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Abstract 

Data-mining is the process of automatic extraction of novel, useful and understand- 

able patterns from very large databases. High-performance, scalable, and parallel 

computing algorithms are crucial in data mining as datasets grow inexorably in size 

and coniplesity. Inductive logic is a researcli area in the intersection of machine 

learning and logic programming, whicli has been recently applied to data mining. 

Inductive logic studies learning from examples, within the framework provided by 

clausal logic. It provides a uniform and very expressive means of representation: 

1\11 examples, background knowledge as well as the induced theory are expressed in 

first-order logic. Howvever. such an espressive representation is often compu tation- 

ally expensive. This thesis first presents the background for parallel data mining, 

the BSP model. and inductive logic programming. Based on the study, this thesis 

gives an approach to parallel inductive logic in data mining that soives the potential 

performance problem. Both parallel algorithm and cost analysis are provided. This 

approach is applied to a number of problems and it shows a super-linear speedup. To 

justify this analysis, 1 implemented a parallel version of a core ILP -stem - Progol - 

in C with the support of the BSP parallel model. Three test cases are provided and 

a double speedup phenornenon is observed on al1 these datasets and on two different 

parallel cornputers. 
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Chapter 1 

Introduction 

Basis of this thesis. This thesis shows a parallel data-rnining algorithm that can 

be applied to large database rnining using inductive logic programming. The cen- 

tral hypothesis of this thesis is that it is necessary ancl feasible to adopt parallel 

algorithms in the data mining process. 1 show that parallelism can be efficiently a p  

pliecl to inductive logic prograrnming (ILP). The powerful knowledge representation 

and excellent integration with background knowledge of ILP has sliown a great value 

arnong dat a-mining algorit hms. 

What is data mining? The field of data mining is concerned with the theory 

and processes involved in the representation and efficient extraction of interesting 

patterns or concepts from very large databases. Most of these concepts are implicit 

in the database records. Data mining is an interdisciplinary field merging ideas from 

st  atistics, machine learning, dat abases, and high-performance computing. 



Introduction 

What is ILP and its role in data mining. Inductive Logic Programming is a 

relatively new machine learning technique adopted in the data-mining research area. 

Many researchers have turned to ILP only in the last 5 to 10 years ['il. It is defined 

i:.î the intersection of machine learning and logic prograniming, and has grown to 

hecome a substantial sub-area of botli of them [24]. The success of the subject lies 

partly in the choice of the core representation language of logic programs. The syntax 

of logic programs provides modular blocks which, when added or removed, general- 

ize or specialize the program. ILP provides a uniform and very expressive mearis 

of representation: All esaniples, background knowledge, and the induced theory are 

espressecl in first-order logic. Due to this uniform representation, the use of back- 

ground knowledge fits very well withiri a logiçai approach towards machine learning. 

Theory and background knowledge are of the same form: they are just derived from 

different sources: theory cornes from inductive learning while the background knowl- 

edge is provided by the user of the system (61. Previous esperiences (71 showed that 

some dornain knowledge can be best expressed in a first-order logic, or a variant of 

first-order logic. The use of such domain knowledge is crucial in certain data-mining 

systerns. such as learning drug structure-activity rules [33], because it is essential for 

achieving intelligent behavior. ILP inherits well-established theories, algorit hms and 

tools from computational logic. Many inductive logic programming systems bene- 

fit from using the results of computational logic. There is already a wide range of 

data-mining applications using ILP algorithms. 

Problem with inductive logic in data mining. There exist workable sequentid 

algorit hms for data mining, e.g. neural networks (2'71, association rules [l], decision 

trees [16], and inductive logic programrning [7] that have already been applied to a 
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wide range of real-world applications. However, evploring useful information from 

a huge amount of data will require efficient parallel algorithms running on high- 

performance computing systems. The most obvious (and most compelling) argument 

ml 
~ U L .  p a l a k i i ù ~ i ~  ~ e v u i w ~  UUUII~ Ji~LaLue ~ i ~ t . .  lue  CIa laheb ~ 3 r d  LL. claia niiriirig 

are typically extremely large, often containing the details of the entire history of a 

company's standard transactional databases. .As these databases grow past hundreds 

of gigabytes towards a terabyte or more. it becomes nearly impossible to process them 

on a single sequential niachine, For both time and space reasons: no more than a frac- 

tion of the database çan be kept in main meniory at any giwn time, and the amount 

of local disk storage and bandwidth needed to keep the sequential CPU supplied 

ni th  data is enormous. Additionally, with an algorithm that requires many corn- 

plete passes over the database. wliich is the case in most ILP algorithms, the actual 

running time required to cornplete the algorithm becomes excessive. Because of the 

use of a more espressive representation, inductive logic programming techniques are 

often computationally more expensive than their propositional counterparts. This 

efficiency issue becomes more severe wlien the dataset is very large. Furthermore, 

many ILP algorithms have to go through the full dataset many times to get a suc- 

cessful induced concept set. Such an approach seems impractical to solve real-world 

data-rnining jobs. So how to make these ILP algorithms work more effectively and 

efficiently has become an interesting research topic. 

Contribution of this thesis. In this thesis 1 study the use of inductive logic to  

generate concepts from very big datasets in pardlel. I use p processors to do the 

data-mining job, each on a subset of the full dataset. A set of concepts is generated 

from disjoint subsets of the full dataset used for mining. The distributed concept sets 
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are eschanged and evaluated before merging the valid ones into the final concept set. 

The final set of concepts is free of conflicts and same as the set of d e s  developed from 

the full dataset. In this way the disk I/O access cost for each processor is reduced by 

The algorithm works in this way First it divides the entire dataset and allocates 

each subset of data to a processor. Theri each processor esecutes the same sequential 

ILP algorithm to find its locally-correct concepts. At the end of one step, al1 these 

processors eschange their discoveries and evaluate the induced concepts generated in 

t liis step. When each processor has collected al1 the feedback froni other processors, 

it can decide if its locally-correct concepts are globally-correct. If so. it will inforrn 

;il1 otlier processors to add this valid concept to the final concept set and remove the 

redundant esamples covered by this concept. This completes one big step. This loop 

ail1 continue until al1 the positive examples are covered by induced concepts. 

Since each processor learns concepts independently on its subset, there are some 

issues that 1 will explore in this thesis: 

How to secure the accuracy of induced tlieories on smaller datasets; 

0 How to deal with negative examples; 

Hosv to reduce communication overhead; and 

0 How to avoid redundant work by individual processes. 

1 build a parallel version of a core ILP system - Progol [22] - that shows super-linew 

speedup in its learning process for a range of data mining problems. 
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Chapter 2 of this thesis presents the theory and method in inductive logic pro- 

gramrning. It reviews several ILP systems and their application in data mining. A 

particular approach in ILP - Mode-Directed Inverse Entailment (-VIDIE) [22] - is 

examineci in cietaii aç it is the b a i s  for the paraiiei version o i  Progoi. The B d k  Syn- 

chronous Parallelism (BSP) [SI mode1 is discussed in the latter part of this chapter. 

.A sequential ILP data-mining algorithm and its cost analysis is also provided. 

With the theoretical fouridations of inductive logic programming in hand, Chapter 

3 presents an approach to parallel inductive logic. First a general logical setting for 

parallel inductive logic programming is given, followed by a detailed discussion of the 

parallel ILP model. The issues and problems involved in this approach are explored, 

and a cost analysis is provided. 

To examine and support the parallel algorit hm discussed in Chapter 3, Chapter 4 

presents a parallel ILP system - Parallel Progol. I built this system using the BSP 

model. It is based on the C version program of Progol impleniented by Muggleton. 

Several test cases are provided and a super-linear speedup phenomenon is explained. 

Finally, Chapter 3 summarizes the findings of this thesis and @es a conclusion. 
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Chapter 2 

Inductive Logic Theory and The 

BSP Mode1 

2.1 Introduction 

There are three purposes to this chapter. First, the theory of Inductive Logic Pro- 

grarnming (ILP) is briefly introduced. Then a more detailed discussion of one popular 

ILP approach - Mode-Directed Inverse Entailment (MDIE) - follows. .4 review of 

some ILP systerns and applications is provided as well. Second, a sequential ILP al- 

gonthm based on the MDIE approach is presented, and its cost andysis is provided. 

Finally, the Bulk Synchronous Parallelism (BSP) mode1 is presented. These three 

parts form the t heoretical foundations of t his thesis. 
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2.2 The Theory of First-order Logic 

A first-order language [20] comprises variables, constant symbols, and predicate 

symbols with their arities. A t e n n  in a given language is either a variable or a con- 

stant. A n  atom is an expression p ( t  l ,  . . . : t,), in which t l ,  . * * , t,  are terms, and p is 

an n-ary predicate synibol. An atom is yround if it does not contain any variables. 

-4 literal is an atom (A) or the negation of an atom (not A).  -1 well-formed-formula 

is formed using literals and operators such as conjunctiori. negation, and implication, 

and the quantifiers V and 3. A sentence is a closed aell-formed-formula (al1 vari- 

ables quantified). A clame is a disjunction of literals. with al1 variables universally 

quantified. 

Horn clauses. .-\ definite prograrri clause is a clause containing one positive, and 

zero or more negative literals. A definite goal is a clause containing only negative lit- 

erals. .-\ Horn clause is either a definite program clause: or a definite goal. If a definite 

program clause consists of the positive literal .A and the negative literals BI, .  . . , B,, 

then it can be written as 

mhere .A is called the head of the clause and BI, . . . , B, are called the body literals 

of the clause [7]. The symbol Bi is the negation of Bi. 

Model theory. Part of the semantics of first-order logic is a definition of the relation 

between the terms in the language, and the domain of interest. Each term refers to 

(or denotes) an object Erom this domain. -4 pre-inteipretation J of a first-order logic 
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language L consists of the following: [7] 

1. A non-empty set D! called the domain of the pre-interpretation. 

2. An assignment of carh constant in L to an element of D. 

A variable assignment V with respect to L is a mapping from the set of variables in 

L to the domain D of .J. 

An interpretatim I of a first-order language L consists of the following: 

A pre-interpretation J .  with soine clomain D, of L. I is said to be based on J. 

An assignment of each n-ary predicate symbol p in L to a mapping I, from Dn 

to T: F. 

Let b be a formula! and 1 an interpretation. The formula # is said to be tn ie  vnder 

1 if its truth value under I is T. The interpretation I is then said to satisfy 4. Let 0 

be a formula7 arid I an interpretation. The interpretation I is said to be a model of 0 

if I satisfis 0. The formula II is then said to haoe I as a model. For example, let the 

interpretation I have D = 1,- as domain. P be a binary predicate interpreted as 2: 

and let a denote 1 and b denote 2. Then I is a model of the formula V x  P ( x ,  x) since 1 

> 1 and 2 2 2. On the other hand, 1 is not a niodel of the formula V d y  (not) P ( x ,  y), 

since there is no number n in the domain for which 2 1 n is false [î]. 

Subsumption of concepts. Computing whether one concept subsumes-is more 

general than-another is a central facility in al1 ILP systems. Subsumption is the gen- 

erality order that is used most often in ILP. The reasons are mainly practical: Sub- 

sumption is more tractable and more efficiently implementable than implication [7]. A 

common method for subsumption computation is based on so-called 8-subsurnptia. 
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Let C and D be clauses. CVe Say C subsumes D. denoted by C D, if there exists 

i i  substitution B such t.hat CC) C D (i.e.. every literal in CO is also a literal in D). If 

C D, then there is a substitution B whicfi niaps each Li E C to some iCli € D. 

Exampies oi subsumption are: 

= P(n)  V Q ( x )  since C(z/a) = P(a) , and 

C = P(a)  V P(n)  subsumes D = P(a) .  

2.3 Theory of Inductive Logic Prograrnming 

What is inductive learning? Inductive learning techniques generalize specific 

observations into general theories. These theories can be used for explanatory or 

preclictive purposes. Descriptive induction starts from unclassified examples and in- 

cluces a set of regularities these esamples have in common. A typical example in this 

category is a customer buying-behavior study which discovers that if customers buy 

sausage and bread that there is a probability of 90 per cent that they will also buy 

but ter. Predictive induction learns from a set of examples that are classified in two or 

more classes. The aim is to find a hypothesis that classifies the examples in the cor- 

rect class. A typical example is animal classification. Suppose a robot is instructed to 

recognize different kinds of animals. Given an example set which contains thousands 

of animal classification Facts, the robot induces useful rules and using such rules it 

can predict unknown animals. The term inductive logic prograrnming (ILP) was first 

introduced by bluggleton in 1990 [20]. ILP is concerned with the study of inductive 

machine learning wïth the knowledge representation in first-order logic. The goal is 
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to develop tools and techniques to induce hypotheses from observations (examples) 

and to synthesize new knowledge from experience [21]: 

ILP = Inductive Concept Leaming + Logic Progmmming 

Kecent studies i6j on this subject shows that 1LP is a healthy field but still facing a 

number of new challenges that it should address. 

VVhy ILP? Data-rnining often uses knowledge representation to distinguish differ- 

ent algorithms. Propositional or at tribute-wliie representations use a single table to 

represent the dataset. Each example or observation then corresponds to a single tuple 

in a single relation. For al1 of the attributes the exaniple then lias one single value. On 

the other hando relational learning and inductive logic programming employ first-order 

structural representations. For instance, in the learning from interpretations setting, 

an example corresponds to a set of facts. This generalizes attribute-value representa- 

t ions' as examples now may consist of multiple tuples belonging to multiple tables. A 

typical example could be a buying behavior analysis for a supermarket. Suppose that 

the possibility of a male customer buying n particular product is related to how many 

children he has and if he is a smoker. An esample can be expressed in first order 

logic as: buy(john, bicycle), man(john), has-children(john, 21, no t (smoker(john)). In 

at  tribute-value representation we will have to use multiple tuples in multiple tables 

to express such an example . 

Current data-mining systems such as association rule discovery usually ded with 

numeric values in a relational database, which c m  be viewed as a propositional or 

attribute-value representation. If 1 use a first-order logic representation, 1 can express 



12 Inductive Logic Theory and The BSP Mode1 

riot only the value but also the multi-relationship among those data. By using first- 

orcler logic as the knowledge repreçentation for both hypotheses and observations, 

inductive logic programming may overcome soine major difficulties faced by other 

data-minlng systems: 

the use of a Limited knowledge-representation forrnalism 

difficulties in using substantial background knowledge in the learning process. 

Previous experiences [7] in expert systems showed that much domain knowledge 

cari be best expressed in a first-order logic. or a variant of first-order logic. Propo- 

sitional logic has great limitation in certain domains. Most logic programs cannot 

be defined using only propositional logic. The use of domain knowledge is also cru- 

cial because one of the well-established findings of artificial intelligence is that the 

ilse of domain knowledge is essential to acliieve intelligent behavior. ILP inherits 

well-established theories, algorithms and tools from computational logic. Many in- 

duc tive logic programming systems benefit from using the results of computational 

logic. Background knowledge helps in restricting the hypothesis search and is a key 

hctor for incremental and iterative learning. The concepts generated in each pass 

are added to the background knowledge. This process will terminate when a pre- 

defined accuracy level is reached. Without background knowledge, the hypothesis 

search space can grow exponentially. 

Logical settings of ILP. Inductive Logic Programming is a research field that 

investigates the inductive construction of concepts from examples and background 

knowledge. Deductive inference derives consequences E from a prior theory T 1211 . 

Thus if T says that all flying objects are birds, E might state that a particular flying 
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object is a bird. Inductive inference derives a ge~ieral belief T frorn specific beliefs E. 

After obçerving one or more flying objects T might be the conjecture that dl flying 

objects are birds. In both deduction and induction, T and E must be consistent and 

where + is the symbol of logical implication. Within ILP it is usual to separate the 

elements into examples (E), background knowledge (B): and hypothesis (H). These 

have the relationship 

where B,  H ancl E are each logic progranis. E can be separated into E+ and E-. 

Normal semantics. Here al1 examples, background theory and induced con- 

cepts are (well-formed) logical forrnulae. The problem of inductive inference is as 

follows. Given background (prior) knowledge B and an example set E = E+ h E- 

in which Ei is positive example set and E- is negative example set, the objective is 

to find a hypothesis such that completeness and consistency conditions hold: 

Completeness: background knowledge and induced theory cover al1 the positive 

exam ples. 

Consistency: background knowledge and induced theory do not cover any neg- 

ative exampies. 

In most ILP systems, background theory and hypotheses are restricted to being 

definite. The special case of the detinite semantics, where the evidence is restricted 

to true and false ground facts (examples), will be called the example setting. The 
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esample setting is the main setting of ILP. It is ernployed by the large majority of 

ILP systems [7]. 

Learning from positive data. Some datasets contain only positive data. How 

to learn from positive data has been a. great concern over recent years. When learning 

from only positive data, predictive accuracy will be maximized by choosing the most 

general consistent hypothesis. since tliis will always agree with new data. However, in 

applications such as grammar learning, only positive data are amilable, though the 

grammar, which produces al1 strings, is not an acceptable hypothesis. Algorithms to 

nieasure generali ty and posit ive-onlg compression have been developed [7]. 

2.4 Theory of MDIE 

Introduction. 3Iuggleton has demonstrated that a great deal of clarity and sim- 

plicity can be achieved by approaching the problem from the direction of mode1 theory 

rather than resolution proof theory. My research and esperiment on parallel ILP is 

largely based on a core LIDIE algorithin - Progol. So 1 will introduce the theory of 

MDIE [22] here. Let us now consider the general problem specification of ILP in this 

approach. That ist given background knowledge B and examples E find the simplest 

consistent hypot hesis H (where simplicity is measiired relative to a prior distribution) 

such that 

B A H ~ E  (2-4) 

In general B: H and E can be arbitra- logic programs. Each clause in the simplest 

H should explain a t  least one example, since othenvise there is a simpler H' which 

mil1 do. Coosider then the case of H and E each being single Horn clauses. This can 
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now be seen as a generalised form of absorption and rearranged similarly to give 

- - 
%-hir i  6 k the neg~ttiûn E diid II h tlii: iiegatim cf II. Let I Le tLr [pfxiit ialiy 

infinite) conjunction of ground literals whicli are true in al1 models of B /\ Ë. Since 

H must be true in every mode1 of B A Ë it must contain a subset of the ground 

literals in 1 . Therefore 

B A Ë ~ I P H  (2.6) 

and for al1 H 

H t l  

.A subset of the solutions for H can be found by considering the clauses which 0- 

subsume 1 . 

Definition of Mode. In general I c m  have infinite cardinality. 1 can use mode 

declarations to constrain the search space for clauses ivhich 8-subsume 1 . A mode 

declaration has either the form modeh(n,atom) or modeb(n.atom) where n, the recall, 

is either an integer, n > 1, or * and atom is a ground atorn. Terms in the atom 

are either normal or place-marker. X normal term is either a constant or a function 

symbol followed by a bracketed tuple of terms. .A place-marker is either +type, -type 

or #typet where type is a constant. If m is a mode declaration then a(m) denotes 

the atom of m with place-markers replaced by distinct variables. The sign of m is 

positive if m is a modeh, and negative if rn is a modeb. For instance the follonring are 

mode declarations. 

modeh(l,plus(+int,+int,-int)) 

modeb(*.append(-list,+list,+list)) 
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modeb(l.append(+list. [+any] .-list)) 

The recall is used to bound the niimber of alternative solutions for instantiating 

the atom. 

The most-specific clause. Certain MDIE algorit hms, e.g. Progol, search a bounded 

sub-lattice for each example e relative to background knowledge B and mode decla- 

rations d l .  The sub-lattice Ilas a most general element T which is the empty clause 

13 . arid a least general element I, which is the most specific elernent such that 

where F h  a denotes derivation of the ernpty clause. 

Refinement Operator in MDIE. When generalising an example e relative to 

background knowledge B, MDIE algorithm coristructs Li and searches from general to 

specific through the sub-lattice of single-clause hypotheses H such that  @ 5 H 5Li 

. This sub-lattice is bounded both above and below. The search is therefore bet- 

Ler const rained t han other general- to-specific searches in which the sub-lat tice being 

searched is not bounded below. For the purposes of searching a lattice of clauses 

ordered by 8-subsumption 1 need a proper refinernent operator. 

The refinernent operator in MDIE is designed to avoid redundancy and to maintain 

the relationship O 5 H ili for each clause H. Since H il,, it is the case that there 

exists a substitution 0 such that Hf3 C L i  . Thus for each literall in H there eBsts 

a literal 1' in Li such that 10 = 1'. Clearly there is a uniquely defined subset Li (H) 

consisting of al1 P in Li for which there exists 1 in H and 18 = 1' . A non-deterministic 

approach to choosing an arbitra- subset Sr of a set S involves maintaining an index k. 
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For each value of k between 1 and n, the cardinality of S, 1 decide whether to include 

the kth element of S in S' . Clearly. the set of al1 series of n choices corresponds to  

the set of al1 subsets of S. Also for each subset of S? there is exactly one series of n 

* C n T F .  ciioices. To avoici reciunciancy anci niaintairi 8-subsurription of Li,  mum s refinernelit 

operator maintains both k and 8. 

Sequential cover algorithm. Based on the theory introduced above, there is a 

generalized seqiiential cover algorithm usecl for ?VIDIE systems, e.g. Progol. 

0 Select esample. Select an example to be generalized. If none exists, stop, 

otherwise proceed to the next step. 

Biiild rnost-specific-clause. Construct the most specific clause that entails the 

esample selected. and is wi t hin langage restrictions provided. This is usually 

a definite program clause mi th  many literals, and is called the bottom clause. 

This step is sometimes called the saturation step. 

Search. Find a clause more general than the bottom clause. This is done by 

searching for some subset of the literals in the bottoni clause that has the best 

score. 

0 Remove redundant examples. The clause cvith the best score is added to the 

current theory, and dl examples made redundant are removed. This step is 

sometimes called the cover removal step. 
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2.5 Existing ILP systems and applications 

This section gives an overview of some core ILP systems, from which we can see 

tliat ILP is not only an acadernic research topic: it has been used in a wide range of 

machine learning and data-rnining applications. 

FOIL. FOIL [33] is a system b r  learning intensional concept definitions from re- 

lntional tuples. It has been rerently applied to web mining [19]. The induced con- 

cept definitions are represented as function-free Horn clauses, optionally containing 

negated body lit erals. The background knowledge predicates are represented exten- 

sioniilly as sets of groiind tiiples. FOIL employs a heuristic search strategy which 

prunes vast parts of the hypothesis space. It is a top-down, non-interactive, batch 

single-predicate learning algorithm. -4s its general searcli strategy, FOIL adopts a 

covering approach. Induction of a single clause starts with a clause with an ernpty 

body which is specialised by repeatedly adding a body literal to the clause built so far. 

I t  learns clauses of theory one by one. Each new clause C that the system constructs 

should be such that C! together with current theory and the background knowledge 

implies some positive examples that are not implied without C, while C together with 

the positive examples and background knowledge implies no negative examples. It 

adds this clause to the current theory and removes the derived positive example from 

esample set. It  then constructs another clause, adds it to current theory and so on, 

unt il al1 positive examples can be derived. 

Arnong the candidate literals, FOIL selects one literal to be added to the body 

of the hypothesis clause. The choice is determined by an information gain heuristic. 

FOIL's greedy search strategy makes it very efficient, but also prone to exclude the 
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intended concept definitions from the search space. Some refinements of the hill- 

cliinbing search alleviate its short-sightedness, such as including a certain class of 

literals with zero information gain into the hypothesis clause, and a simple back- 

tracking mechanism. 

GOLEM. GOLEM [33] is a "claçsic" among empirical ILP systems. It lias been 

applied successfully to real-aorld problems siich as protein structure prediction and 

finite element niesh design. GOLEM copes efficiently with large datasets. It achieves 

this efficiency because it avoids searching a large hypothesis space for consistent hy- 

potheses like, for instance. FOIL, but rather constructs a unique clause covering a set 

of positive esaniples relative to the available backgrouiid knowledge. The principle 

is baçed on the relative least general generalisations (rlggs) ['il. GOLEM embeds the 

construction of rlggs in a covering npproach. For the induction of a single clause, it 

randomly selects several pairs of positive examples and computes their rlggs. Among 

tliese rlggs, GOLEM chooses the one which covers the largest number of positive 

examples and is consistent witli the negative examples. This clause is further gener- 

alised. GOLEM randomly selects a set of positive examples and constructs the rlggs 

of each of these examples and the clause obtained in the first construction step. Again, 

the rlgg with the greatest coverage is selected and generalised by the same process. 

The generalisation process is repeated until the coverage of the best clause stops in- 

creasing. GOLEM conducts a post processing s tep, which reduces induced clauses by 

removing irrelevant literals. In the general case, the rlgg may contain infinitely many 

literals. Sherefore, GOLEM imposes some restrictions on the background knowledge 

and hypothesis language which ensure that the length of rlggs grows at worst polyno- 

mially a i t h  the number of positive examples. The background knowledge of GOLEM 
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is required to consist of ground facts. For the hypothesis language, the determinacy 

restriction applies, that is, for given values of the head variables of a clause, the val- 

ues of the arguments of the body literals are determined uniquely. The complexity 

of GOLEM'S hypothesis Ianguage is further controlled by two parameters, i and j, 

which limit the number and depth of body variables iii a hypothesis clause. 

LINUS. LINUS [33] is an ILP Iearner which incorporates existing attribute-value 

learning systems. The idea is to transform a restricted class of ILP problems into 

propositional form and solve the transformed learning problem with an attribute-value 

learning algorit hm. The propositional learriing result is then re-transformed into the 

first-order language. On the one haiid, t h  approach enhances the propositional 

learners with the use of background knowledge and the more expressive hypothesis 

language. On the other hand. it enables the application of successful propositional 

learners in a first-order framework. As various propositional learners can be inte- 

grated and accessed via LINUS, LINUS also qualifies as an ILP toolkit offering several 

Iearning algorithms with their specific strengths. LINUS can be run in two modes. 

Running in class mode. it corresponds to an enhanced attribute-value learner. In rela- 

tion mode, LIXUS behaves as an ILP system. Here, 1 focus on the relation mode only. 

The basic principle of the transformation from first-order into propositional form is 

that al1 body literals which may possibly appear in a hypot,hesis clause (in the first- 

order formalism) are determined, thereby taking into account variable types. Each of 

these body literals corresponds to a boolean attribute in the propositional formalism. 

For each given example, its argument values are substituted for the variables of the 

body literal. Since ail variables in the body literals are required to occur also as head 

variables in a hypothesis clause, the substitution yields a ground fact. If it is a true 
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fact, the corresponding propositional attribute value of the example is true, and false 

othenvise. The learning results generated by the propositional learning algorithms 

are retransforrned in the obvious way. The incluced hypotheses are compressed in a 

postprocessing step. 

The papers [33] and [SI sumniarize practicel applications of ILP: 

Learning d r u g  structure-activity rules. The research work carried out by the 

Oxford machine learriing group lias shown that ILP can construct rules which predict 

the activity of untried drugs, given examples of dmgs whose medicinal activity is 

already knomn. These rides mere found to be more accurate than statistical correla- 

tions. More importantly. because the examples are expressed in logic, it is possible 

to describe arbitrary properties of, and relations between, atoms and groups. The 

logical nature of the rules also makes them easy to understand and can provide key 

insights. allowing considerable reductions in the numbers of compounds that need to 

be tested. 

Learning rules for predict ing mutagenesis. The problem here is to predict the 

mutagenicity of a set of 230 aromatic and lieteroaromatic nitro compounds, The 

prediction of mutagenesis is important as it is relevant to the understanding and 

prediction of carcinogenesis. Not al1 compounds can be ernpirically tested for muta- 

genesis, e.g. antibiotics. The compounds here are more heterogeneous structuraliy 

than any of those in other ILP datasets concerning chernical structure activity. The 

data here comes from ILP experiments conducted with Progol. Of the 230 corn- 

pounds, 138 have positive levels of log mutagenicity. These are labelled active and 
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consti tute the positive examples: the remaining 92 compounds are labelled inactive 

and constitute the negative esamples. Of course, algorithms that are capable of full 

regression can attempt to predict the log niutagenicity values directly. 

Learning rules for predicting protein secondary structure. Predicting the 

three-dimensional shape of proteins from their arnino acid sequence is widely be- 

lieved to be one of the hardest unsolved problems in molecular biology. It is also of 

consiclerable interest to pharmaceutical companies since a protein's shape generally 

determines its function as an enzyme. 

Inductive Learning of Chess Rules Using Progol. Cornputer chess programs 

can be thought of as liaving two parts, a move generator and an algoritlim for eval- 

uating the strength of ge~ierated moves. The move generator effectively gives the 

compu ter information concerning the rules of chess. 

The structured method used here is slightly larger. involving the splitting of the 

problem into some 40 sub-problems. creating a structure sorne 15 levels deep. With 

structured induction, clauses learned in an earlier part of the process are appended 

to the background knowledge to enable the learning of subsequent clauses. 

First-Order Learning for Web Mining. Two real-world learning problems that 

involve mining information from the web with first-order learning using FOIL have 

been demonstrated [19]. The experiment shows that, in some cases, first-order learn- 

ing algorithms learn definitions that h a ~ e  higher accuracy than statistical text clas- 

sifiers. When learning definitions of rveb page relations, they demonstrate that first- 

order learning algorithms can learn accurate, non-trivial definitions that  necessarily 
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involves a relational representation. 

Ot her ILP applications mentioned in [33] are: 

Learning rules for finite element mesii design. 

Learning diagnostic rules for qualitative models of satellite power supplies. 

Learning qualitative tnodels of the U-tube systern. 

Learning qualitative rnodels for functional genomics. 

2.6 Sequential ILP Algorithm. 

In this section, 1 analyze a general MDIE ILP algorithm and provide a cost analysis 

of this algorithm. Chapter 3 discusses how to parallelize this sequential algorithm 

and analyze its cost. In Chapter 4: I will discuss how to implement a parallel Progol 

systern based on the parallel approach introduced in Chapter 3, and provide some 

test cases as examples to support the cost analysis. 

2.6.1 A Sequential ILP Algorithm 

In order to give a parallel approach to ILP data mining, first 1 need to know the 

general steps involved in a sequential ILP data-mining algorithm. As shown in Section 

2.4, a mode-directed approach can provide a much simpler and convenient way in 

inductive concept leming.  So I provide a general ILP data-mining procedure based 

on mode-directed inverse entailment(MD1E). The whole sequential ILP data-mining 

procedure consists of a loop structure: In each cycle, some concepts are leanit and 
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repeat 
if there is still a positive e in E oot covered by H and B 

select an exarnple e in E 
search for a good concept H that covers e 
add H to background knowledge B 
retract redundant exa mples that covered by H 

end if 
end repeat 

Figure 2.1: Sequential ILP Algorithm 

soriie positive examples that are covered by the new induced concepts are retracted 

from the dataset. The loop will corne to an end when al1 positive esamples are 

covered by the final induced concept set and no positive examples are left in the 

tlataset. Figure 2.1 gives a general sequential ILP approach. 

Several issues in the above algorit hm need to be addressed. 

How to  select an example? The example selection procedure can be random. 

The esample selection can also be based on the sequence order in the dataset: ILP 

picks up one positive example after another in the order in which they are located in 

the dataset. A more sophisticated approach is to pick up an example according to its 

score. The score of an esample is determined by its properties, Le., an example gets 

a high score when its occurrence in the whole dataset is more frequent than other 

examples. In this way, ILP can possibly induce the most important concepts first. 

When one concept is generalized and it covers more positive examples in the dataset: 

the dataset shrinks more quickly after each loop, thus improving the performance of 

the whole learning procedure. Though this approach seems plausible in a sequential 
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algorithm, it can be potentially problematic in parallel approach. In parallel learning, 

the last approach will increase the chance that two or more processors select the same 

example and thus waste time inducing the same concept. 

How to  generalize concepts from examples? It is the most important task of 

the whole job that distinguishes different ILP systems. An induced concept set is too 

strong if it wrongly covers some negative examples and thus makes it inconsistent. On 

the otlier hand, a concept set is too weak if it cannot cover al1 the positive examples 

and thus mnkes it inconiplete. A concept set is overly gerieral if it is complete with 

respect to positive esample set Ef but not consistent with respect to negative concept 

set E-. A concept set is overly specific if it is consistent with respect to E- but not 

cornplete with respect to E+. An ILP systeni is meant to search in the hypothesis 

space and find a concept set that is neither too strong nor too weak. 

The two basic techniques in the search for a correct concept set are specialization 

and generalization. If the current concept set together with the background knowledge 

contradicts the riegative esamples. it  needs to be weakened. That is? 1 need to  find 

a more specific theorv, such that the new theory and the background knowledge 

are consistent ivit h respect t O negative examples. This is called specialization. On 

the other hand. if the current theory together with the background knowledge does 

not cover al1 positive examples, 1 need to strengthen the theory: 1 need to find a 

more generai theory such that al1 positive examples can be covered. This is called 

generalization. Yote that a theory may be too strong and too weak a t  the same tirne? 

so bot h specialization and generalization are needed. 

To achieve the above goal, 1 introduce two approaches here. 
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TogDown. Start with a theory C such that C U B is overly general, and 

specialize it . 

0 Bottom-Cp. Starts with a theory T such that E ü B is overly specific, and 

generalize i t . 

In .\.[DIE' a most-specific clause is forrned a t  the first phase when generating a hy- 

pothesis from an example. Then it searches the hypothesis space from general to this 

most specific clause to find a good concept. 

What does good mean? During the search in the hypothesis space, an ILP 

system will generate and evaluate some candidate concepts. 1 need to determine 

which concept is better than other candidates. In practice: a score can be assigned 

to each candidate concept. The candidate concept wit,h the highest score will be the 

right one. Then there cornes a problem: How is the score decided'? One way to decide 

the score is to calculate it from a few parameters iising a function f (y,  n, c) which 

gives each induced candidate hypothesis H a score basecl on: 

0 y: the number of positive examples covered by H 

0 n: the number of negative examples wrongly covered by H 

a c: the conciseness of H, which is generally measured by the number of literals 

in H 

For example, f could be: 
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The candidate with the highest score is added to the final set of induced theory. 

When generating a candidate H' from the example e ,  the ILP algorithm generdly 

searches in the hypothesis space to find the candidates. In order to give a score 

j ( y ,  n, c j  ro eacii candidate 3'. riie iLP a i g o r i t h  iias to iook chrougn ciie entire 

2.6.2 Cost of sequential ILP data-mining algorithms. 

The ILP data-rnining algorithm described above has the property that its global 

structure is a loop, extracting more concepts through each iteration. Suppose this 

Loop executes k, times. 1 can describe the sequential compiexity of this algorithm 

with a formula: 

cost, = k, [STEP(nm)  + ACCESS(nm)] (2.10) 

where STEP gives the cost of a single iteration of the loop, and ACCESS is the cost 

of accessing the dataset in one step; n is the number of objects in the dataset and m 

is the size of each example. To give a more specified cost mode1 for sequential ILP 

algorithm, there is another formula: 

cost, = k, [SEL(nm) + E(GEN (nm) + EVA(nm)) 

+ RET(nm)] 

where SEL gives the cost of selecting one example from the dataset; GEN gives cost 

of generating one candidate hypothesis from the selected example; and EVA gives 

the cost of evaluation of candidate hypothesis and giving it a score. Usually this 

step involves accessing the dataset once. RET gives the cost of retracting redundant 
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positive examples already covered by the newly induced concept. E gives the number 

of candidate hypothesis generated in each step. Pleaçe notice that EVA and RET 

iiivolve data access so the. will dominate costs for large datasets. 

The cost of SEL varies in different implementations, frorn only one data access in 

random or sequential selection to entire dataset access in some more sophisticated 

algorithms. I assume sequential or ranclom selection is adopted in the ILP algorithm. 

Also the cost of GEN varies in different ILP inductive learning algorithms. In MDIE 

it irivolves first building the most specific clause and then searching from hypothesis 

space to construct each candidate liypotliesis. It is the most significant computational 

cost in one step. 

The value of r depends on the hypothesis search space and search algorithm. Most 

ILP algorithnis will search in the hypothesis space from general to specific or vice versa 

to get satisfied concepts. To reduce the search space some algorithms adopt language 

bias such as MODE declaration in MDIE. Also some heuristic search algorithms will 

Iielp to reduce the value of S. Since this value determines the number of passes through 

the entire dataset in each step, it is critical to the performance of ILP data-mining 

systern. 

The EVA cost usually involves one pass through the entire dataset to give each 

candidate hypothesis a score. In the same way, the cost of RET also involves one 

pass through the entire dataset to remove redundant examples. 
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If after each loop q ( O  5 q 5 1) examples remain not covered by the newly-induced 

concept, I can give a more accurate formula: 

cost, = k, [SEL(nm * q')  + c (GEN(nm)  + EVA(nm * $)) 

+ RET(nm + $)] 

where after each big step a fraction of (1 - q )  esamples are removed from the dataset 

and the work in next step is reduced by a factor of q. 

2.7 Introduction to the BSP model 

In t roduct ion.  1 have discussed the sequential ILP algorithm above. Now I corne 

to the point of hom to make it work in parallel. and how to speed up its learning 

process. At this point. a parallel coniputing model is needed. Bulk Synchronous 

Parallelism (BSP) [31] provides a mode1 for the parallel system. 1 can perform cost 

analysis based on BSP cost equations without having to implement different kinds 

of systems [8]. In traditional message-passing systems, a programmer has to ensure, 

explicitly, that no conflict will occur when one data item is being accessed by two 

or more processes. Though some systems can provide deadlock control? concurrency 

control or rernote data access control, these mechanisms introduce cost overhead. It 

is hard to establish a cost model with the great variety of the memory access patterns 

and network architecture. 

A parallel complexity rneasure that is correct to within a constant factor is needed. 

Such a rneasure must take into account costs associated with the memory hierarchy 

and accurately reflect the costs of communication, whether explicitly, as in message- 

passing programs, or implicit ly, as in shared-memory programs. 
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Bulk Synchronous Parallelism (BSP) is a parallel programming model that di- 

vides cornputat ion and communication into separat e phases. Such phases are called 

supersteps. A superstep consists of a set of independent local computations, followed 

LJ- a &Lai corririiuriicriiiuri piiiist: auci a Larrier syriciiroiiisatiori. Writing programs 

nith the BSP model enables their costs to be accurately determined from a few 

simple architectural perameters. Contrary to general belief, the structure imposed 

by BSP does not reduce performance, while bringing considerable benefits €rom an 

application-building perspective. 

BSP programming. Supersteps are an important concept in BSP. A BSP program 

is simply one which proceeds in phases. with the necessary global communications 

taking place between the phases. This approach to parallel programming can be a p  

plied to both distributed systems and shared-rnemory multiprocessors. BSP provides 

a consistent, and very general. frarneivork within wliich to develop portable software 

for scalable coniputing. 

-1 BSP computation consists of a sequence of supersteps, where each superstep is 

a seqiience of steps carried out on local data, followed by a barrier synchronisation a t  

wtiich point any non-local data accesses take effect. Requests for non-local data, or 

to update non-local data locations, can be made during a superstep but are not guar- 

anteed to have completed until the synchronisation a t  superstep end. Such requests 

are non-blocking; they do not hold up computation. 

The programmer's view of the cornputer is that it has a large and universal acces- 

sible memory. To achieve scalability it will be necessaq- to organise the calculation 

in such a way as to obviate the bad effects of large latencies in the communication 

network. 
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By separating the computation on local data from the business of transferring 

sliared data, which is handled by lower level software, 1 ensure that the same compu- 

tational code will be able to run on different hardware architectures from networked 

wurks taliuiia Lu griiuiiie:y diaird-iiiriiiury ùys Leiiia. 

The superstep structure of BSP prograrns lends itself to optimization of the data 

transfers. A11 transfers in a superstep between a given pair of processors can be 

consolidated to forni larger messages that c m  be sent witii lower (latency) overheads 

and so as to avoid network contention. The lower level communications software 

can also exploit the most efficient communication mechanisms available on the actual 

hardware. Since this software is application-independent, the cost of achieving the 

efficicncy c m  be spread over manu applications. 

BSP cost model. 1 need to identify the key parameters of a BSP parallel system 

that determine its performance [8]. Obviously the number of processors and compu- 

tational speed of each are key parameters. If I define a step to be the basic unit of 

calculation, then I can denote the speed as s steps/sec. 

1 can also see that the capacity and speed of the communications network is a vital 

elernent. For ease of cornparison between systems, I will mesu re  the performance of 

the communications network in units of the computing speed. The cost of carrying out 

a barrier synchronisation of the processors, for example! can be measured in terms of 

the number of steps that could have been performed in the time taken to synchronise. 

This lets us contrast a system with fast synchronisation, in which relatively few steps 

can have been executed dunng the time it takes to synchronise, with one which has 

much worse performance relative to its computational power. In general I can expect 

better overall performance from a system with low values of this parameter. 
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Similarly when 1 estimate the communications throughput of the network linking 

the processors. 1 look at  the cost in steps for each word of data transmitted. This 

gives the ratio of the computing power to the communication power of the system. 
-. 
1 he iower this bgure is, the Oetter the baiance 'oerween compute power and commu- 

nications power, and the easier it is to get scalable performance. 

I t herefore arrive at  the following four parameters (3 11, which extensive research 

h u  s h o w  to be sufficient: 

p = number of processors 

s = processor speecl (number of steps per second) 

1 = the cost. in steps, of achieving barrier synchronisation (depends on network 

latency) 

g = the cosi;, in steps per word. of delivering message data 

Note that al1 are based on the buik properties of the system. The values are 

determined by actual measurement using suitable benchmarks that mimic average 

computation and communication loads. 

The speed s is measured as the actual rate a t  which useful calculation is done; it 

is not the peak performance figure quoted in the manufacturer's data sheet. 

The value of g is calculated from the average cost of transferring each word of 

messages of al1 sizes in the presence of other traffic on the network. It is not based 

on the manufacturer's claimed bisection bandwidth. It is not measured from single 

point-to-point transfers but measures the sustainable speed that be experienced 

by real application code. The g value can be approxirnated by calculating (total 

number of local operations by al1 processors per second)/(number of words delivered 
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by the communications system per second) The value g enables you to estimate the 

time taken to eschange data between processors. If the maximum number of words 

arriving a t  any one processor during a single suçh exchange is h, then I estimate that 

up to gh steps can have been executeci ciuring the exchange. 

Another aclvantage of the simple structure of BSP programs is that the modeling 

of their performance is much easier than for message passing systems, for example. In 

place of the random pair-wise synchronisation that characterises message passing, the 

superstep structure in BSP programs rnakes it relatively easy to derive cost models 

(i.e. formulae that give estimates for the total number of steps needed to carry out a 

paraliel calculat ion, including allowance for the communications involved). 

Cost nioclels can be used to determine the appropriate algorithmic approach to 

parallelisation. They enable us to compare the performance of different approaches 

without writing the code and rnanually measuring the performance. And they provide 

predictors for the degree of scaling in performance that is to be espected on any given 

architecture for a given problem size. 

Cost models have proved to be very useful guides in the development of high 

quality parallel software. 

Oxford BSPlib. Like many other communications libraries, BSPlib adopts a Single 

Program Multiple Data (SPMD) programming model. The task of writing an SPMD 

program will typically involve mapping a problem that manipulates a data structure 

of size ."I into p instances of a program that each manipulate an N/p sized block 

of the original domain. The role of BSPlib is to provide the infrastructure required 

for the user to take care of the data distribution, and any implied communication 

necessary to manipulate parts of the data structure that are on a remote process. 
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bsp-begin 
bsp-end 
bsp-init 
bsp-abort 
v osp-nprocs 
bsp-pid 
bsp- t ime 
bsp-sync 
bsp-push-reg 
bsp- pop-reg 
bsp-put 
bsp-get 
bsp-set- t agsize 
bsp-send 
bsp-qsize 
bsp-get- tag 
bsp-move 
bsp-hpput 

Start of SPMD code 
End of SPiLID code 
Simulate dynamic processes 
One process stops al1 
Nurriber o i  processes 
Find my process identifier 
Local time 
Barrier synchronization 
Make area globally visible 
Remove global visibility 
Copy to rernote memory 
Copy from remote memory 
Choose tag size 
Se~id to reniote queue 
'uumber of messages in queue 
Getting the tag of a message 
Slove from queue 
ù'nbuffered communication 

Table 2.1: BSPlib Operation 

An alternative role for BSPlib is to provide an architecture-independent target for 

higher-level libraries or programrning tools that automatically distribute the problem 

domain among the processes. 1 use BSPlib to develop the parallel ILP system and 

do the cost analysis. 

Table 2.1 is a List of BSPlib operations: 

Summary. In this chapter I introduced basic knowledge of ILP and MDIE. A se- 

quential ILP algorithm was discussed. and it cost analysis sas provided. To imple- 

ment a parallel ILP algorithm. the BSP niodel is introduced. In the next chapter 1 

will discuss a parallel ILP algorithm using the BSP mode1 and based on the sequential 

algorithm introduced in t his chapter. 



Chapter 3 

Parallel Inductive Logic in Data 

Mining 

The general task of inductive logic prograrnming is to search a predefined subspace 

of first-order logic for hypotheses. together with background knowledge, that explain 

examples. However. due to the espressiveness of knowledge representation such a 

search is usually computationally erpensive. Most ILP systems have to pass over the 

entire example set many times to find a successful induced theory H among other 

candidate induced concepts, which in turn increases the computation cost tremen- 

dously. When such ILP systems are to be applied to real-world data-mining tasks, 

the expensiveness of algorithm seems to  be a big obstacle. Thus, how to speed up the 

learning process of ILP algorithm has becorne a practical and critical issue. In this 

section, 1 present and discuss a parallel approach that shows a linear or super-linear 

speed up on some applications for traditional sequential ILP algorithms. Important 

issues in this approach are discussed in detail. .A cost analysis of the parallel ILP 

algorithm is provided as well. 
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3.1 Reason, possibility and approaches of parallel 

ILP in data mining 

-4s I mentioneci a'bove, there are sorne reasons why paraiieiism in ILP data-mining 

is needed. The first and most obvious reason concerns the data size. The databases 

iised for data mining are typically extremely large. -4s these databases grow past 

Iiuridreds of gigabytes towards a terabyte or more. it becomes nearly impossible to 

process them on a single sequential machine running a single sequential algorithm. 

.hotl ier  reason for the need of parallelism is the expensiveness of ILP systems. This 

espensiveness cornes frorn two aspects: 

The powerful and expressive knowledge representation in ILP requires more 

coniputation power than propositional data-mining. 

0 Searching the entire dataset many times to find a successful hypothesis H among 

candidate concepts increases the disk access greatly. Therefore, disk (110) 

access is one of tlie most serious bottlenecks for sequential ILP systems. 

Parallel ILP data-rnining requires dividing the task. so that processors can make 

useful progress towards a solution as fast as possible. From the sequential ILP algo- 

rithm 1 can see that the disk access is one of the most significant bottleneck. There- 

fore, how to divide the access to the dataset and minirnize communication between 

processors are important to the total performance. 

In general, there are three different approaches [29] to  parallelizing data mining. 

They are: 
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a Independent Search. Each processor has access to the whole dataset, but each 

heads off into a different part of the search space, starting from a randomly 

chosen initiai position. 

0 Parallelize a sequent ial data-xnining algorit hm. There are two forms within 

this approach. One approach is that the set of concepts is partitioned across 

processors? and each processor examines the entire dataset to determine which 

of its local concepts is globally-correct. The other approach is to partition the 

dataset by coliimns, and each processor computes those partial concepts that 

hold for the columns it can see. Regular eschanges of information of concepts are 

required in both approaches to determine which partial concepts are globally- 

correct. 

Replicate a sequential data-mining algorithm. Each processor works on a parti- 

tion of the dataset and executes the sequential algorithm. Because the informa- 

tion it sees is only partial, it builds entire concepts that are locally correct, but 

ma? not be globally correct. Such concepts are called as approximate concepts. 

Processors exchange these approsimate concepts to check if they are globally- 

correct. As they do so: each learns about the parts of the dataset it cannot 

see. 

Independent search is simple and works well for minimization problems. However, 

it does not divide the dataset, so it cannot reduce the disk access. Therefore, it is not 

suitable for problems with huge dataset. Parallelized approaches try to reduce both 

the amount of memory each processor uses to hold concepts and the fraction of the 

dataset that each processor must access. But its fine-grained parallelism requires too 

much extra communication. 
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The replicated approach is often the best way for parallelizing ILP data-mining 

applications. It has two significant advantages: First , it necessarily partitions the 

tlataset and so spreads the disk access. Second, the size of induced concepts that 

must be esclianged between phases is sniall. so communication is cheap. Previous 

work in using the BSP cost mode1 to optimize parallel neural network training [27] 

sliows that the replicated approach gives the best performance irnprovement among 

al1 tliese three approaches introduced above. 1 adopt this approach in the parallel 

ILP algorithm for its siniplicity and possibility of a double speedup. 1 will discuss 

double speedup in the following sections. 

The following shows the possibility of adopting parallelism in ILP data mining. 

Due to the nature of data mining, there are lots of similarities and redundancies 

within the large dataset. Therefore? it is plausible to induce correct theories 

from a small subset of the full data. 

a In most ILP systems. the whole concept-iearning process consists of a loop 

structure. .Ifter each loop, a successful hypothesis is found and added to  the 

final induced theory set. The learning process stops when ail the positive ex- 

amples have been explained by the induced concepts. The size of the induced 

hypothesis during each phase is small compared to the dataset. So it is plausi- 

ble to let p processes induce concepts from a subset. At the end of each phase, 

t hese p processes exchange the locally-induced concepts and determine the valid 

(globally-correct ) concepts after evaluation. 
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3.2 Logical Settings Of Parallel ILP 

In this section I discuss the logical setting of the division of the ILP task into 

subtasks that can be handled concurrently by multiple processes erecuting a common 

sequential ILP algorithm. 1 try to esplore a parallel approach to obtain an algorithm 

with a speedup proportional to the number of processors over the best available 

sequent ial algorit hm. 

.A central issue in designing a computer system to support parallelism is how to 

break up a given task into subtasks, each of which will be executing in parallel with 

the others. In general, ILP starts with an initial background knowledge B and some 

examples E. The aim is to induce a hypothesis H that. together with background 

knowleclge B, esplains the esamples E. 

.A partition Tl .  . T, of an ILP-task T = (B, E) is a set of ILP tasks. T, = 

(B, E,) such that Ei C E for al1 i. and that (uL, Ei) = E . The partition TL, . , T' 

of an ILP-Task T is valid if and onlÿ if the union u:.,Hi of partial hypothesis Hi 

obtained by applying a common sequential ILP algorithm -4 to task Ti is equivalent to 

the solution hypothesis H obtained by applying algorithm A to task T. Completeness 

and consistency of parallel ILP can be expressed as follows: 

Completeness: 
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Consis tency : 

n 

B u (U Hi) ü E- O et 

1 will explore and explain in an intuitive way why in the parallel approach the 

conipleteness and consistency hold. 

3.3 An Approach to Parallel ILP Using the BSP 

Based on the sequential algorithm 1 discussed in Chapter 2, 1 give a parallel ILP 

algorithm based on the replicated approach discussed above. There are two signifi- 

cant reasons for using the replicated approach. First. it partitions the entire dataset 

and so spreads the data access cost across processors. Second, the data that must 

be esctianged between phases is srnaIl' so communication is cheap. The size of a 

concept generated by each processor in one step is around 102 characters in the test 

cases. If the value of y is 4.1 flops/32 bit word and there are 4 processors, then the 

communication cost per total exchange equals 1600 flops. It is quite small compared 

to the local computation cost or data access cost which are hundreds of times bigger. 

Therefore, though the replicated approach is not particularly novel, it is perhaps the 

best way to increase performance in ILP data-mining tasks. 

I divide the full dataset into p subsets and allocate each subset to one processor. 
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divide dataset into p subsets 
repeat 

for al1 processors i 
if there is still an e in Ei 

&ct t: in Et 
form a set o f  good concepts Hi that covers e 
total exchange Hi(i = 1 , T . p )  
evaluate Hi(j = 1 . 2 . .  . , p )  
total exchange evaluation result of Hi 
find the successful Hi with globally good score 
total exchange which are the valid Hi 
add ail valid Hi into B 
retract redundant examples that covered by Hi 

end if 
end for 

end repeat 

Figure 3.1: Parallel ILP Algorithm 

Each processor executes the same (or siniilar) sequential ILP data-mining algorithm 

introduced above on its local subset of data. At certain synchronization points, al1 

these processors exchange their local induced concepts and evaluate them. Only 

globally-correct concepts will be left. and added to the final concept set. Figure 3.1 

gives the parallel algorithm. 

In this approach, each processor works on its subset to find a locally-correct con- 

cepts set Hi in each step. The measure f (y, n, c) in each processor is based on its 

c m  subset of data. In order to knom whether this locally-correct concept set is also 

globally-correct and to find the successful H in the set, it is necessary to find a way 

of learning the general knowledge of the whole dataset. To do so, al1 p processors 

perform a total exchange after al1 the processors reach the synchronization point 
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when they have found their locally-correct concept His. After the total exchange, 

each processor gets al1 the Hi induced by peer processors. Each processor gives every 

Hi (i = 1 , 2 ,  . . p )  a score f (p, n, c) based on its local knowledge from the subset of the 

Mi data. Tiien tiiere wiii be a second tocai exchange: the evaiuation resuit of i I ; s  

will be exchanged among p processors. In this way each processor learns the whole 

dataset and can give a global score to its local candidate concept Hi. With the third 

phase of total exchange the valid H:s are added to each processor's final concept set 

and redundant esamples are retracted. 

The whole computation in the approach consists of a sequence of supersteps, where 

each superstep is a sequential ILP computation carried out on local data, followed 

11- a barrier synchronization at  which point al1 indiiced concepts in this step are 

exchanged and evaluated. The cost of such a phase is described by an expression of 

the form: 

 COS^ = MAX idi + MAX hi 9 

processes processes 

where wi is the number of instructions executed by processor i. The value of hi is 

the size of the concepts eschanged between processors. This cost mode1 is derived 

from BSP. which I introduced in Chapter 2. The system parameters of s, 1. g can 

be obtained from the Oxford BSPlib. Notice that both terms are in the same units: 

tirne. This avoids the need to decide how to weight the cost of communication relative 

to computation, and makes it possible to compare algorithms with different mixes of 

computation and communication. 
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3.4 Potential problems with this approach 

3.4.1 Accuracy of induced theory on smaller dataset 

Since 1 use p processors to do the data rnining job on a subset of the full dataset, 

a set of concepts will be generated frorn disjoint subsets of the full dataset used for 

rnining. Given p disjoint subsets of the full dataset there will be p sets of concepts 

generated by each processor. Each subset of data resides on a distinct processor. The 

distributed concept sets must be totally exchanged and evaluated before merging the 

valid ones into the final concept set. The final set of concepts should be free from 

conflicts and same as the set of rules developed from the full dataset. 

There is a question as to how to ensure that the individual concepts generated by 

each processor which are Iocally-correct are also globally-correct. If each processor 

spends a lot of time only to find unwanted concepts, there will be no performance 

improvement from parallelisni. 

Any concept acceptable on the full dataset will be acceptable on a t  l e s t  one disjoint 

subset of the full data  [7]. This suggests that a concept set created by merging sets of 

acceptable concepts contain concepts that would be found on the full dataset. Earlier 

work ['il has found that the merged set of concepts contained the same concepts as 

found by l e m i n g  on the full dataset. If there are enough representative examples for 

each class in each of p disjoint partitions, the concepts found in the paxallel version 

will have high accuracy. 
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In the approach to parallel data-mining an important question is how large p can be 

before communication cost s begin to slow t he concept generation process significantly. 

Biit the more important question is how to determine a p for which the accuracy of 

the resultant concept set is acceptable. There is a tradeoti between accuracy and 

speed. The use of more processors promises that each can learn faster on a srnaller 

subset of data a t  the usual cost of communication overhead. However, there is a 

second accuracy cost that will be paid when a t  some point p becomes too large and 

it is therefore hard to maintain in each siibset the representative examples of the full 

data set. Previous work [27] done by Owen Rogers in parallel neural network mining 

sliows thst correct concepts can be generated frorn a srnall subset of the entire data 

IN t have taken niudi less processing to discover. Wlien the subset size reachcs some 

size bound, however, the concepts generated becornes less accurate and hence do not 

help. That  means in the parallel algorithm I can divide the dataset into smaller 

subsets and a t  the same tinie keep the induced concepts accurate enough to show a 

significant performance increase, provided the size of each subset is greater than that 

size boundary. 

3.4.2 Dealing wit h Negative Examples 

There is always a problem with dealing with negative examples, that is, how to 

make sure one concept induced by one processor is consistent nrith al1 other subsets? 

If one concept mhich is locally consistent can be easily rejected by other processors, 

there d l  be a severe cost efficiency issue with this approach. In fact, the problem 

may be not as senous as it appears to be. There are several reasons: 
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a Negative examples in real-world applications are usually rare among the entire 

dataset. Hence it is reasonable to assume that the chances that one locally 

consistent concept is also globally consistent are high. Even though there are 

auiiie c a r s  tiiai Suiiir: lucdly cùii~kieiii ~ i j i i ~ e p i ~  ars rîjsztîd bÿ üihsr prüces- 

sors! the total negative cost is not too high and can be tolerated compared to 

the speedup gained. 

O Since the number of negative exaniples is srnall compared to positive examples, 

1 cari keep a duplicate copy of' the entire negative esample set on each processor. 

In this way al1 locally-consistent concepts are also globally-consistent a t  the cost 

of some redundancy. This is the approach 1 adopted in the test cases. There 

are sorne negative examples in test case 2 -the chess move learner. Since the 

size of negative esamples is not too big compared to positive ones (about 10 

per cent)! I duplicate al1 the negative esamples across the processors. Though 

t here is reclundancy in the local siibset of data: the overall performance increase 

is still obvious and a double speedup is observed. 

a There are some effective Iearning algorithms that can learn from only positive 

data. There is no consistent issue when learning from positive data, which is 

the case in test cases 1 and 3. 

3.4.3 Communication Overhead 

There is a concern that at certain stages the number of processors becomes too 

large and the communication cost is too big. However, the communication cost is not 

a big problem in the parallel approach. 
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0 First, the size of the data to be exchanged between processors is small. Since 

only the induced concepts are exchanged and the size of an induced concept - 

usually a logical clause - is quite small: the communication cost of exchanging 

Second, 1 have to maintain a reasonable amount of data  in each subset to 

ensure that there are enough representative examples. Thiso in turn! keeps p 

From growing too big. 

Third. since each processor performs the same sequential algorithm and the 

size of each stibset is simiiar. it is reasonable to predict tliat the time spent 

on local cornptitation on each of the p processors is comparable. Tlierefore 

the synchronization mode1 need not be a big performance concern here in this 

approach. 

From the analysis above I can draw a conclusion that the communication overhead is 

small compared to the local computation cost saved. This conclusion is supported by 

the test cases. In the test cases: the size of induced concepts is around 100 characters. 

The value of g is 4.1 Rops132 bit Word. The value of 1 is 118 flops. There are three 

total communications within one big step, and there are 4 processors working in 

parallel. So 1 get the communication cost in one big step: 3 *( 4*100*4.1 + 118) = 

527.1 flops. The CPU speed is 10.1 Mflops. Then the cost of communication in one 

big step is around 0.0005 second. The cost of local computation and disk access cost 

in one step is greater than 1 second in the test cases. It is easy to get the conclusion 

tliat the communication overhead in the parallel ILP algorithm is not a big issue. 
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3.4.4 Redundant Work by Individual Processors 

There is a debate over how to ensure that different processors do their part of the 

job as tliere will not be too much time wasted doing redundant work. Such a situation 

is likely to happen when the full dataset contains similar andlor redundant examples. 

Since one subset might contain the same or similar eramples in another subset, there 

is a chance that the two processors on these two subsets select the same example 

in one particular step and do a redundant induction. If there are many redundant 

examples in the subsets. such redundancy might become a serious problem, affecting 

overall performance. 1 found by esperiment that this problem is not as serious as it 

seems. The reasons are: 

First, if the selection process chooses an example randomly or by sequence order, 

the chances of two or more processors selecting t,he same erample are small in 

a big and randomly-distributed dataset. 

Second, when one processor induces a valid (globally-correct) hypothesis from 

one example, this hypothesis will be updated into al1 processors induced theory 

set and al1 examples covered by this hypothesis will be retracted from each 

processor's example subset. Such a mechanism will eliminate the chance of 

redundant work done by different processors in different steps. 

Third. even if there are still some cases that two or more processors select the 

same exarnple in the same step, it is not a g e a t  factor in the overall performance. 

In the test cases, such redundancy occurs in sorne big steps. But there is still 

obvious performance improvement in parallel approach. 
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In the experiment 1 found such chances are srnall even though the datasets con- 

t ained many redundant and similar exaniples. 

3.5 Cost Analysis and Argument 

for a Double Speedup 

The parallel approach mentioned above is structured in a number of phases, each of 

wliich involves a local computation? followed by an exchange of data between proces- 

sors. In this approacli it is straightforward to tell wtien computation will dominate 

riieiiiory access? and the memory access cost is predictable. The cost mode1 presented 

above is likely to produce accurate estinlates of running times on existing parallel 

computers. Because the cost mode1 depends only on high level properties of algo- 

ritlims. it can be applied to an algorithrn in the abstract. 

The basic structure of the parallel algorithm is: 

0 Partition data into p subsets, one per processor. 

Repeat 

Execute the sequential ILP algorit hm on each subset. 

Eschange information about what each processor learned with the others. 

So the cost has the following general forrn: 

cost, = k, [STEP (nmlp) + A CCESS(nm/p) + COMM ( p ,  r)] (3.2) 

where I;, is the number of iterations required by the parallel algorithm, r is the size 

of the data about candidate concepts generated by each processor, COMM is the cost 
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of total exchange and evaluation between the processors of these candidate concepts. 

It is reasonable to assume that: 

STEP(nm/p )  = STEP(n.m)/p 

A CCESS(nm/p)  = A CCESS(nm)/p  

First, if 1 assunie t i n t  k, aiid k, are of comparable size. 1 get 

cost, = cost,/p + k, COMiCl ( p ,  r )  (3.5) 

K e  espect an alniost linear speedup. To make the above formula more specific ac- 

cording to parallel ILP algorithm, 1 get 

cost, = k, [SEL(nm/p) )  + 5 ( GEN (nmlp )  + EVA (nmlp))  

+ 3(rpg + 1 )  + p * EVA(nm/p)) + RET(nm/p)) 

where SEL gives the cost of selecting one example from the dataset; GEN gives cost 

of generating one candidate hypothesis from the selected example; EVA gives the 

cost of evaluation of candidate hypothesis and giving it a score; and RET gives the 

cost of retracting redundant positive examples already covered by the newly induced 

concept. E gives the number of candidate hypothesis generated in each step. The 

symbol rpg + 1 is the cost of a total exchange of candidate concepts between pro- 

cessors; since there are three total exchange in the parallel algorithrn, the overall 

communication cost should be 3 ( ~ p g  + 1 ) .  Since each processor will get and evaluate 

p candidate concepts generated from p processors, the cost of evaluation EVA should 
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be multiplied by a factor of p. 

Tt is reasonable to assume: 

since the value of GEN(nrn) is usually mucli smaller thnn the value of E VA (nm) when 

the dataset is big, 1 get 

If k ,  and k, are of comparable size, 1 get a p-fold speedup except for a communication 

overhead. 

In this approach. each processor incluces the concepts froin its own subset of data 

independently. So it is likely that the concepts induced by different processors are 

different. Frequeiit exchange of these concepts will irnprove the rate to which concepts 

are induced. One processor will learn concepts induced by other processors during 

the total exchange phase. Therefore we might actually expect that k,. « k,. This 

phenomenon is called double speedup. The interesting phenomenon of double speedup 

occurs in the test examples. Each processor learns, in a condensed way, what every 

other processor has learned from its data, whenever communication phases take place. 

This information lias the effect of accelerating its o ~ m  learning and convergence. The 

overall effect is that k, is much srnaller than k, would have been, and this in turn 

leads to a double speedup. If each subset maintains the characteristics of the entire 
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dataset, there is much chance that the locally-correct concepts will be also globally- 

correct. If the algorithm selects an example randomly, the chances that two or more 

processors working on the same example are small. Al1 these arguments suggest a 

much quicker learning process. which is observed in the test cases. 

Suppose that the first phase of the sequential algorithm requires work (computa- 

tion) w !  but that the work in the subsequent phases can be reduce by a multiplicative 

factor a. Then the sequential algorithm haç a computation cost of the form 

The parallel algorithm. Say. using four processors takes less tinie overall. The first 

parallel phase takes time w ,  but the second phase takes only ch, and so on. This 

reduction is a function of w ,  which in turn is a function of the size of the dataset. 

Then the parallel algorithm lias a comptication cost of the form 

If a! = 0.9, then cost,/cost, = 0.39; if a = 0.1, then cost,/cost, 5: 0.90. This 

analysis is optimistic in that 1 assume the reduction is independently additive and 

the communication overhead is not included in this calculation. However, it provides 

an explanation why double speedup occurs in the experiments. 

Summary. In this chapter 1 proposed a parallel ILP algorithm, which is based on 

the sequential algorithm introduced in Chapter 2. The related issues in this parallel 

approach are discussed in detail, which are: 

0 Accuracy of induced theory on smaller dataset. 
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Dealing with negative examples. 

Communication ovediead. 

Kedunciant work by mdividuai processes. 

.A cost anaiysis is provided using the BSP cost niodel. A possibility of double speedup 

plienomenon is discussed. .A parallel ILP system based on this parallel approach will 

be cliscussed in next chapter. Some test cases will be provided, and the cost analysis 

will be given. 



Chapter 4 

Parallel Progol 

To make the arguments in Chapter 2 more concrete. 1 developed some programs to 

show how parallel ILP works and give a performance analysis. Since Progol is a core 

MDIE ILP system and has drawn much research interests in recent years, 1 decided to 

parallelize the Progol system. The source code of Progol in C is freely available from 

the Oxford University niachine learning group web site. 1 implement a parallel version 

of CProgol - PCProgol - that induces concepts in parallel on several processors with 

the support of Oxford BSPlib. To show how PCProgol works, 1 developed three test 

cases in this chapter. They al1 show a super-linear speed up relative to the number 

of processors. 

4.1 Parallel Progol Algorithm 

According to the general parallel ILP approach discussed in Chapter 3, 1 divide the 

example set into several subsets, each of which is saved to a N e .  .4ll the same back- 

ground knowledge and mode declarations are included in each file. Multiple processes 
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forall processor i 
startif Ej = empty return B 

let e be the first example in Ei 
construct the most specific clause I for e 
iûnstruû hypûthé:i: I I ,  frûm I 
propagate Hi to al1 other processes 
evaluate H j  ( j  = 1.2? - - . . p )  in Ei 
propagate evaluation results to al1 processors 
decide i f  Hi is valid 
propagate validation result of Hi to al1 ot her processors 
let B = BU Hi U U Hn 
let E' = e : e E E and B e 
let E = E - E' 
goto start 

Figure 4.1: Parallel Progol Algorithm 

work in parallel to generalize the esamples. Eacli process works on a partition of the 

dataset and executes the sequential CProgol program. By doing so, the search space 

is recluced by l /p  while the induced hypotheses remains the same. 

The concept induced in one process is correct locally. But 1 have to make sure 

that it is also globall-correct. Since the information each process sees is partial, a 

mechanism must be provided to let each process have the knowledge of the entire 

dataset in some sense. 

Figure 4.1 is the algorithm of PCProgol. It provide a way to check if a locally- 

correct concept is also globally-correct. For process i, B is the background knowledge, 

Ei is its subset of examples. 
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How to divide the dataset. In my approach, 1 divide the entire positive example 

set into p subsets and allocate one subset to each processor. In many cases, the size of 

positive examples is much bigger than the size of background knowledge and negative 

exam ples. 

1 have to find a way to deal with negative examples. To make sure the locally 

consistent concepts are also globally consistent, 1 keep a copy of the negative example 

set on each processor. 

How to evaluate H. When inducing concepts on one processor7 PCProgol uses 

several parameters to give the induced concept H a score relative to the local subset. 

An H with the highest score will be the locally-correct concept induced in this step. 

The score f of a candidate concept s is defined as follows: 

where 

a Y = the nitmber of positive esamples correct- deducible from s 

0 N = the number of negative exaniples incorrectly deducible from s 

C = the length of concept s 

R = the number of further atoms to complete the induced concept 

R is calculated by inspecting the output variables in the clause and determining 

whether they have been defined. 

So f is a measure of how well a concept s explains al1 the positive examplest with 

preference to the shorter ones. The evaluation process mil1 go through the entire 



clataset once to give a candidate s a score f .  In the worst case, it will consider al1 the 

clauses in order and the algorithm will look through the entire dataset many times 

to End a correct concept. 

When al1 the processors have found t heir locally-correc t concept Hi, t hey corne 

to a synchronization point. At this point. each processor sends its locally-correct 

concept H, to al1 other processors. .\fter total eschange. each processor lias a copy 

of al1 the concepts incluced by al1 the processors during this step. Each processor 

twliiates these concepts anci gives s score f to each Hi relative to its subset of data. 

Then t h e  is a second round of total eschange - eschange of the score f .  When one 

processor has collected al1 the scores frorn other processor for its Hi, it can give its Hi 

a global score and then decide if it is valid or not. So the total exchange of information 

provides a way for each processor to evaluate its locally-correct concepts against the 

whole dataset. Once the validation is made by al1 processors, there cornes the third 

phase of total excllange. During this communication phase, each processor tells other 

processors whether its H, is globally valid. If so, al1 processors will update their 

background knowledge with this Hi and delete redundant examples already covered 

by it. More than one globall-correct concept is usually induced in one big step. 

4.2 Test Cases 

Experiment platform. BSP can support both shared-memory and distributed- 

rnemory computing environments. In my experîment 1 built and rm PCProgol on 

two different machines. One is a 4-processor shared-memory SUN machine. The 

platform is : 
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1 Example 1 Number 1 k, 1 kr k 1 
.Animal Classifier 

Table 4.1 : Test cases and sequential performance 

Move Learner 
Garne Ending Probiem 

0 'vlodel: SUN Enterprise Server 3000. 

4000 

0 Processors: four Sparc processors, each one operating a t  50 MHz and has a 

Sparc floating point processor. 

4000 
2000 

The other is a 6-processor shared-memory SUN machine. The platform is : 

9 

hlodel: SUN Enterprise Server 3500. 

23 
12 

0 Processors: six UltrasparcII processorso each one operating a t  336 MHz and 

has a Sparc floating point processor. 

(4process) 
2 

Though this program is developed and tested on SMP machines, this parallel approach 

can be transparently adapted for distributed-mernory computing environments with 

the support of BSP. 

(6-procees) 
2 

4 
4 

There are three example sets provided in this chapter to test parallel Progol. They 

are shown in Table 4.1. The first test case is an animal classifier. In this case animal 

classification information is given as positive examples. The background knowledge 

is provided to describe the properties of one particular animal. The program tries to 

3 
4 
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form some general rules to classify an animal according to its properties. There are 

4000 examples in this test case nhich contains some redundancy and similar examples. 

The second test case is a chess more learner program. It  learns legal chess moves. 

The moves of the chess pieces 

Pieces = ( King, Queen, Bishop, Knight and Rook ) are learned from examples. Each 

esarnple is represented by a triple frorn the domain 

Piece * (Original-Rank * Original-File) * (Destination-Rank * Destination-File) 

Ttiere are 4000 exnrnples in this test case. 

Ttie third test case is a chess game-encling problem. It tries to form a rule to decide 

whetlier a chess ending wit h White King, White Rook and Black King is illegal when 

White is to move. Example positions are defined as 

illegal(WKRank, WKFile. WRRank, WRFile. BKRank, BKFile) 

Tliere are 2000 examples in this test case. 

The source file Types describes the categories of objectives in the world under 

consideration. Modes describes the relationship between objects of given types, and 

the form t hese atoms can take within a claiise. The Examples section contains al1 the 

positive and negat ive exam ples. 
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Exarnple 1: Animal Classifier 

Types 

Modes 

For the head of an! 

rations 

i gen eral rule ci efining class 1 gi ve the following head mode decla- 

which means class may have 2 arguments of type animal and class. A + sign indicates 

that the argument is an input variable. A # sign denotes a constant.For atoms in 

the body of a general rule, body mode declarations are given as follows: 

:- modeb(1, has-gills(+anirnal))? 

:- modeb(1, hascovering(+animal,#covering))? 

:- modeb(1. haslegs(+animal,#nat))? 

:- modeb(1, homeothermic(+animal))? 
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Examples 

1 give some examples of what animal belongs to  what class. 

class(eagle, bird). class(bat,mammal). 

ciassjdog,mammaij. ciassjbat,mammai j. 

class(eagle, bird). class(ostrich, bird). 

S . .  

Background knowledge 

hascovering(dog, hair). hascovering(dolphin. none). . . .  
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Example 2: Chess Move Learner 

Modes 

:- modeh(l,move(#piece.pos(+file,+rank),pos(+file,+rank)))? 

:- modeb(l.rdiff(+ran k,+rank.-nat))? 

:- modeb(l,fdifF(+file,+file,-nat))? 

Examples 

There are some negative examples in tliis case. : - is for negative examples. 

move(kingtpos(b.7).pos(c,6)). 

move(bishop.pos(g.3) ,pos(e. 1)). 

move(queen,pos(e,6).pos(h.3)). 

:- move(pawn,pos(g,3) ,pos(ct5)). 

:- move(king,pos(h,2),pos(e,2)). 

:- move(king.pos(e,2).pos(a,5)). 

... 



Background knowledge 

The only background predicate used is symmetric difference, Le. 

difF(X,Y) = absolute difference between X and Y 

Symrnetric difference is ciehned separareiy on Rank and Fiie. 

rdiff(Rankl.Rank2.Diff) :- 

rank(Rankl), rank(Rank2), D i f f l  is Rankl-Rank2, abs(Diff1,Diff). 

fdiff(File1, File2, Diff) :- 

file(File1). file(File2), project(File1. Rankl). project(FiIe2,Rank2), D i f f l  is Rankl-Rank2, 

a bs(DifF1, Diff). 

abs(X.X) :- X 2 0. 

abs(X.Y) :- X < O. Y is -X. 
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Example 3: Game Ending Problem 

Modes 

:- modeh(l,illegal(+rf,+rf, +rf, +rf.+rf,+rf))? 

:- modeb(l,adj(+rf,+rf))? 

Examp les 

iIlega1(5,5,4,6,4,1). illega1(5,6,7,5,7.5). 

illega1(3,2,4,6,6.6). illega1(2,1,6,1,2.0). 

illega1(3,0,2,3.4,0). illega1(6.2,5,1,6,1). 
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4.3 Test Results 

For each test case 1 did the following esperiments: 

O run sequential algorithm on Zeus 

run parallel algorithm on teaspoon with 4 processes 

0 run parallel algorit hm on Zeus with 4 processes 

0 run parallel algorit hm on Zeus with 6 processes 

1 collected the corresponding data. which are shomri in tlie tables of this chapter. 

Froni this data 1 calculated the double speedup phenomenon observed in these 3 test 

rases. i.e., p * cost, < cost, where cost, is the cost of one process in parallel version, 

and cost, is tlie cost of sequential version. 

According to the formulae 3.8-3.1 1 derived from Chapter 3, the cost of selecting 

an example, generating a hypothesis from the most specific clause 1, evaluating a 

candidate concept and retracing redundarit esamples in one subset should be l l p  

of the sequential algorithm. Table 4.3 shows SEL(), EVA(), RET() values in the 

sequential algorithm. The first column shows the test case number and parameter 

name: the second and third columns show the values on teaspoon and zeus. Since Zeus 

is a faster machine than teaspoon, the vallies on Zeus are smaller. Table 4.4 shows 

SEL(), EVA(), RETO values in the parallel algorithm. The first column shows the 

test case nurnber and parameter name; the second and third column show the values 

on teaspoon and Zeus with 4 processes; the last column shows the values on Zeus 
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with 6 processes. Variances were typically mithin 20 per cent. Please refer to Table 

4.5 for detailed information. The test results shown in Table 4.3 and Table 4.4 do 

not totally match the above analysis in my experiment. I suppose this is due to the 

woridoaà o i  the machine chat is for piibiic use, anà the ciisk access time is affecteci 

by the hardware architecture. These values depend on size of dataset and machine 

speed. So they Vary little among each big step. I repeat the experiments on the 

same machines four tirnes during different time of the day to collect data. The result 

shown in Table 4.3 and Table 4.4 is the average value. The value of GENO varies in 

different test cases depending on how a candidate concept is generated from 1. When 

the dataset is big, the cost of GENO is small compared to the disk access cost EVA(). 

The value of c ( G E N ( n m / p )  + EVA(nm/p))  is the most significant local computation 

cost in each big step. 

Though the cost analysis given in these esamples is in terms of execution time? i t  

is easily adapted to the number of instruction cycles with the system parameters pro- 

vided by BSPlib. Then the cost analysis can be applied universally and independent 

of particular machine architecture. 

BSP system parameters on teaspoon and Zeus are shown in Table 4.2. With the 

system parameters in hand, 1 can give the optimistic communication cost. The size 

of data r in one total communication is around 100 words. There are three total 

communications in one big step. The value of g on teaspoon is 4.1 flopslword, p is 4, 

s is 10.1 illflops, and Z is 118 Bops. So 3 * ( r p g  + 1) = 3*(100*4*4.1 + 118) Bops = 

5274 flops = 0.0005274 S. The value of g on Zeus is 3.17 flops/word, p is 4, s is 44.5 

Mflops, and 1 is 697.4 flops. So 3 r: (rpg + 1) = 3*(100*4*3.17 + 697.4) flops = 5896 



flops = 0.00013 S. 

Parameter 
Number of processes 

... 
n n 

Table 4.2: Systeni Iiiformation 

BSP parameter I 
BSP parameter n 

1 Value 1 teaspoon 1 zeus 

1 uSr- pa~aiiietai. 3 1 16.1 :Y:flupa I 44.; :vI f l~p~ I 

teaspoon 
4 

Test Case 1: SEL(nm) 
Test Case 1: EK4(nm) 
Test Case 1: RET(nrn) 
Test Case 2: SEL(nm) 
Test Case 2: EV.(nm) 
Test Case 2: RET(nm) 
Test Case 3: SEL(nna) 
Test Case 3: EVA (nm) 
Test Case 3: RET(nrn) 

118 Rops 
4.1 flops/32bit word 

Table 4.3: Mean SEL? EVA. and RET Values in Sequential Algorithm 

zeus 
4 

499 flops 
3.17 flops/32bit word 

zeus 
6 
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Value 
Processes 
Test case 1 :SEL(nm/p) 
Testcase1:EVA(nm/p) 
---.A 

Table 

Test case 2 :SEL(rrm/p) 
Test case 2 :EVA(nm/p) 
Test case 2 : RET(nm/p) 
Test case 3 :SEL(nm/p) 
Test case 3 :EVA (nm/p) 
Test case 3 : RETlnmh)  

1.4: Mean SEL. EVA. and RET Values in Parallel Algorithm 

r c o ~  izisr 1 .iLET(/iii';pj 1 0.30 5 1 û.ûG s 1 0.01 s 1 

4 
0.02 s 
0.30s 

4.3.1 Test Result of Animal Classification. 

0.02 s 
1.20 s 
1.20 s 
0.02 s 
0.40 s 
0.40 s 

Table 4.5 shows the test results in sequential algorithm. The concepts induced in each 

big step are shown. The value of GEN(nm)+EVA(nm) shows the cost to generate 

and evaluate one candidate concept. which is the most significant cornputational 

cost. The values s h o w  in the table are average values. The range and nurnber of 

data nodes 1 collected are also shown. The value of E shows the number of candidate 

concepts generated in each step. The cost of each big step should be roughly equal 

to E ( GEN (nm) + EVA(nm)). The sequential algorithm takes 9 steps to generate al1 

the rules. 

4 
0.01 s 
0.06s 

In the parallel approach with 4 processors, the 4000 examples are divided into 4 

siibsets. Four processors induce the concept set on their subset of data in parallel. 

The nurnber of big steps is reduced to 2. The test results on both machines is shown 

in Table 4.6. The concepts induced by different processors in one big step are shown 

in the table. The value of E (GEN (nmlp) + E VA(nm/p)) shows the cost of local 

6 
0.01 s 
0 . 0 4 s (  

0.01 s 
0.12s 
0.12 s 
0.01 s 
0.08 s 
0.08 s 

0.01 s 
0.08s 
0.08 s 
0.01 s 
0.05 s 
0.05 s 
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i I npr, etaiiipirs ra liac l rd o w  

subtotal 1 15.35s s 

Parame t ers 
Big Step 1 
GEN(nm) + E VA (nm) 
- - 

Value on teaspoon 
class(A, fish) :- ha-gills 

0.50s (0.48-0.52s. 31 nodes) 
31 

Big Step 2 
GEN(nm) i E VA(nm) 

Value on Zeus 
I 

l), hascovering(A,none). 

I 

class(A?reptile) :- habitat(. 
0.72s (0.63-0.85s. 99 nodes) 1 

- 
i. 

esamples retracted 
siibtotal 

0.20s (0.16-0.24s, 31 nodes) 
31 
SV2 
6.44 s 

99 
78 
72.84 s 

AJand). habitat (-4,water). 

Big Step 3 
GEN(nm) + E VA (nm) 
C 
d 

a7 
esamples retracted 1 156 

Big Step 4 
GEN(nrn) +EVA (nm) 

/ siibtotal 1 43.81 s 

class(.4,mammal) :- habitat (.\,caves). 

class( ;\,reptile) :- hascovering( A,scales) habitat (holand). 
0.74s (0.63-0.93s: 57 nocles) 1 0.13s (0.09-0.15s: 57 nodes) 

0.94s (0.62-0.95s, 163 nodes) 
163 

esamples re tracted 
siibtotal 

0.13s (0.09-0. lss ,  163 nodes). 
163 
78 
21.16 s 

Big Step 7 
GEN(nm)+EVA(nm) 

class(.-\, bird) :- hascovering(A,feat hers), habitat (..\,land). 
0.54s (0.42-0.64s. 163 nodes) 1 0.13s (0.09-0.15s, 163 nodes) 

1 aampIes retracted 1 subtotal 

163 
549 
89.04 s 

Big Step 8 
GEN(nm) +E K4 (nm) 

I 

class(A, bird) :- hascovering (A, feat hers) . 
0.46s (0.38-0.56s. 99 nodes) 1 0.08s (0.06-0. los, 99 nodes) 

.- - 
esamples retracted 

, subtotal 

99 
156 
47.02 s 

Big Step 9 
GEN(nm)+EVA(nm) 

/ Total cost 
1 1 

1 604.45 s 1 107.75 s 

class (A.mamma1) :- hascovering( A, hair) . 
0.52s (0.41-0.78s. 163 nodes) 1 0.10s (0.06-0.12s, 163 nodes) 

a 

i 

examples retracted 
subtotal 

Table 4.5: Test case 1: result of sequential algorithm 

163 
136 
57.38 s 
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computation on the processor which takes the longest time in one big step. The value 

of 3(rpg + 1) shows the rneasured conimunication cost. In the parallel approach with 

6 processors? the 4000 exaniples are divided into 6 subsets. The number of big steps 

is aiso 2. The test resuits is shown in ïa'bie 4.7. 

pp 

Parame ters 
Big Step 1: 
process 1 
process 2 
process 3 
process 4 
c (GEN(nm/p)+EK11(nm/p)) 
3bpg + 1) 
esamples retracted 
siibtotal 
Big Step 2: 
processes 1-4 

E ( G EN(nm/p) + E VA (nm/p)) 
3kpg + 1) 
examples retracted 
subtotal 
Total parallel algorithm cost 

Value on teaspoon 1 Value on Zeus 
concept induced 
class( A,mammal) :- hascovering(.A, hair) . 
class( Afish) :- has-gills (A), hascovering(h,none) . 
class(.-\.reptile) :- haslegs(A,-l), habitat(A,water). 
class(A. bird) :- haçcovering( A, f eathers) . 

Table 4.6: Test case 

--- 

concept induced 
class(h,reptile) :- not (has-gills(A)), 
hascovering( A,scales). 

1: results of 4process parallel algorithm 

57*0.41s = 23.65 
0.20l'ï s 
235 
'26.44 s 
105.86 s 

In the parallel algorithm with four processors, each processor induces a different 

concept in the first step. So at  the end of the first big step, each process has learnt 

four valid concepts. In the second big step four processes induce only one concept. 

In parallel algorithm with six processors, there are five concepts induced in the first 

step. In the second big step six processes induce only one concept. Though there is 

redundancy, the overall performance is still greatly improved. Table 4.8 shows the 

57*0.04s = 2.39s 
0.01 s 
235 
2.71 s 
13.05 s 



process 2 
process 3 

Big Step 1: 
process 1 

class(A.fish) :- has-gills( A), hascovering(h~none) . 
class(.-\.reptile) :- haslegs(A,.l), habitat(.A,water). 

concept indiiced 
class( A. mammal) :- hascovering(.-\. hair) . 

1 process 4 1 class(A, bird) :- hascovering( A,f eat hers). 
1 process 5 1 claçs( A, reptile) :- hascovering( A,scales), habitat (AJand). 

process 6 
E (GEN(nm/p)  

class( A. fish) :- has-gills( A) ,  Iiascovering( -4,none). 

+ EVA(nm/p)) 
3 ( r ~ g  f 1) 
csamples retracted 
subtotal 
Big Step 2: 
processes 1-6 
E (GEN(nm/p)  

Table 4.7: Test case 1: results of 6-process parade1 algorithm 

163*0.05s = 9.68 s 
0.03 s 
3765 
10.34 s 
concept induced 
class(.A,rept ile) :- not ( has-gills(A)), hascovering(h,scales) . 

+ EVA ( n d p ) )  57*0.04s = '2.40s 
3bpg  + 1) 1 0.02 s 
examples retracted 
subtotal 
Total parallel 
alnorithm cost 

235 
2.91 s 

13.25 s 
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results of test case one. The costs of sequential algorithm and parallel algorithm 

with four and six processors on both machines are compared. The row cost, shows 

the average cost of one processor in parallel algorithm. The row cost, shows the 

average cost in sequentiai algorithm. h doubie speedup phenomenon 1s observed 

this test case on both machines with different processor number, which is shown 

p * cost, < cost,. 

k., 
k 
c0stt 
cost, 
cost, * P 

- - - - - - - 

Pararne ters 
Number of examples 

Table 4.8: Test case 1: cornparison of sequential and parallel algorithm 

teaspoon(4-process) 
4000 



4.3.2 Test Result of Chess Move Learner. 

Table 4.9 shows the test results for the sequential algorithm. The concepts induced 

in each big step are shown. The value of GEN(nm)+EVA(nrn) shows the cost to 

generate and evaluate one candidate concept. The values shown in the table are 

average values. The range and nurnber of data nodes 1 collected are also shown. The 

value of E shows the number of candidate concepts generated in each step. The cost 

of each big step should be roughly equal to o (GEN (nm) + EVA(nm)). The sequential 

algorithm takes 23 steps to generate al1 the rules. 

In the parallel approach with 4 processors, the 4000 examples are divided into 1 

subsets. Four processors incluce the concept set on their subset of data in parallel. 

The tiumber of big steps is reduced to 4. The test results on both machines is shown 

in Table 1.10. The concepts induced by different processors in one big step are shown 

in the table. The value of E (GEN(nm/p)  + EVA(nrn/p)) shows the cost of local 

computation on the processor which takes the longest time in one big step. The value 

of 3(rpg + 1) shows the measured communication cost. In the parallel approach with 

6 processors, the 4000 examples are divided into 6 subsets. The number of big steps 

is further reduced to 3. The test results is shown in Table 4.1 1. 

This test case shows the scalability of the parallel algorithrn. The parallel algorithm 

with s is  processors induces concepts in a quicker way than with four processors. So 

the total cost of the parallel algorithm Nith s k  processors is less than the cost Rnth 

four processors. Table 4.12 shows the results of test case two. The costs of sequential 

algorithm and parallel algorithm with four and six processors on both machines are 

compared. Though there is redundancy, i-e. the concepts induced in last big step 
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Paramet ers 
Big Step 1 
GEN(nm) +E VA (nm) 

Value on teaspoon 1 Value on zeus 
move(bishop,pos(.~,B),pos(C,D)) :- rdiff(BlD,2), fdiff(A,C,2). 
1.57s (0.90-1.81s, 22 nodes) 1 0.13s (0.09-0.15~~ 22 nodes) 

c- - l?, 1 22 
exampies relraclad 
subtotal 
Big Step 2 
GEN(nm)+EVA(nm) 
C - 
esarn ples re t rac t ed 
subtotal 
Big Step 3 
GEN(nm)+EVA(nm) 

I 

move(bishop.pos(;\,B) ,pos(C,D)) :- rdiff(B,D,l), fdiff(X,C,l). 
1.49s (1.25-2.03s: 22 nodes) 10.12s (0.09-0.15s, 22 nodes) 

E 

examples retracted 
subtotal 

7 - n  

22 
214 
38.53 s 

Big Step 1 
GEiV(nm)+EVA(nm) 

133 

37.75 s 

I 

move(rook,pos(X.B) ,pos(CB)) :- fdiff(.A,C,5). 
1.59s (1.31-1.87s' 34 nodes) 1 0.12s (0.09-0.15~~ 34 nodes) 

- 
t 

examples retracted 
subtotal 

133 

2.86 s 

34 - (2  
59.12 s 

Big Step 5 
GEN(nm)+EK4(nrn) 

I 

move(queen~pos(A,B),pos(A7C)). 
1.63s (1.43-1.96s: 34 nodes) 10.12s (0.09-0.15s, 34 nodes) 

f 

esamples retracted 
sitbtotal 

examples retracted ] 556 1 556 

move(queeri.pos(~~,B),pos(C,D)) :- rdifF(B,D,ï), fdiff(-4,C,7). 

34 
502 
62.12 s 

Big Step 6 

subtotal 1 57.84 s 1 4.00 s 

1.51s (1.16-1.96s, 22 nodes) 
9'7 
&- 

14 
35.99 s 

I 

move(rook,p~s(.~~B) ?pos(A,C)). 

0.13s (0.09-O.&, 22 nodes) 
39 
nn 

14 
'2.66 s 

GEN(nrn)+EVA(rim) , 1.57s (1.34-2.21~~ 34 nodes) 1 0.12s (0.08-0.14s, 34 nodes) 

Big Step 23 
GEN(nrn)+EVA(nm) 

Table 4.9: Test case 2: results of sequential dgonthm 

move(bishop,pos(i\.B) ,pos(C,D)) :- rdiff(B,D,G), fdiff(A,C,G) . 
0.52s (0.41-0.78s: 22 nodes) 1 0.10s (0.06-0.12~~ 22 nodes) 

examples retracted 
subtotal 
Total cost 

14 
29.85 s 
1062.95 s 

14 
2.29 s 
77.93 s 



1 Parameters Value on teaspoon 1 Value on Zeus 
1 Big Step 1: 1 

1 process 3 I 

examples retracted 
/ subtotal 1 
/ Big Step 2: 1 

process 1 
process 2 
process 3 
process 4 

q r p g  + 1) 
1 rsarnples set racted 1 
/ siibtotal 1 

process 1 
process 2 

/ process 3 I 

1 esamples retrac ted 1 
subtotal 
Big Step 4: 

esamples retracted 
subtotal 

, Total paralle1 algorithm cost 

concept induced 
move(king,pos(A,B),pos(C.D)) :- rdiff(B,D,l), fdiff(.4,C,l). 
T - - - - l :  -1 lllvallu 

move(bishoplpos(h,B) ,pos(C,D)) :- rdiff (B,D.E), fdiff(A,C,E). 

-- - 

concept induced 
move(queen.pos(-4.B) , p ~ s ( c . D ) )  :- rdiff (B,D ,E) , Fdiff(A,C,E). 
move(queen.pos(.-\,B) ,pos(C,B)). 
move(knight.pos(.l.B),pos(C,D)) :- rdiff(B,D.l), fdiff(A,C,?). 
Invalid 

concept inctuced 

concept induced 
move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,l). 
34*1.65s = 56.42 s 28*0.08s = 2.33s 
0.404 s 0.03 s 
88 88 
58.33s s 2.38 s 
237.84 s 15.02 s 

Table 4.10: Test case 2: results of 4process parallel algorithm 
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process 1 

1 process 3 l 
process 4 
process 5 
process 6 
E (GEN(nm/p) 
+ E VA (nm/p)) 
3 b p g  + 1) 
examples ret racted 

process 2 
process 3 
process 4 
process 5 
process 6 
c ( GEN(nm/p) 
+ (WP)) 
3(rpg + 1) 
examples retrac ted 
subtotal 

processes 1-6 1 

concept induced 
move(king,pos( A,B) ,pos(C.D)) :- rdiff(B,D, 1), fdiff(A,C,1). 

( m..p -- \ D\ -6 /O  n\\ . , A : a / D  n Cr;\\ r :at 
i i i ~ ~ ï ~ ~ ~ ï ~ ~ i , ~ ~ ~ ~ . i , u ~ , ~ v s ~ ~ , u ~ ~  .- *uAiI(ulu?u,, iduL\AIC,E). 
rnove(bishop,pos(.A,B),pos(C,D)) :- rdiff(B,D,E,), fdiff(A,C,E). 
move(rook~pos(A,B) ,pos(C?B)). 
move(kinglpos(.A,B) ,pos(C,D) ) :- rdiff(B.D, 1)) fdiff (A$, 1). 
rnove(king,pos( A,B) ,pos(C,B) ) :- fdiff (A$, 1). 

concept inclucecl 
niove (queen?pos(A.B) .pos(.i.C)). 
move(clueen.pos(-1.B) .pos(C:B)). 
rnove(knight .pos(.A.B) .pos(C?D)) :- rdiff(B,D,l), fdiff(A,C,a). 
rnove(rook.pos(A.B) ,pos(.-\.C)). 
move (cpeen. pos (A. B) : pos (A$) ) .  
rnove(knight,pos(.~,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,CJ). 

22*0.067s = 1.51s 
0.04 s 
1720 
1.67 s 
concept induced 

Table 4.11: Test case 2: results of 6-process parallel algorithm 
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are t h  same. the overall performance is still greatly improved. The row cost, shows 

the average cost of one processor in parallel algorithm. The row cost, shows the 

average cost in seqiiential algorithm. .-\ double speedup phenornenon is observed in 

6 * costs < 4 * cosst4 < cost,. 

Table 4.12: Test case 2:  cornparison of sequential and parallei algorithm 

Parameters 
Nrirnber of examples 
k ,. 

zeus (4-process) 
4000 
-4 

teaspoon (4-process) 
4000 
4 

zeus (6-process) 
4000 
3 
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4.3.3 Test Result of Chess Game Ending Illegal Problem 

Table 4.13 shows the test results for the sequential algorithm. The concepts induced 

in each big step are shown. The value of GEN(nm)+E VA(nm) shows the cost to 

generate and evaluate one candidate concept. The values shown in the table are 

average values. Tlie range and nuniber of data nodes 1 collected are also shown. Tlie 

wlue of E shows the number of candidate concepts generated in each step. The cost 

of each big step should be roughly equal to E ( GEN(nm)  + E VA(nm)).  The sequential 

algorithm takes 12 steps to generate al1 the rules. 

In the parallcl approach with 4 processors. the 2000 examples are divided into 4 

subsets. Four processors iridiice the coiicept set 011 tlieir subset of data in parallel. 

The number of big steps is reduced to 4. The test results on both machines is shown 

in Table 4.14. In the parallel approach with 6 processors, the 2000 examples are 

divided intn 6 subsets. The number of big steps is also. The test results is shown 

in Table 4.15. -1s in test case 1 and 2, different processors induce some redundant 

concepts. But the overall performance is improved. 

Table 4.16 shows the results of test case three. The costs of sequential algorithm 

and parallel algorithm with four and six processors on both machines are compared. 

The row cost, shows the average cost of one processor in parallel algorithm. The row 

cost, shows the average cost in sequential algorithm. 4 double speedup phenornenon 

is observed in this test case on both machines with four processors. However, the 

parallel algorithm with six processors does not show such a phenornenon, though 

cost, with six processors is less than cost, with four processors. This is partly due 

to the example set which, in this test case, does not show enough scalability. So 



1 Parameters T 

1 zsarnples retracted 
subtotal 
Big Step 2 

b. 

GEN(nm) + E Y4 (nm) 
- 
b 

esamples retracted 

Value on teaspoon -- 1 Value on Zeus 
iliegai(A.XB,C,B.D) :- adj(A,B): adj (A$). 

0.70s (0.50-1 .89s. 248 nodes) 1 0.08s (0.06-0.15s, 248 nodes) 

illegai (A.B,C. D ,C,.A) :- adj (D,A), adj (B,C) . 
0.50s (0.43-0.85s. 633 nodes) 0.07s (0.05-0.15~~ 633 nodes) 

1 siibtotal 1 

A 

b 

esamples retracted 
1 subtotal 1 

336.95 s 1 42.33 s 
ilicgal (A.B.C.D,E,D) :- adj (A,B), adj (A$). 

0.57s (0.39-0.95s. 212 nodes) 0.07s (0.05-0.15~~ 212 nodes). 
212 212 
120 120 

illegal(A,B.C.D,E.F) :- adj(A7E), adj (B,F). 
0.69s (0.63-0.93s, 2-18 nodes) 1 0.08s (0.06-0.15~~ 248 nodes) 

1 Big Step 12 illegal(A,B,C,D,E,D). 

1 examples retracted 1 96 1 96 

0.04s (0.02-0.06s, 165 nodes) 
165 

GEN(nm) + E VA (nm) - 
L 

Table 4.13: Test case 3: results of sequential algorithm 

0.37s (0.20-0.78~~ 165 nodes) 
165 

subtotal 
Total cost 

62.14 s 
1239.88 s 

7.31 s 
150.58 s 
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Paramet ers 
Big Step 1: 
process 1 
process 2 
process 3 
process 4 
5 ( G EN(nm/p) + E K4 (nm/p)) 

Jbpg  + 1) 
examples retracted 
subtotal 
Big Step 3: 
process 1 
process 2 
process 3 
process 4 
E ( G EN(nm/p! + E K4 [nm/p)) 
3(rpg + 1) 
examples ret racted 
subtotal 
Big Step 3: 
process 1 
process 2 
process 3 
process 4 
s (GEN(nm/p)+EVA(nm/p)) 
3(rpg + 1) 
esamples retracted 
subtotal 
Big Step 4: 
process I 
process 2 
process 3 
process 4 
E ( GEN(nm/p) + E VA (nm/p)) 
3kpg  + 1) 
esamples re tracted 
subtotal 
Total parallcl algorithm cost 

Value on teaspoon 1 Value on Zeus 
concept induced 
iiIegai(.4.BlC,D.E,F) :- adj(E,X), adj(B,F). 
Invalid 
illegal(A.B,C,D,C,E). 
ii1ega1(.4,BlC.D,C,E) :- adj(C,E). 

concept induced 
iilegal(A,B.C,D.D,D) :- adj(A,C). 
illegal(.l.B.C,C.D.C) :- adj (.l,D) : adj (C,D). 
illegal (h.B,C.D.E.D) :- adj (A$), adj (D,E) . 
illegal(.4J3.C,D,E,D) :- adj(.\,C), adj(D,E). 

concept induced 
illegal(.A.Bo.A,B.C,D). 
iilegai(A,B,C,D,E,D) :- adj (D,E). 
illegai(A,B,C,D,E,D) :- adj (D,E). 
illegal(X,B,C,D,E,D) :- adj(D,E). 

0.316 s 0.03 s 

92.52 s 11.35 s 

Sable 4.14: Test case 3: results of 4process parallel algorithm 

concept induced 
illegal( A,B ,C,D ,E,D) . 
illegal(A.B,C.D,E,D) :- adj(A,C). 
illegal(A,B,C,D,E,D) . 
illegal(A'B,C,D,E,D). 
268*0.24s = 65.28 s 
0.30 s 
348 
68.59 s 
293.07 s 

268'0.03s = 7.82s 
0.04 s 
88 
8.02 s 
36.14 s 



1 Big Step 1: 
process 1 
processes 2-4 
process 5 

E ( GEN(nm/p) + E VA (nm/p)) 

3(rpg + 1) 
esamples ret racted 
subtotal 
Big Step 2: 
process I 
process 2 
process 3 
process 4 
process 5 
process 6 
e (GEN(nm/p)+EVA(nrn/p)) 
3bpg + 1) 
examples retracted 
subtotal 
Big Step 3: 
processes 1,3,4 
process 2 
process 5 
process 6 
E ( GEN(nm/p) + E VA (nm/p)) 
3kpg + 1) 
examples retracted 
subtotal 
Big Step 4: 
process 1 
process 2 
process 3-6 
e ( GEN(nm/p) +E VA (nm/p)) 
3kpg + 1) 
examples retracted 
subtotal 
Total parallel algorithm cost 

concept induced 
Invalid 

concept induced 
illegai( A,B ,C,D,EID) :- adj (h,C), adj (E,D) . 
illegal(A,B,C.D,E,D) :- adj (B,D) . 

iilegal(.-\,B.C,D,E.B) :- adj(A,E). 
illegal(.-\,B.C,.A,D,E) :- adj (A,D), adj (B,E). 
i1Iegai(.4,B.C.DTE,B) :- adj (A,E). 

concept induced 
illegai(A.B,C.D,D.E) :- adj(A,D), adj (B,E). 

illegal (A,B,C,D ,E,D) :- adj (E,D). 

concept induced 
illegal (A,B,A,B ,C ,D) . 
illegal(A!B,A,B,C,D) :- adj(B,D). 
illegal(.4,B7.-\.B:C?D). 

Table 4.15: Test case 3: results of 6-process parallel algorithm 
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processors waste tirne doing redundant work when processors becomes large. 

Table 4.16: Test case 3: comparison of sequential and parallel algorithm 

4.3.4 Summary. 

zeus (6-process) 
2000 

Super-linear speedup is observed in al1 these test cases. I might expect the parallel 

implementation using p processors to take time cost,/p if 1 ignore the communication 

ovcrhead. But here in the experiment it executes even fastes due to the information 

exchange between processors and reduction of subsequent work. There is a big per- 

formance improvernent with a sniall p. Though 1 did the experiments on a pprocessor 

SMP machine, I believe that the parallel ILP algorithm is scalable given that each 

subset of data is still big enough to induce correct concepts. And the double speedup 

phenomenon will be observed with a larger processor set. 

zeus (4-process) 
1000 

Parameters 
Number of examples 

tempoon (4process ) 
2000 
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Chapter 5 

Conclusion 

In this thesis 1 studied the use of inductive logic to generate concepts from very 

big datasets in parallel. 1 use p processors to do the data-mining job, each on a 

subset of the full dataset. A set of concepts are generated from disjoint subsets of 

the full dataset used for rnining. The distributed concept sets are total exchanged 

and evaluated before merging the valid ones into the final concept set. The final set 

of concepts is free of conflicts and has acciiracy equivalent to a set of rules developed 

from the full dataset. The disk I/O access cost for each processor will be reasonably 

reduced by l l p .  

Since each processor learns concepts independently on its subset, there are some 

issues that 1 have discussed in this tbesis: 

0 How to secure the accuracy of induced theory on smaller datasets; 

a How to deal with negative examples; 

How to reduce communication overhead; and 

83 
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0 Hom to avoid redundant work by individual processes. 

1 presented a parallel ILP data-mining algorithm using the BSP mode1 and gave its 

cost analysis. 1 implemented a parallel version of a core ILP system - Progol - using 

C with the support of Oxford BSPlib. 1 developed several different test cases to 

sIiow typical speedup. With al1 the test results, a double speedup phenornenon was 

obscrved which greatly iniprovecl the performance of ILP data-mining algorit hm. 

Froni the analysis of the parallel ILP data rnining algorithm and the test results 

of parallel Progol. 1 can draw the conclusion that the benefits of the performance 

of parallel computing for ILP data niining is obvious. Though the cost measures 

i n  tlie implementation is not complete accurate and tlie parallel version of Progol 

lias its limitation. they are expressive enougli to show that even modestly parallel 

iriiplenientations of ILP algorithm c m  achieve significant performance gains. The 

following is what 1 discovered in my study: 

First, inductive logic prograrnming employs first-order structural representations, 

which generalizes attribute-value representations, as examples now may consist of 

multiple tuples belonging to multiple tables. These representations can succinctly 

represent a much larger class of concepts than propositional representations and have 

demonstrated a decided advantages in some problem domains [19]. By using first- 

order logic as the knowledge representation for both hypotheses and observations, 

inductive logic programming may overcome some major difficulties faced by other 

data-mining systems. ILP inheritates well-established theories, algorit hms and tools 

frorn computational logic. Background knowledge helps in restricting the hypothesis 

search and is a key factor for incremental and iterative learning. 
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Second, the BSP model provides a simple way to implement a parallel ILP data- 

mining system and gives a relative accurate cost model based on counting cornputa- 

tions, data access, and communication. Based on BSP model, 1 have confidence to 

Third, replicated implementation is shown to be a simple, yet powerful, approach to 

parallel ILP system design. Independent search is simple and works tvell for minimiza- 

tion problems. However, it does not divide the dataset, so it cannot reduce the disk 

access. Therefore, it is not suitable for problems with huge dataset. The fine-grained 

parallelism in parallelized approaches requires more communication, so 1 do not use 

this approach in out parallel ILP data-mining algorithm. The replicated approach 

is often the best way for parallelizing ILP data-mining applications. Previous work 

in [27] shows tliat the replicated approach gives the best performance improvement 

among al1 these three approaches introduced above. It gives a way for the algorithm 

to exploit collective knowledge quickly. The parallel algorithm exchanges information 

after each phase. The knowledge gairied by one processor in a step will be exchanged 

with al1 other processors during the end of that step. In this way, once the algo- 

rithm has found a concept that can explain part of the data, it does not need to 

examine that part again. So there is less work for the next phase. A double speedup 

phenornenon is obsemed in this parallel algorithm, as shown is Table 5.1, 5.2, 5.3. 

Table 5.1: Double speedup on teaspoon with 4 processors 

Double Speedup 1 

Parallel cost*4 
423.44s 
951.36s 
1172.28s 

Parallel cost 
105.86s 
237.84s 
293.07s 

Example 
Animal 

Chess Move 
Game Ending 

Sequential cost 
604.63s 
1062.95s 
1239.88s 

Processors 
4 
4 
4 
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Table 5 .2:  Double speedup on Zeus with 4 processors 

Double Speedup 2 

Double Speedup 3 

Example 1 Sequential cost 1 Processors [ Parallel cost 1 Parallel costt4 1 

Parallel cost* l  
52.50 s 
60.08 s 
144.56 s 

Example 
Animal 

Chess blove 
Game Ending 

Processors 
4 
4 
4 

Sequential cost 
105.86 s 
77.93 s 
150.58 s 

Table 5.3: Double speediip on Zeus witli 6 processors 

Parallel cost 
13.05 s 
15.02 s 
36.14 s 

! 1 

I I I 1 

Finally, though my test results are obtained frorn 4 and 6 processor SMP machines, 

it is reasonable to assume the scalability of this parallel approach to modest number of 

processes. Since the communication overhead is srnaIl? the parallel ILP algorithm will 

work well with more processors provided that each subset of data on one processor is 

big enough to induce accurate concepts. 

Animal 
Chess Move 

79.50 s 
44.64 s 

6 
6 

105.86s 
77.93 s 

Game Ending 1 150.58 s 

13.25 s 
7.74 s 
28.44 s 6 170.64 s 



Bibliography 

[1] R. Agra1va.1 and J.  Shafer. Parallel niining of association rules: Design, irnple- 

mentation and esperience. Technical Report RJ10004, IBM Research Report, 

February 1996. 

[2] M. Besch and H. W. Pohl. How to simulate artificial neural networks on large scale 

parallel cornputers exploiting data parallelism and object orientation. Technical 

Report TR-94022. GMD FIRST Real World Computing Laboratory, November 

1994. 

[3] M. Besch and H. W. Pohl. Flexible data parallel training of neural networks using 

MIMD cornpurers. In Third Eummicro Workshop on Parallel and Distrib~ted 

Processing, January 1995. 

(41 P.S. Bradley. C;. M. Fayyad, and O.L. hlangasarian. Mathematical programming 

for data mining: Formulations and challenges. INFORMS Journal of Computing, 

11:217-238, 1999. 

[5] 1. Brat ko and S. 'Jluggleton. Applications of inductive logic programming. Com- 

munications of the AC&[, 38(11):65-70, 1995. 



88 BIBLIOGRAPHY 

[6] S .H.N. Cheung. Data mining: Frorn statistics to inductive logic programming. 

Technical report, Department of Coniputer Science, Erasmus University of Rot- 

terdam, November 1996. 

[7] S .HA.  C heung. Foundations of Inductive Logic Programming. Springer, 1997. 

[SI J .M.D. Hill D.B. Skillicorn. Questions and answers about BSP. Scientific Pro- 

gramming, 6(3):249-374, Novernber Fall, 1997. 

[9] P. Finn, S. 'vIuggletont D. Page. and -1. Srinirasan. Pharmacophore discovery 

using the inductive logic programming system Progol. Machine Learning, 30:241- 

272, 1998. 

[IO] P. Frasconi, M. Gori! and G. Soda. Daphne: Data parallelism neural network 

simiilator. International Journal of Modern Physics C! 1992. 

[Il] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In 

Proceedings of the 13th International Conference on Machine Learning, pages 

148-156, 1996. 

[El V. Gaede and 0. Günther. Survey on multidirnensiooal access methods. Techni- 

cal Report ISS-lGo Institut für Wirtschaftsinformatik, Humboldt Universitat zu 

Berlin? August 1995. www.wiwi.hu-berlin.de/-gaede/survey.rev.ps.Z. 

[13] D.E. Goldberg. Genetic illgorithms in Search, Optirniration, and iîdachine Learn- 

ing. Addison-Wesley, 1989. 

[i4] G.H. Golub and C.F. van Loan. Illatriz Computations. Johns Hopkins University 

Press, 3rd edition, 1996. 



BIBLIOGRAPHY 89 

[15] G. Gonnet. Unstructured data bases or very efficient text searching. In ACM 

Princzples of Database Systems? pages 1 E - l X ,  Atlanta, Georgia, 1983. 

[16] A. Guttman. R-Trees: A dynamic indes structure for spatial searching. In Pro- 

ceedings O/ A C M  SIGibIOD International Conference o n  ildanagement of Data,  

pages 47-57, June 1954. 

[17] E.-H. Han, G. Karypis, and V. Kumar. Scalnble parallel data mining for associ- 

ation rules. In A CLPI-SIGMOD Internation C o n  ference o n  Managemen t  of Data, 

May 1997. 

il81 b1.V. Joshi, G. Karypis. and V. Kumar. ScalParC: -4 new scalable and effi- 

cient parallel classification algorithm for mining large datasets. In Pmceedzngs 

of IPPS/SPDP'98, pages 573-580, 1998. 

1191 K. Nigan LI. Craven, S. Slattery. First-order learning for web mining. In pro- 

ceedings of the  i 0 th  European Conference on Machine Leoming, 1998. 

[?O] S. Lluggleton. Inductive logic programrning. New Generat ion  Comput ing ,  

8(4):295-318, 1991. 

[21] S. Muggleton. Inductive logic programming: theory and met hod. Journal  of 

Logzc Prograrnming, 19:20, 1994. 

1221 S. Muggleton. Inverse ent ailment and Progol. New Generation Comput ing  Sys-  

tems,  13:245-286, 1995. 

[23] S. Muggleton. Inductive logic programrning: issues, results and the LLL chal- 

lenge. Artificial Intel Zigence, 114(1-2) :283-296, December 1999. 



90 BIBLIOGRAPHY 

[24] S. Muggleton and L. De Raedt. 1nduct.ive logic programming: Theory and meth- 

ods. Journal of Lagic Programming, 19,20:629-679, 1994. 

[25]  D.A. Pomerleau, G.L. Gusciora, D.L. Touretzky, and H.T. Kung. Neural network 

simulation at Warp speed: How we got 17 million connections per second. In 

IEEE International Conference on Neural Networks, July 1988. 

[XI J.R. Quinlan. Cd. 5: Prograrns for Machine Leaming. Morgan-Kaufmann, 1993. 

['Tl R.O. Rogers and D.B. Skillicorn. Using the BSP cost mode1 to optimize paral- 

le1 neural ne twork training. Future Generation Computer Systems, 1k.109-424, 

1998. 

[-SI J. Schafer, R. Agrawal. and LI. bIehta. SPRINT: A scalable parallel classifier for 

data mining. In Proceedzngs of VLDB22. Slurnbai. India, 1996. 

[ZS] D.B. Skillicorn. Strategies for parallel data mining. IEEE Concurrency, 7(4):26- 

35, October 1999. 

[30] H. Toivonen. Discovery of frequent patterns in large data collections. Technical 

Report A-1996-5, Depart ment of Corn puter Science, University of Helsinki, 1996. 

[31] L.G. Valiant. Oxford Parallel - BSP Model. CVorld Wide Web, 1997. http:// 

oldwww. comlab.ox.ac.uk/oucl/oxpara/bsp/bspmodel. h m  . 

[32] N.B. ~erbedi i ja .  Simulating artificial neural networks on parallel architectures. 

Computer, 29, No.356-63, 1996. 

[33] 1. Weber. ILP systerns on the il p-net systems repository. Technical report, 

Department of Computer Science, University of Stuttgart, Germany, 1996. 



BIBLIOGRAPHY 91 

[34] M. Whitbrock and M. Zagha. An iniplementation of backpropagation learning on 

GF11, a large SIbID parallel cornputer. Parallel Computing, 14329-346, 1990. 



BIBLIOGRAPHY 



Appendix A 

PCProgol Implementat ion 

Oxford BSPIib is the platforrn rised to iniplement the parallel version of CProgol. 1 

made the necessary modifications to CProgol 4.4 to make it work in parallel. 

At the beginning of the main() function, 1 cal1 bsp- begin(int process-number) to 

start p processes. The number of processor can be modified as a parameter. Each 

process needs to be allocated to a processor. If more than one process is allocated 

to one processor the performance will be greatly affected due to the barrier synchro- 

nization. Each process will get its process ID by bsp-pido. In this way I can tell 

which process is inducing concepts. At the end of the program bsp-end() is called to 

terminate the program. Function c-doall() will perform al1 the induction procedures 

describe in the parallel algorithm. 

The main fiinction starts: 

main() { 
// BSP Begin, X = number of procwes = number of processors 
bsp- begin(X); 
// get my process ID 
pid = bsp-pid(); 
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// Analyze command line parameters 
checkargs(argctargvtenvp); 
// Initialise built-in predicates 
1-init(); 
/ /  Begin induction process 
c~doal l( f i leroot~in,f i leroot~out);  
// close al1 files 
c- close(); 
return(1l); 
// BSP End 
bsp-end(); 

} 

[ri CProgol. the big loop structure is implemented in the procedure c-sat(). I 

niodified the big loop structure in c-sat() to rnake it work in parallel on several 

processors. c-sat() is the core procedure which does top-down search, asserts result 

if compressive and does theory reduction. The whole structure in the PCProgol will 

be made clear once I introduce the function of c-sat(). 
c-sat() first declares local variables. Sorne of these variables are used for BSP 

communication. A function cputime() is called to record cornputation and commii- 
nication cost. 

PREDICATE 
c-sat(cclause,nex) 
//DECLARE LOCAL VARIABLES 
//Start recording computation time 
start = cputime(); 

Once al1 the local variables are allocatedt bsp-push-reg() is called to register 
necessary variable for communication. .A spchronization function bsp-sync() is then 
called to rnake it happen. 

/*register variables for BSP communication*/ 
bsp~push~reg(concept.sizeof(char)*MAXMESS*X); 

/*synchronization point*/ 
bsp-sync(); 

ct-sat() and cl-symreduce() are then called for generating the most specific clause 
for the example selected. 
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l igenerate the most specific clause 
if (hypothesis = ct- sat(cclause,atoio,otoa&head)) 

cl-symreduce(St hypothesis.atoio. head). 
outlook=r~outlook(hypothesis, head,otoa.atoio); 
vdomains=r~vdomains(otoa.atoio): 
iijverbose>=2 j 

fprintf(tty-file- >filellMost specific clause is:'); 
cl- print(hypothesis); 

Function r-searcho will search in the hypothesis space to find a locally-correct 
hypothesis. If a successful hypothesis is found, then bsp-put() is called to send this 
hypothesis to al1 other processes. It is followed by a synchronization function call. 

/ /  search for locally-correct concept 
r- search(Sr hypothesisIatoio,otoa.outlookIvdomains.fnex); 
if(hypothesiskk !L- EMPTYQ(hypothesis)) 

cl- u nflatten(hypothesis) ; 
if(verbose>=l) 

fprintf(tty-file- >file,'ResuIt of search is:'); 
cl- print(hypothesis); 

else 
fprintf(tty-file- >filetl[No compression]'); 
result-FALSE; 

// propagate hypothesis t o  other processes 
for (i = O;i<X;i++) 

bsp- put(i, hypothesis,receive10,sizeof(char)*MAXMESS); 

bsp-sync(); 

The size of data in the first round of total exchange is a character string. Its size 

is defined by the macro MXXbIESS to be 40 characters in PCProgol. After the global 

synchronization, each process gets al1 the hypotheses generated in this step. Shen it 

will perform the evaluation. It will get the number of positive examples covered and 
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the number of negative esamples wrongly covered by one hypothesis relative to its 

local esample set. 
Once each processes get al1 the p and n values for al1 the hypothesis, the score f 

mil1 be calculated for that hypothesis. There will be a second-round total exchange. 
T l . .  . iiia tiiiie ûïilj- the iriteger vûlüc ûf f am z d m i g e d .  

// use BSP model to get other processes' hypotheses and evaluate them 
for(int i=O; i<x,i++) 

if (pid ! = i) 
ITEM cl,call=d~gcpush(cl=i~copy(re~hyp[i])); 
LIST *end=cl- push(re- hyp[i]); 
PRED ICATE negq=(PSY M(HOF((L1ST) 1- GET(re- hyp[i])))): 
p[i]=(int)cL pcoverage(caII, L- GET(*end)); 
if (rd poson ly()) 

n [il = (int) ci -dcoverage(call.fnex); 
el se 

n[i] = (int) cl- ncoverage(negq ,call, L-GET(*end)); 

According to f value from each processes, one process can decide if the hypothesis 
generated in this step is valid or not. And then during the third round communication 
the boolean value of validate will be total exchanged. 

// Test if the hypothesis is valid or not. 
Validate = validate-test(f[pid]); 

// propagate validation result t o  other processes 
for( i=O;i<4;i++) 

if(pid!=i) 
bsp~put(i,validate,go,pid*sizeof(int).sizeof(int)); 

bsp-sync(); 

After the third round communication, al1 the valid hypothesis induced in this step 
will be updated to background knowledge and al1 the redundant examples Nil1 be 
ret racted from each subsets. 
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The total cornniunication cost is small because the çize of data to be exchanged 

is small. 
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