
-4 thesis submitted to the

Department of Computing and Information Science

in conforrnity wit h the requirements for

the degree of Master of Science

Queen's University

Kingston, Ontario, Canada

January 2000

Copyright @ Yu Wang, 2000

National Library m*m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, nie Wellington
Ottawa ON K1A ON4 Ottawa ON KI A ON4
Canada Canada

Your fi8 Voire refertmce

Our rVe Notre refdrence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in ths thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fih, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Data-mining is the process of automatic extraction of novel, useful and understand-

able patterns from very large databases. High-performance, scalable, and parallel

computing algorithms are crucial in data mining as datasets grow inexorably in size

and coniplesity. Inductive logic is a researcli area in the intersection of machine

learning and logic programming, whicli has been recently applied to data mining.

Inductive logic studies learning from examples, within the framework provided by

clausal logic. It provides a uniform and very expressive means of representation:

1\11 examples, background knowledge as well as the induced theory are expressed in

first-order logic. Howvever. such an espressive representation is often compu tation-

ally expensive. This thesis first presents the background for parallel data mining,

the BSP model. and inductive logic programming. Based on the study, this thesis

gives an approach to parallel inductive logic in data mining that soives the potential

performance problem. Both parallel algorithm and cost analysis are provided. This

approach is applied to a number of problems and it shows a super-linear speedup. To

justify this analysis, 1 implemented a parallel version of a core ILP -stem - Progol -

in C with the support of the BSP parallel model. Three test cases are provided and

a double speedup phenornenon is observed on al1 these datasets and on two different

parallel cornputers.

Acknowledgment s

1 would like to thank rny supervisor, Dr. David Skillicorn, for his guide, encour-

agement and support throughoot the course of the thesis. My gratitude also extends

to Ken CVhelan for his siiicere tielp on rny thesis writing. The CISC students, faculty

and staff at Queen's were always helpful and a great pleasure to work with.

1 would also like to express rny gratitude to al1 my friends in Kingston, for their

always-sincere support to my living and study abroad.

Finally, 1 would like to specially thaiik ni- aife - Cao Qun - who gave me her deep

love and support during rny study. which 1 has relied on during my entire stay here.

iii

Contents

1 Introduction 1

2 Inductive Logic Theory and The BSP Mode1 7

i 2.1 Introductiori . i

2.2 The Theory of First-order Logic . 8

2.3 Theory of Inductive Logic Programming 10

2.4 Theory of MDIE . 14

2.5 Existing ILP systems and applications 18

2.6 SequentialILP.\lgorithm . 23

2.6.1 A Sequential ILP Algorithm 23

. 2.6.2 Cost of sequential ILP data-mining algorithms 27

2.7 Introduction to the BSP mode1 . 29

3 Parallel Inductive Logic in Data Mining 35

3.1 Reason. possibility and approaches of parallel ILP in data rnining . . 36

3.2 Logical Settings Of Pardlel ILP . 39

3.3 An Approach to Parallel ILP Using the BSP Mode1 40

3.4 Potential problems with this approach 43

vi CONTENTS

. 3.4.1 Accuracy of induced theory on smaller dataset 43

. 3.4.2 Dealing with Negative Examples 44

. 3.4.3 Communication Overhead 45

. 3.4.4 Redundant CVork by Individual Processors 47

3.3 Cost Analysis . 48

4 Parallel Progol 53

. 4.1 Parallel Progol Algorithm 53

. 4 . 2 TestCases 56

. 4.3 Test Results 64

. 4.3.1 Test Result of Animal Classificût ion 67

. 4.3.2 Test Result of Chess Move Learner 72
CI- 4.3.3 Test Result of Chess Game Ending Illegal Problem r (

. 4.3.4 Sumniary 81

5 Conclusion 83

Bibliography 87

A PCProgol Implementation 93

Vit a 99

List of Tables

. 2.1 BSPlib Operation 34

. 4.1 Test cases and sequential performance 57

. 1.2 System Information 66

. 4.3 Nean SEL EVA and RET \Lilues in Sequential Algorithm 66

. 4.4 Mean SEL, EV.1. and RET Values in Parallel Algorithm 67

. 4.5 Test case 1: result of sequential algorithm 68

. 4.6 Test case 1: results of 4-process parallel algorithm 69

. 4.7 Test case 1: results of 6-process parallel algorithm 70

. 4.8 Test case 1: cornparison of sequential and parallel algorithm 71

. 4.9 Test case 2: results of sequential algorithm 73

. 1.10 Test case 1: results of 4-process parallel algorithm 74

. 4.11 Test case 2: results of 6-process parallel algorithm 73

. 1.12 Test case 2: comparison of sequential and parallel algorithm 76

. 4.13 Test case 3: results of sequential algorithm 78

. 4.11 Test case 3: results of il-process parallel algorithm 79

4.13 Test case 3: results of 6-process parallel algorithm 80

4.16 Test case 3: cornparison of sequential and parallel aigorithm 81

vii

viii LIST OF TABLES

5.1 Double speedup on teaspoon with 4 processors 85

5.2 Double speedup on Zeus with 4 processors 86

5.3 Double speedup on zeus with 6 processors 86

List of Figures

2.1 Sequential ILP Algorithm . 24

3.1 Parallel ILP Algorithm . 41

. 4.1 Parallel Progol Algorithm 54

Chapter 1

Introduction

Basis of this thesis. This thesis shows a parallel data-rnining algorithm that can

be applied to large database rnining using inductive logic programming. The cen-

tral hypothesis of this thesis is that it is necessary ancl feasible to adopt parallel

algorithms in the data mining process. 1 show that parallelism can be efficiently a p

pliecl to inductive logic prograrnming (ILP). The powerful knowledge representation

and excellent integration with background knowledge of ILP has sliown a great value

arnong dat a-mining algorit hms.

What is data mining? The field of data mining is concerned with the theory

and processes involved in the representation and efficient extraction of interesting

patterns or concepts from very large databases. Most of these concepts are implicit

in the database records. Data mining is an interdisciplinary field merging ideas from

st atistics, machine learning, dat abases, and high-performance computing.

Introduction

What is ILP and its role in data mining. Inductive Logic Programming is a

relatively new machine learning technique adopted in the data-mining research area.

Many researchers have turned to ILP only in the last 5 to 10 years ['il. It is defined

i:.î the intersection of machine learning and logic prograniming, and has grown to

hecome a substantial sub-area of botli of them [24]. The success of the subject lies

partly in the choice of the core representation language of logic programs. The syntax

of logic programs provides modular blocks which, when added or removed, general-

ize or specialize the program. ILP provides a uniform and very expressive mearis

of representation: All esaniples, background knowledge, and the induced theory are

espressecl in first-order logic. Due to this uniform representation, the use of back-

ground knowledge fits very well withiri a logiçai approach towards machine learning.

Theory and background knowledge are of the same form: they are just derived from

different sources: theory cornes from inductive learning while the background knowl-

edge is provided by the user of the system (61. Previous esperiences (71 showed that

some dornain knowledge can be best expressed in a first-order logic, or a variant of

first-order logic. The use of such domain knowledge is crucial in certain data-mining

systerns. such as learning drug structure-activity rules [33], because it is essential for

achieving intelligent behavior. ILP inherits well-established theories, algorit hms and

tools from computational logic. Many inductive logic programming systems bene-

fit from using the results of computational logic. There is already a wide range of

data-mining applications using ILP algorithms.

Problem with inductive logic in data mining. There exist workable sequentid

algorit hms for data mining, e.g. neural networks (2'71, association rules [l], decision

trees [16], and inductive logic programrning [7] that have already been applied to a

Introduction 3

wide range of real-world applications. However, evploring useful information from

a huge amount of data will require efficient parallel algorithms running on high-

performance computing systems. The most obvious (and most compelling) argument

ml
~ U L . p a l a k i i ù ~ i ~ ~ e v u i w ~ UUUII~ Ji~LaLue ~ i ~ t . . lue CIa laheb ~ 3 r d LL. claia niiriirig

are typically extremely large, often containing the details of the entire history of a

company's standard transactional databases. .As these databases grow past hundreds

of gigabytes towards a terabyte or more. it becomes nearly impossible to process them

on a single sequential niachine, For both time and space reasons: no more than a frac-

tion of the database çan be kept in main meniory at any giwn time, and the amount

of local disk storage and bandwidth needed to keep the sequential CPU supplied

ni th data is enormous. Additionally, with an algorithm that requires many corn-

plete passes over the database. wliich is the case in most ILP algorithms, the actual

running time required to cornplete the algorithm becomes excessive. Because of the

use of a more espressive representation, inductive logic programming techniques are

often computationally more expensive than their propositional counterparts. This

efficiency issue becomes more severe wlien the dataset is very large. Furthermore,

many ILP algorithms have to go through the full dataset many times to get a suc-

cessful induced concept set. Such an approach seems impractical to solve real-world

data-rnining jobs. So how to make these ILP algorithms work more effectively and

efficiently has become an interesting research topic.

Contribution of this thesis. In this thesis 1 study the use of inductive logic to

generate concepts from very big datasets in pardlel. I use p processors to do the

data-mining job, each on a subset of the full dataset. A set of concepts is generated

from disjoint subsets of the full dataset used for mining. The distributed concept sets

4 Introduction

are eschanged and evaluated before merging the valid ones into the final concept set.

The final set of concepts is free of conflicts and same as the set of d e s developed from

the full dataset. In this way the disk I/O access cost for each processor is reduced by

The algorithm works in this way First it divides the entire dataset and allocates

each subset of data to a processor. Theri each processor esecutes the same sequential

ILP algorithm to find its locally-correct concepts. At the end of one step, al1 these

processors eschange their discoveries and evaluate the induced concepts generated in

t liis step. When each processor has collected al1 the feedback froni other processors,

it can decide if its locally-correct concepts are globally-correct. If so. it will inforrn

;il1 otlier processors to add this valid concept to the final concept set and remove the

redundant esamples covered by this concept. This completes one big step. This loop

ail1 continue until al1 the positive examples are covered by induced concepts.

Since each processor learns concepts independently on its subset, there are some

issues that 1 will explore in this thesis:

How to secure the accuracy of induced tlieories on smaller datasets;

0 How to deal with negative examples;

Hosv to reduce communication overhead; and

0 How to avoid redundant work by individual processes.

1 build a parallel version of a core ILP system - Progol [22] - that shows super-linew

speedup in its learning process for a range of data mining problems.

Introduction 5

Chapter 2 of this thesis presents the theory and method in inductive logic pro-

gramrning. It reviews several ILP systems and their application in data mining. A

particular approach in ILP - Mode-Directed Inverse Entailment (-VIDIE) [22] - is

examineci in cietaii aç it is the b a i s for the paraiiei version o i Progoi. The B d k Syn-

chronous Parallelism (BSP) [SI mode1 is discussed in the latter part of this chapter.

.A sequential ILP data-mining algorithm and its cost analysis is also provided.

With the theoretical fouridations of inductive logic programming in hand, Chapter

3 presents an approach to parallel inductive logic. First a general logical setting for

parallel inductive logic programming is given, followed by a detailed discussion of the

parallel ILP model. The issues and problems involved in this approach are explored,

and a cost analysis is provided.

To examine and support the parallel algorit hm discussed in Chapter 3, Chapter 4

presents a parallel ILP system - Parallel Progol. I built this system using the BSP

model. It is based on the C version program of Progol impleniented by Muggleton.

Several test cases are provided and a super-linear speedup phenomenon is explained.

Finally, Chapter 3 summarizes the findings of this thesis and @es a conclusion.

6 Introduction

Chapter 2

Inductive Logic Theory and The

BSP Mode1

2.1 Introduction

There are three purposes to this chapter. First, the theory of Inductive Logic Pro-

grarnming (ILP) is briefly introduced. Then a more detailed discussion of one popular

ILP approach - Mode-Directed Inverse Entailment (MDIE) - follows. .4 review of

some ILP systerns and applications is provided as well. Second, a sequential ILP al-

gonthm based on the MDIE approach is presented, and its cost andysis is provided.

Finally, the Bulk Synchronous Parallelism (BSP) mode1 is presented. These three

parts form the t heoretical foundations of t his thesis.

8 Inductive Logic Theory and The BSP Model

2.2 The Theory of First-order Logic

A first-order language [20] comprises variables, constant symbols, and predicate

symbols with their arities. A t e n n in a given language is either a variable or a con-

stant. A n atom is an expression p (t l , . . . : t,), in which t l , . * * , t, are terms, and p is

an n-ary predicate synibol. An atom is yround if it does not contain any variables.

-4 literal is an atom (A) or the negation of an atom (not A). -1 well-formed-formula

is formed using literals and operators such as conjunctiori. negation, and implication,

and the quantifiers V and 3. A sentence is a closed aell-formed-formula (al1 vari-

ables quantified). A clame is a disjunction of literals. with al1 variables universally

quantified.

Horn clauses. .-\ definite prograrri clause is a clause containing one positive, and

zero or more negative literals. A definite goal is a clause containing only negative lit-

erals. .-\ Horn clause is either a definite program clause: or a definite goal. If a definite

program clause consists of the positive literal .A and the negative literals BI, . . . , B,,

then it can be written as

mhere .A is called the head of the clause and BI, . . . , B, are called the body literals

of the clause [7]. The symbol Bi is the negation of Bi.

Model theory. Part of the semantics of first-order logic is a definition of the relation

between the terms in the language, and the domain of interest. Each term refers to

(or denotes) an object Erom this domain. -4 pre-inteipretation J of a first-order logic

2.2 The Theory of First-order Logic 9

language L consists of the following: [7]

1. A non-empty set D! called the domain of the pre-interpretation.

2. An assignment of carh constant in L to an element of D.

A variable assignment V with respect to L is a mapping from the set of variables in

L to the domain D of .J.

An interpretatim I of a first-order language L consists of the following:

A pre-interpretation J . with soine clomain D, of L. I is said to be based on J.

An assignment of each n-ary predicate symbol p in L to a mapping I, from Dn

to T: F.

Let b be a formula! and 1 an interpretation. The formula # is said to be tn ie vnder

1 if its truth value under I is T. The interpretation I is then said to satisfy 4. Let 0

be a formula7 arid I an interpretation. The interpretation I is said to be a model of 0

if I satisfis 0. The formula II is then said to haoe I as a model. For example, let the

interpretation I have D = 1,- as domain. P be a binary predicate interpreted as 2:

and let a denote 1 and b denote 2. Then I is a model of the formula V x P (x , x) since 1

> 1 and 2 2 2. On the other hand, 1 is not a niodel of the formula V d y (not) P (x , y),

since there is no number n in the domain for which 2 1 n is false [î].

Subsumption of concepts. Computing whether one concept subsumes-is more

general than-another is a central facility in al1 ILP systems. Subsumption is the gen-

erality order that is used most often in ILP. The reasons are mainly practical: Sub-

sumption is more tractable and more efficiently implementable than implication [7]. A

common method for subsumption computation is based on so-called 8-subsurnptia.

10 Inductive Logic Theory and The BSP Mode1

Let C and D be clauses. CVe Say C subsumes D. denoted by C D, if there exists

i i substitution B such t.hat CC) C D (i.e.. every literal in CO is also a literal in D). If

C D, then there is a substitution B whicfi niaps each Li E C to some iCli € D.

Exampies oi subsumption are:

= P(n) V Q (x) since C(z/a) = P(a) , and

C = P(a) V P(n) subsumes D = P(a) .

2.3 Theory of Inductive Logic Prograrnming

What is inductive learning? Inductive learning techniques generalize specific

observations into general theories. These theories can be used for explanatory or

preclictive purposes. Descriptive induction starts from unclassified examples and in-

cluces a set of regularities these esamples have in common. A typical example in this

category is a customer buying-behavior study which discovers that if customers buy

sausage and bread that there is a probability of 90 per cent that they will also buy

but ter. Predictive induction learns from a set of examples that are classified in two or

more classes. The aim is to find a hypothesis that classifies the examples in the cor-

rect class. A typical example is animal classification. Suppose a robot is instructed to

recognize different kinds of animals. Given an example set which contains thousands

of animal classification Facts, the robot induces useful rules and using such rules it

can predict unknown animals. The term inductive logic prograrnming (ILP) was first

introduced by bluggleton in 1990 [20]. ILP is concerned with the study of inductive

machine learning wïth the knowledge representation in first-order logic. The goal is

2.3 Theory of Inductive Logic Programming 11

to develop tools and techniques to induce hypotheses from observations (examples)

and to synthesize new knowledge from experience [21]:

ILP = Inductive Concept Leaming + Logic Progmmming

Kecent studies i6j on this subject shows that 1LP is a healthy field but still facing a

number of new challenges that it should address.

VVhy ILP? Data-rnining often uses knowledge representation to distinguish differ-

ent algorithms. Propositional or at tribute-wliie representations use a single table to

represent the dataset. Each example or observation then corresponds to a single tuple

in a single relation. For al1 of the attributes the exaniple then lias one single value. On

the other hando relational learning and inductive logic programming employ first-order

structural representations. For instance, in the learning from interpretations setting,

an example corresponds to a set of facts. This generalizes attribute-value representa-

t ions' as examples now may consist of multiple tuples belonging to multiple tables. A

typical example could be a buying behavior analysis for a supermarket. Suppose that

the possibility of a male customer buying n particular product is related to how many

children he has and if he is a smoker. An esample can be expressed in first order

logic as: buy(john, bicycle), man(john), has-children(john, 21, no t (smoker(john)). In

at tribute-value representation we will have to use multiple tuples in multiple tables

to express such an example .

Current data-mining systems such as association rule discovery usually ded with

numeric values in a relational database, which c m be viewed as a propositional or

attribute-value representation. If 1 use a first-order logic representation, 1 can express

12 Inductive Logic Theory and The BSP Mode1

riot only the value but also the multi-relationship among those data. By using first-

orcler logic as the knowledge repreçentation for both hypotheses and observations,

inductive logic programming may overcome soine major difficulties faced by other

data-minlng systems:

the use of a Limited knowledge-representation forrnalism

difficulties in using substantial background knowledge in the learning process.

Previous experiences [7] in expert systems showed that much domain knowledge

cari be best expressed in a first-order logic. or a variant of first-order logic. Propo-

sitional logic has great limitation in certain domains. Most logic programs cannot

be defined using only propositional logic. The use of domain knowledge is also cru-

cial because one of the well-established findings of artificial intelligence is that the

ilse of domain knowledge is essential to acliieve intelligent behavior. ILP inherits

well-established theories, algorithms and tools from computational logic. Many in-

duc tive logic programming systems benefit from using the results of computational

logic. Background knowledge helps in restricting the hypothesis search and is a key

hctor for incremental and iterative learning. The concepts generated in each pass

are added to the background knowledge. This process will terminate when a pre-

defined accuracy level is reached. Without background knowledge, the hypothesis

search space can grow exponentially.

Logical settings of ILP. Inductive Logic Programming is a research field that

investigates the inductive construction of concepts from examples and background

knowledge. Deductive inference derives consequences E from a prior theory T 1211 .

Thus if T says that all flying objects are birds, E might state that a particular flying

2.3 Theory of Inductive Logic Programrning 13

object is a bird. Inductive inference derives a ge~ieral belief T frorn specific beliefs E.

After obçerving one or more flying objects T might be the conjecture that dl flying

objects are birds. In both deduction and induction, T and E must be consistent and

where + is the symbol of logical implication. Within ILP it is usual to separate the

elements into examples (E), background knowledge (B): and hypothesis (H). These

have the relationship

where B, H ancl E are each logic progranis. E can be separated into E+ and E-.

Normal semantics. Here al1 examples, background theory and induced con-

cepts are (well-formed) logical forrnulae. The problem of inductive inference is as

follows. Given background (prior) knowledge B and an example set E = E+ h E-

in which Ei is positive example set and E- is negative example set, the objective is

to find a hypothesis such that completeness and consistency conditions hold:

Completeness: background knowledge and induced theory cover al1 the positive

exam ples.

Consistency: background knowledge and induced theory do not cover any neg-

ative exampies.

In most ILP systems, background theory and hypotheses are restricted to being

definite. The special case of the detinite semantics, where the evidence is restricted

to true and false ground facts (examples), will be called the example setting. The

14 Inductive Logic Theory and The BSP Mode1

esample setting is the main setting of ILP. It is ernployed by the large majority of

ILP systems [7].

Learning from positive data. Some datasets contain only positive data. How

to learn from positive data has been a. great concern over recent years. When learning

from only positive data, predictive accuracy will be maximized by choosing the most

general consistent hypothesis. since tliis will always agree with new data. However, in

applications such as grammar learning, only positive data are amilable, though the

grammar, which produces al1 strings, is not an acceptable hypothesis. Algorithms to

nieasure generali ty and posit ive-onlg compression have been developed [7].

2.4 Theory of MDIE

Introduction. 3Iuggleton has demonstrated that a great deal of clarity and sim-

plicity can be achieved by approaching the problem from the direction of mode1 theory

rather than resolution proof theory. My research and esperiment on parallel ILP is

largely based on a core LIDIE algorithin - Progol. So 1 will introduce the theory of

MDIE [22] here. Let us now consider the general problem specification of ILP in this

approach. That ist given background knowledge B and examples E find the simplest

consistent hypot hesis H (where simplicity is measiired relative to a prior distribution)

such that

B A H ~ E (2-4)

In general B: H and E can be arbitra- logic programs. Each clause in the simplest

H should explain a t least one example, since othenvise there is a simpler H' which

mil1 do. Coosider then the case of H and E each being single Horn clauses. This can

2.4 Theory of MDIE 15

now be seen as a generalised form of absorption and rearranged similarly to give

- -
%-hir i 6 k the neg~ttiûn E diid II h tlii: iiegatim cf II. Let I Le tLr [pfxiit ialiy

infinite) conjunction of ground literals whicli are true in al1 models of B /\ Ë. Since

H must be true in every mode1 of B A Ë it must contain a subset of the ground

literals in 1 . Therefore

B A Ë ~ I P H (2.6)

and for al1 H

H t l

.A subset of the solutions for H can be found by considering the clauses which 0-

subsume 1 .

Definition of Mode. In general I c m have infinite cardinality. 1 can use mode

declarations to constrain the search space for clauses ivhich 8-subsume 1 . A mode

declaration has either the form modeh(n,atom) or modeb(n.atom) where n, the recall,

is either an integer, n > 1, or * and atom is a ground atorn. Terms in the atom

are either normal or place-marker. X normal term is either a constant or a function

symbol followed by a bracketed tuple of terms. .A place-marker is either +type, -type

or #typet where type is a constant. If m is a mode declaration then a(m) denotes

the atom of m with place-markers replaced by distinct variables. The sign of m is

positive if m is a modeh, and negative if rn is a modeb. For instance the follonring are

mode declarations.

modeh(l,plus(+int,+int,-int))

modeb(*.append(-list,+list,+list))

16 Inductive Logic Theory and The BSP Mode1

modeb(l.append(+list. [+any] .-list))

The recall is used to bound the niimber of alternative solutions for instantiating

the atom.

The most-specific clause. Certain MDIE algorit hms, e.g. Progol, search a bounded

sub-lattice for each example e relative to background knowledge B and mode decla-

rations d l . The sub-lattice Ilas a most general element T which is the empty clause

13 . arid a least general element I, which is the most specific elernent such that

where F h a denotes derivation of the ernpty clause.

Refinement Operator in MDIE. When generalising an example e relative to

background knowledge B, MDIE algorithm coristructs Li and searches from general to

specific through the sub-lattice of single-clause hypotheses H such that @ 5 H 5Li

. This sub-lattice is bounded both above and below. The search is therefore bet-

Ler const rained t han other general- to-specific searches in which the sub-lat tice being

searched is not bounded below. For the purposes of searching a lattice of clauses

ordered by 8-subsumption 1 need a proper refinernent operator.

The refinernent operator in MDIE is designed to avoid redundancy and to maintain

the relationship O 5 H ili for each clause H. Since H il,, it is the case that there

exists a substitution 0 such that Hf3 C L i . Thus for each literall in H there eBsts

a literal 1' in Li such that 10 = 1'. Clearly there is a uniquely defined subset Li (H)

consisting of al1 P in Li for which there exists 1 in H and 18 = 1' . A non-deterministic

approach to choosing an arbitra- subset Sr of a set S involves maintaining an index k.

2.4 Theory of MDIE 17

For each value of k between 1 and n, the cardinality of S, 1 decide whether to include

the kth element of S in S' . Clearly. the set of al1 series of n choices corresponds to

the set of al1 subsets of S. Also for each subset of S? there is exactly one series of n

* C n T F . ciioices. To avoici reciunciancy anci niaintairi 8-subsurription of Li, mum s refinernelit

operator maintains both k and 8.

Sequential cover algorithm. Based on the theory introduced above, there is a

generalized seqiiential cover algorithm usecl for ?VIDIE systems, e.g. Progol.

0 Select esample. Select an example to be generalized. If none exists, stop,

otherwise proceed to the next step.

Biiild rnost-specific-clause. Construct the most specific clause that entails the

esample selected. and is wi t hin langage restrictions provided. This is usually

a definite program clause mi th many literals, and is called the bottom clause.

This step is sometimes called the saturation step.

Search. Find a clause more general than the bottom clause. This is done by

searching for some subset of the literals in the bottoni clause that has the best

score.

0 Remove redundant examples. The clause cvith the best score is added to the

current theory, and dl examples made redundant are removed. This step is

sometimes called the cover removal step.

18 Inductive Logic Theory and The BSP Mode1

2.5 Existing ILP systems and applications

This section gives an overview of some core ILP systems, from which we can see

tliat ILP is not only an acadernic research topic: it has been used in a wide range of

machine learning and data-rnining applications.

FOIL. FOIL [33] is a system b r learning intensional concept definitions from re-

lntional tuples. It has been rerently applied to web mining [19]. The induced con-

cept definitions are represented as function-free Horn clauses, optionally containing

negated body lit erals. The background knowledge predicates are represented exten-

sioniilly as sets of groiind tiiples. FOIL employs a heuristic search strategy which

prunes vast parts of the hypothesis space. It is a top-down, non-interactive, batch

single-predicate learning algorithm. -4s its general searcli strategy, FOIL adopts a

covering approach. Induction of a single clause starts with a clause with an ernpty

body which is specialised by repeatedly adding a body literal to the clause built so far.

I t learns clauses of theory one by one. Each new clause C that the system constructs

should be such that C! together with current theory and the background knowledge

implies some positive examples that are not implied without C, while C together with

the positive examples and background knowledge implies no negative examples. It

adds this clause to the current theory and removes the derived positive example from

esample set. It then constructs another clause, adds it to current theory and so on,

unt il al1 positive examples can be derived.

Arnong the candidate literals, FOIL selects one literal to be added to the body

of the hypothesis clause. The choice is determined by an information gain heuristic.

FOIL's greedy search strategy makes it very efficient, but also prone to exclude the

2.5 Existing ILP systems and applications 19

intended concept definitions from the search space. Some refinements of the hill-

cliinbing search alleviate its short-sightedness, such as including a certain class of

literals with zero information gain into the hypothesis clause, and a simple back-

tracking mechanism.

GOLEM. GOLEM [33] is a "claçsic" among empirical ILP systems. It lias been

applied successfully to real-aorld problems siich as protein structure prediction and

finite element niesh design. GOLEM copes efficiently with large datasets. It achieves

this efficiency because it avoids searching a large hypothesis space for consistent hy-

potheses like, for instance. FOIL, but rather constructs a unique clause covering a set

of positive esaniples relative to the available backgrouiid knowledge. The principle

is baçed on the relative least general generalisations (rlggs) ['il. GOLEM embeds the

construction of rlggs in a covering npproach. For the induction of a single clause, it

randomly selects several pairs of positive examples and computes their rlggs. Among

tliese rlggs, GOLEM chooses the one which covers the largest number of positive

examples and is consistent witli the negative examples. This clause is further gener-

alised. GOLEM randomly selects a set of positive examples and constructs the rlggs

of each of these examples and the clause obtained in the first construction step. Again,

the rlgg with the greatest coverage is selected and generalised by the same process.

The generalisation process is repeated until the coverage of the best clause stops in-

creasing. GOLEM conducts a post processing s tep, which reduces induced clauses by

removing irrelevant literals. In the general case, the rlgg may contain infinitely many

literals. Sherefore, GOLEM imposes some restrictions on the background knowledge

and hypothesis language which ensure that the length of rlggs grows at worst polyno-

mially a i t h the number of positive examples. The background knowledge of GOLEM

20 Inductive Logic Theory and The BSP Mode1

is required to consist of ground facts. For the hypothesis language, the determinacy

restriction applies, that is, for given values of the head variables of a clause, the val-

ues of the arguments of the body literals are determined uniquely. The complexity

of GOLEM'S hypothesis Ianguage is further controlled by two parameters, i and j,

which limit the number and depth of body variables iii a hypothesis clause.

LINUS. LINUS [33] is an ILP Iearner which incorporates existing attribute-value

learning systems. The idea is to transform a restricted class of ILP problems into

propositional form and solve the transformed learning problem with an attribute-value

learning algorit hm. The propositional learriing result is then re-transformed into the

first-order language. On the one haiid, t h approach enhances the propositional

learners with the use of background knowledge and the more expressive hypothesis

language. On the other hand. it enables the application of successful propositional

learners in a first-order framework. As various propositional learners can be inte-

grated and accessed via LINUS, LINUS also qualifies as an ILP toolkit offering several

Iearning algorithms with their specific strengths. LINUS can be run in two modes.

Running in class mode. it corresponds to an enhanced attribute-value learner. In rela-

tion mode, LIXUS behaves as an ILP system. Here, 1 focus on the relation mode only.

The basic principle of the transformation from first-order into propositional form is

that al1 body literals which may possibly appear in a hypot,hesis clause (in the first-

order formalism) are determined, thereby taking into account variable types. Each of

these body literals corresponds to a boolean attribute in the propositional formalism.

For each given example, its argument values are substituted for the variables of the

body literal. Since ail variables in the body literals are required to occur also as head

variables in a hypothesis clause, the substitution yields a ground fact. If it is a true

2.5 Exist ing ILP syst ems and applications 21

fact, the corresponding propositional attribute value of the example is true, and false

othenvise. The learning results generated by the propositional learning algorithms

are retransforrned in the obvious way. The incluced hypotheses are compressed in a

postprocessing step.

The papers [33] and [SI sumniarize practicel applications of ILP:

Learning d r u g structure-activity rules. The research work carried out by the

Oxford machine learriing group lias shown that ILP can construct rules which predict

the activity of untried drugs, given examples of dmgs whose medicinal activity is

already knomn. These rides mere found to be more accurate than statistical correla-

tions. More importantly. because the examples are expressed in logic, it is possible

to describe arbitrary properties of, and relations between, atoms and groups. The

logical nature of the rules also makes them easy to understand and can provide key

insights. allowing considerable reductions in the numbers of compounds that need to

be tested.

Learning rules for predict ing mutagenesis. The problem here is to predict the

mutagenicity of a set of 230 aromatic and lieteroaromatic nitro compounds, The

prediction of mutagenesis is important as it is relevant to the understanding and

prediction of carcinogenesis. Not al1 compounds can be ernpirically tested for muta-

genesis, e.g. antibiotics. The compounds here are more heterogeneous structuraliy

than any of those in other ILP datasets concerning chernical structure activity. The

data here comes from ILP experiments conducted with Progol. Of the 230 corn-

pounds, 138 have positive levels of log mutagenicity. These are labelled active and

22 Inductive Logic Theory and The BSP Mode1

consti tute the positive examples: the remaining 92 compounds are labelled inactive

and constitute the negative esamples. Of course, algorithms that are capable of full

regression can attempt to predict the log niutagenicity values directly.

Learning rules for predicting protein secondary structure. Predicting the

three-dimensional shape of proteins from their arnino acid sequence is widely be-

lieved to be one of the hardest unsolved problems in molecular biology. It is also of

consiclerable interest to pharmaceutical companies since a protein's shape generally

determines its function as an enzyme.

Inductive Learning of Chess Rules Using Progol. Cornputer chess programs

can be thought of as liaving two parts, a move generator and an algoritlim for eval-

uating the strength of ge~ierated moves. The move generator effectively gives the

compu ter information concerning the rules of chess.

The structured method used here is slightly larger. involving the splitting of the

problem into some 40 sub-problems. creating a structure sorne 15 levels deep. With

structured induction, clauses learned in an earlier part of the process are appended

to the background knowledge to enable the learning of subsequent clauses.

First-Order Learning for Web Mining. Two real-world learning problems that

involve mining information from the web with first-order learning using FOIL have

been demonstrated [19]. The experiment shows that, in some cases, first-order learn-

ing algorithms learn definitions that h a ~ e higher accuracy than statistical text clas-

sifiers. When learning definitions of rveb page relations, they demonstrate that first-

order learning algorithms can learn accurate, non-trivial definitions that necessarily

2.6 Sequential ILP Algorithm. 23

involves a relational representation.

Ot her ILP applications mentioned in [33] are:

Learning rules for finite element mesii design.

Learning diagnostic rules for qualitative models of satellite power supplies.

Learning qualitative tnodels of the U-tube systern.

Learning qualitative rnodels for functional genomics.

2.6 Sequential ILP Algorithm.

In this section, 1 analyze a general MDIE ILP algorithm and provide a cost analysis

of this algorithm. Chapter 3 discusses how to parallelize this sequential algorithm

and analyze its cost. In Chapter 4: I will discuss how to implement a parallel Progol

systern based on the parallel approach introduced in Chapter 3, and provide some

test cases as examples to support the cost analysis.

2.6.1 A Sequential ILP Algorithm

In order to give a parallel approach to ILP data mining, first 1 need to know the

general steps involved in a sequential ILP data-mining algorithm. As shown in Section

2.4, a mode-directed approach can provide a much simpler and convenient way in

inductive concept leming. So I provide a general ILP data-mining procedure based

on mode-directed inverse entailment(MD1E). The whole sequential ILP data-mining

procedure consists of a loop structure: In each cycle, some concepts are leanit and

24 Inductive Loaic Theory and The BSP Mode1

repeat
if there is still a positive e in E oot covered by H and B

select an exarnple e in E
search for a good concept H that covers e
add H to background knowledge B
retract redundant exa mples that covered by H

end if
end repeat

Figure 2.1: Sequential ILP Algorithm

soriie positive examples that are covered by the new induced concepts are retracted

from the dataset. The loop will corne to an end when al1 positive esamples are

covered by the final induced concept set and no positive examples are left in the

tlataset. Figure 2.1 gives a general sequential ILP approach.

Several issues in the above algorit hm need to be addressed.

How to select an example? The example selection procedure can be random.

The esample selection can also be based on the sequence order in the dataset: ILP

picks up one positive example after another in the order in which they are located in

the dataset. A more sophisticated approach is to pick up an example according to its

score. The score of an esample is determined by its properties, Le., an example gets

a high score when its occurrence in the whole dataset is more frequent than other

examples. In this way, ILP can possibly induce the most important concepts first.

When one concept is generalized and it covers more positive examples in the dataset:

the dataset shrinks more quickly after each loop, thus improving the performance of

the whole learning procedure. Though this approach seems plausible in a sequential

2.6 Sequential ILP Algorithm. 25

algorithm, it can be potentially problematic in parallel approach. In parallel learning,

the last approach will increase the chance that two or more processors select the same

example and thus waste time inducing the same concept.

How to generalize concepts from examples? It is the most important task of

the whole job that distinguishes different ILP systems. An induced concept set is too

strong if it wrongly covers some negative examples and thus makes it inconsistent. On

the otlier hand, a concept set is too weak if it cannot cover al1 the positive examples

and thus mnkes it inconiplete. A concept set is overly gerieral if it is complete with

respect to positive esample set Ef but not consistent with respect to negative concept

set E-. A concept set is overly specific if it is consistent with respect to E- but not

cornplete with respect to E+. An ILP systeni is meant to search in the hypothesis

space and find a concept set that is neither too strong nor too weak.

The two basic techniques in the search for a correct concept set are specialization

and generalization. If the current concept set together with the background knowledge

contradicts the riegative esamples. it needs to be weakened. That is? 1 need to find

a more specific theorv, such that the new theory and the background knowledge

are consistent ivit h respect t O negative examples. This is called specialization. On

the other hand. if the current theory together with the background knowledge does

not cover al1 positive examples, 1 need to strengthen the theory: 1 need to find a

more generai theory such that al1 positive examples can be covered. This is called

generalization. Yote that a theory may be too strong and too weak a t the same tirne?

so bot h specialization and generalization are needed.

To achieve the above goal, 1 introduce two approaches here.

26 Inductive Logic Theory and The BSP Mode1

TogDown. Start with a theory C such that C U B is overly general, and

specialize it .

0 Bottom-Cp. Starts with a theory T such that E ü B is overly specific, and

generalize i t .

In .\.[DIE' a most-specific clause is forrned a t the first phase when generating a hy-

pothesis from an example. Then it searches the hypothesis space from general to this

most specific clause to find a good concept.

What does good mean? During the search in the hypothesis space, an ILP

system will generate and evaluate some candidate concepts. 1 need to determine

which concept is better than other candidates. In practice: a score can be assigned

to each candidate concept. The candidate concept wit,h the highest score will be the

right one. Then there cornes a problem: How is the score decided'? One way to decide

the score is to calculate it from a few parameters iising a function f (y, n, c) which

gives each induced candidate hypothesis H a score basecl on:

0 y: the number of positive examples covered by H

0 n: the number of negative examples wrongly covered by H

a c: the conciseness of H, which is generally measured by the number of literals

in H

For example, f could be:

2.6 Sequential ILP Algorithm. 27

The candidate with the highest score is added to the final set of induced theory.

When generating a candidate H' from the example e , the ILP algorithm generdly

searches in the hypothesis space to find the candidates. In order to give a score

j (y , n, c j ro eacii candidate 3'. riie iLP a i g o r i t h iias to iook chrougn ciie entire

2.6.2 Cost of sequential ILP data-mining algorithms.

The ILP data-rnining algorithm described above has the property that its global

structure is a loop, extracting more concepts through each iteration. Suppose this

Loop executes k, times. 1 can describe the sequential compiexity of this algorithm

with a formula:

cost, = k, [STEP(nm) + ACCESS(nm)] (2.10)

where STEP gives the cost of a single iteration of the loop, and ACCESS is the cost

of accessing the dataset in one step; n is the number of objects in the dataset and m

is the size of each example. To give a more specified cost mode1 for sequential ILP

algorithm, there is another formula:

cost, = k, [SEL(nm) + E(GEN (nm) + EVA(nm))

+ RET(nm)]

where SEL gives the cost of selecting one example from the dataset; GEN gives cost

of generating one candidate hypothesis from the selected example; and EVA gives

the cost of evaluation of candidate hypothesis and giving it a score. Usually this

step involves accessing the dataset once. RET gives the cost of retracting redundant

28 Inductive Logic Theory and The BSP Mode1

positive examples already covered by the newly induced concept. E gives the number

of candidate hypothesis generated in each step. Pleaçe notice that EVA and RET

iiivolve data access so the. will dominate costs for large datasets.

The cost of SEL varies in different implementations, frorn only one data access in

random or sequential selection to entire dataset access in some more sophisticated

algorithms. I assume sequential or ranclom selection is adopted in the ILP algorithm.

Also the cost of GEN varies in different ILP inductive learning algorithms. In MDIE

it irivolves first building the most specific clause and then searching from hypothesis

space to construct each candidate liypotliesis. It is the most significant computational

cost in one step.

The value of r depends on the hypothesis search space and search algorithm. Most

ILP algorithnis will search in the hypothesis space from general to specific or vice versa

to get satisfied concepts. To reduce the search space some algorithms adopt language

bias such as MODE declaration in MDIE. Also some heuristic search algorithms will

Iielp to reduce the value of S. Since this value determines the number of passes through

the entire dataset in each step, it is critical to the performance of ILP data-mining

systern.

The EVA cost usually involves one pass through the entire dataset to give each

candidate hypothesis a score. In the same way, the cost of RET also involves one

pass through the entire dataset to remove redundant examples.

2.7 In t roduc t ion to the BSP mode1 29

If after each loop q (O 5 q 5 1) examples remain not covered by the newly-induced

concept, I can give a more accurate formula:

cost, = k, [SEL(nm * q') + c (GEN(nm) + EVA(nm * $))

+ RET(nm + $)]

where after each big step a fraction of (1 - q) esamples are removed from the dataset

and the work in next step is reduced by a factor of q.

2.7 Introduction to the BSP model

In t roduct ion. 1 have discussed the sequential ILP algorithm above. Now I corne

to the point of hom to make it work in parallel. and how to speed up its learning

process. At this point. a parallel coniputing model is needed. Bulk Synchronous

Parallelism (BSP) [31] provides a mode1 for the parallel system. 1 can perform cost

analysis based on BSP cost equations without having to implement different kinds

of systems [8]. In traditional message-passing systems, a programmer has to ensure,

explicitly, that no conflict will occur when one data item is being accessed by two

or more processes. Though some systems can provide deadlock control? concurrency

control or rernote data access control, these mechanisms introduce cost overhead. It

is hard to establish a cost model with the great variety of the memory access patterns

and network architecture.

A parallel complexity rneasure that is correct to within a constant factor is needed.

Such a rneasure must take into account costs associated with the memory hierarchy

and accurately reflect the costs of communication, whether explicitly, as in message-

passing programs, or implicit ly, as in shared-memory programs.

30 Inductive Logic Theory and The BSP Mode1

Bulk Synchronous Parallelism (BSP) is a parallel programming model that di-

vides cornputat ion and communication into separat e phases. Such phases are called

supersteps. A superstep consists of a set of independent local computations, followed

LJ- a &Lai corririiuriicriiiuri piiiist: auci a Larrier syriciiroiiisatiori. Writing programs

nith the BSP model enables their costs to be accurately determined from a few

simple architectural perameters. Contrary to general belief, the structure imposed

by BSP does not reduce performance, while bringing considerable benefits €rom an

application-building perspective.

BSP programming. Supersteps are an important concept in BSP. A BSP program

is simply one which proceeds in phases. with the necessary global communications

taking place between the phases. This approach to parallel programming can be a p

plied to both distributed systems and shared-rnemory multiprocessors. BSP provides

a consistent, and very general. frarneivork within wliich to develop portable software

for scalable coniputing.

-1 BSP computation consists of a sequence of supersteps, where each superstep is

a seqiience of steps carried out on local data, followed by a barrier synchronisation a t

wtiich point any non-local data accesses take effect. Requests for non-local data, or

to update non-local data locations, can be made during a superstep but are not guar-

anteed to have completed until the synchronisation a t superstep end. Such requests

are non-blocking; they do not hold up computation.

The programmer's view of the cornputer is that it has a large and universal acces-

sible memory. To achieve scalability it will be necessaq- to organise the calculation

in such a way as to obviate the bad effects of large latencies in the communication

network.

2.7 Introduction to the BSP mode1 31

By separating the computation on local data from the business of transferring

sliared data, which is handled by lower level software, 1 ensure that the same compu-

tational code will be able to run on different hardware architectures from networked

wurks taliuiia Lu griiuiiie:y diaird-iiiriiiury ùys Leiiia.

The superstep structure of BSP prograrns lends itself to optimization of the data

transfers. A11 transfers in a superstep between a given pair of processors can be

consolidated to forni larger messages that c m be sent witii lower (latency) overheads

and so as to avoid network contention. The lower level communications software

can also exploit the most efficient communication mechanisms available on the actual

hardware. Since this software is application-independent, the cost of achieving the

efficicncy c m be spread over manu applications.

BSP cost model. 1 need to identify the key parameters of a BSP parallel system

that determine its performance [8]. Obviously the number of processors and compu-

tational speed of each are key parameters. If I define a step to be the basic unit of

calculation, then I can denote the speed as s steps/sec.

1 can also see that the capacity and speed of the communications network is a vital

elernent. For ease of cornparison between systems, I will mesu re the performance of

the communications network in units of the computing speed. The cost of carrying out

a barrier synchronisation of the processors, for example! can be measured in terms of

the number of steps that could have been performed in the time taken to synchronise.

This lets us contrast a system with fast synchronisation, in which relatively few steps

can have been executed dunng the time it takes to synchronise, with one which has

much worse performance relative to its computational power. In general I can expect

better overall performance from a system with low values of this parameter.

32 Inductive Logic Theory and The BSP Mode1

Similarly when 1 estimate the communications throughput of the network linking

the processors. 1 look at the cost in steps for each word of data transmitted. This

gives the ratio of the computing power to the communication power of the system.
-.
1 he iower this bgure is, the Oetter the baiance 'oerween compute power and commu-

nications power, and the easier it is to get scalable performance.

I t herefore arrive at the following four parameters (3 11, which extensive research

h u s h o w to be sufficient:

p = number of processors

s = processor speecl (number of steps per second)

1 = the cost. in steps, of achieving barrier synchronisation (depends on network

latency)

g = the cosi;, in steps per word. of delivering message data

Note that al1 are based on the buik properties of the system. The values are

determined by actual measurement using suitable benchmarks that mimic average

computation and communication loads.

The speed s is measured as the actual rate a t which useful calculation is done; it

is not the peak performance figure quoted in the manufacturer's data sheet.

The value of g is calculated from the average cost of transferring each word of

messages of al1 sizes in the presence of other traffic on the network. It is not based

on the manufacturer's claimed bisection bandwidth. It is not measured from single

point-to-point transfers but measures the sustainable speed that be experienced

by real application code. The g value can be approxirnated by calculating (total

number of local operations by al1 processors per second)/(number of words delivered

2.7 Introduction to the BSf mode1 33

by the communications system per second) The value g enables you to estimate the

time taken to eschange data between processors. If the maximum number of words

arriving a t any one processor during a single suçh exchange is h, then I estimate that

up to gh steps can have been executeci ciuring the exchange.

Another aclvantage of the simple structure of BSP programs is that the modeling

of their performance is much easier than for message passing systems, for example. In

place of the random pair-wise synchronisation that characterises message passing, the

superstep structure in BSP programs rnakes it relatively easy to derive cost models

(i.e. formulae that give estimates for the total number of steps needed to carry out a

paraliel calculat ion, including allowance for the communications involved).

Cost nioclels can be used to determine the appropriate algorithmic approach to

parallelisation. They enable us to compare the performance of different approaches

without writing the code and rnanually measuring the performance. And they provide

predictors for the degree of scaling in performance that is to be espected on any given

architecture for a given problem size.

Cost models have proved to be very useful guides in the development of high

quality parallel software.

Oxford BSPlib. Like many other communications libraries, BSPlib adopts a Single

Program Multiple Data (SPMD) programming model. The task of writing an SPMD

program will typically involve mapping a problem that manipulates a data structure

of size ."I into p instances of a program that each manipulate an N/p sized block

of the original domain. The role of BSPlib is to provide the infrastructure required

for the user to take care of the data distribution, and any implied communication

necessary to manipulate parts of the data structure that are on a remote process.

34 Inductive Logic Theory and The BSP Mode1

bsp-begin
bsp-end
bsp-init
bsp-abort
v osp-nprocs
bsp-pid
bsp- t ime
bsp-sync
bsp-push-reg
bsp- pop-reg
bsp-put
bsp-get
bsp-set- t agsize
bsp-send
bsp-qsize
bsp-get- tag
bsp-move
bsp-hpput

Start of SPMD code
End of SPiLID code
Simulate dynamic processes
One process stops al1
Nurriber o i processes
Find my process identifier
Local time
Barrier synchronization
Make area globally visible
Remove global visibility
Copy to rernote memory
Copy from remote memory
Choose tag size
Se~id to reniote queue
'uumber of messages in queue
Getting the tag of a message
Slove from queue
ù'nbuffered communication

Table 2.1: BSPlib Operation

An alternative role for BSPlib is to provide an architecture-independent target for

higher-level libraries or programrning tools that automatically distribute the problem

domain among the processes. 1 use BSPlib to develop the parallel ILP system and

do the cost analysis.

Table 2.1 is a List of BSPlib operations:

Summary. In this chapter I introduced basic knowledge of ILP and MDIE. A se-

quential ILP algorithm was discussed. and it cost analysis sas provided. To imple-

ment a parallel ILP algorithm. the BSP niodel is introduced. In the next chapter 1

will discuss a parallel ILP algorithm using the BSP mode1 and based on the sequential

algorithm introduced in t his chapter.

Chapter 3

Parallel Inductive Logic in Data

Mining

The general task of inductive logic prograrnming is to search a predefined subspace

of first-order logic for hypotheses. together with background knowledge, that explain

examples. However. due to the espressiveness of knowledge representation such a

search is usually computationally erpensive. Most ILP systems have to pass over the

entire example set many times to find a successful induced theory H among other

candidate induced concepts, which in turn increases the computation cost tremen-

dously. When such ILP systems are to be applied to real-world data-mining tasks,

the expensiveness of algorithm seems to be a big obstacle. Thus, how to speed up the

learning process of ILP algorithm has becorne a practical and critical issue. In this

section, 1 present and discuss a parallel approach that shows a linear or super-linear

speed up on some applications for traditional sequential ILP algorithms. Important

issues in this approach are discussed in detail. .A cost analysis of the parallel ILP

algorithm is provided as well.

36 Parallel Inductive Logic in Data Mining

3.1 Reason, possibility and approaches of parallel

ILP in data mining

-4s I mentioneci a'bove, there are sorne reasons why paraiieiism in ILP data-mining

is needed. The first and most obvious reason concerns the data size. The databases

iised for data mining are typically extremely large. -4s these databases grow past

Iiuridreds of gigabytes towards a terabyte or more. it becomes nearly impossible to

process them on a single sequential machine running a single sequential algorithm.

.hotl ier reason for the need of parallelism is the expensiveness of ILP systems. This

espensiveness cornes frorn two aspects:

The powerful and expressive knowledge representation in ILP requires more

coniputation power than propositional data-mining.

0 Searching the entire dataset many times to find a successful hypothesis H among

candidate concepts increases the disk access greatly. Therefore, disk (110)

access is one of tlie most serious bottlenecks for sequential ILP systems.

Parallel ILP data-rnining requires dividing the task. so that processors can make

useful progress towards a solution as fast as possible. From the sequential ILP algo-

rithm 1 can see that the disk access is one of the most significant bottleneck. There-

fore, how to divide the access to the dataset and minirnize communication between

processors are important to the total performance.

In general, there are three different approaches [29] to parallelizing data mining.

They are:

3.1 Reason, possibility and approaches of parallel ILP in data mining 37

a Independent Search. Each processor has access to the whole dataset, but each

heads off into a different part of the search space, starting from a randomly

chosen initiai position.

0 Parallelize a sequent ial data-xnining algorit hm. There are two forms within

this approach. One approach is that the set of concepts is partitioned across

processors? and each processor examines the entire dataset to determine which

of its local concepts is globally-correct. The other approach is to partition the

dataset by coliimns, and each processor computes those partial concepts that

hold for the columns it can see. Regular eschanges of information of concepts are

required in both approaches to determine which partial concepts are globally-

correct.

Replicate a sequential data-mining algorithm. Each processor works on a parti-

tion of the dataset and executes the sequential algorithm. Because the informa-

tion it sees is only partial, it builds entire concepts that are locally correct, but

ma? not be globally correct. Such concepts are called as approximate concepts.

Processors exchange these approsimate concepts to check if they are globally-

correct. As they do so: each learns about the parts of the dataset it cannot

see.

Independent search is simple and works well for minimization problems. However,

it does not divide the dataset, so it cannot reduce the disk access. Therefore, it is not

suitable for problems with huge dataset. Parallelized approaches try to reduce both

the amount of memory each processor uses to hold concepts and the fraction of the

dataset that each processor must access. But its fine-grained parallelism requires too

much extra communication.

Parallel Inductive Logic in Data Mining

The replicated approach is often the best way for parallelizing ILP data-mining

applications. It has two significant advantages: First , it necessarily partitions the

tlataset and so spreads the disk access. Second, the size of induced concepts that

must be esclianged between phases is sniall. so communication is cheap. Previous

work in using the BSP cost mode1 to optimize parallel neural network training [27]

sliows that the replicated approach gives the best performance irnprovement among

al1 tliese three approaches introduced above. 1 adopt this approach in the parallel

ILP algorithm for its siniplicity and possibility of a double speedup. 1 will discuss

double speedup in the following sections.

The following shows the possibility of adopting parallelism in ILP data mining.

Due to the nature of data mining, there are lots of similarities and redundancies

within the large dataset. Therefore? it is plausible to induce correct theories

from a small subset of the full data.

a In most ILP systems. the whole concept-iearning process consists of a loop

structure. .Ifter each loop, a successful hypothesis is found and added to the

final induced theory set. The learning process stops when ail the positive ex-

amples have been explained by the induced concepts. The size of the induced

hypothesis during each phase is small compared to the dataset. So it is plausi-

ble to let p processes induce concepts from a subset. At the end of each phase,

t hese p processes exchange the locally-induced concepts and determine the valid

(globally-correct) concepts after evaluation.

3.2 LogicaI Settings Of Parallel ILP 39

3.2 Logical Settings Of Parallel ILP

In this section I discuss the logical setting of the division of the ILP task into

subtasks that can be handled concurrently by multiple processes erecuting a common

sequential ILP algorithm. 1 try to esplore a parallel approach to obtain an algorithm

with a speedup proportional to the number of processors over the best available

sequent ial algorit hm.

.A central issue in designing a computer system to support parallelism is how to

break up a given task into subtasks, each of which will be executing in parallel with

the others. In general, ILP starts with an initial background knowledge B and some

examples E. The aim is to induce a hypothesis H that. together with background

knowleclge B, esplains the esamples E.

.A partition Tl . . T, of an ILP-task T = (B, E) is a set of ILP tasks. T, =

(B, E,) such that Ei C E for al1 i. and that (uL, Ei) = E . The partition TL, . , T'

of an ILP-Task T is valid if and onlÿ if the union u:.,Hi of partial hypothesis Hi

obtained by applying a common sequential ILP algorithm -4 to task Ti is equivalent to

the solution hypothesis H obtained by applying algorithm A to task T. Completeness

and consistency of parallel ILP can be expressed as follows:

Completeness:

40 Parallel Inductive Logic in Data Mining

Consis tency :

n

B u (U Hi) ü E- O et

1 will explore and explain in an intuitive way why in the parallel approach the

conipleteness and consistency hold.

3.3 An Approach to Parallel ILP Using the BSP

Based on the sequential algorithm 1 discussed in Chapter 2, 1 give a parallel ILP

algorithm based on the replicated approach discussed above. There are two signifi-

cant reasons for using the replicated approach. First. it partitions the entire dataset

and so spreads the data access cost across processors. Second, the data that must

be esctianged between phases is srnaIl' so communication is cheap. The size of a

concept generated by each processor in one step is around 102 characters in the test

cases. If the value of y is 4.1 flops/32 bit word and there are 4 processors, then the

communication cost per total exchange equals 1600 flops. It is quite small compared

to the local computation cost or data access cost which are hundreds of times bigger.

Therefore, though the replicated approach is not particularly novel, it is perhaps the

best way to increase performance in ILP data-mining tasks.

I divide the full dataset into p subsets and allocate each subset to one processor.

3.3 An Approach t o Parallel ILP Using the BSP Mode1 41

divide dataset into p subsets
repeat

for al1 processors i
if there is still an e in Ei

&ct t: in Et
form a set o f good concepts Hi that covers e
total exchange Hi(i = 1 , T . p)
evaluate Hi(j = 1 . 2 . . . , p)
total exchange evaluation result of Hi
find the successful Hi with globally good score
total exchange which are the valid Hi
add ail valid Hi into B
retract redundant examples that covered by Hi

end if
end for

end repeat

Figure 3.1: Parallel ILP Algorithm

Each processor executes the same (or siniilar) sequential ILP data-mining algorithm

introduced above on its local subset of data. At certain synchronization points, al1

these processors exchange their local induced concepts and evaluate them. Only

globally-correct concepts will be left. and added to the final concept set. Figure 3.1

gives the parallel algorithm.

In this approach, each processor works on its subset to find a locally-correct con-

cepts set Hi in each step. The measure f (y, n, c) in each processor is based on its

c m subset of data. In order to knom whether this locally-correct concept set is also

globally-correct and to find the successful H in the set, it is necessary to find a way

of learning the general knowledge of the whole dataset. To do so, al1 p processors

perform a total exchange after al1 the processors reach the synchronization point

42 Parallel Inductive Logic in Data Mining

when they have found their locally-correct concept His. After the total exchange,

each processor gets al1 the Hi induced by peer processors. Each processor gives every

Hi (i = 1 , 2 , . . p) a score f (p, n, c) based on its local knowledge from the subset of the

Mi data. Tiien tiiere wiii be a second tocai exchange: the evaiuation resuit of i I ; s

will be exchanged among p processors. In this way each processor learns the whole

dataset and can give a global score to its local candidate concept Hi. With the third

phase of total exchange the valid H:s are added to each processor's final concept set

and redundant esamples are retracted.

The whole computation in the approach consists of a sequence of supersteps, where

each superstep is a sequential ILP computation carried out on local data, followed

11- a barrier synchronization at which point al1 indiiced concepts in this step are

exchanged and evaluated. The cost of such a phase is described by an expression of

the form:

 COS^ = MAX idi + MAX hi 9

processes processes

where wi is the number of instructions executed by processor i. The value of hi is

the size of the concepts eschanged between processors. This cost mode1 is derived

from BSP. which I introduced in Chapter 2. The system parameters of s, 1. g can

be obtained from the Oxford BSPlib. Notice that both terms are in the same units:

tirne. This avoids the need to decide how to weight the cost of communication relative

to computation, and makes it possible to compare algorithms with different mixes of

computation and communication.

3.4 Potential problems with this approach 43

3.4 Potential problems with this approach

3.4.1 Accuracy of induced theory on smaller dataset

Since 1 use p processors to do the data rnining job on a subset of the full dataset,

a set of concepts will be generated frorn disjoint subsets of the full dataset used for

rnining. Given p disjoint subsets of the full dataset there will be p sets of concepts

generated by each processor. Each subset of data resides on a distinct processor. The

distributed concept sets must be totally exchanged and evaluated before merging the

valid ones into the final concept set. The final set of concepts should be free from

conflicts and same as the set of rules developed from the full dataset.

There is a question as to how to ensure that the individual concepts generated by

each processor which are Iocally-correct are also globally-correct. If each processor

spends a lot of time only to find unwanted concepts, there will be no performance

improvement from parallelisni.

Any concept acceptable on the full dataset will be acceptable on a t l e s t one disjoint

subset of the full data [7]. This suggests that a concept set created by merging sets of

acceptable concepts contain concepts that would be found on the full dataset. Earlier

work ['il has found that the merged set of concepts contained the same concepts as

found by l e m i n g on the full dataset. If there are enough representative examples for

each class in each of p disjoint partitions, the concepts found in the paxallel version

will have high accuracy.

44 Parallel Inductive Logic in Data Mining

In the approach to parallel data-mining an important question is how large p can be

before communication cost s begin to slow t he concept generation process significantly.

Biit the more important question is how to determine a p for which the accuracy of

the resultant concept set is acceptable. There is a tradeoti between accuracy and

speed. The use of more processors promises that each can learn faster on a srnaller

subset of data a t the usual cost of communication overhead. However, there is a

second accuracy cost that will be paid when a t some point p becomes too large and

it is therefore hard to maintain in each siibset the representative examples of the full

data set. Previous work [27] done by Owen Rogers in parallel neural network mining

sliows thst correct concepts can be generated frorn a srnall subset of the entire data

IN t have taken niudi less processing to discover. Wlien the subset size reachcs some

size bound, however, the concepts generated becornes less accurate and hence do not

help. That means in the parallel algorithm I can divide the dataset into smaller

subsets and a t the same tinie keep the induced concepts accurate enough to show a

significant performance increase, provided the size of each subset is greater than that

size boundary.

3.4.2 Dealing wit h Negative Examples

There is always a problem with dealing with negative examples, that is, how to

make sure one concept induced by one processor is consistent nrith al1 other subsets?

If one concept mhich is locally consistent can be easily rejected by other processors,

there d l be a severe cost efficiency issue with this approach. In fact, the problem

may be not as senous as it appears to be. There are several reasons:

3.4 Potential problems with this approach 45

a Negative examples in real-world applications are usually rare among the entire

dataset. Hence it is reasonable to assume that the chances that one locally

consistent concept is also globally consistent are high. Even though there are

auiiie c a r s tiiai Suiiir: lucdly cùii~kieiii ~ i j i i ~ e p i ~ ars rîjsztîd bÿ üihsr prüces-

sors! the total negative cost is not too high and can be tolerated compared to

the speedup gained.

O Since the number of negative exaniples is srnall compared to positive examples,

1 cari keep a duplicate copy of' the entire negative esample set on each processor.

In this way al1 locally-consistent concepts are also globally-consistent a t the cost

of some redundancy. This is the approach 1 adopted in the test cases. There

are sorne negative examples in test case 2 -the chess move learner. Since the

size of negative esamples is not too big compared to positive ones (about 10

per cent)! I duplicate al1 the negative esamples across the processors. Though

t here is reclundancy in the local siibset of data: the overall performance increase

is still obvious and a double speedup is observed.

a There are some effective Iearning algorithms that can learn from only positive

data. There is no consistent issue when learning from positive data, which is

the case in test cases 1 and 3.

3.4.3 Communication Overhead

There is a concern that at certain stages the number of processors becomes too

large and the communication cost is too big. However, the communication cost is not

a big problem in the parallel approach.

46 Parallel Inductive Logic in Data Mining

0 First, the size of the data to be exchanged between processors is small. Since

only the induced concepts are exchanged and the size of an induced concept -

usually a logical clause - is quite small: the communication cost of exchanging

Second, 1 have to maintain a reasonable amount of data in each subset to

ensure that there are enough representative examples. Thiso in turn! keeps p

From growing too big.

Third. since each processor performs the same sequential algorithm and the

size of each stibset is simiiar. it is reasonable to predict tliat the time spent

on local cornptitation on each of the p processors is comparable. Tlierefore

the synchronization mode1 need not be a big performance concern here in this

approach.

From the analysis above I can draw a conclusion that the communication overhead is

small compared to the local computation cost saved. This conclusion is supported by

the test cases. In the test cases: the size of induced concepts is around 100 characters.

The value of g is 4.1 Rops132 bit Word. The value of 1 is 118 flops. There are three

total communications within one big step, and there are 4 processors working in

parallel. So 1 get the communication cost in one big step: 3 *(4*100*4.1 + 118) =

527.1 flops. The CPU speed is 10.1 Mflops. Then the cost of communication in one

big step is around 0.0005 second. The cost of local computation and disk access cost

in one step is greater than 1 second in the test cases. It is easy to get the conclusion

tliat the communication overhead in the parallel ILP algorithm is not a big issue.

3.4 Potential problems with this approach 47

3.4.4 Redundant Work by Individual Processors

There is a debate over how to ensure that different processors do their part of the

job as tliere will not be too much time wasted doing redundant work. Such a situation

is likely to happen when the full dataset contains similar andlor redundant examples.

Since one subset might contain the same or similar eramples in another subset, there

is a chance that the two processors on these two subsets select the same example

in one particular step and do a redundant induction. If there are many redundant

examples in the subsets. such redundancy might become a serious problem, affecting

overall performance. 1 found by esperiment that this problem is not as serious as it

seems. The reasons are:

First, if the selection process chooses an example randomly or by sequence order,

the chances of two or more processors selecting t,he same erample are small in

a big and randomly-distributed dataset.

Second, when one processor induces a valid (globally-correct) hypothesis from

one example, this hypothesis will be updated into al1 processors induced theory

set and al1 examples covered by this hypothesis will be retracted from each

processor's example subset. Such a mechanism will eliminate the chance of

redundant work done by different processors in different steps.

Third. even if there are still some cases that two or more processors select the

same exarnple in the same step, it is not a g e a t factor in the overall performance.

In the test cases, such redundancy occurs in sorne big steps. But there is still

obvious performance improvement in parallel approach.

48 Parallel Inductive Logic in Data Mining

In the experiment 1 found such chances are srnall even though the datasets con-

t ained many redundant and similar exaniples.

3.5 Cost Analysis and Argument

for a Double Speedup

The parallel approach mentioned above is structured in a number of phases, each of

wliich involves a local computation? followed by an exchange of data between proces-

sors. In this approacli it is straightforward to tell wtien computation will dominate

riieiiiory access? and the memory access cost is predictable. The cost mode1 presented

above is likely to produce accurate estinlates of running times on existing parallel

computers. Because the cost mode1 depends only on high level properties of algo-

ritlims. it can be applied to an algorithrn in the abstract.

The basic structure of the parallel algorithm is:

0 Partition data into p subsets, one per processor.

Repeat

Execute the sequential ILP algorit hm on each subset.

Eschange information about what each processor learned with the others.

So the cost has the following general forrn:

cost, = k, [STEP (nmlp) + A CCESS(nm/p) + COMM (p , r)] (3.2)

where I;, is the number of iterations required by the parallel algorithm, r is the size

of the data about candidate concepts generated by each processor, COMM is the cost

3.5 Cost Analysis 49

of total exchange and evaluation between the processors of these candidate concepts.

It is reasonable to assume that:

STEP(nm/p) = STEP(n.m)/p

A CCESS(nm/p) = A CCESS(nm)/p

First, if 1 assunie t i n t k, aiid k, are of comparable size. 1 get

cost, = cost,/p + k, COMiCl (p , r) (3.5)

K e espect an alniost linear speedup. To make the above formula more specific ac-

cording to parallel ILP algorithm, 1 get

cost, = k, [SEL(nm/p)) + 5 (GEN (nmlp) + EVA (nmlp))

+ 3(rpg + 1) + p * EVA(nm/p)) + RET(nm/p))

where SEL gives the cost of selecting one example from the dataset; GEN gives cost

of generating one candidate hypothesis from the selected example; EVA gives the

cost of evaluation of candidate hypothesis and giving it a score; and RET gives the

cost of retracting redundant positive examples already covered by the newly induced

concept. E gives the number of candidate hypothesis generated in each step. The

symbol rpg + 1 is the cost of a total exchange of candidate concepts between pro-

cessors; since there are three total exchange in the parallel algorithrn, the overall

communication cost should be 3 (~ p g + 1) . Since each processor will get and evaluate

p candidate concepts generated from p processors, the cost of evaluation EVA should

50 Parallel Inductive Logic in Data Mining

be multiplied by a factor of p.

Tt is reasonable to assume:

since the value of GEN(nrn) is usually mucli smaller thnn the value of E VA (nm) when

the dataset is big, 1 get

If k , and k, are of comparable size, 1 get a p-fold speedup except for a communication

overhead.

In this approach. each processor incluces the concepts froin its own subset of data

independently. So it is likely that the concepts induced by different processors are

different. Frequeiit exchange of these concepts will irnprove the rate to which concepts

are induced. One processor will learn concepts induced by other processors during

the total exchange phase. Therefore we might actually expect that k,. « k,. This

phenomenon is called double speedup. The interesting phenomenon of double speedup

occurs in the test examples. Each processor learns, in a condensed way, what every

other processor has learned from its data, whenever communication phases take place.

This information lias the effect of accelerating its o ~ m learning and convergence. The

overall effect is that k, is much srnaller than k, would have been, and this in turn

leads to a double speedup. If each subset maintains the characteristics of the entire

3.5 Cost Analysis 51

dataset, there is much chance that the locally-correct concepts will be also globally-

correct. If the algorithm selects an example randomly, the chances that two or more

processors working on the same example are small. Al1 these arguments suggest a

much quicker learning process. which is observed in the test cases.

Suppose that the first phase of the sequential algorithm requires work (computa-

tion) w ! but that the work in the subsequent phases can be reduce by a multiplicative

factor a. Then the sequential algorithm haç a computation cost of the form

The parallel algorithm. Say. using four processors takes less tinie overall. The first

parallel phase takes time w , but the second phase takes only ch, and so on. This

reduction is a function of w , which in turn is a function of the size of the dataset.

Then the parallel algorithm lias a comptication cost of the form

If a! = 0.9, then cost,/cost, = 0.39; if a = 0.1, then cost,/cost, 5: 0.90. This

analysis is optimistic in that 1 assume the reduction is independently additive and

the communication overhead is not included in this calculation. However, it provides

an explanation why double speedup occurs in the experiments.

Summary. In this chapter 1 proposed a parallel ILP algorithm, which is based on

the sequential algorithm introduced in Chapter 2. The related issues in this parallel

approach are discussed in detail, which are:

0 Accuracy of induced theory on smaller dataset.

52 Parallel Inductive Logic in Data Mining

Dealing with negative examples.

Communication ovediead.

Kedunciant work by mdividuai processes.

.A cost anaiysis is provided using the BSP cost niodel. A possibility of double speedup

plienomenon is discussed. .A parallel ILP system based on this parallel approach will

be cliscussed in next chapter. Some test cases will be provided, and the cost analysis

will be given.

Chapter 4

Parallel Progol

To make the arguments in Chapter 2 more concrete. 1 developed some programs to

show how parallel ILP works and give a performance analysis. Since Progol is a core

MDIE ILP system and has drawn much research interests in recent years, 1 decided to

parallelize the Progol system. The source code of Progol in C is freely available from

the Oxford University niachine learning group web site. 1 implement a parallel version

of CProgol - PCProgol - that induces concepts in parallel on several processors with

the support of Oxford BSPlib. To show how PCProgol works, 1 developed three test

cases in this chapter. They al1 show a super-linear speed up relative to the number

of processors.

4.1 Parallel Progol Algorithm

According to the general parallel ILP approach discussed in Chapter 3, 1 divide the

example set into several subsets, each of which is saved to a N e . .4ll the same back-

ground knowledge and mode declarations are included in each file. Multiple processes

54 Parallel Progol

forall processor i
startif Ej = empty return B

let e be the first example in Ei
construct the most specific clause I for e
iûnstruû hypûthé:i: I I , frûm I
propagate Hi to al1 other processes
evaluate H j (j = 1.2? - - . . p) in Ei
propagate evaluation results to al1 processors
decide i f Hi is valid
propagate validation result of Hi to al1 ot her processors
let B = BU Hi U U Hn
let E' = e : e E E and B e
let E = E - E'
goto start

Figure 4.1: Parallel Progol Algorithm

work in parallel to generalize the esamples. Eacli process works on a partition of the

dataset and executes the sequential CProgol program. By doing so, the search space

is recluced by l /p while the induced hypotheses remains the same.

The concept induced in one process is correct locally. But 1 have to make sure

that it is also globall-correct. Since the information each process sees is partial, a

mechanism must be provided to let each process have the knowledge of the entire

dataset in some sense.

Figure 4.1 is the algorithm of PCProgol. It provide a way to check if a locally-

correct concept is also globally-correct. For process i, B is the background knowledge,

Ei is its subset of examples.

4.1 Parallel Progol Algorithm

How to divide the dataset. In my approach, 1 divide the entire positive example

set into p subsets and allocate one subset to each processor. In many cases, the size of

positive examples is much bigger than the size of background knowledge and negative

exam ples.

1 have to find a way to deal with negative examples. To make sure the locally

consistent concepts are also globally consistent, 1 keep a copy of the negative example

set on each processor.

How to evaluate H. When inducing concepts on one processor7 PCProgol uses

several parameters to give the induced concept H a score relative to the local subset.

An H with the highest score will be the locally-correct concept induced in this step.

The score f of a candidate concept s is defined as follows:

where

a Y = the nitmber of positive esamples correct- deducible from s

0 N = the number of negative exaniples incorrectly deducible from s

C = the length of concept s

R = the number of further atoms to complete the induced concept

R is calculated by inspecting the output variables in the clause and determining

whether they have been defined.

So f is a measure of how well a concept s explains al1 the positive examplest with

preference to the shorter ones. The evaluation process mil1 go through the entire

clataset once to give a candidate s a score f . In the worst case, it will consider al1 the

clauses in order and the algorithm will look through the entire dataset many times

to End a correct concept.

When al1 the processors have found t heir locally-correc t concept Hi, t hey corne

to a synchronization point. At this point. each processor sends its locally-correct

concept H, to al1 other processors. .\fter total eschange. each processor lias a copy

of al1 the concepts incluced by al1 the processors during this step. Each processor

twliiates these concepts anci gives s score f to each Hi relative to its subset of data.

Then t h e is a second round of total eschange - eschange of the score f . When one

processor has collected al1 the scores frorn other processor for its Hi, it can give its Hi

a global score and then decide if it is valid or not. So the total exchange of information

provides a way for each processor to evaluate its locally-correct concepts against the

whole dataset. Once the validation is made by al1 processors, there cornes the third

phase of total excllange. During this communication phase, each processor tells other

processors whether its H, is globally valid. If so, al1 processors will update their

background knowledge with this Hi and delete redundant examples already covered

by it. More than one globall-correct concept is usually induced in one big step.

4.2 Test Cases

Experiment platform. BSP can support both shared-memory and distributed-

rnemory computing environments. In my experîment 1 built and rm PCProgol on

two different machines. One is a 4-processor shared-memory SUN machine. The

platform is :

4.2 Test Cases 57

1 Example 1 Number 1 k, 1 kr k 1
.Animal Classifier

Table 4.1 : Test cases and sequential performance

Move Learner
Garne Ending Probiem

0 'vlodel: SUN Enterprise Server 3000.

4000

0 Processors: four Sparc processors, each one operating a t 50 MHz and has a

Sparc floating point processor.

4000
2000

The other is a 6-processor shared-memory SUN machine. The platform is :

9

hlodel: SUN Enterprise Server 3500.

23
12

0 Processors: six UltrasparcII processorso each one operating a t 336 MHz and

has a Sparc floating point processor.

(4process)
2

Though this program is developed and tested on SMP machines, this parallel approach

can be transparently adapted for distributed-mernory computing environments with

the support of BSP.

(6-procees)
2

4
4

There are three example sets provided in this chapter to test parallel Progol. They

are shown in Table 4.1. The first test case is an animal classifier. In this case animal

classification information is given as positive examples. The background knowledge

is provided to describe the properties of one particular animal. The program tries to

3
4

58 Pardel Progol

form some general rules to classify an animal according to its properties. There are

4000 examples in this test case nhich contains some redundancy and similar examples.

The second test case is a chess more learner program. It learns legal chess moves.

The moves of the chess pieces

Pieces = (King, Queen, Bishop, Knight and Rook) are learned from examples. Each

esarnple is represented by a triple frorn the domain

Piece * (Original-Rank * Original-File) * (Destination-Rank * Destination-File)

Ttiere are 4000 exnrnples in this test case.

Ttie third test case is a chess game-encling problem. It tries to form a rule to decide

whetlier a chess ending wit h White King, White Rook and Black King is illegal when

White is to move. Example positions are defined as

illegal(WKRank, WKFile. WRRank, WRFile. BKRank, BKFile)

Tliere are 2000 examples in this test case.

The source file Types describes the categories of objectives in the world under

consideration. Modes describes the relationship between objects of given types, and

the form t hese atoms can take within a claiise. The Examples section contains al1 the

positive and negat ive exam ples.

4.2 Test Cases 59

Exarnple 1: Animal Classifier

Types

Modes

For the head of an!

rations

i gen eral rule ci efining class 1 gi ve the following head mode decla-

which means class may have 2 arguments of type animal and class. A + sign indicates

that the argument is an input variable. A # sign denotes a constant.For atoms in

the body of a general rule, body mode declarations are given as follows:

:- modeb(1, has-gills(+anirnal))?

:- modeb(1, hascovering(+animal,#covering))?

:- modeb(1. haslegs(+animal,#nat))?

:- modeb(1, homeothermic(+animal))?

60 Parallel Progol

Examples

1 give some examples of what animal belongs to what class.

class(eagle, bird). class(bat,mammal).

ciassjdog,mammaij. ciassjbat,mammai j.

class(eagle, bird). class(ostrich, bird).

S . .

Background knowledge

hascovering(dog, hair). hascovering(dolphin. none). . . .

4.2 Test Cases 61

Example 2: Chess Move Learner

Modes

:- modeh(l,move(#piece.pos(+file,+rank),pos(+file,+rank)))?

:- modeb(l.rdiff(+ran k,+rank.-nat))?

:- modeb(l,fdifF(+file,+file,-nat))?

Examples

There are some negative examples in tliis case. : - is for negative examples.

move(kingtpos(b.7).pos(c,6)).

move(bishop.pos(g.3) ,pos(e. 1)).

move(queen,pos(e,6).pos(h.3)).

:- move(pawn,pos(g,3) ,pos(ct5)).

:- move(king,pos(h,2),pos(e,2)).

:- move(king.pos(e,2).pos(a,5)).

...

Background knowledge

The only background predicate used is symmetric difference, Le.

difF(X,Y) = absolute difference between X and Y

Symrnetric difference is ciehned separareiy on Rank and Fiie.

rdiff(Rankl.Rank2.Diff) :-

rank(Rankl), rank(Rank2), D i f f l is Rankl-Rank2, abs(Diff1,Diff).

fdiff(File1, File2, Diff) :-

file(File1). file(File2), project(File1. Rankl). project(FiIe2,Rank2), D i f f l is Rankl-Rank2,

a bs(DifF1, Diff).

abs(X.X) :- X 2 0.

abs(X.Y) :- X < O. Y is -X.

4.2 Test Cases 63

Example 3: Game Ending Problem

Modes

:- modeh(l,illegal(+rf,+rf, +rf, +rf.+rf,+rf))?

:- modeb(l,adj(+rf,+rf))?

Examp les

iIlega1(5,5,4,6,4,1). illega1(5,6,7,5,7.5).

illega1(3,2,4,6,6.6). illega1(2,1,6,1,2.0).

illega1(3,0,2,3.4,0). illega1(6.2,5,1,6,1).

64 Paralle1 Progol

4.3 Test Results

For each test case 1 did the following esperiments:

O run sequential algorithm on Zeus

run parallel algorithm on teaspoon with 4 processes

0 run parallel algorit hm on Zeus with 4 processes

0 run parallel algorit hm on Zeus with 6 processes

1 collected the corresponding data. which are shomri in tlie tables of this chapter.

Froni this data 1 calculated the double speedup phenomenon observed in these 3 test

rases. i.e., p * cost, < cost, where cost, is the cost of one process in parallel version,

and cost, is tlie cost of sequential version.

According to the formulae 3.8-3.1 1 derived from Chapter 3, the cost of selecting

an example, generating a hypothesis from the most specific clause 1, evaluating a

candidate concept and retracing redundarit esamples in one subset should be l l p

of the sequential algorithm. Table 4.3 shows SEL(), EVA(), RET() values in the

sequential algorithm. The first column shows the test case number and parameter

name: the second and third columns show the values on teaspoon and zeus. Since Zeus

is a faster machine than teaspoon, the vallies on Zeus are smaller. Table 4.4 shows

SEL(), EVA(), RETO values in the parallel algorithm. The first column shows the

test case nurnber and parameter name; the second and third column show the values

on teaspoon and Zeus with 4 processes; the last column shows the values on Zeus

4.3 Test Results 65

with 6 processes. Variances were typically mithin 20 per cent. Please refer to Table

4.5 for detailed information. The test results shown in Table 4.3 and Table 4.4 do

not totally match the above analysis in my experiment. I suppose this is due to the

woridoaà o i the machine chat is for piibiic use, anà the ciisk access time is affecteci

by the hardware architecture. These values depend on size of dataset and machine

speed. So they Vary little among each big step. I repeat the experiments on the

same machines four tirnes during different time of the day to collect data. The result

shown in Table 4.3 and Table 4.4 is the average value. The value of GENO varies in

different test cases depending on how a candidate concept is generated from 1. When

the dataset is big, the cost of GENO is small compared to the disk access cost EVA().

The value of c (G E N (n m / p) + EVA(nm/p)) is the most significant local computation

cost in each big step.

Though the cost analysis given in these esamples is in terms of execution time? i t

is easily adapted to the number of instruction cycles with the system parameters pro-

vided by BSPlib. Then the cost analysis can be applied universally and independent

of particular machine architecture.

BSP system parameters on teaspoon and Zeus are shown in Table 4.2. With the

system parameters in hand, 1 can give the optimistic communication cost. The size

of data r in one total communication is around 100 words. There are three total

communications in one big step. The value of g on teaspoon is 4.1 flopslword, p is 4,

s is 10.1 illflops, and Z is 118 Bops. So 3 * (r p g + 1) = 3*(100*4*4.1 + 118) Bops =

5274 flops = 0.0005274 S. The value of g on Zeus is 3.17 flops/word, p is 4, s is 44.5

Mflops, and 1 is 697.4 flops. So 3 r: (rpg + 1) = 3*(100*4*3.17 + 697.4) flops = 5896

flops = 0.00013 S.

Parameter
Number of processes

...
n n

Table 4.2: Systeni Iiiformation

BSP parameter I
BSP parameter n

1 Value 1 teaspoon 1 zeus

1 uSr- pa~aiiietai. 3 1 16.1 :Y:flupa I 44.; :vI f l~p~ I

teaspoon
4

Test Case 1: SEL(nm)
Test Case 1: EK4(nm)
Test Case 1: RET(nrn)
Test Case 2: SEL(nm)
Test Case 2: EV.(nm)
Test Case 2: RET(nm)
Test Case 3: SEL(nna)
Test Case 3: EVA (nm)
Test Case 3: RET(nrn)

118 Rops
4.1 flops/32bit word

Table 4.3: Mean SEL? EVA. and RET Values in Sequential Algorithm

zeus
4

499 flops
3.17 flops/32bit word

zeus
6

4.3 Test Results 67

Value
Processes
Test case 1 :SEL(nm/p)
Testcase1:EVA(nm/p)
---.A

Table

Test case 2 :SEL(rrm/p)
Test case 2 :EVA(nm/p)
Test case 2 : RET(nm/p)
Test case 3 :SEL(nm/p)
Test case 3 :EVA (nm/p)
Test case 3 : RETlnmh)

1.4: Mean SEL. EVA. and RET Values in Parallel Algorithm

r c o ~ izisr 1 .iLET(/iii';pj 1 0.30 5 1 û.ûG s 1 0.01 s 1

4
0.02 s
0.30s

4.3.1 Test Result of Animal Classification.

0.02 s
1.20 s
1.20 s
0.02 s
0.40 s
0.40 s

Table 4.5 shows the test results in sequential algorithm. The concepts induced in each

big step are shown. The value of GEN(nm)+EVA(nm) shows the cost to generate

and evaluate one candidate concept. which is the most significant cornputational

cost. The values s h o w in the table are average values. The range and nurnber of

data nodes 1 collected are also shown. The value of E shows the number of candidate

concepts generated in each step. The cost of each big step should be roughly equal

to E (GEN (nm) + EVA(nm)). The sequential algorithm takes 9 steps to generate al1

the rules.

4
0.01 s
0.06s

In the parallel approach with 4 processors, the 4000 examples are divided into 4

siibsets. Four processors induce the concept set on their subset of data in parallel.

The nurnber of big steps is reduced to 2. The test results on both machines is shown

in Table 4.6. The concepts induced by different processors in one big step are shown

in the table. The value of E (GEN (nmlp) + E VA(nm/p)) shows the cost of local

6
0.01 s
0 . 0 4 s (

0.01 s
0.12s
0.12 s
0.01 s
0.08 s
0.08 s

0.01 s
0.08s
0.08 s
0.01 s
0.05 s
0.05 s

68 Paralle1 Progol

i I npr, etaiiipirs ra liac l rd o w

subtotal 1 15.35s s

Parame t ers
Big Step 1
GEN(nm) + E VA (nm)
- -

Value on teaspoon
class(A, fish) :- ha-gills

0.50s (0.48-0.52s. 31 nodes)
31

Big Step 2
GEN(nm) i E VA(nm)

Value on Zeus
I

l), hascovering(A,none).

I

class(A?reptile) :- habitat(.
0.72s (0.63-0.85s. 99 nodes) 1

-
i.

esamples retracted
siibtotal

0.20s (0.16-0.24s, 31 nodes)
31
SV2
6.44 s

99
78
72.84 s

AJand). habitat (-4,water).

Big Step 3
GEN(nm) + E VA (nm)
C
d

a7
esamples retracted 1 156

Big Step 4
GEN(nrn) +EVA (nm)

/ siibtotal 1 43.81 s

class(.4,mammal) :- habitat (.\,caves).

class(;\,reptile) :- hascovering(A,scales) habitat (holand).
0.74s (0.63-0.93s: 57 nocles) 1 0.13s (0.09-0.15s: 57 nodes)

0.94s (0.62-0.95s, 163 nodes)
163

esamples re tracted
siibtotal

0.13s (0.09-0. lss , 163 nodes).
163
78
21.16 s

Big Step 7
GEN(nm)+EVA(nm)

class(.-\, bird) :- hascovering(A,feat hers), habitat (..\,land).
0.54s (0.42-0.64s. 163 nodes) 1 0.13s (0.09-0.15s, 163 nodes)

1 aampIes retracted 1 subtotal

163
549
89.04 s

Big Step 8
GEN(nm) +E K4 (nm)

I

class(A, bird) :- hascovering (A, feat hers) .
0.46s (0.38-0.56s. 99 nodes) 1 0.08s (0.06-0. los, 99 nodes)

.- -
esamples retracted

, subtotal

99
156
47.02 s

Big Step 9
GEN(nm)+EVA(nm)

/ Total cost
1 1

1 604.45 s 1 107.75 s

class (A.mamma1) :- hascovering(A, hair) .
0.52s (0.41-0.78s. 163 nodes) 1 0.10s (0.06-0.12s, 163 nodes)

a

i

examples retracted
subtotal

Table 4.5: Test case 1: result of sequential algorithm

163
136
57.38 s

4.3 Test Results

computation on the processor which takes the longest time in one big step. The value

of 3(rpg + 1) shows the rneasured conimunication cost. In the parallel approach with

6 processors? the 4000 exaniples are divided into 6 subsets. The number of big steps

is aiso 2. The test resuits is shown in ïa'bie 4.7.

pp

Parame ters
Big Step 1:
process 1
process 2
process 3
process 4
c (GEN(nm/p)+EK11(nm/p))
3bpg + 1)
esamples retracted
siibtotal
Big Step 2:
processes 1-4

E (G EN(nm/p) + E VA (nm/p))
3kpg + 1)
examples retracted
subtotal
Total parallel algorithm cost

Value on teaspoon 1 Value on Zeus
concept induced
class(A,mammal) :- hascovering(.A, hair) .
class(Afish) :- has-gills (A), hascovering(h,none) .
class(.-\.reptile) :- haslegs(A,-l), habitat(A,water).
class(A. bird) :- haçcovering(A, f eathers) .

Table 4.6: Test case

concept induced
class(h,reptile) :- not (has-gills(A)),
hascovering(A,scales).

1: results of 4process parallel algorithm

57*0.41s = 23.65
0.20l'ï s
235
'26.44 s
105.86 s

In the parallel algorithm with four processors, each processor induces a different

concept in the first step. So at the end of the first big step, each process has learnt

four valid concepts. In the second big step four processes induce only one concept.

In parallel algorithm with six processors, there are five concepts induced in the first

step. In the second big step six processes induce only one concept. Though there is

redundancy, the overall performance is still greatly improved. Table 4.8 shows the

57*0.04s = 2.39s
0.01 s
235
2.71 s
13.05 s

process 2
process 3

Big Step 1:
process 1

class(A.fish) :- has-gills(A), hascovering(h~none) .
class(.-\.reptile) :- haslegs(A,.l), habitat(.A,water).

concept indiiced
class(A. mammal) :- hascovering(.-\. hair) .

1 process 4 1 class(A, bird) :- hascovering(A,f eat hers).
1 process 5 1 claçs(A, reptile) :- hascovering(A,scales), habitat (AJand).

process 6
E (GEN(nm/p)

class(A. fish) :- has-gills(A) , Iiascovering(-4,none).

+ EVA(nm/p))
3 (r ~ g f 1)
csamples retracted
subtotal
Big Step 2:
processes 1-6
E (GEN(nm/p)

Table 4.7: Test case 1: results of 6-process parade1 algorithm

163*0.05s = 9.68 s
0.03 s
3765
10.34 s
concept induced
class(.A,rept ile) :- not (has-gills(A)), hascovering(h,scales) .

+ EVA (n d p)) 57*0.04s = '2.40s
3bpg + 1) 1 0.02 s
examples retracted
subtotal
Total parallel
alnorithm cost

235
2.91 s

13.25 s

4.3 Test Results 71

results of test case one. The costs of sequential algorithm and parallel algorithm

with four and six processors on both machines are compared. The row cost, shows

the average cost of one processor in parallel algorithm. The row cost, shows the

average cost in sequentiai algorithm. h doubie speedup phenomenon 1s observed

this test case on both machines with different processor number, which is shown

p * cost, < cost,.

k.,
k
c0stt
cost,
cost, * P

- - - - - - -

Pararne ters
Number of examples

Table 4.8: Test case 1: cornparison of sequential and parallel algorithm

teaspoon(4-process)
4000

4.3.2 Test Result of Chess Move Learner.

Table 4.9 shows the test results for the sequential algorithm. The concepts induced

in each big step are shown. The value of GEN(nm)+EVA(nrn) shows the cost to

generate and evaluate one candidate concept. The values shown in the table are

average values. The range and nurnber of data nodes 1 collected are also shown. The

value of E shows the number of candidate concepts generated in each step. The cost

of each big step should be roughly equal to o (GEN (nm) + EVA(nm)). The sequential

algorithm takes 23 steps to generate al1 the rules.

In the parallel approach with 4 processors, the 4000 examples are divided into 1

subsets. Four processors incluce the concept set on their subset of data in parallel.

The tiumber of big steps is reduced to 4. The test results on both machines is shown

in Table 1.10. The concepts induced by different processors in one big step are shown

in the table. The value of E (GEN(nm/p) + EVA(nrn/p)) shows the cost of local

computation on the processor which takes the longest time in one big step. The value

of 3(rpg + 1) shows the measured communication cost. In the parallel approach with

6 processors, the 4000 examples are divided into 6 subsets. The number of big steps

is further reduced to 3. The test results is shown in Table 4.1 1.

This test case shows the scalability of the parallel algorithrn. The parallel algorithm

with s is processors induces concepts in a quicker way than with four processors. So

the total cost of the parallel algorithm Nith s k processors is less than the cost Rnth

four processors. Table 4.12 shows the results of test case two. The costs of sequential

algorithm and parallel algorithm with four and six processors on both machines are

compared. Though there is redundancy, i-e. the concepts induced in last big step

4.3 Test Results 73

Paramet ers
Big Step 1
GEN(nm) +E VA (nm)

Value on teaspoon 1 Value on zeus
move(bishop,pos(.~,B),pos(C,D)) :- rdiff(BlD,2), fdiff(A,C,2).
1.57s (0.90-1.81s, 22 nodes) 1 0.13s (0.09-0.15~~ 22 nodes)

c- - l?, 1 22
exampies relraclad
subtotal
Big Step 2
GEN(nm)+EVA(nm)
C -
esarn ples re t rac t ed
subtotal
Big Step 3
GEN(nm)+EVA(nm)

I

move(bishop.pos(;\,B) ,pos(C,D)) :- rdiff(B,D,l), fdiff(X,C,l).
1.49s (1.25-2.03s: 22 nodes) 10.12s (0.09-0.15s, 22 nodes)

E

examples retracted
subtotal

7 - n

22
214
38.53 s

Big Step 1
GEiV(nm)+EVA(nm)

133

37.75 s

I

move(rook,pos(X.B) ,pos(CB)) :- fdiff(.A,C,5).
1.59s (1.31-1.87s' 34 nodes) 1 0.12s (0.09-0.15~~ 34 nodes)

-
t

examples retracted
subtotal

133

2.86 s

34 - (2
59.12 s

Big Step 5
GEN(nm)+EK4(nrn)

I

move(queen~pos(A,B),pos(A7C)).
1.63s (1.43-1.96s: 34 nodes) 10.12s (0.09-0.15s, 34 nodes)

f

esamples retracted
sitbtotal

examples retracted] 556 1 556

move(queeri.pos(~~,B),pos(C,D)) :- rdifF(B,D,ï), fdiff(-4,C,7).

34
502
62.12 s

Big Step 6

subtotal 1 57.84 s 1 4.00 s

1.51s (1.16-1.96s, 22 nodes)
9'7
&-

14
35.99 s

I

move(rook,p~s(.~~B) ?pos(A,C)).

0.13s (0.09-O.&, 22 nodes)
39
nn

14
'2.66 s

GEN(nrn)+EVA(rim) , 1.57s (1.34-2.21~~ 34 nodes) 1 0.12s (0.08-0.14s, 34 nodes)

Big Step 23
GEN(nrn)+EVA(nm)

Table 4.9: Test case 2: results of sequential dgonthm

move(bishop,pos(i\.B) ,pos(C,D)) :- rdiff(B,D,G), fdiff(A,C,G) .
0.52s (0.41-0.78s: 22 nodes) 1 0.10s (0.06-0.12~~ 22 nodes)

examples retracted
subtotal
Total cost

14
29.85 s
1062.95 s

14
2.29 s
77.93 s

1 Parameters Value on teaspoon 1 Value on Zeus
1 Big Step 1: 1

1 process 3 I

examples retracted
/ subtotal 1
/ Big Step 2: 1

process 1
process 2
process 3
process 4

q r p g + 1)
1 rsarnples set racted 1
/ siibtotal 1

process 1
process 2

/ process 3 I

1 esamples retrac ted 1
subtotal
Big Step 4:

esamples retracted
subtotal

, Total paralle1 algorithm cost

concept induced
move(king,pos(A,B),pos(C.D)) :- rdiff(B,D,l), fdiff(.4,C,l).
T - - - - l : -1 lllvallu

move(bishoplpos(h,B) ,pos(C,D)) :- rdiff (B,D.E), fdiff(A,C,E).

-- -

concept induced
move(queen.pos(-4.B) , p ~ s (c . D)) :- rdiff (B,D ,E) , Fdiff(A,C,E).
move(queen.pos(.-\,B) ,pos(C,B)).
move(knight.pos(.l.B),pos(C,D)) :- rdiff(B,D.l), fdiff(A,C,?).
Invalid

concept inctuced

concept induced
move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,l).
34*1.65s = 56.42 s 28*0.08s = 2.33s
0.404 s 0.03 s
88 88
58.33s s 2.38 s
237.84 s 15.02 s

Table 4.10: Test case 2: results of 4process parallel algorithm

4.3 Test Results 75

process 1

1 process 3 l
process 4
process 5
process 6
E (GEN(nm/p)
+ E VA (nm/p))
3 b p g + 1)
examples ret racted

process 2
process 3
process 4
process 5
process 6
c (GEN(nm/p)
+ (WP))
3(rpg + 1)
examples retrac ted
subtotal

processes 1-6 1

concept induced
move(king,pos(A,B) ,pos(C.D)) :- rdiff(B,D, 1), fdiff(A,C,1).

(m..p -- \ D\ -6 /O n\\ . , A : a / D n Cr;\\ r :at
i i i ~ ~ ï ~ ~ ~ ï ~ ~ i , ~ ~ ~ ~ . i , u ~ , ~ v s ~ ~ , u ~ ~ .- *uAiI(ulu?u,, iduL\AIC,E).
rnove(bishop,pos(.A,B),pos(C,D)) :- rdiff(B,D,E,), fdiff(A,C,E).
move(rook~pos(A,B) ,pos(C?B)).
move(kinglpos(.A,B) ,pos(C,D)) :- rdiff(B.D, 1)) fdiff (A$, 1).
rnove(king,pos(A,B) ,pos(C,B)) :- fdiff (A$, 1).

concept inclucecl
niove (queen?pos(A.B) .pos(.i.C)).
move(clueen.pos(-1.B) .pos(C:B)).
rnove(knight .pos(.A.B) .pos(C?D)) :- rdiff(B,D,l), fdiff(A,C,a).
rnove(rook.pos(A.B) ,pos(.-\.C)).
move (cpeen. pos (A. B) : pos (A$)) .
rnove(knight,pos(.~,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,CJ).

22*0.067s = 1.51s
0.04 s
1720
1.67 s
concept induced

Table 4.11: Test case 2: results of 6-process parallel algorithm

76 Paralle1 Progol

are t h same. the overall performance is still greatly improved. The row cost, shows

the average cost of one processor in parallel algorithm. The row cost, shows the

average cost in seqiiential algorithm. .-\ double speedup phenornenon is observed in

6 * costs < 4 * cosst4 < cost,.

Table 4.12: Test case 2: cornparison of sequential and parallei algorithm

Parameters
Nrirnber of examples
k ,.

zeus (4-process)
4000
-4

teaspoon (4-process)
4000
4

zeus (6-process)
4000
3

4.3 Test Results 77

4.3.3 Test Result of Chess Game Ending Illegal Problem

Table 4.13 shows the test results for the sequential algorithm. The concepts induced

in each big step are shown. The value of GEN(nm)+E VA(nm) shows the cost to

generate and evaluate one candidate concept. The values shown in the table are

average values. Tlie range and nuniber of data nodes 1 collected are also shown. Tlie

wlue of E shows the number of candidate concepts generated in each step. The cost

of each big step should be roughly equal to E (GEN(nm) + E VA(nm)). The sequential

algorithm takes 12 steps to generate al1 the rules.

In the parallcl approach with 4 processors. the 2000 examples are divided into 4

subsets. Four processors iridiice the coiicept set 011 tlieir subset of data in parallel.

The number of big steps is reduced to 4. The test results on both machines is shown

in Table 4.14. In the parallel approach with 6 processors, the 2000 examples are

divided intn 6 subsets. The number of big steps is also. The test results is shown

in Table 4.15. -1s in test case 1 and 2, different processors induce some redundant

concepts. But the overall performance is improved.

Table 4.16 shows the results of test case three. The costs of sequential algorithm

and parallel algorithm with four and six processors on both machines are compared.

The row cost, shows the average cost of one processor in parallel algorithm. The row

cost, shows the average cost in sequential algorithm. 4 double speedup phenornenon

is observed in this test case on both machines with four processors. However, the

parallel algorithm with six processors does not show such a phenornenon, though

cost, with six processors is less than cost, with four processors. This is partly due

to the example set which, in this test case, does not show enough scalability. So

1 Parameters T

1 zsarnples retracted
subtotal
Big Step 2

b.

GEN(nm) + E Y4 (nm)
-
b

esamples retracted

Value on teaspoon -- 1 Value on Zeus
iliegai(A.XB,C,B.D) :- adj(A,B): adj (A$).

0.70s (0.50-1 .89s. 248 nodes) 1 0.08s (0.06-0.15s, 248 nodes)

illegai (A.B,C. D ,C,.A) :- adj (D,A), adj (B,C) .
0.50s (0.43-0.85s. 633 nodes) 0.07s (0.05-0.15~~ 633 nodes)

1 siibtotal 1

A

b

esamples retracted
1 subtotal 1

336.95 s 1 42.33 s
ilicgal (A.B.C.D,E,D) :- adj (A,B), adj (A$).

0.57s (0.39-0.95s. 212 nodes) 0.07s (0.05-0.15~~ 212 nodes).
212 212
120 120

illegal(A,B.C.D,E.F) :- adj(A7E), adj (B,F).
0.69s (0.63-0.93s, 2-18 nodes) 1 0.08s (0.06-0.15~~ 248 nodes)

1 Big Step 12 illegal(A,B,C,D,E,D).

1 examples retracted 1 96 1 96

0.04s (0.02-0.06s, 165 nodes)
165

GEN(nm) + E VA (nm) -
L

Table 4.13: Test case 3: results of sequential algorithm

0.37s (0.20-0.78~~ 165 nodes)
165

subtotal
Total cost

62.14 s
1239.88 s

7.31 s
150.58 s

4.3 Test Results 79

Paramet ers
Big Step 1:
process 1
process 2
process 3
process 4
5 (G EN(nm/p) + E K4 (nm/p))

Jbpg + 1)
examples retracted
subtotal
Big Step 3:
process 1
process 2
process 3
process 4
E (G EN(nm/p! + E K4 [nm/p))
3(rpg + 1)
examples ret racted
subtotal
Big Step 3:
process 1
process 2
process 3
process 4
s (GEN(nm/p)+EVA(nm/p))
3(rpg + 1)
esamples retracted
subtotal
Big Step 4:
process I
process 2
process 3
process 4
E (GEN(nm/p) + E VA (nm/p))
3kpg + 1)
esamples re tracted
subtotal
Total parallcl algorithm cost

Value on teaspoon 1 Value on Zeus
concept induced
iiIegai(.4.BlC,D.E,F) :- adj(E,X), adj(B,F).
Invalid
illegal(A.B,C,D,C,E).
ii1ega1(.4,BlC.D,C,E) :- adj(C,E).

concept induced
iilegal(A,B.C,D.D,D) :- adj(A,C).
illegal(.l.B.C,C.D.C) :- adj (.l,D) : adj (C,D).
illegal (h.B,C.D.E.D) :- adj (A$), adj (D,E) .
illegal(.4J3.C,D,E,D) :- adj(.\,C), adj(D,E).

concept induced
illegal(.A.Bo.A,B.C,D).
iilegai(A,B,C,D,E,D) :- adj (D,E).
illegai(A,B,C,D,E,D) :- adj (D,E).
illegal(X,B,C,D,E,D) :- adj(D,E).

0.316 s 0.03 s

92.52 s 11.35 s

Sable 4.14: Test case 3: results of 4process parallel algorithm

concept induced
illegal(A,B ,C,D ,E,D) .
illegal(A.B,C.D,E,D) :- adj(A,C).
illegal(A,B,C,D,E,D) .
illegal(A'B,C,D,E,D).
268*0.24s = 65.28 s
0.30 s
348
68.59 s
293.07 s

268'0.03s = 7.82s
0.04 s
88
8.02 s
36.14 s

1 Big Step 1:
process 1
processes 2-4
process 5

E (GEN(nm/p) + E VA (nm/p))

3(rpg + 1)
esamples ret racted
subtotal
Big Step 2:
process I
process 2
process 3
process 4
process 5
process 6
e (GEN(nm/p)+EVA(nrn/p))
3bpg + 1)
examples retracted
subtotal
Big Step 3:
processes 1,3,4
process 2
process 5
process 6
E (GEN(nm/p) + E VA (nm/p))
3kpg + 1)
examples retracted
subtotal
Big Step 4:
process 1
process 2
process 3-6
e (GEN(nm/p) +E VA (nm/p))
3kpg + 1)
examples retracted
subtotal
Total parallel algorithm cost

concept induced
Invalid

concept induced
illegai(A,B ,C,D,EID) :- adj (h,C), adj (E,D) .
illegal(A,B,C.D,E,D) :- adj (B,D) .

iilegal(.-\,B.C,D,E.B) :- adj(A,E).
illegal(.-\,B.C,.A,D,E) :- adj (A,D), adj (B,E).
i1Iegai(.4,B.C.DTE,B) :- adj (A,E).

concept induced
illegai(A.B,C.D,D.E) :- adj(A,D), adj (B,E).

illegal (A,B,C,D ,E,D) :- adj (E,D).

concept induced
illegal (A,B,A,B ,C ,D) .
illegal(A!B,A,B,C,D) :- adj(B,D).
illegal(.4,B7.-\.B:C?D).

Table 4.15: Test case 3: results of 6-process parallel algorithm

4.3 Test Results 81

processors waste tirne doing redundant work when processors becomes large.

Table 4.16: Test case 3: comparison of sequential and parallel algorithm

4.3.4 Summary.

zeus (6-process)
2000

Super-linear speedup is observed in al1 these test cases. I might expect the parallel

implementation using p processors to take time cost,/p if 1 ignore the communication

ovcrhead. But here in the experiment it executes even fastes due to the information

exchange between processors and reduction of subsequent work. There is a big per-

formance improvernent with a sniall p. Though 1 did the experiments on a pprocessor

SMP machine, I believe that the parallel ILP algorithm is scalable given that each

subset of data is still big enough to induce correct concepts. And the double speedup

phenomenon will be observed with a larger processor set.

zeus (4-process)
1000

Parameters
Number of examples

tempoon (4process)
2000

82 Paralle1 Progol

Chapter 5

Conclusion

In this thesis 1 studied the use of inductive logic to generate concepts from very

big datasets in parallel. 1 use p processors to do the data-mining job, each on a

subset of the full dataset. A set of concepts are generated from disjoint subsets of

the full dataset used for rnining. The distributed concept sets are total exchanged

and evaluated before merging the valid ones into the final concept set. The final set

of concepts is free of conflicts and has acciiracy equivalent to a set of rules developed

from the full dataset. The disk I/O access cost for each processor will be reasonably

reduced by l l p .

Since each processor learns concepts independently on its subset, there are some

issues that 1 have discussed in this tbesis:

0 How to secure the accuracy of induced theory on smaller datasets;

a How to deal with negative examples;

How to reduce communication overhead; and

83

84 Conclusion

0 Hom to avoid redundant work by individual processes.

1 presented a parallel ILP data-mining algorithm using the BSP mode1 and gave its

cost analysis. 1 implemented a parallel version of a core ILP system - Progol - using

C with the support of Oxford BSPlib. 1 developed several different test cases to

sIiow typical speedup. With al1 the test results, a double speedup phenornenon was

obscrved which greatly iniprovecl the performance of ILP data-mining algorit hm.

Froni the analysis of the parallel ILP data rnining algorithm and the test results

of parallel Progol. 1 can draw the conclusion that the benefits of the performance

of parallel computing for ILP data niining is obvious. Though the cost measures

i n tlie implementation is not complete accurate and tlie parallel version of Progol

lias its limitation. they are expressive enougli to show that even modestly parallel

iriiplenientations of ILP algorithm c m achieve significant performance gains. The

following is what 1 discovered in my study:

First, inductive logic prograrnming employs first-order structural representations,

which generalizes attribute-value representations, as examples now may consist of

multiple tuples belonging to multiple tables. These representations can succinctly

represent a much larger class of concepts than propositional representations and have

demonstrated a decided advantages in some problem domains [19]. By using first-

order logic as the knowledge representation for both hypotheses and observations,

inductive logic programming may overcome some major difficulties faced by other

data-mining systems. ILP inheritates well-established theories, algorit hms and tools

frorn computational logic. Background knowledge helps in restricting the hypothesis

search and is a key factor for incremental and iterative learning.

Conclusion 85

Second, the BSP model provides a simple way to implement a parallel ILP data-

mining system and gives a relative accurate cost model based on counting cornputa-

tions, data access, and communication. Based on BSP model, 1 have confidence to

Third, replicated implementation is shown to be a simple, yet powerful, approach to

parallel ILP system design. Independent search is simple and works tvell for minimiza-

tion problems. However, it does not divide the dataset, so it cannot reduce the disk

access. Therefore, it is not suitable for problems with huge dataset. The fine-grained

parallelism in parallelized approaches requires more communication, so 1 do not use

this approach in out parallel ILP data-mining algorithm. The replicated approach

is often the best way for parallelizing ILP data-mining applications. Previous work

in [27] shows tliat the replicated approach gives the best performance improvement

among al1 these three approaches introduced above. It gives a way for the algorithm

to exploit collective knowledge quickly. The parallel algorithm exchanges information

after each phase. The knowledge gairied by one processor in a step will be exchanged

with al1 other processors during the end of that step. In this way, once the algo-

rithm has found a concept that can explain part of the data, it does not need to

examine that part again. So there is less work for the next phase. A double speedup

phenornenon is obsemed in this parallel algorithm, as shown is Table 5.1, 5.2, 5.3.

Table 5.1: Double speedup on teaspoon with 4 processors

Double Speedup 1

Parallel cost*4
423.44s
951.36s
1172.28s

Parallel cost
105.86s
237.84s
293.07s

Example
Animal

Chess Move
Game Ending

Sequential cost
604.63s
1062.95s
1239.88s

Processors
4
4
4

86 Conclusion

Table 5 .2: Double speedup on Zeus with 4 processors

Double Speedup 2

Double Speedup 3

Example 1 Sequential cost 1 Processors [Parallel cost 1 Parallel costt4 1

Parallel cost* l
52.50 s
60.08 s
144.56 s

Example
Animal

Chess blove
Game Ending

Processors
4
4
4

Sequential cost
105.86 s
77.93 s
150.58 s

Table 5.3: Double speediip on Zeus witli 6 processors

Parallel cost
13.05 s
15.02 s
36.14 s

! 1

I I I 1

Finally, though my test results are obtained frorn 4 and 6 processor SMP machines,

it is reasonable to assume the scalability of this parallel approach to modest number of

processes. Since the communication overhead is srnaIl? the parallel ILP algorithm will

work well with more processors provided that each subset of data on one processor is

big enough to induce accurate concepts.

Animal
Chess Move

79.50 s
44.64 s

6
6

105.86s
77.93 s

Game Ending 1 150.58 s

13.25 s
7.74 s
28.44 s 6 170.64 s

Bibliography

[1] R. Agra1va.1 and J. Shafer. Parallel niining of association rules: Design, irnple-

mentation and esperience. Technical Report RJ10004, IBM Research Report,

February 1996.

[2] M. Besch and H. W. Pohl. How to simulate artificial neural networks on large scale

parallel cornputers exploiting data parallelism and object orientation. Technical

Report TR-94022. GMD FIRST Real World Computing Laboratory, November

1994.

[3] M. Besch and H. W. Pohl. Flexible data parallel training of neural networks using

MIMD cornpurers. In Third Eummicro Workshop on Parallel and Distrib~ted

Processing, January 1995.

(41 P.S. Bradley. C;. M. Fayyad, and O.L. hlangasarian. Mathematical programming

for data mining: Formulations and challenges. INFORMS Journal of Computing,

11:217-238, 1999.

[5] 1. Brat ko and S. 'Jluggleton. Applications of inductive logic programming. Com-

munications of the AC&[, 38(11):65-70, 1995.

88 BIBLIOGRAPHY

[6] S .H.N. Cheung. Data mining: Frorn statistics to inductive logic programming.

Technical report, Department of Coniputer Science, Erasmus University of Rot-

terdam, November 1996.

[7] S .HA. C heung. Foundations of Inductive Logic Programming. Springer, 1997.

[SI J .M.D. Hill D.B. Skillicorn. Questions and answers about BSP. Scientific Pro-

gramming, 6(3):249-374, Novernber Fall, 1997.

[9] P. Finn, S. 'vIuggletont D. Page. and -1. Srinirasan. Pharmacophore discovery

using the inductive logic programming system Progol. Machine Learning, 30:241-

272, 1998.

[IO] P. Frasconi, M. Gori! and G. Soda. Daphne: Data parallelism neural network

simiilator. International Journal of Modern Physics C! 1992.

[Il] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the 13th International Conference on Machine Learning, pages

148-156, 1996.

[El V. Gaede and 0. Günther. Survey on multidirnensiooal access methods. Techni-

cal Report ISS-lGo Institut für Wirtschaftsinformatik, Humboldt Universitat zu

Berlin? August 1995. www.wiwi.hu-berlin.de/-gaede/survey.rev.ps.Z.

[13] D.E. Goldberg. Genetic illgorithms in Search, Optirniration, and iîdachine Learn-

ing. Addison-Wesley, 1989.

[i4] G.H. Golub and C.F. van Loan. Illatriz Computations. Johns Hopkins University

Press, 3rd edition, 1996.

BIBLIOGRAPHY 89

[15] G. Gonnet. Unstructured data bases or very efficient text searching. In ACM

Princzples of Database Systems? pages 1 E - l X , Atlanta, Georgia, 1983.

[16] A. Guttman. R-Trees: A dynamic indes structure for spatial searching. In Pro-

ceedings O/ A C M SIGibIOD International Conference o n ildanagement of Data,

pages 47-57, June 1954.

[17] E.-H. Han, G. Karypis, and V. Kumar. Scalnble parallel data mining for associ-

ation rules. In A CLPI-SIGMOD Internation C o n ference o n Managemen t of Data,

May 1997.

il81 b1.V. Joshi, G. Karypis. and V. Kumar. ScalParC: -4 new scalable and effi-

cient parallel classification algorithm for mining large datasets. In Pmceedzngs

of IPPS/SPDP'98, pages 573-580, 1998.

1191 K. Nigan LI. Craven, S. Slattery. First-order learning for web mining. In pro-

ceedings of the i 0 th European Conference on Machine Leoming, 1998.

[?O] S. Lluggleton. Inductive logic programrning. New Generat ion Comput ing ,

8(4):295-318, 1991.

[21] S. Muggleton. Inductive logic programming: theory and met hod. Journal of

Logzc Prograrnming, 19:20, 1994.

1221 S. Muggleton. Inverse ent ailment and Progol. New Generation Comput ing Sys-

tems, 13:245-286, 1995.

[23] S. Muggleton. Inductive logic programrning: issues, results and the LLL chal-

lenge. Artificial Intel Zigence, 114(1-2) :283-296, December 1999.

90 BIBLIOGRAPHY

[24] S. Muggleton and L. De Raedt. 1nduct.ive logic programming: Theory and meth-

ods. Journal of Lagic Programming, 19,20:629-679, 1994.

[25] D.A. Pomerleau, G.L. Gusciora, D.L. Touretzky, and H.T. Kung. Neural network

simulation at Warp speed: How we got 17 million connections per second. In

IEEE International Conference on Neural Networks, July 1988.

[XI J.R. Quinlan. Cd. 5: Prograrns for Machine Leaming. Morgan-Kaufmann, 1993.

['Tl R.O. Rogers and D.B. Skillicorn. Using the BSP cost mode1 to optimize paral-

le1 neural ne twork training. Future Generation Computer Systems, 1k.109-424,

1998.

[-SI J. Schafer, R. Agrawal. and LI. bIehta. SPRINT: A scalable parallel classifier for

data mining. In Proceedzngs of VLDB22. Slurnbai. India, 1996.

[ZS] D.B. Skillicorn. Strategies for parallel data mining. IEEE Concurrency, 7(4):26-

35, October 1999.

[30] H. Toivonen. Discovery of frequent patterns in large data collections. Technical

Report A-1996-5, Depart ment of Corn puter Science, University of Helsinki, 1996.

[31] L.G. Valiant. Oxford Parallel - BSP Model. CVorld Wide Web, 1997. http://

oldwww. comlab.ox.ac.uk/oucl/oxpara/bsp/bspmodel. h m .

[32] N.B. ~erbedi i ja . Simulating artificial neural networks on parallel architectures.

Computer, 29, No.356-63, 1996.

[33] 1. Weber. ILP systerns on the il p-net systems repository. Technical report,

Department of Computer Science, University of Stuttgart, Germany, 1996.

BIBLIOGRAPHY 91

[34] M. Whitbrock and M. Zagha. An iniplementation of backpropagation learning on

GF11, a large SIbID parallel cornputer. Parallel Computing, 14329-346, 1990.

BIBLIOGRAPHY

Appendix A

PCProgol Implementat ion

Oxford BSPIib is the platforrn rised to iniplement the parallel version of CProgol. 1

made the necessary modifications to CProgol 4.4 to make it work in parallel.

At the beginning of the main() function, 1 cal1 bsp- begin(int process-number) to

start p processes. The number of processor can be modified as a parameter. Each

process needs to be allocated to a processor. If more than one process is allocated

to one processor the performance will be greatly affected due to the barrier synchro-

nization. Each process will get its process ID by bsp-pido. In this way I can tell

which process is inducing concepts. At the end of the program bsp-end() is called to

terminate the program. Function c-doall() will perform al1 the induction procedures

describe in the parallel algorithm.

The main fiinction starts:

main() {
// BSP Begin, X = number of procwes = number of processors
bsp- begin(X);
// get my process ID
pid = bsp-pid();

94 PCProgol Implementat ion

// Analyze command line parameters
checkargs(argctargvtenvp);
// Initialise built-in predicates
1-init();
/ / Begin induction process
c~doal l(f i leroot~in,f i leroot~out);
// close al1 files
c- close();
return(1l);
// BSP End
bsp-end();

}

[ri CProgol. the big loop structure is implemented in the procedure c-sat(). I

niodified the big loop structure in c-sat() to rnake it work in parallel on several

processors. c-sat() is the core procedure which does top-down search, asserts result

if compressive and does theory reduction. The whole structure in the PCProgol will

be made clear once I introduce the function of c-sat().
c-sat() first declares local variables. Sorne of these variables are used for BSP

communication. A function cputime() is called to record cornputation and commii-
nication cost.

PREDICATE
c-sat(cclause,nex)
//DECLARE LOCAL VARIABLES
//Start recording computation time
start = cputime();

Once al1 the local variables are allocatedt bsp-push-reg() is called to register
necessary variable for communication. .A spchronization function bsp-sync() is then
called to rnake it happen.

/*register variables for BSP communication*/
bsp~push~reg(concept.sizeof(char)*MAXMESS*X);

/*synchronization point*/
bsp-sync();

ct-sat() and cl-symreduce() are then called for generating the most specific clause
for the example selected.

PCProgol Implementation 95

l igenerate the most specific clause
if (hypothesis = ct- sat(cclause,atoio,otoa&head))

cl-symreduce(St hypothesis.atoio. head).
outlook=r~outlook(hypothesis, head,otoa.atoio);
vdomains=r~vdomains(otoa.atoio):
iijverbose>=2 j

fprintf(tty-file- >filellMost specific clause is:');
cl- print(hypothesis);

Function r-searcho will search in the hypothesis space to find a locally-correct
hypothesis. If a successful hypothesis is found, then bsp-put() is called to send this
hypothesis to al1 other processes. It is followed by a synchronization function call.

/ / search for locally-correct concept
r- search(Sr hypothesisIatoio,otoa.outlookIvdomains.fnex);
if(hypothesiskk !L- EMPTYQ(hypothesis))

cl- u nflatten(hypothesis) ;
if(verbose>=l)

fprintf(tty-file- >file,'ResuIt of search is:');
cl- print(hypothesis);

else
fprintf(tty-file- >filetl[No compression]');
result-FALSE;

// propagate hypothesis t o other processes
for (i = O;i<X;i++)

bsp- put(i, hypothesis,receive10,sizeof(char)*MAXMESS);

bsp-sync();

The size of data in the first round of total exchange is a character string. Its size

is defined by the macro MXXbIESS to be 40 characters in PCProgol. After the global

synchronization, each process gets al1 the hypotheses generated in this step. Shen it

will perform the evaluation. It will get the number of positive examples covered and

96 P CProgol Implementation

the number of negative esamples wrongly covered by one hypothesis relative to its

local esample set.
Once each processes get al1 the p and n values for al1 the hypothesis, the score f

mil1 be calculated for that hypothesis. There will be a second-round total exchange.
T l . . . iiia tiiiie ûïilj- the iriteger vûlüc ûf f am z d m i g e d .

// use BSP model to get other processes' hypotheses and evaluate them
for(int i=O; i<x,i++)

if (pid ! = i)
ITEM cl,call=d~gcpush(cl=i~copy(re~hyp[i]));
LIST *end=cl- push(re- hyp[i]);
PRED ICATE negq=(PSY M(HOF((L1ST) 1- GET(re- hyp[i])))):
p[i]=(int)cL pcoverage(caII, L- GET(*end));
if (rd poson ly())

n [il = (int) ci -dcoverage(call.fnex);
el se

n[i] = (int) cl- ncoverage(negq ,call, L-GET(*end));

According to f value from each processes, one process can decide if the hypothesis
generated in this step is valid or not. And then during the third round communication
the boolean value of validate will be total exchanged.

// Test if the hypothesis is valid or not.
Validate = validate-test(f[pid]);

// propagate validation result t o other processes
for(i=O;i<4;i++)

if(pid!=i)
bsp~put(i,validate,go,pid*sizeof(int).sizeof(int));

bsp-sync();

After the third round communication, al1 the valid hypothesis induced in this step
will be updated to background knowledge and al1 the redundant examples Nil1 be
ret racted from each subsets.

P CProgol Implementation 97

The total cornniunication cost is small because the çize of data to be exchanged

is small.

98 PCProgol Implementation

