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Abstract

The present thesis concerns the design, implementation and assessment of an
experimental program to teach the difficult topic of rational numbers. Based on
Case’s theory of cognitive development, it was hypothesized that a core
conceptual structure for a global understanding of rational number is formed by
the coordination of children’s intuitive understanding of proportion and their
numerical splitting schemas. In order to support this coordination, the
experimental curriculum introduced rational number through the teaching of
percent in linear measurement. Props such as cylindrical beakers filled with
water, allowed students to make proportional judgements of fullness of these
containers relative to the whole using the language of percents. Thus, the
traditional sequence of rational number instruction was altered so that decimals

and fractions were taught later grounded in students understanding of percents.

Two formal teaching studies were conducted. In the first, the participants were

i



an intact grade 4 class who were new to rational number and in the second the
curriculum was implemented with grade 6 students who had 4 years of previous
instruction in rational number prior to the intervention. Results showed that all
of the students made large and statistically significant gains from pre to
posttest.Qualitative analyses of this data revealed that the students had acquired
a number of new competencies including the ability to 1) move flexibly among
representations, 2) resist misleading cues, 3) order numbers by magnitude, and
4) invent their own procedures. In a further analysis, the posttest results of the
experimental students were compared to the performance of normative groups
on the same measure. These groups consisted of students from grades 4, 6, and
8 and from a postgraduate teacher training program. Both the Grade 4 and
Grade 6 experimental students achieved better scores than the grade 8 students
and equal scores to the preservice teachers. The experimental students also were
less reliant on whole number strategies when solving novel problems, and made

more frequent reference to proportional concepts in justifying their answers.
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Chapter 1
A Brief Introduction

Learning Difficulties in the Domain of Rational Number

1.1. Introduction

One area of mathematics that has always been a stumbling block to
general mathematical competence, is the field of rational number—fractions,
decimals, percent, and ratio. Introduced in most mathematics curricula as early as
Grade 1, rational number is the most difficult topic that students encounter in
their elementary education (Carpenter, Fennema, & Romberg, 1993). Unlike the
whole number domain, which is eventually mastered and understood by all
students to whom appropriate instruction is offered, (Ball, 1996; Cobb & Merkel,
1989; Fuson & Briars, 1990; Fennema, Carpenter, Franke, Levi, Jacobs, &
Empson, 1996; Griffin, Case, & Siegler, 1994; Kamii, 1985; Resnick & Singer,
1993), competence in rational number is often elusive. Even among those
students who can successfully perform a wide range of operations in this field, a
majority show gaps in their understandings of the concepts that underlie these
operations, and show very little principled knowledge of this number system as
a whoie (Behr, Harel, Post, & Lesh, 1993; Carpenter, Fennema, & Romberg, 1993;
Keating & Crane, 1990; Kieren, 1993; Lamon, 1994; Moss, 1997; Moss & Case,
1999; Parker & Leinhardt, 1995; Resnick, 1989; Sowder, 1995). As rational number

concepts are foundational to most areas in advanced mathematics such as



algebra and geometry, and underpin advanced learning in chemistry, physics,
and the biological sciences (Lesh, Post, & Behr, 1988; Lamon, 1999), the failure to
gain a facility in this domain has always been considered problematic. However,
recently these concerns have escalated. First, international comparisons of
achievements in mathematics and science reveal that North American students
and teachers perform well below their Asian counterparts (Ma, 1999; Stevenson
& Stigler, 1992; Stigler, Fernandez, & Yoshida, 1996). Second, caveats come from
contemporary analysts whose concerns are grounded in the implications of the
information revolution. They warn that individuals who lack competence in
mathematics will likely face severely restricted career opportunities; and societies
with a dtizenry lacking in mathematical literacy, will and do, find it difficult to
compete in the global marketplace (Keating, 1993).

1.2. Interference of Whole Number Concepts in the Learning of Rational
Number

The literature in mathematics education is replete with examples of the
types of errors that students and adults make in performing rational number
tasks. A major stumbling block that has been observed when students begin and
continue their learning of rational number is that whole number concepts
intrude on their ability to perform (Behr, Wachsmuth, Post, & Lesh, 1984; Hart,
1984, 1986; Hiebert & Behr, 1988; Lamon, 1995; Resnick,1994).

At a most basic level, whole number interference is considered to be at the



root of students’ inability to interpret the notation schemes for fractions and
decimals because the notation system in both number systems are highly similar.
Thus, for example, Hiebert and Wearne (1986) and Wearne and Hiebert (1988)
report that most middle school students would assert that a number like .059 is
a larger quantity than 0.2 because the number 59 is bigger than the number 2.

Similar problems exist for students in interpreting fraction symbols.
Students often erroneously interpret a fraction as two independent and
countable numbers (Kerslake, 1986). What is missing is the idea of how big the
fraction is as a whole. Lacking this quantitative referent students” reasoning
easily goes astray (Sophian & Wood, 1997). Data from the National Assessment
of Educational Progress (#31) illustrate this point. For example, when asked to
find theanswer to 1/2+1/3 =____, a majority of students in Grade 4 and 6
assert that the answer was 2/5. Moreover, 30% of the students in Grade 8 made
the same error. Thus, even after a significant number of years learning fractions
(approximately 7) many of these Grade 8 students still appeared to be counting
the numerator and denominator as separate numbers and performing additive
operations to get a sum. Furthermore Silver (1986) has shown that even college

freshmen who are given remedial training still hold on to this misconception.

Another area where the intrusion of whole number concepts has been
shown to be problematic is in the operations of multiplication and division of
rational numbers. These operations are challenging to students of all ages
(Armstrong & Bezuk, 1995). The most common misconception that is held is that
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the operation of multiplication will always result in a product that is bigger than
the factors and that the operation of division will always result in a quotient that
is smaller than the dividend and the divisor (Graeber and Tirosh, 1988). This
misconception, labeled “mmbdms” (multiplication makes bigger, division makes
smaller) ia based on an additive model of multiplication where this operation is

conceptualized as repeated addition.

Finally, there are the well-known problems encountered when students
attempt operations with ratios (Confrey, 1995; Hart, 1988; Karplus, Pulos, &
Stage, 1983; Kramer, Post, & Currier, 1993; Lachance & Confrey, 1995; Lamon,
1993, 1994, 1995, 1999; Lawton, 1993; Noelting, 1980a, 1980b; Sophian & Wood,
1997). The inclination of students and adults alike to incorrectly make use of
additive reasoning in situations that call for ratio and proportional reasoning is
exemplified in the often replicated task “Mr. Tall and Mr. Short” (Karplus,
Karplus, & Wollman, 1974). In this problem respondents are asked to determine
the 4th term in a missing value task. The challenge that they are presented is to
find the height of “Mr. Tall” when measured in paper clips. The problem
concerns the following situation and mathematical relations. Mr. Short is 4
buttons tall or 6 paper clips tall, Mr. Tall is 6 buttons tall and x paper clips tall, i.e.,
4:6 as 6 : X. This task has been implemented with diverse student populations
within the US, Great Britain, and elsewhere. The results reveal a consistent
tendency for students to use an “incorrect addition strategy” (Hart, 1988) in
which the difference of 2, calculated by subtracting 4 from 6, is added on to 6 to
get an answer of 8. It has been suggested that this additive strategy would be



replaced by a correct multiplicative strategy as students get older and benefit
from further instruction (Noelting, 1980a, 1980b). However, Hart’s (1988)
extensive longitudinal surveys reveal that 5% of students who use additive
strategies when they first encounter ratio problems at 13 years of age are still
using these strategies 3 years later. Thus additive approaches do not necessarily

progress to proportional thinking with age (Hart, 1988, p. 208).

The forgoing list presents some concerns that have been expressed with
regards to the types of errors that students make in rational number that are at
least in part caused by the interference of whole number. However, many other
concerns with students’ learning and understanding of the rational number
system have been voiced as well. These include 1) difficulty understanding the
magnitude of rational number, 2) failure to understand the meanings of
operations, or to apply them appropriately, and 3) inability to translate between
representations. In sum, it appears that many students lack a conceptualization
of the rational number system as a whole. Unfortunately, the problems listed
above are not restricted to school-aged students. Many adults also lack a fluent
understanding of this number system (Cramer, Post, & Behr, 1989; Post, Harel,
Behr, & Lesh, 1991).

1.3. Failure of Traditional Teaching Practices

There is widespread acknowledgement that the failure of students to
perform in rational number is at least partly attributable to deficits in traditional



educational practice. Analyses of textbook units in rational number reveal
substantial problems with content and coverage. 1) Topics are covered quickly
and superficially. 2) Too much time is devoted to presenting procedures for
manipulating rational numbers, and too little time to teaching their conceptual
meaning (Hiebert & Wearne, 1986; Resnick, 1982; Schoenfeld, 1989). 3)
Operations are taught in isolation and divorced from meaning. 4) Virtually no
time is spent in relating the various representations, decimals, fractions, percents,
to each other (Markovits & Sowder, 1991, 1994). 5) In contrast to units on whole
number learning, textbook instruction in rational number does not support the
development of students’ informal knowledge. Furthermore, the style of
presentation of the lessons denies students the opportunity to construct their
own understandings (Armstrong & Bezuk, 1995; Ball, 1993; Hiebert & Wearne,
1986; Mack, 1990, 1993, 1995a, 1995b; Resnick, Nesher, Leonard, Magone,
Omanson, & Peled, 1989; Sowder, 1995). 6) Finally, textbooks fail to connect the
related topics of ratio and proportion with rational number instruction (Confrey,
1995; Moss & Case, 1999).

1.4. Lack Of Teacher Knowledge

The problems associated with traditional textbooks are compounded by
the further problem that traditional teachers are ill-prepared to teach rational
number (Ball, 1993; Carpenter & Lehrer, 1999; Post, Harel, Behr, & Lesh, 1991;
Post, Cramer, Behr, Lesh, & Harel, 1993; Schifter & Fosnot, 1993). Like their
students, these teachers have difficulty interpreting the symbol system,



understanding the units and the referents, and using multiplicative or
proportional strategies instead of additive ones. These findings are not really
surprising, since the concept knowledge of these teachers has, for the most part,
been built on the same limited textbook vision that has restricted the learning
trajectories of the students in their classes (Confrey, 1994; Hiebert, 1992; Kieren,
1992; Mack, 1993).

1.5. Change in Teaching Approaches and Recommendations

In the last few years there have been a number of successful attempts to
remedy the situation and many successful programs have been reported
(Hiebert, Wearne, & Taber, 1991; Hiebert & Wearne, 1996; Kieren, 1994; Mack,
1990, 1993a; Markovits & Sowder, 1994; Streefland, 1991, 1993). It has been
shown that, with revised conditions of instruction, children can be led to a deeper
understanding of some aspects of the rational number system. Still, there is a
growing concern that we may need to attack the problem in a broader and more
integrated fashion. In their recommendations for curriculum reform, Post,
Cramer, Behr, Lesh, and Harel (1993) suggested that “curriculum developers’
attention should be directed away from the attainment of individual tasks
toward the development of more global cognitive processes” (p.XX) . A similar
point has recently been made by Sowder (1995) and by Markovits and Sowder
(1991), who have suggested that children need to learn how to move among the
various possible representations of rational number in a flexible manner.

Although they retain a concern for deep conceptual understanding of the



individual components of rational number, contemporary analysts are clearly
urging us to create curricula that will help children develop more global
conceptions of the rational number system as a whole and of the way its various

components fit together.

This general goal is the overriding objective of this thesis. In the chapters
that follow I outline a research program in which I have designed and assessed a
curriculum which fosters such global understandings of the rational number
system. The curriculum is based on a Case’s theory of intellectual development
(Case, 1985, 1992; Case & Okamoto, 1996) and on a developmental model for
rational number learning that [ have developed with him.

1.6. Outline of the Present Thesis

In the next chapter [ review the research on the teaching and learning of
rational number carried out by the mathematics education research community.
In Chapter 3, I first present the general theoretical framework and the specific
model that was proposed for the development of rational number. Then a detail
of the curriculum that was designed based on the model is presented. Chapters 4
and 5 contain methods and results of two empirical studies where the rational
number curriculum was implemented. In Chapter 6, I present a comparative
analysis of these two studies and a third study that was reported earlier. Finally,
in Chapter 7, I present my discussion of these findings and their potential

contribution to the literature in rational number and multiplicative structures.



Chapter 2
Rational Number Research: An Overview

Old Paradigms and New Directions

2.1. What Is Rational Number?

A definition of rational number belies the complexity of the topic. Simply
stated, a rational number is a number that can be expressed as a quotient or a
ratio of two integers a and b, that is, a/b where b does not equal zero. However,
despite its apparent simplicity, rooted in this elegant definition are particularly
challenging axioms, properties, concepts, and constructs. Encompassing the
representations of decimals, percents, fractions, and ratios, rational number is at

once a system of numbers and a system of operations.

The history of rational number pedagogical research has been primarily
concerned with the unraveling of these complexities. Researchers have
conducted semantic, syntactic, and epistemological analyses of the rational
number system, and the findings of this research have directly influenced the
applied work in the field. As Carpenter et al. (1993) note, “Research on teaching,
learning, curriculum and assessment of rational number concepts depends on the
conception that the researchers hold of the nature of rational number” (p. 2).

Thus, to understand the direction instructional reform has taken, it is important
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to examine the conceptions of rational number that predominate in the field and

directly influence the research on teaching and learning.

2.2. The Subconstructs Theory of Rational Number

The cognitively-based research in rational number has looked at the
different characteristics of this number system Freudenthal, 1983; Kieren, 1976,
1988; Ohlsson, 1988, 1987). Researchers have engaged in discussion concerning
1) the mathematical constructs that comprise the number system, 2) the different
applications or characteristics of this number system, as well as 3) what a person
can do when they know rational number (Kieren, 1993, 1995). These questions
have led to the identification and analyses of special aspects of rational numbers
which have come to be known as “subconstructs.” Although there are some
variations in the way these subconstructs are delineated, it is generally agreed
that these interpretations include rational number as operator, rational number
as ratio, rational number as quotient, rational number as measure and, with the

exception of Kieren, rational number as part/whole.

The operator (or “stretcher” or ‘shrinker’) subconstruct indicates the way
that the number acts as a multiplicative transformer and operates on something
else, as in a function that is applied to some number (e.g., 1/2 of 8). Rational
number as ratio defines the situation in which two quantities are related to one
another multiplicatively (e.g., there are 3 girls for every 4 boys). The measure

subconstruct, most frequently accompanied by a number line or a picture of a
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measuring device identifies a situation in which the fraction 1/b is used
repeatedly to determine a distance (e.g., 3/4 of an inch = 1/4, 1/4, 1/4). Rational
number has the meaning of quotient, so that 3/4 is interpreted as 3 divided by 4
(for example, 3/4 indicates that 3 cookies are shared by 4 people). And finally
there is what is known as the part/whole subconstruct which defines the act of
partitioning an object into parts, and addresses how much there is of a quantity
relative to a specified unit of that quantity [e.g., For the fraction 3/4 there are
two part whole interpretations (a) 3 (1/4 units) and (b) 1(3/4 unit)]. Although all
of the subconstructs represent separate interpretations, the operator and the
ratio subconstructs refer to characteristics of rational number that are exclusively
multiplicative, whereas the measure, quotient, and part/whole subconstructs

incorporate ideas from additive structures as well as multiplicative ones.

2. 3. The Rational Number Project

The exploration of the subconstructs—both the identification and
interpretation of these separate applications—has profoundly affected the style
and content of rational number research. Even more importantly, the
subconstruct theory has shaped the general paradigm for research and teaching
studies in rational number. The subconstruct analysis, while initially conducted
by Kieren (1976), became the focus of the work of a group of mathematics
education scholars whose cooperative program of research is known as the
Rational Number Project (RNP) (see, for example, Behr, Harel, Post, & Lesh,
1992, 1993; Bright, Behr, Post, & Wachsmuth, 1988; Harel, Post, & Lesh, 1993).
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The extensive analyses of the subconstructs led the RNP researchers to conclude
that each construct represents a distinct conception of rational number. Thus a
comprehensive knowledge of this number system involves an ability to perform
a variety of problems in all of these separate applications. In keeping with their
analysis then, the subconstructs have become a focal point for their work on
teaching and learning of this number system. And, although the overriding goal
for rational number learning is that knowledge of the subconstructs be
connected to form a unified scheme (Carpenter et al., 1993), nevertheless, the
subconstructs have evolved as individual teaching strands for learning rational
number.

2.3.1. The influence of the RNP

The legacy of the work of the RNP and the influence of that work cannot
be overestimated. First is the contribution of fine-grained analyses of the
subconstructs and the importance of their place in the field of rational number
(Behr et al., 1992, 1993; Curcio & Bezuk, 1994; Harel, Post, & Lesh, 1993; Lesh &
Landau, 1983; National Council of Teachers of Mathematics, 1989; Post, Cramer,
Behr, Lesh, & Harel, 1993: Post, Harel, Behr, & Lesh, 1991). Second is the
application of these subconstructs to teaching, learning and assessment. The
strength of the influence of the RNP is evidenced by the longevity of its research
program (which is still ongoing and has been funded consistently since 1979), by
the significant number of publications that they have authored (approximately
85) and by the many other researchers who have modelled their own work on
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the RNP's analyses (e.g., Lamon, Harel, Mack, etc.). Over the years the research
program of the RNP has included experimental studies (Cramer, Post, & Behr,
1989), surveys (Heller, Post, Behr, & Lesh, 1990), and teaching experiments (Behr
& Post, 1992; Behr, Wachsmuth, Post & Lesh, 1984). The RNP has also developed
curricular units and materials (Behr, Harel, Post, & Lesh, 1993), and made
recommendations to influential organizations such as the National Council of
Teachers of Mathematics (NCTM). Recently this team has also become involved

in preservice teacher training and professional development.

2.3.2. Teaching Experiments

The RNP themselves have reported many successes in their teaching
experiments based on the subconstructs, and they have also reported some
shortcomings (Behr, Post, & Wachsmuth, 1984). While students seem to make
gains in their understanding of, and competency in, isolated areas of this number
system (i.e., understanding of the subconstructs and in the separate
representations of decimals and fractions), they are not able to integrate these
various individual proficiencies into a systematic conceptualization of this
number system as a whole simply by learning the various meanings of the
subconstructs in isolation. In their recent recommendations for curriculum
development in rational number, the RNP observed that more instructional
attention needs to be placed on students’ integrated use of, and access to, the
totality of the rational number domain (Post, Cramer, Behr, Lesh, & Harel, 1993).
They concluded that the “curriculum developers”™ attention should be directed

away from the attainment of individual tasks toward the development of more
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global “cognitive processes” (p. 343).

2.3.3. Problems with the Research Paradigm of the RNP

While it is true that the analyses of the subconstructs give us a glimpse
into the complexities of the rational number system, and serve as useful
benchmarks for assessment, I concur with the critics (i.e., Carpenter et al., 1993;
Carraher, 1996; Streefland, 1993) who all argue that there are some fundamental
drawbacks to the RNP’s approach to rational number learning, particularly at the
introductory phase—drawbacks that I argue work against the possibilities of an
integrated understanding of this domain. Further I argue that the RNP’s
approach, rather than promoting students” multiplicative intuitions, actually
serves to reinforce students” whole number reasoning. These drawbacks can be
subsumed under two separate but interrelated emphases. First, as already
mentioned, is the focus on the individual subconstructs in the RNP’s design for
curriculum reform. Second, as suggested by Streefland (1993), is the hierarchical
placement of the additive part/whole subconstruct as the organizing or core
concept in the domain. In the sections that follow, I will elaborate these two

points.

2.3.3.1. Problems with the Subconstructs as Learning Goals

The RNP’s subconstruct theory can perhaps be better understood if we
look at the mandates of the mathematics research community when the RNP
first began its investigations 20 years ago. At that time, research on teaching

emphasized rigorous and in-depth learning of individual mathematics topics;



they did not particularly focus on the promotion of the understanding of the
interconnectedness of broad domains. Thus, the RNP’s focus on and analyses of
the individual subconstructs were very much in keeping with the prevailing
methodologies and were respectful of the notion of discrete concepts being
taught. However, the RNP’s analytic approach is at odds with the goal of
promoting an integrated understanding of the domain as a whole particularly of
the interconnectedness among the various representations of the number

system.

2.3.3.2. Problems with the Favouring of the Part/Whole Subconstruct

The second problematic focus in the RNP’s approach is the prioritizing of
the part/whole subconstruct. Streefland (1993), a researcher whose work has
focused on the development of students” mathematical understandings
particularly in fractions, has observed that partitioning and the part/whole
subconstruct “... [are] the theoretical foundation and at the forefront of their [the
RNP’s] work.” He goes on to observe that Behr et al. view part/whole construct
as fundamental to all later interpretations of rational number. In the RNP’s
approach, although ratio and proportion concepts are embedded in partitioning
work, ratio and proportion are proposed as subsequent to the part/whole
subconstruct. This favouring of part/whole as a grounding for rational number
has recently been questioned and there is growing consensus that ratio and
multiplicative structures may be more fundamental concepts to building rational
number concepts (Confrey, 1994, 1995; Confrey & Smith, 1995; Lachance &
Confrey, 1995; Kieren, 1994a, 1995; Streefland, 1991, 1993; Vergnaud, 1983, 1988,
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1996). In the following sections this position will be elaborated.

2.4. Dual Nature of the Numbers in the Rational Number System

The distinction that Streefland has pointed out, regarding the primary
focus of instruction in rational number as being rooted in either additive
representations (e.g., part/whole) on the one hand, or, multiplicative
representations such as ratio/ proportion on the other, is a distinction that is
inherent in the number system itself. Rational numbers are (at the same time)
both numbers and ratios. For example, 1/4 can either be interpreted as a
number as in the equation 1/8 + 1/8 = 1/4 or, as a ratio for example if we say
1/4 of the selling price. This latter interpretation describes a relation between
two numbers (a ratio) or a relation between two variables (a function). These

distinctions will be further elaborated in the present chapter and throughout this

thesis. For tihefpfesenf t purposes it is important to note that there is a certain ~— —

amount of disagreement amongst mathematicians as to whether rational

numbers, particularly percents, are primarily numbers or operators.

Both Carraher (1996) and Davis (1988) have independently remarked on
the disagreement: Both investigators have suggested that while this
disagreement may be of little consequence in the field of mathematics, the
prioritizing of these different interpretations may have serious implications for
mathematics educators. To quote Davis, “While this distinction might seem

merely like an academic quibble, our disagreement on these matters may
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contribute to our lack of success in teaching the concepts to children” (p. 299). He
therefore admonishes curriculum developers and researchers to consider the
impact of their choices for teaching and learning. Carraher is adamant on this
point as well, and asserts that “the view that a fraction is simply a number [an
additive concept] may make sense in discussions among mathematicians but it is
pedagogically naive as well as historically and psychologically inaccurate” (p.
242).

Since students’ learning in rational number is influenced by the
representations that they use, particularly the initial ones (Kerslake, 1984; Silver,
1986; Sowder, 1995), it is clear that the favouring or privileging of additive
part/whole structures over the multiplicative structures of ratio and proportion
as an introduction or underpinning to the learning of rational number must be
further considered.

2.5. The Part/Whole Interpretation of Rational Number: Additive Structures

It is useful to consider the NCTM’s definition of the part/whole
subconstruct. The following quote is the verbatim explanation that is provided to
teachers in the NCIM curriculum document on rational number (Curcio &
Bezuk, 1994). It is the first aspect of rational number to which teachers and their

students are introduced.

“In the part/whole meaning a unit in the form of a continuous shape (e.g.,
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a cake) or a discrete set (e.g., a number of cookies) is introduced. The unit
is partitioned into equal sized parts or non-congruent shapes with equal
area. For example, a [rectangular] cake is to be cut into eight equal-sized
pieces. What will be the size of each piece? The cake will be partitioned
into eight equal pieces, either congruent or pieces equal in area, each piece

being 1/8 of the whole cake” (p. 2).

My reading of this explication of the “part whole subconstruct,” is that the
emphasis is placed on entirely additive notions; first, of the individual pieces of
cake that have been cut (the parts) and, then, on the independent, countable
units called “1/8's” that result from the cutting of the cake, and which yield a
number 1/8. What is entirely absent conceptually in this definition is the idea that
these 1/8ths are related to a whole, by a ratio 1:8. For the mathematician this
may be entailed by the fact that the cutting was done in such a fashion as to
make all eight pieces equal. But for the child it is not. One simply has a new kind
of physical object—one generated by partition—and a new way of writing the
result (total pieces on bottom, number “counted up” and taken away, and used
for some purpose on top). Thus, there is not even an allusion to the

multiplicative underpinnings of rational number.

This additive part/whole subconstruct is the most basic interpretation that
can be given to rational number. This interprefation leads to classroom activities
that are easily accessible to young students e.g., cutting pies, (partitioning circular

regions), or dealing out, as in the sharing of candies. These exercises, drawn from
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experiences that children have engaged in outside of schaol, access children’s
many intuitions for counting and whole number. Marshall (1993) in her analysis
of the “feature” and “constraint” knowledge associated with the subconstructs,
asserts that “this knowledge for part/whole, is built directly on part/whole
knowledge from another domain—that of whole numbers” (p. 272).

The RNP’s privileging of this interpretation at the early stages of learning
rational number can probably be understood from four separate vantage points:
1) as choosing the most basic form (a/b) of rational number; 2) as accessing
children’s previous school-learned mathematics; 3) as tapping into experiences in
the world that are familiar to children from a very young age, and perhaps, 4) as
permitting the teaching of rational number prior to the stage in cognitive

development where abstract entities such as ratios can be conceptualized.

While there are benefits to this introduction, it has been noted thata
continued reliance on this part-whole interpretation of children’s informal
partitioning schemes can place limitations on the robustness of their
understanding of rational number (Confrey, 1995; Kerslake, 1986; Ohlsson,
1988). Sowder explains this position as follows: “Children may treat the
individual parts that result from a partition as discrete objects—e.g., six pieces
that a pizza is cut into, are simply six individual pieces. The children do not
immediately recognize the consequences of the fact that each piece also
represents one sixth of the whole pizza. Or in Kieren’s words they still think in

terms of “how many” instead of more appropriately, “how much?”



2.6. Multiplicative Reasoning and the Intrusion of Whole Number Concepts

As I have pointed out in Chapter 1, it has been acknowledged thata
common problem, when students begin their learning of the various
representations of rational number, is that their whole number
conceptualizations interfere with or seem to dominate their thinking, thus
causing them to confuse additive and multiplicative situations. Hiebert (1992)
asserts that conceptualizations that become rote for students from their previous
whole number learning interfere with their introduction to this number system.
Given that students have spent many years mastering the whole number system
prior to their introduction to rational number, some would argue that this
situation is not surprising and can be interpreted as a temporary intrusion of
ideas from one system onto another. However, while we know that some of the
problems in learning rational number are eradicated as students progress
through their school years, we also know that many of the problems that
students encounter persist into adult life and appear to be robust and long-
lasting (Armstrong & Bezuk, 1995; Ma, 1999; Parker & Leinhardt, 1995; Post et
al., 1991; Silver, 1986; Thipkong & Davis, 1991). In fact, many adults do not
master proportional reasoning (Lamon, 1999); a concept that we know to be
important for a solid understanding of the rational numbers.
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2.7. The Distinctiveness of Whole Numbers and Rational Numbers: Transition

or Departure

While the notion of whole numbers interference is widely acknowledged,
there are differences of opinion as to the nature of that interference, differences
which in turn reflect curriculum decisions. While it is true that rational numbers
share a language with whole numbers and use concepts from whole number and
thus may be thought of an extension of whole numbers (Steffe, 1994), there is a
growing understanding that Rational Number is a distinctive field that is rooted
in very separate intuitions and precursor knowledge. Rational numbers are
tightly interwoven with ratio and proportion concepts and thus there are

fundamental differences that must be noted.

Harel and Confrey (1994) have analyzed some of the new
conceptualizations that students must contend with in learning rational number:
First of all, is the fundamental change that students will encounter in the nature
of the unit. Whereas in whole number the unit is always explicit, in rational
number, the unit is the context that gives meaning to that represented quantity,
but often it is implicit. (e.g., “1/2 of 3/4” the notion of the unit “1” is not explicit;
however, it is conceptually embedded in the construct). As well, the learner has
to readjust to a new/different notion of quantity: whole number is based on the
concept of discrete quantity, whereas rational numbers are “dense”—between
any two rationals one can find another and hence an infinity of other numbers.



Finally, [ argue that for the naive learner whole number and rational
number function in ways that can be considered in Chi's terminology as
“ontologically distinct” (Chi, 1992). Until students encounter rational number
operations in school, although it is true that they have intuitions about
proportions, their notion and experience of number is one that comes directly
from whole number understandings. For these learners, numbers are symbols
that refer to a discrete entity with a constant value. The number 3 has a particular
and consistent meaning, In daily life, people use numbers as either “count
words” which are subject to a host of systemic rules (Resnick, 1986), or as
adjectives where they refer to objects. Numbers are related to the substance
itself. If you have 3 objects they are inherently three as in a triad, as in the sides
of a triangle, etc. Threeness is fixed and immutable and although it may be
defined in relationship to other things like 2 and 1, as a cardinal property, 3 is
fixed, regardless of the nature of the elements or the relation of the elements.
Viewed in this way, one could say that people’s standard use of number is
grounded in discrete additive theory-like notions, and that the theory belongs to
a “substance-based” ontological category (Chi, 1992).

But what of the rational numbers? First consider the numbers in fractions
and ratios. These numbers behave entirely differently than whole numbers. The
quantitative meaning of these numbers is neither fixed or immutable. These
numbers do not behave as “substance-based” entities. Rather their meaning is
based on interactions and relations. In Chi’s terminology they can be called
“process-based.” Stated differently, in the rational number system, numbers are



not associated with, and do not function as independent entities that have a
constant value. The numbers in fractions, ratios, and proportions must be
reinterpreted as dependent variables in a ratio relationship. The process by
which the number is created must be considered and hence the ontological
category is different. (Flere numbers exist as entities in a process that is driven by
an interaction). The quantity defined by the number “3” changes based on an
immediate history and associations. (The numbers in the decimal system exist
somewhere in and in-between category and can be interpreted in a more
“substance-based” way, however their ratio underpinnings must be

conceptualized in order to work with these representations with understanding).

Psychologically and ontologically then, these two systems behave very
differently to naive thinkers. Students must move from understanding and using
number as being associated with substances to being associated with a
relationship of a process, one that is no longer at its core associated with the
tightly held additive understandings but one that is now part of a multiplicative

world.

Thus it can be seen that a reformulation of number is necessary to
progress from whole number to rational number understanding as the two

systems do not flow one into the other.

Kieren (1993, p. 56} also has suggested the distinctiveness of these two
number systems. He points out that there are “fundamental new axioms and
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properties and fundamentally distinct actions for the knower.” Thus knowledge
of rational number is constituted in a fundamentally different way from that of
whole number.

2.8. The Multiplicative Conceptual Field

Vergnaud, a French mathematician and theorist, provides insights worthy
of consideration in looking at the distinctiveness of the rational numbers from
whole numbers. He asserts that the rational number system may be considered
in a broader context which he sees as a network of different but interconnected
multiplicative concepts which he has named the Multiplicative Conceptual Field
(MCF) (Vergnaud, 1983, 1988, 1994). Vergnaud postulates that along with
multiplication, division, and linear functions, rational number encompasses all

situations that can be analyzed as simple or multiple proportions.

Confrey’s theoretical extension to Vergnaud's proposition of the MCF
suggests that multiplicative action or reasoning occurs in a way that is
independent of additive ideas. Confrey distinguishes between multiplicative and
additive schema in the following way, “Whereas in additive operations, counting
starts at 0 and the successor action is adding one with the unit being one, ina
multiplicative splitting world, counting starts at 1 and the successor action is
splitting by n” (Kieren, 1994, p. 395). She defines splitting as an action of creating
simultaneous multiple versions of an original. The focus on splitting, based on
the action of one-to-many, includes actions such as sharing, dividing



symmetrically, growing, magnifying, and folding. By contrast, in additive
situations the change is determined through identifying a unit and then counting
consecutive instances of that unit. Further, the precursor actions are affixing,
joining, annexing, and removing. Finally, Confrey (1994) asserts that the splitting
schema is a precursor to an adequate concept of ratio and proportion as it

provides a non-counting basis for multiplicative structures.

2.9. Working Hypothesis for this Thesis

This perspective raises the question as to how should we foster these
multiplicative schemes and operations? Traditionally rational number concepts
are developed through fractions and part/whole constructs. However, we have
seen that this type of introduction fails to promote a conceptualization of the
number system as a whole. Thus we need to find ways of introducing more
complete conceptions. I concur with Kieren who points out (1994, p.89) that
rather than relying on children’s weil-developed additive intuitions in our
introduction fo rational number, we must find children’s intuitions and schemes
that go beyond those that support counting. Thus, the goal is to develop a
curriculumn that can immerse the students in situations that are both

multiplicative and are based on their current understandings and intuitions.

If success in rational number means that students must acquire new
multiplicatively based intuitions, then we must provide a learning context where

an immersion in multiplicative contexts is the foundation. Whole number



understandings are carefully built over a number of years; now we must

consider how rational number understanding develops and is fostered.

In the next chapter, I describe the curriculum for rational number that I
have designed based on a developmental model for rational number that is
underpinned by or grounded in multiplicative understandings. I will also
describe the theoretical background of central conceptual structures that served
as the framework for both the developmental model that was hypothesized as
well as the curriculum that was developed. As will be seen, this rational number
curriculum, like the other mathematics curricula that Case and his associates
have developed (see Griffin & Case, 1998; Kalchman & Case, 1998) was designed
with the goals of 1) fostering a deep understanding of the particular number
system, and 2) promoting the kind of flexibility with the number system that has
been characterized by Bereiter (1998) , Bereiter and Scardamalia (1997), Case
(1998), Greeno (1992), and Sowder (1992) as “Number Sense.”



Chapter 3
A Psychological Model and an Experimental Curriculum Designed
to Foster Deep Mathematical Understanding of the Rational

Number System

3.1. Case Number Sense Curricula

In the last several years Case and his associates have been working on a
number of projects for the development of mathematical understanding in
various domains. Case et al.’s early work on whole number development has
resulted in two programs for young children; Rightstart and Number Worlds
(Griffin & Case, 1996, 1997; Griffin, Case, & Seigler, 1994). More recently, Case
and Kalchman have been involved in the design of a curriculum to foster a deep
understanding for the difficult topic of mathematical functions (Kalchman &
Case, 1998).

Not only have these curricula proven to be successful in promoting
principled understanding of whole numbers and functions respectively, but they
also appear to have promoted the types of understandings and competencies
that have been characterized by Greeno (1991), Bereiter (1998), Bereiter and
Scardamalia (1997), Sowder (1992), and Case (1998) as “number sense.” These
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include: (1) Fluency in estimating and judging number magnitude; (2) ability to
recognize unreasonable results; (3) flexibility with numbers when mentally
computing; (4) ability to compose and decompose numbers; (5) ability to invent
procedures for calculating, and to be flexible and creative in solving problems
involving numbers; (6) ability to move among different representations of
number and to use the most appropriate representation for a given situation,
and (7) ability to represent the same number in multiple ways, depending on the

context and purpose of this representation.

The whole number program and the functions program and the rational
number program that will be reported in this thesis were designed for students
at very different levels of their school careers (Kindergarten, Grade 1 and Grade
2 for Rightstart and Number Worlds, Grade 4-6 for rational number and middle
and high school for functions): Nonetheless, all of these programs share many
basic features. The core of their similarity is that they are all based on Case’s

theory of central conceptual structures.

3.2. Theoretical Background

Case has proposed that children’s number sense depends on the presence
of powerful organizing schemata which he refers to as central conceptual
structures. These structures may be defined as complex networks of semantic
nodes, relations, and operators, which (1) represent the core content in a domain

of knowledge, (2) help children to think about the problems that the domain
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presents, and (3) serve as a tool for the acquisition of higher order insights in the
domain mastered (Case, 1998; Case & Okamoto, 1996; Case, 1998; Griffin & Case,
1996; Griffin, Case, & Siegler, 1994).

Case has proposed that central conceptual structures are assembled by the
integration of two intuitive or “primitive” schemas. Furthermore, he has
postulated that these two initial or precursor schemata differ from each other;
One of these schemas is primarily spatial, analogic, and non-sequential and the
other is primarily digital, verbal, and sequential (Case & Okamoto, 1996; Griffin
& Case, 1996; Kalchman & Case, 1997; Moss & Case, 1999). Developmentally the
central conceptual structures are built up in a series of phases. In the first phase
of children’s learning, these two core schemas are consolidated. Next, these two
early schemas become more complex, while at the same time they are mapped
on to each other. The result is that the student’s understanding of the domain is
transformed and a new psychological unit is constituted. It is this new unit that
then constitutes the core central conceptual structure on which most of
children’s subsequent learning, in a numerical domain, will depend. During the
next phases, students slowly begin to discriminate amongst the different
contexts in which the new elements can be applied. Thus slightly different
representations of the core structure are created. Finally it is hypothesized that
students come to understand the domain in full and the differentiated
representations are firmly embedded in the newly formed structure. In order to
give a more detailed picture I will briefly describe this developmental sequence

for whole number arithmetic.



3.3. Development Of Whole Number Understanding

To date the structure that has been most extensively analyzed is the CCS
for the whole number system. According to the model proposed by Case and his
colleagues (Griffin & Case, 1988; Okamoto & Case, 1996) the two primitive
schemas on which an understanding of the whole number system depends are
the schema for verbal counting (digital, sequential) on the one hand, and the
schema for global quantity comparison (spatial, analogic) on the other. It has
been shown that although young children have strong intuitions for both
counting and global quantity comparisons, these two schemas initially develop
separately. However as children make the transition to a higher level of thought,
atabout the age of 6, they gradually coordinate these two schemas resulting in
the formation of the mental counting line: a structure which permits children to
solve a wide variety of addition and subtraction problems with confidence, by
moving forward and backward along the verbal counting sequence. Once
children understand how mental counting works, they gradually form
representations of multiple numberlines, such as those for counting by 2s, 5s,
10s, and 100s. The construction of these representations gives new meaning to
problems such as double digit addition and subtraction, which can now be
understood as involving component problems which require thinking in terms
of different numberlines. Finally, as children become more familiar with these
problems, they gradually develop a generalized understanding of the entire

whole number system and the base-ten system on which it rests. Addition or
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subtraction with re-grouping, estimation problems using large numbers, and
mental math problems involving compensation all are understood at a higher

level, as this understanding gradually takes shape. The CCS for whole numbers

is presented in Figure 3.1.
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This analysis for the development of whole number understanding has led to the
creation of a highly successful curriculum called Rightstart which is designed to
facilitate the underlying developmental integrations.

3.3.1. Rational Number Development

What about the central conceptual structure for rational number? Can a
developmental sequence and a central conceptual structure be identified that is
parallel to that for whole number?

In Chapter 1, I presented examples of the kinds of problems that students
encounter in learning rational number. I also concurred with researchers who
suggest that students’ failure in rational number is primarily based on the
resilience of their whole number schemas and the interference caused by these
schemas. I then went on, in Chapter 2, to present a series of observations about
the rational number system in an attempt to illustrate its distinctiveness from the
whole number system. [ stated that this distinctiveness was evident in the
multiplicative foundation of this number system and the relational nature of
both number and quantity. These arguments then lead to the suggestion thata
solid understanding of the rational number system is founded upon schemas and
intuitions separate from those of whole number. Again, this view is supported in
the psychological literature on the development of mathematical understanding
(Carraher, 1996; Confrey, 1994, 1995; Hatano, 1996; ; Kieren, 1993; Hunting,
Davis, & Pearn, 1997; Nunes & Bryant, 1996; Schwartz, 1988; Vergnaud, 1988).



3.4. Schema for Rational Number

For the development of rational number, Case and I have proposed that
the two primitive psychological units are 1) a global structure for proportional
evaluation (Nunes & Bryant, 1996; Resnick & Singer, 1993; Spinillo & Bryant,
1991) and (b) a numerical structure for “splitting” or “doubling” (Case, 1985;
Confrey, 1994; Kieren, 1992), both of which appear to be in place by about age 9
to 10 years. Coordination of these two structures at the age of 11 to 12 yields the
first semi-abstract understanding of relative proportion and simple fractions
(especially 1/2 and 1/4). As children grow older and receive further instruction,
they learn about different forms of splits and the relationships among different
sorts of fractions. They also learn about the relationship between fractional and
decimal notation. Eventually (though often not until they have reached the end
of hight school) they construct a generalized understanding of the entire rational
number system.

3.6. Implications of the Model for Instruction: Instructional Program Design

The goal for the rational number instructional program follows directly
from this analysis and is consistent with the goal of the Rightstart program for
whole number learning. Thus, we designed this program to provide students
with activities that allow them to refine and extend their existing understandings

in a natural fashion, and to use the resulting cognitive structure as a basis for



conceptualizing the overall structure of the rational number system.

In keeping with the above goals, we presented children with a sequence
of tasks that have the potential to maximize the connection between their
original, intuitive understanding of proportion, their knowledge of numbers
from 1 to 100, and their numerical procedures for ‘splitting’ numbers. In order to
maximize the potential for achieving the forgoing connections, we introduced
this number system in a measurement context and we chose percents as the first
rational number to introduce. The curriculum was thus structured so that the
other forms of representation, fractions, and decimals, were introduced later and
were grounded in students” growing knowledge of percent. The general

sequence of the program follows below.

The initial props that the children use are large drainage pipes of assorted
lengths each partially covered by a moveable venting tube that can be raised and
lowered over the pipes. Cylindrical beakers containing various amounts of
water are also used in the introduction. Both of these props allow for direct
evaluation of fullness relative to the whole. Both of these props also provide a
“side view” that is easily represented by the students on paper using a narrow
rectangular diagram showing the proportion of the total object that was
covered. Accordingly, our first exercises are ones that asked children to think
about relative height in terms of “fullness” and to describe the relationship using
the language of percent. As the lessons progress, the children are encouraged to

coordinate their estimates and intuitive understandings of percents in this



context with their strategies for manipulating the numbers from 1 to 100. The
two strategies that students spontaneously use and that we encourage are
numerical halving (100, 50, 25, etc.), which corresponds to a sequence of
visual /motor splits, and composition (e.g., 100 = 75 + 25), which corresponds to
visual/motor addition of the results. Other percent activities that are used, for
example model building and numberline games continue to use the
measurement metaphor for representing percent. Once children understand
how percent values can be computed numerically, in a fashion that corresponds
directly to intuitively based visual/motor operations, the next step is to
introduce them to two-place decimals. Again this introduction occurs in a
measurement context. For this introduction we explain to the students that a
two-place decimal number indicates the percent of the way between two
adjacent whole number distances that an intermediate point lies (e.g., 525 is a
distance that is 25% of the way between 5 and 6). This introduction to decimal is
then gradually expanded to include multi-place decimals, using a transitional
“double decimal” notation that the children spontaneously invented (Moss &
Case, 1999). For example, they initially represented the number that lies 25% of
the way between 5.25 and 5.26 as 5.25.25. Finally, the students are presented
with exercises in which fractions, decimals, and percents are to be used
interchangeably. Fraction teaching is never done independently of percents and
decimals; rather, fractions are offered as an alternative form for representing

these latter representations.

The psychological structure that we intend children to construct as a result
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of the above sequence is illustrated in Figure 3.2. The top line of the figure
illustrates the perceptually based sequence of ratios that we hoped children
would learn to recognize and to order at the outset of the program. The (left to
right) arrows connecting the icons in this row indicate the operation by which we
presumed children would move from one element to the next in the sequence.
This operation, which might best be termed visual-motor halving, is most easily
executed by putting one’s forefinger beside an object—then moving it up and
down until one finds the point at which the top and bottom halves of the object

are symmetrical.
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In the second line of the figure appear the corresponding representations
that we hope children will develop for benchmark percent values and the
numerical operations that connect them. Once again, we presume that children
will start with 100% and then calculate half of this value for each successive
visual-motor split. We also presume that children can learn to compose and
decompose percents that are calculated in this fashion (e.g., to determine the size

of 75% by finding the sizes of 50% and 25% and then combining them).

Finally, the bottom row of the figure is meant to represent the
corresponding set of measurement techniques and formal arithmetic procedures
that we hope children will learn to use when the goal is to express a ratio in some
standard set of units such as millilitres. For example, if one knows that the total
volume a beaker can hold is 120 ml, one can determine what 75% of that volume
must be by first computing half of 120 (60), then computing halif of the resulting
total (30), then adding these two values.

Case asserts that the psychological structure represented in Figure 3.2
contains a rich network of icons, symbols, and procedures that children can
access and apply in a flexible fashion, to insure that their qualitative procedures
for assessing and transforming continuous quantity, as well as their more
formal, arithmetic procedures, will remain closely integrated. In this sense, the
structure is directly parallel to the central conceptual structure for whole number
that has been analyzed by Griffin and Case (1996).



We reasoned that, once children possess a ratio-measurement structure
such as that diagrammed in Figure 3.2, they should be able to use this structure
as a starting point for learning about decimals and fractions. The sequence of
instruction that we employ in order to foster this development (percents,
decimals, then fractions) is a reversal of the normal order for introducing these
different representations and a significant departure from current “best
practice.” We believe that this is the optimal sequence for introducing rational

number for a variety of reasons:

1) By the age of 10 or 11, children have well-developed qualitative intuitions
regarding proportions (Case, 1985; Lamon, 1995, 1999; Noelting, 1980a; Resnick
& Singer, 1993; Streefland, 1991); 2) they also have well-developed intuitions
about the numbers from 1 to 100 (Okamoto & Case, 1996). By beginning with
percents, we allow them to bring these two sets of intuitions together in a

natural unidimensional fashion.

2) By beginning with percents rather than fractions or decimals, we postpone the
problem of having to compare or manipulate ratios with different denominators,
thus allowing children to concentrate on developing their own procedures for
calculation, comparison, and composition and decomposition rather than
requiring them to struggle to master a complex set of algorithms or procedures

that might seem foreign to them.
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3) Every percent value has a corresponding fractional or decimal equivalent that
is easy to determine. The converse, however, is not true. Simple fractions such as
1/3 and 1/7 have no easily calculated equivalent as percents or decimals. By
beginning

with percents, we allow children to make their first conversions among the
different systems in a direct and intuitive fashion and thus to develop a better
general understanding of how the three systems are related.

File transfer in progress

1
File transfer: 23 % complete

e

File transfer: 46 % complete

|

File transfer: 76 % complete

File ttansfer: 1009 complete

Figure 3.3—The “number ribbon” used on the Macintosh computer when a file is
being transferred.



4) By beginning with percents, we were able to let children use a form of visual
representation with which they were already familiar, namely, the “number
ribbon” that is used on the Macintosh computer when a file is being transferred
(See Figure 3.3). This representation further contributed to building a solid
connection between children’s intuitions about proportions and their intuitions

about numbers.

5) Finally, although this was not central to our decision, it is worthwhile to
mention that the children appeared already to know a good deal about percents
from everyday experiences (Parker & Leinhardt, 1995). Before we began the
instruction, we asked the children if they had every heard percent terminology
used in their homes or daily lives. Not only were they able to volunteer a
number of different contexts in which percents appeared (their siblings” school
marks, price reductions in stores having sales, and tax on restaurant bills were
the ones most frequently mentioned), they were able to indicate a good
qualitative understanding of what different numerical values “meant,” for
example, that 100% meant “everything,” 99% meant “almost everything,” 50%
meant “exactly half” and 1% meant “almost nothing.” By beginning with
percents rather than fractions or decimals, we were able to capitalize on
children’s pre-existing knowledge regarding the meanings of these numbers and
the contexts in which they are important (see Lembke & Reys, 1994, for further
discussion on this point).



3.6. A Review Of Study 1: Teaching Rational Number Sense to a Group of 16
High- Achieving Grade 4 Students

Drawing on the foregoing analysis for the development of rational
number sense, I conducted an experimental study (reported in Moss & Case,
1999) in which this experimental curriculum was taught to 16 high-achieving
Grade 4 students. The results were compared to the results of 13 similar children
exposed to instruction of a more classic nature. To compare the two groups a
detailed measure was designed (The Rational Number Interview) to assess
children’s conceptual understanding of fractions, decimals, percents, and the
relationships among them. The 41-item Rational Number Interview was
administered to both groups before instruction and the same measure with an
additional 4 items was again administered immediately after the two groups had
completed instruction. In all, the experimental group received twenty 40-minute
instructional sessions (that I taught) at a rate of one per week over a 5-month
period. The control group devoted a slightly longer time to the study of rational
numbers and followed the program from the same text series that was used
throughout the school from which the experimental classroom was drawn. The
instructional sequence for the experimental group has been described in detail
elsewhere (Moss, 1997). The times that are allotted for the various topics are as
follows: 9 hours on percent, 4 hours on decimals, and 4 hours on mixed

representations, including fractions.
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The sequence for rational number instruction in the control group’s text
was more conventional: Fractions are the first topic to be covered. In this
program, fractions are defined as numbers that describe parts of a whole and are
illustrated with pie-chart diagrams. Exercises follow in which children are asked
to determine fractions of a set, compare different fractions with regard to
magnitude, and determine equivalent fractions. Decimals are taught next, using
pie graphs, numberlines, and place value charts. Tenths are introduced first, and
their relation to single-place decimals is shown. Finally, equivalent decimals are
taught by a demonstration that numbers such as 0.3 and 0.30 are merely
alternate representations of 3/10 and 30/100. Lessons involving operations with
decimals were introduced next. The rules for addition and subtraction of
decimals, as well as for multiplication of one- and two-place decimals are taught
explicitly, with careful attention to the significance of place value. The use of a
fraction as an operator and computations involving division of decimals are

taught at the end of the sequence.

Both classrooms employed a variety of participation structures so that the
students alternatively worked in small collaborative learning groups, in pairs,

individually, as well as participating in whole group lessons.

The results of the study indicated that both the control and experimental
groups showed some improvement from pre- to posttest; however the
improvement of the treatment group was much greater. A two-way analysis of

variance with repeated measures was conducted to assess the significance of this
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difference and the results showed a strong treatment by pre/post interaction in
the predicted direction (F(1,32) =29.06; p <.001). A similar interaction was
present when we analyzed the results of the decimals, fractions, and percents
questions separately. Further analyses of the results indicated that the students
in the experimental group were much more successful than those in the control
group in getting the correct answers on the posttest measure. Qualitative
analyses showed that these two groups also had very different ways of
reasoning and solving items: The explanations of the students in the control
group were often based on additive reasoning, procedural knowledge, and often
errorful rules, whereas the students in the experimental group demonstrated a
response pattern that indicated a conceptual understanding grounded in ratio
and multiplicative structures and a flexibility of operating in this number system
that can be characterized as number sense.

For example, when asked to choose the larger of the two numbers .20 and
089, only 38% of these students indicated that they had an understanding of
magnitude. The majority asserted that .089 was larger because 89 is a bigger
number than 2. A second explanation they offered was that .089 was the smaller
number because “The longer the number of digits after the decimal point the
smaller is the number.” This misconception has been noted many times in the
literature (e.g., Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989). By
confrast, all of the students in the experimental group were able to correctly
assert that 20 was the larger number and give a reasonable explanation for their

choice.



Another set of items to which the control and experimental groups
responded very differently were those that asked students to translate among
representations. For example, at posttest, 93% of the students in the
experimental group could correctly find the decimal notation for 6% as well as
provide a sensible rationale for their answer, and 75% of these students were
able to correctly respond to the question “What is 1/8 as a decimal?” Both of
these questions elicited only a 17% correct response for the control group with
the majority of the students asserting that 6% was equivalent to 0.6 and that 0.8
was the correct decimal representation for 1/8. Again the responses of the

control group are typical of those reported in many other studies.

Another frequent problem for the control group was their inability to
employ multiplicative strategies, rather than the additive strategies with which
they were most familiar. One instance of this confusion was provided in the
control’s responses to a test item that required that the students shade 3/4 of a
pizza that was partitioned into 8. Only 33% of the students in the control group
were able to successfully answer this question. The majority of the students
shaded three sections (3/8) asserting that, “3/4 means three parts of something.”
Not only does this response indicate a lack of a sense of magnitude but also
shows the lack of consideration of the relation of the 3 (the part) to the 8 (the unit
whole). By contrast all of the students in the experimental group were able to

correctly answer this same question.
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Finally, there was also a difference in response pattern between the two
groups on items where students were asked to compute or perform operations
with rational number. In the measure we included items that were presented in a
standard form of computation as well as in a non-traditional form. An example
of a question in the latter category was as follows: “Fifteen blocks spilled out of
this bag. These 15 blocks represent 75% of all of the blocks that were in the bag
to start with, how many blocks were in the bag to start with?” In response to
this question, 88% of the Experimental students provided the correct answer
compared to____ in the control group. Since the Experimental Group had not
been taught any procedures for performing standard algorithms in their
program, we expected that these sorts of questions would be difficult for them.
However, we were surprised to find that the experimental students were better
able to tackle computation problems posed in a standard format than the control
group, even though the latter group had frequently encountered these problems
in their instructional program. For example, in answer to “ Whatis 31/4-2
1/2?,” a student from the control group answered as follows: “We need a
common denominator which would be 4. So we have to find the answer to 3
1/4-22/4? So the answer is 1 0/4.” This lack of sense making was also
majority of the control group students asserted that .43 was the sum of .38 + .5.
Sixty-one percent of this group maintained that 1/4 was the product of 1/2 of
1/8.

In summary, the posttest analyses showed that the students in the
experimental group had gained a principled, ratio-based understanding of



rational number, as well as a fluency and flexibility in applying that
understanding. In strong contrast, the type of reasoning that the control group
demonstrated in their posttest protocol displayed the limitations of their
knowledge of the rational number system as a whole and their reliance on
additive structures; misconceptions that are frequently reported in the
mathematics education literature. Thus we believe that this approach to teaching

rational number did foster the type of understanding that we had hoped for.

3.7. Further Questions

In the first study the experimental curriculum was tried out with a very
special group of high achieving students. Thus, many questions regarding the

robustness of the curriculum remained:

* How would this curriculum work for different populations of students,
such as less able students, and those who have had previous instruction in
rational number?

¢ Would these two groups also show the same type of flexibility (number
sense) as the first group?

. Would the program still be successful if students had already received a

more conventional (pie chart) introduction to the rational numbers?

As well there were questions about the assessment measure:



What might children’s understanding and competencies look like at
posttest, when examined in greater detail and across a broader range of
test items?

Would students be able to use their invented strategies based on halving
and doubling when working with more complex problems?
Could students perform as successfully on tests that included more

standard computation items?

Finally questions remained about the curriculum design:

What particular aspects of the curriculum made the most powerful
contributions to the outcomes? Specifically, what is the benefit of using
percents as an introduction to this number system?

How useful are representations based on measurement in teaching
rational number?

What are the unique contributions this research can make, both towards
establishing a different psychological model for rational number
development, and providing a curriculum for teachers to use that is

grounded in, and explores, the development of students” intuitions.

In the next chapters of this thesis, I will present two further studies that begin to

answer some of these questions. Chapter 4 describes a study with a mixed-

ability group of Grade 4 students. Chapter 5 presents a study with a group of



Grade 6 students of mixed-ability, who had all received several years of

conventional rational number teaching prior to the intervention.



Chapter 4
The Development of Rational Number Understanding: An

Intervention Study with an Intact Group of Grade Four Students

4.1. Introduction

The results of the original study (Study 1) that was previously reported as
a Masters thesis, (M0ss.1997, and in Moss & Case, 1999) clearly demonstrate that
the particular group of students who participated made substantially more gains
in their ability to perform in the area of rational number than did a control
group. Furthermore, as [ have already mentioned, these students displayed the
characteristics of number sense that have been outlined: an overall
understanding of the number system, a sense of the magnitude of these
numbers, and a flexibility that allowed them to use the representations of
rational number interchangeably and to invent procedures for operations.
However, there were limitations to the first study that left many questions
unanswered. The study that I report in this chapter was designed to address
some of these questions. This time the students came from an intact class where
there were several students who had particular difficulties with mathematics and
others who were less able than the students in the first study. Thus [ was able to

consider a number of new questions:



Question 1: Effectiveness of the Curriculum for Mixed-Ability Students

The first question concerned the effect of the curriculum on mixed-ability
students. I was interested to discover, a) if the class as a whole would make
significant gains on the measure from pretest to posttest, and b) whether the
instructional intervention would foster the same kinds of number sense with
these mixed-ability students that had been achieved by the high-ability students

of the initial intervention.

Question 2: Differences for High- and Low-Ability Students

Secondly, I was interested to discover if students who are initially high or
low in their mathematics achievement would show a different pattern of change
from pre- to posttest as a result of the experimental curriculum. Would they
achieve differently on the curriculum as a whole and would their performance
on the three subtests of percent, decimals, and fractions show differences based

on their mathematics ability?

Question 3: Performance on Standard Computation Tasks

The third question concerned the ability of the experimental students to
perform standard algorithms. In Study 1, I assessed the students on a variety of
types of tasks. Some of these, 20%, were direct measure items, and were
congruent with the context of the curriculum. Others, 80%, were transfer items.
Included in the transfer items were a very small number of standard
computation questions. The findings from Study I indicated that some of the



students were able to provide correct answers to these standard computation
tasks. Their methods of calculating, however, were not standard. My analysis of
the control group’s performance on these same items indicated that, even for
Grade 4 students who have been taught to perform standard algorithms for
addition and subtraction of fractions and decimals, these types of problems are
still very challenging. In fact, we know these to be very challenging even for
adults. Typically, students try to apply procedures that they have been taught,
and reveal their lack of understanding by making mistakes that are grossly
inaccurate. In the present study I wanted to examine the performance of these
students on an increased number of standard computation problems in decimals
and fractions in order to determine what types of problems they are and are not
able to solve as well as to determine what strategies the students employ in the

absence of having learned standard procedures.

4.2. Method

4.2.1. Subjects:

Twenty-one Grade 4 students participated in the study. As in the first
study, these children attended the Laboratory School at the University of
Toronto. However, in this study the children were from an intact Grade 4 class.
The class was composed of 9 girls and 12 boys. Five of the students in the class
had been identified as having learning problems. Each of these five students
received individualized help from a school resource teacher two or three times
per week. None of the students in the class had received any classroom
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instruction in rational number prior to this study. As well, although three of the
five special education students received some individualized help in mathematics
during the duration of the study, at no time did they cover rational number

topics.

4.2.2. Design:

The 49-item pretest measure was administered on an individual basis to
all of the students in the class in January, 1997, prior to the instructional unit. The
same measure was re-administered in early June, three weeks after the unit had
been completed. The experimental rational number curriculum consisted of 20,
45-minute lessons, all of which were taught by the researcher. These lessons
were taught at a rate of two or three per week over a three month period.
During the year in which this experiment took place, I was employed as a half-
time teacher for this particular group of students. In this role, my duties included
sharing in the teaching of all Grade 4 curricular areas.

423 Procedure:

Pretest interviews were carried out by two specially trained graduate
students who were teacher candidates. As in the first study, these pretests were
administered to all of the students in the class on an individual basis. Each
student was taken to a quiet room by one of the interviewers where the student
could freely answer the questions that were posed. These pretests took between

15 to 30 minutes to complete. Because the posttest interview took 1 1/2 hours,



this interview was administered to the students in two parts over a two-day

period.

424 Experimental Program:
Instruction schedule:

The experimental sessions were approximately 45 minutes to 1 hour in
length with the exception of the final three review lessons, which were 1to 1 1/2
hours in length. All of the lessons were documented; selected classes were
videotaped. Each lesson was reviewed, and, although the lessons followed the
sequence described in the preceding chapter, the specific plans for each lesson

were revised on the basis of class progress.

A breakdown of the topics covered in the lessons and the time allotted for

these topics is presented in Table 4.1:

Table 4.1

Lessons, Topics, and Hours of Experimental Curriculum
Subject Lessons Hours
Percent Lessons1-6 4 hours
Decimals with percent Lessons 7-13 5 hours
Fractions and mixed representation Lessons 14 - 17 5 hours
Review of percent lessons Lessons 18 -20 4 hours

Total hours spent 18 hours




Below is a brief account of activities presented to the children.

Estimating Percents (Lessons I-3):

The lessons started with an introduction to percents. To begin the unit, the
students were challenged to think about all of the instances where percents
occurred in their daily lives and to report these instances to the class as a whole.
A definition of four key benchmark points (100%, 50%, 25%, 0%) was discussed.
Next, large drainage pipes of varying lengths covered with specially fitted
sleeves were presented. These sleeves were pieces of flexible venting tube that fit
around the pipes and could be pulled up and down and set to various levels. The
children were invited to demonstrate their percent understanding using the
tubes and to consider how they would use the tubes to teach percent to a
younger child. The children were also challenged to estimate the percentage of
the pipe that was covered. The objective of the first few lessons was to
encourage children to think of strategies for making reliable estimates. The
perceptual halving strategy was encouraged. “Percent full” estimations were
also made using beakers and vials filled with sand or water. These estimation
exercises were designed to allow the students to integrate their natural halving
strategies with percent terminology. The children were then introduced to a
standard numerical form of notation for labelling percents. Standard notation
for the writing of fractions for benchmarks was also introduced so that the
students would be comfortable moving between representations. These lessons

also included a variety of other measurement situations where students could



operate with percentages and discover/construct methods for operating with

percents.

Computing Percents (Lessons 4-6):

The visual estimation exercises using vials and beakers were continued
with a new focus on computation and measurement. Children were instructed to
compare visual estimates with estimates based on measurement and
computation. For example, if a vial is 20 mm tall, 50% of that should be 10 mm.
The children then began to estimate and mentally compute percentage of
volume, for example, this vial holds 60 ml of water, 50% full should be 30 ml,
25% full should be 15ml. Other challenges included measuring objects in the
classroom and then estimating and calculating different benchmark points such
as 50%, 25%, 12 1/2%, and 75%. The children were not given any standard rules
to perform these calculations. An example of a method that was commonly used
is as follows; 75% of 80 cm (the length of the desk) should be 60 cm because 50%
of 80 cm is 40 cm and half of that (25%) is 20 an and together they equal 75%.
Other exercises included comparing heights of, for example, children to teacher
and then assigning an estimated numerical value using the language of percents.
For example, “Peter’s height is what percent of Joan's?” A series of specially
made laminated cut-out dolls ranging in height from 5 cm to 25 cm provided
additional practice at comparing heights. Percent lessons were concluded with

the students planning and teaching a percent lesson to a child from a lower

grade.



Introduction to Decimals using Stopwatches (Lessons 7-8):

In these two lessons children were introduced to decimals as an extension
of their work on percents. The lessons started with discussions of decimals and
how they permit more precise measurement than whole numbers. Two—place
decimals were introduced as a way of indicating what “percent” of the distance
between two whole numbers a particular quantity occupies. LCD stopwatches
with screens that displayed seconds and hundredths of seconds (hundredths of
seconds were indicated by two small digits to the right of the numbers) were
used as the introduction to decimals. After lengthy discussions of what these
small numbers represented quantitatively, the students came to refer to these
hundredths of seconds as centi-seconds. The stopwatch activities served to build
up children’s intuitive sense of small time intervals, and to give students
experience of the magnitude of centi-seconds. More importantly, use of these
stopwatches provided the students with the opportunity to represent these
intervals as decimal numbers. In the stopwatch activities, centi-seconds indicated
the percentage of time that had passed between any two whole seconds; they
came to represent the temporal analogs of distance. Many activities and games
were devised for the purpose of helping the students to actively manipulate the
decimal numbers in order to illuminate the conceptually difficult concepts of
magnitude and order. The first challenge that was presented to the students was
“The Stop/Start Challenge.” In this exercise, students attempted to start and
stop the watch as quickly as possible, several times in succession. They then
compared their personal quickest reaction time with those of their classmates. In

this exercise, they had the opportunity to experience the ordering of decimal
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numbers as well as fo have an informal look at computing differences in decimal
numbers (scores). Another difficult initial aspect of using decimal symbols is the
ordering of decimals when the numbers mave from 0.09 to 0.10, for example.
Some students were able to respond quickly enough to the challenge to achieve
a score of .09 seconds. Therefore, such traditionally difficult rational number
tasks such as, what is bigger, .09 or .40? could be naturally introduced. Another
stopwatch game that offered active participation in the understanding of
magnitude was “Stop The Watch Between.” The object of this game was for the
student to decide which decimal numbers come in between two given decimal
numbers and then to stop the watch somewhere in that span of decimal
numbers. In the game “Crack the Code,” the students moved between
representations, as they were challenged to stop the watch at the decimal
equivalent of 1/2 (.50), for example. As an extension to these exercises the
students were encouraged to invent variations on these games to use as

challenges for their classmates.

Learning about Decimals on Numberlines (Lesson 9):

A second approach to decimals was through the use of metre-long,
laminated numberlines that were calibrated in centimetres. This approach was
based on students” work with percents using numberlines. The first activities
served as a review. Each child was given a small numberline and asked to find
designated percents of the whole line by placing a unit block on the appropriate
spot (“Please place a unit block on the line that indicates 44% of your
numberline”). The students were then told that these percent quantities could



also be expressed as a decimal number; thus, for example, 44% could also be
shown as 0.44. Other activities included "Percent/Decimal Walks” where several
numberlines (which were referred to as “sidewalks” by the students) were lined
up end to end on the classroom floor with small gaps between each. Students
walked a given indicated distance on the numberlines, e.g., “Can you please
walk 3.67 sidewalks.” This game was also played in such a way that a single
student walked a “mystery distance” and the other students had to determine
what distance they had walked. In keeping with the preceding exercises they
expressed this distance as a mixed number, i.e., a whole number and a decimal
number.

Playing and Inventing Decimal Board Games (Lessons 10-13):

A board game “The Dragon Game”was devised with the intention of
giving the students the opportunity to learn about the magnitude of decimal
numbers, as well as to add and subtract decimal numbers. The game board was
approximately 60 an x 90 cm and was composed of 20 individual laminated 10
cm numberlines that were arranged as a winding path. Each number line was
marked as a ruler: ten black thick lines indicated cm measures, ten slightly
shorter blue lines highlighted the .5 cm measures and 100 red lines provided the
mm measures. This game directly followed on from the “sidewalk” excercises
mentioned above. The object of the game was to get from the beginning (the
first sidewalk) to the end (the 20th sidewalk) before the other players. At each
turn, a child picked two cards; an “Add"” or “Subtract” card and a “Number”
card. Each Number card had two digits written on it. The rule was that before
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making a move on the board, the player had to expand the two digits on the
card by adding both a zero and a decimal point strategically so as to optimize the
distance that the player travelled. For example, if a child picked a card with the
numbers 1 2, they had the options of calling that card .120, 1.20, 12.0, or 120. The
game also had other appealing features, for example, good luck bonuses and
hazard areas. Three players could play at once. The rest of the group worked
with the teacher to practice adding and subtracting on their own numberlines.
Three lessons followed where the students invented and planned their own

rational number board game and then played each other's games.

Fractions (Lessons 14- 17):

In keeping with the curriculum focus of translating among
representations, fraction lessons were taught in relationship to decimals and
percents. In these lessons, the children were challenged to, for example,
represent the fraction 1/4 in as many ways as they could, using a variety of
shaded geometric shapes as well as formal fraction, decimal, and percent
representations. They also worked on problems and invented their own
challenges for solving mixed-representation equations involving decimals,

percents, and fractions.

Review (Lessons 18-20):
Games were played where the students had to add and subtract decimals,
fractions, and percents by creating their own hands-on concrete materials. For

example, students invented card games with mixed-representations and
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challenged their classmates to solve a variety of problems that were posed. Asa
final culminating project, students were invited to either, (a) invent their own
rational number teaching strategies and lessons that could be taught to another
group, or (b) to design a game or video presentation that incorporated specific
rational number teaching objectives.

4.2.5. Measure:

The original rational number measure of 41 items was refined and
expanded to 49 items for the present study. Thirty items were retained from the
original measure, and 19 items were added. The new items were similar in
structure to those on the first measure, except for the computation items that

were deliberately presented in a more standard form.

The 49-item measure was subdivided into three sections: Percents (16
items), Decimals (17 items), and Fractions (16 items). The items in each subtest
were arranged in order of difficulty. As in the previous study, the whole test was
constructed so that a percentage (approximately 20%) of the tasks were direct
measure questions related to the experimental curriculum, while the remaining
questions were transfer items. The direct measure questions assessed the
students’ ability to perform rational number tasks in a familiar context. Some
examples of these included: asking the subjects to estimate, for example, 25% of
the height of a container, or to translate “benchmark” quantities such as 50% to
decimals (.5) and fractions, (1/2). The majority of the measure was composed of

transfer items that required the students to work in novel contexts. Some of
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these items were chosen because they reflected a broadened conceptualization
and required extrapolation from one domain to another, e.g., shade 0.3 of a circle
that is partitioned into 5 sections. This question asked students to overcome both
a misleading physical feature, as well as to translate an unfamiliar decimal
representation (.3 ) into the more familiar form of 30%. Another such complex
type of question was: Can these be the same amount, .06 of a tenth and .6 of a

hundredth?

As well as including items that were either direct or transfer, the measure
was also designed to include a variety of types of tasks. Thus we included items
where students were required to estimate distances along number lines; shade
specified fractional quantities in standard geometric shapes; or, respond to
rational number questions that were posed as word problems. Still other
questions were designed as visual distractors intended to divert subjects from a

straightforward solution. The entire measure is presented in Appendix B.

4.2.6. Scoring Procedures:

In administering both the pretests and posttests, interviewers read the
questions and asked the students to respond out loud. Although the interviewers
did not give assistance to the students in interpreting the questions, they did
repeat the questions as many times as the students requested. The interviewers
asked the students all of the questions in the order that they were presented on
the measure and continued to the end of the measure regardless of the students”

performance on earlier tasks. The students were provided with pencil and paper
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and told that they could write or draw anything that might help them to work
out the answer. These notes were kept by the interviewers to provide additional
information about students” reasoning. At no time in the interview did the
interviewers indicate whether or not the students had been successful in their
response. This practice was instituted so that the students would not be

influenced in their responses at posttest.

The items were scored dichotomously with one point allocated for each
correct answer. For those questions which required that subjects explain or
justify their responses, one point was allocated only if the correct answer and the
correct or logical corresponding explanation were both provided. The items on
the Percents, Fractions, and Decimals subtests were added separately for the
three subtest scores. The composite score provided a grand total for the rational
number test.To analyze the data, [ assigned 35 of the questions to four number
sense subcategories: (a) Interchangeability of Representations, (e.g., Whatis 1/3
as a percent?), (b) Compare and Order (e.g., Draw a picture to show which is
greater, 2/3 or 3/4?), (c) Misleading Appearance (e.g., Can you construct the
number 23.5 with base 10 blocks using the longs (10 cm: sticks) as ones?), (d)
Nonstandard Computation (e.g., Another student told me that 7 is 3/4 of 10, is
it2). A final category that was analysed was Standard Computation, composed of
eight items, five in fractions (e.g., “Whatis 4 3/4 + 6 6/82”) and three in decimals
(e-g-, “What is 3.46 - .8?). Individual scores were obtained for the four number

sense categories as well as for the final category of Standard Computation.



4.3. Results and Discussion

The Results and Discussion section is broken down into three parts
reflecting the questions that I posed at the outset of this chapter. First, I present
the overall results of the measure for the class as a whole as well as the scores for
the whole group on the individual subtests Percents, Decimals, and Fractions.
Next, I look at the differences between high- and low-achieving students. Next, [
analyze students’ ability to perform standard computation. The effects of
particular aspects of the curriculum on learning outcomes is considered

throughout the results section.

4.3.1. Overall Results of the Rational Number Measure:

An analysis of the pre- and posttest results of the measure as a whole
revealed that the students made significant gains. Table 4.2 shows the means and
standard deviations, and also reports the breakdown of these scores on the
individual subtests of Percents, Fractions, and Decimals. As can be seen, there
was significant change on all three of the individual subtests. When two tailed t-
tests were performed on all three of the individual subtests the differences were
all found to be highly significant with scores t =9.28 p <.0001, t=6.01 p <0001
and t =6.77 p <.0001 for the Percents, Fractions, and Decimals tests respectively.
Since these 3 subtests are related, a Bonferroni approach was used for
significance testing. The resulting alpha (.05/3) was .017. All of these results far
exceeded this level. The Bonferroni correction was used throughout the analysis.



Table 42
Total Scores on the Rational Number Test, and the Individual Subtests, Before and After
Instruction
Mean score on pretest Mean score on posttest
(max =49) (max = 49)
Entire Measure 9.71(7.82) 24.57 (10.18) ***~
(max = 49)
Percents (max = 16) 3.81(2.83) 8.67 (2.79)****
Fractions (max = 16) 3.90 (3.14) 8.71 (4.18)****
Decimals (max = 17) 2.00 (2.34) 7.19 (3.84)****

* p < .01; *** p <.001; **** p <.0001; ns = not significant

4.3.2. High and Low Mathematics Achievement:

In order to evaluate differences for high and low achieving students, I
made a median split on the combined mean scores of the Concepts and
Computation subtests of the Canadian Test of Basic Skills. This split provided a
group of 10 high-achieving and 11 low-achieving students. Both of the classroom

teachers were in agreement with this designation.

Table 4.3 shows the mean scores for the pre- and posttest results for the
entire measure comparing high- and low-achieving students. In Table 4.4, and
Figure 4.2, I present the mean scores for these high- and low-achieving students
on the three subtests of percents fractions and decimals. As can be seen, both

groups made substantial improvement.
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Table 4.3
Total Score on Rational Number Test for High- and Low-Achieving Students, Before and
After Instruction
Mean Score on Pretest Mean Score on Posttest
(max = 49) (max = 49)
Low-achieving (n = 11) 6.64 (3.11) 16.91 (5.14)****
High-achieving (n = 10) 13.1 (10.05) 33 (7.07)ex

* p <.01;** p <.001; **** p <.0001; ns = not significant
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Table 4.4
Total Scores on Rational Number Test for High- and Low-Achieving Students on the
Individual Subtests, Before and After Instruction

Subtests High-Achieving Students Low-Achieving Students
Pretest Posttest Pretest Posttest

Percent 5.5(3.27) 10.8 2.27 (1.00) 6.72 (1L.9)yve*

(max= 16) (1.93)##**

Fraction 49 (4.12) 11.8 3(1.61) 5.9 (2.02)****

(max=16) (3.76)****

Decimal 2.7(3.12) 104 1.36 (1.12) 4.27 (1.95)****

(max =17) (2.59)***

**p <.01;*** p <.001; **** p <.0001; ns = not significant

In order to further evaluate the differences between the high- and low-
achieving students, I conducted a two- way analysis of variance with repeated
measures [high- by low-achievement (group)], x [pre- and post (time)]. The
results revealed that there was a significant group by time interaction, and that
the high achievers improved significantly more than the students in the lower
half of the class, F (1,19) =124 p <.005). As well, the effects of levels of
achievement and the effects of ime were also significant at F (1,19) = 118.5 p
<0001 and F (1,19) = 18.8, p < .001 respectively.

When ANOVAS were also performed on each of the subtests (Percents,
Decimals, Fractions), a similar inferaction was found for the Fractions and

Decimal subtests, again showing greater improvement for the high-achieving
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students. However, the result of the ANOVA for the Percent subtest showed no
interaction, thus showing that the high-achieving group improved significantly
more than the low-achieving students on Decimals and Fractions but not on
Percents. Table 4.5 presents the results of the of the anovas for the individual
subtests, Percent, Decimals, and Fractions. Figure 4.1, indicates the significant
interaction on the measure as a whole and Figure 4.2 reflects greater learning by
the high-achieving group on two of the three subtests.

Table 4.5

Results of Analyses of Variance with Repeated Measures on the Individual Subtests for
High- and Low-Achieving Students

Subtests F tests F(1,19)
Percents Achievement Level x Time 97 ns
Time Effects 129.3 #e+
Achievement Level Effects 18.9 ***
Fractions Achievement Level x Time 8.5 **
Time Effects 49.7 #rns
Achievement Level effects 11.9 ***
Decimals Achievement Level x time 17.9 ***
Time Effects 84.6 ****
Achievement Level effects 20.4 ***

As the analysis of these results indicates, there was in fact a significant
interaction shown for math ability by time on the measure as a whole. On the
other hand, it was also evident from that results that the pre/post difference was
high for both the high- as well as the low-achieving students. Therefore, in the
following analyses of the number sense subcategories, I present quantitative and
qualitative results for the class as a whole.



4.3.3. Analysis of Number Sense Subcategories:
4.3.3.1. Interchangeability of Representations

Flexibility in moving among symbolic representations in the domain of
rational number is considered to be a good indication of rational number
understanding as well as an important factor in rational number sense (Sowder,
1994). Using multiple representations for quantities allows students to work
conceptually and to “transform problems on the basis of useful equivalencies.”
In fact, Lesh, Post, & Behr (1987, see p. 320) make the claim that recognizing or
constructing correspondences between different representational systems is at

the heart of knowing or understanding mathematics.

Eight items from the rational number measure assess the ability of
students to use rational number representations interchangeably. Table 4.6
shows the pre- and posttest scores of the children on these items. The items are
arranged in order of the difficulty that they posed to the students at pretest. The
mean score on the posttest was 3.05 (1.46) out of 7, compared to .81 (1.28) for the
pretest. A paired two-tailed t-test revealed that the difference in scores were
highly significant.t = 7.27 p =.0001. As well as obtaining t-test scores for this and
the other number sense categories, I also calculated effect scores, by dividing the
difference of the pre- and posttest scores by the standard deviation of that

difference. Thus the effect size of the group as a whole was 1.53.



The following two protocol examples provide illustrations of student

reasoning in translating among representation of rational number.

Interviewer: How would you write 6% as a
decimal?
Student: Lets see... [ guess it is point 6 ..

No that can’t be, because point
six is 60% so that can’t be
right...Oh [ know it is point 06
because when we did the number
line sidewalk thing in class we
walked 5% (of the number line
sidewalk) for .05.

(This student is referring to the activity where the class was challenged to walk
particular distances given as decimals on meter-long laminated number lines).

This student was able to find the correct solution based on her reasoning
about magnitude of the powers of ten and her understanding of percents. In
eventually providing a correct answer, she also showed that she was able to
overcome the distractor embedded in the question and could revise her initial
assertion that .6 would be 6% as a decimal; an assertion that is highly
representative of the kinds of answers that a majority of high school students

give for questions of this sort Another feature of the protocol is that this student
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made a direct connection between this item, presented in standard format and
the numberline representation that had been presented as part of the

experimental curriculum.

The students” response to the next item that I report in this category is
also representative of how the students’ explanations are closely tied to their

experience of the curriculum.

Interviewer: Do you know what 1/8 is
as a decimal?
Student: Well one eighth is half of one

fourth. And one quarter is 25%,
so half of thatis 121/2 %. Soasa
decimal, that would have to be
point 12 and a haif. So that is
point 12 point five, so that means

that it is point one two five.

The protocol above illustrates three strategies that most students in this
class typically employed in their reasoning in rational number. Note the use of
percents as a guide (intermediate step) even when the problem does not contain
the percent representation. In solving this item, the student used the familiar 25%
benchmark as an transitional step in moving from a fraction to a decimal. This
same protocol reveals another bridging step that many students found useful; a
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double decimal representation. As I have already indicated, when these students
first encountered decimal notation, they worked exclusively with two-place
decimals as an alternative representation for percent. As the lessons progressed
and multi-place (e.g., three place) decimals were introduced, the students
referenced the third place to the double decimal notion. For example, they
reasoned that .12 1/2 is .5 of the way between .12 and .13 and should thus be
represented as .12.5. A final strategy that this student used that is also central to
the curriculum is the operation of halving and doubling. In order to find the
decimal equivalent this student first doubled 1/8 to produce the very familiar
fraction 1/4 and its percent counterpart of 25%. Then he again halved that
quantity to get the desired amount of 12 1/2%.

Although the students were able to perform successfully on some of the
items in this category of interchangeability, there were a number of questions
that were clearly difficult. An examination of the table below reveals that the
students had much more difficulty when the numbers that they were asked to
translate were unfamiliar. As.can be seen, when asked to find the percent
representation for 1/3 and 1/5, the students scored only 42% and 19%

respectively.
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Table 4.6
Percentage of Students Succeeding on Items Requiring Movement among Different
Rational Number Representations, Before and After Instruction

ITEMS PRE POST
A package of blocks contains 10 yellow blocks and 10

blue blocks. Do you think the yellow blocks are .5 of all 57 95
the blocks?

How would you write 6% as a decimal? 5 81
Whatis 1/8 as a decimal? 0 48
What is 1/3 as a percent 5 43
Whatis 1/5 as a percent? 5 19
How should you write seventy-five thousandths as a 0 19
What is 6% as a fraction? 0 10

43.3.2. Compare and Order Numbers

Closely associated with the seamless movement among representations
and the ability to use different rational number symbolic representations
interchangeably is the ability to compare and order rational numbers. Tests that
require students to order a series of fractional numbers reveal that students have
difficulty attaching a quantitative referent to decimal symbols, even when the
decimal symbol notation is familiar (Carpenter et al., 1981; Hiebert, Wearne, &
Taber, 1991).

Eight items were included on the measure in which the students were
either required to compare quantities or to find a third quantity that fit between
two others. When the pre- and posttest scores were analyzed for these 8
“Compare and Order” ifems it was revealed that the students showed even

more improvement on this class of item than on those items in the previous



category; their pretest mean score was 1.66 (1.53) (out of 8) and their posttest
score was 4.33 (1.90). The difference score was 2.66 (1.59) yielding an effect size of
1.67. When a paired t-test was performed the significance was high t =7.678 p =
0001.

The students made substantial gains on the item that asked them to
choose the largest of two decimal numbers. Middle school students and adults
often use incorrect rules based on considerations of either the number of digits
after the decimal point or the size of the numbers without regard to their
decimal place value (Resnick et al., 1989). Thus, it was encouraging that all of the

students were able to correctly answer this item:

Interviewer: Which is bigger, decimal 20 or decimal 089?

Student: Well, it is decimal 20 because that’s like 20%

and the other is just like 8 and something percent.

This response and variations of this response are highly representative of
the strategies that many of the students employed at posttest, thus again
demonstrating the usefulness of the percent representation in appreciating
magnitude differences of decimals.

Another conceptual difficulty that students encounter in learning rational
number involves the density property of the rationals, i.e., that a third number



can be inserted between any two numbers. The response given by a student
below is typical of the answers given by most students in the class and illustrates

that an understanding of density was gained by posttest.

Interviewer: Can you think of a number that lies between
point 3 and point 4?
Student: Well lets see, there is point three five but there

are also numbers like point three zero nine.

Although the majority of the students found suitable answers to this item
at posttest, their assertions at pretest were very different. Most of the students,
prior to their lessons, believed that it was not possible to insert a number
between these numbers. This commonly held misconception is clearly based on
interference from, or the tenacity of, students” whole number concepts.
Although this student does not indicate how he derived his answer, the exercises
of recursive halving in which the students regularly participated did lead to the
insight of the property of infinite “smallness” characteristic of rational number. I
also conjecture that insights of the density property that students acquired were
also supported by exercises using the stopwatches as well as the number lines:
The stopwatches gave the students visual evidence of the idea of numbers fitting
between other numbers; in playing the number line games, students regularly
encountered the challenge of requiring a smaller unit than the one available.
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Again as in the interchangeability of rational number category, there were
some items in this category that the students were less able to perform.
Interestingly these items contained similar characteristics to those in the
previous category. For example, the students again revealed their difficulty in
working with thirds. Thus, when asked to find the larger of 1/2 and 1/3 they
were only able to achieve a score of 61%, and further when asked to find a
number that falls between 1/2 and 1/3, they achieved a score of only 29%.

Table 4.7 contains a complete list of the items in the Compare and Order

category as well as the percentage of students that succeeded on each item.

Table 4.7

Percentage of Students Succeeding on Items Requiring Comparison and Ordering of
Numbers, Before and After Instruction

ITEMS PRE POST
Which is bigger, .20 or .089? 33 3
Order from smallest to largest, 1/2,1,1/3 48 76
Can you tell me a number that comes between 14 76
3and 4?

?;Zw a picture to show which is greater 2/3 or 14 62
Which is less, 1/3 or 1/2 of the blocks? 48 62
Which is bigger; tenths, hundredths, or 5 33
thousandths?

Is there a number between 1/2 and 1/32 0 29
Could these be the same amount, .06 of a tenth 5 24

and .6 of a hundredth?




4.3.3.3. Visual Distractors

Piaget (1970) believed that in order to assess children’s conceptual
understanding, they should be presented with tasks that contained misleading
features, thus minimizing the opportunity for students to merely parrot what
they had been taught. Behr, Lesh, Post, & Silver (1983) held a similar view and
suggested that misleading items are particularly revealing of conceptual
understanding in the domain of rational number. As predicted, the students”
performances on these items improved significantly. Their mean score on the
posttest was 5.81 (2.18) (out of 11) as opposed to 3.29 (2.23 )at pretest (t = 4.90; p
< .0001). Difference = 2.52 (2.35) effect size 1. 2.

One of the items in this category required students use base-10
manipulative blocks (Dienes blocks) that were customarily used for whole
number exercises to construct a decimal number (23.5). The students were given
a box containing 10 of each type of block. They had 10 “flats”( square blocks
partitioned in a hundreds) and 10 “longs”(stick like blocks 1 x cm partitioned into
10 cm ) and 10 “cubes” that were each 1 cm square. The instruction that they
were given was that they should use the “longs” to represent “ones.” (It must be
noted, that the long sticks are commonly used to represent “tens” in whole
number exercises). Thus, in order to succeed at this task the students had to
extrapolate that the other blocks would have new identities as well based on the
proportion of powers of 10. In order to complete this task, then, the “flat blocks”
needed to be considered as tens and the centicubes (which are the standard

representation of ones) would in this case be transformed into tenths.
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Interviewer: Can you construct the number 23.5 with
base-10 blocks, using the long ten sticks as ones?
Student: [ get it, if this is one (points to the long tens stick)
then this (points to the square hundreds board) has
to be ten. So these (points to the centicubes) become
tenths.

When this same item was included in the first study, the control group
found it very difficult. Their responses showed that they could not easily
transform these blocks and use them in a coherent fashion. Rather they used an
assortment of random strategies. For example, some used the centimetre cubes
as decimal points and the “longs” for the “ones” and the “tens” (see Moss, 1997;
Moss & Case, 1999). The reasoning of the experimental students in solving this
problem shows by contrast the flexibility of their understanding and illustrates
their knowledge of the proportional and multiplicative nature of the task; an idea
that is consistently reinforced in the rational number curriculum.

Another item from this category asked the students to shade three
quarters of a pizza that was partitioned into eight parts. At pretest the students
used additive strategies, and responded that three pieces of the pizza
represented three quarters. Their posttest responses showed that they
considered the proportion of the pizza rather than the pieces. The protocol
below illustrates this.



Interviewer: Can you shade three quarters of this pizza?

Student: Well, three-quarters is like 75%. So this part (points to
1/2 of pizza) is 50% and this part (points to 1/4
section) is half of fifty so it is 25%. So the whole thing
is 75%.

Finally, [ present an item from this category in which the students were
required to shade decimal three (0.3) of a circle that was partitioned in 5.
Although this was a very difficult item and was only passed by a few students in
the upper half of the class, nonetheless, I include the strategy to illustrate the

potential of the experimental curriculum to provide useful strategies for students

to solve this challenging problem.
Interviewer: Shade point three (0.3) of this circle. (This circle is
equally divided into 5 sections).
Student: These pie things must be 20% because there are 5 of

them ‘cause it is like 20, 40, 60, 80, 100. (He touches

the five fingers of his one hand as he counts). If you

want to get 30,you should shade in one of the pieces
and half of another.



This student in assigning the value of 20% to the pie segments not only
revealed an exceptional ability to make sense of a difficult situation and
overcome a distractor in a proportion that he is unfamiliar with, but also reveals

a sophisticated ability to understand quotient division.

While the illustrations above point to many students” successful strategies
and improved ability, still there were items in this category of Misleading Visual
Features that were difficult. One surprising finding was the difficulty that many
students had in locating .05 (45% passed) and .29 (24% passed) on number lines.
This finding, while highly consistent within rational number literature (Behr et
al., 1984), was nonetheless disappointing as the curriculum featured a variety of

numberline games.

A complete analysis of the passing rates for items in this category is
presented in Table 4.8.



Table 4.8
Percentage of Students Succeeding on Items with Misleading Visual Features, Before
and After Instruction

ITEMS PRE POST
(Divide 10 blocks into three groups of 3, 86 100
5, and 2. Shift group of 5 blocks ahead.) Is

this half the blocks?

Where would you put the number 3 1/2 86 95
on a number line from 0 to 4?

Can you construct the number 23.5 with 48 81
base 10 blocks using the long, 10-unit

blocks as ones?

Can you shade 3/4 of this pizza? A pie 38 76
sectioned into 8 pieces.

How about 1 1/3 (on a number line from 29 71
0 to 4)?

What number is marked by the letter A 10

(.05) on a number line?

How about the number 1/4 (on a 5 33
number line from 0 to 4)

Two cartons of chocolate milk mixed in 14 24

the same vat. One carton is 300ml and the
other 200ml. The percentage of chocolate

syrup in the larger carton is 60%. Whatis

the percentage of syrup in the smaller

carton?

What number is marked by the letter B 5 24
(29) on a number line?

Shade .3 of the circle (divided into 5 5 23
pieces).

What fraction of the distance has Mary 5 5

travelled from home to school?




4.3.3.4. Non-standard Computation:

The ability to invent procedures to solve standard and non-standard
computation problems is generally seen as an important feature of number
sense. The types of errors that are consistently shown in the rational number
literature demonstrate that students are overly dependent on the use of
procedures. Even when uncertain of the rules, they will misuse a procedure,
preferring to accept an improbable answer rather than to invent an alternate
strategy. Hatano distinguishes between two types of expertise, routine, and
adaptive (Sowder, 1995). People who demonstrate routine expertise are able to
perform standard problems with speed and accuracy. It is the adaptive expert
that is able to use idiosyncratic and modified procedures to adapt to the
constraints of a problem. It is this kind of adaptive ability that allows the

problem solver to invent personal strategies to solve mathematical problems.

On the items requiring nonstandard computation, the mean score for the
group at pretest was 1.9 (1.81) out of 9 and at posttest the group was able to
score 5.85 (2.56). When a paired two-tailed t-test was performed, the difference
was highly significant t = 10.08 p = .0001, with an effect size of 1.84. An example
of this kind of invented procedure follows below:

Interviewer: If a beaker holds 80 millilitres of water, how many
millilitres of water would there be if you filled it
75% full?

Student A: I know. It's 60 mls because 20 mls is 25%.



Student B: Well, 50% of 80 is 40 and 25% (of 80) is 20, so you
have to add the 20 to the 40 and you get 60. So the

answer is 60 millilitres.

This question is directly related to the types of activities that the children
engaged in as part of the experimental curriculum. As can be seen, these students
were very comfortable in their reasoning and quickly determined that units of
25% percent (20 mis) would be a useful quantity for her calculation.

The reasoning that the students use in the next example is similar to that
of the previous one. However, this item,"”Is 7 three-quarters of 10?” is one that
students would not have encountered in the teaching sequence. For this
problem, the students also used benchmark fractional units. The first student

chose 1/2 as a starting point for her reasoning whereas the second student chose

25% respectively.
Interviewer: Another student told me that 7 is 3/4 of 10. Is it?
Student 1: No, it can’tbe 7,it’s 7and a half. I tried to figure out
one half of ten. One half of 10 is 5. Then half of thatis
2and a half. And Iadded thattoS5.
Student 2: No because 25% of 10 is 2 and a half. You need

three 2 and a halves to get three fourths so 2 and
a half and 2 and a half and 2 and a half make 7
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and a half so that’s 3 quarters.

And finally I present the reasoning of a student on a more difficult non-

standard item.
Interviewer: What is 65% of 160?
Student: Oh yah, I can figure that out. The answer is one

hundred and four. First I did 50% which was
80. Then I did 10% of 160 which was 16 then [
did 5% of it which was 8.l added them (16 + 8)
together to get 24. And added that to 80 to get
104.

The reasoning in the above examples clearly indicates that using
benchmark quantities and translating among decimals, fractions, and percents

was are effective strategies for solving non-routine problems.



Table 4.9
Percentage of Students Succeeding on Items Requiring Some Form on Non-standard
Computation, Before and After Instruction

ITEMS PRE POST
How much is 50% of $8.00? 81 100
How much is 10% of 90 cents? 10 91
6 blocks spilled out of a bag. This was 33 81

25% of the total number of blocks. How
many blocks were in the bag to begin

with?

If a beaker holds 80 ml of water, how 24 76
many mls of water would there be if

you filled it 75% full?

Another student told me that 7 is 3/4 of 5 52
10.Is it?

What is 65% of 160? 5 52
The school went on a trip to hear Ani 0 33

DiFranco. The total number of students
in the school is 814. 70% of the students
attended. How many students would

that be?
What is .05 of 20 candies? 5 29
How much is 1% of $4? 5 24

4.3.4. Standard Computation: Differences Between High- and Low-Achieving
Students
As well as assessing students” performance on number sense
competencies, one of the questions of this study was how the students would
perform on standard computation items. Eight items were included in the
measure that assessed the students” ability to perform standard
computation.These items were not easy; in fact many of them have been cited in

the literature as being particularly difficult.



89

When the pre- and posttest results for these group of items were
analyzed it was revealed that the students scored only 0.5 (.17) out of 8 on the
pretest, 4.0 (3.4) at posttest. Although these scores were low there still was a
significant difference from pre- to posttest with a t value of 5.19 (p = .0001 paired
2 tail t-test).

Given that the class as a whole did poorly on these standard computation
items, I was interested to see if there would be a significant difference in the way
that the higher-achieving students were able to perform non-standard items
compared to the lower. When these scores were analyzed it was revealed that
the difference was substantial. Students in the lower half of the class were unable
to answer any of these questions at pretest and achieved only a posttest score of
1.8 (1.7). The high-achieving group also experienced difficulty on the pretest
achieving a score of 2.3 (2.1). By contrast with the low-achieving students, the
posttest score was high, 6.3 (3.2). When a repeated measures ANOVA was
conducted comparing the gains of the two groups from pre- to posttest it was
discovered that there were highly significant differences both within and
between groups f = 13.86 p = .001 40.992 p = .0001 and of subjects and f = 10.44 p
=.,0001.

In Table 4.11, I present the items that comprised the category of Standard
Computation. The data that is presented on this table is of two kinds. In the first

columns I present the pre- and posttest scores of the group as a whole. And in



the righthand columns I include the separate posttest scores on all of the items
that were achieved first by the upper half of the class and then the lower half.

Table 4.11

Percentage of Students Succeeding on Items Requiring Standard Computation, Before
and After Instruction, and Posttest Scores Comparing High and Low-Achieving
Students on these Items

ITEMS Total Total High- Low-
Group Group Achieve Achieve
Pre Post Post Post

How muchis1/2 5 71 80 60

x1/8?

How muchis .5 + 5 53 80 27

38?

How much is 3.64 5 45 70 20

-.8?

Whatis21/4+3 0 38 70 9

Whatis3x .4 0 35 50 20

Whatis43/4+6 5 33 70

How muchis 3 5 33 70

1/4-21/2?

Howmuchis2/3 0 9 20 0

of 6/8?

Total Mean score S5 4.0 6.3 2.3

Standard (17) (3.4) (32) (1.)

Deviation
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4.3.4.1. Reasoning Strategies for Standard Computation Items

As can be seen in the table above, when the scores were broken down,
the upper half have were far more able than the lower half of the class to
perform the standard computation problems. In fact, the lower half was only
successful on the one item that directly reflected the instruction in the

experimental curriculum, i.e.,, “How muchis 1/2X1/8?”

In the following section I present examples of the reasoning strategies that
the high-achieving students used to solve these standard computation problems.
For each of these protocols I have analyzed how the students response relates to
the instruction. Because these students had not been taught any formal
algorithms, there were a number of interesting ways that they approached these

tasks.

Interviewer: =~ Whatis43/4+66/8?

Student: Easy, cause six eighths is three quarters so 3/4 + 3/4
equals one and a half. So one and a half plus six, plus four,
equals eleven and a half.

A second student used a different approach.
Interviewer: =~ Whatis43/4+66/82?
Student: Ok, so 4 and 6 equals 10. And 3/4 is 75%.
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So 6/8..1let’s see. Two eighths is 25%, so, if I times
three, it is 75% So 75% and 75% is 1 point 50, so
thatis 10 and 1 point 50, so it is 11 point 50.

As can be seen, these students were able to solve these standard problems
in a non-standard way, namely, by translating among the representations of
rational number. A similar strategy was used by a another student on a different

computation item:

Interviewer: ~ Whatis31/4-21/2?

Student: Um..3 and a quarter is 3 point 25 and 2 and a half is
2 point fifty. (Then she took her pencil and wrote
horizontally) 3.25 -2.50 = .75.

Finally I present the reasoning of a student on a particular challenging item
who showed her successful understanding of traction multiplication and

highlighted by the operator subconstruct .

Interviewer: What is 2/3 of 6/8 and how would you explain
your method for answering this question?
Student: (First the student drew a circle partitioned into
eightand shaded 6 parts). Well 6/8 is this, which
is the same as three quarters or 75%. Well 25%



goes into 75% 3 times. So 1/3 of 75% is 25. But
you need fwo thirds so it is 50%, and that’s a half.

44. Summary and Conclusions

The study reported in this chapter was designed to answer four questions.
The first question was whether the experimental curriculum would be effective
with a mixed-ability class. The overall results of 49-item measure indicated that
these mixed-ability Grade 4 students made substantial gains at posttest in their
ability to perform a wide variety of rational number tasks. While a further
analysis of the three separate subtests, Percents, Decimals, and Fractions further
confirmed this finding, the gains on these subtests were uneven. In each of the
subtests the students improved significantly. However, the improvement on the
percent subtest was more substantial with the students achieving an effect size or
2.1 on this subtest compared to 1.4, and 1.2 for the Decimals and Fractions
subtests respectively. This finding is probably linked to the strong emphasis
placed on percent teaching in this curriculum and is perhaps to be expected.
However, at the same time, it must be noted that the results indicated that Grade
4 students can achieve success in learning percents, a topic that is considered to

be so difficult that it is typically not introduced until middle school.

Another question concerned the performance of these students on the
four number sense categories; Compare and Order, Interchangeability,



Nonstandard Computation, and Misleading Visual Features. The students’
performance on these categories also improved greatly from pre- to posttest.
However, similar to the way they performed on the subtests of Decimals,
Fractions, and Percents, there were uneven gains at posttest on these number
sense categories. The strongest areas of improvement were in the categories of
Compare and Order and Nonstandard Computation, where students” number
sense flexibility seemed most apparent. Although there was significant
improvement on the other two number sense categories, Interchangeability and
Misleading Features, the gains from pre- to posttest were more variable.
Although students were able to perform tasks that were related to the
curriculum, they were less successful on items where the numbers were
unfamiliar (e.g., questions incorporating fractions such as 1/5, 11/12, efc.). They
showed similar problems when solving operations with numbers that were not
easily halved. These findings were consistent with our hypothesized
developmental model where we anticipated that students” ability to translate
among representations would follow their work with halving and doubling and
comparisons within representations. Still, I anticipate if the curriculum had been
longer and I had incorporated more exercises that featured interchangeability,
particularly with more cahllenging numbers, the students may have been more
able to perform these tasks.

Another question concerned the differences in performance of the high-
and low-ability students. Since the students who participated the first study were
all high achievers this study was designed fo assess whether low-achieving
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mathematics students would also benefit. When the effects of instruction were
looked at for high- and low-achieving students separately, it was clear that the
high- and low-achievers benefitted equally from instruction in their
understanding of percent. However, although there was significant gain from
pre- to posttest on the Decimals and Fractions subtests for both the high- and
low-achieving students, the upper half of the class gained significantly more on
these subtests. Thus while the high-achievers can extrapolate their learning of
percents to perform successfully in fractions and decimals, the low-achievers
appeared to be relatively poor at this. Thus, according to these results a
conjecture is that the low-achievers were not yet developmentally ready for this

more advanced instruction.

A third question in this study concerned the performance of students on
standard computation items. Although not a feature of number sense, the
importance of performing standard computation can not be overlooked. It is this
ability that validates research and is generally used as the standard to judge
competence. The analysis of the items of standard computation revealed that it
was only the high-achieving students who were able to pass these items.
Quantitative analyses revealed that the strategies they used were based on the
halving benchmark quantities that they had learned as well as on their ability to
translate among the representations. Thus I conclude that this curriculum was
effective in helping these more advanced students to perform these standard
operations. It is hoped that the lower-achieving students would, with time, be
competent in this regard as well.
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In the next chapter I report findings of a subsequent study in which the
curriculum was presented to an older group of students who had already
received previous instruction in rational number. As will be seen, [ was able to
consider some of the questions that arose in the present study as well as address

several new areas of interest.



Chapter 5
An Intervention Study with a Traditionally Trained

Mixed-Ability Grade 6 Class: Comparison to Normative Groups

5.1. Introduction

In this chapter I report a study that I conducted to teach the experimental
rational number curriculum to a group of mixed-ability Grade 6 students who
had all received several years of previous instruction in this number system. By
selecting older students for the present study I hoped to further assess the
robustness of the curriculum. In particular, I hoped to investigate: 1) the efficacy
of the curriculum for students who have had previous traditional instruction; 2 )
the potential differences of learning outcomes when the curriculum was
shortened and modified with older students in mind; and 3) differences in
learning outcomes of high- and low-achieving students. I also had questions of a
developmental nature as I was interested in comparing the posttest performance
of these Grade 6 students with students at other grade levels. Thus, [ conducted a
further investigation, or an “auxiliary study,” in which [ administered the
Rational Number Test to four other normative groups of students at several
other grade levels, in order to investigate some of these questions. All of these
questions will be elaborated in the sections that follow.
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5.2. Question 1: Effectiveness of the Curriculum for Traditionally Trained

Students

The first question was how the experimental curriculum could work for
students who had already had several years of learning about rational numbers
and had formed their understandings based on the traditional teaching sequence
with the learning of fractions as a foundation. Which types of misconceptions
would be more robust and which would be most easily changed?

It is well known that when students encounter reform curricula that
require a greater depth of mathematical understanding; it is difficult for them to
abandon old thinking patterns that they have developed as a result of traditional
teaching. Bad habits, reliance on rote and often faulty calculations, resilience of
initial representations and images (Kerslake, 1986; Silver, 1986: Sowder, 1992,
1995) and a lack of disposition to meaning-making, all contribute to the
difficulties they encounter when remediation or reform is attempted (Kamii,
1994). Thus, given that to date all of the students who have participated in the
experimental intervention had not had previous training in rational number, [
considered that they had an advantage over those with previous training. A
primary goal, therefore, of this study, was fo evaluate the effectiveness of the
experimental curriculum when the participating students were not new to the
topic of rational number but, on the contrary, had received several years of
traditional teaching and formed their understandings based on the conventional
sequence (fractions, decimals, percents), with learning fractions and the
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part/whole subconstruct as a foundation. Assuming that change is possible at all,
an important analysis would be to consider which types of misconceptions
would be more resistant to change, and which would be most easily

restructured, or transformed.

5.2.1. Traditional Training and Experimental Curricula—a Review

Three researchers who have dealt have deait directly with evaluating
change in rational number understanding of traditionally trained students are
the team of Heibert and Wearne, who have done extensive work in students’
understanding and performance in decimals, and mathematics education
researcher Nancy Mack, who has paid particular attention to students’ informal
knowledge of rational number, particularly fractions. In the next section, I report
the findings from studies that were conducted by Heibert and Wearne and by
Mack in which the learning gains of previously instructed students were
monitored during experimental interventions, and then gains were assessed

after the instruction was completed.

52.2. Hiebert and Wearne: An Intervention Study with Decimals

In a training study involving students in Grades 4, 5, and 6, Heibert and
Wearne instructed small groups in semantic processes for solving decimal tasks
(Wearne & Hiebert, 1988). The students were taught to use base-10 blocks,
traditionally used for whole number addition and subtraction, as an alternative
representation to written decimal symbols. Their curriculum was designed to

first help students make connections between the symbolic representation of
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decimals and these physical referents and then to support a conceptual
understanding of procedures such as the addition and subtractions of decimals. A
series of nine instructional lessons was designed to help students to create
meaning to solve problems that were posed symbolically. The older group of
students (n = 15) who participated in this experiment had received previous
instruction in decimals. The younger students (n = 14) had not had any
instruction in decimal prior to this teaching unit. After two weeks of instruction,
they found that although all of the students were able to perform tasks that were
directly related the instruction, the results on the transfer tasks at posttest were
different. On these tasks, 11 of the 14 students who had not received prior
instruction used semantic rather than syntactic explanations. By contrast, only 5

out of 15 students who had received prior instruction were able to make similar

gains.

5.2.3. Mack: Intervention Studies with Fractions

Similar findings have also been reported by Mack (1990, 1993, 1995), who
has done extensive work investigating students” informal knowledge of
fractions. In her experimental studies, Mack worked with Grade 6 students to
help them to connect formal fractions symbols and procedures with concrete,
everyday representations of fractions. The central foci of her training studies
were to promote the understanding of concepts such as 1) the more partitions,
the smaller the part; 2) a fraction represented symbolically is a single number
with a specific value, rather than two whole numbers; 3) the addition and

subfraction of fractions requires the same denominator; and, 4) fraction
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knowledge is underpinned by an understanding of equivalencies. In short, her
goals in these studies involved the basic concepts of fractions of the sort that are
expected in most Grade 5 and 6 curricula. In monitoring their progress during
the training period, she noted that the students tended to continue to use
algorithmic solutions, even when they were uncertain of their correct
application. More disturbingly, she noted that, if the answers that the students
derived using standard algorithms were different from correct answers that they
had found through invented procedures for solving the same problem, the
students either chose the incorrect answer or suggested that both answers were

correct.

Although the students did make gains at posttest, their previously faught
algorithmic solutions continued to interfere with their solutions. Mack concluded
from this (and other studies that she had conducted) that overcoming
misconceptions and faulty procedures based on prior learning was very difficult
for students to accomplish, and required a significant effort on the part of both

students and teachers.

The findings of these researchers are certainly compeiling, and would lead
to a prediction that a rational number experimental intervention—certainly one
that is a brief as ours—would not easily achieve our ambitious goals of changed
conceptualizations and rational number sense. One might predict that the Grade
6 students in this present study would have difficulty abandoning the

misconceptions that they had developed due to previous instruction, and thus
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would have trouble acquiring an overall conceptualization of the rational
number system.

However, it is my contention that, while the Mack and Hiebert and
Wearne studies are exemplary in both the structure of the lessons and in their
detailed analyses of children’s understandings, the activities that they have
created, are grounded in concepts from the whole number domain. Thus, I
propose that these two separate interventions both tend to reinforce additive

reasoning.

In the study conducted by Hiebert and Wearne the concrete referents that
they used were Deines Base-10 blocks. I argue that while base-10 blocks have the
potential for illuminating the power of 10 relationship in adjacent numerals, they
serve to reinforce elements of the symbol system for whole number as well as to
ground students reasoning exclusively in discrete (rather than continuous)
quantities. Mack’s instructional sequence is firmly rooted in students” intuitions
about partiioning and fair sharing; thus she has chosen to use pizza pies as the
central representation. My central thesis argues against building up children’s
understanding of rational number either from the symbol system of the whole
number domain, on the one hand, or, as Mack does, from students’ readily
available store of partitioning intuitions. What is missing in both of these
approaches, and what our program attempts to provide are learning contexts
where children can explore their intuitions for ratio and proportion as well as

their intuitions for halving.
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Given these considerations, I hypothesized that the posttest performance
of the students participating in the present study would be different from those
reported in the literature and would show that the children had, in fact,
abandoned many of their misconceptions, in favour of an understanding that is
grounded in the multiplicative nature of rational number. I anticipated that this
finding would be instantiated by quantitative analyses, where there would be
strong changes in scores on the measure from pre- to posttest. I also predicted
that qualitative analyses would reveal that the students had adopted new
methods of reasoning and strategizing and that these methods would fall under
the general rubric of number sense.

5.3. Question 2: . Differences for High-Achieving and Low-Achieving Students

A second question that drove this present study concerned the differences
in performance of high- versus low-ability students. As in the previous study, I
wondered if students who are designated as “higher-achieving” or “lower-
achieving” would gain differentially on the measure from pretest to posttest.
Recall that in the previous study, the experimental curriculum was shown to be
most effective for the most advanced students in Grade 4. As mentioned before,
one possible explanation was that the lower half of the class was not
developmentally “ready” for this curriculum and therefore could not benefit as
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much from the instruction. Thus, I wanted to assess whether the approach would
be more useful for students who were two years older and thus more uniformly
capable of the complexities posed by this number system; would low-ability
students who are two years older benefit more evenly than had the low-ability
Grade 4s? My conjecture was that these older students would in fact, benefit
more evenly than the younger students, as the developmental literature
indicates that they are at a more suitable age for rational number learning (e.g.,
Case, 1985; Hart, 1988; Lamon, 1993, 1994; Noelting, 1980a, 1980b; Resnick &
Singer, 1993). Thus, I anticipated that the rate of gain for these Grade 6 students
would be equal for students in both the high- and low-ability group. This
question is of some theoretical interest, in view of the controversy in the
developmental literature concerning the first emergence of ratio thought and the
effect of context and task performance (Lawton, 1993; Sophian & Wood, 1997;
Spinillo & Bryant, 1991). However, it is also of practical interest since it bears on
the question of at what age or grade a program like ours should first be first

introduced into the mainstream curriculum.

54. Question 3: Developmental Questions

The final questions were of a developmental nature. The first of these
concerned the magnitude of improvement that can be expected from the
program, in developmental terms. It is generally acknowledged that children's
understanding of ratio and proportion continues to develop, long past the years

when these topics are taught in school. The same is true for many other aspects
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of rational number understanding, at least in middle-class populations
(Case,1985; Cramer, Post, & Currier, 1993; Vergnaud, 1988; Watson, Collis, &
Campbell, 1995). Given that this sort of development continues to take place,
under conditions where the part/whole subconstruct of fractions is used as the
core organizing device, a developmental question that naturally arises with any
new program is whether the children who receive it are being enabled to
construct understandings that they would never have constructed under existing
curriculum conditions, or, whether the usefulness of the curriculum was that it
accelerated students” construction of understandings that they would have
achieved anyway, but at a later point in their schooling. Stated in more
quantitative terms: what magnitude of improvement can be produced by our
new program, not in terms of standard deviations, but in terms of
developmental advance? Is it an advance of one year, two years, three years? Or
do our children attain understandings that they would never attain under the
standard rational number curriculum? In order to answer these questions I
conducted a developmental study in which students ata variety of ages were
interviewed using the measure that was designed for the Grade 6 intervention
study. I then was able to compare the results of the Grade 6 students

performance to that of the various groups in this developmental sample.

5.5. Method
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Since this study was comprised of two separate strands, (the experimental
intervention study and the normative testing) reporting of each subsection of the
methods will be divided into two parts.

5.5.1. Design
Experimental Study

In the spring of 1997, one week prior to the start of the experimental
instruction, the 20-item Rational Number Test was administered as a pretest
interview to each of the Grade 6 subjects, on an in individual basis. Inmediately
following this interview process, the students were instructed over a four week
period. Finally, three weeks after the instructional sequence the same measure
was re-administered as a posttest to evaluate the effectiveness of the

intervention.

Normative Study

The same measure was used for the normative study. At the beginning of
May 1997, one week after the experimental Grade 6 study was completed, a
team of interviewers administered the same 20-item measure to students first in
an elementary and a middle school and then to students in a two-year MA

program in elementary teaching at the University of Toronto.

5.5.2. Subjects
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Subjects for Experimental Study

Sixteen Grade 6 students participated in this study. These children
comprised the entire class of students at a private school located near the
University of Toronto. This school is known for its strong academic programs,
small classes, individualized attention, and a strong commitment to quality
instruction in mathematics. The students all come from high SES backgrounds.
According to their classroom teacher, most of these children were performing at
grade-level, and in some cases approximately a year above grade level. Four of
the students in this class ranged from one to two years below grade level; each
of these students received extra tutoring from the school’s special education
teacher. Because the school is very small and there is only one class per grade, all
of the students had been in the same class since Grade 1 and thus had all received
the same previous instruction in rational number prior to the intervention. This
instruction was based on a widely used Canadian text series. Although the
teachers in the school used other resources for teaching rational number as well
as other mathematics topics, the basic sequence and the core concepts were

based on the series. The sequence is as follows:

The first topic in the text was fractions which were defined as numbers
that describe parts of a whole and which were illustrated with pie chart
diagrams. Exercises followed in which children were to determine fractions of a
set, compare different fractions with regard fo magnitude, and determine
equivalent fractions. Decimals were taught next, using pie graphs, numberlines,
and place value charts. Tenths were introduced first, and their relation to single-
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place decimals was shown. Finally, equivalent decimals were taught by showing
that numbers such as 0.3 and 0.30 are merely alternate representations of 3/10
and 30/100. Lessons involving operations with decimals were introduced next.
The rules for addition and subtraction of decimals, as well as for multiplication of
one- and two-place decimals were taught explicitly, with careful attention to the
significance of place value. The use of a fraction as an operator and computations

involving division of decimals were taught at the end of the sequence.

Subjects for the Normative Study

(a) Grade 4 Students (n =21)

Twenty-one Grade 4 students were interviewed, using the 20-item measure. All
of these students attended a public elementary school that caters to a
predominantly Caucasian population, with a small percentage of second-
generation Asian students. This particular school was selected because it had
received the highest standings in the city on the Grade 3 Provincial Tests in
Mathematics and Language. All of these students spoke English as their first
language. The Grade 4 students came from two different classes and all
participated on a voluntary basis—only students who returned consent forms
signed by their parents were allowed to participate. Although the students came
from different classes, they all had received the same number of rational number
lessons, and had been exposed to fractions in Grade 2 and decimals in Grade 3
and continued to learn these rational number representations in Grade 4. This

school used the same text series that was used by the experimental group.
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(b) Grade 6 Students (n = 45)

Two different groups of students comprised the Grade 6 sample. The first, n =31
were drawn from the same school as the Grade 4s. These 31 students were
drawn from 3 different classrooms. The conditions for participation were the
same as those mentioned above. The students in these Grade 6 classes had
received a substantial amount of rational number instruction prior to the test,
and had already covered fractions, decimals, percent, and ratio. The textbook
that was used by these students was the same one that the experimental groups
in the preceding studies had been using. The second group of Grade 6 students
(n = 15) were the participants in the experimental intervention study. More detail
of this group will be provided in the following section of this chapter.

(c) Grade 8 Students (n = 20)

The students in the Grade 8 sample came from the junior high school fed by our
sample elementary school. These students also participated on a voluntary basis
and were also required to present signed consent forms. At the time of the
interviews, the students were working on percent computation problems and
ratio in their mathematics classrooms, and had covered all of the topics on the

measure.

(d) Pre-Service Education Students (n = 31)

This group was comprised of 31 postgraduate students enrolled in a two-year
elementary school teacher training program. At the time of the testing the
students were in their second month of the first year of their program. All of
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these students had completed mathematics in high school, approximately 80% of
this group had taken statistics as part of their undergraduate programs and five
of these students had taken university mathematics courses. It must be noted
that the program in which these students participated had very high academic
criteria for acceptance. Thus, each student in the program had a minimum
average of B+ on completing their undergraduate programs, and all had taken
high school mathematics.

5.5.3. Testing Procedure

Experimental Students

In the spring of 1997, one week prior to the start of the experimental
instruction, the 20-item Rational Number Test was administered as a pretest
interview to each of the Grade 6 subjects, on an individual basis. The researcher
administered one half of the tests, and a graduate student who was trained to
perform the interview, administered the rest. The interviews were standardized,

and all the students answers were recorded verbatim by the interviewers.

As in the preceding studies, the children were withdrawn from their
regular class and brought to a quiet room. Administration time for the pretest
varied from 25 minutes to 45 minutes, according to the knowledge level of the
student. The test in its entirety was read aloud to the students; the interviewers
encouraged the students to respond to all of the items and praised them for

attempting each item. However, at no time did they indicate whether the
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student had responded correctly, nor did they ever reveal the correct answer.
The researcher taught the experimental ratioral number curriculum to the
students, in their regular classroom, over a four-week period. The homeroom
teacher observed most of the lessons but did not participate in any of the
experimental teaching. This classroom teacher taught all of the other
mathematics on days when the researcher did not come to the class. In all, there
were 12 rational number classes that were approximately 45 minutes in duration.

A breakdown of the lessons is presented in the section below.

Two weeks after the experimental program had been completed, the
pretest measure was administered again as a posttest. These interviews ranged

from 25 minutes to 70 minutes according to the needs of the individual subjects.

Normative Sample

The procedure for interviewing the students from the normative sample
was exactly the same as it had been for the participants of the experimental
study. Each student was escorted from their classroom by a trained interviewer,
to a quiet testing room in their own school. Two of the three interviewers for
this group were also the interviewers of the Grade 4 study. The third interviewer
was a different graduate student who was also trained to administer the tests.
The interviewer read the questions out loud and recorded the students” answers
verbatim. The interviewers informed the students that they would be able o re-
read the questions as many times as requested; however, they also indicated to
the subjects that they would not be able to further elaborate on or clarify a
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question. Students were provided with paper and pencil to make notes or work
out their solutions. These were kept by the interviewer for later analysis.
Regardless of a student’s success on the items, the interviewer provided him or

her with an opportunity to fry all the questions on the measure.

554. The Experimental Rational Number Curriculum
Instruction Schedule

The experimental sessions were approximately 40 minutes in length. All of
the lessons were documented and selected classes were videotaped. Each lesson
was reviewed at the end of each instructional day for the purpose of assessing
student thinking and subsequent lessons planned to build on students’
developing understandings.

Special Features of the Grade 6 Experimental Curriculum

The sequence and style of the experimental Grade 6 curriculum was
exactly the same as it had been for the Grade 4 intervention. Percents in a
measurement context served as the introduction as well as the reference point
for all subsequent learning of the other representations. Hands-on activities that
focussed on measurement were also featured. As well, in the Grade 6 curriculum,
there was no teaching of formal algorithms. Finally, an endpoint for the students

was a focus on mixed-representations of fractions, decimals, and percents.
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There were, however, differences in the curriculum. Because these
students were in Grade 6 and the topics that needed to be covered at that grade
level were more extensive, and incdluded a component on formal ratio, [
expanded the curriculum and covered ratio concepts through the incorporation
of scaling activities. Scaling activities such as enlarging rectangular regions
promote ratio thinking in a measurement context, which is consistent with the
measurement objectives [ had for the Grade 4 students. The demands of the
Grade 6 classroom schedule, and the limited time that could be allotted to this
rational number teaching, meant that although the general content of the
curriculum was similar, and the starting point of percent in measurement was
the same, I had to reduce the total number of lessons. The sequence that I taught
to the Grade 6 class was as follows:

1. Introductory lessons which included percents in measurement contexts, visual
estimation of relative quantities, and invented procedures for calculating with
halving and doubling.

2. Scaling activities which provided links to their formal ratio and proportion
background.

3. Translation among mixed representations.

The lessons ranged from 45 mins to 1 hour, with a final lesson of 1 1/2 hours.

Table 5.1 shows the breakdown of time devoted to the different representations.
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Table 5.1 Breakdown of Topics and Teaching Hours of the Experimental Rational
Number Curriculum for the Grade 6 Students

Subject Lesson # Hours
Percent 1,3,5,6 4
Decimal 4 1
Fraction/Mixed-representation 2,7,8,9,10 4
Review 11,12 4
Total no. of hours 13

The modes of participation that I employed in the classroom included the
same structures as the previous two experiments: teacher-directed whole group
discussions, work in pairs and small groups, and opportunities for students to
instruct their colleagues either through games or videos which they had created.
Since there were fewer Grade 6 lessons than Grade 4 lessons, and since only the
first and fourth lessons in the Grade 6 sequence contained the very same
activities as those in the Grade 4 lessons, I include here a brief description of each

lesson:

Day 1. Introduction to Percents

The intent of this first lesson was to assess students” informal knowledge
of percents, and gain insight into the ways that they would spontaneously
operate with percents in a measurement context. The activities closely followed
the structure of the first lessons in the experimental Grade 4 classes. However, in
the context of this study, the activities of Lessons 1-3 were incorporated into a
single session. These lessons started with visual estimation and carried on with

calculations using the halving strategy. The students used pipes and tubes to
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demonstrate their informal knowledge of percent. They completed a variety of
measurement tasks which included, 1) finding and calculating percentages of
water in beakers, and, 2) cutting lengths of string to represent various percent
measurements of objects in the classroom (i.e., “The length of this string
represents 75% of the length of this table”). At the end of the lesson, students
were asked to consider the relation between percent and decimals and were
encouraged to represent quantities or relations in both percent and decimal

modes.

Day 2. How Could You Show and Teach Percents?

In order to consolidate their recently acquired insights into percent
quantities and operations, students were challenged to design their own props to
teach percents. As in the Grade 4 curriculum, I provided the students witha
variety of materials including coloured sand, jars, string, paper tubes, and
laminated numberlines.

Day 3. Paper Folding Horizontal Fraction Strips

This lesson was designed to use the familiar context of halving and
doubling to explore the formal symbolic representations of decimals, fractions,
and percents and their interrelatedness (e.g., 1/16 = 6.25%). The folding activities
were adapted from classroom lessons that had been devised by Kieren (1992,
1995) to provide his students with concrete representations to help them
recognize and learn about fraction equivalencies, and which they could then use

to perform simple addition and subtraction operations on fractions. My intention
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was different—the focus was on formal representations of quantities that were
established through halving and doubling. Students folded rectangular paper
strips that were 24 cm x 8 cm. Each successive fold resulted in the creation of new
quantities that the students in turn labelled using the three
representations—percents, decimals, fractions. Thus, for example, after
performing a single symmetrical fold, the students created two equal parts,
which they were instructed to label as 1/2, .50 and 50%—all familiar
symbols—or, after three folds, they established and labelled portions as 1/8, .125
or 12 1/2 %—much less familiar symbols In this lesson, students gained
experience with recursive halving and were able to review standard notation for

the three representations.

Day 4. Stopwatches and Centi-seconds

As in the preceding study with Grade 4 mixed-ability students, I once
again introduced stopwatches to promote the notion of a temporal analog to
linear measurement. As the Grade 6 students in this experiment had already
received several years of decimal teaching, the stopwatches provided them with
opportunities to add and subtract decimals in meaningful contexts where they
did not need to rely on rules such as “lining up the decimal before calculating.”
By using stopwatches, the students were able to work with these decimals from
an understanding of their magnitude and thus were much less likely to make
the typical kinds of computation errors that these students demonstrated in their

pretest interviews.
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Day 5. Percent/Proportion of Body Parts to Height

In this lesson, students worked in pairs, using percent language to
compare length of body parts to height. The students were provided with a
blank table with two columns: the first column was headed “body parts” and
this column was followed by 4 blank columns to the right. The students were
first instructed to record their estimates of the proportion of the body part to the
height based only on visual cues. Next, they performed and recorded a more
accurate estimate which they derived by folding a piece of string that had been
pre-cut to the measure of their height. Following this, using the string and rulers
or measuring tape, they recorded both their height as well as the length of their
body parts in centimetres. Finally, using calculators if they desired, they
computed the actual percentages of the individual parts to their heights. A lively
discussion ensued where students shared their calculations and discussed and
compared their findings.

Day 6. The 50 cm Man: A 1:2 Ratio

This Iesson directly followed the previous day’s lesson of comparing of
the length of body parts to heights using percents. However, although one of
the purposes of this lesson was fo continue to estimate percents and calculate
averages this lesson had an additional goal, which was to give students the
opportunity to experience a 1:2 scale drawing. Students first collected data from
all of their classmates on the various percent calculations that they had
performed in the previous lesson. For example, it was established after
averaging all the percent measures that the students had generated, that length



118

of circumference of the head to the height was 22%. (The percentages for this
comparison ranged from 24% to 18%). Students were then given 1 cm graph
paper and asked to draw a “proportion person” with a height of 50 cm using the

data from the class as a whole as their guide.

Days 7 & 8. Find the Odd Item: Compare and Order Mixed-Representations
In the next few lessons students worked with equivalencies in mixed-
representations. These types of exercises had been done in the Grade 4
curriculum. However, for the Grade 6 students, [ extended the fraction learning
and included the symbolic representations of ratio. To start with, I presented
students with lists of mixed-representations, all but one of which were equivalent
quantities. For example, the students were presented with the following row of
numbers and relationships (32/64, 0.5, 1:2,.05, 50%, 3/6, 4:8) where all of the
quantities represented 1/2 except for .05. The students were asked to determine
which quantity was not equivalent and then to justify their choice to their
classmates. After the students responded in a whole class format to a number of
these exercises that I had designed, they were invited to create their own similar
series of numbers where they presented equivalencies and inserted one or two

anomalous items.
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Day 9. Rational Number Equations

In this lesson the students were presented with written versions of
operations that previously they had invented and solved mentally. For example,
True of False?
1. Does 45% of 80 = {4 x (10% of 80)] +(5% of 80) ?
2. Does 45% of 80 = .45x 80
3. Does 45% of 80 = (50% of 80) - 5

(Example 3 represents a type of error that students typically made in the early

lessons when they first began to invent procedures for calculating percentages).

Day 10. Playing and Inventing Games of Multiple Representations and
Computation

This lesson started with an ordering activity in which the students were
challenged to order a deck of specially created cards on which rational number
quantities using multiple representations (fractions, decimals, percents, ratio, and
geometric regions with portions that were shaded) had been written. These
cards were similar, although more complex than those that students had created
in Study 2 (see Lesson 14 of the Grade 4 curriculum), except for these Grade 6
students. In the first activity the entire pack was dealt out to the students (about
four cards each) and they were challenged to place them in order of increasing
quantity face up on the classroom floor. The game ended when all the cards
were lined up along the floor and all of the students agreed that they were

correctly placed in ascending order. Since the rule was that consensus amongst



all the students in the class, this game promoted a great deal of debate as the
goal was that consensus would be reached amongst all the students in the class.
In the second card game that the students were instructed to play, the same deck
of cards was used as well as LCD stopwatches. The structure of this game was
similar to the popular game of War. Two children sat opposite each other with a
small pile of face-down cards. Both students revealed the top card in their face
down pack at the same time. The first player, Student A, was required first to
declare which of the two cards was higher or if they had the same value. If the
two cards were not of the same value, Student A had to mentally subtract the
higher from the lower and then use the stopwatch centi-seconds to indicate that
difference. If the two cards that the students

drew were the same quantity, then the player whose turn it was, had to find the
sum of the two quantities and stop the watch as close to that sum as possible.
The game ended when there were no more cards left in the pile. Once the
students had played this particular game they were instructed to invent their
OWn games, using cards and stopwatches or other materials such as
numberlines, that they felt could be good teaching tools for teaching multiple
representations and calculations. Finally the groups of students who worked on

these games presented them to the class.

Days 11 & 12. Wrap Up and Review
The students continued to design their games and then to teach them to
their classmates. As well, a number of the students videotaped the sessions in

which their own games were being played.



Summary of Lessons

In summary then, we maintained the basic sequence and tenets of the
curriculum as it was taught to the Grade 4s so that students would be able to
relate both their previous and newly gained knowledge of fractions and decimals

to the relational construct of percents.

5.5.5. Assessment Measure

The measure that was designed for this study was to serve several
purposes. As part of the experimental intervention study [ wanted to continue to
evaluate students’ pre- and postconceptual understanding and number sense
abilities across the three representations of rational number; Percents, Decimals,
and Fractions. To this end I retained a total of ten items that had appeared on the
previous measures. As [ have mentioned, however, I also wanted to use this
same measure to interview subjects across a wide age range. Thus, [ included
items on this measure that spanned a broader range of difficulty than on the
previous measures and [ shortened the test to 20 items to make it more viable
for use with a much larger target group. The most difficult (Level 3 items) were
multistep items that required conceptual understanding and number sense
flexibility (e.g., “Order from largest to smallest: .48, 5/8, 14/13, .99, 1.03"). In all
there were 8 items in this category. The least difficult of the items (Level 1)
assessed computational halving and proportional computations based on 1/2:
(“One can holds 1 quart of oil which is the same as 2 pints. The other can holds 3
quarts of oil. How many pints will it hold?”) The “middle” items (Level 2 items)
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required that students display rational number understanding or number sense,
but use only a single operation, e.g., “What is 6% as a decimal?” Finally, I also
included two items from previous studies in the standard literature, both of
which have proven difficult: Mr. Tall and Mr. Short (Karplus et al., 1974) and an
item from a National Assessment of Educational Progress study which is
“Estimate the sum of 11/12 + 13/14" (Lindquist, 1989).

Immediately following the lessons, [ administered half of the posttests and
a student teacher administered the other half. As there was no difference in

scores based on tester bias, I proceeded to analyze the data.

5.6. Results and Discussion: The Grade 6 Intervention Study

These results are presented in three sections which are ordered in the

same way as the questions that were posed at the beginning of the chapter.

5.6.1 Pretest Misconceptions of Traditionally Trained Students

Because I was interested in understanding students’ misconceptions at
pretest (that they presumably held due to previous instruction), I examined the
pretest results to determine if some pattern might be found. Below, in Table 5.2 T
present the entire measure with the pretest scores that the students’ achieved.
The measure is presented in the order that it was designed, according to the
three hypothesized levels of difficulty, with the simplest questions first,

concluding with the most difficult items. As can be seen, the students were able
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to correctly answer a little more than 1/2 of the questions at pretest (mean score
10.33, out of 20). However, it also must be noted that the measure contained
very easy items that were included to investigate basic understandings that we
would have considered to be present in much younger students (five Level 1
items); these were all passed by the Grade 6s. If we exclude these items from the
Grade 6 results, the success rate is closer to 30%. Thus it is evident that the Level
2 and 3 items on the measure presented substantial problems for the students at
the outset of the program. Recall that these students had all received sufficient
instruction in rational number prior to the intervention so that none of the

content of these items should have been unfamiliar to them.

Table5.2

Percentage of Students Succeeding on Levels 1, 2, and 3 Items at Pretest
Level One Jtems
Draw a line on beaker to show it is approximately 1/2 full? 100
Now, draw a line where 1/4 full would be. 100
What is 50% of $8.00? 100
What is half of 84? 93

One can holds 1 quart of oil which is the same as 2 pints. The 86
other can holds 3 quarts of oil. How many pints will it hold?

Total Mean 49
(Standard Deviation) (41
Level Two Items

Can you shade in 3/4 of the pizza (divided in 8 pieces)? 73

Which is bigger, .20 or .089?
Tell me a number that comes between .3 and .4?

If a beaker holds a total of 80 ml of water, how many mils of
water would there be if you filled it 75% full?

339
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Write 6% as a decimal. - 40
- I L L 1 I 1 l L[J I 1 I
Find1/4 40
on this numberline.
How much is .5 +.38? 46
Total Mean 39
(Standard Deviation) (2.0)
33
Level Three jtems
Estimate the answer to 12/13 + 7/8.
Order from largest to smallest: 48, 5/8, 14/13, .99, 1.03 33
Mr. Short’s height is 4 matchsticks. Mr. Tall’s height is 6 33
matchsticks. When we measure their height with paperclips
Mr. Short’s height is 6 paperclips. How many paperclips are
needed for Mr. Tall’s height?
Is 7 3/4 of 10? Explain your answer. 26
Whatis 1/8 as a decimal? 13
Is there a fraction between 1/4 and 2/4? 13
What is 65% of 160? Explain your answer. 6
Mrs. Cheever is 50% taller than her daughter. Her daughter’s 0
heightis ___ % of Mrs. Cheever’s?
Total Mean 1.6
(Standard Deviation) (14)
Total Score On all 3 Levels 103
(Standard Deviation) (3.33)

5.6.1.1. Problems with Magnitude, Symbols, and Operations with Fractions at
Pretest
Not surprisingly, the errors that the students made in the pretest
interviews were typical of the types of errors that often result from traditional
teaching and that have been mentioned elsewhere in this thesis. Although the
students had difficulty with many sorts of items on the pretest, the most striking



problems were with fractions; students demonstrated problems both in
interpreting fraction symbols as well as in determining their magnitude. In fact,

they were unable to perform any but the most rudimentary fractions operations.

One question that proved to be very difficult for almost all of the students
was “Can you think of a fraction that comes between 1/4 and 2/4?” As can be
seen on Table 5.2 only 13% of the students were able to correctly answer this
question. While it is true that it is a difficult question, the range of misconceptions
that was discovered was surprising. Recall that these students had received four
years of fractions instruction prior to this intervention. First, when attempting to
answer this question the majority of the students merely asserted that there was
no such number. However, when students did make an attempt, their

deficiencies with fractions were revealed.

Below I present two different sets of erroneous explanations in answer to
the an ittem that requested that the students find a number between 1/2 and
2/4.

Interviewer: Is there a fraction between 1/4 and 2/4?

Student (1): Hum.... What number comes between 1/4 and 2/4?
I'll take a guessand say 1/3 .

Interviewer: What made you think it was 1/3?

Student (1): Well 1 +2 =3 so that why I think it is 1/3.



Interviewer: Is there is a number that goes between 1/4 and 2/4?
Student (2): Well there is no fraction that goes in between but
there is a decimal.

Interviewer: Excellent, a decimal will do just fine. What decimal
were you thinking of?

Student (2): 1 point 5.

Interviewer: Why do you think that itis 1 point 5?

Student (2): Because you need a number between 1 and 2 so that
isl point 5.

Both students based their invented strategies in calculations involving the
numerator. Neither of these students included the denominator in their
reasoning, thus indicating their lack of understanding of fractions and their

reliance on their whole number learning.

A similar Iack of understanding was shown in the standard question that
was included: “Estimate the sum of 11/12 and 7/8?” Just as reported in the
literature, the majority of these students were not able to consider these fractions
as quantities, thus realizing that “2” would be the closest estimate. Rather they
selected either “19” or “21” as the answer to this question from the multiple
choice list, indicating again that they saw the denominator and the numerator as

two separate numbers that could be manipulated independently of one another.



Finally, when we requested that students order the following series of
numbers 48, 5/8, 14/13, .99, 1.03 we uncovered several misconceptions that we
had not hitherto encountered. For example, most of the students subscribed to
one of two opposing (both erroneous) ideas. On the one hand some asserted
“that fractions are always smaller than “decimals because they are tiny
numbers” (one student argued that 99/100 was a “very very tiny number” and
that 48/100 was “quite a bit bigger”). The other typical error was the assertion
that fractions are always larger than decimals because they have two numbers.
As might be expected there were also students in this group who lacking an
understanding of the interchangeability of decimals and fractions suggested that

it was not possible to order these numbers at all.

Students” performance on the decimal items at pretest were generally
better. For example, students were more adept at converting decimals to
fractions than they were at performing the reverse operation: thus, in answer to
“What is 1/8th as a decimal?” The majority of students asserted that the answer
was .8, .08, or 1.8. This same problem was even evident when the students
atternted to convert a more familiar fraction, 1/4. As in the above example,

students asserted that the answer was .4 or .41.

Another indication of these students difficulties was the confusion they
showed in selecting and performing operations. The most obvious problem of
this sort was revealed in their answers to the item: “Is 7 three quarters of 102” As

in the earlier studies, students attempted addition, (3 + 4=7; so the answer is
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“yes”) or faulty division (“No, because 3 doesn’t go evenly into 10”). Finally, it
was apparent that students had difficulty working with proportional relations.
On the item “Mr Tall and Mr Short” the majority of the students in this class used
additive reasoning to find the incorrect solution of 8 (see Chapter 3 for further

explanation).

In summary, it was observed that the Grade 6 students had many
misconceptions and difficulties with fraction symbols, conversions between

representations, ideas of magnitude to select the correct operation to solve them.

5.6.2 . Posttest Results: Changed Understandings
When the posttest scores were analyzed there was a significant

improvement found. Table 5.3 presents the pretest and posttest scores for the

measure as a whole.
Table 5.3
Total Scores on the Rational Number Test, Before and After Instruction
Mean Score on Pretest Mean Score on Posttest
(max =20) (max = 20)
Mean score 10.33 15.53
Standard deviation (3.33) (2.16) ***

** p <.01;*** p <.001; **** p <.0001; ns = not significant
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When a t-test was conducted it was evident that the posttest gains were
highly significant, t = 10.46; p < 0001 with the mean score improving from 10.33
(3.33) for the pretest to 15.53 (2.16) at posttest. An effect score was caiculated by
dividing the difference 5.2 by the mean standard deviation of the pre- and post
scores (2.7) thus producing an Effect Score = 1.9. Analyses of the data revealed
that these gains included: 1) an improved understanding of magnitude, symbols,
and interrelationships of rational number; 2) the ability to compute with percents
and to use percent to represent fractions and decimals; and 3) a fundamental
change in the ability to recognize the proportional nature of rational number.
Evidence for these changes can be seen in the improvement of students’ scores
on the individual items from pre- to posttest, changes in the strategies they used
at posttest, as well as in excerpts from classroom lessons. In the following
sections, [ will consider the kinds of new understandings that the students
developed, first by looking at these changes in the test items and then by
considering data from classroom lessons. Following this analysis of the
improvement I will include a section on items that the students continued to find
difficult even after the intervention.

5.6.2.1. Improved Understandings of Magnitude, Interchangeability, and
Fraction Symbols After Instruction

One of the most striking changes in these students” understandings at
posttest was the improvement in their ability to work with fractions. The results
revealed that the students could correctly evaluate the magnitude of fractions,

interpret symbols, and move between representations. This was evident in their
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response at posttest to the items such as, “What is 1/8th as a decimal?” “Write
6% as a decimal,” and “Find a fraction between 1/4 and 2/4” where the scores
were 93, 96, 58, respectively. In order to solve the latter item, the students re-
interpreted these two fractions as percents and/or decimals asserting for
example, that 1/4 = 25% and 2/4 is twice that, or 50%. In this way they were able
to find a large variety of answers including for example 40/100 “because that is
the same as 40%” or 3/8, “because 1/4 =2/8 and twice thatis 4/8 , so 3/8 comes
in between.” As well, it is worth noting that in their response to “What is 1/8th
as a decimal?” these students demonstrated the use of the halving strategy in a

very similar manner used by the previous Grade 4 students (see Chapter 4).

A further illustration of the students” newly acquired ability to interpret
symbols and judge magnitude can be seen in the following excerpt from a
classroom lesson on equivalencies that took place on the eighth day of
instruction. In previous classes, students had been asked to invent challenges for
their classmates. On this day, one of these challenges was taken up with the class
as a whole in a teacher directed discussion. The students had invented a list of
quantities in mixed-representations that were sometimes equivalent and

sometimes slightly anomalous:

1600/3200 .05 250/500 .5 4/7 8/16 12:18 XXX .529 50% 5/9
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The teacher wrote this list on the chalkboard and then began the lesson by
asking for volunteers to comment on the numbers on this list that they thought

were not equivalent to 1/2.

The first student to comment chose 5/9 as an anomaly. “Five ninths is not
the same as 1/2. It can't be, because 5/10 is one half, so, it can’t be.” When the
teacher questioned the student as to whether 5/9 was more or less than 1/2, the
student hesitated and said that he didn’t really know. Another student then came
up to the front of the class and said, “in order to get 1/2 you would have to have
4 point 5 ninths (she proceeded to write 4.5/9 on the board ). “That,”she said
pointing to the fraction, “is less than 5/9 so, 5/9 is larger than 1/2.” The students
were satisfied with this explanation but before moving on to the next
representation, a third student made a related observation. She offered that she
could now see a pattern in regards to another fraction on the list, 4/7. “Now you
see that 4/7 was also larger than 1/2 ‘cause it would take four eighths or 3 point
5 sevenths to make a half so it was like a pattern with 5/9ths.” These kinds of
discriminations had entirely eluded the students at pretest.

The next number from the list that was pointed out as anomalous was
.529. All of the students agreed that 1/2 was the same as .5 and thus different
than .529. “I know that .529 is larger than 1/2 because the difference between .5
and .529 is that .5 is just five tenths but .529 also has 29 thousandths as well.” The
explanations provided by the students indicated that they had acquired an
understanding of tenths and hundredths that had not been evident in the
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interviews and early classroom lessons. The following explanation typifies the
kinds of reasoning that the students displayed: In fact, at pretest 40 % of these
students had voiced an erroneous conceptualization that many children hold, i.e.,
that “the shorter the number, the larger the decimal.” This same misconception
was evident in the reasoning that many students offered at pretest as an
explanation for why they believed that .2 is larger than .089. Clearly, the students

were no longer reasoning with this misconception.

Finally, another illustration of students” changed understandings occurred
in the discussion that focussed on the function of the zero in decimals. The
discussion began when two students disagreed with each other as to whether .05
was equal to 1/2. Clarification was offered by a third student who pointed out
that .5 was 50% but that .05 only means 5%.

As can be seen, the students” sense of magnitude across representations
showed increased awareness and precision. Generally what the classroom lesson
revealed was that the students had developed tools for making magnitude
judgements and that they appeared to find that using percents as a reference was
helpful in this regard.

5.6.2.2. Students Ability to Compute with Percents After Instruction

The forgoing protocol from the classroom revealed that these Grade 6
students became adept with percents as a referent or an intermediary step for
comparing and ordering both fractions and decimals. This finding was very
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much in keeping with those of the other two studies. It was particularly
encouraging that these results were obtained as less time was devoted to the
teaching of percents in this Grade 6 curriculum (see Table 5.1). On the other
hand, the posttest results also reveal that students” were less proficient in
performing percent calculations than the students in the previous interventions.
Even though all of the students at posttest could calculate an answer to the
simple item “If a beaker holds 80 mls of water, how many mis would there be if
you filled it 75% full?“only 47% of the students could find the correct answer to
what is 65% of 160? In attempting the latter item all of the students first
successfully computed 50% of 160. However it was in the second step (i.e.,
calculating 15% of 160) that the students encountered difficulties: Some students
merely added 15 to 80, achieving 95; others had difficulty performing the
computation at all. While there was good improvement on this item (students
moved from 6% to 47%), the mean score on this item was lower than the means
that were achieved by the Grade 4 students in Study 1 and the high-achieving
Grade 4s in Study 2. A conjecture is that these students, because of their previous
traditional teaching, were not as disposed to or as able to invent procedures.
Therefore, it is hoped that a longer time spent on percent exercise might well
have been valuable and would have made a difference in these students” ability

to compute with percents.

5.6.2.3. Multiplicative/Ratio Reasoning After Instruction
Finally, in line with our hypothesis, another area that showed

improvement was in proportionally and multiplicative reasoning. The item on
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the measure that most directly assessed ratio understanding was the Karplus et
al. (1974) item, Mr. Tall and Mr. Short. As can be seen, there was substantial
improvement on this item at posttest and 80% of the students were able to

reason multiplicatively and soive the problem.

Students” ability to think of ratios and relative proportion can also be seen
in another excerpt from that same classroom lesson. Again, the list of
equivalencies was revealing in this regard: One of the challenges included in the
list was to prove whether X:XX might be equivalent to 1/2. The first student to
address this challenge asserted that X:XX could not possibly equal 1/2. “Lets say
that X is equal to 2. Well then X:XX is 2:22. Or let’s say you call X equals 5, then it
would be 5:55. So it can’t be half because 5 :55 is not the same as 1/2 or
1:2.” Another student then noticed that 5:55 and 2:22 represented the same
relationship as 1:11. This observation became a subject of interest and other
students then noticed and commented on the pattern of the constancy of the

ratio.

Another student then volunteered a different interpretation of X:XX: “I
thought about the XX as meaning X times X so if you make X to mean 5, then
you would have 5:25 or if X is 6 , then it is 6: 36 and 7 would be 7: 49.” There
was general excitement at this discovery and then one student thought out loud
“but if X = 2, then you would have 2:4 which is the same as 1:2 so it can be the
same as one half.” Finally the students who had proposed the challenge in the
first place explained their infended meaning of X:XX . “We made XXX Roman
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numerals, so then X = 10 and XX = 20, so that just like a half.” This discussion
highlights students” interest in and ability to consider the ratio construct of

rational number.

Table 5.4 presents items from the measure that are ordered according to
gains that students made from pre- to posttest. Since the Level 1 items were all at
ceiling to start with, these are not included on the following table:

Table 54

Percentage of Students Succeeding on All Items Excluding Level 1 Items, Before and
After Instruction

[tems Pre Post
Whatis 1/8 as a decimal? 13 93
Write 6% as a decimal. 40 96
Is 7 3/4 of 10? Explain your answer. 24 73
M. Short'’s height is 4 matchsticks. Mr. Tall’s height is 6 matchsticks. 33 75
When we measure their height with paperclips Mr. Short’s height is 6
paperclips. How many paperclips are needed for Mr. Tall’s height?

What is 65% of 160? Explain your answer. 6 47
How much is .5 + .38? 38 80
What is 75% of 80ml of water 60 93
Is there a fraction between 1/4 and 2/4? 19 58
Find 1/4 on a numberline 38 67
Shade 3/4 of this Pizza 75 100
Tell me a number that comes between .3 and .4 60 67
Order from largest to smallest: .48, 5/8, 14/13, .99, 1.03 38 58
Mrs. Cheever is 50% taller than her daughter. Her daughter’s height 0 13
is what % of Mrs. Cheevers?

Estimate the answer to 12/13 +7/8 38 44
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5.6.2.4. Limitations of the Curriculum—Items With Little Change
While there was substantial improvement on many of the items, there

were still some that remained difficult for the students at posttest. As can be seen
from Table 5.4, there were items where the gains were limited. Although most of
these items appeared to generate no changed conceptualization from the pretest,
there was one item where the students, while still unable to achieve the correct
answer, were at least able to answer part of the question successfully. This item
asked students to order the numbers: .48, 5/8, 14/13, .99, and 1/03. In answering
this question all but two of the students were able to correctly order three of the
numbers: .48, 5/8, and .99. However, when it came to finding the larger of 14/13
or 1.03, the students ran into difficulty. Thus, although the score for this item at
posttest was disappointing, still the students had improved their strategy use and

had lost their misconceptions about comparing decimals and fractions.

Although the previous item showed at least a broadened understanding,
there were three items on which there was no change in conceptualization or
understanding between pre- and posttest. On the first, the standard item
“Estimate the sum of 12/13 + 7/8,” the students were not able to consider the
quantities represented by these symbols. They responded to this item exactly as
they had at the pretest, and gave the incorrect answers of 19 or 21. It is believed
that when confronted with difficult numbers, students often regress in their
reasoring and rely on rules and procedures rather than access to the conceptual
knowledge that they have acquired I believe that this item is sufficiently difficult
that the students showed exactly this pattern of behaviour. Nonetheless, their
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lack of flexibility in thinking on this item is an area of concern in our results and
perhaps demonstrates that more classroom time needs to be devoted to fraction

activities or that they’re not appropriate for this grade level.

Another item of little change required that students find a number
between .3 and .4. In answer to this question the students all agreed that such a
number existed however, when they attempted to find an answer they often
chose numbers that were incorrect. Finally, the most difficult item which asked
students to derive the percent height of Mrs. Cheever’s daughter to her mother,
was as frequently missed after instruction as before. Students asserted most
frequently that the daughter’s height was 50% of her mother’s, or else that the
daughter was 0% of her mother. This is a very difficult item as the students are
not able to understand the referent for the percent. Thus when asked, they could
not even draw a picture that represents this question. Although there werea
great many activities that dealt with percent measurements and percent
comparisons of height in the Grade 6 curriculum, the concepts embedded in this

problem were not addressed.

5.6.3. Pre-and Posttest Performance Differential in High-Achieving and Low-
Achieving Students

In the previous study, the more able Grade 4 students improved significantly
more than the students in the lower half of the class. A hypothesis for this study
was that this finding would be different for older students. Table 5.5 shows the
pre- and posttest scores after they were split for high and low. I derived the
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designation of high and low as I did in the preceding study, by finding a median
split on the raw scores for the Canadian Test of Basic Skills, Mathematics
Concepts Subscale. Again, I solicited ratings from the classroom teacher. Her

ratings were in agreement with the division of the class suggested by the test.

Table 5.5
Total Scores on the Rational Number Test, High- and Low-achieving Students , Before
and After Instruction

Items High-achieving Low-achieving
Pre Post Pre Post
Mean Score (max = 20) 13.43 16.57 **** 8.12 14.12
(2.44) (2.15)**** (1.35) (1.59)

** p <.01;*** p <.001; **** p <.0001; ns = not significant

When t-tests were performed to evaluate change for each of the two groups
from pre- to posttest, it was discovered that both the upper half and the lower
half improved significantly, with the high achievers t = 6.181, p = .0008 and the
low achievers t = 7.64, p = .0001. Effect sizes were calculated and it was
discovered that the effect size for the high-achieving students was 1.4 for the

low achievers this was 1.7.

In order to further evaluate the differences between the high-and low-
achieving students, and to test the conjecture that both groups of students would
make equal gains from pre- to posttest, I conducted a two-way analysis of
variance with repeated measures [(group) high- by low-achievement level], x
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[(time) pre- and posttest]. The results revealed that the gains were not equivalent
for the two groups. But rather what was found was that there was a significant
group by time interaction, and that the low-achievers improved significantly
more than the students in the upper half of the class, F(1,13) = 4.802 p < .0471. As
well, the effects of group and the effects of time were also significant at F(1,13) =
12.89 p < .003 and F(1,13) = 95.57 p < .0001 respectively.

5.6.3.1. Differences for High and Low-Achieving Students on the Items in the
Three Levels Of Difficulty

Given that there was a difference found in the performance of the two
groups, a question that arose was how the groups compared at pre- and posttest
on the items when they are broken down into the three levels of difficulty. Thus
I calculated the means and standard deviations for both the high- and low-
achieving students on the different levels..Table 5.6 shows a breakdown of the

mean scores for the three levels for both the high- and low-achieving students.
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Table 5.6
Percentage of Students From Low- and High-Achieving Groups Succeeding on
Level 1, 2, and 3 Items, Before and After Instruction

Low High
Achieving Achieving
Pre Post Pre Pos
Level 1 Items 4.75 5 5 5
(max = 5) 1.30 98 1.90 1.88
Level 2 Items 2.65 537 5.57 6.57
(max =7) (1.06) (.52) (1.13) (.78)
Level 3 [tems .75 3.75) 2.85 5.85
(max =8) (.70) 1.48 (1.57) (1.57)

As has already been reported all of the students were successful on the Level 1

items even at pretest.

On the Level 2 items however what was revealed was that the high-achieving
students were able to answer most of these items before instruction attaining a
mean score of 5.57 (1.13) out of 7. At posttest this group performed at ceiling
achieving a score of 6.57 (.78). The scores for the low-achieving students on the
Level 2 items were different. At pretest this group did poorly, achieving a mean
score of 2.65 out of 7 (1.06). However they did make substantial improvement
on these items as a result of instruction and scored 5.37 (.52) at posttest. Finally
on Level 3 items both groups had difficulty on the pretest; the low-achieving
students scored .75 (.70} out of 8 and the high-achieving scored 2.85 (1.57).
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However as the table indicates each group improved their score by three points

on these Level 3 items.

When a repeated measure ANOVA was conducted on Level 2 items ; [group
(high- and low-achieving)] X [time, (pre and post)] a significant interaction was
found for group and time F = 97.1280 p < .000. Similar interactions were found
for the effect of time as well as for the effect of levels. Post hoc analyses (Scheffe
= 1.68) revealed that there was a highly significant difference from pre- to
posttest on the Level 2 items (Scheffe = 27.03). By contrast when an ANOVA was
performed on the Level 3 items [group (high- and low-achieving)] X [time, (pre
and post)] the results were different. There was no interaction found for group
and time F = 1.75 p < .207. Thus it is apparent from these results that the
curriculum was particularly effective for the low-achieving students as they
made gains in both levels of difficulty.

5.7. Results and Discussion of the Performance of The Normative Groups: A
Comparison with the Experimental Grade 6 Students

57.1. Comparison of the Experimental Students at Posttest to the Four
Nommative Groups
The final group of questions addressed in the study concerned the
improvement that the curriculum produced for these Grade 6 students measured

in developmental, rather than absolute (percent gain) terms. Following the
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adminstration of the 20-item measure, mean scores and standard deviations
were obtained for all of the students in the normative groups. As expected, the
scores increased by age of the students. The mean scores for the students in
Grades 4, 6, and 8, were 6.75 (3.22), 11.5 (4.04) and 13.5 (3.87) for Grade 4, 6, and 8
respectively. The adult students in the MA preservice teaching program attained
a score on 15.33 (2.35) on the measure. These scores along with the posttest

scores of the Grade 6 experimental class are presented in Table 5.7.

Table 5.7

Total Scores on the Rational Number Test for the Normative Groups and the
Experimental Students at Posttest

Test Grade 4 Grade 6 Grade 8 Preserv Grade 6
Max =20 n=20 n=30 n=20 n=32  Experiment
Posttest
All items 6.75 115 13.5 152 1533
max =20 (3.22) (4.04) (3.87) (3.02) (2.35)

When a one-way ANOVA was performed it was revealed that the
differences in score were, in fact, highly significant: F( 4, 122) =23.3 p <.0001. A
Scheffe post hoc was also conducted to further explore these differences. What
was revealed was that the mean score obtained by the experimental group was
significantly different than those of the Grades 4, 6 and 8, but not of the

preservice teachers.
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While this finding was of interest, still, there remained the question as to
which test items contributed to that result. Did the similarity of scores of the
preservice teachers and experimental group reflect the passing of similar items
or were the items that comprised the mean scores more random in nature? To
answer this question I conducted a breakdown of the means scores for each
group by level of difficulty. These scores are presented in Table 5.8. As can be
seen the experimental students were able to score even slightly higher than the
graduate students on the Level 3 items attaining a mean score on these items at
posttest of 4.53 (1.72) out of 8 compared to the preservice teachers who had a
mean score on these Level 3 items of 4.03 (2.49). On these same Level 3 items the
Grades 4, 6 and 8 normative groups attained means scores of .75 (1.2) 2.6 (1.86),
and 3.0 (2.58) respectively. On the Level 2 items, on the other hand, the
preservice teachers were more successful than the students in the experimental
group scoring 6.28 (1.14) compared to 5.73 (1.03) respectively. As can be seen,
the Grade 8 students also attained a similar score 5.42 (1.50). Table 5.8 presents

these scores.
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Table 5.8

Percentage of Students From the Normative Groups and the Experimental Grade Six
Class at Posttest Succeeding on Level 1, 2, and 3 ltems

Grade Levels Grade4 Gradeé6 Grade 8 Preservice =~ Exp PostG6
n=20 n=30 n=20 n=32 n=15
Dev. Level 1 4.45 4.81 494 5.00 5.00
max =5 (.88) (.39) (22) 0) (0)
Dev. Level 2 1.6 441 542 6.28 573
max=7 1.78 2.00 1.50 1.14 1.03
Dev. Level 3 75 2.6 3.0 4.03 453
max=38 (1.2) (1.86) (2.58) (2.49) (1.72)
TOTALS 6.75 11.5 13.5 15.2 15.53
(3.22) (4.04) (3.87) (3.02) (2.35)

Finally, [ wanted to compare the posttest scores of the high- and
low-achieving Grade 6 students to those of the normative groups. Since the
Level 1 items were passed by all of the groups, I exclude these items from the
following table and present the results of the Level 2 and 3 items for all of the
groups.Table 5.9 re-presents the results for Level 2 and 3 items for the normative
groups together with the results obtained by both high- and low-achieving
experimental students. As can be seen the high achievers attained a superior
score on both levels of items compared to the preservice teachers and the low

achievers’ scores were similar fo those of the Grade 8 normative group.
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Table 5.9

Percentage of Students From the Normative Groups and the Experimental Grade Six
Class at Posttest Split for Low- and High-Achievers Succeeding on Level 1,2, and 3
Items

Low High  Grade4 Grade6 Grade8 Preserv.
Post Post n=20 n=30 n=20 n=32

Level 2 items 537 6.57 1.6 441 542 6.28
max=7 (.518) (.78) 1.78 2.00 1.50 1.14
Level 3 items 3.75 5.85 75 2.6 3.0 4.03
max =8 1.48 (1.57) (1.2) (1.86) 2.58 (2.49)
TOTALS 14.12 16.57 6.75 11.5 13.5 15.2

(1.59) (2.15) (3.22) (4.04) (3.87) (3.02)

5.8 . Summary and Conclusions

In this study, [ examined the learning gains of a mixed-ability Grade 6
class who had all received previous traditional instruction in all aspects of rational
number. In the two previous studies that were implemented to assess the
benefits of the experimental rational number curriculum, the students who
participated had not had any previous instruction. Thus, by working with this
particular group I was able to ask a series of new questions that had hitherto not
been addressed. We hoped that these questions might further our understanding

of the application of this curriculum to broader contexts.
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The first questions concerned the potential of this curriculum to
generate changed understandings for students who had received prior
traditional training. Since it has been reported that students have a difficult time
adopting new thinking strategies and considering new approaches to topics they
have previously learned by rote, I wondered if students who had received
traditional instruction in fractions and decimals based on additive part/whole
notions would be able to reorient their understanding to include much broader
based ideas. My hypothesis was that these Grade 6 students would in fact be able
to gain new understanding since the present curriculum was so different. This is
an important consideration as any implementation of this curriculum (or any
other curriculum) at the Grade 6 level would necessarily involve the intrusion of

previous learning. This hypothesis was confirmed.

Another question of interest was whether the curriculum could be
effective when presented in less time. As [ have reported, the Grade 6
experimental students had only thirteen hours of instruction compared to
twenty and seventeen hours of the first and second study respectively. In order
to reduce the total teaching hours, less time was given to percent teaching at the

opening of the sequence.

Although the students came to use percents as a referent in performing
invented solutions particularly on items involving fractions, they were not as

successful as the Grade 4 students in computing with percents. This was evident
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in the lower scores that they received for the item that asked them to calculate
65% of 160.

A third question concerned the differences in learning outcomes of the
high-achieving versus the low-achieving students. The results of the Grade 4
study revealed that the upper half of the class improved significantly more than
the lower half. My hypotheses for this study was that, because the students were
two years older and more experienced with multiplication and division, the gains
of the two groups would be the same. In fact, what the analysis revealed was
that the lower ability students benefited more from instruction tthan their higher
ability counterparts. Interestingly, these gains were primarily on the mid-level
tasks where the Grade 6 students in the higher ability group were already
competent. As well, these gains were on very difficult problems (Level 3 items).
Although both groups of students started with differing prescores on these
items, and ended with different postscores, both groups improved significantly
and equally. Two interpretations seem possible. The first is that there was a
ceiling effect for the high-achieving students. The second (not incompatible) is
that the main impact of the program because of the content it contains, is on
children just making the transition to formal (Piaget), abstract (Fischer), or
vectorial (Case) thought, i.e., advanced Grade 4 or 5 students, and average or
below average Grade 6 students. In either case, one might conjecture that this
curriculum would be best introduced at the Grade 5 or early Grade 6 level.
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A final question considered the magnitude of the improvement in
developmental terms. From the results of the normative study and the
comparison of these results to the performance of the experimental Grade 6
students, I learned that the Grade 6 students performed as well as the students in
an M.A. teacher teaching program, and at a higher level than the students in
Grade 8. Indeed, the high-achieving Grade 6 students, who are probably the
most appropriate comparison group for the M.A. students, performed higher on
the Level 3 items than they did.

In the next chapter I will examine the results that the students obtained
across all three studies to discover more about the curriculum and to see where

the similarities and differences are to be found.
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Chapter 6
Assessment of the Curriculum Across Three Studies

6.1 Introduction

Each time the curriculum was taught, although the approach to the
rational number content and the classroom teaching structures remained
consistent, there were significant changes made to further our understanding of
students learning of rational number and to refine and test aspects of the

curriculum.

For example, there were changes made in the population of students
who participated. In the first two studies the students were in Grade 4; the group
from study 1, reported in my MA thesis (Moss, 1397) were high-achieving
mathematics students who had been especially selected, whereas the second
group, an intact Grade 4 class, was more academically diverse. In Study 3 the
students who participated came from an intact mixed-ability Grade 6 class thus
providing an opportunity to assess the effectiveness of the intervention with
older students who had already had several years of traditional instruction in
rational number and had formed their understandings based on this prior

training.
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Changes were also made to the curriculum that was delivered.
Significantly, the number of teaching hours for the Grade 6 students was
shortened. As well, variations on exercises and tasks were substituted for the

original, prioritizing different rational number representations.

Finally, the measures that were used for the pre- and posttest
evaluations were substantially different at each iteration of the program. All of
the measures shared common purposes: to probe for students’ conceptual
understanding, to assess their ability to perform standard tasks and to evaluate
the extent of their rational number sense. Nevertheless, changes were made to
the number of items on the measures as well as to the content of items. In the
first two studies, which comprised 41 and 49 items respectively, the measures
were divided into three separate subtests (Percents, Decimals, and Fractions).
Several items in the second measure were modelled on those of the first, but in
the second the numbers used were more challenging. Also, on this second
measure, more standard computation items were included. The third measure
was substantially different, including only 20 items that encompassed a broader
range of difficulty. This measure also included 2 normed items from the standard
mathematics education literature. This third measure was designed with two
purpases; to evaluate both the change in the pre and posttest performance of the
experimental Grade 6 students as well as to evaluate the performance of
normative samples of students, ranging from Grade 4 to adult. For a summary
of the methods and design of the three studies please see Table 6.1 below.
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Design of the Three Experimental Studies
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Study 1 Study 2 Study 3
Goals Test new approach using  Replicate See if approach works
formal experiment and experiments with  with older students who
measure broader range of  have had traditional
subjects and more  introduction to rational
test items number
Subjects  Grade4 Grade 4 Grade 6
n=16 n=15 n=15
Bottom quarter of class All studentsin class  All students in class
excluded mixed-ability mixed-ability
Design pre/post pre/post pre/post
treatment/control no freatment no treatment control
control comparison groups
Teaching 18 hrs 18 hrs 13 hrs
hours
Focuson percent.6 percent .5 percent .3
Topics decimals .3 decimals .2 decimals .1
fractions/mixed fractions/mixed fractions/mixed
representation .1 representation .3 representation .6
Measures 41 Items 49 Items 20 Items
9 Percents 16 Percent Mixed Representations
16 Fractions 17 Fractions
16 Decimals 16 Decimals

With all of the changes that were made to the measure, 10 items were retained

across the three studies and it is these 10 items that will be analyzed in this

chapter. The aim of the present chapter is to assess the robustness of the

curriculum across the three studies. In order to accomplish this analysis, I created
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a new data base using the ten common items. These items are presented below

in Table 6.2.

Table 6.2
Ten Items Ordered by Level that Were Retained Across the Three Studies

Levell Whatis 50% of $8.00?
Draw a line on this beaker where 1/4 full would be.

Level2 Can you name any number between .3 and .4?

Which is bigger, .20 or .089?

Shade 3/4 of this pizza (pizza is divided into 8 sections)
How would you write 6% as a decimal?

How much is .5 + .38

Level3 Another studentsaid that 7 is 3/4 of 10. Isit? Explain.
What is 1/8 as a decimal?
What is 65% of 1602 Explain your answer.

As can be seen these items were taken from each of the three levels of
difficulty. Thus, while it is true that these items only represent a portion of each
of the longer measure, the range of difficulty that they represent does provide us
with the ability to compare the performance of the groups on different types of

items.

The analyses in this chapter will be as follows. First I will first presenta

quantitative analysis that compares the performance of the groups as a whole.
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As part of this analysis I will also examine the differences in performance of the
high- and low-achievers. Following that, I will present an analysis of the
individual items and compare the performance of the three groups on the
different items. Finally, using these same items, I will compare the performance

of the experimental students to that obtained for the normative samples.

6.2 Results on the Overall Measure

Table 6.3 shows the means and standard deviations of the pretest and
posttest scores and the effect sizes for the three experimental groups and the
treatment/control group on the 10 items (Zumbo, 1999). (The effect sizes were
calculated by subtracting the pretest score from the posttest score and then
dividing that difference by the average standard deviation of the pre and post
scores). As was to be expected, the Grade 6 class had the highest scores both on
the pretest 5.12 (1.81) and posttest 8.61 (1.18) followed by the high-achieving
Grade 4’s in Study 1, who obtained an overall score at pretest of 3.07 (1.82) and a
posttest score of 8.4 (1.60). The mixed Grade 4 class, on the other hand, achieved
a score of 4.3 at pretest and 7.2 (1.88) at posttest, with an effect size of 2.55. The
students in the control group from Study 1, although achieving a similar score to
the experimental students in pretests (scoring 2.85 (1.99), were much less
successful on these items at posttest receiving a score of 3.5 (1.78). These results

are presented in Table 6.3 below.
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Table 6.3
Total Means Scores, Difference Scores and Effect Sizes on the Items Across for All 3
Experimental Groups and the 1 Control Group

Group n=  Pretest Posttest Difference Effect Size
Score
Year 1 16 3.07 84 533/1.71 332
Experimental (1.82) (1.61) (L.75)
Grade 4
21 243 72 4.81/1.88 2.55
Year 2 (1.88) (1.88) (1.72)
erimental
Grade4
Year 3 15 5.12 8.61 349/149 2.34
Experimental (1.81) (1.18) (1.40)
Grade 6
Year 1 14 2.85 35 643 /1.89 34
Control (1.99) (1.78) (1.27)
Grade 4

When a one-way analysis of variance was performed on the pretest score
means for the three experimental groups, a significant difference was found
between and within the groups, F, (2, 49) =11.88 p<.0001. A post hoc Scheffe
showed that there was no difference between the two Grade 4 groups at pretest.
However, there were significant differences found at pretest between the two
Grade 4 groups compared to the Grade 6 students. When a Scheffe was
performed on the posttest scores there were no differences found between any
of the groups. See figure 6.1. Thus, this analysis based on these ten items
suggests that the curriculum seemed to be equally effective at posttest for the

three experimental groups.
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Figure 6.1 Total mean scores and effect sizes for the three experimental groups
and the control group from Study 1 on the 10 selected items at pre and posttests
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6.3 A Comparison of High- and Low-Achieving Students

Recall the differences that were found between high- and low-achieving
students in both Study 2 and Study 3. A surprising result in Study 2 with the
mixed Grade 4 class was the significant difference in rate of gain at posttest in
favour of the high-achieving students. When similar analyses were conducted
following the intervention with the mixed-ability Grade 6 students, however, the
results were reversed: the low-achieving students gained significantly more than
the students in the upper half of the class. Thus, based on those results I was able
to conclude that the rational number curriculum was most effective for high-

ability Grade 4 and low- ability Grade 6 students.

As part of the present analyses, I was interested to see if these same
differences would still be evident on this new database of ten items and if, in fact,
it might be a possible to calculate which of these two groups gained the most.
Means and standard deviations of the pre and post scores, and effect sizes for
these 4 groups of students on the ten items, are shown in Table 6.4. and Figure
6.2 (To review how students were designated as either high or low achieving,
please see chapters 4 and 5). As can be seen, the results of these analyses showed
a similar pattern to the results obtained by these groups on the original
measures. Again, the most substantial gains were found in the scores of the high-
achieving Grade 4 students and the low-achieving Grade 6 students. However,

studying the effect sizes that were obtained by these groups, does reveal that
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although they were very high in both cases, the effect size for the low Grade 6

students (3.76) was even higher than that of the high Grade 4 students (3.57).

This result suggests that the experimental curriculum is well suited for both of

these groups but perhaps slightly more for the low Grade 6 students. A

limitation with this analysis, however, is that there is a possible ceiling effect for

the high Grade 6 students. Thus we cannot be sure how they would have done

had there been a larger number of intermediate and difficult items.

Table 6.4

Means, Standard Deviations, Difference Scores and Effect Sizes for the Ten Items Across
the Three Studies Comparing High- and Low-Achieving Students

Group

Study 2
Grade 4
High-Achieving
Study 2
Grade 4
Low-Achieving
Study 3
Grade 6
High-Achieving
Study 3

Grade 6
Low-Achieving

n
10

11

Pre

3.8
(2.20)

1.80
(1.27)

7
(1.15)

4.12
(:99)

Post

8.8
(.69)

5.81
(1.47)

9.29
(1.06)

8
(1.07)

Difference Score

5/1.5
(1.90)

4.01/1.37
(1.27)

229/1.1
(1.25)

3.88/1.03
(1.13)

Effect Size
333

292

208

3.77
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6.4 Analysis of the Individual Test Items

In order to further compare the groups’ responses, I conducted another
analysis in which I looked at the difference in the students’ responses on the
individual items. Table 6.5 presents the percent of correct responses for all of the
groups on the level 2 items at pre and posttest. table 6.6 presents similar data for
the level items. The items are arranged in descending order according to the

scores that were obtained.

Table 6.5
Percentage of the Students from all Three Experimental Groups and Control Group
Succeeding on Level 2 Items Before and After Instruction

Studyl Studyl  Study2  Study3
Control HighG4 MixedG4 MixedG6
n=13 n=16 n=21 n=15

pre post pre post pre post pre post

Which bigger, .20 or .089? 50 50 38 81 33 100 67 9%
Shade 3/4 pizza 33 3 75 100 38 7 73 100
Number between .3 and .4 43 17 39 100 14 76 60 67
Write 6% as decimal 0 23 0 93 5 81 40 9%
whatis .5 +.38? 5 33 6 50 5 52 46 80
Average percent correct 5 31 30 8 19 77 57 87

6.4.1 Pretest Results of the Level 2 Items

An examination of the Level 2 pretest items reveals that Grade 6 students

were more competent with these questions than were either group of Grade 4
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students. Fifty-seven percent of these mixed-ability Grade 6 students succeeded
in answering these questions before instruction; by comparison only 5%,0f the
control students, 30%, of the high-achieving Grade 4's and 19% of the mixed-
ability Grade 4 class could correctly answer these questions. Thus, we see that
there is a developmental aspect or a least an effect of traditional instruction on

these items.

6.4.2 Posttest Results on Level 2 Items

By comparison it can be seen that the posttest results were more unified;
the passing rates were as follows 87% for the Grade 6 students and 85% and 77%
for the high-achieving and mixed-ability classes respectively. Generally the
passing rates were similar across all of the groups on the individual items. There
were however 2 exceptions: the first was on the items that asked the students to
“Find a number between .3 and .4.” On this item both groups of Grade 4
students were successful achieving 100% for the first group and 76% for the
second group. By contrast, the Grade 6s only achieved a 67% rate of passing and
thus barely made any improvement from pretest. Although the relatively poor
showing on this item is difficult to explain, a possible explanation is that the
traditional training that the students had received prior to the intervention had
created some confusion. Recall that the Grade 4 students had not had any
training in decimals outside of the experimental program. It is interesting to note
that on this same item the passing rate for the control group (from Study 1)
actually dropped from pre- to posttest from 43% at pre- and 17% at posttest.
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Thus traditional instruction appeared to have made this item particularly
challenging for the students. .

The second anomaly in posttest scores on Level 2 items was, on another
item involving decimals “How much is .5 + .382. On this item, in contrast to the
previous one, it was the Grade 6 students who achieved the significantly higher
rate of passing (80%) compared to any of the Grade 4 groups. These younger
students, while improving considerably from pretest, only had 50% and 52%
rate of passing at posttest. Perhaps the fact that this item was more standard in
nature meant that the Grade 6 students who had done more standard

computation were able to be more successful.

6.4.3 Pretest Results Level 3 Items
Table 6.6 has the pre- and posttest scores that were achieved of for the 3
Level 3 items. As indicated on Table 6.6, the level 3 items were difficult for all of

the students in the experimental groups.
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Table 6.6
Percentage of students in the Three Experimental Groups and the Control Group
Succeedmg at Level 3 Items, Before and After Instruction

Study 1 Study 1 Study 2 Study 3
Control Experimental Grade 4 mixed Grade6
pre post pre post pre  post pre post

Level 3 items A ,
7is3/40f10. s 0 6 6 75 24
it? Explain .
Whatis1/8asa 0 g 6 75 0 &7
decimal -

What is 65% of
160? Explain

Average 3 ¥ 4 23 10 58
percentage correct

6% 5 52‘

(oY
:Q :
(o]

6.4.5 Posttest Scores on Level 3 [tems

As can be seen from the table, the mixed Grade 4 group experienced
difficulty with all of the Level 3 items. However, the item that proved to be the
most challenging was “What is 1/8 as a decimal?” On this item, this group
achieved a rate of passing of only 47% compared to 75% for the high-achieving
Grade 4 students and 93% for the Grade 6 students. This result was surprising.
As T have indicated in Chapter 4, these students actually received more direct
instruction with mixed-representations of numbers. A speculation is that the
explicit instruction in mixed-representations might not be as helpful for the

students as repetitious work with percents in measurement.
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In summary then these result show that all of the students including the
control group were successful in the Level 1 items, and that generally the pretest
scores on the Level 2 items were higher for the Grade 6 students.This led to the
speculation that traditional training might have been useful in response to these
questions. However, the advantage displayed by the Grade 6 students on Level 2
items did not apply to the Level 3 items. On these items there was no difference
in passing rates for the Grade 6s and the high-achieving Grade 4s.The
performance on the Level 3 items perhaps is the most unified. On these all of the
students did well with the exception of the item “Whatis 1/8 as a decimal?’ It
appears that even though there were many changes made, the curriculum

proved to be helpful to all of the students regardless of age or experience.

6.5 Comparison of the Performance of the Experimental and

the Normative Groups

In a final set of analyses I compared the passing rates of the 3
experimental groups and control groups to those of the normative groups on
the same 10 items. Table 6.7 presents the passing rates on the level 2 items for
the normative students from Grades 4, 6, and 8 and postgraduates. The passing

rates for the experimental students are re-presented as well.
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Table 6.7

Percentage of Students From the Normative Groups and the Three Experimental Groups
After Instruction Succeeding at Level 2 Items

Normative Experimental
Item G4 Gé6 G8 PS G441 G42 Gé6
Bigger, 50 70 19 100 81 100 94
20 or .089?
Shade 3/4of 45 84 89 94 100 76 100
pizza
Between 0.3 10 67 80 97 100 76 80
and 04.
Write 6%as 5 42 68 88 93 681 96
a decimal?
How much 10 49 47 81 50 52 80
is.5+.38?
Average 24 62 61 92 85 74 90
percentage
correct

6.5.1 Level 2 Items

As was to be expected, the Grade 4's found these items very challenging.
Although they had reportedly encountered many of these kinds of question in
their classroom, nonetheless these questions presented considerable challenge.
The performance of the g6 students was much better with 62% of the students
able to answer that group of questions successfully, the surprising result
however was that obtained by the Grade 8 students. A glance at the table will
reveal that the g8 did significantly better on most items than the Grade 6
however there was one item that they were not able to answer at all. “Which is
bigger .20 or .0892,” the Grade 8 students” performance was markedly below
even the Grade 4's (see Table 6.7). In reviewing their explanations offered during
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the testing, we discovered that they were operating with an erroneous rule,
based on their belief that the “longer” the number past the decimal point, the
larger its quantity. -Resnick (Resnick, et al. 1988), has described this
phenomenon in the development of children’s decimal understanding. At the
time of testing, the Grade 8 class had just been reintroduced to decimal quantities
and operations, allowing me to speculate that they were working from a rule-
based system that was imperfectly remembered. It is also interesting to
remember that the Grade 6 students were less able to perform similar compare
and order question namely what number comes between .3 and .4? Perhaps
there is some feature that is conceptually challenging or perhaps this item
reinforces an earlier conjecture that students become confused after they have
learned rules for this kind of task.

As can be seen, the preservice teachers were able to answer all of the
Level 2 items. On these items they were even slightly more successful than the
Grade 6s and the high-achieving Grade 4 students from Study 1. Another
interesting feature was that the Grade 8 scores were the same as the Grade 4
scores on these items. By contrast, the Grade 6 normative and the Grade 4
normative groups were not as successful on these items. Thus, it seems that our
curricufum has brought these Grade 4 students up to the performance of the
Grade § students.
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6.5.2 Level 3 Items

An interesting comparison in looking at the Level 3 results for all of the
groups is to discover that the adults while successful at the Level 2 items and as
capable or even more than the students in the experimental groups were far less
successful than the students on the experimental groups on these items. The
items and the average passing rates that the students achieved are presented in

the Table 6.8 below.

Table 6.8 Percentage of Students From the Normative Groups and the Three
Experimental Groups After Instruction Succeeding at Level 3 Items

Normative

Item G4 Gé6 G8 PS
Is7is3/40f10. 20 41 42 59
explain

Whatis1/8asa 0 31
decimal

Whatis65%of 0 24
160?

Average 7 32
percentage
correct

50

47

o R 8

52

As can be seen, on these items, all of the students in the
experimental condition had higher passing rates than both the adults and the
Grade 8 students. It appears that the curriculum was particularly effective in

supporting student learning of these items.

As mentioned previously, the Level 3 items are particularly
challenging in that they not only require broad conceptualization of rational
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number, but that in order to solve them, several strategies need to be integrated.
Even given these challenges, however, the adults’ results were surprisingly low
compared to the results of the students in the experimental groups. In reviewing
the protocol from the interviews with the adults students, several features stand
out. First, there was general confusion about fraction quantities and operations.
This was shown in comments such as “I am not sure how to do fractions” or in
response to an ordering item in which decimals and fractions needed to be
compared, one student commented that because there were two numbers
involved “fractions are always bigger than decimals.” And two other students
offered equally erroneous suggestions that fractions were always smaller than
decimals. Their inability to relate fractions to decimals was evident as well in the
low score that they received for the item “What is 1/8 as a decimal?” Four of the
students responded that the answer was .8, indicating they had no conceptual
understanding of the relationship and the quantities involved. Finaily, another
problem that was exhibited by the adult students was the difficulty that they had
on the two items where they were required to choose an operation (“Is 7, 3/4 of
10?” and “What is 65% of 1602”). As can be seen scores that they achieved for
these items were low. During the interview many of these students revealed that

they did not “remember” how to do these kinds of problems.

6.5 Conclusion
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Although the conclusions that we can draw from these analyses are
limited due to the small number of items and the way that they have been
selected, still there are some generalizations we can make.

The effect sizes were large for all groups, and well above that of the
control groups who received the sort of instruction typically available in good
upper middle-class schools, with dedicated math teachers. When the results that
were achieved on these ten items were analyzed for differences in high- and low-
achieving mathematics students, the high-achieving Grade 4 and the low-
achieving Grade 6 students appeared to show the most gains although it is
difficult to know how much farther the Grade 6’s might go because of ceiling
effects. Finally, we saw that the experimental subjects in our program showed a
deeper understanding of fractions and decimals than adult teachers in a
preservice program, all of whom had at least a B+ average in their
undergraduate studies, and most of whom had taken high school and university

mathematics .



Chapter 7

Discussion

7.1. Summary of the Results

Overall, the experimental curriculum proved to be effective in
enabling students to gain a strong competence with the rational number system
and an appreciation of its interconnections. In keeping with the goals of this
project, therefore, I was successful in moving children beyond the understanding
of any single form of rational number representation toward a deeper
understanding of the rational number system as whole. The curriculum, by
focusing on the development of benchmark values for moving among the
different forms of representation, enabled the students to solve problems in a
flexible fashion and to use procedures of their own invention for approaching
them. This flexibility was not only evident on the problems requiring direct
conversion from one form of representation to another, but also on most of the
other types of problems. For example, when students were required to compare
and order numbers, whether they were dealing with fractions or decimals or
both, they treated the request as one that required them to think in terms of the
underlying ratios that were involved rather than on their whole number
knowledge. Their solution strategies included a variety of methods to represent

these entities, but they never used the sort of simple whole number strategy that
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has been reported in the literature. Similarly, for standard and nonstandard
computation, the students again used a wide variety of strategies. Their
responses thus indicated that they had acquired an understanding for rational
number and operations, an appreciation of the relationships among the
representations, and a disposition to make sense of these quantitative situations.
These are the hallmarks of number sense (Charles & Lobato, 1998; NCTM, 1989;
Sowder, 1995).

These competencies did not develop equally in all students. High-
achieving Grade 4 students made significantly more gains than the students of
lesser ability. Conversely, the low-achieving Grade 6 students made more gains
than the high-achieving students in their class. Suggesting that the program may
be best suited for a particular developmental level. Notwithstanding these
differences, however, the results did reveal that all of the students who
participated in the experimental curriculum made large and statistically
significant gains from pre- to posttest on the rational number measures.
Furthermore, these results were not only true for students who were new to
rational number. The curriculum also proved to be effective for students who
had already received four years of traditional teaching prior to the experiment.
This latter finding was contrary to expectations gleaned from studies by Mack
and Heibert and Wearne (see Chapter 4).



7.1.1. Comparisons with Traditionally Trained Students

The results also revealed that the performance of the experimental
students was significantly better than that of traditionally trained students two or
four years their senior. Furthermore, it was discovered that, on the most difficult
level of rational number items, many of the students in the experimental
programs outperformed adults in a postgraduate teacher training program.
These differences between the two groups were found not only in the number of
items answered correctly, but also in the quality of the solution methods used.
Even when the students in the experimental groups were unable to get the
correct answer on a task, protocol analyses revealed that they tended to
approach the problem multiplicatively, often finding a strategy that allowed
them to at least make a sensible attempt at solving the problem. By contrast,
when the traditionally trained students ran info difficulty solving an item, they
typically responded in one of two ways. Either they claimed to have “forgotten”
how to perform the appropriate calculation, or, they made the classic mistakes
that have been reported in the literature, mistakes that involved either a lack of
conceptuality or some sort of confusion of the rational numbers with whole
numbers. Thus, the responses of the control group were symptomatic of the
problem cited in the opening chapters of this thesis: We do succeed in teaching
children to manipulate rational numbers with our current instructional methods.
However, we fail to help them develop a deep conceptual understanding of
these numbers, or to overcome the fundamental misconception with which they
start out their learning: namely, that rational numbers are just special kinds of
whole numbers.
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7.1.2. Robustness: Comparison across the Three Studies

In the preceding chapter I outlined the many significant alterations
that were made each time the curriculum was taught—changes in the population
of students who participated, changes to the measures and changes in the pacing
of the curriculum and the exercises that were presented. Nonetheless, when the
results were compared among the three groups, several discoveries were made.
First, the effect sizes across the studies were very high: all of the students made
significant gains from pre- to posttest achieving effect sizes in the range of 2 1/2
to 3 1/2 standard deviations. Second, in all of the studies the students acquired
many similar conceptual strengths. Thus, I can conclude, that despite the variety
of age and ability and experience, and despite the alterations that were made to
the lessons, the curriculum appeared to be robust across these different

situations.

7.2. Multiple Features and the Experimental Rational Number Curriculum

Multiple features were incorporated in the design and
implementation of the curriculum any or all of which may have contributed to
the outcomes. This is a complex program that produced gains for the students
across three studies despite the many changes introduced with each iteration.
The purpose of the remainder of this chapter is to present an analysis of the

features of the curriculum that may have contributed to the students” learning. I
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begin this discussion with a brief description of features of the design and
implementation of these programs that are consistent with findings in cognition
and instruction and mathematics reform. As well, I point out aspects that are
common to other research programs in rational number. However, my
emphasis will be on the features of the present program that are unique. Itis
these features that appear to have contributed most significantly to the results of
the program. Thus these unique features constitute the essential contribution of

the program to the field.

7.2.1. Features of the Curriculum Specific to Reform Curricula in Rational
Number Teaching

In the introduction to this thesis, I presented a discussion that highlighted
what I see as the [imitations of the part/whole subconstruct as the foundational
application of rational number. Recall that the part/whole subconstruct is the
one that is first introduced to students in their learning of fractions and hence
rational number (NCTM, 1997). Briefly, my argument wa§ that this subconstruct,
while easily grasped by students, has the disadvantage of being naturally
associated with the whole number system and counting. Thus, by featuring a
part/whole interpretation there is the danger that students may fail to make the
connection to: 1) the proportional nature of rational number, 2) the way that
rational numbers are related to the referent whole, and 3) how rational numbers
may act as operators. We know that these latter multiplicative interpretations of

rational number are conceptually more difficult for students.
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Recently, other investigators have voiced similar concerns and have
devised instructional programs that have helped students to develop a deeper,
more proportionally based understanding of fractions or decimals in the middle
school years. For example, to mention only a few, Kieren's (1994) folding
exercises enable children to think of fractions such as 1/8 in a multiplicative
rather than an additive context, as do Confrey’s (1994) exercises on “halving.”
Streefland’s (1992) pizza sharing program for Grade 4 and 5 students, which
stresses the equivalence in the portions that are received when, for example, 5
children share two pizzas and 10 children share four pizzas, also is effective in
promoting understanding of ratio for students of this age (Case, 1985; Marini &
Case, 1994; Noelting, 1980a, 1980b).

The experimental curriculum under discussion shares several important
features with the programs designed by these other investigators. These include:
(a) a greater emphasis on the proportional nature of rational numbers; (b)
greater emphasis on the meaning or semantics of the rational numbers; (¢} a
greater emphasis on children’s natural way of viewing problems, and their
spontaneous solution strategies; and (d) the use of an alternative form of visual
representation (i.e., an alternative to the standard “pie chart”). As well as these
features from rational number research, embedded in the delivery and design of
this curriculum are features of a more general nature that owe their inclusion to
recent work in the field of cognition and instruction (Bereiter 1990, 1995; Bereiter
etal., 1997; Bereiter & Scardamalia, 1993; Bielaczyc & Collins, in press; Bransford,
Hasselbring, Narron, Kulewixz, Littlefield, & Goin, 1989; Brown & Palinscar,
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1989; Bruer, 1949; CTGV, 1994; Scardamalia & Bereiter, 1991, 1996) as well as in
recent developments in mathematics education reform (Ball, 1993; Carpenter &
Lehrer, 1999; Fraivillig, Murphy, & Fuson, 1999; Kilpatrick, 1987; Lampert, 1990;
Lampert, Rittenhouse, & Crumbaugh, 1997; Maher & Martino, 1996; McClain &
Cobb, 1997).

7.2.2. Features from Cognition and Instruction

The organization of all of the classroom activities was based on social
constructivist theory. Students regularly worked in collaborative groups with the
goal of “knowledge building” (Bereiter, 1997; Bereiter & Scardamalia, 1993, 1997).
As well, there was a very strong focus on activities that are known to promote
metacognitive thinking and reflection; the students planned lessons for their
classmates as well as for younger students (Meichenbaum & Beimiller, 1998),
designed assessment tools or tests for other students (Brown, Campione, &
Lamon, 1994, 1997), and engaged in planning, designing, and presenting projects
for their classmates in the general style of what Brown and Campione have
referred to in their Fostering Community of Learners project as “consequential
tasks” (Brown & Campione, 1994). These tasks included teaching games and
video presentations in which the students were required to explain/teach
rational number concepts. Finally, the classroom culture highlighted the
importance of inquiry as a basis for learning, promoted the goal of intentional
learning (Bereiter & Scardamalia, 1989), and fostered a sense of pride and
ownership in the learning process (Schifter & Fosnot, 1993; Wood, Cobb, &

Yackel, 1993). Students were encouraged to seek multiple solutions to problems,
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to discuss the merits of one solution over another (Carpenter et al., 1993; CGTV,
1994; Kamii, 1985, 1994; Lampert, 1990; Maher & Martino, 1996). In keeping with
Cobb’s orientation to classroom practice, sociomathematical norms were
established enabling the class to find ways of discussing personal theories and
representing numbers and operations that were common to the class as a whole
(Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997; Cobb, Jaworski, &
Presmeg, 1996; Saxe & Bermudez, 1996; Yackel, 1996; Yackel, Cobb, & Wood,
1993). Finally the mathematical model in these classes was infused with the
epistemological bias that mathematics is a human invention and a “science of
patterns” (Steen, 1988) rather than a technology of procedures (Schoenfeld,
1989).

While I included these features from cognitive science and mathematics
reform in the program, the scope of this work did not permit me to include
specific analyses of how these features affected the outcomes of the experiments.
I do feel that the inclusion of these features provided the students with optimal
conditions for learning, and thus may have contributed to the gains that the
students made. However, I also feel that even with these features (which other
programs have included as well) the program would not have had the success it
did, had not other, more unique features been included as well.
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7.3. Unique Features of the Program: Ideas for Broader Applicability

What about the features of the program that are unique? My conjecture
is that it is these unique features that most contributed to the success of the
program: in particular, to the large gains in performance achieved within a brief
intervention. Briefly, these are: 1) the infroduction to rational number through
the teaching of percent; 2) the use of linear measurement as the central learning
context; 3) the unique set of perceptually salient representations that were
employed, and the coherent use of these representations throughout the
program; and 4) the emphasis on the integration of halving with proportional
evaluation and the inclusion of several different representational formats. It was
these features that led to the emphasis in this curriculum on promoting an
understanding of the number system as a whole and that supported the
inclusion of the first 3 above features. Although these features are highly
interconnected, I will discuss them separately, beginning with a discussion of the

use of percent as the initial representation.

74. The Introduction to Rational Number Based on Percent

In the introduction to this thesis I proposed a number of advantages
for altering the standard teaching sequence of rational number by introducing
this number system through the teaching of percents (rather than fractions and
then decimals as is traditionally done). Foremost, I mentioned the benefits of
working with the privileged base of 100. Grade 4 students” extensive knowledge



178

of the numbers from 1 - 100 naturally facilitates comparison questions as well as
promotes students’ ability to translate among the representations of rational
number—any percent value can be translated into a fraction or a decimal the
converse, however, is not easily done. The ability to invent strategies for
calculating is also facilitated by the percent construct; A survey conducted by
Lembke and Reys (1994) revealed that students who had not yet had formal
training in percents, were able to invent procedures to solve percent tasks and
were even better able to solve certain kinds of operations with percents than

were older students who had learned percent in school.

74.1. Traditional Percent Teaching and Learning Problems

To my knowledge, despite these powerful advantages for the use of
percent as an introduction to rational number, no other curriculum for teaching
this number system has done this. In fact, percent is usually not introduced until
the very end of elementary school or the beginning of middle school and, even
then, it is shown to be very difficult for students to master. ﬁaﬁom and
decimals on the other hand are introduced much earlier, with decimal teaching
beginning in Grade 3 and fractions introduced as early as Grade 1.

Why this delay in percents teaching? A brief analysis of textbook
introductions to this topic and the attendant difficulty that students experience
points to the reason. Percents are generally introduced in one of two ways:
through “missing term” or “substitution problems,” where students are

challenged to find one of three possible unknowns in a percents equation; or in
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“conversion problems” which requires changing between notational systems
(Parker & Leinhardt, 1996). Unfortunately, these teaching practices appear to
have led to widespread problems: 1) First, students lack consistency in using the
percent symbol and either they ignore the percent sign or use it as a label that
can be attached or removed, as if it had no operational significance; 2) a second
common error, known as the “numerator rule” involves the misconception that
any conversion of percents to decimals is achieved by replacing the percents sign
at the right of a numeral by a decimal point to the left of the numeral creating
misconceptions of the sort that 5% = 0.5 or 110% = .110; 3) another widely noted
misconception termed the “random algorithm problem” is exemplified by
students asserting that the answer to 4 = _% of 82 is 2, thus indicating that their
reasoning is grounded only in the numbers they see, not in the operations that
are required. So that when students attempt percent word problems they are not
certain if they should divide, multiply, or subtract to find the answer; 4) finally,
traditional instruction in percents diminishes the relevance of the base-100 (the

very aspect of percents that was so intuitive for the students in the experimental

programs).

Parker & Leinhardt (1996) have shown that many of these problems are
still evident when students are at the end of high school and early in their college
careers. More troubling perhaps, in a study of 70 preservice teachers, it was
found that less than half of them scored above 50% on a test of percent exercises
that evaluated both conceptual and procedural knowledge. In summary,

students do not seem fo appreciate the meaning of percents as either operators
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or as quantities, and these problems persist into adulthood, at least for preservice

teachers.

74.2. Percentin the Experimental Program

The results of the present studies show a very different learning pattern
with regards to percents. Not only did the students” ability to perform percent
tasks improve with instruction—this was even true for the Grade 4 students of
low mathematical achievement—but it was also discovered that students had
substantial intuitions of percent meanings and operations prior to instruction.
Recall some of the first day responses that students offered when asked what
they knew about percents. These responses pointed to an understanding of 1)
magnitude: “1 percent milk is better for diets than 4% milk as it has less fat;” 2)
the relative versus absolute nature of percents: “reading 10% of this (short) book
is a lot less to read than 10% of that (long) book;” 3) the relationship among the
representations “you know, 50% is the same as 1/2;” and 4) the proportional
nature of percent “25% of the 80 cm tube (20 cm) is in the same relation as 25% of
the 30 cm tube (7 1/2 cm).” These observations revealed an awareness of
substantial percent concepts. However, a discussion that occurred on the first
day of class with the mixed-ability Grade 4 students in Study 2 points to even

more complex understandings.

7.4.3. Classroom Episode: Informal Knowledge and Percents
This discussion began whenIasked the students if they thought that
there could be a percent greater than 100%—a concept that is known to be
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difficult to understand (Parker & Leinhardt, 1996). The first student to speak held
up a tall tube (80 cm) and made the following claim: “We know that this whole
tube is 100%.” Next, he picked up a second shorter tube (20 cm) and stood it
beside the taller tube and declared that the small tube looked like it was about
25% of the taller tube. To confirm this conjecture he moved the smaller tube
along the taller tube and noticed that it fit exactly four times. “O.K,, this is
definitely 25% of the longer tube. So,” he declared, “if you join the two [tubes]
together like this” (here he lay both tubes on the ground, and placed the shorter
tube end-to-end with the larger), “this new tube is 125% of the first one.” Other
students used this model with other tubes and made similar assertions. After
some time, a boy raised his hand and inquired whether all of the six individual
pipes that we had in our classroom had been cut from one very long, single pipe.
Given an affirmative response, the student then conjectured that if he joined the
two pipes (80 cm and 20 cm) together, they would form a new whole, which
would constitute a 100%. “So,” he continued, “the two pipes together are either
100% or 125%.” In this context, he recognized that the 20 cm tube would no
longer be 25% of the whole, but rather, it would now be 20% of the newly

formed whole.

The first day observations that the students offered demonstrated that the
students had a substantial, principled understanding of percent. The students
revealed an awareness of “increase” and “decrease” and the transformative
nature of the unit in the rational number system. These are the very same

concepts that prove to be so difficult for students and adults who are
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traditionally trained in percent. Why do we find these differences? Why do these
young students appear to have more intuitions for percents than older students?
My conjecture is that the bias in traditional percent teaching, rather than
promoting the kind of informal knowledge demonstrated by these Grade 4
students, actually inhibits these intuitions and rather, calls on students to reason
with percents exclusively as “extensive”(additive) quantities. Support for this

conjecture can be seen in Davis' theory of percent applications (1988).

7.4.4. Percent as Number or Operator

In a thought provoking article by Davis (1988) entitled “Is Percent a
Number?” he contemplates different interpretations of percent. First of all, he
points out that traditional percent instruction is premised on the idea that percent
is a number to be used in arithmetic. As an illustration, consider the method that
students are taught to solve percent tasks, e.g., to find the answer to 25% of 80,
they are taught to reason as follows: Step 1, convert the percent to a decimal
(25% = 0.25) and, step 2, multiply the decimal and the number to find the answer
(-25 x 80). Here, the percent (25%) is interpreted as a number, 0.25. He asserts
that interpreting percents, exclusively as a number, is not only limiting for the
students but furthermore, misleading.

Davis’ central thesis is that percent is actually understood and used, not as
a number, buf rather as a relation between two numbers or two variables. Thus,
he maintains, that percent is more reasonably interpreted as an operator or a

function. Take for example a common usage of percent, namely, percent as tax (
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as in the 25% tax). Here Davis maintains that the most appropriate
representation would be (1, 0.25), (50, 12.5) (100, 25), (200, 50) ...... i.e., as a linear
function. He points out that traditional training in percent (as a number) would
have us interpret, for example, 25% of 40 as .25 x 40, i.e., as two numbers
involved in a binary operation that accepts two numbers as inputs and outputs a
single number (in this case, 10).

If, on the other hand, we take Davis’ view that 25% is more intuitively
conceived of as a linear function, then, as he suggests, we might also consider
writing the 25% relation as _ x 1/4 = X or, we could look at it as a single
input/output, such that: one quarter of (something) = output, or: input/4=
output,or: Y = X/4.

Recalling the errors and misconceptions that students reportedly display
when calculating with percent (i.e., the lack of meaning of the symbol, the lack of
understanding of operations, etc.), it is clear that traditional teaching of this topic
is problematic. One hypothesis then, is that the interpretation of percent as a
number—certainly the central idea in traditional instruction—promotes these
problems. As the qualitative analyses of students’ reasoning in the experimental
studies point out, the manner in which we introduce percents in our program
promotes the meaning of percent as an operator or function. Thus the
curriculum has succeeded, at least from Davis” point of view, in grounding the

students’ learning in the most meaningful interpretation of percent.
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74.5. Percent as Measure

It is acknowledged however that rational numbers are both operators and
numbers and it is through the integration of these two constructs that a full
understanding is reached. In my experimental curriculum, while the linear
function/operator construct of percent is easily accessed by the students, it is also
apparent that they gain an understanding of the magnitude of percents (i.e., the
“extensive” property of rational number). The common denominator of 100
clearly provides this sense of magnitude and supports students” understanding

of the additive properties of rational number.

Thus, according to the prevailing subconstruct theory (presented in
Chapter 2), the students” functional understanding of percents, in the sense that
Davis espouses, corresponds to the subconstructs of operator and ratio. And the
understanding of magnitude corresponds to the measure and quotient
subconstructs. Thus, in the experimental curriculum the students work with
percents in such a way as to include all the subconstructs of the rational number

system.

7.5. The Use of Linear Measurement as the Main Context for Learning

Not only did I significantly alter the sequence of rational number teaching

by introducing percents first, but I also incorporated another unusual feature,

namely , the use of linear measurement as the primary context for learning. This
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decision was consistent with Griffin and Case’s whole number programs in
which all the exercises were organized around activities that featured the
number line (Griffin & Case, 1996, 1997; Griffin, Case. & Siegler, 1994).

7.5.1. Linear Measurement and an Appreciation of Magnitude

Analysis of the data demonstrated that the percent representation with its
common denominator of 100 supported an understanding of magnitude.
Similarly, the use of linear measurement fostered this understanding as well. We
know that “length” expresses magnitude unambiguously and allows students
through visual inspection to perform comparisons for both absolute and relative
differences. Thus, I included a number of props beside the pipes and tubes that
would readily lend themselves to evaluations of relative lengths. Vials and
beakers, filled to different degrees, were very useful as these props involved the
students in a variety of measurement and calculation situations. Other props that
served a similar purpose were cardboard tubes, cut-out dolls, rolled plasticine,
and straws, etc. In working with these various objects, the students were
regularly comparing percents and fraction magnitudes. The large laminated
number lines and the number line games further supported this thinking.

However, as will be shown below, the use of linear measurement did not
only provide support for students’ understanding of magnitude and the additive
properties of this number system, but also supported an understanding of the
relational aspects of rational number. For this assertion, I consider the historical

roots of rational number as this investigation suggests that the measurement
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context also reinforces the notion of rational number as operator (Sfard, 1997;
Davydov & Tsverkovich, 1991). Just as the language of percent leads the student
to focus on the functional /operator interpretation of percent, so too, can the use

of measurement.

7.5.2. The History of Fractions as Measurement

Davydov, who has done research in fraction learning, (refs) points out
that, historically, fractions evolved in the context of measurement. The Egyptians
appeared to be the first to use fractions in response to the growing complexity of
their society with its attendant need to obtain more precise measurement. Thus,
in Egypt and historically in all other cultures where fractions were used, fractions
operated exclusively as a function of the unit whole and served to define a
relation between the quantity of the unit and the piece of the unit that was left
over: Fractions were primarily descriptions of relationships.

This interpretation of fractions persisted until the mid-19th century. Then,
with the advent of modern day mathematics, the definition of fractions changed
and fractions became part of the “new algebra.” With this change, fractions
became a new form of number with properties and axioms that could be
mathematized or calculated. As well, this change heralded an identification of
rational number with the whole number system. Fractions became defined as a
number pair (x/y), that could be operated on as inverted versions of whole
numbers. Thus, these relatively new (fraction) numbers became divorced from
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their origin as functions and relations, and have been turned into abstractions

that are suitable for arithmetic calculation.

Thus, by introducing rational number concepts through measurement as
we do in our program, we are allowing students to recapitulate in their own
learning the historical sequence of rational number development. Hence, we are

delaying the learning of fractions as only their most abstract idea—as numbers.

7.5.3. Measurement and Spatial Analogies in Mathematics and Number Sense
However, in this program we did not simply use measurement in a
conventional way, for example, as a tool for recording dimension, but our focus
was on the use of linear measurement and the way it is intuitively analogous to
spatial perception. Case (1998) postulates that there is a “deep commonality in
the way in which numerical and spatial knowledge are connected for children.”
He points first to neurological data which suggests that deficits in mathematics
tend to correlate with deficits in spatial cognition; for example, adults with
neurological injuries that impair their spatial understanding also often show
impaired numerical understanding. He then points out that recent neuro-
imaging studies corroborate the connection between spatial and mathematical
cognition. Finally it has been noted that mathematicians reason about even the
most abstract mathematical concepts in spatial terms (Sfard, 1997, p. 350). Thus a
speculation is that there is some kind of “direct connection” between spatial and

numerical knowledge.
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If there is such a connection between mathematical and spatial
knowledge, then it seems possible that we may be able to improve children’s
mathematical intuitions by creating learning events in which the number system
is given some sort of spatial embodiment. Further support for this idea can be
found in Greeno's (1992) spatial neighbourhood metaphor which he uses to
characterize knowing in a numerical domain. He asserts that just as individuals
can find their way around their own neighbourhood, recognize salient
landmarks, reason about the relative efficiency of different routes and discern
subtle patterns, he asserts that “knowing” in a conceptual mathematical domain
means having the ability to find and use, within this environment, the resources
needed to understand and reason. Just as each person can move intelligently in
their own neighbourhood, so each person is capable of constructing a rich set of

interconnections among the”landmarks” in a mathematical domain.

In both Case’s previous research programs for developing whole number
sense (Griffin et al., 1994; Griffin & Case, 1996, 1997) and in his more recent work
in function development (Kalchman & Case, 1999), he and his collaborators have
designed highly successful teaching programs in which spatial embodiments of

numbers feature strongly.



7.6. The Establishment of a Perceptually Coherent Learning Environment

The rational number program, also includes a variety of different but
highly related spatial embodiments for rational numbers—pipes and tubes,
beakers of water, number lines, stopwatches, etc. Furthermore when these

physical props are no longer available the students spontaneously draw
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diagrams modeled on these props to help them to conceptualize the work when

it become more abstract. What they produce is a rectangular representation of a

beaker—or, as it were, an uncalibrated double number line (Klein, Beishuizen, &

Treffers, 1998) which I came to term the “percent ribbon.” The students labelled

this rectangle with 0 to 100 along one edge and from 0 to n along the other edge

(see Figure 7.1). This diagram allowed students to visualize relative differences,

to use halving schema for calculations,and support understanding of

equivalence.

100%

75%

Figure 7.1—The Percent Ribbon

60 cm

45 cm
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7.6.1. Percent Ribbon for Calculations and Equivalence Evaluations
To illustrate how this percent ribbon was regularly used by the students
for calculating, I present a discussion that I had with a Grade 6 student early on in

the lesson sequence.

The student was working on a problem that required him to calculate
how many millilitres of water he would need to fill a container that holds 240 mis
of water 75% full. He answered as follows:

S. “First you need to get 50% of 240 and that equals 120, and then you

need to add 25% to 120. So, um, that gives you 120 + 25 = 145.

T.  So you think that 145 is 75% of 240?

S. I don’t know, it doesn't really seem right. Can I draw it ?

T. Go ahead.

The student drew a long narrow vertical rectangle and wrote the number
240 at the top right corner and 100 on the top left corner. He then estimated the
midpoint of the length of the rectangle and wrote 50% on the left side and then
put 120 on the corresponding point on the right length of the rectangle. He
halved again, and similarly labelled 25% and its equivalent, 60. Then he asserted
that 75% must be 180. This strategy, the drawing, and then segmenting by halves
of the rectangle as a way to visualize the computation, was used by all of the

students.
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Another advantage for the students was the way in which the percent
ribbon simultaneously represented a magnitude full, and, at the same time, a
portion of a quantity and thus afforded students the opportunity to test
constructs of order and equivalence of a rational number entity. For example, on
an interview question “Draw a diagram to show which number is greater, 2/3 or
3/42” the students used a diagram of the percent ribbon again to great effect to
prove their assertion that 3/4 was greater. The most common strategy that was
displayed by students was to draw two adjacent equal sized percent ribbons,
perform a halving and quartering operation on one and then a segmenting of
thirds on the other. Thus, through visual inspection, they could confirm that the
three quarters segment was bigger than the 2/3 portion of the rectangle.
Although the majority of the experimental group successfully answered this
question (81%) only 38% of the control group were able to do so. Most of the
control group asserted that 2/3 and 3/4 were the same size as “they both had

one piece taken from them.”

As well, I discovered that both the use of the props and the analogous
diagrams fostered students” understanding of the density property of rational
number. These insights were supported in activities where students for example
were challenged to divide units in half using elastic bands on cardboard tubes. By
repeating this division action and cutting each successive new length in half they
were able to consider that this action could be repeated an infinite number of
times. Thus they could begin to understand the notion that a third number can

Rt i
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always be inserted between any two other numbers—a central principle of the
rational number system.

7.6.2. Vergnaud and Mathematical Modelling

Finally, [ argue that the props that were selected and the percent ribbon
that was constructed by the students directly modelled the mathematics that
were under investigation (Freudenthal, 1983). Thus the curriculum was not only
able to provide a learning context that was intuitively salient but also one that
was mathematically appropriate. [ will elucidate this idea by first reviewing
Vergnaud’s model for multiplicative structures and then I point out how the core
spatial representations of the curriculum supported the central proportional
structures in the Multiplicative Conceptual Field.

Vergnaud defines the Multiplicative Conceptual Field as comprising all
mathematical topics and situations that consist of simple or multiple proportions.
Vergnaud (1996, 1988, 1983) proposes the notion of two measure spaces in his
analysis of multiplicative ratio thinking. He asserts that ratios, and hence rational
numbers, can be represented either by pairs of elements in the same measure
space or elements in fwo distinct measure spaces (Kieren, 1992). To illustrate this
idea, Kieren has suggested the following proportional relationship between
pizzas and people. For example, 2 pizzas for 5 people is the same as 6 pizzas for
15 people. In this statement there are two mathematical relationships to consider.
The first is the scalar relationship 2 is to 6 (pizzas : pizzas) and 5 is to 15 (people :
people) or a/b such that b =3 x a. Vergnaud calls this a relation between
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elements in the “same measure space.” The second set of relations, he calls the
functional relation between elements in “different measure spaces.” The
functional relationship here is between pizzas and people. Thus we reason that 2
is to 5 (pizza: people) and 6 is to 15 (pizza : people). This relation can be written
asa/bsuchthatb=21/2xa.

Although both the scalar (“same measure space”) and the functional
(“different measure spaces”) relations can be effectively used to solve different
kinds of proportion problems, Vergnaud has suggested that it is the first of these
relations i.e., the “scalar relation in the same measure space” that is the most
fundamental form of ratio reasoning. He calls this scalar relation jsomorphism of
measure and he notes that is most intuitively salient and most readily accessed
by novices. As research with self-taught, unschooled Brazilian children and
workers has shown (Carraher, T.N., 1986; Nunes & Bryant, 1996; Saxe, 1988;
Schiiemann & Nunes, 1990} unschooled workers exclusively use this
“isomorphism of measure relationship” in solving the mathematics of the
workplace. Furthermore, they even use this “scalar relationship” even when the
numbers more readily lend themselves to evaluations of relationships in the

second measure space or among the other variables.
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—1 80 cm
40 cm
— 20 cm
25% 10 cm L
x2
Pipe A Pipe B

Figure 7.2—"Measure space” model using pipes and tubes from the rational

number curriculum.

In the experimental program, the scalar relationship in the same measure
space is represented for example, when 10 cm of a 40 cm pipe (Pipe A) is covered
with the tubing and the challenge is to cover a second 80 cm pipe (Pipe B) a
proportionally equivalent amount. To work out the solution by operating on the
variables in the same measure space (scalar relation) the student would reason
that since Pipe B is twice the height of Pipe A, therefore the part that should be
covered by the tube on the second pipe must also be 2 times that of the covered

area on the first pipe, i-e., 2 x 10 cm =20cm.

While it can be seen that this relationship is modelled by the pipes and
tubes, it is not the one that the students in our programs often use to compute
the missing term. Rather, the experimental students consider the functional

relation across the variables, or in Vergnaud terminology as “the relation in the
different measure spaces.” Thus, given the same problem situation, they would



195

reason as follows; 10 cm (the covered section) is 25% of the length of Pipe A
(40cm). Therefore, to find the covered area on the second 80 cm pipe (Pipe B) the
operation they use is to find 25% of 80cm which is 20cm.

Thus not only do the props and the percent ribbon model the
mathematics of multiplicative structures, but the context that we have presented
to the students with these props generates the more complex of the two types of

multiplicative relations.

In this way the spatial embodiments and the core representations permit
children to build a rich implicit map of the cognitive elements and relations which
are to be learned. Furthermore, as in all of Case’s programs, the students are
able to utilize this map in a flexible way, to move through the elements of the
representation. As well, these core representations are consistently and
repeatedly employed so that the students can become flexible and experienced
knowers. Thus we might speculate that the use of these various embodiments
and the unified way that they are included in the curriculum serve a further
purpose. Perhaps it is through their participation in this coherent, spatial
program that the students gain the kind of “perceptual attunement” and acquire
the degree of automaticity and flexibility that Bereiter has postulated to be at the
root of number sense competence. (Bereiter, 1998; Bereiter & Scardamalia, 1997).
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7.7 Final Thoughts

We hypothesized a learning trajectory that the students would go
through. It was conjectured that the students’ learning of rational number would
start with basic but separate intuitions for fullness on the one hand and halving
and doubling on the other and that these would become merged to form a core
organizing schema from which would come future or further stages of knowing;
first, of the individual representations with computations that involved numbers
that easily lent themselves to halving and doubling and then, to a higher level of
rational number knowledge where the students would come to work
interchangeably with the entire set of representations: decimals, fractions,
percents, and ratios. In effect, the use intuitively understood halving relations
became a vehicle for establishing a correspondence across the different forms of
representation as well as a vehicle for relating similar representations for
different ratio values. Thus the scope of this work was based on the
development of a conceptual understanding of the entire number system, as well
as a on vision of how that system develops. Because of the hypothesized
structure that is generative of an understanding of the domain as a whole, the
uniqueness of this program is how it has deliberately fostered from its
beginnings, a sense of the entirety of the number system.

In summary, the unique aspects of the program, the introduction based
on percents, the linear measurement context for learning, the coherent use of

spatial embediments, and the use of a theoretical framework that focussed on
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the differentiating and integrating of these various elements of the rational
number system, all appear to have made a solid contribution to the students’
learning. However, while the students clearly benefited from their participation
and gained a strong sense of the rational number and multiplicative reasoning

there are questions that remain to be answered and limitations to be addressed.

7.8. Limitations
Halving and Doubling

One of the limitation concerns the widespread use of the halving and
doubling schema. On the one hand, we have seen from the data that this schema
provided powerful support for the students: this schema formed the basis for
students ability to compare and order numbers in different representations, e.g.,
“3/8 is the same as 37 1/2 % so it is smaller than .40.” This halving schema is also
at the root of students” ability to solve complex calculations such as “what is 65%
of 1602 One half of 160 = 80 a half of that is 40, etc.” More fundamentally is the
salience of halving and doubling for multiplicative reasoning. As Confrey and
Kieren have suggested the halving operation is very distinct from the additive
notions of counting and thus, it functions to provide the students with a

multiplicative basis for their work in rational number.

However, the featuring of halving has its disadvantages. Although
students came to know various representations for halves, quarters, eighths, and
sixteenths, and could use these quantities with ease, they had less exposure to

other single unit fractions such as 1/3, 1/5, etc. and were less able to work with
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these quantities. As well, many of the students were not successful in working
with tenths. All of the students in the experimental group could successfully
determine 12 1/2% of a quantity. Many could calculate 6 1/4%. However, this
program appeared to accomplish less for the reinforcement of base-10 notions.
In fact, when operations with tenths were attempted, students tended to work
procedurally rather than conceptually. An important question that remains then
is whether we could accomplish more competence with base-10 understandings
given a longer teaching sequence. Although this would be desirable, it is not
clear that a curriculum that is based on halving can work as successfully with

tenths.

Decimals

A second potential and related limitation concerns the depth of decimal
learning that the students were able to accomplish. In the rational number
program decimals are introduced as another way to represent percent. Although
conceptually, this was useful for students when they were working with two
place decimals, it was less beneficial for the learning of other kinds of decimals.
As well, the lack of attention to tenths and thousandths also made the learning of
these other decimals problematic. This question must also be looked at in the

scope of a longer intervention.

Discrete Quantity
In this program the students worked almost exclusively with continuous
as opposed to discrete quantity. The benefits of using continuous quantity were



clear; students could physically manipulate the materiais that they were
presented to discover relationships, they could more easily understand the
density property of rational number, and they rarely resorted to additive
strategies. However, the flexible thinking and invention that they could access in
working in continuous quantity was not readily available to them when they
worked with discrete quantity. This was even true on problems where the same
quantities were involved. On the posttest of Study 1 when the students were
asked to show which is more 1/2 of 6 pennies or 1/3 of these pennies, many of
the students were not able to show that 2 pennies were equal to 1/3 and thus,
were not sure how to answer the question. Interestingly, all of the students could
successfully compare these quantities in continuous contexts and could make
drawings to show that 1/3 was the lesser amount. It is hoped that with a longer
intervention there could be a greater focus on working in contexts with discrete

quantity.

Advanced Understandings

Finally, questions arise about the potential of this curriculum for students”
later learning. Although the results of this study indicate that the short-term
gains for the students were very impressive as a result of the implementation of
this curriculum, the long-term effects remain to be seen. It is possible that when
these students continue their rational number learning using a more traditional
approach, they will abandon their highly conceptual approach to problem-
solving and come to rely on a more rote and algorithmic method of working.

Unfortunately, the scope of my research has not allowed me the necessary
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follow-up experiments or longitudinal analyses that might provide an empirical
answer to this question. What I do propose, however, is to investigate these

questions in my future work.
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APPENDIX A
RATIONAL NUMBER TEST



Rational Number Test (Pretest)
Percent Test

If | said that we were 80% finished, would you think that we had a long way to
go?

How much is 50% of eight dollars?

Draw a line on this beaker to show what it would look like if the beaker was

approximately 25% full.

If this beaker holds a total of 80 ml. of water, how many mils. of water would

there be if you had filled it 75% full?

Six blocks spilled out of a bag. This was 25% of the total number of blocks.
How many blocks were in the bag to begin with?

The school went on a trip to hear Ani De Franco in concert. The total number of
students in the school is 815. 70% of the students attended the concert. How
many students would that be?
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11.
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Below are two carons of chocolate milk. One carton contains 300mi, the other
200mi. Bath cartons of chocolate milk come from the same vat. The milkis a
mixture of chocolate syrup and mitk. The company forgot to put the percentage
of chocolate on the label of the smaller carton. What is the percentage of
chocolate syrup in the smaller carton?

Choc-O! Chac-0!
300 mi 200 mi
60%

Chocolate Chocolate
Syrup Syrup
300 mi 200 ml

How many mi of syrup are in the smaller carton?

How much is 10% of ninety cents?

How would you write 6% as a decimal?

As a fraction?
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13.

14,

15.

16.

What is 1/3 as a percent?

232

Suppose that you got 1/5 of the answers correct on a test, what would that be as

a percent?

What is 65% of 160? Explain how you got your answer. What is the first thing
that you need to do?

There was a sale at Sam’s. This $8.00 CD (point) was on sale and the new
price was $7.20. Sometimes when things go on sale they are say, 25% off the
regular price. What do you think the percent discount is for the C.D.?
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How much is 1% of four dollars?

regular price

sale price
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17.  Joan is 100% taller than Jessica. Jessica's height is % of Joan's.

Joan Jessica
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Fraction Test

(Divide 10 blocks into 3 groups of 3, 5 and 2. Shift group of 5 blocks ahead.) Is this
half of the blocks?

Here is another group of blocks. (Show 6 blocks). Please show me which would be
less, 1/3 of these blocks or 1/2 of these blocks. First show me 1/2 of the blocks. Now
show me which is less?

Order these three numerals from smallest to largest: 1/2, 1, 1/3.

This is a number line. (Point to the whole line.) Where would you put the number 3
1/27?

How about the number 1 1/3?

How about the number 1/47?
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This is a pizza. Can you shade in 3/4 of this pizza?

N
N

Draw a picture to show which is greater, 3/4 or 2/3.

What fraction of the distance has Mary travelied from home to school?

||||| Y
) NP Ep S N S N S
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St e et s et s 0
rrrrrr

Home School

How would you express that as a percent?

Another student told me that 7 is 3/4 of 10. Is it? Explain your answer.
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Can you think of 2 number taht comes between 1/2 and 1/37

Whatis 2 1/4 + 3 3/8?

What is 4 3/4 + 6 6/87

What is 3 14 - 2 1/2?

What is 1/2 of 1/8?

How much is 2/3 of 6/87

Can you draw a picture to explain how you got the answer?

What is 1/2 divided by 1/3? Explain how you got your answer.
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Decimals Test

i7. A package of blocks contains twenty blocks in all. Ten are yellow blocks and ten are
blue blocks. Do you think that the yellow blocks are .5 of all the blocks?

38. Can you tell me a number that comes between .3 and .47

39. Which is bigger, .20 or .089?

40.  Which is bigger, tenths, hundredths, or thousandths?

41.  How should you write seventy-five thousandths as a decimal?

42, How much is .5 + .387?

43. Can you construct the number 23.5 with these blocks using the long, 10-unit blocks as
ones?
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Look at this number line. What number is marked by the letter A? !

o 0.1 0.2 0.3
A B

What number is marked by the letter B?

How much is 3.64 - .87

What is 1/8 as a decimal, do you know? Explain your answer.

If you had 20 candies and you were told to give away .05 of all the candies, how many
candies would you have to give away?

Shade in .3 of the circle. How did you know how much to shade?
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Jow much is 3 x .4? .

~ould these be the same amount, .06 of a tenth and .6 of a hundredth?

Yes or No (Explain)
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RATIONAL NUMBER INTERVIEW
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Rational Number Interview

What is S0% of $8.00?

Draw a line on this beaker to show what it would look like
1
if the beaker was approximately 2 full?

Now, draw a line where % full would be.

The can at the left holds 1 quart of oil which is the same as 2 pints. The can
on the right holds 3 quarts of oil. How many pints will it hold?

Y

L)

If a beaker holds a total of 80 ml. of water, how many mis. of water would
there be if you filled it 75% full?

Can you tell me a number that comes between .3 and 4.

Which is bigger, .20 or .089?

po——
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This is a pizza. Can you shade i.n% of this pizza?

oS
>/

1
Whatis;of&é?

1
Can you place the number - on this number line?

How much is .3 + .38?

How would you write 6% as a decimal?

Estimate the answer to i—; + %
1
2
19
21
n w

A highschool student said that 7 is % of 10. Is it? Explain your answer.
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20.
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Order the following numbers from largest to smallest.
48, 5/8, 14/13, .99, 1.03

Is there a fraction that comes between 1/4 and 2/4?
What is 65% of 1607 Explain how you got your answer.
What is 1/8 as a decimal?

Mr. Short’s height is 4 buttons or 6 paper clips.

His friend Mr. Tall’s height is 6 buttons.
How many paper clips are needed for Mr. Tall’s height?

Mrs. Cheever is 50% taller than her daughter. Her daughter’s height is
— % of Mrs. Cheever’s.






