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Abstract

Data-mining is the process of automatic extraction of novel, useful and understand-
able patterns from very large databases. High-performance, scalable, and parallel
computing algorithms are crucial in data mining as datasets grow inexorably in size
and complexity. Inductive logic is a research area in the intersection of machine
learning and logic programming, which has been recently applied to data mining.
Inductive logic studies learning from examples, within the framework provided by
clausal logic. It provides a uniform and very expressive means of representation:
All examples, background knowledge as well as the induced theory are expressed in
first-order logic. However, such an expressive representation is often computation-
ally expensive. This thesis first presents the background for parallel data mining,
the BSP model, and inductive logic programming. Based on the study, this thesis
gives an approach to parallel inductive logic in data mining that solves the potential
performance problem. Both parallel algorithm and cost analysis are provided. This
approach is applied to a number of problems and it shows a super-linear speedup. To
justify this analysis, I implemented a parallel version of a core ILP system — Progol -
in C with the support of the BSP parallel model. Three test cases are provided and

a double speedup phenomenon is observed on all these datasets and on two different

parallel computers.
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Chapter 1

Introduction

Basis of this thesis. This thesis shows a parallel data-mining algorithm that can
be applied to large database mining using inductive logic programming. The cen-
tral hypothesis of this thesis is that it is necessary and feasible to adopt parallel
algorithms in the data mining process. [ show that parallelism can be efficiently ap-
plied to inductive logic programming (ILP). The powerful knowledge representation
and excellent integration with background knowledge of ILP has shown a great value

among data-mining algorithms.

What is data mining? The field of data mining is concerned with the theory
and processes involved in the representation and efficient extraction of interesting
patterns or concepts from very large databases. Most of these concepts are implicit
in the database records. Data mining is an interdisciplinary field merging ideas from

statistics, machine learning, databases, and high-performance computing.

1



2 Introduction

What is ILP and its role in data mining. Inductive Logic Programming is a
relatively new machine learning technique adopted in the data-mining research area.
Many researchers have turned to ILP only in the last 5 to 10 years [7]. It is defined
as the intersection of machine learning and logic programming, and has grown to
become a substantial sub-area of both of them [24]. The success of the subject lies
partly in the choice of the core representation language of logic programs. The syntax
of logic programs provides modular blocks which, when added or removed, general-
ize or specialize the program. ILP provides a uniform and very expressive means
of representation: All examples, background knowledge, and the induced theory are
expressed in first-order logic. Due to this uniform representation, the use of back-
ground knowledge fits very well within a logical approach towards machine learning.
Theory and background knowledge are of the same form; they are just derived from
different sources: theory comes from inductive learning while the background knowli-
edge is provided by the user of the system [6]. Previous experiences {7] showed that
some domain knowledge can be best expressed in a first-order logic, or a variant of
first-order logic. The use of such domain knowledge is crucial in certain data-mining
systems, such as learning drug structure-activity rules [33], because it is essential for
achieving intelligent behavior. ILP inherits well-established theories, algorithms and
tools from computational logic. Many inductive logic programming systems bene-
fit from using the results of computational logic. There is already a wide range of

data-mining applications using ILP algorithms.

Problem with inductive logic in data mining. There exist workable sequential
algorithms for data mining, e.g. neural networks [27], association rules [1], decision

trees {16], and inductive logic programming [7] that have already been applied to a
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wide range of real-world applications. However, exploring useful information from
a huge amount of data will require efficient parallel algorithms running on high-
performance computing systems. The most obvious (and most compelling) argument
for patallelisin revolves around dalabase size. The databases used for data mining
are typically extremely large, often containing the details of the entire history of a
company’s standard transactional databases. As these databases grow past hundreds
of gigabytes towards a terabyte or more, it becomes nearly impossible to process them
on a single sequential machine, for both time and space reasons: no more than a frac-
tion of the database can be kept in main memory at any given time, and the amount
of local disk storage and bandwidth needed to keep the sequential CPU supplied
with data is enormous. Additionally, with an algorithm that requires many com-
plete passes over the database. which is the case in most ILP algorithms, the actual
running time required to complete the algorithm becomes excessive. Because of the
use of a more expressive representation, inductive logic programming techniques are
often computationally more expensive than their propositional counterparts. This
efficiency issue becomes more severe when the dataset is very large. Furthermore,
many ILP algorithms have to go through the full dataset many times to get a suc-
cessful induced concept set. Such an approach seems impractical to solve real-world
data-mining jobs. So how to make these ILP algorithms work more effectively and

efficiently has become an interesting research topic.

Contribution of this thesis. In this thesis I study the use of inductive logic to
generate concepts from very big datasets in parallel. I use p processors to do the
data-mining job, each on a subset of the full dataset. A set of concepts is generated

from disjoint subsets of the full dataset used for mining. The distributed concept sets
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are exchanged and evaluated before merging the valid ones into the final concept set.
The final set of concepts is free of conflicts and same as the set of rules developed from
the full dataset. In this way the disk I/O access cost for each processor is reduced by

. +
a factor of 1/p.

The algorithm works in this way. First it divides the entire dataset and allocates
each subset of data to a processor. Then each processor executes the same sequential
ILP algorithm to find its locally-correct concepts. At the end of one step, all these
processors exchange their discoveries and evaluate the induced concepts generated in
this step. When each processor has collected all the feedback from other processors,
it can decide if its locally-correct concepts are globally-correct. If so, it will inform
all other processors to add this valid concept to the final concept set and remove the
redundant examples covered by this concept. This completes one big step. This loop

will continue until all the positive examples are covered by induced concepts.

Since each processor learns concepts independently on its subset, there are some

issues that I will explore in this thesis:
e How to secure the accuracy of induced theories on smaller datasets;
e How to deal with negative examples;
e How to reduce communication overhead; and
e How to avoid redundant work by individual processes.

I build a parallel version of a core ILP system - Progol {22] — that shows super-linear

speedup in its learning process for a range of data mining problems.
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Chapter 2 of this thesis presents the theory and method in inductive logic pro-
gramming. [t reviews several ILP systems and their application in data mining. A
particular approach in ILP — Mode-Directed Inverse Entailment (MDIE) [22] - is
examined in detaii as it is the basis for the paraiiei version of Progoi. The Bulk Sya-
chronous Parallelism {(BSP) [8] model is discussed in the latter part of this chapter.

A sequential ILP data-mining algorithm and its cost analysis is also provided.

With the theoretical foundations of inductive logic programming in hand, Chapter
3 presents an approach to parallel inductive logic. First a general logical setting for
parallel inductive logic programming is given, followed by a detailed discussion of the
parallel ILP model. The issues and problems involved in this approach are explored,

and a cost analysis is provided.

To examine and support the parallel algorithm discussed in Chapter 3, Chapter 4
presents a parallel ILP system - Parallel Progol. [ built this system using the BSP
model. [t is based on the C version program of Progol implemented by Muggleton.

Several test cases are provided and a super-linear speedup phenomenon is explained.

Finally, Chapter 5 summarizes the findings of this thesis and gives a conclusion.



Introduction




Chapter 2

Inductive Logic Theory and The
BSP Model

2.1 Introduction

There are three purposes to this chapter. First, the theory of Inductive Logic Pro-
gramming (ILP) is briefly introduced. Then a more detailed discussion of one popular
ILP approach ~ Mode-Directed Inverse Entailment (MDIE) - follows. A review of
some ILP systems and applications is provided as well. Second, a sequential ILP al-
gorithm based on the MDIE approach is presented, and its cost analysis is provided.
Finally, the Bulk Synchronous Parallelism (BSP) model is presented. These three

parts form the theoretical foundations of this thesis.

7



8 Inductive Logic Theory and The BSP Model

2.2 The Theory of First-order Logic

A first-order language (20| comprises variables, constant symbols, and predicate
svmbols with their arities. A term in a given language is either a variable or a con-
stant. An atom is an expression p(t,,---,t,}, in which ¢,,---,t, are terms, and p is
an n-ary predicate symbol. An atom is ground if it does not contain any variables.
A literal is an atom (A) or the negation of an atom (not A). A well-formed-formula
is formed using literals and operators such as conjunction, negation, and implication,
and the quantifiers ¥V and 3. A sentence is a closed well-formed-formula (all vari-
ables quantified). A clause is a disjunction of literals, with all variables universally

quantified.

Horn clauses. A definite program clause is a clause containing one positive, and
zero or more negative literals. A definite goal is a clause containing only negative lit-
erals. A Horn clause is either a definite program clause, or a definite goal. If a definite
program clause consists of the positive literal A and the negative literals By, ..., B,,

then it can be written as

.-1(—'31,....3,1 (21)

where A is called the head of the clause and By, ..., B, are called the body literals

of the clause [7]. The symbol B; is the negation of B;.

Model theory. Part of the semantics of first-order logic is a definition of the relation
between the terms in the language, and the domain of interest. Each term refers to

(or denotes) an object from this domain. A pre-interpretation J of a first-order logic
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language L consists of the following: [7]
1. A non-empty set D, called the domain of the pre-interpretation.
2. An assignment. of each constant in L to an element of D.

A variable assignment V with respect to L is a mapping from the set of variables in
L to the domain D of .J.

An interpretation I of a first-order language L consists of the following:
1. A pre-interpretation J. with some domain D, of L. [ is said to be based on J.

2. An assignment of each n-ary predicate symbol p in L to a mapping [, from D"

toT, F.

Let ¢ be a formula, and [ an interpretation. The formula ¢ is said to be true under
[if its truth value under I is T. The interpretation I is then said to satisfy ¢. Let 0
be a formula, and I an interpretation. The interpretation I is said to be a model of 0
if I satisfies §. The formula 0 is then said to have I as a model. For example, let the
interpretation I have D = 1,2 as domain. P be a binary predicate interpreted as >,
and let a denote 1 and b denote 2. Then [ is a model of the formula Vz P(z, z) since 1
> 1 and 2 > 2. On the other hand, [ is not a model of the formula Vz3y (not) P(z,y),

since there is no number n in the domain for which 2 > n is false [7].

Subsumption of concepts. Computing whether one concept subsumes-is more
general than-another is a central facility in all ILP systems. Subsumption is the gen-
erality order that is used most often in ILP. The reasons are mainly practical: Sub-
sumption is more tractable and more efficiently implementable than implication [7}. A

common method for subsumption computation is based on so-called 8-subsumption.
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Let C and D be clauses. We say C subsumes D, denoted by C > D, if there exists
a substitution # such that C8 C D (i.e., every literal in C8 is also a literal in D). If
C > D, then there is a substitution 6 which maps each L; € C to some M; € D.

Examples of subsumption are:

e C = P(r) subsumes D = P(a) V Q(z), since C(z/a) = P(a), and
P(a) C P(a),Q(z).

e C = P(a) V P(a) subsumes D = P(a).

2.3 Theory of Inductive Logic Programming

What is inductive learning? Inductive learning techniques generalize specific
observations into general theories. These theories can be used for explanatory or
predictive purposes. Descriptive induction starts from unclassified examples and in-
duces a set of regularities these examples have in common. A typical example in this
category is a customer buying-behavior study which discovers that if customers buy
sausage and bread that there is a probability of 90 per cent that they will also buy
butter. Predictive induction learns from a set of examples that are classified in two or
more classes. The aim is to find a hypothesis that classifies the examples in the cor-
rect class. A typical example is animal classification. Suppose a robot is instructed to
recognize different kinds of animals. Given an example set which contains thousands
of animal classification facts, the robot induces useful rules and using such rules it
can predict unknown animals. The term inductive logic programming (ILP) was first
introduced by Muggleton in 1990 [20]. ILP is concerned with the study of inductive

machine learning with the knowledge representation in first-order logic. The goal is
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to develop tools and techniques to induce hypotheses from observations (examples)
and to synthesize new knowledge from experience [21}:

ILP = Inductive Concept Learning + Logic Programming

Recent studies [6] on this subject shows that ILP is a healthy tield but still facing a

number of new challenges that it should address.

Why ILP? Data-mining often uses knowledge representation to distinguish differ-
ent algorithms. Propositional or attribute-value representations use a single table to
represent the dataset. Each example or observation then corresponds to a single tuple
in a single relation. For all of the attributes the example then has one single value. On
the other hand, relational learning and inductive logic programming employ first-order
structural representations. For instance, in the learning from interpretations setting,
an example corresponds to a set of facts. This generalizes attribute-value representa-
tions, as examples now may consist of multiple tuples belonging to multiple tables. A
typical example could be a buying behavior analysis for a supermarket. Suppose that
the possibility of a male customer buying a particular product is related to how many
children he has and if he is a smoker. An example can be expressed in first order
logic as: buy(john, bicycle), man(john), has-children(john,2), not(smoker(john)). In
attribute-value representation we will have to use multiple tuples in multiple tables

to express such an example .

Current data-mining systems such as association rule discovery usually deal with
numeric values in a relational database, which can be viewed as a propositional or

attribute-value representation. If I use a first-order logic representation, I can express
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not only the value but also the multi-relationship among those data. By using first-
order logic as the knowledge representation for both hypotheses and observations,
inductive logic programming may overcome some major difficulties faced by other

data-mining systems:
e the use of a limited knowledge-representation formalism
e difficulties in using substantial background knowledge in the learning process.

Previous experiences [7] in expert systems showed that much domain knowledge
can be best expressed in a first-order logic, or a variant of first-order logic. Propo-
sitional logic has great limitation in certain domains. Most logic programs cannot
be defined using only propositional logic. The use of domain knowledge is also cru-
cial because one of the well-established findings of artificial intelligence is that the
use of domain knowledge is essential to achieve intelligent behavior. ILP inherits
well-established theories, algorithms and tools from computational logic. Many in-
ductive logic programming systems benefit from using the results of computational
logic. Background knowledge helps in restricting the hypothesis search and is a key
factor for incremental and iterative learning. The concepts generated in each pass
are added to the background knowledge. This process will terminate when a pre-
defined accuracy level is reached. Without background knowledge, the hypothesis

search space can grow exponentially.

Logical settings of ILP. Inductive Logic Programming is a research field that
investigates the inductive construction of concepts from examples and background
knowledge. Deductive inference derives consequences E from a prior theory T [21] .

Thus if T says that all flying objects are birds, £ might state that a particular flying
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object is a bird. Inductive inference derives a general belief T' from specific beliefs E.
After observing one or more flying objects T might be the conjecture that all flying

objects are birds. In both deduction and induction, T and E must be consistent and

T k& E (

o
o
SN

where = is the symbol of logical implication. Within ILP it is usual to separate the
elements into examples (E), background knowledge (B), and hypothesis (H}. These

have the relationship

BAHEE (2.3)

where B, H and E are each logic programs. E can be separated into E* and E~.

Normal semantics. Here all examples, background theory and induced con-
cepts are (well-formed) logical formulae. The problem of inductive inference is as
follows. Given background (prior) knowledge B and an example set E = E* A E~
in which E7 is positive example set and E~ is negative example set, the objective is

to find a hypothesis such that completeness and consistency conditions hold:

e Completeness: background knowledge and induced theory cover all the positive

examples.

e Consistency: background knowledge and induced theory do not cover any neg-

ative examples.

In most ILP systems, background theory and hypotheses are restricted to being
definite. The special case of the definite semantics, where the evidence is restricted

to true and false ground facts (examples), will be called the example setting. The
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example setting is the main setting of ILP. It is employed by the large majority of

ILP systems {7].

Learning from positive data. Some datasets contain only positive data. How
to learn from positive data has been a great concern over recent years. When learning
from only positive data, predictive accuracy will be maximized by choosing the most
general consistent hypothesis. since this will always agree with new data. However, in
applications such as grammar learning, only positive data are available, though the
grammar, which produces all strings, is not an acceptable hypothesis. Algorithms to

measure generality and positive-only compression have been developed [7].

2.4 Theory of MDIE

Introduction. Muggleton has demonstrated that a great deal of clarity and sim-
plicity can be achieved by approaching the problem from the direction of model theory
rather than resolution proof theory. My research and experiment on parallel ILP is
largely based on a core MDIE algorithm - Progol. So I will introduce the theory of
MDIE [22] here. Let us now consider the general problem specification of ILP in this
approach. That is, given background knowledge B and examples E find the simplest
consistent hypothesis H (where simplicity is measured relative to a prior distribution)

such that

BANHEE (2.4)

In general B, H and E can be arbitrary logic programs. Each clause in the simplest
H should explain at least one example, since otherwise there is a simpler A’ which

will do. Consider then the case of H and E each being single Horn clauses. This can
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now be seen as a generalised form of absorption and rearranged similarly to give

BANFEEH (2.5)

| nJ
L

-~ - &
1 ulic

where iegation L and [T is tlie negation of II. Let L be the {poteutially
infinite) conjunction of ground literals which are true in all models of B A E. Since
H must be true in every model of B A E it must contain a subset of the ground
literals in L . Therefore
BAEELEH (2.6)
and for all H
HEL (2.7)

A subset of the solutions for H can be found by considering the clauses which 8-

subsume L .

Definition of Mode. In general L can have infinite cardinality. I can use mode
declarations to constrain the search space for clauses which #-subsume 1 . A mode
declaration has either the form modeh(n,atom) or modeb(n,atom) where n, the recall,
is either an integer, n > 1, or * and atom is a ground atom. Terms in the atom
are either normal or place-marker. A normal term is either a constant or a function
svmbol followed by a bracketed tuple of terms. A place-marker is either +type, -type
or #type, where type is a constant. If m is a mode declaration then a(m) denotes
the atom of m with place-markers replaced by distinct variables. The sign of m is
positive if m is a modeh, and negative if m is a modeb. For instance the following are
mode declarations.
modeh(1,plus(+int,+int,-int))

modeb(* append(-list, +list, +list))
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modeb(1,append(+list,[-+any],-list))
The recall is used to bound the number of alternative solutions for instantiating

the atom.

The most-specific clause. Certain MDIE algorithms, e.g. Progol, search a bounded
sub-lattice for each example e relative to background knowledge B and mode decla-
rations A/. The sub-lattice has a most general element T which is the empty clause

® . and a least general element L, which is the most specific element such that
BA L; ANE O (2.8)

where F; © denotes derivation of the empty clause.

Refinement Operator in MDIE. When generalising an example e relative to
background knowledge B, MDIE algorithm constructs L; and searches from general to
specific through the sub-lattice of single-clause hypotheses H such that @ < H <1,
. This sub-lattice is bounded both above and below. The search is therefore bet-
ter constrained than other general-to-specific searches in which the sub-lattice being
searched is not bounded below. For the purposes of searching a lattice of clauses
ordered by #-subsumption I need a proper refinement operator.

The refinement operator in MDIE is designed to avoid redundancy and to maintain
the relationship ® <X H <L, for each clause H. Since H <1, it is the case that there
exists a substitution 6 such that H8 C1; . Thus for each literal ! in H there exists
a literal !’ in L; such that {# = {'. Clearly there is a uniquely defined subset L; (H)
consisting of all I’ in L; for which there exists [ in H and {§ =’ . A non-deterministic

approach to choosing an arbitrary subset S’ of a set S involves maintaining an index k.
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For each value of k between 1 and n, the cardinality of S, I decide whether to include
the kth element of S in S’ . Clearly, the set of all series of n choices corresponds to
the set of all subsets of S. Also for each subset of S, there is exactly one series of n
choices. To avoid redundancy and maintain §-subsumption of L;, MDIE’s refinement

operator maintains both k£ and 4.

Sequential cover algorithm. Based on the theory introduced above, there is a

generalized sequential cover algorithm used for MDIE systems, e.g. Progol.

e Select example. Select an example to be generalized. If none exists, stop,

otherwise proceed to the next step.

e Build most-specific-clause. Construct the most specific clause that entails the
example selected, and is within language restrictions provided. This is usually
a definite program clause with many literals, and is called the bottom clause.

This step is sometimes called the saturation step.

e Search. Find a clause more general than the bottom clause. This is done by
searching for some subset of the literals in the bottom clause that has the best

score.

e Remove redundant examples. The clause with the best score is added to the
current theory, and all examples made redundant are removed. This step is

sometimes called the cover removal step.
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2.5 Existing ILP systems and applications

This section gives an overview of some core ILP systems, from which we can see
that ILP is not only an academic research topic: it has been used in a wide range of

machine learning and data-mining applications.

FOIL. FOIL [33] is a system for learning intensional concept definitions from re-
lational tuples. It has been recently applied to web mining [19]. The induced con-
cept definitions are represented as function-free Horn clauses, optionaily containing
negated body literals. The background knowledge predicates are represented exten-
sionally as sets of ground tuples. FOIL emplovs a heuristic search strategy which
prunes vast parts of the hypothesis space. It is a top-down, non-interactive, batch
single-predicate learning algorithm. As its general search strategy, FOIL adopts a
covering approach. Induction of a single clause starts with a clause with an empty
body which is specialised by repeatedly adding a body literal to the clause built so far.
It learns clauses of theory one by one. Each new clause C that the system constructs
should be such that C, together with current theory and the background knowledge
implies some positive examples that are not implied without C, while C together with
the positive examples and background knowledge implies no negative examples. It
adds this clause to the current theory and removes the derived positive example from
example set. It then constructs another clause, adds it to current theory and so on,

until all positive examples can be derived.
Among the candidate literals, FOIL selects one literal to be added to the body
of the hypothesis clause. The choice is determined by an information gain heuristic.

FOIL’s greedy search strategy makes it very efficient, but also prone to exclude the
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intended concept definitions from the search space. Some refinements of the hill-
climbing search alleviate its short-sightedness, such as including a certain class of
literals with zero information gain into the hypothesis clause, and a simple back-

tracking mechanism.

GOLEM. GOLEM [33] is a “classic” among empirical ILP systems. It has been
applied successfully to real-world problems such as protein structure prediction and
finite element mesh design. GOLEM copes efficiently with large datasets. It achieves
this efficiency because it avoids searching a large hypothesis space for consistent hy-
potheses like, for instance, FOIL, but rather constructs a unique clause covering a set
of positive examples relative to the available background knowledge. The principle
is based on the relative least general generalisations (rlggs) (7]. GOLEM embeds the
construction of rlggs in a covering approach. For the induction of a single clause, it
randomly selects several pairs of positive examples and computes their rlggs. Among
these rlggs, GOLEM chooses the one which covers the largest number of positive
examples and is consistent with the negative examples. This clause is further gener-
alised. GOLEM randomly selects a set of positive examples and constructs the rlggs
of each of these examples and the clause obtained in the first construction step. Again,
the rlgg with the greatest coverage is selected and generalised by the same process.
The generalisation process is repeated until the coverage of the best clause stops in-
creasing. GOLEM conducts a postprocessing step, which reduces induced clauses by
removing irrelevant literals. In the general case, the rlgg may contain infinitely many
literals. Therefore, GOLEM imposes some restrictions on the background knowledge
and hypothesis language which ensure that the length of rlggs grows at worst polyno-

mially with the number of positive examples. The background knowledge of GOLEM
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is required to consist of ground facts. For the hypothesis language, the determinacy
restriction applies, that is, for given values of the head variables of a clause, the val-
ues of the arguments of the body literals are determined uniquely. The complexity
of GOLEM’s hypothesis language is further controlled by two parameters, i and j,

which limit the number and depth of body variables in a hypothesis clause.

LINUS. LINUS [33] is an ILP learner which incorporates existing attribute-value
learning systems. The idea is to transform a restricted class of ILP problems into
propositional form and solve the transformed learning problem with an attribute-value
learning algorithm. The propositional learning result is then re-transformed into the
first-order language. On the one hand, this approach enhances the propositional
learners with the use of background knowledge and the more expressive hypothesis
language. On the other hand. it enables the application of successful propositional
learners in a first-order framework. As various propositional learners can be inte-
grated and accessed via LINUS, LINUS also qualifies as an ILP toolkit offering several
learning algorithms with their specific strengths. LINUS can be run in two modes.
Running in class mode, it corresponds to an enhanced attribute-value learner. In rela-
tion mode, LINUS behaves as an ILP system. Here, [ focus on the relation mode only.
The basic principle of the transformation from first-order into propositional form is
that all body literals which may possibly appear in a hypothesis clause (in the first-
order formalism) are determined, thereby taking into account variable types. Each of
these body literals corresponds to a boolean attribute in the propositional formalism.
For each given example, its argument values are substituted for the variables of the
body literal. Since all variables in the body literals are required to occur also as head

variables in a hypothesis clause, the substitution yields a ground fact. If it is a true



2.5 Existing ILP systems and applications 21

fact, the corresponding propositional attribute value of the example is true, and false
otherwise. The learning results generated by the propositional learning algorithms
are retransformed in the obvious way. The induced hypotheses are compressed in a

postprocessing step.

The papers [33] and [5] summarize practical applications of ILP:

Learning drug structure-activity rules. The research work carried out by the
Oxford machine learning group has shown that [LP can construct rules which predict
the activity of untried drugs, given examples of drugs whose medicinal activity is
already known. These rules were found to be more accurate than statistical correla-
tions. More importantly, because the examples are expressed in logic, it is possible
to describe arbitrary properties of, and relations between, atoms and groups. The
logical nature of the rules also makes them easy to understand and can provide key
insights, allowing considerable reductions in the numbers of compounds that need to

be tested.

Learning rules for predicting mutagenesis. The problem here is to predict the
mutagenicity of a set of 230 aromatic and heteroaromatic nitro compounds. The
prediction of mutagenesis is important as it is relevant to the understanding and
prediction of carcinogenesis. Not all compounds can be empirically tested for muta-
genesis, e.g. antibiotics. The compounds here are more heterogeneous structurally
than any of those in other ILP datasets concerning chemical structure activity. The
data here comes from ILP experiments conducted with Progol. Of the 230 com-

pounds, 138 have positive levels of log mutagenicity. These are labelled active and
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constitute the positive examples: the remaining 92 compounds are labelled inactive
and constitute the negative examples. Of course, algorithms that are capable of full

regression can attempt to predict the log mutagenicity values directly.

Learning rules for predicting protein secondary structure. Predicting the
three-dimensional shape of proteins from their amino acid sequence is widely be-
lieved to be one of the hardest unsolved problems in molecular biology. It is also of
considerable interest to pharmaceutical companies since a protein's shape generally

determines its function as an enzyme.

Inductive Learning of Chess Rules Using Progol.  Computer chess programs
can be thought of as having two parts, a move generator and an algorithm for eval-
nating the strength of generated moves. The move generator effectively gives the
computer information concerning the rules of chess.

The structured method used here is slightly larger, involving the splitting of the
problem into some 40 sub-problems, creating a structure some 15 levels deep. With
structured induction, clauses learned in an earlier part of the process are appended

to the background knowledge to enable the learning of subsequent clauses.

First-Order Learning for Web Mining. Two real-world learning problems that
involve mining information from the web with first-order learning using FOIL have
been demonstrated [19]. The experiment shows that, in some cases, first-order learn-
ing algorithms learn definitions that have higher accuracy than statistical text clas-
sifiers. When learning definitions of web page relations, they demonstrate that first-

order learning algorithms can learn accurate, non-trivial definitions that necessarily
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involves a relational representation.

Other ILP applications mentioned in [33] are:
e Learning rules for finite element mesh design.
e Learning diagnostic rules for qualitative models of satellite power supplies.
e Learning qualitative models of the U-tube system.

e Learning qualitative models for functional genomics.

2.6 Sequential ILP Algorithm.

In this section, I analyze a general MDIE ILP algorithm and provide a cost analysis
of this algorithm. Chapter 3 discusses how to parallelize this sequential algorithm
and analyze its cost. In Chapter 4, I will discuss how to implement a parallel Progol
system based on the parallel approach introduced in Chapter 3, and provide some

test cases as examples to support the cost analysis.

2.6.1 A Sequential ILP Algorithm

In order to give a parallel approach to ILP data mining, first I need to know the
general steps involved in a sequential ILP data-mining algorithm. As shown in Section
2.4, a mode-directed approach can provide a much simpler and convenient way in
inductive concept learning. So I provide a general ILP data-mining procedure based
on mode-directed inverse entailment(MDIE). The whole sequential ILP data-mining

procedure consists of a loop structure: In each cycle, some concepts are learnt and
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repeat
if there is still a positive e in E not covered by H and B
select an example e in E
search for a good concept H that covers e
add H to background knowledge B
retract redundant examples that covered by A
end if
end repeat

Figure 2.1: Sequential ILP Algorithm

some positive examples that are covered by the new induced concepts are retracted
from the dataset. The loop will come to an end when all positive examples are
covered by the final induced concept set and no positive examples are left in the

dataset. Figure 2.1 gives a general sequential ILP approach.

Several issues in the above algorithm need to be addressed.

How to select an example?  The example selection procedure can be random.
The example selection can also be based on the sequence order in the dataset: ILP
picks up one positive example after another in the order in which they are located in
the dataset. A more sophisticated approach is to pick up an example according to its
score. The score of an example is determined by its properties, i.e., an example gets
a high score when its occurrence in the whole dataset is more frequent than other
examples. In this way, ILP can possibly induce the most important concepts first.
When one concept is generalized and it covers more positive examples in the dataset,
the dataset shrinks more quickly after each loop, thus improving the performance of

the whole learning procedure. Though this approach seems plausible in a sequential
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algorithm, it can be potentially problematic in parallel approach. In parallel learning,
the last approach will increase the chance that two or more processors select the same

example and thus waste time inducing the same concept.

How to generalize concepts from examples? It is the most important task of
the whole job that distinguishes different ILP systems. An induced concept set is too
strong if it wrongly covers some negative examples and thus makes it inconsistent. On
the other hand, a concept set is too weak if it cannot cover all the positive examples
and thus makes it incomplete. A concept set is overly general if it is complete with
respect to positive example set £ but not consistent with respect to negative concept
set £7. A concept set is overly specific if it is consistent with respect to £~ but not
complete with respect to £*. An ILP system is meant to search in the hypothesis
space and find a concept set that is neither too strong nor too weak.

The two basic techniques in the search for a correct concept set are specialization
and generalization. If the current concept set together with the background knowledge
contradicts the negative examples, it needs to be weakened. That is, I need to find
a more specific theory, such that the new theory and the background knowledge
are consistent with respect to negative examples. This is called specialization. On
the other hand, if the current theory together with the background knowledge does
not cover all positive examples, I need to strengthen the theory: I need to find a
more general theory such that all positive examples can be covered. This is called
generalization. Note that a theory may be too strong and too weak at the same time,

so both specialization and generalization are needed.

To achieve the above goal, [ introduce two approaches here.
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e Top-Down. Start with a theory ¥ such that ¥ U B is overly general, and

specialize it.

e Bottom-Up. Starts with a theory ¥ such that ¥ U B is overly specific, and

generalize it.

In MDIE, a most-specific clause is formed at the first phase when generating a hy-
pothesis from an example. Then it searches the hypothesis space from general to this

most specific clause to find a good concept.

What does good mean? During the search in the hypothesis space, an ILP
svstem will generate and evaluate some candidate concepts. I need to determine
which concept is better than other candidates. In practice, a score can be assigned
to each candidate concept. The candidate concept with the highest score will be the
right one. Then there comes a problem: How is the score decided? One way to decide
the score is to calculate it from a few parameters using a function f(y,n,c) which

gives each induced candidate hypothesis H a score based on:
e y: the number of positive examples covered by H
e n: the number of negative examples wrongly covered by H

e c: the conciseness of H, which is generally measured by the number of literals

in H

For example, f could be:

flyyne)=y+c—n (2.9)
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The candidate with the highest score is added to the final set of induced theory.
When generating a candidate H' from the example e, the ILP algorithm generally
searches in the hypothesis space to find the candidates. In order to give a score
f{y,n,c) to each candidate A', the ILP aigorithm has to look through the entire

dataset.

2.6.2 Cost of sequential ILP data-mining algorithms.

The ILP data-mining algorithm described above has the property that its global
structure is a loop, extracting more concepts through each iteration. Suppose this
loop executes k, times. I can describe the sequential complexity of this algorithm

with a formula:

cost, = ks [ STEP(nm) + ACCESS(nm)] (2.10)

where STEP gives the cost of a single iteration of the loop, and ACCESS is the cost
of accessing the dataset in one step; n is the number of objects in the dataset and m
is the size of each example. To give a more specified cost model for sequential [LP

algorithm, there is another formula:

costy = ks[SEL(nm) + ¢(GEN(nm) + EVA(nm))

+ RET (nm)]

where SEL gives the cost of selecting one example from the dataset; GEN gives cost
of generating one candidate hypothesis from the selected example; and EVA gives
the cost of evaluation of candidate hypothesis and giving it a score. Usually this

step involves accessing the dataset once. RET gives the cost of retracting redundant
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positive examples already covered by the newly induced concept. € gives the number
of candidate hypothesis generated in each step. Please notice that EVA and RET

involve data access so they will dominate costs for large datasets.

The cost of SEL varies in different implementations, from only one data access in
random or sequential selection to entire dataset access in some more sophisticated
algorithms. [ assume sequential or random selection is adopted in the ILP algorithm.
Also the cost of GEN varies in different ILP inductive learning algorithms. In MDIE
it involves first building the most specific clause and then searching from hypothesis
space to construct each candidate hypothesis. It is the most significant computational

cost in one step.

The value of = depends on the hypothesis search space and search algorithm. Most
ILP algorithms will search in the hypothesis space from general to specific or vice versa
to get satisfied concepts. To reduce the search space some algorithms adopt language
bias such as MODE declaration in MDIE. Also some heuristic search algorithms will
help to reduce the value of ¢. Since this value determines the number of passes through
the entire dataset in each step, it is critical to the performance of ILP data-mining

systeni.

The EVA cost usually involves one pass through the entire dataset to give each
candidate hypothesis a score. In the same way, the cost of RET also involves one

pass through the entire dataset to remove redundant examples.
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If after each loop n (0 € n < 1) examples remain not covered by the newly-induced

concept, [ can give a more accurate formula:

cost, = k,[SEL(nm xn') + c(GEN(nm) + EVA(nm x1'))

+ RET (nm « n")]

where after each big step a fraction of (1 — ) examples are removed from the dataset

and the work in next step is reduced by a factor of 7.

2.7 Introduction to the BSP model

Introduction. I have discussed the sequential ILP algorithm above. Now I come
to the point of how to make it work in parallel, and how to speed up its learning
process. At this point. a parallel computing model is needed. Bulk Synchronous
Parallelism (BSP) [31] provides a model for the parallel system. I can perform cost
analysis based on BSP cost equations without having to implement different kinds
of systems [8]. In traditional message-passing systems, a programmer has to ensure,
explicitly, that no conflict will occur when one data item is being accessed by two
or more processes. Though some systems can provide deadlock control, concurrency
control or remote data access control, these mechanisms introduce cost overhead. It
is hard to establish a cost model with the great variety of the memory access patterns
and network architecture.

A parallel complexity measure that is correct to within a constant factor is needed.
Such a measure must take into account costs associated with the memory hierarchy
and accurately reflect the costs of communication, whether explicitly, as in message-

passing programs, or implicitly, as in shared-memory programs.
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Bulk Synchronous Parallelism (BSP) is a parallel programming model that di-
vides computation and communication into separate phases. Such phases are called
supersteps. A superstep consists of a set of independent local computations, followed
LY a global communication pliase and a barrier syncironisation. Writing programs
with the BSP model enables their costs to be accurately determined from a few
simple architectural parameters. Contrary to general belief, the structure imposed
by BSP does not reduce performance, while bringing considerable benefits from an

application-building perspective.

BSP programming. Supersteps are an important concept in BSP. A BSP program
is simply one which proceeds in phases. with the necessarv global communications
taking place between the phases. This approach to parallel programming can be ap-
plied to both distributed systems and shared-memory multiprocessors. BSP provides
a consistent, and very general, framework within which to develop portable software
for scalable computing.

A BSP computation consists of a sequence of supersteps, where each superstep is
a sequence of steps carried out on local data, followed by a barrier synchronisation at
which point any non-local data accesses take effect. Requests for non-local data, or
to update non-local data locations, can be made during a superstep but are not guar-
anteed to have completed until the synchronisation at superstep end. Such requests
are non-blocking; they do not hold up computation.

The programmer’s view of the computer is that it has a large and universal acces-
sible memory. To achieve scalability it will be necessary to organise the calculation

in such a way as to obviate the bad effects of large latencies in the communication

network.
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By separating the computation on local data from the business of transferring
shared data, which is handled by lower level software, [ ensure that the same compu-
tational code will be able to run on different hardware architectures from networked
workstalions to genuiuety shared-emory sysletns.

The superstep structure of BSP programs lends itself to optimization of the data
transfers. All transfers in a superstep between a given pair of processors can be
consolidated to form larger messages that can be sent with lower (latency) overheads
and so as to avoid network contention. The lower level communications software
can also exploit the most efficient communication mechanisms available on the actual
hardware. Since this software is application-independent, the cost of achieving the

efficiency can be spread over many applications.

BSP cost model. I need to identify the key parameters of a BSP parallel system
that determine its performance [8]. Obviously the number of processors and compu-
tational speed of each are key parameters. If I define a step to be the basic unit of
calculation, then [ can denote the speed as s steps/sec.

I can also see that the capacity and speed of the communications network is a vital
element. For ease of comparison between systems, I will measure the performance of
the communications network in units of the computing speed. The cost of carrying out
a barrier synchronisation of the processors, for example, can be measured in terms of
the number of steps that could have been performed in the time taken to synchronise.
This lets us contrast a system with fast synchronisation, in which relatively few steps
can have been executed during the time it takes to synchronise, with one which has
much worse performance relative to its computational power. In general I can expect

better overall performance from a system with low values of this parameter.
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Similarly when I estimate the communications throughput of the network linking
the processars, I look at the cost in steps for each word of data transmitted. This
gives the ratio of the computing power to the communication power of the system.
The iower this figure is, the better the balance between compute power and commu-
nications power, and the easier it is to get scalable performance.

I therefore arrive at the following four parameters [31], which extensive research

has shown to be sufficient:
e p = number of processors
e s = processor speed (number of steps per second)

e | = the cost. in steps, of achieving barrier synchronisation (depends on network

latency)
e g = the cost, in steps per word. of delivering message data

Note that all are based on the bulk properties of the system. The values are
determined by actual measurement using suitable benchmarks that mimic average
computation and communication loads.

The speed s is measured as the actual rate at which useful calculation is done; it
is not the peak performance figure quoted in the manufacturer’s data sheet.

The value of g is calculated from the average cost of transferring each word of
messages of all sizes in the presence of other traffic on the network. It is not based
on the manufacturer’s claimed bisection bandwidth. It is not measured from single
point-to-point transfers but measures the sustainable speed that will be experienced
by real application code. The g value can be approximated by calculating (total

number of local operations by all processors per second)/(number of words delivered
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by the communications system per second) The value g enables you to estimate the
time taken to exchange data between processors. If the maximum number of words
arriving at any one processor during a single such exchange is h, then I estimate that
up to gh steps can have been executed during the exchange.

Another advantage of the simple structure of BSP programs is that the modeling
of their performance is much easier than for message passing systems, for example. In
place of the random pair-wise synchronisation that characterises message passing, the
superstep structure in BSP programs makes it relatively easy to derive cost models
(i.e. formulae that give estimates for the total number of steps needed to carry out a
parallel calculation, including allowance for the communications involved).

Cost models can be used to determine the appropriate algorithmic approach to
parallelisation. They enable us to compare the performance of different approaches
without writing the code and manually measuring the performance. And they provide
predictors for the degree of scaling in performance that is to be expected on any given
architecture for a given problem size.

Cost models have proved to be very useful guides in the development of high

quality parallel software.

Oxford BSPlib. Like many other communications libraries, BSPlib adopts a Single
Program Muitiple Data (SPMD) programming model. The task of writing an SPMD
program will typically involve mapping a problem that manipulates a data structure
of size N into p instances of a program that each manipulate an N/p sized block
of the original domain. The role of BSPlib is to provide the infrastructure required
for the user to take care of the data distribution, and any implied communication

necessary to manipulate parts of the data structure that are on a remote process.
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bsp-begin Start of SPMD code
bsp-end End of SPMD code
bsp-init Simulate dynamic processes
bsp-abort One process stops all
DSP-UProcs Number of processes
bsp-pid Find my process identifier
bsp-time Local time

bsp-sync Barrier synchronization

bsp-push-reg | Make area globally visible
bsp-pop-reg Remove global visibility

bsp-put Copy to remote memory
bsp-get Copy from remote memory
bsp-set-tagsize | Choose tag size

bsp-send Send to remote queue
bsp-gsize Number of messages in queue
bsp-get-tag Getting the tag of a message
bsp-move Move from queue

bsp-hpput Unbuffered communication

Table 2.1: BSPlib Operation

An alternative role for BSPlib is to provide an architecture-independent target for
higher-level libraries or programming tools that automatically distribute the problem
domain among the processes. I use BSPlib to develop the parallel ILP system and
do the cost analysis.

Table 2.1 is a list of BSPlib operations:

Summary. In this chapter I introduced basic knowledge of ILP and MDIE. A se-
quential ILP algorithm was discussed, and it cost analysis was provided. To imple-
ment a parallel ILP algorithm, the BSP model is introduced. In the next chapter [
will discuss a parallel ILP algorithm using the BSP model and based on the sequential

algorithm introduced in this chapter.



Chapter 3

Parallel Inductive Logic in Data

Mining

The general task of inductive logic programming is to search a predefined subspace
of first-order logic for hypotheses. together with background knowledge, that explain
examples. However. due to the expressiveness of knowledge representation such a
search is usually computationally expensive. Most ILP systems have to pass over the
entire example set many times to find a successful induced theory H among other
candidate induced concepts, which in turn increases the computation cost tremen-
dously. When such ILP systems are to be applied to real-world data-mining tasks,
the expensiveness of algorithm seems to be a big obstacle. Thus, how to speed up the
learning process of ILP algorithm has become a practical and critical issue. In this
section, I present and discuss a parallel approach that shows a linear or super-linear
speed up on some applications for traditional sequential ILP algorithms. Important

issues in this approach are discussed in detail. A cost analysis of the parallel ILP

algorithm is provided as well.

35
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3.1 Reason, possibility and approaches of parallel
ILP in data mining

As [ mentioned above, there are some reasons why parailelism in ILP data-mining
is needed. The first and most obvious reason concerns the data size. The databases
used for data mining are typically extremely large. As these databases grow past
hundreds of gigabytes towards a terabyte or more, it becomes nearly impossible to
process them on a single sequential machine running a single sequential algorithm.
Another reason for the need of parallelism is the expensiveness of ILP systems. This

expensiveness comes from two aspects:

e The powerful and expressive knowledge representation in ILP requires more

computation power than propositional data-mining.

e Searching the entire dataset many times to find a successful hypothesis H among
candidate concepts increases the disk access greatly. Therefore, disk (I/O)

access is one of the most serious bottlenecks for sequential ILP systems.

Parallel ILP data-mining requires dividing the task, so that processors can make
useful progress towards a solution as fast as possible. From the sequential ILP algo-
rithm I can see that the disk access is one of the most significant bottleneck. There-
fore, how to divide the access to the dataset and minimize communication between

processors are important to the total performance.

In general, there are three different approaches [29] to parallelizing data mining.

They are:
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¢ Independent Search. Each processor has access to the whole dataset, but each
heads off into a different part of the search space, starting from a randomly

chosen initial position.

e Parallelize a sequential data-mining algorithm. There are two forms within
this approach. One approach is that the set of concepts is partitioned across
processors, and each processor examines the entire dataset to determine which
of its local concepts is globally-correct. The other approach is to partition the
dataset by columns, and each processor computes those partial concepts that
hold for the columns it can see. Regular exchanges of information of concepts are
required in both approaches to determine which partial concepts are globally-

correct.

e Replicate a sequential data-mining algorithm. Each processor works on a parti-
tion of the dataset and executes the sequential algorithm. Because the informa-
tion it sees is only partial, it builds entire concepts that are locally correct, but
may not be globally correct. Such concepts are called as approximate concepts.
Processors exchange these approximate concepts to check if they are globally-
correct. As they do so, each learns about the parts of the dataset it cannot

see.

Independent search is simple and works well for minimization problems. However,
it does not divide the dataset, so it cannot reduce the disk access. Therefore, it is not
suitable for problems with huge dataset. Parallelized approaches try to reduce both
the amount of memory each processor uses to hold concepts and the fraction of the
dataset that each processor must access. But its fine-grained parallelism requires too

much extra communication.
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The replicated approach is often the best way for parallelizing ILP data-mining
applications. It has two significant advantages: First, it necessarily partitions the
dataset and so spreads the disk access. Second, the size of induced concepts that
must be exchanged between phases is small. so communication is cheap. Previous
work in using the BSP cost model to optimize parallel neural network training [27)
shows that the replicated approach gives the best performance improvement among
all these three approaches introduced above. I adopt this approach in the parallel
ILP algorithm for its simplicity and possibility of a double speedup. I will discuss

double speedup in the following sections.

The following shows the possibility of adopting parallelism in ILP data mining.

e Due to the nature of data mining, there are lots of similarities and redundancies
within the large dataset. Therefore, it is plausible to induce correct theories

from a small subset of the full data.

e In most ILP systems, the whole concept-learning process consists of a loop
structure. After each loop, a successful hypothesis is found and added to the
final induced theory set. The learning process stops when all the positive ex-
amples have been explained by the induced concepts. The size of the induced
hypothesis during each phase is small compared to the dataset. So it is plausi-
ble to let p processes induce concepts from a subset. At the end of each phase,
these p processes exchange the locally-induced concepts and determine the valid

(globally-correct) concepts after evaluation.
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3.2 Logical Settings Of Parallel ILP

In this section I discuss the logical setting of the division of the ILP task into
subtasks that can be handled concurrently by multiple processes executing a common
sequential [LP algorithm. [ try to explore a parallel approach to obtain an algorithm
with a speedup proportional to the number of processors over the best available
sequential algorithm.

A central issue in designing a computer system to support parallelism is how to
break up a given task into subtasks, each of which will be executing in parallel with
the others. In general, ILP starts with an initial background knowledge B and some
examples £. The aim is to induce a hypothesis H that, together with background
knowledge B, explains the examples E.

A partition Ty,..:,T, of an ILP-task T = (B, F) is a set of ILP tasks. T; =
(B, E;) such that E; C E for all i, and that (UL E;) = E . The partition T\,---,T,
of an ILP-Task T is valid if and only if the union U™ | H; of partial hypothesis H;
obtained by applying a common sequential ILP algorithm 4 to task T; is equivalent to
the solution hypothesis H obtained by applying algorithm A to task T. Completeness

and consistency of parallel ILP can be expressed as follows:

Completeness:

BUH, EE}

n BUH, = Ef
BU ((JHi) E E* o :F 5
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BUH, = E}
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Consistency:
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\

[ will explore and explain in an intuitive way why in the parallel approach the

completeness and consistency hold.

3.3 An Approach to Parallel ILP Using the BSP
Model

Based on the sequential algorithm I discussed in Chapter 2, I give a parallel ILP
algorithm based on the replicated approach discussed above. There are two signifi-
cant reasons for using the replicated approach. First, it partitions the entire dataset
and so spreads the data access cost across processors. Second, the data that must
be exchanged between phases is small, so communication is cheap. The size of a
concept generated by each processor in one step is around 102 characters in the test
cases. If the value of ¢ is 4.1 flops/32 bit word and there are 4 processors, then the
communication cost per total exchange equals 1600 flops. It is quite small compared
to the local computation cost or data access cost which are hundreds of times bigger.
Therefore, though the replicated approach is not particularly novel, it is perhaps the
best way to increase performance in ILP data-mining tasks.

I divide the full dataset into p subsets and allocate each subset to one processor.
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divide dataset into p subsets
repeat
for all processors ¢
if there is still an e in E;
select ¢ in I
form a set of good concepts H; that covers e
total exchange H;(i = 1,2..p)
evaluate H;(j =1.2...,p)
total exchange evaluation result of H;
find the successful H; with globally good score
total exchange which are the valid H;
add all valid H; into B
retract redundant examples that covered by H;
end if
end for
end repeat

Figure 3.1: Parallel ILP Algorithm

Each processor executes the same (or similar) sequential ILP data-mining algorithm
introduced above on its local subset of data. At certain synchronization points, all
these processors exchange their local indnced concepts and evaluate them. Only
globally-correct concepts will be left, and added to the final concept set. Figure 3.1

gives the parallel algorithm.

In this approach, each processor works on its subset to find a locally-correct con-
cepts set H; in each step. The measure f(y,n,c) in each processor is based on its
cwn subset of data. In order to know whether this locally-correct concept set is also
globally-correct and to find the successful A in the set, it is necessary to find a way
of learning the general knowledge of the whole dataset. To do so, all p processors

perform a total exchange after all the processors reach the synchronization point
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when they have found their locally-correct concept H}s. After the total exchange,
each processor gets all the H; induced by peer processors. Each processor gives every
H;(i = 1,2,..p) a score f(p,n,c) based on its local knowledge from the subset of the
fuil data. Then there will be a second total exchange: the evaiuation resuit of H}s
will be exchanged among p processors. In this way each processor learns the whole
dataset and can give a global score to its local candidate concept H;. With the third
phase of total exchange the valid Hs are added to each processor’s final concept set

and redundant examples are retracted.

The whole computation in the approach consists of a sequence of supersteps, where
each superstep is a sequential ILP computation carried out on local data, followed
by a barrier synchronization at which point all induced concepts in this step are
exchanged and evaluated. The cost of such a phase is described by an expression of

the form:

Cost = MAX w; + MAX h;g (3.1)

processes processes

where w; is the number of instructions executed by processor i. The value of h; is
the size of the concepts exchanged between processors. This cost model is derived
from BSP, which I introduced in Chapter 2. The system parameters of s, [, g can
be obtained from the Oxford BSPlib. Notice that both terms are in the same units:
time. This avoids the need to decide how to weight the cost of communication relative

to computation, and makes it possible to compare algorithms with different mixes of

computation and communication.
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3.4 Potential problems with this approach

3.4.1 Accuracy of induced theory on smaller dataset

Since I use p processors to do the data mining job on a subset of the full dataset,
a set of concepts will be generated from disjoint subsets of the full dataset used for
mining. Given p disjoint subsets of the full dataset there will be p sets of concepts
generated by each processor. Each subset of data resides on a distinct processor. The
distributed concept sets must be totally exchanged and evaluated before merging the
valid ones into the final concept set. The final set of concepts should be free from

conflicts and same as the set of rules developed from the full dataset.

There is a question as to how to ensure that the individual concepts generated by
each processor which are locally-correct are also globally-correct. If each processor
spends a lot of time only to find unwanted concepts, there will be no performance

improvement from parallelism.

Any concept acceptable on the full dataset will be acceptable on at least one disjoint
subset of the full data [7]. This suggests that a concept set created by merging sets of
acceptable concepts contain concepts that would be found on the full dataset. Earlier
work (7] has found that the merged set of concepts contained the same concepts as
found by learning on the full dataset. If there are enough representative examples for

each class in each of p disjoint partitions, the concepts found in the parallel version

will have high accuracy.
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In the approach to parallel data-mining an important question is how large p can be
before communication costs begin to slow the concept generation process significantly.
But the more important question is how to determine a p for which the accuracy of
the resultant concept set is acceptable. ['here is a tradeotf between accuracy and
speed. The use of more processors promises that each can learn faster on a smaller
subset of data at the usual cost of communication overhead. However, there is a
second accuracy cost that will be paid when at some point p becomes too large and
it is therefore hard to maintain in each subset the representative examples of the full
data set. Previous work [27] done by Owen Rogers in parallel neural network mining
shows that correct concepts can be generated from a small subset of the entire data
but have taken much less processing to discover. When the subset size reaches some
size bound, however, the concepts generated becomes less accurate and hence do not
help. That means in the parallel algorithm I can divide the dataset into smaller
subsets and at the same time keep the induced concepts accurate enough to show a
significant performance increase, provided the size of each subset is greater than that

size boundary.

3.4.2 Dealing with Negative Examples

There is always a problem with dealing with negative examples, that is, how to
make sure one concept induced by one processor is consistent with all other subsets?
[f one concept which is locally consistent can be easily rejected by other processors,
there will be a severe cost efficiency issue with this approach. In fact, the problem

may be not as serious as it appears to be. There are several reasons:
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e Negative examples in real-world applications are usually rare among the entire
dataset. Hence it is reasonable to assume that the chances that one locally
consistent concept is also globally consistent are high. Even though there are

by other proces-

solne cases that souie locally consistent conceptis are rejected
sors, the total negative cost is not too high and can be tolerated compared to

the speedup gained.

e Since the number of negative examples is small compared to positive examples,
I can keep a duplicate copy of the entire negative example set on each processor.
In this way all locally-consistent concepts are also globally-consistent at the cost
of some redundancv. This is the approach I adopted in the test cases. There
are some negative examples in test case 2 -the chess move learner. Since the
size of negative examples is not too big compared to positive ones (about 10
per cent), [ duplicate all the negative examples across the processors. Though
there is redundancy in the local subset of data, the overall performance increase

is still obvious and a double speedup is observed.

e There are some effective learning algorithms that can learn from only positive
data. There is no consistent issue when learning from positive data, which is

the case in test cases 1 and 3.

3.4.3 Communication Overhead

There is a concern that at certain stages the number of processors becomes too
large and the communication cost is too big. However, the communication cost is not

a big problem in the parallel approach.
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e First, the size of the data to be exchanged between processors is small. Since
only the induced concepts are exchanged and the size of an induced concept -
usually a logical clause - is quite small, the communication cost of exchanging

sucht small size concepts is not a big concern in the approach.

e Second, [ have to maintain a reasonable amount of data in each subset to
ensure that there are enough representative examples. This, in turn, keeps p

from growing too big.

e Third. since each processor performs the same sequential algorithm and the
size of each subset is similar, it is reasonable to predict that the time spent
on local computation on each of the p processors is comparable. Therefore
the synchronization model need not be a big performance concern here in this

approach.

From the analysis above [ can draw a conclusion that the communication overhead is
small compared to the local computation cost saved. This conclusion is supported by
the test cases. In the test cases, the size of induced concepts is around 100 characters.
The value of g is 4.1 flops/32 bit Word. The value of [ is 118 flops. There are three
total communications within one big step, and there are 4 processors working in
parallel. So I get the communication cost in one big step: 3 *( 4¥*100%4.1 + 118) =
5274 flops. The CPU speed is 10.1 Mfops. Then the cost of communication in one
big step is around 0.0005 second. The cost of local computation and disk access cost
in one step is greater than 1 second in the test cases. It is easy to get the conclusion

that the communication overhead in the parallel ILP algorithm is not a big issue.
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3.4.4 Redundant Work by Individual Processors

There is a debate over how to ensure that different processors do their part of the
job as there will not be too much time wasted doing redundant work. Such a situation
is likely to happen when the full dataset contains similar and/or redundant examples.
Since one subset might contain the same or similar examples in another subset, there
is a chance that the two processors on these two subsets select the same example
in one particular step and do a redundant induction. If there are many redundant
examples in the subsets. such redundancy might become a serious problem, affecting
overall performance. [ found by experiment that this problem is not as serious as it

seems. The reasons are:

e First, if the selection process chooses an example randomly or by sequence order,
the chances of two or more processors selecting the same example are small in

a big and randomly-distributed dataset.

e Second, when one processor induces a valid (globally-correct) hypothesis from
one example, this hypothesis will be updated into all processors induced theory
set and all examples covered by this hypothesis will be retracted from each
processor’s example subset. Such a mechanism will eliminate the chance of

redundant work done by different processors in different steps.

e Third, even if there are still some cases that two or more processors select the
same example in the same step, it is not a great factor in the overall performance.
In the test cases, such redundancy occurs in some big steps. But there is still

obvious performance improvement in parallel approach.



48 Parallel Inductive Logic in Data Mining

In the experiment I found such chances are small even though the datasets con-

tained many redundant and similar examples.

3.5 Cost Analysis and Argument
for a Double Speedup

The parallel approach mentioned above is structured in a number of phases, each of
which involves a local computation, followed by an exchange of data between proces-
sors. In this approach it is straightforward to tell when computation will dominate
memory access, and the memory access cost is predictable. The cost model presented
above is likely to produce accurate estimates of running times on existing parallel
computers. Because the cost model depends only on high level properties of algo-

rithms, it can be applied to an algorithm in the abstract.

The basic structure of the parallel algorithm is:
e Partition data into p subsets, one per processor.
¢ Repeat
Execute the sequential ILP algorithm on each subset.
Exchange information about what each processor learned with the others.

So the cost has the following general form:
cost, = k. [STEP(nm/p)+ ACCESS(nm/p) + COMM (p, r)] (3.2)

where &, is the number of iterations required by the parallel algorithm, r is the size

of the data about candidate concepts generated by each processor, COMM is the cost
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of total exchange and evaluation between the processors of these candidate concepts.

[t is reasonable to assume that:
STEP(nm/p) = STEP(nm)/p (3.3)

ACCESS(nm/p) = ACCESS(nm)/p (3.4)

First, if [ assume that &, and k, are of comparable size, [ get
cost, = costy/p + k,COMM (p,r) (3.5)

We expect an almost linear speedup. To make the above formula more specific ac-

cording to parallel ILP algorithm, I get

cost, = kJ[SEL(nm/p)) + (GEN(nm/p) + EVA(nm/p))

+ 3(rpg +1) + p* EVA(nm/p)) + RET (nm/p)]

where SEL gives the cost of selecting one example from the dataset; GEN gives cost
of generating one candidate hypothesis from the selected example; EVA gives the
cost of evaluation of candidate hypothesis and giving it a score; and RET gives the
cost of retracting redundant positive examples already covered by the newly induced
concept. £ gives the number of candidate hypothesis generated in each step. The
symbol rpg + [ is the cost of a total exchange of candidate concepts between pro-
cessors; since there are three total exchange in the parallel algorithm, the overall
communication cost should be 3(rpg + ). Since each processor will get and evaluate

p candidate concepts generated from p processors, the cost of evaluation EVA should
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be multiplied by a factor of p.

It is reasonable to assume:
EVA(nm/p) = EVA(nm)/p (3.6)

RET(nm/p) = RET(nm)/p (3.7)

since the value of GEN(nm) is usually much smaller than the value of EVA (nm) when

the dataset is big, I get
cost, = cost,/p + k.(3rpg + ) (3.8)

If ks and k, are of comparable size, I get a p—fold speedup except for a communication

overhead.

In this approach, each processor induces the concepts from its own subset of data
independently. So it is likely that the concepts induced by different processors are
different. Frequent exchange of these concepts will improve the rate to which concepts
are induced. One processor will learn concepts induced by other processors during
the total exchange phase. Therefore we might actually expect that k, < k,. This
phenomenon is called double speedup. The interesting phenomenon of double speedup
occurs in the test examples. Each processor learns, in a condensed way, what every
other processor has learned from its data, whenever communication phases take place.
This information has the effect of accelerating its own learning and convergence. The
overall effect is that k, is much smaller than k£, would have been, and this in turn

leads to a double speedup. If each subset maintains the characteristics of the entire
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dataset, there is much chance that the locally-correct concepts will be also globally-
correct. If the algorithm selects an example randomly, the chances that two or more
processors working on the same example are small. All these arguments suggest a

much quicker learning process, which is observed in the test cases.

Suppose that the first phase of the sequential algorithm requires work (computa-
tion) w, but that the work in the subsequent phases can be reduce by a multiplicative

factor a. Then the sequential algorithm has a computation cost of the form
l+a+a’+a*+a' +--w (3.9)

The parallel algorithm, say. using four processors takes less time overall. The first
parallel phase takes time w, but the second phase takes only o*w, and so on. This
reduction is a function of w, which in turn is a function of the size of the dataset.

Then the parallel algorithm has a computation cost of the form
(1+a*+a®+a'2+--Jw (3.10)

If @ = 0.9, then cost,/cost, = 0.39; if @ = 0.1, then cost,/cost, =~ 0.90. This
analysis is optimistic in that I assume the reduction is independently additive and
the communication overhead is not included in this calculation. However, it provides

an explanation why double speedup occurs in the experiments.

Summary. In this chapter [ proposed a parallel ILP algorithm, which is based on
the sequential algorithm introduced in Chapter 2. The related issues in this parallel

approach are discussed in detail, which are:

e Accuracy of induced theory on smaller dataset.
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e Dealing with negative examples.
e Communication overhead.

e Redundant work by individual processes.

A cost analysis is provided using the BSP cost model. A possibility of double speedup
phenomenon is discussed. A parallel ILP system based on this parallel approach will

be discussed in next chapter. Some test cases will be provided, and the cost analysis

will be given.



Chapter 4

Parallel Progol

To make the arguments in Chapter 2 more concrete. I developed some programs to
show how parallel ILP works and give a performance analysis. Since Progol is a core
MDIE ILP system and has drawn much research interests in recent years, I decided to
parallelize the Progol system. The source code of Progol in C is freely available from
the Oxford University machine learning group web site. [ implement a parallel version
of CProgol - PCProgol - that induces concepts in parallel on several processors with
the support of Oxford BSPlib. To show how PCProgol works, I developed three test
cases in this chapter. They all show a super-linear speed up relative to the number

of processors.

4.1 Parallel Progol Algorithm

According to the general parallel ILP approach discussed in Chapter 3, I divide the
example set into several subsets, each of which is saved to a file. All the same back-

ground knowledge and mode declarations are included in each file. Multiple processes

53
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forall processor i

start:if E; = empty return B
let e be the first example in E;
construct the most specific clause L for e
construct hypothesis [7, from L
propagate H; to all other processes
evaluate H; (j =1,2,---.p) in E;
propagate evaluation results to all processors
decide if H; is valid
propagate validation result of H; to all other processors
let B=BUH U---UH,
let E' = e:e € EandB E e
let E = £ — E'
goto start

Figure 4.1: Parallel Progol Algorithm

work in parallel to generalize the examples. Each process works on a partition of the
dataset and executes the sequential CProgol program. By doing so, the search space

is reduced by 1/p while the induced hypotheses remains the same.

The concept induced in one process is correct locally. But [ have to make sure
that it is also globally-correct. Since the information each process sees is partial, a
mechanism must be provided to let each process have the knowledge of the entire

dataset in some sense,

Figure 4.1 is the algorithm of PCProgol. It provide a way to check if a locally-
correct concept is also globally-correct. For process i, B is the background knowledge,

E; is its subset of examples.
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How to divide the dataset. In my approach, [ divide the entire positive example
set into p subsets and allocate one subset to each processor. In many cases, the size of
positive examples is much bigger than the size of background knowledge and negative

examples.

[ have to find a way to deal with negative examples. To make sure the locally
consistent concepts are also globally consistent, [ keep a copy of the negative example

set on each processor.

How to evaluate H. When inducing concepts on one processor, PCProgol uses
several parameters to give the induced concept H a score relative to the local subset.
An H with the highest score will be the locally-correct concept induced in this step.

The score f of a candidate concept s is defined as follows:
f=Y-(N+C+R) (4.1)
where
¢ Y = the number of positive examples correctly deducible from s
e N = the number of negative examples incorrectly deducible from s
e C = the length of concept s

e R = the number of further atoms to complete the induced concept

R is calculated by inspecting the output variables in the clause and determining
whether they have been defined.
So f is a measure of how well a concept s explains all the positive examples, with

preference to the shorter ones. The evaluation process will go through the entire
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dataset once to give a candidate s a score f. In the worst case, it will consider all the
clauses in order and the algorithm will look through the entire dataset many times

to find a correct concept.

When all the processors have found their locally-correct concept H;, they come
to a synchronization point. At this point, each processor sends its locally-correct
concept H; to all other processors. After total exchange. each processor has a copy
of all the concepts induced by all the processors during this step. Each processor
evaluates these concepts and gives a score f to each H; relative to its subset of data.
Then there is a second round of total exchange - exchange of the score f. When one
processor has collected all the scores from other processor for its H;, it can give its H;
a global score and then decide if it is valid or not. So the total exchange of information
provides a way for each processor to evaluate its locally-correct concepts against the
whole dataset. Once the validation is made by all processors, there comes the third
phase of total exchange. During this communication phase, each processor tells other
processors whether its H; is globally valid. If so, all processors will update their
background knowledge with this H; and delete redundant examples already covered

by it. More than one globally-correct concept is usually induced in one big step.

4.2 Test Cases

Experiment platform. BSP can support both shared-memory and distributed-
memory computing environments. In my experiment I built and ran PCProgol on

two different machines. One is a 4-processor shared-memory SUN machine. The

platform is :
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Example Number | k& k, k.
(4-process) | (6-process)

Animal Classifier 4000 9 2 2

Chess Move Learner 4000 |23 4 3

Game Ending Problem | 2000 | 12 4 4

Table 4.1: Test cases and sequential performance
e Name: teaspoon.cs.queensu.ca
e Model: SUN Enterprise Server 3000.

e Processors: four Sparc processors, each one operating at 50 MHz and has a

Sparc floating point processor.
The other is a 6-processor shared-memory SUN machine. The platform is :
e Name: zeus.caslab.queensu.ca
e Model: SUN Enterprise Server 3500.

¢ Processors: six UltraSparcll processors, each one operating at 336 MHz and

has a Sparc floating point processor.

Though this program is developed and tested on SMP machines, this parallel approach
can be transparently adapted for distributed-memory computing environments with

the support of BSP.

There are three example sets provided in this chapter to test parallel Progol. They
are shown in Table 4.1. The first test case is an animal classifier. In this case animal
classification information is given as positive examples. The background knowledge

is provided to describe the properties of one particular animal. The program tries to
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form some general rules to classify an animal according to its properties. There are

4000 examples in this test case which contains some redundancy and similar examples.

The second test case is a chess move learner program. It learns legal chess moves.
The moves of the chess pieces
Pieces = ( King, Queen, Bishop, Knight and Rook ) are learned from examples. Each
example is represented by a triple from the domain
Piece * (Original-Rank * Original-File) * (Destination-Rank * Destination-File)

There are 4000 examples in this test case.

The third test case is a chess game-ending problem. [t tries to form a rule to decide
whether a chess ending with White King, White Rook and Black King is illegal when
White is to move. Example positions are defined as

illegal(WKRank, WKFile, WRRank, WRFile, BKRank, BKFile)

There are 2000 examples in this test case.

The source file Types describes the categories of objectives in the world under
consideration. Modes describes the relationship between objects of given types, and
the form these atoms can take within a clause. The Examples section contains all the

positive and negative examples.



4.2 Test Cases 59

Example 1:  Animal Classifier

Types

Type provides information aboui the type of the vbject.
animal(dog). animal(dolphin).
class(mammal). class(fish).
covering(scales). covering(feathers).
habitat(land). habitat(water).

Modes

For the head of any general rule defining class I give the following head mode decla-
rations

:- modeh(1,class(+animal, #class))?
which means class may have 2 arguments of type animal and class. A + sign indicates
that the argument is an input variable. A # sign denotes a constant.For atoms in
the body of a general rule, body mode declarations are given as follows:

.- modeb(1,has-gills(+animal))?

:- modeb(1,hascovering(+animal,#covering))?

:- modeb(1,haslegs(+animal,#nat))?

:- modeb(1,homeothermic(+animal))?
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Examples

[ give some examples of what animal belongs to what class.

class(eagle,bird). class(bat,mammal).
class(dog,mammai). class(bat,mammai).
class(eagle,bird). class(ostrich,bird).
Background knowledge

hascovering(dog, hair). hascovering{dolphin, none).
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Example 2: Chess Move Learner

Types
piece(king). piece(queen).

Modes

:- modeh(1,move(#piece,pos(+file,+rank),pos(+file,+rank)))?

.- modeb(1,rdiff(+rank,+rank,-nat))?

.- modeb(1,fdiff(-+file, +file,-nat))?

Examples

There are some negative examples in this case.
move(king,pos(b,7).pos(c,6)).
move(bishop,pos(g.3).pos(e,1)).
move(queen,pos(e,6),pos(h,3)).
:- move(pawn,pos(g.3),pos(c,5)).
:- move(king,pos(h,2),pos(e,2)).
- move(king,pos(e,2),pos(a,5)).

: — is for negative examples.
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Background knowledge

The only background predicate used is symmetric difference, i.e.
diff(X,Y) = absolute difference between X and Y

Svmmetric difference is defined separately on Rank and File.
rdiff(Rankl,Rank2,Diff) :-

rank(Rankl), rank(Rank2), Diffl is Rankl-Rank2, abs(Diff1,Diff).
fdiff(Filel,File2,Diff) :-

file(Filel), file(File2), project(Filel,Rankl), project(File2,Rank2), Diffl is Rank1-Rank?2,
abs(Diff1, Diff).

abs(X,X) - X > 0.

abs(X,Y) :- X <0, Yis =X
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Example 3: Game Ending Problem

Types

(f(X} - nat(X), 0=<X, X=<

Modes

.- modeh(1,illegal(+rf,+rf, +rf, +rf, +rf,+rf))?

:- modeb(1,adj(+rf,+rf))?

Examples
illegal(5,5,4,6,4,1). illegal(5,6,7,5,7,5).
illegal(3,2,4,6,6,6). illegal(2,1,6,1,2,0).

illegal(3,0,2,3,4,0). illegal(6.2,5,1,6,1).
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4.3 Test Results

For each test case I did the following experiments:

S P NG P TNy
& Ul sequential aigofitnml o teaspaon

e run sequential algorithm on zeus

run parallel algorithm on teaspoon with 4 processes

run parallel algorithm on zeus with 4 processes

run parallel algorithm on zeus with 6 processes

[ collected the corresponding data, which are shown in the tables of this chapter.
From this data I calculated the double speedup phenomenon observed in these 3 test
cases, i.e., p x cost, < costs where cost, is the cost of one process in parallel version,

and cost, is the cost of sequential version.

According to the formulae 3.8-3.11 derived from Chapter 3, the cost of selecting
an example, generating a hypothesis from the most specific clause 1, evaluating a
candidate concept and retracing redundant examples in one subset should be 1/p
of the sequential algorithm. Table 4.3 shows SEL(), EVA(), RET() values in the
sequential algorithm. The first column shows the test case number and parameter
name; the second and third columns show the values on teaspoon and zeus. Since zeus
is a faster machine than teaspoon, the values on zeus are smaller. Table 4.4 shows
SEL(), EVA(), RET() values in the parallel algorithm. The first column shows the
test case number and parameter name; the second and third column show the values

on teaspoon and zeus with 4 processes; the last column shows the values on zeus
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with 6 processes. Variances were typically within 20 per cent. Please refer to Table
4.5 for detailed information. The test results shown in Table 4.3 and Table 4.4 do
not totally match the above analysis in my experiment. I suppose this is due to the
workioad of the machine that is for public use, and the disk access time is affected
by the hardware architecture. These values depend on size of dataset and machine
speed. So they vary little among each big step. [ repeat the experiments on the
same machines four times during different time of the day to collect data. The result
shown in Table 4.3 and Table 4.4 is the average value. The value of GEN() varies in
different test cases depending on how a candidate concept is generated from L. When
the dataset is big, the cost of GEN() is small compared to the disk access cost EVA().
The value of e(GEN (nm/p) + EVA(nm/p)) is the most significant local computation

cost in each big step.

Though the cost analysis given in these examples is in terms of execution time, it
is easily adapted to the number of instruction cycles with the system parameters pro-
vided by BSPlib. Then the cost analysis can be applied universally and independent

of particular machine architecture.

BSP system parameters on teaspoon and zeus are shown in Table 4.2. With the
system parameters in hand, [ can give the optimistic communication cost. The size
of data r in one total communication is around 100 words. There are three total
communications in one big step. The value of g on teaspoon is 4.1 flops/word, p is 4,
s is 10.1 Mflops, and [ is 118 flops. So 3 * (rpg + {) = 3*(100*4*4.1 + 118) flops =
5274 flops = 0.0005274 s. The value of g on zeus is 3.17 flops/word, p is 4, s is 44.5
Mflops, and ! is 697.4 flops. So 3 * (rpg + [) = 3*(100*4*3.17 + 697.4) flops = 5896
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flops = 0.00013 s.

Parameter teaspoon zeus | zeus

Number of processes | 4 4 6

BSP paratueter s 10.1 Miops 44.5 Milops
BSP parameter | 118 flops 499 flops

BSP parameter g 4.1 fAlops/32bit word | 3.17 flops/32bit word

Table 4.2: System Information

Value teaspoon | zeus

Test Case 1: SEL(nm) | 0.04 s 0.01s
Test Case 1: EVA(nm) | 0.60 s 0.13 s
Test Case 1: RET(nm) | 0.60 s 0.13s
Test Case 2: SEL(nm) | 0.04 s 0.01s
Test Case 2: EVA(nm) | L.51 s 0.13 s
Test Case 2: RET(nm) | 1.51 s 0.13 s
Test Case 3: SEL(nm) | 0.04 s 0.01s
Test Case 3: EVA(nm) | 0.60 s 0.07 s
Test Case 3: RET(nm) | 0.60 s 0.07 s

Table 4.3: Mean SEL, EVA, and RET Values in Sequential Algorithm
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Value teaspoon | zeus | zeus
Processes 4 4 6
Test case 1 :SEL(nm/p) | 0.02 s 0.01s|0.01s
Test case 1 :EVA(nm/p) | 0.30 s 0.06s|0.04 s

M.ce ~non Y YY) nan . nnee - nNN4 -
LESL Lase L (LS L (Ml Py ) UaU S U.ub 3 | vutx S
Test case 2 :SEL(nm/p) | 0.02 s 0.01s|{001ls

[SV]

Test case 2 :EVA(nm/p) | 1.20 s 0.12s | 0.08s
Test case 2 :RET(nm/p) | 1.20 s 0.12s {0.08 s
Test case 3 :SEL(nm/p) | 0.02 s 0.01s|0.0ls
Test case 3 :EVA(nm/p) | 0.40 s 0.08s | 0.05s
Test case 3 :RET(nm/p) { 0.40 s 0.08s|0.05s

Table 4.4: Mean SEL. EVA, and RET Values in Parallel Algorithm

4.3.1 Test Result of Animal Classification.

Table 4.5 shows the test results in sequential algorithm. The concepts induced in each
big step are shown. The value of GEN(nm)+EVA(nm) shows the cost to generate
and evaluate one candidate concept, which is the most significant computational
cost. The values shown in the table are average values. The range and number of
data nodes [ collected are also shown. The value of ¢ shows the number of candidate
concepts generated in each step. The cost of each big step should be roughly equal
to € (GEN(nm) + EVA(nm)). The sequential algorithm takes 9 steps to generate all

the rules.

In the parallel approach with 4 processors, the 4000 examples are divided into 4
subsets. Four processors induce the concept set on their subset of data in parallel.
The number of big steps is reduced to 2. The test results on both machines is shown
in Table 4.6. The concepts induced by different processors in one big step are shown

in the table. The value of ¢ (GEN (nm/p) + EVA(nm/p)) shows the cost of local
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Parameters Value on teaspoon | Value on zeus
Big Step 1 class(A,fish) :- has-gills(A), hascovering(A,none).
0.50s (0.48-0.52s, 31 nodes) | 0.20s (0.16-0.24s, 31 nodes)

GEN(nm)+EVA(nm)

31

31

exatnples relracted 863 G3

subtotal 15.35s s 6.44 s

Big Step 2 class(A,reptile) :- habitat(A,land), habitat(A,water).
0.72s (0.63-0.83s. 99 nodes) | 0.13s (0.09-0.15s, 99 nodes)

GEN(nm)+EVA(nm)

&

99

99

examples retracted 78 78

subtotal 72.84 s 13.12 s

Big Step 3 class(A,mammal) :- habitat(A,caves).
GEN(nm)+EVA(nm) | 0.94s (0.62-0.95s, 163 nodes) | 0.13s (0.09-0.15s, 163 nodes).
5 163 163

-

examples retracted
subtotal

78
160.22 s

78
21.16 s

Big Step 4

class(A,reptile) :- hascovering(A,scales), habitat(A,land).

GEN(nm)+EVA(nm)
examples retracted
subtotal

0.74s (0.63-0.93s, 57 nodes)
a7

156

43.81 s

0.13s (0.09-0.15s, 57 nodes)
a7

156

7.36s

Big Step 7

class(A,bird) :- hascovering(

A feathers), habitat(A, land).

GEN(nm)+EVA(nm)

-

0.5ds (0.42-0.64s, 163 nodes)
163

0.13s (0.09-0.15s, 163 nodes)
163

examples retracted 549 549
subtotal 89.04 s 15.34 s
Big Step 8 class(A,bird) :- hascovering(A,feathers).
0.46s (0.38-0.56s, 99 nodes) | 0.08s (0.06-0.10s, 99 nodes)

GEN(nm)+EVA(nm)
examples retracted
subtotal

99
156
47.02 s

99
156
8.35s

Big Step 9 class(A,mammal) :- hascovering(A,hair).
GEN(nm)+EVA(nm) | 0.52s {0.41-0.78s, 163 nodes) | 0.10s (0.06-0.12s, 163 nodes)
£ 163 163

examples retracted 156 156

subtotal 87.38 s 15.62 s

Total cost 604.45 s 107.75 s

Table 4.5: Test case 1: result of sequential algorithm
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computation on the processor which takes the longest time in one big step. The value
of 3(rpg + 1) shows the measured communication cost. In the parallel approach with
6 processors, the 4000 examples are divided into 6 subsets. The number of big steps

is aiso 2. The test resuits is shown in Tabie 4.7.

Parameters Value on teaspoon [ Value on zeus

Big Step 1: concept induced

process 1 class(A,mammal) :- hascovering(A,hair).

process 2 class(A.fish) :- has-gills(A), hascovering(A,none) .

process 3 class(A,reptile) :- haslegs(A,4), habitat(A,water).

process 4 class(A.bird) :- hascovering(A,f eathers).

: (GEN(nm/p)+EVA(nm/p)) | 163*0.43s = 72.23 s | 163*0.06s = 9.98 s

3(rpg + 1) 0.21s 0.02s

examples retracted 3765 3765

subtotal 75.69 s 10.32 s

Big Step 2: concept induced

processes 1-4 class(A,reptile) :- not(has-gills(A)),
hascovering(A,scales).

¢ (GEN(nm/p)+EVA(nm/p)) | 57%0.41s = 23.65 57%0.04s = 2.39s

3(rpg + 1) 0.2017 s 0.01s

examples retracted 235 235

subtotal 26.44 s 2.71s

Total parallel algorithm cost | 105.86 s 13.05 s

Table 4.6: Test case 1: results of 4-process parallel algorithm

In the parallel algorithm with four processors, each processor induces a different
concept in the first step. So at the end of the first big step, each process has learnt
four valid concepts. In the second big step four processes induce only one concept.
In parallel algorithm with six processors, there are five concepts induced in the first
step. In the second big step six processes induce only one concept. Though there is

redundancy, the overall performance is still greatly improved. Table 4.8 shows the



70

Parallel Progol

Big Step 1: concept induced

process 1 class(A.mammal) :- hascovering(A,hair).

process 2 class(A.fish) :- has-gills(A), hascovering(A.none) .
process 3 class(A.reptile) :- haslegs(A,4), habitat(A,water).
process 4 class(A,bird) :- hascovering(A.f eathers).

process 5 class(A,reptile) :- hascovering(A,scales), habitat(A,land).
process 6 class(A.fish) :- has-gills(A), hascovering(A,none).

¢ (GEN(nm/p)
+ EVA(nm/p))

163*0.05s = 9.68 s

3(rpg + 1) 0.03 s

examples retracted | 3765

subtotal 10.34 s

Big Step 2: concept induced
processes 1-6 class(A,reptile) :- not(has-gills(A)), hascovering(A,scales).
¢ (GEN(nm/p)

+ EVA(nm/p)) 37*0.04s = 2.40s
3(rpg + 1) 0.02s

examples retracted | 235

subtotal 291s

Total parallel

algorithm cost 13.25 s

Table 4.7: Test case 1: results of 6-process parallel algorithm
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results of test case one. The costs of sequential algorithm and parallel algorithm
with four and six processors on both machines are compared. The row cost, shows
the average cost of one processor in parallel algorithm. The row cost, shows the
average cost 1n sequential algorithm. A double speedup phenomenon is observed in
this test case on both machines with different processor number, which is shown as

p* cost, < cost,.

Parameters teaspoon(4-process) | zeus(4-process) | zeus(6-process)
Number of examples | 4000 4000 4000

k. 2 2 2

ks 9 9 9

cost, 105.86 s 13.05s 13.25 s

cost, 604.65 s 107.75 s 107.75 s

cost, * p 423,44 s 52.0s 79.50 s

Table 4.8: Test case 1: comparison of sequential and parallel algorithm
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4.3.2 Test Result of Chess Move Learner.

Table 4.9 shows the test results for the sequential algorithm. The concepts induced
in each big step are shown. The value of GEN(nm)+EVA(nm) shows the cost to
generate and evaluate one candidate concept. The values shown in the table are
average values. The range and number of data nodes I collected are also shown. The
value of £ shows the number of candidate concepts generated in each step. The cost
of each big step should be roughly equal to s (GEN (nm)+ EVA(nm)). The sequential

algorithm takes 23 steps to generate all the rules.

In the parallel approach with 4 processors, the 4000 examples are divided into 4
subsets. Four processors induce the concept set on their subset of data in parallel.
The number of big steps is reduced to 4. The test results on both machines is shown
in Table 4.10. The concepts induced by different processors in one big step are shown
in the table. The value of £ (GEN (nm/p) + EVA(nm/p)) shows the cost of local
computation on the processor which takes the longest time in one big step. The value
of 3(rpg + 1) shows the measured communication cost. In the parallel approach with
6 processors, the 4000 examples are divided into 6 subsets. The number of big steps

is further reduced to 3. The test results is shown in Table 4.11.

This test case shows the scalability of the parallel algorithin. The parallel algorithm
with six processors induces concepts in a quicker way than with four processors. So
the total cost of the parallel algorithm with six processors is less than the cost with
four processors. Table 4.12 shows the results of test case two. The costs of sequential
algorithm and parallel algorithm with four and six processors on both machines are

compared. Though there is redundancy, i.e. the concepts induced in last big step



4.3 Test Results

73

c
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Parameters Value on teaspoon [ Value on zeus
Big Step 1 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,C,2).
GEN(nm)+EVA(nm) | 1.57s (0.90-1.81s, 22 nodes) | 0.13s (0.09-0.15s, 22 nodes)

22

exawmpies retracted 195 1395

subtotal 37.73 s 2.86s

Big Step 2 move(queen.pos(A,B),pos(C,D)) :- rdiff(B,D,7), {diff(A,C,7).
GEN(nm)+EVA(nm) | 1.51s (1.16-1.96s, 22 nodes) | 0.12s (0.09-0.15s, 22 nodes)

c 29 29

examples retracted 14 14

subtotal 35.99 s 2.66 s

Big Step 3 move(bishop.pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,1).
GEN{nm)+EVA(nm) | 1.49s (1.25-2.03s, 22 nodes) | 0.12s (0.09-0.15s, 22 nodes)

€ 22 22

<

examples retracted
subtotal

72
39.12 s

examples retracted 214 214

subtotal 35.52 s 2.39 s

Big Step 4 move(rook,pos(A,B),pos(C,B)) :- fdiff(A,C,5).
GEN(nm)+EVA(nm) | 1.39s (1.31-1.87s, 34 nodes) | 0.12s (0.09-0.15s, 34 nodes)
3 34 34

72
4.04 s

Big Step 5

move(queen.pos(A,B),pos(A,C)).

GEN(nm)+EVA(nm)

c

1.63s (1.43-1.96s, 34 nodes)
34

0.12s (0.09-0.13s, 34 nodes)
34

examples retracted
subtotal

556
57.84 s

examples retracted 302 202

subtotal 62.12 s 4.23 s

Big Step 6 move(rook,pos(A,B),pos(A,C)).
GEN(nm)+EVA(nm) | 1.57s (1.34-2.21s, 34 nodes) | 0.12s (0.08-0.14s, 34 nodes)
< 34

34
556

4.00s

......

Big Step 23 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,6), fdiff(A,C,6).
GEN{(nm)+EVA(nm) | 0.52s (0.41-0.78s, 22 nodes) | 0.10s (0.06-0.12s, 22 nodes)

£ 22 22

examples retracted 14 14

subtotal 2985s 2.29s

Total cost 1062.95 s 77.93 s

Table 4.9: Test case 2: results of sequential algorithm
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Parameters Value on teaspoon ] Value on zeus

Big Step 1: concept induced

process 1 move(king,pos(A,B).pos(C.D)) :- rdiff(B,D,1), fdiff(A,C,1).
e s €) | EES LN )

}JLUK.CDD A ivaiu

process 3 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E).
process 4 move(rook,pos(A,B),pos(C,B)).

: (GEN(nm/p)+EVA(nm/p)) | 51*0.56 s = 29.37 s | 51*0.12s = 6.27 s

3(rpg + 1) 0.0998 s 0.01s

examples retracted 848 848

subtotal 32.60 s 6.58 s

Big Step 2: concept induced

process 1 move(queen.pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E).
process 2 move(queen.pos(A,B),pos(C,B)).

process 3 move(knight.pos(A.B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,2).
process 4 Invalid

: (GEN(nm/p)+EVA(nm/p)) | 49*1.50s = 73.98 22*%0.12s = 2.62s

(rpg + 1) 0.0406 s 0.03s

examples retracted 1720 1720

subtotal 77.67s 2.76 s

Big Step 3: concept induced

process 1 move(queen,pos(A,B),pos(A.C)).

process 2 move(knight,pos(A,B),pos(C.D)) :- rdiff(B,D,2), fdiff(A,C,1).
process 3 move(king,pos(A.,B),pos(A,C)) :- rdiff(B,C,1).

process 4 move(rook,pos(A,B),pos(A,C)).

: (GEN(nm/p)+EVA(nm/p)) | 34*1.68s = 56.42's | 29*0.11s = 3.22 s

3(rpg + 1) 0.2706 s 0.03s

examples retracted 1344 1344

subtotal 59.54 s 3.29s

Big Step 4: concept induced

processes 1-4

move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1).

¢ (GEN(nm/p)+EVA(nm/p))

34*1.65s = 56.42s | 28*0.08s = 2.33s

3(rpg + 1) 0.404 s 0.03 s
examples retracted 88 88
subtotal 58.33s s 2.38 s
Total parallel algorithm cost | 237.84 s 15.02 s

Table 4.10: Test case 2: results of 4-process parallel algorithm
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Big Step 1:

concept induced

process 1
process 2
process 3
process 4
process 9
process 6

move(king,pos(A,B),pos(C.D)) - rdiff(B,D,1), fdiff(A,C,1).
move{qucen,pos{A,B),poes{C,D}) - rdifi(B,D,E}, fdiff{A,C,E).
move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E).
move(rook,pos(A,B),pos(C,B)).
move(king,pos(A,B),pos(C,D)} :- rdiff(B.D,1), fdiff(A,C,1).
move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1).

¢ (GEN(nm/p)

+ EVA(nm/p))
3(rpg + 1)
examples retracted
subtotal

51*0.07s = 3.73 s
0.04 s

2180

1.08 s

Big Step 2: concept induced

process 1 move(queen,pos(A.B).pos(A.C)).

process 2 move(queen.pos(A.B).pos(C.B)).

process 3 move(knight.pos(A,B).pos(C.D)) :- rdiff(B,D,1), fdiff(A,C,2).
process 4 move(rook,pos(A.B),pos(A.C)).

process 5 move(queen,pos(A.B).pos(A,C)).

process 6 move(knight,pos(A,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,C,1).

¢ (GEN(nm/p)

+ EVA(nm/p))
3(rpg + 1)
examples retracted
subtotal

22%0.067s = 1.51s
0.04s

1720

1.67s

Big Step 3:

concept induced

processes 1-6

move(king,pos(A,B),pos(A,C)) :- rdiff(B,C,1).

e (GEN(nm/p)
+ EVA(nm/p))

29%0.047s = 1.36 s

3(rpg + 1) 0.05s
examples retracted | 88
subtotal 1.99 s
Total parallel

algorithm cost 7.74s

Table 4.11: Test case 2: results of 6-process parallel algorithm
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are th same, the overall performance is still greatly improved. The row cost, shows
the average cost of one processor in parallel algorithm. The row cost; shows the

average cost in sequential algorithm. A double speedup phenomenon is observed in

Y- . P FTY S N SO PN S LT« Yasusey
this test case on both machines with differcnt

6 * costg < 4 *costy < cost,.

K
PrOCCS50T niuiioc

Parameters

teaspoon (4-process)

zeus (4-process)

zeus (6-process)

Number of examples
kr

ks

cost,

cost,

cost. = p

4000

4

23
23784 s
1062.95 s
951.36 s

4000

il

23
15.02
77.93 s
60.08 s

4000

3

23
7.74 s
7793 s
46.44 s

Table 4.12: Test case 2: comparison of sequential and parallel algorithm
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4.3.3 Test Result of Chess Game Ending Illegal Problem

Table 4.13 shows the test results for the sequential algorithm. The concepts induced
in each big step are shown. The value of GEN(nm)+EVA(nm) shows the cost to
generate and evaluate one candidate concept. The values shown in the table are
average values. The range and number of data nodes I collected are also shown. The
value of ¢ shows the number of candidate concepts generated in each step. The cost
of each big step should be roughly equal to e (GEN (nm) + EVA(nm)). The sequential

algorithm takes 12 steps to generate all the rules.

In the parallel approach with 4 processors. the 2000 examples are divided into 4
subsets. Four processors induce the concept set on their subset of data in parallel.
The number of big steps is reduced to 4. The test results on both machines is shown
in Table 4.14. In the parallel approach with 6 processors, the 2000 examples are
divided into 6 subsets. The number of big steps is also. The test results is shown
in Table 4.15. As in test case 1 and 2, different processors induce some redundant

concepts. But the overall performance is improved.

Table 4.16 shows the results of test case three. The costs of sequential algorithm
and parallel algorithm with four and six processors on both machines are compared.
The row cost, shows the average cost of one processor in parallel algorithm. The row
cost, shows the average cost in sequential algorithm. A double speedup phenomenon
is observed in this test case on both machines with four processors. However, the
parallel algorithm with six processors does not show such a phenomenon, though
cost, with six processors is less than cost, with four processors. This is partly due

to the example set which, in this test case, does not show enough scalability. So
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Parameters Value on teaspoon | Value on zeus
Big Step 1 illegal(A,A.B,C,B,D) :- adj(A,B), adj(A,C).
0.70s (0.50-1.89s, 248 nodes) | 0.08s (0.06-0.15s, 248 nodes)

GEN(nm)+EVA(nm)

-

248

248

examples retracted 16 16
subtotal 178.01 s 20.79 s
Big Step 2 illegal(A,B,C.D,C,A) - adj(D,A), adj(B,C).
0.50s (0.43-0.83s, 633 nodes}) II 0.07s (0.05-0.15s, 633 nodes)

GEN{(nm)+EVA(nm)
examples retracted
subtotal

633
20
336.95 s

633
20
42.33 s

Big Step 3

illegal(A.B.C.D.E,D)

T adj(A,B), adj(A.C).

GEN(nm)+EVA(nm)

-

0.57s (0.39-0.95s. 212 nodes)
212

0.07s (0.05-0.15s, 212 nodes).
212

examples retracted 120 120
subtotal 121.62 s 15.05 s
Big Step 4 illegal(A,B.C.D,E.F) :- adj(A,E), adj(B,F).
0.69s (0.63-0.93s, 248 nodes) | 0.08s (0.06-0.15s, 248 nodes)

GEN{(nm}+EVA(nm)
examples retracted
subtotal

248
680
17147 s

248
680
19.89 s

Big Step 12

illegal(A,B,C.D,E,D).

GEN{nm)+EVA(nm)

[

0.37s (0.20-0.78s, 165 nodes)
165

0.04s (0.02-0.06s, 165 nodes)
165

examples retracted 96 96
subtotal 6l.14s 7.31s
Total cost 1239.88 s 150.58 s

Table 4.13: Test case 3: results of sequential algorithm
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Parameters Value on teaspoon | Value on zeus

Big Step 1: concept induced

process 1 illegal(A,B,C.D.E,F) :- adj(E,A), adj(B,F).
process 2 Invalid

process 3 illegal(A.B,C,D,C,E).

process -1 illegal(A,B,C.D,C.E) :- adj(C.E).

¢ (GEN(nm/p)+EVA(nm/p))
3(rpg + 1)

121*0.44 s = 53.49 s
0.093 s

51*0.12s = 7.54 s
0.04 s

examples retracted 1305 1305

subtotal 56.13 s 6.58 s

Big Step 2: concept induced

process 1 illegal(A,B,C,D.D,D) :- adj(A,C).

process 2 illegal(A.B.C,C.D,C) :- adj(A,D), adj(C,D).
process 3 illegal(A,B,C,D,E.D) :- adj(A,C), adj(D,E).
process 4 illegal(A,B,C,D,E,D) :- adj(A,C), adj(D,E).

¢ (GEN(nm/p)+EVA(nm/p))

267*0.26s = 70.56

267*0.03s = 8.31s

3(rpg + 1) 0.262 s 0.02s
examples retracted 133 153
subtotal 73.95 s 8.71s

Big Step 3: concept induced

process 1 illegal(A.B,A,B.C,D).

process 2 illegal(A,B,C,D,E.D) :- adj(D,E).
process 3 illegal(A,B,C,D,E.D) :- adj(D,E).
process 4 illegal(A,B,C,D,E,D) :- adj(D,E).
s (GEN(nm/p)+EVA(nm/p)) | 357*0.25s = 91.81s | 357*0.03s = 11.04 s
3(rpg + 1) 0.216 s 0.03 s
examples retracted 195 195
subtotal 92.52 s 11.35s
Big Step 4: concept induced

process 1 illegal(A,B,C,D,E,D).

process 2 illegal(A.B,C.D,E,D) :- adj(A,C).
process 3 illegal(A,B,C,D.E,D).

process 4 illegal(A,B,C.D,E,D).

¢ (GEN(nm/p)+EVA(nm/p))
3(rpg + 1)

268*0.24s = 65.28 s
0.20s

268*0.03s = 7.82s
0.04s

examples retracted 348 38
subtotal 68.89 s 8.02s
Total parallel algorithm cost | 293.07 s 36.14 s

Table 4.14: Test case 3: results of 4-process parallel algorithm
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Big Step 1: concept induced

process 1 Invalid

processes 2-4 illegal(A,B,C,D,C,E).

process 3 illegal(A,B,C,D,E D) - adj(D,C), adj(C,E).
proucess § illegal{A,B,C,D,E,D) :- adj{D,C).

¢ (GEN(nm/p)+EVA(nm/p)) | 267*0.03s = 8.78 s

3(rpg + 1) 0.03 s

examples retracted 680

subtotal 9.27 s

Big Step 2: concept induced

process 1 illegal(A,B,C,D,E.D) :- adj(A,C), adj(E,D).
process 2 illegal(A,B,C,D,E,D) :- adj(B,D).

process 3 illegal(A.B,C.D,E,D) :- adj(A,C), adj(D,E).
process 4 illegal(A,B,C,D.E.B) :- adj(A,E).

process 5 illegal(A,B.C,A,D,E) :- adj(A,D), adj(B,E).
process 6 illegal(A,B.C,D,E,B) :- adj(A,E).

¢ (GEN(nm/p)+EVA(nm/p)) | 248%0.03s = 6.24s

3(rpg + 1) 0.01s

examples retracted 720

subtotal 6.66 s

Big Step 3: concept induced

processes 1,3,4 illegal(A,B,C.D.D.E) :- adj(A,D), adj(B,E).
process 2 illegal(A,B.C,D,E,D).

process 5 illegal(A,B,C,D,E,D) :- adj(A,C).

process 6 illegal(A,B,C,D,E,D) :- adj(E,D).

£ (GEN(nm/p)+EVA(nm/p)) | 215%0.02s = 4.23 s

3(rpg + 1) 001ls

examples retracted 340

subtotal 4.535 s

Big Step 4: concept induced

process 1 illegal(A,B,A,B,C,D).

process 2 illegal(A,B,A,B,C,D) :- adj(B,D).

process 3-6 illegal(A,B,A,B,C,D).

¢ (GEN(nm/p)+EVA(nm/p)) | 462*0.017s = 7.66 s

3(rpg + 1) 0.009 s

examples retracted 260

subtotal 797 s

Total parallel algorithm cost | 28.44 s

Table 4.15: Test case 3: results of 6-process parallel algorithm
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processors waste time doing redundant work when processors becomes large.

Parameters

teaspoon (4-process )

zeus (4-process)

zeus (6-process)

k,
ks

cost,
costy

cost. * p

Number of examples

2000

4

23
293.07 s
1239.88 s
1172.28 s

2000

4

23

36.14
150.58 s
144.36 s

2000

4

23
28.44 s
150.58 s
170.64 s

Table 4.16: Test case 3: comparison of sequential and parallel algorithm

4.3.4 Summary.

Super-linear speedup is observed in all these test cases. I might expect the parallel

implementation using p processors to take time cost;/p if I ignore the communication

overhead. But here in the experiment it executes even faster due to the information

exchange between processors and reduction of subsequent work. There is a big per-

formance improvement with a small p. Though I did the experiments on a p-processor

SMP machine, I believe that the parallel ILP algorithm is scalable given that each

subset of data is still big enough to induce correct concepts. And the double speedup

phenomenon will be observed with a larger processor set.
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Chapter 5

Conclusion

In this thesis I studied the use of inductive logic to generate concepts from very
big datasets in parallel. [ use p processors to do the data-mining job, each on a
subset of the full dataset. A set of concepts are generated from disjoint subsets of
the full dataset used for mining. The distributed concept sets are total exchanged
and evaluated before merging the valid ones into the final concept set. The final set
of concepts is free of conflicts and has accuracy equivalent to a set of rules developed
from the full dataset. The disk /O access cost for each processor will be reasonably

reduced by 1/p.

Since each processor learns concepts independently on its subset, there are some

issues that I have discussed in this thesis:
e How to secure the accuracy of induced theory on smaller datasets;
e How to deal with negative examples;

e How to reduce communication overhead; and
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e How to avoid redundant work by individual processes.

I presented a parallel ILP data-mining algorithm using the BSP model and gave its
cost analysis. I implemented a parallel version of a core ILP system - Progol — using
C with the support of Oxford BSPlib. I developed several different test cases to
show typical speedup. With all the test results, a double speedup phenomenon was

observed which greatly improved the performance of ILP data-mining algorithm.

From the analysis of the parailel ILP data mining algorithm and the test results
of parallel Progol, I can draw the conclusion that the benefits of the performance
of parallel computing for [LP data mining is obvious. Though the cost measures
in the implementation is not complete accurate and the parallel version of Progol
has its limitation. they are expressive enough to show that even modestly parallel
implementations of ILP algorithm can achieve significant performance gains. The

following is what I discovered in my study:

First, inductive logic programming employs first-order structural representations,
which generalizes attribute-value representations, as examples now may consist of
multiple tuples belonging to multiple tables. These representations can succinctly
represent a much larger class of concepts than propositional representations and have
demonstrated a decided advantages in some problem domains {19]. By using first-
order logic as the knowledge representation for both hypotheses and observations,
inductive logic programming may overcome some major difficulties faced by other
data-mining systems. ILP inheritates well-established theories, algorithms and tools
from computational logic. Background knowledge helps in restricting the hypothesis

search and is a key factor for incremental and iterative learning.
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Second, the BSP model provides a simple way to implement a parallel ILP data-
mining system and gives a relative accurate cost model based on counting computa-
tions, data access, and communication. Based on BSP model, I have confidence to
give a relative accurate ~ost analysis to the test results.

Third, replicated implementation is shown to be a simple, yet powerful, approach to
parallel ILP system design. Independent search is simple and works well for minimiza-
tion problems. However, it does not divide the dataset, so it cannot reduce the disk
access. Therefore, it is not suitable for problems with huge dataset. The fine-grained
parallelism in parallelized approaches requires more communication, so I do not use
this approach in out parallel ILP data-mining algorithm. The replicated approach
is often the best way for parallelizing ILP data-mining applications. Previous work
in {27] shows that the replicated approach gives the best performance improvement
among all these three approaches introduced above. It gives a way for the algorithm
to exploit collective knowledge quickly. The parallel algorithm exchanges information
after each phase. The knowledge gained by one processor in a step will be exchanged
with all other processors during the end of that step. In this way, once the algo-
rithm has found a concept that can explain part of the data, it does not need to
examine that part again. So there is less work for the next phase. A double speedup
phenomenon is observed in this parallel algorithm, as shown is Table 5.1, 5.2, 5.3.

Double Speedup 1

Example Sequential cost | Processors | Parallel cost | Parallel cost*4
Animal 604.65s 4 105.86s 423.44s
Chess Move 1062.95s 4 237.84s 951.36s
Game Ending 1239.88s 4 293.07s 1172.28s

Table 5.1: Double speedup on teaspoon with 4 processors
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Double Speedup 2

Example Sequential cost | Processors | Parallel cost | Parallel cost*4
Animal 105.86 s 4 13.05s 52.50 s
Chess Move 77.93 s 4 15.02 s 60.08 s
Game Ending 150.58 s 4 36.14 s 144.56 s

Double Speedup 3

Table 5.2: Double speedup on zeus with 4 processors

Example Sequential cost | Processors | Parallel cost | Parallel cost*4
Animal 105.86s 6 13.25s 79.50 s
Chess Move 7793 s 6 T.74 s 44.64 s
Game Ending 150.538 s 6 28.44 s 170.64 s

Table 5.3: Double speedup on zeus with 6 processors

Finally, though my test results are obtained from 4 and 6 processor SMP machines,
it is reasonable to assume the scalability of this parallel approach to modest number of
processes. Since the communication overhead is small, the parallel ILP algorithm will
work well with more processors provided that each subset of data on one processor is

big enough to induce accurate concepts.
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Appendix A

PCProgol Implementation

Oxford BSPlib is the platform used to implement the parallel version of CProgol. [
made the necessary modifications to CProgol 4.4 to make it work in parallel.

At the beginning of the main() function, I call bsp_begin(int process_number) to
start p processes. The number of processor can be modified as a parameter. Each
process needs to be allocated to a processor. If more than one process is allocated
to one processor the performance will be greatly affected due to the barrier synchro-
nization. Each process will get its process ID by bsp_pid(). In this way I can tell
which process is inducing concepts. At the end of the program bsp_end() is called to
terminate the program. Function c_doall() will perform all the induction procedures

describe in the parallel algorithm.

The main function starts:

main() {

// BSP Begin, X = number of processes = number of processors
bsp_begin{X);

// get my process ID

pid = bsp_pid();
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// Analyze command line parameters
checkargs(argc,argv,envp);

// nitialise built-in predicates
I_init();

// Begin induction process
c_doall(fileroot_in, fileroot_out);
// close all files

c_close();

return(11);

// BSP End

bsp_end();

In CProgol, the big loop structure is implemented in the procedure c_sat(}. I
modified the big loop structure in c_sat() to make it work in parallel on several
processors. c_sat() is the core procedure which does top-down search, asserts result
if compressive and does theory reduction. The whole structure in the PCProgol will

be made clear once [ introduce the function of c_sat(}.

c_sat() first declares local variables. Some of these variables are used for BSP
communication. A function cputime() is called to record computation and commu-
nication cost.

PREDICATE
c_sat(cclause,nex)
//DECLARE LOCAL VARIABLES
//Start recording computation time
start = cputime();

Once all the local variables are allocated, bsp_push_reg() is called to register
necessary variable for communication. A synchronization function bsp_sync() is then
called to make it happen.

/*register variables for BSP communication*/
bsp_push_reg(concept,sizeof(char)*MAXMESS*X);
/*synchronization point*/
bsp._sync();

ct_sat() and cl_symreduce() are then called for generating the most specific clause
for the example selected.
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//generate the most specific clause
if (hypothesis = ct_ sat(cclause,atoio,otoa,&head))
cl_symreduce(&hypothesis,atoio,head),
outlook=r_outlook(hypothesis,head,otoa,atoio);
vdomains=r_vdomains(otoa,atoio);
if(verbose>=2)
fprintf(tty_file— >file,'Most specific clause is:');
cl_print(hypothesis);

Function r_search() will search in the hypothesis space to find a locally-correct
hypothesis. If a successful hypothesis is found, then bsp_put() is called to send this
hypothesis to all other processes. It is followed by a synchronization function call.

// search for locally-correct concept
r_search(&hypothesis,atoio,otoa,outlook,vdomains,fnex);
if(hypothesis&& 'L_EMPTYQ(hypothesis))

cl_unflatten(hypothesis);

if(verbose>=1)
fprintf(tty _file— >file,'Result of search is:');
cl_print(hypothesis);

result=TRUE;

else
fprintf(tty_file— >file,'[No compression]’);
result=FALSE;

// propagate hypothesis to other processes
for (i = 0;i<X;i++)
bsp_put(i,hypothesis,receive,0,sizeof (char) *MAXMESS);

bsp_sync();

The size of data in the first round of total exchange is a character string. Its size
is defined by the macro MAXMESS to be 40 characters in PCProgol. After the global
synchronization, each process gets all the hypotheses generated in this step. Then it

will perform the evaluation. It will get the number of positive examples covered and
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the number of negative examples wrongly covered by one hypothesis relative to its

local example set.
Once each processes get all the p and n values for all the hypothesis, the score f
will be calculated for that hypothesis. There will be a second-round total exchange.

g T o, P L}-- lembmmnee semlesm a8l L cen accnlinnvnd
L1115 cillie€ Oty o€ IOUEEET vVall€ Ot 1 ar€ €XCiianged.

// use BSP model to get other processes’ hypotheses and evaluate them
for(int i=0; i<x,i++)
if (pid ! = i)
ITEM cl,call=d_gcpush(cl=i_copy(re_hyp[i])):
LIST *end=cl_push(re_hypli]);
PREDICATE negg=(PSYM(HOF((LIST)I_GET (re_hypl[i]}))):
p[i]=(int)cl_pcoverage(call,L_GET(*end));
if (r_posonly())
n[i] = (int) ci_dcoverage(call fnex);
else
n[i] = (int) cl_ncoverage(negq,call,L_GET(*end));

f[i] = get_score(pfi].n[i])4:

for(i = 0;i<X;i++)

if(pid '=1)
for(j=0;j<X;j++) bsp,ut(i, fli]. rec_f[j}.0.sizeof(int});
bsp_sync();

According to f value from each processes, one process can decide if the hypothesis
generated in this step is valid or not. And then during the third round communication
the boolean value of validate will be total exchanged.

// Test if the hypothesis is valid or not.
Validate = validate_test(f[pid]);
// propagate validation result to other processes
for( i=0;i<4;i++)
if(pid!=i)
bsp_put(i,validate,go,pid*sizeof(int),sizeof(int));
bsp_sync();

After the third round communication, all the valid hypothesis induced in this step
will be updated to background knowledge and all the redundant examples will be
retracted from each subsets.
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for(i=0;i<X,i++)
if(pos&&cover) c_updbsamp(psym,cclauseli});
cl_assert(cclausel FALSE, TRUE, TRUE,FALSE,(\TEM)NULL);
i_delete(cclausel);
d_treduce(psym);

The total communication cost is small because the size of data to be exchanged

is small.
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