , #,.Ji that defines a path through the scenario tree for

some state h, such that there are no equiualent scenarios in the sequence; there exists

a sequence of scenan'os, (4;, c&, . . . , @:), that defines a path through the scenario tree

for u, where di 0 4, 4 2 =O #;, . - - , 4n 4;.

Proof. Consider a point in the execution of the algorithm where evolution beyond

a scenario 4 is halted because it is equivalent to some scenario on the path to root

for 4. By lemma 7, for any sub-tree rooted at q5 an equivalent sub-tree is also possible

for $. By definition 14, for each scenario all possible children are authorized (up to the

point of repetition) in the unfolding of state beyond +. Therefore, any path sequence

created by unfolding the state beyond # (again up to the point of repetition) has an

equivalent path sequence beginning at +. 1. e., further repetitions do not produce any

new equivalence classes of non-repeating sequences, and state u contains d l possible

equivalence classes of non-repeating sequences. State h and state u are both evolved

from So. Therefore, for any non-repeating sequence in h an equivdent sequence can

be found in u. Cl

4.4-4 Proof of u as a Maximal State

Now, it must be proven that a fully unfolded state u produced by the algorithm of

definition 14 yields a state equivalent to a system maximal state. That is, it must be

proven both that a state h, which is a system maximal state, is O-reducible to u and

that u is O-reducible to such an h.

Lemma 17. For a system C , let u be the state produced by aefinition 14. For any

state h, which is a ssystem maximal state, h u.

Proof. It must be proven that:

1. for all + E PAh, there exïsts 6' E PAu such that q5 #' and

2. for a l l $Rh@, there exïsts #RU@' such that q5 4' and 1C> $JI.

Part 1 follows directly fiom lemma 16. u has equivalent sequences for all non-

repeating sequences that are present in h. u must then have equivalent scenaxïos for

aLl scenarios that are present in h.

The proof for part 2 is more involved. A l l elements of P A and R in a system

maximal state c m be produced by some derivable state. It will suffice then to prove

part 2 true for any derivable state h. Proof is by inductio~l on the nurnber of scenario

authorization operations resulting in state h. The induction hypothesis is that part

2 holds for n scenario authorizations. The basis holds for the initial state and zero

scenario authorization operations. Consider a state, h, with n + 1 scenario autho-

rizations. Sh = S 9 U (41, where state g has n authorizations and 4 is the n + lst

scenario authorized. By the induction hypothesis, part 2 holds for Rg and there-

fore for any pair in Rh which does not involve scenario 4. If + is not a primitive

scenario then Rh = R9 and the induction step holds. If 4 is a primitive scenario

consider $J E PA9. Now for the induction step it must be shown that part 2 holds

for +Rh$ or Rh if they exist (those pairs involving the new scenario). Let the

paths to root for 4 and 9 join at scenario a. On the paths fkom 9 and ?I> to O and on

the path to root from a there may be zero or more equivalent scenarios. Construct

new paths for these three path segments by elirninating the segments of the paths

between concurrent equiwdent scenarios. For exampIe, consider a path sequence

fiom a to 4, (a, XI,. . . , An, QI, %, . . - , yk, Oz, cii, - . . , +), where 81 02 and 81

and O2 are concurrent. By lemma 8, it is possible to create a derivable scenario se-

puence (o, Al, . . . , An, &, 6:, . . . , &, qY), where 6; &, . . . , & 6, and 4" #.

Continue to eliminate segments of paths between concurrent equivalent scenarios un-

til no such segments remain. Apply the same technique to eliminate segments of

paths betmeen non-concurrent equivalent scenarios that lie between any two concur-

rent scenarios. 1. e., for a path sequence (a, XI, . . . , A,, p, A,+l, . . . , Am: el, 3, . . . , yj,

& , - . . , &, w , bk+l, . - . bl, 4) where p and w are concurrent, form a new sequence

(O, Al,. . . , An, p, An+l,.. - , Am? 01, di,. . . , &, w', 6;+,, . . . ,cf;, v). Again, continue to

eIiminate segments until no such segments remain. In a similar way create new path

sequences between CT and @"' and So and dl. By lemma 8 it is possible to construct

equivalent path sequences between O-'' and $"', and d' and $+'"" where 4"' 4",
and +"' $". The resulting paths to root for #" and $"' have no more than two

concurrent scenarios from any equivalence class. As well there will be no more than

one scenario fiom any equivalence clam between two concurrent scenarios. By the

construction of definition 14 and lemma 16 there must be equivalent paths to root

from #' and $' in the scenario tree for u, where o ro d dl', 4 =O 4' =O q5"', and

.tC, $' Sr'". Therefore by the definition of RU, #'Ru+' or $'PqS wiU exist as

required- O

Lemma 18. For a system C, let u be the state produced by definition 14. For any

state h, which is a system rna=c~~ntal state, TL h.

Proof. It must be proven that:

1. for ail# E PAU, there exists 4 E PAh such that q5 ro 4' and

2. for all #RU$', there exists 4 ~ ~ $ such that qb GO 4' and $J mo $'.

To prove part 1 consider a primitive scenario 4' E PAU. By definition 14 the path

to root for 4' îs derivable. Therefore, there exïsts a state h' for which the scenario tree

contains an equivalent path. Rom lernma 11 and theorem 12 there exists a systern

maximal state h such that hf h. Therefore, there exists a scenaxio 4 E PAh as

requhed.

To prove part 2 consider a pair (#', q5') E P. The paths to root for 4' and $' join

at scenario d. By definition 14 the paths to root for Q and $' are derivable. By the

definition of R, urdersT(~s(cr)) # or. Therefore, the branch paths to 4' and +' are

not mutuaUy exclusive. A derivable state h' c m be constructed such that its scenario

tree has paths equivalent to these two. The new tree WU contain scenarios 4, and

O such that $ qS, II , $' and a cf, and the paths to root for q5 and + j ob at

. From lemma 11 and theorem 12 there exists a system maximal state h such that

hf h. Therefore, there exists a scenario pair ($, +) E Rn as required. U

Theorem 19. For a system C , let a be the state produced by definition 14. For any

state h, which is a system maximal state, u -0 h.

Proof. The proof follows directly fiom lemmas 17 and 18, and defmition 9 for

state equivalence. O

4.4.5 Complexity of Safety Analysis

The Mly unfolded state u is a system maximal state. The safety question formulated

by definition 2 can be answered by constructing u and inspecting the authorization

properties PAu and RU. This method will determine whether it is possible for two

scenarios 4 and q5 (or their equivalents) to exist and if the ordering 4Rq5 is possible.

The corresponding paths in the scenazio tree for state u (the analysis tree) also provide

a history of system events that make such an occurrence possible.

The complexity of performing such an analysis depends on the complexity of the

two main operations, construction of the analysis tree and inspection of the analysis

tree.

The unfolding algorithm described by definition 14 that produces the analysis tree

is controlled by the procedure unfoldo. The procedure has a main loop that creates a

child for each scenario descriptor belonging to the childsT set defined for the scenario

passed as a parameter to the procedure. The body of this loop performs two searches

along the path to root for the newly created child scenario and may recursively invoke

itself on the new scenario. The searches along the paths to root for repetitions of

scenario equivalence classes can be done in constant time by maintainhg a hash of

the equivalence classes dong the current path to root. Due to the recursive procedure

caU, the main loop of the procedure will be executed once for each scenario created

by the construction of the analysis tree. This is in the order of [SI. [SI is constrained

by the number of child scenarios that c m be created by each parent scenario (the

fan-out at each node of the tree) and the depth of the paths in the tree (controlled by

the parent-child relationships defined by childsT and the conditions cont rohg the

recursion of the procedure).

The fan-out for a particular scenario, 4, is defined by the cardinality of

childsT(rs(4)). This is finite by definition but is otherwise unconstrained by the

modeling scheme. However, it is not normal for human designers to work with sce-

narios that have more than a few child scenarios.

The depth of the paths in the analysis tree are controlled by the parent-child

scenario-type-to-scenario-type relationships defined statically by the scenario descrip

tors in child-. These relationships control how the analysis tree unfolds. The depth

of the tree in bounded by the termination of evolution paths associated with the

detection of repeated scenario equivalence classes on a path back through the tree

to root. An upper bound for tree depth depends on the (finite) number of equiva-

lence classes for scenarios possible in the system. The number of possible equivalence

classes is characterized by the number of scenario types dehed for a system, and the

number of O0 objects which can act as parent acquired parameters to the scenarios.

The number of parent acquired parameters is defmed by the modeling scheme to

be finite but is otherwise unconstrained. There can be a t the most two concurrent

equivalent scenarios on a path to root and a maximum of two non-concurrent equiv-

dent scenarios between any two concurrent scenarios on a path to root. Therefore

the maximum path length (tree depth) is (2 x n,,)2, where ne,% is the number of

possible equivalence classes for scenarios in a system.

The worst case analysis tree can be approxkated by a k-ary tree. The number of

interna1 nodes in a complete k-ary tree, where all nodes have degree (fan-out) k, and

the depth of the tree is h is (kh - l)/(k - 1). Clearly, the worst case upper bound

is intractable even for small systems. However, it is expected that in actual systems

the number of parent-child scenario-type-to-scenario-me relationships defined by

chddsT will be very much smaller than the cornplete connectivity implied by the worst

case. This is the case for inter-scenario relationships in contemporary object-oriented

analysis and design. There rnay be a large class of systems for which production of

the analysis tree is tractable. The examples presented in Chapter 5 are representative

of some interesting dasses of system for which analysis is tractable.

The second of the two main operations that contribute to the complexity of per-

forming safeSf analysis is the inspection of the analysis tree. In formulating a safety

question in the format of dehition 2 two scenarios, 4 and are defined. Occurrences

of scenarios q5' and $' are identified in u, where 4' =O 4 and $' $. The joining

scenario on the paths to root for each such 4' and 11' is a scenario d. ordersr(rS (d))

and childs(a) are inspected to determine if the conditions are met for ~'R"$J'. A full

walk of an analysis tree of n scenarios ([SUI) visits each scenario twice and requires

two scenario cornparisons for each of the n scenazios (once each for # and 11). This

complexiity may be reduced by using an indexing scheme at the time of analysis tree

creation. For a search that produces 1 scenarios 4' and m scenarios +', there are 1 x m

checks required to determine if there exists a pair @'R?,K For each of these cases the

paths to root must be searched to find the appropriate d. This would requise in the

worst case h comparisons, where h is the depth of the paths to root. The complexity

of the inspection operation is in the order of 272 + 1 x m x h. The size of 1, m, and

h will be small relative to n. For an analysis tree that has tractable construction the

inspection of the tree is also tractable.

Chapter 5

WORKED EXAMPLES

5.1 Introduction

This chapter presents a set of examples. The SBAC modeling scheme is applied to

specXc kinds of problems. The first four examples are taken fkom the literature. They

provide a small set of interesting security policies that have been used in other work to

demonstrate the ability of a modeling scheme to express useful system models. This

is also the purpose of including such examples here. The Iast example is an SBAC

adaptation of an ob ject-oriented analysis for a military message system. The original

non-SBAC model was done by a graduate student as part of the requirernent for

completion of a course in object-oriented analysis and design. This model provides an

example of SBAC being used in conjunction with contemporary softwaxe engineering

analysis and design techniques. This example dso provides a n example of a model of

a larger system, and an example of how the safety analysis scheme performs with a

larger size model.

A design capture and analysis tool was implemented to explore the deihition of

SBAC modeIs and the construction of analysis trees for specific system instances of a

model. The tool can be used to speciS. a security model directly using a windowing

interface or it can accept a specially marked-up Rational Rose model f le as input.

This tool was used in the development of some of the examples presented. The last

section of the chapter describes the modeling tool and some of the results achieved.

5.2 Document Release Example

The document release example was presented in Section 2.3.3 (cf. Sandhu, [SG94]).

Recall that a scientist prepares a paper for publication. Before the scientist is ailowed

to publish the paper it must be cleared for publication by a patent officer. The patent

officer can authorize the paper for publication or she can return it to the scientist for

revision. The scientist is init idy able to m o d e the content of the paper but loses

that right while the paper is under review. The scientist is also not able to alter the

content of a paper authorized for publication by the patent officer.

An SBAC analysis specXcation for this problem was presented in Chapter 2,

Figures 2.3 to 2.10. The work flow of a document begins with a perîod aIlowing the

scientist to work on the document, moves to a review period by the patent officer, and

then back to the scientist, either for publication or rework. The first three scenario

types presented in the set of figures are: Sinitial, SdocEdit, and SforwardDecision.

These control the scientist's initial editing of the document and decision to forward

the document for review. Sinitial is a sequential scenario and specifies that the sci-

entist be allowed to edit the document. This is authorized by an SdocEdit scenario,

which in turn authorizes a read of the document followed by a write (primitive sce-

narios). When an edit is complete Sinitial authorizes the scientist to make a decision

about forwarding the document. Le., authorization of a Sforwa~dDecision scenario.

An SforwardDecision scenario authorizes both a recursive return to editing by aut ho-

rization of another Sinitial scenario, and the forwarding of the document for review

by autho~zation of an SdocFomvard scenario. The SfonuardDecision scenario has an

or ordering so the actions involved in these two child scenarios are mutually exclu-

sive. Given this set of scenarios the scientist c m continue to edit the document an

arbitrary number of times before finally making the decision to forward it for review.

The next scenario type presented is SdocForward in Figure 2.6. This scenario type

specses a message pass fiom the scientist to his assigned patent officer requesting

a review of the document. Following this message a scenario of type SdocReview is

authorized, Figure 2.7. This scenario allows the patent officer to read the document

and then authorizes a scenario of type SreleaseDecision, Figure 2.8. The SrelmeDe-

cision scenario has an or ordering. This allows the patent officer to make one of three

choices. She can continue to review the document (recursive authorization of another

SdocReview scenario) , or she can approve the document for release, or she can retum

it to the scientist for revision (authorization of scenarios of m e s SdocRelease and

SdocRevision respectively) . An SdocRelease scenario, Figure 2.9 creates a new release

authorization object and passes it back to the scientist. The scientist can use this

ob ject to indirectly publish the document. An SdocRevision scenario, Figure 2.10

passes the document back to the scientist and recursively starts the whole editing

and review process over again by authorizing another Sinitial scenario.

The only actions permitted by the system are those authorized by scenario in-

stances. The example bas been designed such that the scientist can either submit

the document for review or continue to edit. One action prohibits the other. The

scientist gets the authorization to edit back only if the document is returned for revi-

sion. If the document is approved for release, the scientist has no direct access to the

document to edit. This is because there is no way to generate an SdocEdit scenario

after the document has been approved for release. The only authorized action is to

release the document for publication. Note that the role parameters for a scenario

cannot be changed after the scenario is authorized. Therefore, the construction of

scenario type SdocRelease ensures that the creation of the release authorization binds

the approved document to the release authorization, and that the document release

authorization is returned to the author of that document.

5.3 Pro ject Management Example

The project management example is an example of role-based access control using

hieruchical roles. Role-based access-control rnodels are characterized by the definition

of SBAC roles. Such roles were described in Section 2.2.18 and are separate from the

concept of scenario/object roles associated with the scenario and object bindings

defined for SBAC modeling in Chapter 3. In B A C models a role is associated with

a set of permissions. Users are associated with roles at the discretion of the system

administrator. Users perform aiI activities within the scope of a session. A session

may have one or more of the user's pennitted roles active at any time.

The project management example (cf. [[San98]) considers a system where there

are multiple people working together on a project. There are a nurnber of shared

objects the different team members will interact with in different ways. The kinds of

permissions the team rnembers have for the shared objects c m be broken down into

three groups that can be associated with three different roles. Permissions needed by

al l team members c m be held by a role project member. There are also roles for test

engineer and programmer. An administrative role, project supervisor should inherit

al1 permissions available for the shared project objects. This role hierarchy is a partial

order and is depicted in Figure 5.1.

The permissions associated with roles are statically assigned and represent ab-

stract authorizations. Typically, the permissions allow a subject to execute a specific

program on a specific type of data item. It seems natural to mode1 such permissions

as an authorization to invoke an interface method of an abstract data type, i.e. an

object. In this example permissions will be authorizations for primitive scenarios.

An RBAC role will be represented as a scenario type. Scenaxios are defined by the

modeling scheme to authorize a number of other scenarios. In this case a scenario rep

resenting an RBAC role authorizes a nurnber of primitive scenarios that represent the

proj ect supervisor

test engineer programmer

proj ect member

FIGURE 5.1. Project Management Role Hierarchy

L --
Scenario Orderiug: <OR>
P ARAN

FIGURE 5.2. Scenario Type SprojectMember

operation 1() [LJ-

S cenarb Ordering: <OR> @
P ARAIN:

mkUser
mks

DEFP ARA:
objectl = roles.pmjectMmber.obj1
object2 = mks.pmjecthkmber.obj2

FIGURE 5 -3. Scenario Type StestEngineer

Scenario Ordering: <O-
PARAM

roleUs er
roks

DEFP ARA.
object3 = roks .pmjecWmber.obj3
object4 = roks.projecth4?mber.obj4

Scenario Type Sprogrammer

roleUser : Ouser : I

S cenario Ordering: <OR> 1
PARAIN:

FIGURE 5.5. Scenario Type SprojectSupervisor

permissions associated with the RB-4C role. A scenario representing an RBAC role

has an or ordering. This doms all the permissions in a role to be authorized simul-

taneously, as is normal in RBAC. Roles may be arranged in hieraxchies by including

one RBAC role scenario type as a child of another. For example, see Figures 5.2

to Figures 5.5. The scenario type SprojectMember speczes that the role user can

invoke operation30 on object2 and and operation50 on object3. The object roles is

present here only as a mechanism to provide visibility of the objects under access

control. Scenario types StestEngineer and Sprogrammer also specify op erations t hat

a role user can invoke. These are different operations that are reserved for users who

are acting as test engineers or programmers respectively. These scenario types also

specify the authorization of a child scenario of type SprojectMember. The inclusion of

this child rnakes the permissions specified for al1 project members available to users

acting in the test engineer or programmer role. The scenario type SprojectSupemisor

provides the role user with all available permissions by authorizing children of types

StestEngineer and Sprogramrner.

I r o t U s e r :] robs : Oroks

FIGURE 5.6. Scenario Type SprojSuperRegen

An active role also has associated with it a role regenerator scenario. When any

one of the primitive scenarios representing an RBAC role permission is terminated

(ie. the permission is used) all the RBAC role scenarios in the hierarchy terminate

because of the or scenario ordering specified for the scenario types. It is normal

for a user to have all the permissions associated with a role for as long as the role is

active in a session. Therefore, the role hierarchy needs to be regenerated to restore the

permissions after one is used. Consider the scenario type SprojSuperRegen specîfied in

Figure 5.6. This scenario type has a seq ordering. The first child scenaxio authorized is

an RBAC role scenario (an Spro jectSupervisor scenario in this case). If a permission is

used some place in this role hierarchy the SprojectSuperuisor scenario terminates and

the Spro jSuperRegen scenario recursively authorizes a new Spro jSuperRegen instance,

which restores the role permissions. For each role that a user rnay directly assume, a

corresponding role regenerator is speciüed.

A session is managed in this example by a session controller object and set of

role initiator scenario types. There is one role initiator for each RBAC role that a

user may directly assume. A user controls what roles are active by sending mes-

FIGURE 5.7. Scenaxio Type SprojSuperInit iator

sages to a session controller. An activate message is sent when the user wants to

make a role active. Each of these messages, which activate different roles, is autho-

rized by a different role initiator. The role initiator is a scenario type with a seq

ordering. When an initiation message is sent, the authorization for that message is

coasumed and a role regenerator scenario for the associated role becomes authorized.

For example, see Figure 5.7. This scenario type activates the SprojectSupervisor role.

When the user sends an activateProjectSupen/iMr() message to the sessionCont~oller

the SprojSuperInitiator scenuio authorizes a SprojSuperRegen scenario that provides

the required permissions.

The mappings fiom users to roles are specified by a role selector scenario type de-

h e d for each user. A role selector scenario authorizes a role initiator child scenario for

each one of the roles permitted for the associated user. The role selector has an and

scenario ordering. This means a l l the role initiators associated with the role selector

are authorized a t the same time. A role is not active until the activation message for

its role initiator occurs. The recursive nature of the role regenerators authorized by

role initiators means that the rule initiators will never terminate. Therefore, a user's

S p r o ~ u p e ~ ~ t o r (O u s e r , Orots . O?kSeCctor)

FIGURE 5.8. Scenario Type SbobsRoleSelector

rok selector scenario is specified In this example to be a concurrent scenario. This is

so that the scenario that spawns the role selector is not dependent on the selector's

termination before it is able to c a r y on with other authorizations. Figure 5.8 ilIus-

trates a role selector for some user, Bob. Suppose Bob is authorized by his Company

to act as both the project supervisor and as a programmer on the project. He is

also a member of the project tearn. Note that a scenario of type SprojSuperInitia-

tory which was defined above, is a child of a SbobsRoleSeEector. Scenarïos of type

Sp rogramrnerlilétia ta r and Sp ro jectMem berhi t ia to r are also speczed as children and

would be d e h e d similady.

This example provides a model for a specific role-based security policy. The ex-

ampie &O provides a general strategy for approaching RBAC style systems using an

SBAC modeling scheme. The role hierarchy lattice can be captured by using hierar-

chical parent-child relationships between scenarios that are modeling role permissions.

A securiw administrator can specify a set of user types, roles based on the set of user

types, roles an individual user is permitted to activate, and permissions associated

with each role. Although this example did not consider deactivation of roles in a

user's session, it is easy to include such a requirement as part of the role regeneration

mechanism.

5.4 Sales-order Processing Example

The purpose of this example is to demonstrate the use of SBAC to model task-based

access control. A version of the classic sales-order processing example is presented

in [TS94] to illustrate the modeling and management of task-based authorizations.

One of the primary goals of scenario-based access control is to provide efficient safety

analysis for systems modeling legitimate use policies. Legitimate-use is also a moti-

vation for TBAC. A version of the sales-order processing example is used here as a

demonstration of SBAC being used to capture task-based access-control requirements.

Recall from Section 2.2.19 that the fundamental abstraction is an authorization-

step. An authorization-step represents a primitive authorization processing step and

is the analog of a single act of granting a signature in a paper-based system. A

permission in TBAC is an element of P S x O x A x U x AS, where S is the

set of subjects, O is the set of objects, A is the set of actions or access rights,

U is a set of usage and validity counts, and AS is the set of authorization-steps.

Permissions are associated wit h exactly one instance of an aut horization-step. An

instance of an authorkation-step is associated with exactly one instance of a task.

Each authorization-step maintains a protection state that is the set of permissions

currently valid for that authorization-step.

In this example primitive scenarios are used to model TBAC permissions. Scenar-

ios are used to model authorization-steps. Tasks are groupings of authorization-steps

and are also modeled in SBAC by scenazios. The task grouping relationship is mod-

eled by the scenario parent-child relationship. A primitive scenazio specifies a sender,

a receiver, and a message type. This corresponds to the S, 0, and A components of

a TBAC permission. An SBAC primitive scenario authorizes a single message pass,

which can be considered its usage and vdidity count. SBAC primitive scenarios are

associated with the scenario that created them and provide an authorization for a

message pass in the context of that scenario. This models the relationship between a

TBAC permission and its associated authorization-step.

TBAC provides for existentid, temporal and concurrency dependencies between

authorization-steps. Tnere are related dependencies explicitly specified in SBAC

models. An existentid dependency in TBAC specines that the change in state of

one authorization-step implies a change in state of some other authorization-step. In

SBAC, the creation of a scenario can imply the creation of one or more of its children.

As weU, the termination of a child scenario can imply a change of state in its parent,

i-e- the creation of another child. A temporal dependency in TBAC specifies that a

state transition for one authorization-step necessarily occurs before some state transi-

tion for some other authorization-step. Temporal dependencies in SBAC are specified

by the order of occurrence of scenario descriptors in childsT and the scenario ordering

specified by or d e m . Temporal dependencies between primitive scenarios (permis-

sions) can be discerned by inspection of the authorization properties defined by the

preorder R on the set PA. Concurrency is modeled in SBAC by specifying that a

child scenario is concurrent to its parent.

The salesorder processing example presented here is composed of five main autho-

rization tasks: de-te=, credit-terms, goods-removal, shipping-terms, and billing.

These tasks track and control the progress of a merchandise order through the busi-

ness structure of a vendor. There are one or more authorization-steps associated with

each task. It is important that the steps occur in the correct order and that only

certain specific people authorize the progress of an order through the various steps of

the business process. An SBAC model for each of the five tasks wiU be presented in

tum.

The task sale-tenns is modeled by the scenario fqpe SsaleTerns. There are three

authorization-steps associated with this task. They are the creation of a new sales

order, negotiation and authorization of the price, and negotiation and authorization

of the delivery date. The steps must occur in this order. See Figure 5.9. The

authorization-steps are modeled here as primitive scenarios. I. e., in this case there is

only one permission associated with the authorization-step, so it is not modeled as a

separate scenario type containing a single primitive scenario. This can be thought of

as an abstract representation of the authorization-step. If more detail is provided as

the mode1 is refined, these primitive scenarios may become complex and hide a number

of permissions (or sub-authorizations) as required. Each of these authorization-steps

is authorized by a sales clerk. Only the clerk associated with this task may make the

FIGURE 5.9. Scenario Type SsaleTerms

appropriate authorization. The 1 s t child specified is a non-primitive scenario of type

Scredit Tems. This is an authorization for the next task, credit-terms.

The task credit-terms is modeled by the scenario type ScreditTenns, Figure 5.10.

The task is composed of four authorization-steps. First, the sales clerk who prepared

the order is authorized to forward the order to a credit clerk for credit checking.

Next, the credit clerk is authonzed to read and then perform a credit check on the

client. Notice that PperfonnCreditCheck is a primitive scenario (it is not marked with

a <scenarïo> tag). The credit clerk is sending a message to itself. This is an abstract

operation and a likely candidate for fwther elaboration. The fourth authorization-

step is modeled by a child of scenario type Screditcheck and its children. ScreditCheck

has an or scenario ordering. This is used to capture the non-determinism involved in

the decision by the credit cierk to gant or not to grant credit to the customer. This

would presumably be based on the customer's credit rating and account history which

cannot be known until run-time. ScreditCheck results in two authorizations; however,

c s c e n a h > !$= 1 I

I
' S cenario Ordering: <SEQ> \

b

I saksclerk
salesOrder

1 DEFF'ARA:
creditCIerk- salesCkrkc~ditCkrk

FIGURE 5.10. Scenario Type ScreditTerms

creditCierk
sales Order

FIGURE 5.11. Scenario Type ScreditCheck

PannotateCreditP ass ed() -
FIGURE 5.12. Scenario Type ScreditPassed

OcreditC krk OsalesOrder

I 1 /
sales Order j

FIGURE 5.13. Scenario Type Scredit Failed

only one wiU be actioned. Effectively the credit clerk is authorized to either g a n t

credit or refuse credit, but not both. The associated children are scenarios of types

ScreditPassed and ScreditFailed, Figures 5.12 and 5.13. In the case of ScreditPassed

the sales order is annotated a s passed and the next task, goods-removal, becornes

authorized. In the case of ScreditFailed, the sales order is annotated as failed and

the scenario terminates. This causes its parents to terminate as well, backing up the

scenario tree to the original SsaleTerms scenario. This happens because there are no

more children to create in accordance with their scenario descriptor sets and scenario

orderings. This effectively revokes all authorizations for the sales order. As the mode1

is presented, the sales order is not able to participate in any further scenarios. The

failed credit step stops any other processing of the sales order.

Note that the visibiliq for the credit clerk in this scenario type is provided by an

object visibility kom the sales clerk, i-e. via a defhed parameter. This is a simple

mechanism to illustrate this example. A more complex mechanisrn such as the role-

based access-control scheme in the previous example is possible.

The task goods-removd is modeled by the scenario type SgoodsRemoval, Fig-

ure 5.14, and its children. The ctssumption in this example is that there are two

warehouses associated with the merchandise vendor. For any sales order some prod-

uct may corne fiom each warehouse. The purpose of scenario type SgoodsRemoval is

to create two sub-tasks to handle authorizations a t the two warehouses. The autho-

rizations at a warehouse are controlled by scenarios of type Swarehouse, Figure 5.15.

Two instantiations of this scenario type are created for each sales order, one for each

warehouse. The difference between the two instantiations is the warehouse manager

provided as parameter to the scenario. The tssk is composed of three authorization-

steps. Each Szuarehowe scenario authorbes the credit clerk to fornard the sales order

to the warehouse manager. The warehouse manager is then permitted to read the

sales order. The last authorization-step allows the warehouse manager to check the

I I I
S wafehouse(OcreditC1erk, ?warehouseMnager. Os aEs Order)

ELm&> I I I 1

S warehouse(Oc~ditCledc, OwarehouseMnager. OsalesOrder)

s a i e s o d e r : 1
OsaksOrder

' Scenario Ordering: CAM)> - 1 :PARAN:
c r e d E krk
s alesOder

D EFP ARA:
warehouseLManager= creditClezkwarehous el Ahnager
warehous e2Manager = creditCiedcwarehous e2hianager

FIGURE 5-14. Scenario Type SgoodsRemoval

1 e d k k : 7 i Ocred2Ctrk : Owarehouse~nancr OsalesOrder

1 Pprocess Order(0saies Order)
i >I I

I
1

I I
Sgoods Availabk(0warehous ehknager, OsaksOrder)

1 I

<- : Scenario Ordering: c n
<scenario> :PARAN -

I
creditçledc I

salesOder
warehous ehknager

FIGURE 5.15. Scenario Type Swarehouse

I I
SgoodsBackoxder(OwacehouseManager, OsalesOder)

t ware hous eMnager

I s aies Order
1

FIGURE 5.16. Scenario Type SgoodsAvailable

inventory of the warehouse and i3.l the order. This authorization-step is modeled by

scenarios of S p e SgoodsAvailable, Figure 5.16. Scenario type SgoodsAvaiZa ble h a . an

OT scenario ordering to account for the non-deterministic possibilities of goods being

available to fil1 the order, and goods being temporarily unavailable to fill the order

(backordered). The warehouse manager is authorized to fi11 the order or place the or-

der on backorder, but cannot perfonn both actions. The associated child scenarios are

SfllOrder and SgoodsBackorder, Figures 5.17 and 5.18. Scenarios of type SfillOrder

authorize the warehouse manager to unstock the goods from the warehouse iriventory,

and annotate the sales order as having been Eiled. The last child specified is a non-

primitive scenario of type SshippingTems. This is an authorization for the next task,

shipping-terms. Scenarios of type SgoodsBackorder authorize the warehouse manager

to annotate the sales order as having backordered goods. At some point the goods

will become available and a scenario of type S'llOrder will be created. Both the case

that goods are immediately available and the case that goods are backordered lead

eventually to the creation of a SfillOrder scenario, which terminates with a scenario

authorizing the next task, shipping-terms.

: vanhaus e M a a ~ e r : 1 1 s a i s O d e r : 1
O ware houseMnaner OsalesOder

Scena i iOdex ing:bEQ>
cscenario> 7 warehous ehknager

salesOder

FIGURE 5.17. Scenario Type SWOrder

Y I
S flOrder(0warehous ehfanager, Os ales Order)

I

I warehous e-nager
sales Onier

FIGURE 5.18. Scenario Type SgoodsBackorder

I
Pmsurance Approvax)

CscenariP 1

Scenario Ordering: cSEQ=-

warehous emnager
sales Oder

DEFP ARA:
shippmgclerk = warehous ebfinager.~ hippingclerk
shipphgSiip =create(Os hippingslip, f

(saks Order; salesoider)))

FIGURE 5.19. Scenaxio Type SshippingTerms

-

PARAN:
shippngckrk
shippingSLp

DEFP ARA
bilingC krk= shppingClerk.b3ingCiexk
inmice = create(0inwice. {

(s aies Oder, sales Order),
(s h4piWslipss ~ P P ~ ~ S ~ ~ P) H

salesOder = shippiigSlip.saIesOrder

FIGURE 5.20. Scenario Type Shilling

The task shipping-terms is modeled by the scenario type SshippângTems, Fig-

ure 5.19. This task is a straight forward set of authorization-steps that d o w the

warehouse manager to forward a sales order for which goods have been allocated to

a shipping clerk. The shipping clerk can read the sales order, create a shipping slip

for this portion of the order, and authorize insurance approval and carrier approval.

These authorizations are to be carried out in this order. The last child specified is a

non-primitive scenario of type Shilling. This is an authorization for the next and last

task, billing.

B i h g is modeled by the scenario type SbiZZing, Figure 5.20. Again this is a

straightforward task. The first authorization-step allows the shipping clerk to forward

the shipping slip to the billing clerk. The shipping slip provides visibility to the

associated sales order. The billing clerk is authorized to read both and then to create

an invoice corresponding to the shipment. The billing clerk is then authorized to send

the invoice to the custorner. This is the last step in this task. The scenario type does

not authorize any other tasks so it terminates. This causes its parents to terminate

as weU, backing back up the scenario tree to the original SsaZeTemns scenario. This

is because there are no more children to create in accordance with their scenario

descript or sets and scenario orderings. This effectively revokes all authorizations for

the sales order. As the model is presented, the sales order is not able to participate

in any further scenarios. This represents the completion of a successful sales order in

this example.

This sales processing system provides an example of a task-based authorization

scheme modeled using SBAC. The example illustrates control over the order of autho-

rizations, control over the type of user and specific user that can authorize a step in

the sales process, and branching exceptional case processing (e.g. failed credit terms,

backorders). Composite authorizations are also suppoked by nested scenarios. The

example exhibits al1 the fundamental requirements for TBAC1.

5.5 BLP Example

The Bell and LaPadula mode1 will only be treated briefly here. SBAC was designed

primarily to provide a modeling scheme for legitimate use but is essentially policy

neutral. BLP was designed primarily to provide a modeling çcheme for confidentiality.

BLP inherently models one way information flow on a classification-clearance lattice.

However, it is possible to model BLP style lattice-based policies using SBAC. Detailed

models will not be presented here, but brief sketches of how BLP can be realized by

SBAC will be illustrated.

BLP with tranquility is defined in the literature to be BLP where classifications

of objects and clearances of users cannot be changed once they have been assigned.

Le., security labels (MAC labels) are fixed. There is a strong correlation between

tranquility and the strong typing defined for SBAC. The relationship between strong

typing and MAC labeling has been previously explored in [SG94]. The strategy is

to provide a type associated with each security level. Objects have interface opera-

tions corresponding to the basic BLP rights, i. e. read, write, append, and execute.

Scenarios can be defined that provide authorkation for senders (BLP subjects) of

the appropriate clearance level (as defined by the lattice) to invoke one of the basic

interface operations of a receiver (BLP object). Where an access is prohibited by

the lattice, no scenario is defined. That is, scenarios are only defined such that the

simple security propem and *-property hold. Accesses not dehned by a scenario are

prohibited by SBAC.

Alternatively, Sandu shows in [San981 that RBAC is general enough to implement

lattice-based models, such as BLP. RBAC can be used to implement static policies

based on confidentiality lattices, policies based on Biba style integrity lattices, and

Brewer and Nash style Chinese wall policies. It has been demonstrated that SBAC

can be used to model RBAC, which is general enough to support these policies.

5 -6 Battlefield Information System Example

The last example presented in this chapter is an SBAC adaptation of an object-

oriented analysis for a military message system. The original non-SBAC model

([Cos98]) was done by a graduate student as part of the requirement for completion of

a course in object-oriented analysis and design, which was taught by the author. The

system requirement for the Battlefield Information System (BIS) is to support the

electronic dissemination of tactical military message tra£6c. This traffic is currently

handled primarily by voice radio networks and transcription to and fiom a standard-

ized set of paper message forms. The system will permit units to compose and send

messages to other units, vïew messages, and to receive messages. Messages will be in

the standard format specified in Canadian Army publications. The graduate student

completed a requirement specifrcation for the system.

This model provides an example of SBAC being used in conjunction with con-

temporary sofkware engineering andysis and design techniques. The student used

object-oriented analysis methods and captured his design using UML [RJB98] as an

00 modeling language. This model was then modified by the author of this disser-

tation to include the additional information required to complete an SBAC model of

the system requirement specifîcation.

The BIS provides an example of a model of a larger system and an example of how

the safety analysis scheme performs with a larger size model. By 'larger' it is meant

here that the Battlefield Information S ystem example is larger than the pedagogical

examples presented earlier hi the chapter. It represents a simple requirement speci-

fication for a system with a real requirement. The BIS mode1 contains 90 primitive

scenarios and 58 complex scenarios, so its security policy, P, is about an order of

magnitude larger than the policy for the Document Release example.

The scope of the Battlefield Information System can be briefly illustrated by

presenting its use cases. Use cases are used to model the interactions or dialog a user

has with a system. They define the functional capabilities a system should have, from

the viewpoint of the user. The following list describes the use cases for BIS.

Initialize system The system is initialized on startup. All messages, codes, users,

and logs are retrieved kom backup storage and stored in the BIS system data

structures.

Login-logout Users must log in to start using the message system. A record of

valid users and passwords is kept, and the User/Adrninistrator/Security OEcer

provided login name and password is veriüed against this list. Users may logout

when they are finished. This does not shut the system down but only means that

a valid user must login before the system may be used again. Login attempts,

successfd and not, are recorded in the system log. Logouts are recorded in the

system log. Before completing any requested action from any user the BIS m u t

first venfy the type of user that is logged in to see if it is a valid request.

Compose new message A user is able to compose a message and Save it for later

transmission. Message format will be chosen fkom a message in the prototype

message Est. A new message is created from the prototype and placed in the

draft message list. Default values may be preset for some fields of the prototype

message by the system administrator.

Send message A user is able to send one or more of the current messages in the

list of draft messages. AU mandatory fields will be Med in before the message

is sent. The message will be tagged as transmitted. AU messages must be

encrypted before being transmitted.

Receive message A message arrives on the network and becomes a system object.

The received message is added to the list of received messages.

View message A user is able to view any message in the system currentfy held at

his node, i. e. a message fkom the received message list, sent message list, draft

message list, or the prototype message list. The user will not be able to make

changes to a message while it is being viewed.

Edit message A user is able to edit any message in the draft message list. At the

end of each edit, when complete, a message remains as a draft message on the

draft message list.

View message log A user is able to view the message log. A user is not allowed to

make any changes to the log.

View system log The administrator is able to view the system log but may not

make any changes to it.

Set message defadts The administrator is able to edit any message in the proto-

type message list. When complete the message remains as a prototype message

on the prototype message list.

Add-remove user The administrator is able to add new users to the system, and

remove users from the system.

View user The administrator is able to view a Est of the users permitted to use the

system.

Add-remove code The Security officer may add and delete message encryption

codes.

View codes The securîty officer may view the list of message encryption codes.

Backup system The administrator can backup all system messages, codes, users,

and logs to backup storage. On shutdown the system automatically performs a

backup.

To separate the capabilities of the various khds of user, the general strategy for

elaborating the Login-logout use case is to use roles. The mechanism used in this

example to separate roles is similar to that presented for the Project Management

example in Section 5.3. In this example a user loggjng into the system must select a

single role (corresponding to User, Administrator, or Security Officer) which will be

active for the login session. At the time of role selection the user would be challenged

for an ID and password. In the role-based access-control specification for the Project

Management example, the roles authorized primitive scenarios, which were used to

invoke specialized operations on data objects. This provided an implementation for

RBAC style permissions. In this example, the roles authorize a specinc set of non-

primitive scenarios. These scenarios are more than specialized operations on data

objects. They define complex interactions between a number of system objects. The

scenarios authorized by a role correspond to the use cases permitted for that role. The

use cases are tasks that involve a specific set of object interactions, which must be

processed in a specific order. The scenario type that defines the role usually specifies

the authorization of a number of child scenarios. The scenario m e s of these child

scenarios specify sub-tasks associated with the use case. Together, this set of scenario

types elaborates a use case. For example, the View message use case is composed of

five scenario types that permit the user to select one of the message lists and one of

the messages on that Iist for viewing. The Login-logout use case itself is composed

of fifteen scenaxio types that permit the user to select a role, seIect a task fiom those

permitted for a role, regenerate the set of task permissions when a task is completed,

and allow the user to logout from the system.

Most of the original object-oriented design for the BIS is preserved when SBAC

modeling is applied to the system. The decomposition of the functional requirement

into its use cases is essentially unchanged. The logical flow of the main scenarios

that elaborate the use cases is for the most part unchanged. The original scenarios

have been decomposed in many cases to provide more rigor in the description of the

ordering of messages. Forma1 detail describing the relationship between scenarios has

been added as it is not a part of the standard object-oriented analysis method.

There are some specific places were changes are required to accommodate the

SB AC modeling. The original design uses polymorphism and ob ject sub-typing rela-

tionships. This is to be expected iii 90 analysis, but object sub-typing relationships

are not supportied by the cux-rent version of SBAC. Objects in the SBAC modeling

scheme described require that an object has one fixed object type. The parame-

ter binding meehanisms do not allow sub-type substitutions. Similarly changes were

needed to accommodate pararneterized types (sometimes called templates or gener-

ics). ln such cases a scenario mechanism has been repeated for the individual types of

objects in the smb-type relationship. In some cases the analysis has been made more

abstract to submerge the detail requiring sub-types in the original.

Modeling th& larger system exposed some areas where the expressiveness of the

SBAC modeling technique seems weak. 00 analysis and design models often make

use of indirection in handling object visibilim The relationships between objects are

allowed to change during the execution of the system. For example, in some scenarios

a single message viewer object can be made to display different messages by changing

a viewer object visibility role from one message to another. In the SBAC modeling

scheme, object visibilities are defined at the time of creation and are fked. This

leads to sorne difEculty in expressing object visibility through indirection. The same

situation is encountered when using lists of objects, where the contents of the List

may grow or &.ange. In some cases, a work around is possible by regenerating a new

scenario in whieh one of the roles is played by a different object. In other cases, a

new object is created which acts as a surrogate for the original, except that one of

the object visibility roles is played by a different object .
Analysis for this larger model was tractable and the results are presented in the

next section.

5.7 SBAC Mode1 Capture and Analysis Tool

To support the investigation of scenario-based access-control modeling, a model cap-

ture and analysis tool has been constructed. The tool is a feasibility demonstrator

used to support the research. The tool can be used in conjunction with an object-

oriented analysis or design process to capture an SBAC security model.

The tool provides a menu driven, multi-window interface that can be used to

capture all elements defined in the modeling scheme for modeling a static security

policy, P , and an initial state. Therefore, a complete model captured by the tool

models a system, C.

The tool also produces an analysis tree for the modeled system. The creation of an

analysis tree provides metrîc information about the topology of the tree. There is also

a mdimentary tree browser that provides the user with a visual representation of the

tree. The analysis portion of the tool was developed to provide metric information

about the size of analysis trees. The purpose of the metrics is to provide some

empirical investigation of the tractability of generating analysis trees. Presently, the

tool does not capture the parameters of a safety question nor does it perform a

search on an analysis tree to answer a safety question. These are straightforward

modifications to the tool.

The usez can use the tool in a standalone mode to develop and analyze SBAC

rnodels. The tool can also be used in conjunction with the Rational Rose [Rat981

modeling tool. The user can provide additional SBAC annotations to a UML model

as he is using Rose. The resulting Rose model file can be irnported by the SBAC tool.

A complete static securiw policy, P, c m be captured this way. The SBAC tool can

then be used to define an initial state and generate an analysis tree. An imported

model can also be displayed and modified using the SBAC tool interface.

5.7.1 Specification and Implementation of the SBAC Tool

The scope of the SBAC model capture and analysis tool can be briefly illustrated

by presenting its use cases. Use cases are used to model the interactions or dialog

a user has with a system. They define the functional capabilities a system should

have, fkom the viewpoint of the user. The following list describes the use cases for

the SBAC tool. Each use case specifies a specific requirement for the tool from the

user's perspective. These use cases were used to drive the development of the SBAC

model capture and analysis tool.

Specie Security Policy To speciS. the system security policy the user shall be able

to provide the modehg information for each of the following model components:

object types

0 object visibilities

O scenario types

O scenario paramet er type bindings, including:

O scenario descriptors

The user shall interact with a set of window-based forms to provide the modeling

information. When data is present in the system model it shall be displayed to

the user as a set of choices in a list or popup box (e.g. object types, scenario

types, etc.).

Parse Rose Mode1 The user shd l be able to populate the security model by spec-

ifj6ng a Rose model file for parsing. The tool shall read and parse the file to

identify and load the model components. This is an alternative method for

specifyhg the system sec- policy.

Browse Security Policy The user shall be able to pick a scenario type fkom the

list of scenario m e s in the model. This scenario type and aU of its associated

components (e.g. parameters, scenario descriptors, ordering, etc.) shall be dis

played. The user shall be able to pick an object type from the list of object

types in the model. This object type and all of its associated components (eg.

visibilities, etc.) shaU be displayed. While browsing a scenario type or object

type the user shall be able to select the name of another scenario type or object

type being presented. The user shall then be able to request that the specSca-

tion for the selected model component be displayed concurrently with the first

specification.

Specify Initial State To specify the system initial state the user will provide the

modeling information for each of the following model components:

initial objects and their types

initial object visibilities

the initial scenario and its type

the parent-acquired parameter bindings for the initial scenario

The user shall interact with a set of window-based forms to provide the modeling

information. When data is aIready in the system mode1 it shall be presented to

the user as a set of choices in a list or popup box (e-g. object types, scenario

types, etc.).

Browse Initial State The user shall be able to choose to display the initial scenario.

The scenario and aJl of its associated components (e.g. para, order, etc.) shall

be displayed. The user shall be able to pick an object fiom the list of objects

in the model. This object and all of its associated components (eg. visibilities,

etc.) shall be displayed. While browsing the initial scenario or an initial object

the user shall be able to select the name of another scenario type, object type,

or object being presented. The user shall then be able to request that the

specïfication for the selected model component be displayed.

Generate Analysis Tree When requested, the tool shall generate the fidly un-

folded state fiom the current system security policy and initial state. The

SBAC unfolding algorithm shall be used. A visual indication (heartbeat) shall

be displayed to the user to indicate that the program is working and has not

halted. This heartbeat might take the f o m of a ninning count of the number

of scenarios generated.

Browse Analysis Tree The tool shall provide a graphical representation of the

analysis tree. The user shall be able to expand or coUapse branches of the

tree by selecting a tree node with the mouse pointer.

The tool interface windows present existing model components in lists, and pro-

vide visual representations of the specific model components and theù parameters.

The user can edit the model using text fields, action buttons, pick lists, and menu

selections.

The tool is irnplemented in Java 1.1.7 and Swing 1.0.3. The implementation is

decomposed into 191 classes. There is a Rational Rose UML model for the imple-

mented design. The tool implementation includes approxhately 16 K-lines of source

code.

5.7.2 Resulfs of Model Analysis

The SBAC tool was used to capture security models for the examples presented earlier

in the chapter. Specifically, the tool was used with the document release, project

management, sales-order processing, and bat tlefield information system examples.

The Rational Rose tool [Rat981 w s used with the SBAC tool to develop the examples.

The message sequence diagrams included in this chapter and in Chapter 2 are copied

from the Rose models. The specially annotated Rose models provide the complete

security policy for the examples. The examples were imported into the SBAC tool and

initial states were defined in order to speciSr a complete system medel for analysis-

The initial states for the example systems were chosen such that the resulting

analysis tree exercised all of the scenario types specified for the example. In the case

of the BIS example two different initial states are presented. In the Grst, BIS #1, the

system is allowed to initialize itçelf. In this case the model creates all of the system

objects, i. e. there are no O* objects. This models the system reinitializing itseLf fkom

stored state information. In this case the current state of aJl the message lists, codes,

etc. cornes fiom recovering their state fiom secondary storage. The modeled system

in BIS #l is set up to recover two messages in each message Est, two codes in the

code list, and two users in the user list. The analysis of this model exercises the

state recovery mechanism, which is useful, but it does not provide much room for

formulating a safety question based on 0' objects. The second BIS model, BIS #2,

provides an initial state in which O0 objects are specXed for each of the lists (three

objects per list). This provides a basis for formulating safety questions. In this case

the initial scenario specified for the model is a scenario that occurs after the system

initialization. Le., the model begins analysis in the middle of system execution. This

choice of initial scenario allows the security modeler to isolate a portion of the system

for det ailed analysis.

TABLE 5.1. SBAC Analysis Results

Table 5.1 presents the results of the modehg and analysis of the example systems.

For each of the systems, the number of primitive scenario types (IST,I), and the

number of complex scenario types (1 STcI) in the static policy are presented in the

table in order to provide an indication of the relative size and complexity of the

model. The table also presents the number of objects specsed by the initial state

(lOO1). The analysis results presented include the sbe of the analysis tree (ISuI), the

maximum and average path depth in the tree (h, and ha), and the maximum and

average fan-out of the tree nodes (km and ka). A ratio of aaalysis tree size ((SUI) to

the number of scenario types specified for the model (ISTI) is also presented in the

table. This ratio is included to provided an indication of the effect of model size and

complexity on the size of the resulting analysis tree.

This small set of examples provides some encouragement for the tractability of

SBAC analysis. The size of the analysis trees is quite manageable in al1 of the exam-

ples presented here. This is much better than the theoretical worst case complexity.

As discussed in Section 4.4.5, the worst case cornplexity for generation of the analysis

tree is in the order 0(2" ') , where n is ISTI. The time complexity for generation

of the tree has a linear relationship to tree size. With this complexity, even the

smallest of the exarnples here is intractable in the wont case and would produce an

unmanageable tree. The actual results here exhibit tree sizes that are quite manage-

able, and therefore also have efficient ninning times for tree generation. This result

might be expected considering that the human designers that fashion a system use

object-orïented decomposition of the system requirements as a mechanism to control

the complexity of the design. The standard approach is to capture these ideas in-

fomally or semi-formally in an object-oriented design notation such as UML. The

object-oriented decomposition and object interaction scenarios the designers produce

are organized with the purpose of restricting the complexity of the system design so

that the designers can understand the system, communicate the design to others, and

develop a understanding of the execution properties of the system. The designers

tend to keep the reIationships between their object interaction scenarios sparse in

order to restrict the complexity of the design. SBAC formalizes these relationships

by statically d e m g scenario-me-to-scenario-type relationships using scenario de-

scriptors in childsT. The sparse inter-scenario type relationships greatly reduce the

andysis tree growth when compared to the worst case.

These empirical results do not provide a proof of tractability for SBAC modeling

in general, but it is expected that there is a large cIass of systerns for which analysis

based on the unfolding algorithm is tractable.

Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Introduction

The f i s t part of this chapter presents some brief cornpansons between the SBAC

modeling scheme and othcx models in the literature. A cornparison with the Typed

Access Matrix approach [San921 and the Transformation Models [SG94] is presented

because the techniques used in these models provide a foundation and inspiration for

SBAC. There are also comparisons made between Clark-Wilson [CW87], RBAC and

TBAC style modeling and SBAC. These comparisons are made because, like SBAC,

these modeling schemes also address commercial integrity and legitimate-use policies.

The similarities between SBAC scenarios and message sequence charts is also briefly

discussed. By design, SBAC is closely related to 00 modehg techniques. Message

sequence charts and message sequence diagrams have been used by the 00 community

to capture object interactions. The discussion addresses why these are not felt to be

adequate by themselves for expression of scenario specifications in SBAC.

The next section of the chapter discusses the advantages of SBAC modeling and

its relevance to security modeling and to information system modeling in general.

This is followed by an examination of some areas for future work, includrng direct

extensions of the work presented and applications to related areas.

The final section of the chapter presents a summary of the research work and the

conclusions.

6.2 Cornparisons

6.2.1 A Cornparison to TAM and TRM

The Typed Access Matrix approach [San921 and the Transformation Models [SG94]

use strong typing (protection types) to specZy static securïty policies for a system.

This is a form of mandatory access control (MAC). Protection types are speciiied for

subjects and objects. The commands that are able to modify the security state of the

system require that type checking be done on all parameters. The immutability of

protection types once subjects and object have been created, and the type checking on

commands provide enforcement of the static policy. SBAC makes no differentiation

between subjects and objects. Object types are used for the same purpose in SBAC

as they are in the earlier modeling schemes, Le. to s p e c e static security policies

for a system. Security state in a system changes as scenarios are authorized and

terminated. Object and scenario types in SBAC are immutable. Type checking is

applied to scenario parameters to provide enforcement of the static policy. The main

difference between the earlier models and SBAC is that SBAC also includes an aspect

of history checking to influence changes in secux5t-y state. In TAM and TRM a change

in security state is predicated upon the current set of access rights. In SBAC this is

tme also; an authorization is needed to perform a security relevant action. In SBAC

however, an authorization is part of a scenario tree. The scenario tree provides a

context for the authorization. The existence of an authorization by itself does not

lead to any other authorization being possible. The authorization in the context of

a scenario leads to other authorizations being possible. The same authorization can

lead to different changes in security state in the context of different scenarios. Thus,

history is important. To decide what is possible given a certain set of authorizations

(access rights), the system must take into account how it arrived at the current state,

i.e. what scenarios are currently active.

As are TAM models, SBAC models are expressive enough to specify rnulti-parent

creation of objxts. This is because the creation of a new object may have any

number of other objects as parameters. Addltiondy, when a new object is created,

other objects may immediately have permission to send it messages. The ability to

express multi-parent creation dows SBAC to express polices like ORCON, which

seem to require multi-parent creation.

One of the most important contrasts to make between SBAC and TAM is in their

respective anailysis schemes. Monotonie-TAM and its predecessor, the Schematic Pro-

tection Model (SPM), use an unfolding algorithm to construct a maximal state. The

unfolding technique in these models is applied to subject creation and restrictions

are applied to the subject-type-to-subject-type creation function to ensure that the

resulting graph size is tractable. Subjects in the graph act as surrogates for all other

subjects of the same type that may be in similar circumstances with respect to the

protection state. The strategy in SBAC is similar but the unfolding algorithm does

not create representative subjects; instead, it creates representative scenarios. Sce-

narios that are not currently active are past history, but are not destroyed. Scenario

authorization is monotonie over time. The set of currently authorized scenarios is

nou-monotonie over time. This change in focus allows the use of an analysis strategy

similar to that used with TAM and SPM to be used with systems with non-monotonie

security policies.

6.2.2 A Cornparison to Clark-Wilson

Clark-Wilson security models [CW87] identify certain objects as Constrained Data

Items (CDIs). Access to these objects is provided solely through Transformation

Procedures (TPs). SBAC is object-based. Objects are instances of abstract data

types. As such all objects can be thought to be CDIs, and interface operations for

the objects to be TPs. In Clark-Wilson, TPs are defined to operate on a specific set

of CD1 types. In SBAC, interface operations are specified for an object type.

SBAC differs fkom Clark-Wilson in that Clark-Wilson does not constrain the type

of the subject accessing a TP. SBAC does provide such type constraints. Also, Clark-

Wilson does not specify when TPs become permitted for a subject and in what order

they can Secome permitted. Such an ordering specification is explicit in SBAC models

and is considered to be an essentid aspect of modeling legitimate use.

6.2.3 A Cornparison to RBAC

Recail from Section 2.2.18 that a role is a semantic construct around which access-

control policy is formulated. In an RBAC policy, users are assigned to roles and

permissions/rights are assigned to roles. Role authorizations are granted to users, or

groups of users, based on the activities they are allowed to perform on system data.

The Project Management Example presented in Section 5.3 is an example of SBAC

being used to express a robbased security policy. A role-based policy also underlies

the security policy of the Battlefield Information System Example, Section 5.6. These

examples exhibit the basic requirements of models of type RBACo. They provide

support for user to RBAC role mappings, for RBAC role to permission mappings, and

for user sessions. The Project Management Example also illustrates how hierarchical

RBAC roles can be modeled using SBAC. Thus, SBAC can directly express =AC1

security p olicies.

The permissions allocated by RBAC can have a high degree of data abstraction.

The permissions typically allow a subject to execute a specific program on a specific

type of data item. SBAC provides this kind of data abstraction and also provides

a richer kind of procedural abstraction. The RBAC style roles modeled in SBAC

authonze scenarios. A primitive scenario is similar to an B A C permission. I.e., it

can authorize a specific sender object to invoke an interface operation on a specific

receiver object. An RBAC style role modeled in SBAC can also authorize a more

complex scenario. This means the role can authorize that a specific set of ta& may

be performed by users W g a specific set of roles. Le., where an RBAC permission

can authorize that a specific task be done by a specific user W g a specik role, an

SBAC permission can authorize that a specific set of tasks be done by a specific set

of users füJing a specSc set of roles in a specific order.

RBACz and =AC3 add constraints, which impose restrictions on acceptable

configurations of the RBAC models. SBAC does not provide direct support for con-

straints, but in some cases the safety analysis scheme might be used to provide as-

surance that a constraint holds for a specific system model.

6.2.4 A Cornparison to TBAC

Recall fiom Section 2.2.19 that TBAC provides a fkamework for active security mod-

els and enforcement £rom the perspective of activities and tasks. Permissions are

constantly monitored, and activated and deactivated in accordance with emerging

context associated with the progress of the tasks being performed. Permissions arise

just in time for their use in the context of some authorized task. The fundamental

abstraction is an authorization-step. An authorization-step represents a primitive

authorization processing step and is the analog of a single act of granting a signature

in a paper-based system. Permissions are associated with exactly one instance of an

authorization-step. An instance of an authorization-step is associated with exactly

one instance of a task. Each authorization-step maintains a protection state that

is the set of permissions currently valid for that authorization-step. The concept

of ordering of permissions is explicit in TBAC (through the specification of depen-

dencies). All of these components (the components of TBACO) and the concept of

hierazchical t asks (TBACi) have explicit representations in SB AC. The relations hip

between TBAC and SBAC model components is described in the presentation of the

Sales-order Processing Example in Section 5.4.

As with the RBACz and RBACB models, TBAC2 and TBACI add constraints

t hat impose restrictions on acceptable configurations of the TBAC models. Again,

SBAC does not provide direct support for constraints, but in some cases the safeS.

analysis scherne might be used to provide assurance that a constraint hoids for a

specïfic system model.

The similarity between the SBAC and TBAC models derives fiom their similar

goals, ie. the modeling of legitimate use. Although developed separately from the

framework of models described by TBAC, SBAC can be considered to be a modeling

scheme that fits within thïs framework. SBAC additiondy provides model represen-

tations that are complementary to contemporary object-oriented analysis and design

methods and also provides a safety analysis scheme. An SBAC model is a detailed

instance of a modeling scheme that fits within the TBAC fkamework.

6.2.5 A Cornparison to MSCs

Object-onented analysis and design methods have borrowed the notation of message

sequence charts (MSCs) from the telecommunications protocol design community-

The 00 community uses a variant of MSCs, in some cases called message sequence

diagram (MSDs), to specify object interactions, or scenarios. SBAC augments the

concept of scenaxïos in 00 by adding rigor to the scenario-scenario relationships.

This is a semantic issue that involves the interpretation of scenarios. Therefore, it is

possible that some of the semantic issues related to MSCs also have some relevance

to scenario-based access control. There are four semantic issues raised with respect

to MSCs in Section 2.3.2.

One of the semantic issues raised is whether systems represented by MSCs have

some finite set of global states with respect to message passing behaviour. There is

unbounded creation of objects possible in SBAC. Therefore there are an unbounded

number of global control states. However, by the arguments presented in Chapter 4

there are a finite number of protection states; i. e. there are maximal states for the pre-

order on PA. The purpose of the semantic analysis of the security models presented

here is not to provide an analysis of system evolution in general (global control state),

but to provide an analysis of the evolution of system protection state. This is finite-

state.

Another of the issues raised with respect to MSCs is that the structure of indi-

vidud MSCs or the structure resulting from the composition of MSCs can result in

non-local choices. That is, an MSC process may be required to execute a behaviour

(or chose between behaviours) as a result of the occurrence of a message pass it could

not itself observe. The structure of SBAC scenaxios have the same properties leading

to the possibility of non-local choice. The result is the same; non-local choices require

either unbounded history variables to keep track of control choices (non-finite-state

control) or MSCs which lead to non-local choices must be considered to be ill-formed.

However, this is again a global control-state issue. It does not effect the safety analysis

of the system.

The issue of messages being received in a different order than that in which they

are sent is dso presented as a diEculty with the semantics of MSCs. Such message

crossingç are not possible by the rules for construction of SBAC scenarios. This is

not an issue in SBAC.

The last issue raised with respect to the semantics of MSCs was related to the

completeness of the information available in MSCs to speci& liveness properties.

The authors of [LL95a] argue that liveness properties are difficult to specify with

MSCs alone and in many cases such properties are better specified by temporal logic

formdae provided in addition to the MSCs. This work focuses primarily on safety

properties and does not address liveness properties directly; however, the analysis

tree may provide some assurance with respect to liveness properties. An analysis tree

is a statement about possible histories of a system. One may test whether a temporal

logîc formula is satisfied by an analysis tree.

SBAC scenarios are simiIar to MSCs but there are significant clifFerences. Sce-

narios d o w messages to self, which are not allowed by MSCs. The most significant

merence is in the respective composition rnechanisms. The MSC standard allows

modular design via sub-MSCs and decomposed process instances. This decomposition

is process based. SBAC scenarios are object based and not process based. Modular

design is denoted in the context of SBAC modeling by using child scenarios, which

in MSCs would appear to be decomposed message events. This mechanism is more

expressive than MSC conditions, which are another mechanism for composition of

MSC diagrams. Specificdy, the child scenario authorization mechanism allows more

control with respect to scenario pararneterization and ordering.

6.3 Discussion

The access-control modeling scheme proposed by this work provides a rich, expressive

modehg capability that can be used to capture a broad range of useful security

policies. SBAC supports policies that include least privilege, separation of duties,

fine grained data abstraction, lattice-based MAC policies, role-based policies, and

workflow p olicies .
SBAC also provides a safety analysis method. The analysis scheme c m be used to

characterize properties of the protection states that are possible for a specific mode1

instance. The types of security policy to which the analysis method can be applied

include non-monotonic policies.

The mode1 cornparisons earlier in this chapter emphasize that a major difference

between SBAC and other modeling schemes is its support for considering the ordering

of permissions when formulating a safety question. For a system, a safety question

in SBAC considers not only if some subject may gain an access right to some object,

but also the order of such an occurrence with respect t o the occurrence of other

access rights. It is a tenet of this work that specification and analysis of the order in

which access rights occur is an essential aspect of modeling legitimate use. This is

really a rehement of the principle of least privilege. The least privilege properties

of SBAC models are more fine grained than those expressed by Clark-Wilson and

role-based access-control polices. In this case more fine grained means that not only

is a subject restricted to invoking a specinc kind of operation on a specific kind of

data type, but also that the permission to invoke the operation only arises at the

moment it is required in the context of a statically defined scenario or task. This

adds a just-in-time aspect to the concept of least pridege.

The theoretical worst case complexiw for the analysis method indicates an in-

tractable analysis even for small systems. However, the ninning time for analysis of

an actual mode1 instance is very sensitive to the scenario-me-tescenarieme rela-

tionships defined by childsr. It is expected that for a broad class of usehl systems

the connectivity between scenario m e s wiu be very much less than the complete

connectivity implied by the worst case. The examples presented in Chapter 5 are

representative of some interesting classes of system for which analysis is tractable.

The sparse connectivity between scenario types should be expected. Object-

oriented decomposition and object interaction scenaxios are organized with the pur-

pose of restricting the complexiv of system design. The standard approach is to

capture scenarios informally or semi-formally using an object-oriented design nota-

tion. A contribution of this dissertation is the formalization of these relationships.

Security modeling using SBAC can be a complementary component of object-

oriented analysis and design. The proposed model makes extensive use of data ihat

is already collected by commercial object-oriented analysis and design tools. The

motivation is the productiviw gain that may be realized through reducing the ef-

fort required in the maintenance of separate security and design modek and in en-

suring there is consistency between security models and other system models. A

security-modeling tool that works with f d i a r system design tools also increases

the likelihood that such modeling will be done. The SBAC analysis tool described

in Section 4.4.5 is integrated with the Rational Rose [Rat981 00 modeling tool. A

cornplete static SBAC security policy c m be captured using the Rose tool. Much of

the data needed for the security policy specification is provided by the 00 analysis or

design itself. Additional S B K specific information is added as Rose documentation

mark-ups. The resulting Rose model file can be imported by the SBAC tool. The

SBAC tool can then be used to define an initial state and generate an analysis tree.

An imported model can also be displayed and modified using the SB AC tool interface.

The SBAC tool can also be used in a stand alone mode to develop and analyze SBAC

models-

Another motivation for the relationship between SBAC modeling and 00 analysis

and design is that 00 techniques model systems using abstractions and interactions

closely related to the actual problem domain. Scenario-based descriptions of tasks

and workffows provide an abstract and an intuitive way of specifying the access per-

missions required to complete a business process. Scenario-based models can be used

at difTerent levels of abstraction as the development of a sptem progresses from and-

ysis to design to implementation. Although SBAC can be used at vanous levels of

abstraction, model correspondence between the levels is a difncult problem that is

not addressed by this dissertation.

6.4 Future Work

This section proposes directions for Mure research involving scenario-based access

control. Several areas of research will be briefly discussed, including direct extensions

of the work presented and applications to reiated areas.

An obvious opportunity for research is the continued development of the SBAC

modeling and analysis tool. Presently the analysis tool has been used in support of

gathering empirical data on the size of andysis trees for specific mode1 instances. The

tool does not provide support for f o d a t i n g a safety question nor does it perform

a search on the analysis tree to answer a safety question. Rudimentary support for

these operations would be very easy to introduce into the tool. However, this kind

of support should be based on an investigation of how a sec* engineer would use

the tool to perform safety analysis. The selection of interesting, safety critical initial

states for a system model is important. How the security engineer should be guided

in d e k g a set of models that provide assurance of safety in a system is not clear.

There needs to be a better understanding of what models and what safety questions

provide a sufEicient level of assurance that a system is safe.

It becomes apparent when discussing the degree of safety in a system or a level

of assurance, that the behaviour of the system is measured against some security

meta-policy. Investigation of a language for the expression of such policies is another

area of future research. The security behaviour of an SBAC model could be analyzed

with respect to the soundness of security axioms expressed by the rneta-policy. For

example, the designer of a system may want to express that for any initial state of the

system it is not possible for someone to cash a cheque before it has been authorized

for payment. It seems that a combination of deontic1 and temporal logic would be

usefd to capture both what actions should be permitted by a system and in what

lDeontic logic is the logic of noms or mords. The logic provides expression for concepts such as
'what ought to be,' 'what is pennitted,' 'what is obligated,' etc. For reference see [GMP92]

order those actions should be pennitted.

When modehg the examples in Chapter 5 one finds that there is some difnculty

in modehg certain aspects of object-oriented designs when using the current version

of SBAC. One of the weaknesses is in the inability of SBAC to account for the be-

haviours associated with the type hierarchies present in the examples. The use of type

hierarchies dows the reuse of scenarios to capture objeck kteractions across families

of related object types. Support for type hierarchies was not uicluded in the SBAC

modeling scheme in order to reduce the complexity of the modeiing scheme during

the initial stages of research. In keeping with the goal of providing a security mod-

eling scheme that is complementary to conternporary analysis and design techniques,

SBAC should be enhanced to handle type hierarchies.

Another place where there is some dEculty in modeling certain aspects of object-

oriented designs is where design models make use of indirection in handling object

visibility. It is cornmon for the relationships between objects to change during the

evolution of a system. The current version of SBAC requires that object visibilities be

assigned at object creation tirne, that only existing objects can be visible to a newly

created object, and that object visibilities cannot be changed after cbject creation.

These restrictions sirnplify the computation of scenario equivalence class, and the

complexity of the analysis tree. A weaker set of restrictions would allow the modeling

scheme to be more expressive and is an interesting avenue for future research.

Another direction for future work is in the simpMcation of the analysis tree.

Presently the andyysis tree graph does not allow cycles. By design, the analysis tree

graph contains redundant information. This allows the analysis tree to mode1 the

permission ordering relationships arising fi-om multiple occurrences of equivalent sce-

nazios. Simplifications and efficiencies are possible in the analysis graph by dowing

cycles. The curent graph is finite and tractable but a broader class of systems may

be candidates for analysis if greater efficiencies are found. In simplûying the analysis

graph by dowing cycles, one would have to be carefd to preserve the authorization

properties of the original analysis tree.

6.5 Conclusions

The development of scenario-based access control is driven by two main goals. The

f i s t goal is to provide a scheme that will provide efficient safety analysis for systems

modeling legitimate-use policies. This implies efficient analysis of non-monotonic

systems. This is because legitimate-use policies that employ just-in-time availabil-

ity of access-control permissions are inherently non-monotonie. The second goal is

to provide a modeling scheme that complements contemporary software engineering

modeling techniques. The objective is to leverage the information that is alreadv

being captured by such techniques and to provide security modehg as a extension

to existing software engineering methods. This eliminates duplication of effort in

security modeling and may serve to encourage the wider use of security modeling.

These goals are met by the scenario-based access-control scheme presented by the

dissertation. The contributions of this dissertation are:

a scheme for the modeling of legitimate-use in information system security poli-

cies,

a scheme for the safety analysis of inherently non-monotonic, legitimate-use-

based security policy models,

formal rigor applied to scenario diagrams of the relationships between interact-

ing objects, and

a security modeling scheme that is complementary to contemporary analysis

and design t ethniques .

Chapter 2 provides a literature review and the contextual information necessary

to provide background for the area of research, to provide foundations and inspira-

tions for the work, and to provide examples for cornparison. Chapter 3 describes

the rnodeling of scenarios of interacting objects. The models provide rigor to the

relationships between types of scenarios and for the relationships between scenario

instances. Chapter 4 defines the concepts of securi* policy and system. This chapter

presents a scherne for safety analysis of scenario-based access-corïtrol models. The

analysis scheme has an intractable ninning t h e in the worst case. However, it is

expected that for a broad class of useful systerns the aoalysis is tractable. Chapter 5

presents a series of worked examples. The examples presented are representative of

some interesting cIasses of system for which andysis is tractable.

[Ada95] C. Adams. DoD information securiiy Near-term dissonance, long-term
promise. Military and Aerospace Electronics, pages 14-20, August l995.

[And721 J.P. Anderson. Computer security technology planning study Technical
Report ESD-TR-73-51, Vol. 1, USAI?, 1972.

[AS901 P.E. Ammann and R.S. Sandhu. Extending the creation operation in the
schematic protection model. In Proceedings of the Sixth Annual Computer
Security Applications Conference, pages 340-348. IEEE, 1990.

[AS941 P.E. A m m m and R.S. Sandhu. One-representative safety analysis in the
non-monotonic transform model. In Proceedings of the Computer Secu-
rZty Foundatzons Workshop VI& pages 138-149, Franconia NH, June 1994.
IEEE.

[BC92] P. Bieber and F. Cuppens. A logical view of secure dependencies. Journal
of Computer Security, 1:99-129, 1992.

[BCG941 N. Boulahia-Cuppens and F. Cuppens. Asynchronous composition and re-
quired security conditions. In Proceedings of the IEEE Symposium on Se-
curity and Priuacy, pages 68-78, Oakland CA, May 1994. IEEE.

[Be1741 D.E. Bell. Secure computer systems: A rehement of the mathematical
model. Technical Report MTR-2547, Vol. 3, MITRE, April 1974. also ESD-
TR-73-278, Vol. 3.

[Bib77] K. J. Biba. Integrïty considerations for secure computer systems. Technical
Report MTR-3153 Rev. 1, MITRE, April 1977.

[BL73a] D.E. Bell and L.J. LaPadula. Secure computer systems: A mathematical
model. Technical Report MTR-2547, Vol. 2, MITRE, November 1973. also
ESD-TR-73-278, Vol. 2.

[BL73b] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report MTR-2547, Vol. 1, MITRE, Novernber 1973.
also ESD-TR-73-278, Vol. 1.

[BL75] D.E. Bell and L.J. LaPadula. Secure computer system: Unined exposition
and multics interpretation. Techrical Report MTR-2997, Rev. 1, MITRE,
November 1975. also ESD-TR-75-306.

[BN89] D.F.C. Brewer and M.J. Nash. The Chinese Wall security policy. In Pro-
ceedings of the IEEE Symposium on Security and PnZlacy, pages 206-214,
Oakland CA, May 1989. IEEE.

[Bo0941 G. Booch. O bjeet-oriented Analysis and Design with Applications.
Benjamin-Ciimmings, Redwood City CA, 1994.

[BSS'95] L. Badger, D.F. Sterne, D.L. Sherman, K.M. Waker, and S.A. Haghighat.
Practical domain and type enforcement for UNM. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 66-77, Oakland CA, May
1995. IEEE.

W .R. Bevier and W.D. Young. A state-based approach to noninterference.
Journal of Computer Security, 3:55-70, 1995.

Communications Security Establishment. The Canadian k t e d Computer
Product Evaluation Criteria, Version 3.0e. Government of Canada, Januaxy
1988.

J. Costello. Battlefield information system: An application of design pat-
terns in object oriented softwa,re. Term paper in graduate course, EE573-
Royal Military College of Canada, 1998.

D.D. Clark and D.R. Wilson. A cornparison of commercial and militaq com-
puter security policies. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 184-194, Oakland CA, April1987. IEEE.

D.E. Denning. A lattice mode1 of secure information flow. Communications
of the ACM, 19(5):236-243, May 1976.

D .E.R. Denning. Cryp tography and Data Security. Addison-Wesley, Read-
ing, 1982.

Department of Defence. Department of Defence k t e d Computer System
Eualuation Criteria (Orange Book), DOD5200.28-STD Government of the
US., Decernber 1985.

R.J. Feiertag, K.N. Levitt, and L. Robinson. Proving multilevel security
of a system design. In Proceedings of Sixth ACM Symposium on Operating
Systems Principles, pages 57-65, New York, November 197'7. ACM.

M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold,
New York. 1988.

[GM82] J.A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 11-20,
Oakland CA, Apnl1982. IEEE.

[GM84] J.A. Goguen and J. Meseguer. Unwinding and inference control. In Proceed-
ings of the IEEE Symposium on Security and Privacg, pages 75-86, Oakland
CA, A p d 1984. ZEEE.

[GMP92] J.I. Glasgow, G.H. MacEwen, and P. Panangaden. A logic for reasoning
about security. ACM Transactions on Computer Systems, 10(3):226-264,
August 1992.

[HR78] M.A. Harrison and W.L. Ruzzo. Monotonie protection systems. In Foun-
dations of Secure Computation, pages 337-365. Academic Press, New York,
1978.

[HRU76] M.A. Harrison, W.L. Ruzzo, and J.D. Ulhm. Protection in operating
systems. In Communications of the ACM, pages 461-471. IEEE, August
1976.

[Int88] International Telecommunications Union - Telecommunication Standardiza-
tion Sector. ITU- TS Recommendation 2.1 OU: Specijication Description Lan-
guage (SDL). ITU-TS, Geneva, 1988.

[Int94] International Telec011~~[1unications Union - Telecommunication Standard-
ization Sector. IT U- TS Recommendation 2.120: Message Sequence Chart
(MSC). ITU-TS, Geneva, 1994.

[Jac88] J. Jacob. Security specifications. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 14-23, Oakland CA, April1988. IEEE.

[Lam711 B.W. Lampson. Protection. In Proceedings of the Fifth Princeton Sym-
posium on Information Sciences and Systems, Princeton NJ, March 1971.
reprinted in Operating Systems Review, 8, 1, ACM, January 1974, 18-24.

[Lee881 T.M.P. Lee. Using mandatory integrity to enforce "commerciaY security.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 140-
146, Oakland CA, April 1988. IEEE.

[Lip82] S .B. Lipner. Non-discretionary controls for commercial applications. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 2-10,
Oakland CA, April 1982. IEEE.

[LL94]

[LL95a]

[LL95 b]

[LS 781

[Mau961

[McC87]

[McC88]

[McL87]

[McLgO]

[Min781

[Min841

P.B. Ladkin and S. Leue. What do message sequence charts mean? In
R.L. Tenney, P.D. Amer, and M.U. U y q editors, Forma2 Description Tech-
niques VI, IFIP Transactions C, Proc. of the 6th International Conference
on Formal Description Techniques, pages 301 - 316. North-Holland, 1994.

PB. Ladkin and S. Leue. Four issues concerning the semantics of message
flow graphs. In Formal Description Techniques VII, Proc. of the 7th IFIP
International Conference on Formal Description Techniques FORTEY9&
Chapman and Hall, 1995.

P.B. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects
of Computing, 7(5):473-509, September 1995.

R. J. Lipton and L. Snyder. On synchronization and security. In R.A. De-
Mao, D.P. Dobkin, A.K. Jones, and R.J. Lipton, editors, Foundations of
Secure Computation, pages 367-385. Academic Press, New York, 1978.

S. Mauw. The formalization of message sequence charts. Cornputer Networks
and ISDN Systems, 28(12):1643-1657, 1996. -

D. McCdough. Speciiications for multi-level security and a hook-up prop-
erty. In Proceedings of the IEEE Symposium on Security and Privacy, pages
161-166, Oakland CA, April1987. IEEE.

D. McCullough. Noninterference and the composabiïity of security proper-
ties. In Proceedings of the IEEE Symposium on Security and Privacy, pages
177-186, Oakland CA, April1988. IEEE.

J. McLean. Reasoning about security models. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 123-131, Oakland CA, April
1987. IEEE.

J. McLean. Security models and information flow. IR Proceedings of the
IEEE Symposium on Security and Privacy, pages 180-187, Oakland CA,
April 1990. IEEE.

N. Minsky. On synchronization and security. In R.A. DeMillo, D.P. Dobkin,
A.K. Jones, and R.J. Lipton, editors, Foundations of Secure Computation,
pages 255-276. Academic Press, New York, 1978.

N. Minsky- Selective and locally controlled transport of privileges. ACM
Pans, Proaram. Lana. Sust.. 6(4) 573-602. October 1984.

[MS88]

[Par721

[R+9 11

[Rat 981

[RJB98]

[Ros95]

[SanSS]

[S an891

[S an921

[S an9 31

[San961

[Sang 81

J.D. Moffett and M.S. Sloman. The source of author@ for commercial
access control. Computer, pages 59-69, Februaxy 1988.

D.L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Commvnications of the ACM, pages 1053-1058, December 1972.

J. Rambaugh et al. Object-oriented Modeling and Design. Prentice-Hall,
1991.

Rational Software Corporation. Rational Rme 98 Modeler Edition, 1998.

J. Rumbaugh, X. Jacobson, and G. Booch. UnZfied Modeling Language Ref-
erence Manu al. Addison-Wesley, 1998.

A.W. Roscoe. CSP and determinism in security modelling. In Proceedings
of the IEEE Symposium on Security and Priuacy, pages 114-127, Oakland
CA, May 1995. IEEE.

R.S. Sandhu. The schematic protection rnodel: Its definition and analysis
for acyclic attenuating schemes. Journal of the ACM, pages 404-432, April
1988.

R.S. Sandhu. Transformation of access rights. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 259-268, Oakland CA, April
1989. IEEE.

R.S. Sandhu. The typed access matrix model. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 122-136, Oakland CA, May
1992. IEEE.

R.S. Sandhu. Lattice-based access control models. IEEE Computer, pages
9-19, November 1993.

R.S. Sandhu. Access control: The neglected frontier. In Proceedings of the
1st Australasian Conference on Information Security and Privacy, Wollon-
gong, Australia, June 1996.

R.S. Sandhu. Role-based access control. In Advances in Cornputers, Vol.
46. Academic Press, New York, 1998.

[SCFY94] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based
access control: A multi-dimensional view. In Proceedings of the 10th An-
nual Computer Security Applications Conference, pages 54-62, Orlando FL,
December 1994. IEEE.

R.S. Sandhu and S. Ganta. On the rninimality of testing for rights in trans-
formation models. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 230-241, Oakland CA, May 1994. IEEE.

J. Smith. Privacy policies and practices: Inside the organizational maze.
Communications of the ACM, 36(12):105-122, December 1993.

R.S . Sandhu and G.S. Suri. Non-mono tonic transformation of access rights.
In Proceedings of the IEEE Symposium on Securit y and Privac y, pages 148-
161, Oakland CA, May 1992. EEE.

R.S. Sandhu and P. Samarati. Access control: Principles and practice. 1 .
Communications, pages 40-48, Sept ember 1994.

R.S. Sandhu and G. Srinivas. On the expressive power of the unary trans-
formation model. In ESORICS 94: Third Evropean Symposium on Re-
search in Computer Security, pages 301-318, Brighton U.K., Novernber
1994. Springer.

R.K. Thomas and R.S. Sandhu. Conceptual foundations for a model of task-
based authorizations. In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pages 66-79, Franconia NH, June 1994.

R.K. Thomas and R.S. Sandhu. Task-based authorization controls (TBAC):
A f d y of modeIs for active and enterprise-oriented authorization mange-
ment. In Proceedings of the IFIP WGII .S Workshop on Database Security,
Lake Tahoe CA, August 1997.

V. Varadharajan and C. Calvefi. Tickets and authentication. h Proceedings
of the IEEE Symposium on Security and Privacy, pages 213-229, Oakland
CA, May 1994. IEEE.

