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Abstract

Most chemical processes are inherently nonlinear in nature. Although a wealth of
information on nonlinear processes and control exists, the implementation of nonlinear
control techniques is not commonplace in industry. Instead, due to the additional design,
implementation and maintenance efforts required for nonlinear control, practitioners
often accept the performance and economic losses that result from employing linear
controllers. In some cases, the losses are minor; however, in others, they may be
significant due to the nonlinearity of the process. It would be advantageous to bridge the
gap between the nonlinearity of a process and whether the potential benefits of a
nonlinear control scheme outweigh the additional efforts required.

The primary objectives of this thesis are to measure the steady-state nonlinearity
of a gas-phase fluidized-bed polyethylene reactor, and to relate those measures of
curvature to the performance degradation that results from the use of linear control,
relative to nonlinear control.

Recently defined steady-state RMS curvature is used to examine the product
property behaviour of a published polyethylene reactor model. Illustrative examples
detail the calculation and interpretation of the elements of curvature.

A comprehensive study is undertaken to examine the nonlinearity of regions of
product property grades of polyethylene, including grade transition regions, and operation
about a steady-state point. Curvature values for the regions examined ranged from
insignificant (crms~0) to severe (crus=117). A comparison is made between two forms
of the model, one being the nominal form, and the other, the transformed version in
which the melt index property is logarithmically transformed. In all cases considered, the
transformed model displays less curvature than the nominal model; significant reduction
in nonlinearity is seen in all cases.

The curvature values obtained for the selected grade regimes are compared to the
performance of linear controllers, relative to nonlinear controllers. The expectation was
that as the curvature of a region increased, the degradation of linear control performance
would intensify. An input/output linearizing feedback controller was designed for use
with simulation studies. Scaled performance measures adapted from IAE were used to
compare the performance of linear controllers, relative to nonlinear control schemes. The
outcome of comparative studies was that no trend between RMS curvature and the
chosen performance measure was found.

Several possible reasons were given for the lack of correlation between linear
control performance and RMS curvature. The most promising explanation is that RMS
curvature is a steady-state measure, which is insufficient in determining the nonlinearity
of the dynamic polyethylene model. Consequently, an important recommendation for
future work is the assessment of dynamic nonlinearity of the model.
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Chapter 1

Introduction

Most processes in chemical engineering industry are inherently nonlinear in
nature. This, combined with increasing pressures to conserve energy, reduce capital cost,
and provide tighter control of highly integrated processes (Lee and Sullivan, 1988),
motivates the practitioner to implement a control law commensurate with such objectives.
To further actuate this end, a wealth of research and results are available on nonlinear
processes and control.

Although the implementation of nonlinear control provides important benefits, the
use of linear control strategies still dominates industry. Presumably, linear techniques
often provide adequate control of processes displaying mild to moderate nonlinearity.
However, processes displaying a high degree of nonlinearity may require nonlinear
control strategies. Nonetheless, practitioners tend to be reluctant to implement such
controllers due to the considerable amount of developmental effort required, and
disregard the economic and performance losses associated with the inadequacies of linear
control. In this vein, it would be of practical importance to be able to assess the degree of
nonlinearity of a process or a region of interest within a process, in order to ascertain
whether nonlinear control is merited.

The topic of nonlinearity assessment has been an active area of research in recent
years. Ogunnaike et al. (1993), Nikolaou (1993), and Allgéwer (1995) have proposed

operator-based techniques for measuring nonlinearity. However, these approaches



provide little insight into the process structure and do not describe the specific elements
that account for curvature (Guay et al., 1995). Koung and MacGregor (1991, 1992)
examine the influence of nonlinearity on the singular-value decomposition of local
steady-state gain information. Stack and Doyle III (1995, 1997 a,b) advocate using an
optimal-control structure as a tool to assess control-relevant nonlinearity. Once the
optimal-control structure is designed, an open-loop measure can be used to examine
nonlinearity. Haber (1985) presented various methods of detecting nonlinearity within a
process from input-output records.

An intriguing result is presented by Guay et al. (1995), which quantifies the
magnitude and nature of the nonlinearity. This technique defines the nonlinearity of a
process as its departure from a first-order Taylor series approximation. The curvature is
estimated by comparing the magnitude and direction of the second-order terms to the
first-order terms. Moreover, this technique allows for the appropriate representation of
the size and orientation of the operating region by a carefully selected scaling. Guay
(1996) further extended his work on steady-state measures of curvature to include a
measure of dynamic nonlinearity.

The primary objectives of this thesis are to illustrate and exemplify Guay et al.'s
steady-state open-loop measure of curvature, to put it to practical use by assessing the
nonlinearity of regions within a gas-phase fluidized-bed polyethylene reactor model, and
to determine if these measures are helpful in predicting control performance.
Background information is given, practical implementation issues are raised, and some
recommendations for future work are given.

Guay et al.'s measures of nonlinearity are applied to and assessed using the gas-



phase polyethylene reactor model developed by McAuley et al. (1990), and McAuley and
MacGregor (1991, 1993). Background on the gas-phase production of polyethylene is
given in Chapter 2, in addition to the model used to describe the process. This chapter
also provides the prerequisite material for Guay et al.'s steady-state measure of curvature.
The key points of Guay et al.'s work are: the decomposition of second-order derivative
information into tangential and normal constituents, and the development of a scale-
independent measure of curvature. The effects of interaction and of various components
of nonlinearity (specifically tangential and normal elements) on the geometry of the
steady-state locus are discussed. Additionally in Chapter 2, the error-trajectory approach
to nonlinear controller design is presented, as this control scheme is used later in the
thesis.

In Chapter 3, we examine 2x2 portions of the polyethylene reactor model to
visualize interaction and curvature on the steady-state locus. Examples are also provided
detailing the calculation of steady-state RMS curvatures and the interpretation and
illustration of the components of curvature.

In Chapter 4, nonlinearity assessment of the polyethylene reactor model is
performed. Regions of operation in the model are chosen based on realistic grade
settings, which include film resins, and injection and rotational molded polyethylene. To
properly define a region of operation about the selected grades, and to provide a generic,
scale-independent measure of curvature, the regions around the grades are scaled. The
nonlinearity of numerous regions within the polyethylene model is calculated, yielding a
wide range of curvature values. Two forms of the polyethylene model are investigated;

because practitioners often opt to control the logarithm transform of melt index (rather



than melt index directly) on the theory that this transform reduces the nonlinearity of the
model, we assess the curvature of regions within each form of the model. The curvature
results of each form of the model are compared.

The objective of Chapter S is to determine whether operating regions with high
curvatures suffer larger linear control performance losses than regions with lower
curvatures. Closed-loop simulations were performed to assess this relationship. First in
Chapter 5, the control law is developed, which is based on an error-trajectory nonlinear
controller design. This control scheme is an input-output linearizing controller with state
feedback, and is tuned such that the error-trajectory response specification reflects the
natural dynamic behaviour of the system. A normalized measure of performance is
defined and utilized to quantify control performance. This measure quantifies the
normalized difference between the integral absolute error (or deviation) of nonlinear and
linear controllers. It is our expectation that the performance measure for linearly
controlled processes should increase with increasing curvature. The specific results
obtained for the investigation of the relationship between RMS curvature and control
performance are discussed. In addition, Chapter S includes a discussion of possible
explanations for unexpected results, as well as recommendations for future
considerations.

A summary and conclusions to the work investigated in this thesis are given in
Chapter 6. Contributions presented by the author, as well as recommendations for future

consideration are also imparted in this final chapter.



Chapter 2

Background

2.1 Production of Polyethylene

Polyethylene has become one of the most widely produced polymers in the world,
with a production of over 55 million tons expected for 1999 (Modern Plastics, p.114, July
1999). Improvements in process understanding and control stand to benefit this large
business. Such improved understanding can evolve from the ability to assess the degree
of nonlinearity inherent in the process. This knowledge may aid control practitioners in
control scheme design and implementation. In this investigation, recently developed
measures of curvature (Guay et al., 1995) are used to assess the steady-state nonlinearity
of a gas-phase polyethylene reactor model. In what follows, the polyethylene production
process is briefly outlined. Moreover, the model developed by McAuley et al. (1990) and

McAuley and MacGregor (1991, 1993), to describe this process is introduced.

2.1.1 Process Description

The process being studied here is one that makes use of a fluidized-bed reactor for
gas-phase polyethylene production, which is of the same type as Union Carbide's
UNIPOL process (Miller, 1977), or BP's fluidized bed polyethylene production process
(Chinh and Dumain, 1990). The polymerization involves the reaction of ethylene, an
alpha-olefin comonomer such as 1-butene, and hydrogen, using a Ziegler-Natta or

metallocene catalyst. A schematic of the process is shown in Figure 2.1.



Recycle Bleed Stream
—
Compressor
T
Reactor
Catalyst Feed
¢
Heat
Exchanger Product
—_—
Fresh Feed
—_—

Figure 2.1. Schematic of a fluidized-bed polyethylene reactor.

The feed to the column is comprised of hydrogen, nitrogen, ethylene, and
comonomer. The role of these gases is to supply reactants to growing polymer chains,
and to act as fluidization and heat transfer media. Catalyst and co-catalyst are fed to the
reactor continuously. A valve near the bottom of the reactor opens periodically, allowing
polymer product to be removed. Unreacted gases are recovered from the product, and
recycled back into the reactor. The discharged polyethylene is degassed and sent for

additive incorporation, and pelletization. The enlarged upper section of the reactor



allows the polymer particles to disengage from the fluidizing gas. A bleed stream,
located at the top of the reactor, prevents the accumulation of inerts and impurities. The
recycle stream is rather large compared to the size of the feed stream, typically a ratio of
20 or 40:1. This large ratio is due to the relatively low single-pass conversion
experienced within the reactor. The recycle stream is fed through a cooler to remove heat
generated by the exothermic polymerization reaction. The reactor system is outfitted
with several sensors, including pressure sensors, that indicate the mass of material in the
bed, temperature sensors, and a gas chromatograph, which determines gas composition

on-line (McAuley et al., 1990, and McAuley and MacGregor, 1991).

2.1.2 The Polyethylene Reactor Model

The polyethylene reactor model used in this work is that of McAuley and
MacGregor (1991, 1993). It is a two-tiered nonlinear model comprised of a static
algebraic component (McAuley and MacGregor, 1991), and a dynamic gas mass-balance

component (McAuley and MacGregor, 1993).

The algebraic model equations predict instantaneous melt index and density from

reactor temperature and gas compositions: (2.1
1n(M1)=k,(l—LJ+3.5|n(k6 i M) M L) IR LI]—J
r 1, M,] (M, ] (M,] M, ] (M,]

where T and T, are the current temperature and a reference temperature, [M;] are gas-
phase monomer concentrations (i = 1, 2, 3 indicates ethylene, butene, and a higher alpha-
olefin, respectively). Polyethylene is usually produced using a single alpha-olefin

comonomer, but two different comonomers can be present in the reactor during grade



changeovers. [H], [R], and [I] are each the hydrogen, cocatalyst, and reactive impurity
concentrations in the reactor. Appropriate values for parameters k; to k7 depend on the
specific type of catalyst used in the reactor.

Polyethylene density depends on the number and type of short-chain branches.
The incorporation of butene and higher alpha-order olefins result in short branches
protruding from the polymer backbone. These branches inhibit crystalinity, thereby
reducing density. To relate the density of the polymer being produced to gas-phase

reactant concentrations, McAuley and MacGregor (1991) developed the following model:

M.1. M1
2 p 2 22
Belp le @2)

P =P, + p, In(MI) —(p
The comonomer to monomer ratio terms in equation (2.2) reflect the fact that the relative
rates of comonomer and ethylene incorporation into the polymer depend on their gas-
phase concentrations. Parameters p. and p3 reflect the kinetic rate constants for
propagation reactions, and the ability of short-chain branches of different lengths to
reduce density. For complete derivations of the models in equations (2.1) and (2.2), see
McAuley et al. (1990), and McAuley and MacGregor (1991).

The models presented above are instantaneous property models, in that the model
predicts the properties of polymer being produced at a given instant in time. The
instantaneous properties may be quite different from the bulk or cumulative properties of
the polymer in the reactor if reactor operating conditions have changed with time. In
what follows in this research, the instantaneous properties are of interest for control.
Alternatively, the cumulative properties could be controlled. In such case, the above

models would need to be integrated over time, using an appropriate mixing model

(McAuley and MacGregor, 1991). McAuley and MacGregor (1993) recommend



controlling the instantaneous product properties, shown in McAuley and MacGregor
(1991), rather than cumulative properties.

In addition to the above nonlinear static portion of the reactor model, a dynamic
portion exists. This dynamic portion is based on mass balances made on reactive species

in the gas phase. The gas mass-balance model was presented by McAuley and

MacGregor (1993):

[Hzl'b_ i

t

a4.] :‘I_[Fyz —ky -Y-[H,]-

d[M2]= 1 Fw,—k ,-Y-[Mﬁl—M-S[M:]Op
dt Vg +vs\ = % i C, (2.3)
iY-:Fca"am!————Y-Op—de
dt Bw
dBw

= Ve, M Y, + ke (M Y, ) Op

Y is the number of moles of active sites in the reactor. Bw is the mass of polymer in the
fluidized bed. Fuz, Fy2, and Foy are each the inlet molar flow rates of hydrogen, butene,
and catalyst, respectively. Vg is the volume of the gas-phase. Vs represents the gas
volume equivalent of butene dissolved in the polymer (hydrogen is negligibly soluble in
polymer.) The parameter a., is the concentration of active sites in the entering catalyst.
C.: denotes the total gas concentration in the reactor, b is the molar flow rate of the bleed
stream, S is the solubility of butene in the polymer, and Op is the polymer outflow rate.
The molecular weights of ethylene and butene are mw; and mw;, respectively. The
parameters kp:. kp2, and ky are kinetic rate constants for ethylene, butene and hydrogen
consumption reactions, whereas kg is the rate-constant for deactivation of active catalyst

sites. The parameter gl is a mismatch factor to account for some model imperfections; it

is often updated recursively.



Notice that the dynamic material balance equations (2.3) do not contain an
ordinary differential equation to predict the ethylene concentration. This is because fast
and accurate measurements for ethylene concentration are available on-line. Also, the
ethylene concentration, or partial pressure, in the reactor can be tightly controlled around
a set-point. Changes between different polyethylene grades are typically made by
adjusting the hydrogen and butene concentrations in the reactor, while holding the
ethylene partial pressure relatively constant. Also, note that this set of model equations
does not include balances on other comonomers. For simplicity, only polyethylene
grades with butene as the comonomer will be considered in this thesis. However,
extension of the results to other comonomers would be straightforward.

As it stands, the complete model ((2.1), (2.2), and (2.3)) depends on a number of
assumptions. The reaction zone has been modelled as a well-mixed gas, interacting with
a well-mixed solid phase (i.e., modelled as a CSTR). The assumption of a well-mixed
gas phase holds (McAuley, Talbot, and Harris, 1994) by virtue of the high recycle to
fresh feed ratio, and negligible axial and radial temperature and concentration gradients.
Additionally, the total molar concentration in the gas-phase, C,, which is proportional to
the reactor pressure, and the ethylene concentration, [M;], are assumed to be held
constant by controllers that adjust the flow of ethylene and nitrogen. Similarly, the bleed
flow rate is kept steady by a flow controller, unless an operator adjusts the flow rate set
point. Finally, the reactor is assumed to be operating under perfect bed-weight control,

and perfect temperature control about a set-point temperature, To.
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2.1.3 Simplifications of the Model Equations

The state equations of (2.3) can be simplified slightly. Based on the assumption

that bed weight is maintained at a constant mass, the quantity dBw/dt becomes zero.

Substituting and rearranging yields the final state model: 24)
dlH,] 1 [H,]-b
=~ =—|Fy, -k, - Y-[H,}-———-gl-[H,
dt Vg H?2 H [ 2 ] ) g [ 2 ]

diM.]_ 1 [Fm ke YoM, 1-BLR it e, (M, 1w, +k,z[lemz)J

dt Vg +Vs C,
¥ _ o VM kM)
dt cat cat Bw d

A table of parameter values that will be used in the simplified output and state models is

given in Table 2.1:

ky (L/molh) = 1008 b (kg/h) =520 ko (2/(10 min))'°° =0.40
g (Lh) =3.6e-9 C.(mol/L) =0.711 k; (2/(10 min))'?* =150
Vg(L) =423747 S (L/g) =0.002159 k; (2/(10 min))'?® =2.20
Vs(L) =151122 | mw, (g/mol) =28.05 pPo (g/cm®) =0.96
ko (L/molh) =302400 | mw,(g/mol) =56.12 p1 ((g/cm®)/In(g/10min)) =0.0025
kp» (L/mol h) =38448 2., (molkg) = 1.0944 p> ((/cm®)'™)  =0.0070
ka(1/h) =0.36 Bw (tonnes) =70 ps =0.50

Table 2.1. Parameter values used in the simplified output and state models.

Note that appropriate values for the parameters depend on the particular catalyst being
used in the reactor.

This work focuses on a system employing only one comonomer: butene. Higher
alpha-order olefin comonomers are neglected. The final outputs that are of control

interest in this thesis consist of melt index, density, and production rate, and therefore, the
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final output model takes the form:

In(MI) =3.5 ln[ko oo M1, O 1)
[M] M,]

. N>
=p, +p, In(MI—| p, =22 2.5)
p = p, + p, In(MI) (p-[Ml])

PR=Y{k,,[M,Jmw, +k,,[M,mw,)
Following McAuley and MacGregor (1991), the impurity and cocatalyst terms in the
instantaneous melt index model have been condensed into a single paramter, ko, because
measurements of all of the different impurities that can affect melt index are typically not
available on-line. McAuley and MacGregor (1991) developed a technique to update
parameters ko and po using off-line laboratory data, so that melt index and density could
be monitored between off-line product property measurements. Subsequently, McAuley
and MacGregor (1993) developed and simulated a nonlinear melt index and density
control scheme using the models in Equations (2.1), (2.2), and (2.3). Since melt index
and density measurements are not available on-line, impiementation of the proposed
nonlinear control scheme requires estimates of melt index and density from the product
property monitoring scheme (McAuley and MacGregor, 1991). In addition, an Extended
Kalman Filter was required as part of the nonlinear control scheme to update parameters
kp2 and ka4 and to obtain a reasonable estimate of polymer outflow rate. This parameter
updating would ensure that the nonlinear ODE model would match plant behaviour. To
make such a complex nonlinear control scheme work well, the designer must make
certain that all of the nonlinear mathematical models used give good predictions, and that
the monitoring scheme, Extended Kalman Filter, and the nonlinear control algorithm all

work well together. An important question that arises is whether the potential benefits
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that could be achieved using a nonlinear product property control scheme, compared to
the traditional linear control scheme, merit the extra effort involved in implementation
and maintenance.

In this thesis, the assessment of nonlinearity is performed on the simplified form
of the model. Techniques used for nonlinearity assessment are reviewed in the next
section, and the theory behind the curvature assessment employed throughout this work is

described.

2.2 Nonlinearity Assessment

Most chemical processes exhibit some degree of nonlinearity. The severity of
nonlinearity can greatly affect the stability and performance of the controller being
implemented. Although much research has been done in the area of nonlinear process
control (see reviews: Bequette (1991), Kravaris and Kantor (1990a,b), and McLellan et
al. (1990)), reluctance exists among many practitioners to employ nonlinear control
schemes due to the extra design, implementation, and maintenance efforts required and
because the benefits of employing a nonlinear control scheme are often hard to quantify
at the design stage. However, some processes, or parts thereof, exhibit such a severe
degree of nonlinearity that linear techniques compromise control performance. Both the
degree of nonlinearity of the process at a given operating point, and the intended range
and direction of operation (Guay et al., 1995) are of particular importance. This being so,
it is of great value to be able to assess the degree of nonlinearity of a process, in order to

gain insight into whether the benefits of a nonlinear controller would warrant the

additional efforts required.
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In recent years, a few authors have developed methods for assessing nonlinearity.
Operator-based approaches have been proposed by Nikoloau (1993), Ogunnaike et al.
(1993), and Allgower (1995). Nikoloau measures dynamic nonlinearity by calculating
the 2-norm of the best linear approximation of a nonlinear operator, where the 2-norm is
based on a newly constructed inner product. Degree of nonlinearity is measured by
Ogunnaike et al. by first determining the linear approximation of the nonlinear operator
and then calculating the norm of the difference between the linear approximations of
adjacent regions on a domain of process operation. A short-coming of this technique is
that it is designed for SISO systems only, and that extension to dynamic nonlinearity
measurement is difficult. Allgower describes degree of nonlinearity as the norm of the
largest difference between the output of a nonlinear system and the output of its best
linear approximation, considered for the worst-case input sequence. This measure of
nonlinearity is computationally involved and depends on the choice of input signals
considered. Each of these operator-based approaches suffers from limited insight into
process structure, and does not describe the specific causes of curvature (Guay et al,,
1995).

Koung and MacGregor (1991, 1992) define deterministic nonlinearities as a
structured model mismatch seen in the singular-value decomposition of steady-state gain
matrices. The extent of mismatch is measured by the relative degree of input or output
rotation of the steady-state gain information, as well as a change in the magnitude of the
singular values of the decomposed gain matrix.

Haber (1985) presented various computationally simple methods of determining

the presence of nonlinearity within a system from input-output records. However, these
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methods only detect nonlinearity, but don't quantify it.

Stack and Doyle III (1995, 1997a,b) describe using an optimal-control structure to
analyze nonlinearity, since it includes controller performance specifications in addition to
the control-law dynamics of a given process, which they claim is important in measuring
control-relevant nonlinearity. (Control-relevant nonlinearity is defined as the influence
that nonlinearities have in a closed-loop, taking into consideration specific performance
goals.) The optimal-control structure can be designed analytically using Lagrangian
methods. Control-relevant nonlinearity is then assessed using any open-loop nonlinearity
measure that incorporates the effects of scaling. The nonlinearity measure is applied to
the optimal control law. The value of this approach is that it assesses the nonlinearity
that is eliminated to achieve optimal control performance rather than complete process
nonlinearity.

In what follows, the curvature measure of Guay et al. (1995) is outlined. Guay et
al.'s steady-state measure of curvature is an extension of earlier work measuring
curvature in nonlinear least squares regression by Bates and Watts (1980, 1988). Key
points of Guay et al.'s work are the decomposition of second-order derivative information
into tangential and normal constituents, and the development of a scale-independent
measure of curvature. Although not considered in this thesis, Guay's steady-state
measure was extended to provide a measure of dynamic nonlinearity. The fundamental
theory behind this dynamic measure is an extension of the steady-state nonlinearity case.
Guay (1996) describes measuring dynamic nonlinearity of a process by considering first-
and second-order derivative information in an operator setting, treating the dynamic

process as an input-output operator. Provisions are made for scaling strategies.
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Leung (1998) investigated the relationship between steady-state RMS and
controller performance degradation for several simple examples, using the progression of
IAE as a function of set point change as an indication of degradation. Leung also
investigated curvature of the set point - IAE relationship. This work assessed controller
performance changes over a range of varying set points about a fixed operating point.
The distinction between Leung's work and the work presented here is as follows: the
work in this thesis focuses on a multi-input multi-output industrial process example, and
provides an in-depth investigation of steady-state curvature behaviour, including
interpretations of the diagnostics in terms of input contours on the steady-state locus.
Additionally, this work provides a detailed investigation of the relationship between RMS
curvature and controller performance degradation over major changes in operation and

for disturbance rejection.

2.2.1 The Steady-State Locus

The technique presented here is Guay et al's (1995) open-loop steady-state
measure of curvature. Guay et al. (1995) also developed extensions of this steady-state
work to process dynamics. Although dynamic measures of nonlinearity are not examined
in this thesis, it is recommended that the assessment of dynamic nonlinearity of the
polyethylene reactor model be done in the future.

Guay et al.'s steady-state measure of nonlinearity is performed by first analyzing
the local geometry of the input-state map, and then applying corresponding output
mappings to assess the nonlinearity of the input-output map. In applying measures of

nonlinearity, either the input-state map or its inverse could be considered, however, the
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work in this thesis focuses only on input-state and input-output maps, and not their
inverses.
Consider the input-state relationship of the following asymptotically stable
nonlinear system:
x =f(x,u) (2.6)
where x is an n-dimensional vector of states, and u is a p-dimensional vector of inputs.

In the polyethylene reactor model, the corresponding input-state relationship is:  (2.7)

d[H,] L F,,z~k,,-Y-[H2]—U12]—'b—gl'[H:]
T Vg Cr
M, 1 M,
d[dt-] - Vg+Vs(FMz—kpz'Y'[Mz]“[c-]b_S[Mlly(kP'[M']mw‘+k":[M2]mw2)]
day 2 ,
@ Fruva < e kB lomes)
Bw
FHZ
With u= F:uﬂ
F

The steady-state input-state map is termed the steady-state locus, =(u), a construct used
to describe static input-state behaviour. The steady-state locus, =(u), can be considered a
hyper-surface, parameterized by p inputs, residing in n-dimensional state space (for the
polyethylene reactor model above, p=n=3). More simply, Z(u) is the plot of the final
values of the model states, after one or more inputs have been adjusted, generated by
setting the state time-derivatives to zero and solving for the values of states, given a set of

input values.
The measure of nonlinearity used by Guay et al. is one that employs a second-
order Taylor series approximation of the process, and compares it to the linear

approximation of the locus at a given point. The degree to which the second order
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approximation deviates from the linear approximation provides an estimate of the
nonlinearity of the process at that point. A schematic of these concepts for a 2-state

system, for changes in a particular input is shown in Figure 2.2.

A\

Point of linearization

Linear approximation

Steady-state locus
for changes in a
particular input

Second-order
approximation

> %

Figure 2.2 The steady-state locus, and its first- and second-order approximations.

2.2.2 Towards a Measure of Curvature

A model is said to be nonlinear when any second-derivative of the states with
respect to the input parameters is nonzero; thus, nonlinearity is assessed by investigating
the second derivatives of the states with respect to the inputs. A set of locally defined
velocity and acceleration vectors are calculated at the steady-state operating point of

interest:

. _ @

:

l<i<p (2.8)

ll
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. O0'E(u) .
vy =W,1 <{i,j}<sp (2.9)

where v, is the first derivative of the state vector with respect to input 7, and v, is the

state vector twice-differentiated: once with respect to input / and again with respect to
input j. These velocity and acceleration vectors are important elements in assessing
nonlinearity. The first-order, or velocity, vectors help define the tangential
approximation of the steady-state locus. The second-order information, obtained from
the acceleration vectors, describes both the degree of nonlinearity, and its causes. This
information is of importance because the components of acceleration which lie along the
tangential approximation result in curvature which is fundamentally different than the
curvature resulting from components which lie normal to the tangential approximation.
For this reason, second-order information is resolved into tangential and normal
components. The nonlinearity resulting from tangential and normal acceleration
components are appropriately called tangential curvature and the normal component of
curvature, respectively.

Tangential curvature, also called parameter effects nonlinearity, depends on the
parameterization of the model and presents itself as unequally spaced curves of constant
input-parameter values on the steady-state locus. This type of nonlinearity is the result of
the changing magnitudes and directions of the velocity vector components that lie tangent
to the steady-state locus. Tangential acceleration causes linear, orthogonal, uniformly
spaced lines in the input-space, when mapped onto the steady-state locus, to become
skewed, curved, and unequally spaced, as is shown in Figure 2.3. Often a

reparameterization of the model inputs, such as logarithmic or square root transforms, can
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reduce the severity of this type of nonlinearity (Bates and Watts, 1988).

—» U, : >

Figure 2.3 Schematic representing the consequences of tangential nonlinearity.
Constant input lines are mapped into the state-space, where they may become distorted.

Intrinsic curvature, which is another term for the normal component of curvature,
depends on the form of the steady-state map, and presents itself as the curvature of the
steady-state locus relative to its surrounding space. It results from the changes in
magnitude and direction of velocity vector components that lie normal to the tangent
space. Unlike the case for parameter-effects nonlinearity, intrinsic curvature is invariant
under a reparameterization of the model (Bates and Watts, 1988).

The acceleration vectors of a model can be decomposed into these two types of
curvature by projection onto the space tangent to the steady-state locus, and onto the
space orthogonal to the tangent space, respectively. In this thesis, space will refer to a
general class of hyperplanes (i.e. vectors, planes and hyperplanes). Once the acceleration
vectors have been resolved in this way, one can determine how the nonlinearity is
distributed in the model.

To separate the acceleration vectors into their tangential and normal components,

one must define an orthogonal basis for the state-space. p basis vectors will span the
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tangent space, and p” basis vectors span the space normal to the tangent space (the normal
space that is spanned by the acceleration vectors). Note that it is possible to have
additional normal dimensions that are not spanned by the acceleration vectors, and thus,
p” is not necessarily equal to n-p. The orthogonal basis is defined by first taking the
velocity and nonredundant acceleration vectors, and arranging them in an nxp(p+3)/2
matrix, [V,W], given by:
[V.W]= ("1"’2 “".’pvl.lvl.lvll "’Vl,p vp,p) (2.10)
Taking the QR decomposition of the above matrix yields an orthonormal basis, Q,
for the tangent space and the space normal to the tangent space, but that is spanned by the
acceleration vectors. Pre-multiplication of the velocity, and acceleration matrices, V and
W, by Q' yields the equivalent matrices in the new transformed basis. In keeping with
Guay et al.'s nomenclature:
A=QW 2.11)
R, =QV (2.12)
where Ry is a pxp upper triangular matrix of velocities in the transformed basis. A is an
mxp(p+1)/2 matrix, where the first p rows comprise the tangential components, and the
next p” rows yield the normal components.
Curvature measures can now be presented in this transformed basis. The curvature
of the steady-state locus, measured at a given point, along a direction, e, in the input
space, is given as the ratio of the norm of the resulting acceleration vector to the squared

norm of the corresponding velocity vector:

., = lead (2.13)

TR
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where A, is a 3-dimensional array of # matrices, a;, obtained from rearranging A. Each a;

is the pxp Hessian of transformed state i (see Guay et al., 1995):

’

A, =[a,.2,,--,a,] (2.17)
To aid in the visualization of A,, it may alteratively be represented as a three-

dimensional block consisting of pxp Hessians of the transformed states, x';:

yd

yd
Fx, &
a’ e,
Fe, P
aLdy  ag’
&, &,
azp&l, c”u‘,c‘it2

Figure 2.4 Another representation of the structure of A, Each slab (Hessian) of the three-
dimensional block represents a face.

The subscript r, denotes some redundancy in the acceleration values as a result of
rearranging the matrix A (e.g., both &x"/6u;du; and &x'/8uzéu, are shown in the array,
though they represent the same quantity. A, can be used to decompose the tangential and
normal curvature contributions by evaluating either the first p, or the last p” faces,

respectively.
The curvature measure developed above displays a high dependence on the

scaling of the problem. Because the identical problem with different scaling of the states
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and input parameters can produce very different curvature results, it can be difficult to
obtain an appreciation of the degree of nonlinearity. A more useful approach would be

one which is capable of producing a unique measure of curvature; one that is scale-

independent.

2.2.3 Scaling

In addition to removing the unit-dependency of curvature on state variables,
scaling is performed to reflect the intended region of operation on the steady-state locus.
A larger operating region often results in a greater deviation of the process from its linear
approximation such that the nonlinearity effects are more severe than when operating the
same process in a smaller operating region. Appropriate scaling can account for this.

Assume that the operating region can be approximated, around a given point, by
an ellipse of the form:

Ax'(S™'S*)Ax =1 (2.19)
where S°™ is an invertible scaling matrix that takes into account the size of the region of
interest in the state space, and Ax=x-x, is the deviation of the state variables from the
steady-state point of interest. S°™ can be chosen as a diagonal matrix, whose elements
reflect the expected range of operation for the states. This is termed output-prescribed (or
more accurately, in this case, state-prescribed) scaling (Guay et al., 1995).

Alternatively, one could specify an elliptical region of interest in the input space,
which corresponds to a region in the state space that, due to nonlinearity, might not be
elliptical. Note that these two regions are related by the process map, and cannot be

specified independently. The elements of an input-prescribed scaling matrix, S*, are
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chosen to reflect the intended region of operation within the input space. The equation of
the ellipse in the input space is:

AU'S® S"Au =1 (2.16)
This elliptical region is then mapped into the state space, where it may become non-
elliptical due to nonlinearity. However, the scaling procedure described by Guay et al.
(1995) is defined for an elliptical region in the state space. Thus, a linear mapping of the
input ellipse into the state space results in an elliptical approximation of the input
prescribed region in the state space:

Ax = VAu 2.17)

where V is the steady-state gain matrix. The corresponding elliptical approximation in the

state space of the region defined in the input space is:
Ax'[(V" )s*'s= (v )]Ax =1 (2.18)
The equivalent scaling matrix, S, in the state space would take the form:
S =8S"V™ (2.19)
where S2.° typically becomes non-diagonal. This alternative procedure is termed input-

prescribed scaling (Guay et al., 1995).

For simplicity, let S represent either the output prescribed scaling matrix, $*, or
the equivalent output scaling matrix, S3'. Once S is chosen, the resulting ellipse in the
state space, (2.15) or (2.18), can be transformed into a unit circle, by a linear change of

coordinates z=SAx such that:

z'z = (2.20)
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The velocity and acceleration arrays may be scaled using the S matrix, by pre-
multiplication by S prior to performing the QR decomposition. In z-coordinates:
V=SV (2.21)
W =SW (2.22)
where the tilde indicates a scaled quantity.

In addition to the selection of the orthogonal basis vectors in the state space, u can
be transformed into orthogonal inputs, ®, such that the denominator on the right-hand
side of (2.13) is unity for a perturbation of unit length in any direction in ®. The
transformation is given by a linear change of coordinates as follows:

® =R,Au (2.23)
In this form, the perturbation of each individual input will affect a change of the state
variables along the direction of only one of the new basis vectors defined for the state
space. Therefore, this transformation removes first-order interaction effects. The
velocity vectors due to these new properly scaled orthogonal inputs are simply the
tangential basis vectors defined for the state space. The velocity and acceleration vectors
become:
vt =v'R;'=Q' (2.24)

—

v, =®;") A, (R)=C, @.25)

Q' is the matrix defined by the first p columns of Q, and E, is the rearranged relative

curvature array for the region defined by S. E, is similar in structure to A, in that it is a

3-dimensional array of pxp Hessian matrices, and contains » faces.
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2.2.4 Root Mean Squared Curvature

Recall, the procedure for quantifying nonlinearity described in 2.2.2 measures the
curvature of a process perturbed in a specific input direction. However, it is desirable to
acquire a mean measure of curvature, averaged over all possible input directions. Such a
curvature measure is called the root mean squared (RMS) curvature, c (or cras, as it will

be denoted in later chapters). It is calculated as follows (Guay et al., 1995, Bates and

Watts, 1988):

F P

¢’ = Z[ZZ Y’ +(Zc )J (2.26)

p(p+2):l 7=l k=1

where cji is the i face, j* row, k" element of the relative curvature array C, .

The curvature measure of Guay et al. (previously illustrated in Figure 2.2), is the
RMS curvature. As shown in Figure 2.5, it quantifies the degree of deviation between a

second-order approximation of the properly scaled model and a linear approximation,

—

1/¢c

1/e-(/c* -D"?
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N

Figure 2.5 Schematic illusirating the relationship between RMS curvature, and percent
deviation (following Guay et al., 1995).

where the nonlinear steady-state locus is locally approximated by a sphere of radius 1/c.

The magnitude of the deviation from the tangent plane approximation can be measured at
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the boundary of the region of interest to be

a5
|deviation| = [1 - [—'— - IJ J x 100% (2.27)

c c”

As a benchmark value, Guay et al. suggest that an RMS curvature value of 0.3 or
greater indicates considerable nonlinearity. This RMS curvature value of 0.3 corresponds
to a 15% deviation between the second-order approximation and the linear
approximation, measured at a unit distance in z-coordinates, from the point of
linearization. This measure of deviation can be conveniently compared to the size of the
region of interest, which has been scaled to unity. Guay et al. also provide an outline of

various other values of ¢ and their corresponding percent deviations.

2.2.5 Extension to the Input-Output Map
What is presented above allows for the measurement of nonlinearity of the input-
state map. An extension to the input-output relationship, developed by Guay et al, is
now presented. Consider the following output function:
y = h(x) (2.28)
where y is an m-dimensional vector of output variables. In the polyethylene reactor

model, the outputs are related to the states in the following way:

3.5[!1(1(0 +k, (M) +k UIZ])

In(MT) M, [M[A;" 1
P |[=| p,+p, ln(MI)——(pz ——] (2.29)
PR (M ]

| Pl (M, Jmw, +k,,[M, Jmw, )|

and the input-state relation was given in equation (2.7). In an open region surrounding a
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point of interest, if dh/Ox and the differentiated input-state map, 6=/cu, both have full
ranks of m and p, respectively, and if the input-output gain matrix, ch/0x 6=/0u, has full
rank p everywhere on the operating region, then the first- and second-derivative

information is determined by:

1,'. = @._B_E‘. and Q . Q[Ej- + ﬂ a-:‘ (230)
du Ox Cu du- Ox°

The above rank conditions hold for the polyethylene model, so that input-output
nonlinearity can be assessed by employing equation (2.30). The remainder of the
procedure for calculating RMS curvature, now between inputs and outputs rather than

inputs and states, is as before.

2.2.6 Effects of Curvature and Interaction on the Geometry of the Steady-

State Locus

The presence and severity of both interaction and curvature can significantly
hinder the performance of a controller; thus, the detection and measurement of these
characteristics can be of assistance in the design of a control scheme. Although the main
goal of this thesis is to compare the performance of linear and nonlinear controllers
operating at various RMS curvatures and to examine the control performance
improvement that results from implementing a nonlinear controller, background on
interaction is also presented because it will aid in the visualization and understanding of
the steady-state locus. The purpose of this section is to illustrate the effects of curvature
and interaction on the geometry of the steady-state iocus. Piette et al. (1995) have

presented a graphical interpretation of interaction measures to analyze multivariable
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processes. Geometric descriptions of nonlinearity have been presented by Bates and
Watts (1988) and Guay et al. (1995).

Consider a 2-input-parameterized steady-state locus residing in 2-dimensional
state space. That is, a 2-dimensional surface comprised of 2 'sets' of constant input
contours, 1 'set' for each input variable. The orientation with respect to the coordinate
axes and the bending and spacing of the constant input lines demonstrates the presence
and degree of interaction and nonlinearity in the steady-state model.

Linear interaction presents itself in two forms: one-way and transmission
interaction. One-way interaction occurs as the result of one state variable being
dependent on both manipulated variables, and the other state variable being affected by
only one of the input variables. This is illustrated in Figure 2.6. A change in u; affects

only x,, whereas a change in u; results in changes in both states.

X )
2 A Constant u; lines

Ay
/ / / Constant u; lines

Y
A

Figure 2.6 A graphical illustration of one-way interaction.
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Transmission interaction, which causes the most serious control problems
(Mariin, 1995) is also called figure-8 interaction, and occurs due to the existence of paths
from both inputs to both outputs. Transmission interaction occurs when a change in the
set point of one controller affects its output via a path through another controller.
Visually, transmission interaction presents itself as shown in Figure 2.7. Now a change
in either u; or uz will effect a change in both state variables. Transmission interaction is
indicated by the rotation of both sets of constant input contours, relative to the coordinate

axes, regardless of whether the contours are orthogonal to one another (Piette et al, 1995).

X .
2 A Constant u, lines

Constant u; lines

> X

Figure 2.7 Graphical representation of a process displaying transmission interaction.

A tool for detecting and quantifying transmission interaction is the relative gain.

The relative gain is calculated as (Marlin, 1995):
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iy,»_ u, =const,k = j _2’- all other loops open
ou, ou,
A, = = (2.31)
P, y, =const,k =i @, all other loops closed
cu, ou,

A; depicts the degree to which the effective gain Jyi/0u; is amplified or attenuated as a
result of the other loops being closed.

The relative gains can be placed into a square matrix or calculated directly in
matrix form to yield the relative gain array (e.g., Marlin, 1995):

RGA=V.*V~"’ (2.32)
V is the gain matrix, and .* denotes the Hadamard product (element-wise multiplication).

Although the relative gain array measures linear transmission interaction, a
change in interaction structure along the steady-state locus indicates nonlinearity. In
addition to a change in interaction structure, nonlinearity is also detected by the bending
of the steady-state locus relative to surrounding state space, and to the curving and non-
uniformity of spacing of the constant input contours on the locus itself.

Bending of the steady-state locus relative to surrounding state space is a result of
the changing magnitude and direction of acceleration vectors that lie in the space normal
to the tangent space. As mentioned earlier, this type of curvature is called intrinsic
curvature, or the normal component of nonlinearity. A necessary, but not sufficient,
condition for this type of nonlinearity to exist is that the state space must be of larger
dimension than the input space. If input and state spaces are of the same size, the steady-
state locus will completely "fill up" the state space, leaving no extra dimenston relative to
which the locus can bend. In this case, only the tangential component of nonlinearity

may be present.
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The consequence of the tangential component of nonlinearity is that evenly
spaced, linear, orthogonal, constant input contours in the input space are mapped into the
output space where they may become rotated, bent, non-uniformly spaced, and non-

orthogonal. Tangential curvature itself can be assessed either by calculation of the RMS

curvature over the first p faces of the relative curvature array E,, or by examining the

individual components of é, )
Consider Figure 2.8, where the orthogonal basis vectors, qu, qz, obtained from the
Q matrix, span the tangent space. Notice the absence of normal components, since

n=p=2. Bates and Watts (1988) explain how to interpret the elements c;; of the relative

curvature array. C, is similar in structure to A, in that it is a 3-dimensional array

r
consisting of n faces of pxp Hessian matrices; however, E, is defined for the scaling
region prescribed by S, and for the transformed states and input coordinates. For the 2x2

system, the relative curvature array structure is as follows:

~ c Ciz | | €2 Coz

e lon s )
The cii elements are the compansion, or self-acceleration, terms. These elements of
tangential nonlinearity cause compression or expansion of the constant input contours.
Compansion results from the change in length of the velocity vector v, (associated with
$,) along the q; direction as ¢, undergoes a unit change. Another characteristic of
tangential acceleration is arcing, which results from the arcing terms, c;i, i#j. These

terms reflect bending of the constant input contours, and are a consequence of the change

in the velocity vector v, along the direction q;, as ¢, changes. Another feature seen in
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Figure 2.8 is the fanning out of the constant input lines. The fanning terms, c;j; are the

result of a change in the q; direction of the v velocity vector as ¢, is changed. Because

of symmetry, cj;i=c;; are also considered fanning terms.

u)
x: A
N 4
q, q.-
uz
v, v,
7
P A¢2
>
X,

Figure 2.8 A steady-state locus displaying tangential nonlinearity.

To summarize the key aspects of the preceding work, nonlinearity can be
qualified in terms of its effect on the geometry of the steady-state locus. Changing
interaction structure, and tangential and normal components of nonlinearity all impact on
the graphical representation of the steady-state locus. The degree of curvature is
quantified by examining the magnitude of the second-order derivative information in a
Taylor series approximation, relative to the first-order information. To permit
comparison of curvature results with a benchmark value, appropriate scaling is applied.

Scaling is chosen to properly reflect the region of operation, and remove the unit-
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dependency of the RMS curvature measure on state variables. These measures were

performed on the input-state map. Extension to the output space is easily accomplished

by an output mapping.

2.3 Generic Model Control - An Error Trajectory Approach

The nonlinear controllers implemented in this work were all developed using the
error-trajectory approach, resulting in controllers with the Generic Model Control (GMC)
structure of Lee and Sullivan (1988). The error-trajectory approach is one that enables
the direct implementation of the nonlinear process model, which is an appropriate choice
bearing in mind that most chemical processes are inherently nonlinear in nature. The
error-trajectory technique for controller design incorporates the process model, from
which the explicit nonlinear control law is solved. Effectively, GMC is an example of
input-output linearization using state feedback, with subsequent pole placement.
Feedback linearization of nonlinear systems is described in further detail by Isidon
(1989).

The polyethylene reactor model is a nonlinear model that can be written in the
control affine form given below:

x=f(x)+g(x)u

g(x) (2.34)
y = h(x)

where, in keeping with the earlier convention, x is an 7-dimensional vector of states, u is

a p-dimensional vector of inputs, and y is an output vector of dimension m. The error-

trajectory approach can allow for the incorporation of known disturbances within the

process model, thereby providing a feedforward element to the control law. Modelled
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disturbances pertaining to the polyethylene model can include changes in bleed valve
position, changes in pressure, and hence, C,, changes in ethylene partial pressure, and
therefore [M,], and changes in B, due to changing bed level set point. From (2.34), it

follows that:

y O, (2.35)

ox
The goal of the error-trajectory control law is to return the true process back to its
desired set point by reducing the output tracking error. The output tracking error is
defined to be:
e(t) =y, (@)~ y() (2.36)
where y,(t) is the output set point. The controller is designed and tuned by specifying a
desired tracking error-trajectory, which is a suitably well-behaved function K(-) of the
tracking error and its higher-order derivatives (McLellan et al,, 1990). Suitably well-
behaved means that the control action will evolve directly from the error-trajectory
description of the process. The tracking-error function is a linear function of the form:
K[e™(1),e" " (1),...,é@),et),1]=0 (2.37)
where a is the relative order of the process. Relative order (also referred to as relative
degree or difference order) is the number of times the output must be differentiated
before the control will appear explicitly in the output function (Isidori, 1989) and
represents the inherent integration of a process between the input and the output
variables (Kravaris and Kantor, 1990).
In order to be able to solve for a control law expression, the error-trajectory

function specified must be a function of at least the a'™-order derivative of the tracking
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error (McLellan et al, 1990). For a process model that has relative order one, the
appropriate tracking-error function is:

&(t)+Be(r)=0 (2.38)
where B is a diagonal matrix of tuning parameters. Equation (2.38) defines an error
trajectory controller with proportional action, that, in an ideal world would ensure that the
process returns to steady state. However, if unmodelled nonstationary disturbances result
in plant/model mismatch, there will be offset (unless appropriate steps are taken to adapt
model parameters to eliminate the mismatch). For this reason, integral action must be

added to the error-trajectory specification:
é(r) +Pe(t) +v j e(z)dz =0 (2.39)
fo

The motivation for including integral action in the controller is two-fold. Not only does it
eliminate offset, thereby enhancing disturbance rejection and improving robustness, but it
also serves as an approximate model inverse for unmeasured output/input or state/input
disturbances (McLellan et al. 1990). This feature is necessarily applied to the present
work, as many of the disturbances entering the polyethylene reactor are unmeasured and
unmodelled.

Equation (2.39) is the GMC design equation. Lee and Sullivan (1988) chose the

GMC parameter set such that (for the SISO case):

p=2 and y=-L (2.40)
T T°

where t and C are tuning parameters chosen from generalized GMC profile specification
plots (see Lee and Sullivan, 1988) to give the desired shape and timing of response. For

the MIMO error-trajectory specification given in equation (2.39), the coefficient matrices
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B and y are typically diagonal for decoupled performance. Equation (2.39) effectively
specifies a pole placement for the error trajectory to asymptotically approach perfect
tracking. The result is feedback linearization with pole placement.

Harris and McLellan (1990) proposed a set of necessary conditions that must be

met for the implementation of the GMC algorithm:

i) The process relative order must be one.

it) The process must have invertible dynamics.

iii) The inverse of g(x) must exist and be non-singular everywhere on the operating
region.

1v) The control actions extracted from the GMC formulation must be feasible.

v) All of the states are measured or observable.

All of these conditions are met by the polyethylene reactor. Although Y, the number of
moles of active sites in the reactor, cannot be measured, it can be observed using an
Extended Kalman Filter (McAuley and MacGregor, 1991, 1993).

The final steps in the development of the control law are now presented. Given
the GMC expression, the approximate or known process model is substituted into
equation (2.39). Due to the control affine nature of the model, the control action, u(t),
appears explicitly in the error-trajectory equation. For simplicity, the control algorithm
for a SISO process is exemplified below. Recall that the output model once

differentiated is:
. _Ch. - I h
y= —a;x or y=L h(x)+u(t)L, h(x) (2.41)

Substituting the above into the GMC expression, and rearranging, yields the control law:
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Vi +BO, = )+ Y[, - ¥)z = L h(x)

e (2.42)

u(t) =

In the above, Lr and L; are the Lie derivatives of the output map, h(x). Lie derivatives

are directional derivatives of h(x), in the direction of the specified vector field; for

Bh(x) f(x) _

example, L h(x)= =

For the case of multiple inputs and outputs, equation (2.42) becomes:
u@) = (L) [y,,, +BO ., -N+7[(y,, —y)dz - L,h(x)} (2.43)
1)

where P and y are each a diagonal matrix of error-trajectory tuning parameters. L¢h can

be computed as the matrix multiplication of the Jacobian of h(x) with respect to x, and

f(x). Similarly, L¢h can be computed as the matrix multiplication of the Jacobian Fe

and g(x). It is clear that L;h(x) must be non-singular to yield a solution, which implies
that the relative order of the MIMO process must be one. In the MIMO case, if the
dimensions m and p are the same, and if at least one element of u appears in each of the
m equations, the problem reduces to solving m equations in m unknowns. This is the case
with the polyethylene model of interest, where m = 3. Simultaneous solution of these m
equations results in a full multivariable control law. If, however, each of the m equations
is solved independently for each of the elements of u, a multi-loop control law results,
with m SISO controllers. In this thests, only multivariable control laws are employed.
The issue of constraints on manipulated variables can be readily addressed by clamping;
if a manipulated variable value is calculated such that it exceeds its upper or lower limit,

the limiting value shall be implemented in its stead.
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Dadebo et al. (1997) and Lee and Sullivan (1988) proposed similar approaches for
selecting the tuning parameters of §§ and y for an individual loop. Dadebo et al. treated
the issue as a pole-placement problem, whereby B and y were chosen to reflect a specified
desired closed-loop dynamic response. They chose an over-damped closed-loop response
with all poles placed at the same location. Lee and Sullivan propose a tuning metric, also
based on a pole-placement solution. The desired shape and timing of the response is
chosen from a correlational figure from which the individual elements of B and y can be
selected. Using Lee and Sullivan's tuning, the closed-loop response of the controller is a
decaying second-order type, possibly oscillatory trajectory with initial overshoot in the
controlled variable. Focussing on the linear error trajectory, the corresponding
relationship between a single output and set point is a second-order closed-loop transfer

function:

y(s) _ ’Bs‘*'Y (2.44)
Yp(s) s"+Ps+y

Note the presence of the process zero, which is the cause of controlled variable
overshoot. Clearly, the presence of oscillations and the size of the overshoot are
dependent on the choice of parameter values. It is important to note that these parameters
must be chosen to reflect realistic process behaviour; a tuning trade-off exists between

performance and manipulated variable action.

2.4 Summary

This chapter provides the necessary background information for the work

considered in the rest of this thesis. In Section 2.1, the process for the production of
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polyethylene was described, with the introduction of the model equations developed by
McAuley et al. (1990), and McAuley and MacGregor (1991, 1993). The polyethylene
reactor model is a nonlinear two-tiered model consisting of dynamic and static
components. Simplifications to the original model were made, resulting in a three-input,
three-output nonlinear dynamic model. This model is used in later chapters to assess the
nonlinearity of the polyethylene reactor process.

In addition to providing a literature review of alternative work done in
nonlinearity assessment, Section 2.2 also details the development of Guay et al.'s (1995)
measure of curvature. Guay et al. estimate curvature by examining the local geometry of
the steady-state locus. Second-order derivative information is decomposed into scaled
tangential and normal components, which can then be manipulated to yield a local
averaged measure of curvature.

To summarize the controller formulation in Section 2.3, an error-trajectory
approach was taken in designing a nonlinear control scheme. After recognizing the need
for integral action, a GMC controller resulted. A set of necessary conditions for the
implementation of this GMC algorithm was described, of which all conditions are met by

the polyethylene model, and finally, tuning suggestions were discussed.
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Chapter 3
The Geometry of the Steady-State Locus:

Visualizing Curvature and Interaction

3.1 Introduction

The objective of this chapter is to provide an understanding of the physical
relationships within the polyethylene reactor, and to relate those to the geometry of the
steady-state locus. The characteristics of the geometry of the steady-state locus are
illustrated graphically to demonstrate the effects of curvature and interaction, which were
introduced in Chapter 2.

In what follows, the full polyethylene model presented by McAuley and
MacGregor (1993), shown in Chapter 2, is simplified to a 3-state, 3-input (3x3) model.
but to a different form than that shown in equation (2.4). Then, 2x2 portions of that
model are explored. The simplified model form examined in this chapter consists of the
following states: hydrogen and butene gas concentrations within the reactor and the
production rate of polyethylene:

[A4,]
x=|[M,] G.1)
PR

The choice of these states was motivated by the fact that they are measurable states that

represent important variables within the reactor. Other states could have been selected.
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The number of moles of active sites, although directly related to the production rate, is
not a measured quantity, whereas gas concentrations and production rate are. The input

variables are as before:

o

(3.2)

1

I
-
=~
19

T

al

Because visualization of the interaction and curvature structure of the full 3x3
model is diffucult, the steady-state loci of the 2x2 portions of the model are presented and
employed to illustrate these effects. The relevant measures, RMS curvature and RGA,

are calculated and discussed.

3.2 Scaling Region

The region of interest in this chapter was arbitrarily chosen to encompass most of
the steady-state locus. The region of interest in the input space is approximated by the

ellipsoid:

AFHZ + AFJLI‘.' +AF;al =1 (33)

900°  27000° 3.6°

The choice for input-prescribed scaling was done for illustrative purposes, although it has
a potential benefit over output-prescribed scaling in that it does tend to capture the
inherent orientation of the steady-state process (Guay et al., 1995).

It is important to note that for practical purposes, a scaling region should be
chosen to reflect the true process deviations. If we examine the scaling region defined by
the ellipsoid in equation (3.3), we see that it would have little significance around the

input [S00 10000 2]'. This would imply that the manipulated variable ranges are:
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-400 | F,, 1400
-17000 |<| F,,, | <| 37000 (3.4)
-1.6 F, 5.6

cat
Clearly, the lower bounds on the input flow rates are nonsensical. Consider the ellipse

defined for the first two manipulated variables, shown in Figure 3.1:

Fu2

Figure 3.1. A schematic of the scaling region in the input space. A large portion of the
scaled region is unattainable (shaded). An artificially large RMS curvature value may

result.

This scaling implies a much larger operating region than is achievable, and may result in
an artificially inflated curvature value. Therefore, a practitioner should take care to select
an appropriate scaling. RMS curvatures can also be computed over non-elliptical
regions; however, in this instance numerical integration of the curvatures over the region
would likely be required. The curvature assessment in what follows in this chapter
ignores this shortcoming of the scaling chosen. Rather, this choice provides an
illustrative, not practically realizable view. This scaling is preserved for each point on

the steady-state locus.
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3.3 The Gas Mass-Balance Steady-State Loci

Because the states of interest in this evaluation are slightly different from those
given in the final simplified model in Chapter 2, the full state model of (2.3) must be re-

simplified to represent the proper states. At steady-state, equation (2.3) becomes:

[H.]-b
C,

dlH,] ozL[Fm —k, -Y-[H,]-

- Ve —gt-[H;]j (3.5)

diM:]_o_ 1 (Fm—k,z'Y'[M:]‘W_CZ-}‘ﬁ'S[MI]Op)

dt Vg +Vs \
g—:O:FCal.amf—Y.OP—de
dt Bw

dBw
“r=o0= Y(k,,[M, ynw, +k ,,[M, Jmw,)-Op

Note that the differential bed weight equation contains the production rate equation:
PR =Yk ,,[M,Jmw, +k,,[M, Jmw,) (3.6)
Therefore, PR=Op. Now we have four steady-state equations describing the relationship

among four states, [H2], ([M2], Y, and PR. To reduce this to a 3x3 problem, relation

% =0 is solved for Y in terms of Fa,, aa:, k4, PR, and Bw and substituted into the

remaining equations: G.7
d[H?.]:O:L FH: _kh'F;;lle.acal'[Hzl_[HZ]'b_gl_[H:]
dr Vg L C,
k .F 3 'acal . M” by N
Mo g, Ko fe G ] IMLD o
dt Vg +Vs PR C, }

—+k,
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- PR

dBw oo UM e, ks (M )

dt ﬂ +k,
Bw

Curvature and interaction effects for this form of the model will be examined. The
parameter values and constants are as presented in Chapter 2.

The effect of a pair of input variables on a pair of state variables is assessed in the
following sections. The simplified gas mass-balance model shown in (3.7) is a three
state, three input model; since the examination involves all possible combinations of
states and inputs on the 2x2 level, nine views of the steady state locus result. The
assessment will be divided into three parts, each of which will focus on the effects of two
input variable combinations on a specific set of states. The steady-state loci were
generated by varying hydrogen gas flowrate from 500 to 2300 mol/h, butene gas flowrate
from 10000 to 64000 mol/h, and catalyst flowrate from 2.0 to 9.2 kg/h. The spacing
between constant input contours corresponds to input increments as follows: 200 mol/h
hydrogen flow, 6000 mol/h butene flow, and 0.8 kg/h catalyst flow. Recall that a single
input is held constant while the other two are varied. The constant nominal value for
hydrogen flow is 1500 mol/h, for butene flow it is 40000 mol/h, and 5.6 kg/h for catalyst
flow rate.

To demonstrate the calculation of RMS curvature and the interpretation of the

-~

entries of the relative curvature array, C_, two examples are given in 3.3.1.1.

3.3.1 Effect on Hydrogen and Butene Concentration
This section presents the effects of two input variables at a time on the

concentration of butene and hydrogen gases in the reactor.
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3.3.1.1 Effects of Butene and Catalyst Flow Rate

In this portion of the overall steady-state model, the effects of varying Fy; and

Feron [H,] and [M2] are assessed. Fy is held constant at 1500 mol/h.

Example 3.1
These calculations show how the curvature around point I, shown in Figure 3.2,
was determined. Point 1 is centered at:

F,, 1500 mol / h
u=|F,., |=|16000 mol/h (3.8)
F, 20kg/h

cat
The expected manipulated variable range is 54000 mol/h for butene flow and 7.2 kg/h for
catalyst flow. Hydrogen flowrate is held constant. This choice of input range suggests
the use of input prescribed scaling. The velocities are found by differentiating equation

set (3.7) with respect to each input and solving for v, and v,, where v, is dx/du;. The

corresponding velocity matrix, V, is:

(.9)

7.560-10° —0.002766
5282-100° -0.02831

Differentiating the velocity expressions with respect to inputs again, the acceleration

array, W,, results:

14

—-1271-10™ 1.273-10° || 9.661-107"° —1.800-10"°
W, - lo” , . ‘ (3.10)
1.273-10 0.0007704 || —1.800-10 0.02395

r

The input-prescribed elliptical scaling region is represented by:
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l 0
= _| 27000 (3.11)
o L
3.6

Its elliptical approximation in state-space is:

-7283 7.1159
So =8S"v™!'= (3.12)
-101.9 0.1459
The scaled matrix of velocity and non-redundant acceleration vectors is: (3.13)

3.703-10°° 0 6.967-107"" 1.290-10°° 0.1143}

V.Wl=s"[v,w]= .
[ ] wlv.w] [—2-10-‘6 0.2778 2.705-10"° -3.923-107 -0.07503

Similarly, K, would be calculated as K, =S 'A,. Taking the QR decomposition of

[V, W] yields: (3.14)
Q- -1 0 R- -3.703-10°° 0 -6.967-10"" -1.290-10° -0.1143
0 -1 2-107'¢ —-0.2778 -2.705-10" 3.923-1077 0.07503

R is the matrix of velocity and acceleration values for the new orthogonal basis obtained
from Q. The first p=2 columns of R comprise the submatrix Ry. The columns of R, are
the p=2 velocity vectors in the basis defined by Q. The last p(p+1)/2 columns of R
comprise the A matrix, which consists of the non-redundant acceleration vectors defined

in the Q basis. A, is constructed from rearranging the entries in A, with some

~

redundancy. The relative curvature array, C,, is calculated from velocity matrix Ry and

the (scaled) acceleration array, A,. From equation (2.25):

~ - —-0.05079 1.254 —-0.001972 0.03813
C, =(R') A, (R]')= : (3.15)
1.254 -1.481 0.03813 0.9723

From equation (2.26): RMS =1.409 End of example.
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Figure 3.2 shows the corresponding steady-state locus for the effects of varying
Fu2 and Fo on [Hz] and [M:]. Consider a change in Fy;. Fuy; affects [M2] considerably
and has a very small effect on [Hz]. This small effect on [H2] is due to the following: by
increasing monomer concentration, production rate is increased. Because the assumption
that bed weight is held constant by a controller was imposed on this model, an increase in
production rate implies an increase in polymer outflow rate. This in turn means that the
residence time of the polymer decreases, thereby decreasing the concentration of active
sites. Since there are fewer active sites, less chain transfer occurs and the hydrogen
concentration goes up. Fcy also affects both [Hz] and [M:]. An increase in F., provides
more sites with which Hz; and M can react, and thereby both [H;] and [M;] decrease.
Since both manipulated variables affect both controlled variables, transmission
interaction must be present. This transmission interaction is seen in Figure 3.2, as both
sets of constant input lines are rotated relative to the coordinate axis. Since the constant
F.: contours are rotated only slightly, a low degree of transmission interaction results, as
seen by the relative gains given in Table 3.1.

Notice the small change in interaction structure in Table 3.1. Although the
individual relative gain values indicate nothing about curvature, the change in relative
gains over the steady-state locus hints at nonlinearity (in this case, however, the change in
relative gains is almost negligible).

A large degree of curvature is immediately apparent, especially at high
concentrations. Point 2 displays the lowest degree of curvature as verified by the RMS
curvature value shown in Table 3.1. (Recall that Guay et al. (1995) concluded that an

RMS curvature value less than 0.3 indicates negligible curvature.)
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Fumz value Fex value RMS
Point (mol/h) (kg/h) curvature A=Az A12=A21
value
| 16000 2.0 1.409 -0.015 1.015
2 16000 8.4 0.300 -0.0101 1.0101
3 64000 2.8 1.978 -0.054 1.054
4 58000 8.4 0.328 -0.036 1.036

Table 3.1 Locations and corresponding RMS curvature measures of specific points of
interest for the steady-state locus of Figure 3.2.

Steady-State Locus
Effect of Butene and Catalyst Flowrates

0.3%

03 -

)
% 05 4
ge°
§ Increasing
£ 02 Fat
@ @
% 0.15 - Increasing
F
£ ‘ M2
8
e o1 . q:
° -
© Schematic of
0.05 1 basis vectors q,
2 and q; for point |
0 T T T T T T T T T
0 001 002 om 0.04 006 006 0.07 0.08 0.08 0.1
Concentration Hydrogen (mol/L)

Figure 3.2. Steady-state locus of hydrogen and butene concentration, parameterized by
inputs butene flow and catalyst flow.

Very little fanning, arcing, or compansion effects are seen at point 2. The area
surrounding point 1 displays some degree of all of fanning and arcing (of constant Fy;

contours) as well as compansion effects (of constant F,; contours). Some of these effects
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become much more pronounced at point 3. Example 3.2 examines these tangential
effects in more detail. For the following example, the matrix R, is virtually diagonal, as
seen in Example 1. Therefore, although the interpretation of elements c;x relate to

changes in gains due to changes in ¢,, we discuss them in terms of u, because both of

these input bases lie along the same direction.

Example 3.2

The relative curvature arrays calculated for the four specified points in Table 3.1

and Figure 3.2 are shown here: (3.16)

0273 -0.0569
[—0.00308 0.0126 ]

0.0126 0.369 | )

[— 0.0508 125 }

125 -148
v [—0-00197 0.0381

0.0381 0.972

(@l
@l

Point 1 : :, Point2: C,

[-0.0343 0273 T
-0.0344 0287 )

[—0.0476 0_953}
L | | 0953 -294 s 0287 -0215
Point3: €, =" 100220 0.0330 Point4: €, =\~ 500303 00137

0.0330  0.707 0.0137 0355 |)

el

Compansion elements are the ¢,;, and c,,, elements. They represent the degree

of compression or expansion experienced by constant input contours. Consider points 1
and 2. Constant F,; contours experience expansion as one moves along the steady-state
locus from point 2 to point 1. This is a result of the changing magnitude of the gain

associated with F, (u2), along the q, basis vector, as Feu is varied. Recall, the vector q,
is a vector in the transformed basis, and is orthogonal to q;. Correspondingly, we see

that the c,,, =0.97 term at point 1 is greater that at point 2, where the value is 0.37. In

contrast, the spacing of constant Fy2 contours is equally uniform at points 1 and 2.
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Therefore, it follows that c,,, entries for point I, ¢,,, =-0.051, and point 2, ¢, =-0.034,

are simtlar.

Consider arcing effects next, which are reflected by the c., and c,,, elements of

the relative curvature array. Considering points 1 and 2 again, a greater degree of arcing

is seen in constant Fy contours at point 1 than at point 2. This is the result of a change

in the q, direction of the velocity vector associated with F.y (uz) as Fey is varied. The
degree of arcing in the Fy; contours relates to the c,,, element, which is c¢,,, =-1.48 at
point 1 and c,,, = -0.057 at point 2. Similarly, the degree of arcing of the Fy:; contours at
point 1 is less than at point 3, leading to a smaller c,, entry for point 1 than for point 3,
where ¢,,, =-2.94. The arcing of constant F.,, contours is negligible at all four points.
The corresponding values are the c,,, elements of é,. For points 1 through 4, the c,,,

entries are -0.0020, -0.0031, -0.0022, -0.0030, respectively.

Finally consider the effect of fanning, comresponding to the ¢, (or ¢, ) and c,,,
(or c,,,) entries. Comparing points | and 2 again, it is clear that the constant Fyy

contours fan out as one moves along the steady-state locus from point 2 to point 1. This

fanning result is due to a change in the q, direction of the gain associated with F,, (u;) as
Faz (up) is varied, or alternatively, to a change in the q, direction of the gain associated
with Fa2 (u1) as Fea (u2) is varied. Thus, the ¢,,,=1.25 entry at point 1 is larger than the
corresponding entry at point 2, which is ¢, = 0.27. Because the constant F., contours
experience no obvious fanning, the c,,, elements for each point are negligible, ranging

from 0.013 t00.038.
End of Example
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3.3.1.2 Effects of Hydrogen and Butene Flow Rates
This section deals with the result of varying Fyz and Fy; on [H:] and [M;], while
Fex is held constant at 5.6 kg/h. The physical effects on the steady-state locus of

changing inflow rates are illustrated in Figure 3.3.
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Figure 3.3 Steady-state locus of hydrogen and butene concentration, parameterized by
inputs hydrogen and butene flow.

An increase in each reactant effects an increase in the concentration of the
corresponding component. The plot displays no transmission interaction, which would

be indicated by both sets of constant input contours being rotated relative to the state-
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space axes; however, a very low degree of one-way interaction is present. This is
demonstrated by the slight deviation of the constant Fy2 contours from the vertical. The
physical interpretation is that while a change in Fy2 bears no consequence on [M;], a
change in Fy; causes a change in both [M:] and, a much smaller change in [H;]. The
dual effect of Fy;; on [M2] and (H;] was explained in 3.3.1.1. This one-way interaction is
not reflected by the relative gains calculated in Table 3.2 for this locus, as relative gains
measure two-way, or transmission interaction information.

By inspection, it appears that there is a very low degree of curvature associated
with this steady-state locus. This is confirmed by the RMS curvature measures given in
Table 3.2, all of which are well below the benchmark value of 0.3. This is of little
surprise considering the appearance of the locus; the spacing of the constant input

contours is uniform, and no arcing or fanning is apparent.

Fy2 value Fumz value RMS
Point (mol/h) (mol/h) curvature A=Az A1z=Az
value
1 2300 64000 0.0230 1 0
2 500 10000 0.0243 1 0
3 900 52000 0.0233 1 0
4 1500 40000 0.0236 1 0

Table 3.2 Locations and corresponding curvature and relative gain measures for specific
points of interest on the steady-state locus in Figure 3.3.

3.3.1.3 Effects of Hydrogen and Catalyst Flow Rates

In the following investigation on state variables [H;] and [M], Fyz, and F, are
manipulated. It is observed from Figure 3.4 that increasing Fy» serves only to increase
[H:], while manipulating F., affects both [H;] and [M;] for reasons already described.

This would indicate one-way interaction and result in a A,;=1 , which is verified by Table

3.3.
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Figure 3.4 Steady-state locus of hydrogen and butene concentration, parameterized by
inputs hydrogen and catalyst flow.

Examining the nonlinearity of this plot, curvature is expected to be smallest at
point 1. This point represents an area that shows a small degree of arcing and fanning in
constant Fy2 contours, but none in F, contours. As well, this point exhibits the most
uniformity of spacing of both Fy; and F, contours. Although the degree of compansion
remains relatively unchanged along the locus to point 2, the degree of arcing of constant
Fy2 contours increases, indicating higher inherent nonlinearity. Point 3 displays
significantly higher consequences of compansion among constant Fcat curves than at
points 1 and 2. Point 4 marks an area of greatest combination of fanning, arcing, and
compansion properties, suggesting the highest degree of curvature. This assessment is

supported by the calculated RMS curvature values in Table 3.3.
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Fyz value F value RMS
Point (mol/h) (kg/h) curvature A=A A1z=A2;
value
1 500 8.4 0.453 1 0
2 2300 8.4 0.456 1 0
3 500 2.8 1.356 1 0
4 2300 2.8 1.404 I 0

Table 3.3 Locations and corresponding curvature and relative gain measures for specific
points of interest on the steady-state locus in Figure 3 4.

3.3.2 Effect on Hydrogen Concentration and Production Rate

This section is similar in spirit to the previous one in that the effects of input

variables, two at a time, on a given set of states are investigated.

3.3.2.1 Effects of Hydrogen and Butene Flow Rates
The steady-state locus given in Figure 3.5 is generated by varying Fy2 and Fy,
and observing [Hz] and PR. As before, Fa; affects PR and [H;]. Fu; has no effect on PR,
but serves to influence [Hz]. Therefore, a small degree of one-way interaction is present.
By inspection, it appears that the curvature structure is similarly small at all
points. No obvious bending of the corstant input contours is visible, and they appear to
be equally spaced. Little or no curvature over all points is observed in Table 3.4, as RMS

curvature values are very small and almost indistinguishable.

Fu, value Fa2 value RMS
Point (mol/h) (mol/h) curvature A=Az A12=A2
value
1 S00 16000 0.00727 1 0
2 2300 16000 0.00727 1 0
3 500 58000 0.00675 1 0
4 2300 58000 0.00675 ] 0

Table 3.4 Locations and corresponding curvature and relative gain measures for specific
points of interest on the steady-state locus in Figure 3.5.
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Figure 3.5 Steady-state locus of hydrogen concentration and production rate, parameterized
by inputs hydrogen and butene flow.

3.3.2.2 Effects of Hydrogen and Catalyst Flow Rates

Next, the combined effects of Fy2 and F.,. on PR and [H:] are presented in Figure
3.6. As discussed previously, Fy; affects only [H2]; however, F, causes changes in both
[H:] and PR. As F increases, the number of active sites in the reactor increases thereby
stimulating production rate, and providing more sites on which hydrogen can react. The
result is a one-way interaction structure. As is seen in Figure 3.6, the interaction structure

changes over the area of the steady-state locus, implying the presence of nonlinearity.
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Fu2 value Fcx value RMS
Point (mol/h) (kg/h) curvature A=Az A=Az
value
1 500 2.8 0.324 1 0
2 2300 28 0.334 1 0
3 500 8.4 0.134 1 0
4 2300 8.4 0.136 1 0

Table 3.5 Locations and corresponding curvature and relative gain measures for specific

points of interest on the steady-state locus in Figure 3.6.
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Figure 3.6. Steady-state locus of hydrogen concentration and production rate,

parameterized by inputs hydrogen and catalyst flow.

Nonlinearity is assessed at the given points in Table 3.5. Point 3 displays the least

amount of curvature in that the constant input lines are straight and most uniformly
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spaced. Fanning does not appear to be present. Moving along the constant Fy, contour
from point 3, it is clear that expansion in the spacing between F., contours develops.
Point 4 is similar to 3 except that fanning becomes evident as one-way interaction
becomes more pronounced, resulting in an increase in RMS curvature. Point 2 displays
the greatest degree of curvature; the constant Fy2 contours are bent, and fanning becomes

more visible. These observations are confirmed by calculation of RMS curvature values

in Table 3.5.

3.3.2.3 Effects of Butene and Catalyst Flow Rates

The steady-state locus in Figure 3.7 portrays the effects of Fm2 and Fca on [H]
and PR. (The scales of this plot are inconsistent with the other plots because when
viewed in the original coordinate range, the constant input contours are too closely
spaced to be distinguishable.) The presence of transmission interaction is seen as
follows: a shift in F, affects change in both [H:] and PR, as does the manipulation of

Faz. The relative gains are shown in Table 3.6, indicating a fair amount of transmission

interaction.
Fu2 value F.a value RMS
Point (mol/h) (kg/h) curvature A=Az A=A

value

1 16000 2.0 2.47 0.213 0.787

2 58000 20 1.95 0.204 0.796

3 16000 8.4 0.620 0.337 0.663

4 58000 8.4 0.607 0.326 0.674

Table 3.6 Locations and corresponding curvature and relative gain measures for specific
points of interest on the steady-state locus in Figure 3.7.

It is difficult to discern the nonlinearity structure in the plot in Figure 3.7,

however, a compansion effect in constant F,; contours becomes pronounced at low Fca
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values. In addition, it appears that some degree of fanning is present in the area of points
I and 2, since the constant Fyy; lines spread out very slightly at the higher [H:] end.
These characteristics indicate that curvature is most prominent at the higher [H;] end of

the locus; this is found to be so by calculation of RMS curvatures in Table 3.6.
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Figure 3.7. Steady-state locus of hydrogen concentration and production rate,
parameterized by inputs butene and catalyst flow.

3.3.3 Effect on Butene Concentration and Production Rate
This final section of 2x2 plots deals with the assessment of curvature in the [M;]-

PR state space.
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3.3.3.1 Effects of Butene and Catalyst Flow Rates

The steady-state locus of interest, shown in Figure 3.8, is generated by varying
Fia2 and Fo,. Once again, transmission interaction is evident. Recall that an increase in
Fu2 results in a corresponding increase in [M:] and also in propagation rate, and thus, in
PR. F. increases the amount of active sites in the reactor, stimulating PR and a higher
consumption of butene. Although Table 3.7 does not show much interaction, it does

indicate changes in the relative RGA structure, which further indicate the presence of

nonlinearity.
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Figure 3.8 Steady-state locus of butene concentration and production rate, parameterized
by inputs butene and catalyst flow.
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Fuz value Fe value RMS
Point (mol/h) (kg/h) curvature A=Az A12=A2
value
1 16000 28 0.760 0.959 0.041
2 64000 2.8 1.899 0.855 0.145
3 16000 84 0.230 0.981 0.019
4 64000 84 0.308 0.926 0.074

Table 3.7 Locations and corresponding curvature and relative gain measures for specific
points of interest on the steady-state locus in Figure 3.8.

Consider the points of interest in Figure 3.8. Point 3 displays the straightest and
most uniformly spaced constant input lines, and therefore, has the lowest corresponding
RMS curvature, as seen in Table 3.7. Point 4 hints at mild bending of constant Fy2 lines,
which explains the slightly elevated RMS curvature value. Point 1 lies in an area of bent
Fra2 lines and expanding spacing between F,; contours. Point 2 displays more of the
same, except of a stronger nature, justifying the highest calculated RMS curvature.
Because both steady-state loci

The following two sections are special cases.
examine state variables PR and [M;] and the effects of Fy2, the 2x2 structure reduces to a
2x1 structure which occurs due to the complete independence of PR and [M:] from Fy,.
In other words, Fy2 can be considered constant. Therefore, the resulting steady-state loct
are effectively parameterized by one input, Fe, in the locus in 3.3.3.2, and Fy; in 3.3.3.3.

The interesting consequence is that since the curvature assessment is performed
on a one-dimensional locus in a two-dimensional state space, the state space becomes of
higher dimension than the input space, allowing for the presence of intrinsic nonlinearity.

Therefore, the RMS curvature can be broken into tangential and normal components.

3.3.3.2 Effects of Catalyst Flow Rate Only

The steady-state locus in Figure 3.9 was generated by varying Fy: and Fc., and
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observing PR and [M;]. As mentioned above, Fy; has no effect on either [Mz] or PR,
while increasing F, has the effect of raising PR and decreasing [M:] for reasons already
discussed in previous sections.

Note the nonlinearity structure in Figure 3.9. Point 3 shows little bending of the
steady-state locus relative to [Mz]-PR space. In addition, the spacing of points along the
locus is most uniform here. This would indicate the least degree of both tangential and
normal curvature. Moving across the locus to point 1, it is observed that the bending of
the locus and the non-uniformity of spacing of points becomes more pronounced,
explaining the trend of increasing components of nonlinearity, and thus in overall RMS

curvature, as seen in Table 3.8.
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Figure 3.9. Steady-state locus of butene concentration and production rate, parameterized
by input catalyst flow.
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Point Fcat (kg/h) overall RMS tangential normal RMS
curvature RMS curvature curvature
1 2.0 1.551 1.301 0.844
2 5.6 0.570 0.488 0.295
3 9.2 0.345 0.298 0.174

Table 3.8 Locations and corresponding RMS curvature measures of specific points of
interest for the steady-state locus in Figure 3.9.

Notice that for the 2x1 case, overall RMS curvature is the mean square value of
tangential and normal RMS curvature, in accordance with the definition of root mean

square curvature given in Chapter 2.

3.3.3.3 Effects of Butene Flow Rate Only

The final steady-state locus of the simplified model is presented in Figure 3.10.
Again, this locus is 1-dimensional, and resides in 2-dimensional state space as a
consequence of PR and [M:] independence of Fu..

By inspection, it appears that the locus is essentially linear in the intrinsic sense.

Indeed, the normal RMS curvature values in Table 3.9 support this claim, being that they

are so small.
Point Fcat (kg/h) overall RMS tangential normal RMS
curvature RMS curvature curvature
| 10000 0.0203 0.0174 0.0103
2 40000 0.0196 0.0168 0.0101
3 64000 0.0191 0.0163 0.0099

Table 3.9 Locations and corresponding RMS curvature measures of specific points of
interest for the steady-state locus in Figure 3.10.

Additionally, the tangential component of nonlinearity appears to be negligible, as the
spacing of points along the steady-state locus appears to be uniform. The tangential RMS

value of approximately 0.02 over the entire locus supports this. Resultantly, the overall
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RMS curvature value, and therefore the overall nonlineanty displayed by this locus is

negligible.
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Figure 3.10 Steady-state locus of butene concentration and production rate, parameterized
by input butene flow.

3.4 Conclusions
The main objective of this chapter is to offer a visual interpretation and graphical

description of interaction and curvature as they are represented on a steady-state locus for

the polyethylene reactor. A constant scaling was defined over most of the operating

region, not so much to reflect realistic operating conditions, but to afford a consistent



basis in which RMS curvature measures could be compared. Changing interaction
structure over the steady-state locus is also an indication of the presence of nonlinearity,
and examples of this were presented.

Several 2x2 portions of the simplified 3x3 model display varying degrees of
tangential nonlinearity, including arcing, fanning, and compansion effects. Tangential
curvature ranged from negligible (c=0.00675) to moderate (2.47). Additionally, special
cases in which the 2x2 portions reduced to 2x! portions introduced the appearance and
assessment of intrinsic curvature. In one case, the normal component of nonlinearity
over the whole steady-state locus was concluded to be negligible (normal RMS of 0.01).
In another view, the degree of intrinsic curvature ranged from small (¢=0.174) to
moderate (¢c=0.844) across the locus.

Ideally, this type of information, specifically the calculation of RMS curvature
values, can be used to make an informed decision regarding the choice of best control
scheme to be implemented. Alternatively, curvature assessment can be employed to draw
comparisons of calculated RMS curvature values and control performance based on both

linear and nonlinear controllers. This subject will examined in Chapters 4 and 5.
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Chapter 4

Nonlinearity Assessment

4.1 Introduction

This chapter is concerned with the nonlinearity assessment of the full
polyethylene reactor model, and the theory that predicts control performance based on the
root-mean-square measure of curvature. To investigate the nonlinearity of the model,
certain issues such as scaling, grade setting, output transformations, and the presence of
disturbances must be addressed. The structure of this chapter proceeds by discussing
result expectations based on theory, selecting appropriate grade transitions and
disturbances, and calculating their corresponding RMS curvature values. In Chapter S we
examine control performance results and relate them to calculated RMS curvature values.

The model examined in this chapter and in Chapter S is the form shown in
equations (2.4) and (2.5). This form of the model is transformed in that the first output is
the logarithm of melt index. The nominal model is one in which melt index appears
directly, without transformation. We will examine the transformed verston in detail, but

we also discuss the nominal form.

4.2 Curvature Theory and Results Expectation

In later sections of this chapter, various regions of operation are chosen, defined

either by transitions among a series of grades, or by disturbances around steady-state



operating points, and the RMS curvature measure associated with these regions is
calculated. This type of curvature assessment will enable a technique for comparing
anticipated and simulated results. Curvature theory implies that regions of high root-
mean-square measures of curvature will exhibit significant nonlinear behaviour. One
expectation is that, under linear control, the process will display greater control
performance degradation over regions displaying a larger degree of curvature. As
curvature increases, the deviation of the linearized-process gain, from the true process
gain, would increase; therefore, a linear controller operating over increasingly nonlinear
regions would contain increasingly inaccurate gain information. It is this conjecture on
which the following expectations of results are based.

Both servo-control performance and regulatory control performance are expected
to relate to the RMS curvature measures of the associated operating regions of the
polyethylene reactor. On regions of low RMS curvatures, we hypothesize that the
departure of the control performance of a linear control scheme from the best possible
control, which would be achieved by a nonlinear controller, will be small. Conversely,
on regions with high RMS curvature values, much poorer control performance should
occur in the linear control case relative to the nonlinear case.

We have made an implicit assumption above; we expect that the best control
performance, barring input or output saturation, will be achieved by the nonlinear
controller. In fact, due to the nonlinear MIMO nature of this model, we expect that the
best control performance will come from the nonlinear multivariable controller.
Additionally, the assumption is made that although the process model contains dynamic

information, these steady-state RMS measures of curvature will appropriately predict
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control behaviour of the dynamic system.

In the presence of extreme nonlinearity, it may be advantageous to perform an
output transformation, as has been done with melt index. Instead of controlling melt
index directly, practitioners usually opt to control the logarithm of this output; that is,
In(MI). Therefore, by assessing the curvature of the present form of the model, the
transformed form, [In(MI),p, PR}, and another form, the untransformed or nominal
form, [MI, p, PR], we shall determine whether in fact the logarithm transformation
removes much nonlinearity. If the natural logarithmic transform of melt index does
indeed reduce the degree of nonlinearity, it is then reasonable to predict that the degree to

which a linear controller would suffer performance loss would be greater in the [MI, p,

PR]' model than in the associated [In(MI), p, PR]' model representation.

4.3 Grade Selection for Servo- and Regulatory Control

One of the advantages of gas-phase polyethylene technology, over liquid-phase
technology, is its capability to produce a wide range of grades. Gas-phase polyethylene
reactors are capable of producing a melt index range of greater than 0.01 g/10 min to 200
g/10 min, and densities between 0.910 g/cm® and 0.97 g/cm® (James, 1986, Speakman,
1991).

In selecting operating regions over which servo- and regulatory control are
simulated and analyzed, our goals were to choose sets of realistic grades, which cover
most of the possible grade slate, and which display varying degrees of nonlinearity. With
these goals in mind, commercial polyethylene grade information was obtained from the

Nova Chemicals website (http://www.novachem.com/OurProducts/pds/indexPE.cfm,
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April 8, 1999), from personnel at Imperial Oil (personal communication with Timothy K.
Bean, Senior Account Executive, April 7, 1999), and Union Carbide (personal
communication with Kimberly Parker, April 8, 1999). A slate of commercial
polyethylene grades was identified on which control performance and nonlinearity
measures could be assessed. These grades are given in Table 4.1 along with processing

and product application information.

Grade | Melt Index Density Processing Typical Application
£/10 min g/cm’
A 1 0.918 Film Resin | Industnal liners, heavy duty bags.
B 2 0.918 Film Resin | Trash bags, bag-on-roll, garment
film.

C 0.8 0.921 Film Resin | General-purpose packaging, liners.

D 5.5 0.935 Rotational | Toys, carts, custom molding.
Molding

E 12 0.926 Injection Caps, closures.
Molding

F 22 0.925 Injection Large houseware containers
Molding (e.g. trash cans).

G 50 0.926 Injection Lids, general-purpose housewares
Molding (e.g. trash cans).

H 45 0.954 Injection Industnial containers, industrial
Molding lids.

I 2 0.942 Rotational | Large agricultural tanks, industnal
Molding products.

J 100 0.929 Injection Carrier resin for colour
Molding concentrates.

Table 4.1. Grade slate information obtained from Nova Chemicals, Imperial Oil, and
Union Carbide.

The grade transitions that were chosen are changes among grades;
i) A B,C (film grades)
ii) D,H,I (mid-MI molding grades)

iii) J.G (high MI molding grades)
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These grades were chosen because much of the grade slate is represented in the
transitions. An additional intermediate grade, K, was designed to accompany J and G in
a transition study. Grade K was chosen to have a melt index of 75 g/10 min and a density
of 0.925 g/cm’.

Choosing additional grades that provide broader coverage over the grade slate
allows for a relatively thorough comparative study among grade transitions. The
additional grades chosen for this purpose were selected by simply translating the MI
values of Table 4.1 to different numeric values on the grade slate. The newly selected

grades are shown in Table 4.2.

Grade Melt Index | Density

£/10 min g/cm’
L 20 0918
M 21 0918
N 19.8 0.921
(o) 20 0.935
P 5 0.926
Q 19 0.954
R 16.5 0.942
S 55 0.929
T 30 0.925

Table 4.2. Additional grades chosen for comparative study with grade transitions chosen
from Table 4.1.

Although melt index and density define a grade, our output model also predicts
production rate. Therefore, grade information will include production rate as part of the
grade specification. Production rate is given in brackets next to the grade name. For
example, A(20) refers to the grade with a melt index of 1 g/10 min, and a density of
0.918 g/cm’ being produced at a rate of 20 tonnes’h. The complete set of grade

transitions is depicted in Figures 4.1 and 4.2. Figure 4.1 shows the grade slate in p and

MI coordinates, while Figure 4.2 is given in p and In(MI) coordinates.
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Figure 4.1. Grade slate information in MI-p coordinates. Each transition has a
production rate sequence of 30-20-30-30 t/h.



Grade Slate

0.955 -

®A
0.95 - AB

D-H-I-D 0-Q-R-O xC

+D
oE
-G
aH

'

X
0.94 - x|
e J
=-K

0.945 -

glcm®

0.935 -
. . + XM

®N

S-T-P-T -K-G-K -0
0.93 FK oP

/ AQ
AL
0.925 - - +S

S~ +s

Density

>
-1 0 1 2 3 4 5
In{Melt Index)
g/10 min

Figure 4.2. Grade slate information in In(MI)-p coordinates. Each transition has a
production rate sequence of 30-20-30-30 t/h.
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Appropriate grades must also be chosen for disturbance rejection analysis.
Because the relationship between control performance and curvature is of interest, we
should choose operating regions that provide a wide range of RMS curvature values.
After performing a preliminary assessment of RMS curvature values of the candidate
grades, the following grades were chosen on which to examine regulatory control:

i) E at a production rate of 20 tonnes’h
ii) I at a production rate of 30 tonnes/h
iii) J at a production rate of 20 tonnes’h

Before the root-mean-square measure of curvature can be computed for the grades

proposed for servo- and regulatory control, appropriate operating regions in the output

space must first be specified, and those regions scaled to unity.

4.4 Scaling

Grade specifications are given in terms of melt index, and density, and in this
thesis, a target production rate is also associated with grade information. Because the
grade transitions are defined for outputs, it is reasonable that output-prescribed scaling
(rather than input-prescribed scaling) is used to approximate the desired regions of

operation.

4.4.1 Scaling for Grade Transitions

The regions of operation for each grade transition set were estimated by the grade
set-point ranges for each output. For example, grade transition J(30)-K(20)-G(30)-K(30)

is characterized by a total melt index variation of 50 to 100g/10 min, a total density range
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of 0.925 to 0.929g/cm’, and a production rate varying from 20 to 30 tonnes/h. Ellipsoidal
regions in the operating space were prescribed using these values. In effect, a
hypothetical 'box’ is defined by these limits, wherein an ellipsoidal region within this box
defines the region of operation.

The ellipsoids specified are aligned with the output coordinate axes, whereas the
minimum area ellipsoid for the given grade specifications would, in general, be rotated,

as shown in Figure 4.3.

........
............
ooooo
....

Figure 4.3. Schematic comparing rotated and non-rotated ellipses encompassing the
scaling region. The comners of the triangles define arbitrary grade settings. The dashed
ellipses represent scaling regions. The rotated ellipse may better define the region of
operation. Notice the size difference between ellipses.

However, because the size of the scaling region is an approximate description of the size
of the operating region, this non-rotated technique is appropriate. To account for
overshoot in the controlled variables, the edges of the specified ellipsoids were extended
by 20% from their centres.

In Chapter 2, ellipsoidal scaling regions were defined by scaling matrices such

that:
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Ay'(S'S)Ay =1 42)
where Ay is the deviation of the output variable from steady-state. In the case where the
scaling region defines a region of interest for grade transitions, Ay is the deviation of the
output variable from its mid-point. S is the diagonal scaling matrix. Each diagonal
element of S is the inverse of half of the corresponding output range. By extending that
range by 20%, the size of the ellipsoid grows by 20% along each of its axes. For
example, the half-ranges of the transition J(30)-K(20)-G(30)-K(30) and S(30)-T(20)-
P(30)-T(30) are:

for melt index: 25 g/10min
for density: 0.002 g/cm’
for production rate: 5 tonnes’h
An increase in these ranges by 20% gives:
for melt index: 30 g/10min
for density: 0.0024 g/cm’
for production rate: 6 tonnes/h
and the corresponding scaling matrix for grade transitions J(30)-K(20)-G(30)-K(30) and

S(30)-T(20)-P(30)-T(30) is given as:

1/30 0 0
S=| 0 1/0.0024 O (4.3)
0 0 1/6

For the grade transitions D(30)-H(20)-1(30)-D(30) and O(30)-Q(20)-R(30)-O(30), the

scaling matrix becomes:
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1/2.1 0 0
§S=| 0 1/0.0114 O 4.4)
0 0 1/6

and for the C(30)-A(20)-B(30)-C(30) and N(30)-L(20)-M(30)-N(30) grade transitions,

the scaling matrix is given as:

1/0.72 0 0
S=[ 0 1/0.0018 O 4.5)
0 0 1/6

To illustrate the use of the scaling matrix, Figure 4.4 shows the associated scaling
ellipse around grade transition J-K-G-K. Both the original scaling (without the 20%

extension in principal axes) and the extended scaling ellipses are shown.

Grade Transition J-K-G-K
0.94
0.935 |
E 0.93 -
- ]
>
2 0.925 |
[ ]
a
0.92 -
0.915 . . . . .
0 20 40 60 80 100 120
Melt Index g/10 min

Figure 4.4. Diagram showing how a scaling ellipse is defined for a region of operation.
This schematic shows the smaller original scaling ellipse, and the larger ellipse

encompassing the 20% increase in principal axes.

Scaling must also be performed for the [In(MI), p, PR]' model. Only the value of

the first diagonal element of each scaling matrix will change because the output
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transformation is applied only to melt index. Because In(Ml) is a nonlinear transform of
melt index, it would not be accurate to calculate In(half of the range in Ml coordinates)
for the grade transition sets. Rather, the range should be calculated as half of the range in
terms of In(MI). For example, for C-A-B-C, the half-range of In(MI) is calculated as:
4%(In(2) -In(0.8)) = 0.4581 (4.6)

For N-L-M-N, the half-range of In(MI) is:

4% (In(21) - In(19.8)) = 0.02942 4.7)
Notice the dramatic difference in the size of the ranges for the same size output changes
in melt index coordinates. Now the 20% increase to account for overshoot must be
included. The increased length of the ellipsoid along the In(MI) axis is reflected by the
following relation for half of the range:

120%(4 (nMI,, -InMI.,, ) (4.8)

The corresponding (1,1) entries in the S matrices for the grade transitions are given in

Table 4.3.
Grade Half of the range including the 20% increase | (1,1) entry of §

transition

C-A-B-C 120%(% (In(2) - In(0.8))) 1/0.5498
N-L-M-N 120%(}% (In(21) - In(19.8))) 1/0.03530
D-H-I-D 120%(% (In(5.5) - In(2))) 1/0.6070
0-Q-R-O 120%(% (In(20) - In(16.5))) 1/0.1154
J-K-G-K 120%(} (In(100) - In(50))) 1/0.4159
S-T-P-T 120%(} (In(55) -In(5))) 1/1.439

Table 4.3. The half-ranges of the variation of In(MI) must be calculated differently than
those for MI. The calculation technique and the first diagonal entry of S are shown.
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4.4.2 Scaling for Disturbance Rejection

The appropriate region of interest for operation around a steady state depends on
the nature and size of anticipated disturbances. An approximate region of operation can
be estimated either from historical plant data, or from simulating the disturbance under
feedback control, and observing typical deviations between output and set point. In this
work, the scaling regions were obtained by simulation studies.

The disturbances considered were 25% step increases in both the active site
concentration in the cataiyst feed, a., and in the catalyst deactivation parameter, kg,
occurring at t=50 h and t=150 h, respectively, and a 25% step decrease in the bleed
stream flow rate, b, at t=250 h. By observing the responses of the controlled system to
these disturbances, approprnate deviations of melt index, density, and production rate,
from their corresponding set points, were determined.

In Chapter S, we assess the curvature of one disturbance rejection point in the
nominal model, point J(20), while we look at three points in the transformed model.
Therefore, we must determine the scaling for each. The first point considered is that of
the nominal model, point J(20).

The expected region of operation at point J(20) was obtained by assigning the
half-ranges of [MI, p, PR]' to the largest deviations of these outputs from their set points.
These 'largest deviations' are actually those largest deviations obtained when the system
was subject to either of the control designs given in Appendix A.3, Figure A3.11.a or c.
A value of 3.8g/10 min is an appropriate half-range for the M1, while half of the ranges of

p and PR are 0.001g/cm’ and 3 tonnes’h, respectively. The resulting scaling matrix for

operation around point J(20) is:
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1/3.8 0 0
S=| O 1/0.001 O 4.9)
0 0 1/3

Once again, appropriate scaling must be determined to calculate curvature in the
transformed model, [In(MI), p, PR]'. As before, only the (1,1) element of the S matrix is
subject to change. The scaling for the transformed melt index output at a given point is
the greater value of:

(I"Wm‘gh - lnwu'udpomt )
or (4.10)
(nMr,... -1nMI,,)

The In(M1) half-ranges for the three grade regulation points are given in Table 4.4.

Grade Half of the In(MI) range (1,1) element of S
E(20) (in(12.4)—In(12)) 1/0.0328
1(30) (In(2.055) — In(2)) 1/0.0271
J(20) (In(106.4) — In(100)) 1/0.0620

Table 4.4. Table displaying half-ranges of In(MI) required for the computation of
scaling regions for nonlinearity analysis when operating around individual grades.

The scaling matrices for each of the steady-state points, E(20), (30}, J(20), of the

transformed model are given below:

I 0o o0
0.0328
1
Sean = 0 Go0088
0 o 1
i 3]
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L 0 0
0.0271
1
S,...=| © _
160y 0.00075
0 0 1
i 5]
L 0 0
0.0620
1
S;em =l 0 Go01
0 o L
L 3]

Now that the expected regions of operation have been identified for both servo- and
regulatory studies, we may now proceed to calculate the RMS curvature measure for each

case.

4.5 Nonlinearity Assessment

The curvatures of each of the forms (transformed and nominal) of the
polyethylene reactor model were assessed for both servo- and regulatory control for

operation within the regions specified in Section 4.4.

4.5.1 The Nonlinearity of Grade Transitions

The grade transitions defined in Figures 4.1 and 4.2 are the subjects of this

nonlinearity assessment. The transformed [In(MI), p ,PR]' form of the polyethylene
model is investigated in detail, and the nominal [MI, p, PR]' form is examined briefly to

determine the effect of the logarithm transform on the curvature measurement.
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4.5.1.1 Nonlinearity of the Transformed Model, [in(MIl), p, PR]'
Six sets of grade transitions were examined for the transformed model. The RMS

curvatures for each grade transition are shown in Table 4.5.

Grade Transition Scaling RMS curvature
C(30)-A(20)- AnM2 Ap?  APR?
502 000182 | 62 = 2.34
B(30)-C(30) 0.55 :
NGO-LQ20) | amag?  ap?  aprr?
3t ooore? | &2 ! 3.47
0.0018 6

M(30)-N(30) 0.035

DGOM-HR0- | amrg?  ap?  arr?
2 + 2 + ) =1 1.63
00114 6

1(30)-D(30) 0.607

0(30)-Q(20)- | Alag?  ap2  aPr?
+ + 2 =1 1.03

R(30)-0(30) 01152 oo1142 6

JGO-KQ20)- | amag?  ap?  aPr?
5 + 3 + 3 =1 0.625
0.0024 6

G(30)-K(30) 0.416

SGO):-T(0)» | Ammag?  ap2  aPr?
+

+ =1 435
2 2 2
P(30)-T(30) 1.44 0.0024

Table 4.5. The grade transitions and their associated RMS measures of curvature for the
transformed model, [In(MI), p, PR]'"

Please note that for brevity, the nomenclature of the grade transitions shown in Table 4.5

will be shortened to omit the production rate information.
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From Table 4.5, we see a diversity of RMS curvature measures, ranging form
0.625 to 4.35, indicating moderate nonlinearity. From the curvature values in Table 4.5,
a conjecture is made; it is expected that the grade transition J-K-G-K will result in the
best linear control performance because this transition has the smallest curvature value.
Notice that no grade transition displays mild nonlinearity, in that the RMS curvature
values obtained all lie above the suggested cut-off value of 0.3 (Guay et al, 1995).
Arbitrarily comparing the grade transitions J-K-G-K and S-T-P-T, we anticipate that J-K-
G-K will display a much lower error from set-point than S-T-P-T when linear controllers

are used because the estimated degree of curvature for S-T-P-T is much higher.

4.5.1.2  Nonlinearity of the Nominal Model,[MI, p, PR}’

The purpose of this section is to show that, indeed, the logarithm transform of
melt index does reduce the degree of nonlinearity of the model. In Table 4.6, the RMS
curvature values have been calculated for each of the six grade transitions in the [MI, p,
PR]' model and compared to those of the transformed model.

In all cases, the transformed model results in lower nonlinearity measures;
therefore, we see that the practitioners' choice of controlling In(MI) versus MI directly, is
Jjustified. The degree of nonlinearity reduction by the logarithm transform varies from
transition set to transition set. In comparison to the nonlinearity reduction of most
regions on the grade slate, a relatively small decrease in curvature is seen in the C-A-B-C
transition, as the nonlinearity is reduced from crrms=6.70 to crms=2.34. All other
transitions display an impressive decrease in curvature due to this logarithmic

transformation.
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Grade Model Scaling RMS
Transition curvature
(ML, avr?  ap?  aPR?
p. PRJ =+ P s+ =1 6.70
C(30)-A(20)- 0.72° 00018 6
B(30)-C(30
(30)-C(30) [ln(Ml)', AlnM]z Ap2 APRZ
p, PR] 3+ F+—— = | 2.34
0.550° 0.0018 6
p, PR]' 7+ P >+ API; =1 724
N(@30)-L(20)- 0.72° 00018 6
M(30)-N(30
(30)-N(30) IMD. | 1 0r2  aAp2 aPr?
p. PR} 5+ F+—3 = | 3.47
0.035°  0.0018 6
[MI, 2 2 2
AMI A APR
p, PR}’ 5+ i F+—3— =1 14.0
D(30)-H(20)- 2.1 00114 6
1(30)-D(30
GO-DEO) [ fInMD. | g2 ap2  arr
p. PR} >+ S+=——=1| 163
0607° 00114 6
(M, 2 2 2
p. PRJ' Mz L2P > +AP'; -1 20.5
0(30)-Q(20)- 2.1 00114 6
R(30)-0(30
(30)-0(30) D, | 0r? a02 arr
0.115° 00114 6
[MI, 2 2 2
AMT APR
p. PR —+ = s+——=1 89.6
J(30)-K(20)- 30° 00024 6
G(30)-K(30) [In(MI) 2 2
> v
p. PRY’ Al"‘ﬂz 2 5+ AP'; =1 0625
0.416°  0.0024 6
[ML. 2 2 2
APR
p. PRJ T+ ap s+ =1 117
S(30)-T(20)- 30 00024 6
P(30)-T(30
GO-TGO) I fnMD. 1 11472 ap2  arr _
p. PR] 3 T+t 3= 1 4.35
144 0.0024 6

Table 4.6. The grade transitions and their associated RMS measures of curvature for the
nominal model, [MI, p, PR]. The curvatures of the transformed model are given for

comparison.
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In Chapter 5, the results of one grade transition example are given, in which a simulation
study compares the linear control performance between the grade transition J-K-G-K

controlling MI versus the same transition in In(MI).

4.5.2 Nonlinearity of Operation About a Point

Often, it is not just the nonlinearity associated with large excursions such as grade
transitions that is of interest, but also the nonlinearity existing in a small region about a
steady-state point of operation. Disturbances will occur, and cause the reactor to deviate
from steady state. Because disturbance rejection performance may be a function of
nonlinearity, the assessment of curvature around an operating point may aid in the
decision of control scheme choice. Three steady-state points are examined in the
transformed model; additionally, the transformed model is compared to the nominal

model at one point.

4.5.2.1 Nonlinearity of the Transformed Model, [In(M]), p, PR]'

In this investigation, three steady-state points with varying RMS curvatures are
the focus. In Chapter S, the disturbance rejection performance for the transformed-
model-based controller around points E(20), I(30), and J(20) is studied.

Using the scaling information given in Table 4.4, the RMS curvature information
at each of the three points is calculated and displayed in Table 4.7. The curvatures
associated with operation about an individual steady-state point display curvatures in the

moderate range (Crms=0.476 at J(20), to crus=4.27 at [(30)).
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Grade Scaling RMS curvature
a2 st aPRE
E(20) 003282 ooooss? 32 L.25

AlnM12+ ap? +APRZ
130) 002712 000075% 52

=1 4.27

snMr?  a?  aPR?
J1(20) 006202 0001% 32 0.476

Table 4.7. The steady state regions of operations and their associated RMS measures of
curvature for the [In(MI), p, PR]' model.

From the calculated RMS curvature values, the control performance expectations

are that linear controllers will perform better at J(20) than at [(30).

4.5.2.2 Nonlinearity of the Nominal Model [MI, p, PR]’

To evaluate the impact of the logarithm transform on the curvature of the
polyethylene model in the disturbance rejection case, the nominal model, [MI, p, PR], is
compared to the transformed model [In(MI), p, PR]', at one point, J(20). The scaling for

operation about J(20) in the MI model is:

AMF+ Ap +APR2_1 il
3.82  0.001° 32 (4-11)

In the [MI, p, PR]' model, the curvature around point J(20) is crams=57.8, which is much
larger than the curvature of the same point in the transformed model (which has an

estimated RMS measure of nonlinearity of 0.476).

As a result of the large difference in curvatures, it is expected that linear control

of In(MI) will result in lower error than the linear control of MI directly, as compared to

the respective nonlinear counterparts.
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4.6 Conclusions

In this chapter, the focus has been selecting appropriate grades for servo- and
regulatory-control simulation studies to select representative regions of operation for each
simulation and to calculate the RMS nonlinearity values for each grade transition and
disturbance rejection for the transformed model. Additionally, two examples were
chosen for which the nonlinearity was assessed for the nominal model, [MI, p, PRY, in
which the melt index is controlled directly.

The chosen grades for transition studies were C(30)-A(20)-B(30)-C(30), D(30)-
H(20)-1(30)-D(30), J(30)-K(20)-G(30)-K(30), N(30)-L(20)-M(30)-N(30), O(30)-Q(20)-
R(30)-0(30), and S(30)-T(20)-P(30)-T(30). For operation about steady state, subject to
disturbances, the grades of interest were E(20), I(30), and J(20).

Corresponding scaling regions were chosen for the grade transitions by defining
an ellipse within a 'box' defined by the upper and lower specifications of the grade
transitions. The dimensions of the ellipse were then extended outward by 20% to account
for the controlled variable overshoot. Scaling regions for grades subject to disturbance
rejection were determined by controlled variable fluctuations in simulation studies.

Varying degrees of curvature were calculated for both servo- and regulatory
control. In servo-control of the transformed model, RMS curvature ranged from 0.625 to
4.35. Inthe nominal model, [MI, p, PR}, crys ranged from 6.7 to 117. The curvature of
each grade transition in the nominal model was substantially larger than in the
transformed model. In disturbance rejection studies, the RMS curvature ranged form
0.476 to 4.27 for the transformed model, indicating the presence of a range of moderate

nonlinearity.
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For the nominal model, the curvature was calculated for regulation about one
grade and found to be much higher (crms=57.8) than at the same point in the transformed
model. This finding and the comparison of RMS curvature for nominal and transformed
models in grade transition studies indicates that the logarithm transformation of the melt

index does reduce the degree of nonlinearity.
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Chapter 5

Closed-Loop Performance Assessment

5.1 Introduction

In Chapter 4, nonlinearity assessment was performed for various grade transition
and disturbance-rejection regimes for both the transformed model, [In(M1), p, PR}, and
the nominal model, [MI, p, PR]'. The nonlinearity information obtained was calculated
so that the expectations regarding the impact of RMS curvature on control performance
could be tested. In this chapter, we determine whether operating regions of the
polyethylene model with high RMS curvature values indeed suffer noticeably larger
performance losses when subjected to linear control, than regions in the model displaying
only mild nonlinearity. Such a comparison is done in two ways, first, the control
performance of linear and nonlinear controllers for the transformed model is examined
over a large portion of the grade slate, with both servo- and regulatory control goals, and
compared to the corresponding RMS curvatures. Second, the performance of linear
versus nonlinear controllers is assessed for both the transformed and the nominal models
at identical regions on the grade slate. We will determine whether linear control of the
nominal model (which displays much higher nonlinearity) is less successful than linear
control of the transformed model, and whether a correlation exists between performance
degradation and RMS curvature.

This chapter is structured in the following way. First, the control laws are



developed from the error trajectory approach. The derivation of the linear and nonlinear
controllers from the model is demonstrated. Then, a comparative study is performed to

determine the relationship between RMS curvature and control performance prediction.

5.2 Control Law Development

The design of the error-trajectory ccntroller (McLellan et al., 1990) begins with
the error-trajectory specification, which must be a function of at least the o™ order
derivative of the tracking error (where a. is the relative order of the process). Because the
polyethylene reactor model is a relative order one process, the error-trajectory

specification, as given in equation 2.39, is:

() +Be(r) + yje(z)dz =0 (2.39)

where e(?) =y, (1)-y(f), and y and P are diagonal weighting, or tuning, matrices. To

design a nonlinear controller, the nonlinear process model, (2.4) and (2.5):

3.51:{/:0 +k, [AA’;Z} +k, [ZzlJ

In(MD) (3] [M[]IL
y=| p |=hx)=|p, +p In(MI)-| p, =22
pet Po + p, In(MI) (P- [M,]J

Pk, (M, Yrw, + &, [M, Jmw, )|

[ dlH,]] L[Fm—k,,-Y-[f:r:]-[’[”z]"’_g1.[;12]J
dr Vg ,
« — d[le 1 [MZ]b
*= dt Vg.‘.VS(FMZ_kP'-"Y'[Mz]— C, —S[ley(kp,[M[]mwi +kpz[Mz]mw2)
.tiy_. Yz(kpl[Mllle +kPZ[M2]mw2)
dt 1‘:‘”“ cat ~ Bw —de
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is substituted into the error trajectory specification, with y, =0 (set points are a series of

steps):

[a; d,] ﬁ[y.,—y]+y'[[yw(:) )'(Z)}lz (5.1)

The formulation in equation 5.1 amounts to pole-placement of an input/output path with

added integral action. Substituting the Jacobian % and the state equations %}:— into

equation (5.1),

¢h, oh  Oh | [d[H,]]

ox, Ox, Ox; dt B, 0 07 [In(MI),, —In(MI)
oh, ohy Ohy | |dIM.]|_|'o o ol T ) T
&, ox, ox d 2 4
oh, oh, oh, ﬂl 0 o0 B, PR, — PR
| ox, &, ox | L d (5.2)
v 0 07|, (n(MD,, ()~ In(AMI)2)dz
o 1. ol [ @,)-p)d
0 0 i [ (PR, ()~ PRG)ME:
3.5 ks
ohy _ [M,]
o, (k +k[M] k[HZ]J
‘M1 T IM,]
3_51‘7_l
&h, _ [M,]
&x, (“,[M] [H]J
M1 M)
x5



k,

35p,
ohy _ [M,]
&x, (kﬁ,‘lwz]%[ﬂz])
M1 (M)
k
3.5p, —— pa-i
on, _ P ] _p4-pz( ,[M:]]‘ !
% [k B ) 04T
(M1 7 [M,]
-0,
oxX;3
oh _
o,

ch, kp,-mw,-Y
ox, 10° ’

oh, - kp, -[M]-mw, +kp, -[M,]-mw,
ox, 10°

The controller equations are obtained by solving equations (2.43) in Chapter 2.
Note that the above formulation corresponds to the controllers designed for the
transformed model. To design a control scheme where melt index is controlled directly,
as in the nominal model, one must substitute instead the corresponding model into
equation (5.2), as shown in Appendix A.1.

If one is designing a linear controller, the linearized process model is instead
substituted into equation (5.1). The linearized polyethylene reactor process model is of

the form:

x = Ax + Bu

y=Cx (5.3)

The linearization was obtained by performing a first-order Taylor series approximation
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about a nominal steady-state point. Matrix A is the Jacobian of the process state
equations with respect to the vector x, and evaluated at a steady-state point. Similarly, B
is the Jacobian of the state equations with respect to the input vector, u=[Fyz, Fua2, Fea]'
C is the Jacobian of the output function h(x). The matrices A, B, and C are evaluated at
the point of linearization, and the x, u, and y vectors are presented in deviation variables.
Nonlinear equation (5.2), and its linear counterpart, are each a set of three
equations in three unknowns. The three equations can be solved simultaneously for each
of the inputs. For completeness, the nonlinear control solution of the transformed model
is shown in Appendix A.2. It is important to note that, although the linear and nonlinear
controllers incorporate different model forms, their error-trajectory specifications are the

same.

5.3 Tuning

Tuning the resulting individual controllers is accomplished by selecting
appropriate values for the diagonal elements of matrices 8 and y. The selection of tuning
parameters is akin to selecting the desired closed-loop response of the process. A
reasonably conservative choice for B and y is one in which the response specification
matches the dynamic behaviour of the system. By performing open-loop step tests on the

process model, a set of tuning parameters for individual input/output channels was

chosen for the process: (5.4)
1 0 0
B=/0 1 O
0 0 1

92



Lo o
4

I
=0 — 0
Y 4
o o L
I 30

Although the dynamics due to butene flow are faster than those due to hydrogen flow, as
seen in Figure 5.1a and b, we have chosen equal error trajectory specifications for melt
index (predominantly affected by hydrogen concentration) and density (predominantly
affected by butene concentration). Such tuning will ensure more aggressive hydrogen
valve movement, as seen in Figure 5.2b, which is desirable because of the inherently
slower open-loop hydrogen dynamics of the system. With these tuning parameters, the
closed-loop responses for instantaneous In(melt index) and density also have overshoot
(see Figure 5.2a), which beneficially increases the rate of change in cumulative
properties. For a set point change in production rate, an overshoot is not desired because
it might lead to excessive heat removal requirements. To minimize the size of the
overshoot in production rate response, the integral action parameter, y;, was reduced
relative to v, and y2 (those of melt index and density), resulting in the control system
responses shown in Figure 5.2. The particular error-trajectory specification defined by
equation (2.43) and tuning factors in equation 5.4 were used in all of the control
simulations shown in the remainder of this thesis.
Manipulated variable bounds exist, and are defined by the following limits:

0< F,, <14000 mol/h
0< F,, <64200 mol/h (5.5)
O0<F_<10kg/h

These bounds are imposed after the controller has solved an unconstrained solution. If
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Open-Loop Step Test
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Figure 5.1a. The transformed model was subjected to step changes in manipulated
variables, as shown.
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Open-Loop Step Test
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Figure S.1b. The transformed model was subjected to step changes in manipulated
variables, which resulted in the output responses shown above.
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Tuning the Nonlinear Controller - Transformed Model
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Figure 5.2a. The specified error trajectories and the nonlinear controller results are
given above. The tuning parameters for this output response are bl=b2=b3=I,
gl=g2=1/4, and g3=1/30. Dashed line: set point. Thick line: Output. Thin line: output
specification (output and specification overlap).

96



Tuning the Nonlinear Controller (Transformed Model)
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Figure 5.2b. The manipulated variable action required to yield the specified error
trajectories and the nonlinear controller results in Figure 5.2a. Solid line: manipulated
variable. Dashed line: MV bound.
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the control law returns any value outside these limits, the manipulated variables are
clamped at their specified bounds. Due to manipulated variable clamping, there exists
the potential for reset windup, although it didn't appear to pose significant problems in

the simulations in this thesis.

5.4 Performance Assessment

This section examines the control performance for grade transitions and
disturbance rejection scenarios previously defined in Chapter 4. First, a performance
measure must be defined. The performance of the controilers in this thesis is evaluated
using a modified version of the integral of the absolute value of the error (IAE).

The simulation work done in this thesis was accomplished in Matlab™ 5, in which

the ODE15s routine was used to solve differential model equations.

5.4.1 Performance Measures
The IAE measure is the accumulation of the absolute value of the deviation of the
output from its target. Marlin (1995) defines the integral of the absolute value of the

€erTor as:
IAE = [7|SP(r) - CV (1)t (5.6)

where SP is the set point and CV is the current value of the controlled variable. Although
the controlled variables in the grade transition work have a set point target, the controllers
have been designed such that the controlled variables follow an over-damped second-

order-type, with overshoot, error trajectory back to set point, as in equation (2.43).
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Therefore, instead of comparing the outputs to the set points, we compare them to the
desired output trajectories determined using the error-trajectory specifications. Therefore,
for grade transition studies, we define a modified form of the IAE, called the integral of

the absolute deviation, or IAD:
IAD = j:’ ICV e (1) - CV (1)t

where CV,.. is the desired controlled variable action, defined from the error-trajectory
specification. Therefore, IAD is a measure of the deviation of the controlled variable
from its specified trajectory. Unless manipulated variable saturation occurs, the IAD
value for simulations under nonlinear controller will be approximately zero. For
disturbance rejection simulations, the IAE remains the measure of choice because the
goal is to return the output values back to the original set point.

The IAE and IAD are further manipulated to yield measures of relative
performance; that is, the performance of a linear controller is assessed relative to the
performance of the nonlinear controller, which enables a standardized measure of the
degree of degradation that occurs as a result of choosing linear, over nonlinear, control.
We define normalized IAD (for grade transition studies) as:

IAD — IADIin _IADnonlin

norm IA_EM

and normalized IAE for (disturbance rejection studies) as:

IAE,_ = LAEI,;]; IAE .. 6.7)
nomnal

where 1AE .. = J: |SP(t)—-C V e (t){dl . Therefore, IADnom is the difference between

the deviation from CV, incurred by using a linear versus a nonlinear controller,
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standardized by the IAE of the difference of the grade set point and the expected
controlled variable action. Similarly, IAE,.m is the difference in the error incurred as a
result of using a linear versus a nonlinear control scheme, normalized by the area

between SP and CV ..

For visual aid, illustrations of IAD and IAE,om are shown in Figure 5.3.

Nominal IAE

LU~

Specified CV

Actual CV Specified CV

Figure 5.3. Illustration showing how IAD, and I1AE,,m are measured.

Analogous performance measures could have been defined, such as integral of the

product of time and absolute error (ITAE), or integral of the squared error (ISE).
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The remainder of this chapter is further broken down into three segments, in
which control performance is assessed. In Section 5.4.2, the nonlinearity and control
performance of the transformed model subjected to nonlinear and linear multivariable
control is examined. In 5.4.3, we look at how the logarithm transform of melt index
affects linear performance relative to the linear performance of the nominal model. In
Section 5.5 we look at possible causes for some unexpected results, and provide a

preliminary investigation into three of these possible causes.

5.4.2 The Transformed Model - Control Performance

Tweo sets of simulations were investigated: one set in which grade transitions were
the focus and one in which the focus was disturbance rejection. One might expect that
RMS curvature values predict a larger degradation in linear control performance relative
to nonlinear control, as the value of the RMS curvature increases. Therefore, we
conjecture that the performance of linear multivariable controllers will suffer greatest

losses at high crys values, and suffer little loss at RMS curvature values less than 0.3.

5.4.2.1 Grade Transitions

Six grade transition policies of varying curvatures are studied in this section. It is
our expectation that, as the value of RMS curvature increases, the success with which
linear control is achieved will decrease. The success of control performance is measured
as the normalized IAD value for each output. The set of grade transitions studied is
shown in Table 5.1, along with the corresponding RMS curvature values. We see from

Table 5.1 that these regions in the model display nonlinearities ranging from crys=0.625
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to crms=4.35, indicating moderate nonlinearity. In all instances, the curvatures are

significant relative to the benchmark value of cryms=0.3 proposed by Guay et al. (1995).
The simulations of all grade transitions under both linear and nonlinear control are given
in Appendix A.3, Figures A3.1 to A3.6. We see from Table 5.1 that all of the outputs at

all curvatures, but one (IADy.m of STPT), experience greater performance losses when

controlled by linear rather than nonlinear means.

Grade RMS Nomalized IAD | Normalized IAD Normalized
Transition curvature In(MI) Density IAD Production
value Rate
S-T-P-T 435 -0.0450 3.60 0.289
D-H-I-D 1.63 0.182 0.346 0312
C-A-B-C 2.34 0.516 4.30 0.220
J-K-G-K' 0.625 1.08 6.00 0.381
0-Q-R-O 1.03 0.941 0.340 0.221
N-L-M-N 347 11.0 8.95 0.573

Table 5.1. Grade transitions for the transformed model, their corresponding curvatures,
and their normalized IAD values that result from choosing linear control, over nonlinear

control.
" Indicates that the grade transition simulation resulted in manipulated variable saturation.

It was expected that linear control would result in higher IAD values than for the

nonlinear controllers, and hence, positive normalized IAD values. The one exception

noted above is the one of grade transition S-T-P-T, ironically the region for which the
highest degree of curvature was calculated. In this case, the In(M1) is controlled better by
the linear controller than by the nonlinear controller. (However, the improvement is
insignificant since the value is close to zero). Although such a result contradicts

expectations, it can potentially be explained by addressing the issue of manipulated

variable saturation. This unexpected result may be due to the effect of input saturation
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rather than nonlinearity compensation since linear control has no capacity to compensate
for curvature (other than its integral action, which will return an output to set point). The
controllers are not designed to deal with manipulated variable saturation; the linear
controller calculated an unconstrained (in terms of MV bounds) solution, which, due to
our manipulated variable bounds, happened to be more appropriate than that calculated
by the unconstrained nonlinear solution. As seen in Figure A3.1b,d in Appendix A.3, the
hydrogen gas flow rate reaches its lower bound of 0 mol/h at t=50h and t=100h, and then
reaches its upper bound of 14000 mol/h at t=150h. Therefore, the slight improvement
seen in linear control is likely due to imperfect calculation of input values by the linear
controller, which by chance, happen to compensate better for the bound saturation.

It is our expectation that the trend between normalized IAD values and RMS
curvature values should exhibit a positive correlation. The trend of normalized IAD
values with respect to curvature values is shown in Figure 5.4 for each of the three
outputs. For each output, a positive correlation is completely lacking. The degree to
which nonlinear control resulted in lower normalized IAD values than the linear
controller appears to be independent of the curvature experience by the model.

These findings are somewhat unexpected. Possible explanations are that input
saturation disrupts the results by artificially favouring the linear controller results, or that
directional curvatures may be more adequate for calculating nonlinearity due to the
relatively few directions involved in such a limited simulation study. Additionally,
because the RMS curvature is an average measure that encompasses all of the outputs, it

doesn't describe the effect of curvature on individual inputs.
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Figure 5.4. The relationship between the degree of curvature experienced by a
grade transition region within the transformed model and the degree of
degradation that occurs as a result of using linear control, as opposed to nonlinear

control.
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5.4.2.2 Disturbance Rejection

The performance of nonlinear and linear controllers also must be assessed with
regard to operation about a point; that is, the disturbance rejection capabilities of each
controller must be reviewed. In what follows, the control performance about three points
is examined. Operation about these points, J(20), I(30), and E(20), results in moderate
RMS curvatures that range from 0.476 to 4.27. The measure of performance for
disturbance rejection studies is the normalized IAE, which measures the performance of
the system under linear control, relative to the performance under nonlinear control.
However, unlike in the grade transition case, the absolute value is calculated as the error
between SP and CV, as is typically done.

Each of the grades have been subjected to identical disturbances. The open-ioop
disturbance effects on grade E(20) are shown in Figure 5.5. After 50 hours of steady-
state operation, the system is subjected to a2 25% increase in active site concentration in
the entering catalyst. Variation in catalyst activity is a common disturbance, especially
because of batch-to-batch variation. An increase in catalyst activity affects both
production rate and the gas consumption rate, which results in a decrease in hydrogen and
butene concentrations. These decreases then cause a lowering of In(MI) and an increase
in density. The increase in density comes about due to the lowering of butene
concentration. Despite hydrogen concentration decreasing, which independently would
result in a decrease in density, butene concentration has a more dominant effect on
density, and therefore, the density increases. After the active site concentration
disturbance is resolved, another disturbance is introduced at t=100h. This time the

catalyst deactivation constant, kg, is increased by 25%. This increase in ky represents a
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Open-loop Disturbance Effects
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Figure 5.5. The open-loop effect on outputs of increasing a., at t=50h, increasing k4
at t=100h and decreasing b at t=150h. Solid line: outputs. Dashed line: set point.
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deactivation of active sites, which might occur as a result of increased levels of poisons in
the reactor. Such impurities react with the polymerization site, thereby rendering the site
inactive. This disturbance has an opposite effect on Y compared to the previous
disturbance. Finally, the last disturbance enters the system after 150 hours of operation.
This disturbance represents a decreased flow rate of the bleed stream. Such a situation
might occur if the operator adjusted the bleed valve position, or if the pressure
downstream of the bleed valve had changed. This disturbance is simulated as a 25%
decrease in b.

Simulation studies were performed on the three above-mentioned steady-state
grades. Both linear and nonlinear control schemes were used to return the process to
steady state following the introduction of disturbances. The simulation runs are plotted in
Figures A3.7 to A3.9 in Appendix A.3.

The curvature of the region of operation about each of the three points defined

earlier is shown in Table 5.2.

Grade RMS Normalized IAE | Normalized IAE | Normalized [AE
curvature In(MT) Density Production Rate
J(20) 0476 392 218 0.0128
E(20) 1.25 1.90 18.4 0.0233
I1(30) 4.27 1.61 31.8 -0.0709

Table 5.2. Grades for the transformed model, their corresponding curvatures, and the
normalized IAE values that result from choosing linear control, over nonlinear control.

From Table 5.2, we see that for each of the situations, except one (production rate of
1(30)), linear control results in poorer control than nonlinear control. For the steady-state

operation about point I(30), the linear controller performs marginally better in production
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Figure 5.6. The relationship between the degree of curvature experienced by a region
under regulatory control within the transformed model and the degree of degradation
that occurs as a result of using linear control, as opposed to nonlinear control.
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rate than the nonlinear controller; however, the improvement is so negligible, that for all
intents and purposes, we can conclude that the linear and nonlinear controllers
maintained the production rate equally as well, and for all curvatures.

To examine the performance degradation of linear control (relative to nonlinear
control) in relation to the degree of curvature, we look at Figure 5.6. The trend in the
normalized IAE values with respect to the RMS curvature is inconclusive. Each of the
outputs, In(MI), density, and production rate, exhibit different trends. The linear melt
index controller appears to perform better at higher curvatures, which contradicts the
anticipated results. For each of the other two outputs, there is no observable trend that
would lead one to conclude that the success with which a process is controlled by linear
means has any bearing on the local steady-state nonlinearity of the process.

Although Figure 5.6 shows no definite trends supporting the expectation that
higher RMS curvatures result in more degradation of linear control, a relationship
between linear control performance and curvature must not be discounted. Rather,
perhaps the choice of second-order error-trajectory specification controllers may have
been incompatible with the performance assessment measures defined. The IAEqom may
be favouring the linear controller because the linear controller may not be providing large
enough overshoots to match the desired performance specification. This shortcoming of
the linear controller would result in a lowered IAE value as compared to the nonlinear
controller, which is performing overshoots as directed. This issue is discussed in Section
5.5. One might suggest comparing the disturbance rejection profiles against the
corresponding specified trajectory as is done for grade transitions; a trial of the nonlinear

controller without bound saturation would provide a good approximation of the specified
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controlled variable trajectory. However, in some instances, due to different gains in the
linear control law, the linear controller forced the outputs in a direction opposite to that of
the nonlinear controller. Therefore, calculating the corresponding IAD would result in
enlarged deviations, which would imply artificially degraded performance. The linear
controiler may have been following close to a second-order type response but was
initially forced in different output directions. Therefore, due to this shortcoming, the
alternative has been to assess performance by comparing the output trajectory to the

specified set point.

5.4.3 Nominal vs. Transformed Model

Practitioners may often opt to implement the transformed version of the
polyethylene model in linear control applications due to the anticipated lower degree of
nonlinearity exhibited by the model. As calculated in Chapter 4, the transformed model
displays much less nonlinearity than the nominal model, at all of the points considered.
A large difference in RMS curvature values might imply that the control performance
would differ significantly between models when subjected to linear control. It would be
of interest to determine whether any control performance benefit is gained by this
transformation. The focus of this section, therefore, is to examine the performance of the
linear controller as applied to the transformed model, [In(MI), p, PR], versus its
performance on the much more nonlinear nominal model, [MI, p, PR]"

Two different scenarios are considered in this section. First, we look at the
difference in control performance for one grade transition, J-K-G-K, for both nominal

and transformed models. In addition, the control performance of disturbance rejection is
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also studied, at the point J(20), for both models. The curvatures that were calculated for
these two scenarios represent two cases in which the nominal and transformed models
differ significantly.

The grade transition study is considered first. The simulations of the process for
each controller of the nominal model are shown in Appendix Figures A3.10a-d. Recall
that the simulation J-K-G-K for the transformed mcdel was shown earlier, in Figure
A3.4a-d. Table 5.3 shows the curvatures and normalized [IAE values for both the

transformed and nominal model simulations for the grade transition.

Grade and Model RMS Normalized IAD | Normalized IAD | Normalized IAD
curvature In(MI) or MI Density Production Rate
J-K-G-K, Transformed 0.625 1.08 6.00 0.381
J-K-G-K, Nominal 89.6 -0.170 9.16 0.381
Grade and Model RMS Normalized IAE | Normalized IAE | Normalized IAE
curvature In(MI) or MI Density Production Rate
J(20), Transformed 0.476 3.92 21.8 0.0128
J(20), Nominal 57.8 -0.599 22.9 -0.0210
Table 5.3. Grades for the transformed and nominal models, their corresponding

curvatures, and the normalized IAD and IAE values that result from choosing linear
control, over nonlinear control.
This table includes a negative normalized IAE value for one output of the nominal model
grade transition, once again indicating that the linear controller in some cases serves to
control as well as, or better, than the nonlinear controller, even under severe nonlinearity.
To attain an appreciation for the difference in control performance between the linear
controllers of the transformed and nominal models, we consider Figure 5.7. Figure 5.7
shows the normalized IAD values of each of the outputs at the low and high RMS
curvature values of the transformed and nominal models, respectively.

From Figure 5.7, we note that this simulation study fails to support the conjecture

that significant steady-state curvatures translate into performance degradation for linear
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controllers. The normalized IAD values for melt index do not support expectations, by
resulting in a lower performance error measure at the much higher RMS curvature of
89.6; density, however, appears to lend support to the theory as the corresponding
normalized IAD value is somewhat higher at the higher RMS curvature value. On the
other hand, the production rate results in the same normalized IAD value at both the low
RMS curvature value, and the high value. These three observations result in another
inconclusive result; the conclusion cannot be made that the performance of the linear
controllers suffers greater losses as the degree of curvature of the model increases.
Additionally, there is no evidence to support any relationship between performance losses

of linear controllers and RMS curvature values.

Nomalized IAD For Grade Transition J-K-G-K for Nominal
and Transformed Models |
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8 .
Transformed Model
g 6 1
E, 4l | 0 Melt Index
E B Density
2 2- OPR
0 ,
0.625 89.6
-2
RMS Curvature

Figure 5.7. The relationship between the degree of curvature experienced by grade
transition regions (within the nominal and transformed models) and the degree of
degradation that occurs as a result of using linear control, as opposed to nonlinear control.
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Next, the nominal and transformed models are compared in another control
simulation study; the performance of the linear control scheme is examined for each level
of curvature in a disturbance rejection study about point J(20). The simulation plots for
this study are given in Appendix A.3, Figures A3.7a-d and A3.11a-d. The linear control
performance is examined for the transformed model, with a crus of 0.476, and for the
more nonlinear nominal model at which the curvature is crys=57.8. These curvature
values and their corresponding output results in the form of normalized IAE values are
shown in Table 5.3 above. We expect that the linear control scheme will perform better
with the transformed model than for the much more nonlinear nominal model. By
observing the values in Table 5.3, we see that some negative normalized IAE values are
again present. These negative values indicate that the linear control scheme performed
with less error than the nonlinear controller, which in itself is unexpected; however, the
fact that this result was observed under the very nonlinear model is even more
perplexing.

To observe the trend between RMS curvature values and normalized IAE values,
consider the plot in Figure S.8. Figure 5.8 shows the same types of trends for each
individual input as does Figure 5.7 above. The normalized IAE for the melt index
actually decreases with an increase in cpys, while the density IAE, . increases, and the
production rate IAE,m stays relatively constant. This simulation study also fails to draw

a correlation between control performance and RMS curvature.
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Normalized IAE for Disturbance Rejection about J(20) for
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Figure 5.8. The degree of performance degradation that results from linear, versus
nonlinear, control as applied to a region of regulatory control for one of each of the
transformed model (crys=0.476) and the nominal model (crus=57.8)

5.5 Looking Ahead - Possible Explanations

Many plausible explanations exist for the unexpected results that were obtained in
the performance assessment section above. These factors include control implementation
issues, such as manipulated variable bound saturation, feedback linearization issues, and
the possible incompatibility of the performance measure and the type of controller
implemented, model structure issues, such as the multivariable nature of the problem, and
concerns about the RMS curvature measure itself. The matters concerning the RMS
measure of curvature include the issue of directionality, the form of the steady-state map,

the fact that a steady-state measure is being compared to dynamic performance, and that
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RMS curvature is a measure averaged over all outputs. A discussion of each of these

topics follows. A preliminary investigation of some of these topics is provided.

5.5.1 Manipulated Variable Saturation

One possible explanation for the unexpected resuits obtained in the grade
transition study in Section 5.4.2.1 is that the manipulated-variable bound saturation was
obscuring the nonlinearity effects. The control laws used in the simulation studies solved
for manipulated variable actions using an unconstrained solution (no MV bounds
enforced); however, if the computed values exceeded the MV bounds, they were clamped
at their corresponding bound value. In such a scenario, although the nonlinear controller
would initially calculate a set of MV moves to provide the specified performance, the
implementation of the input bounds might result in degraded performance away from the
design specification. It is conceivable that the MV action computed by the linear
controller might be more appropriate, purely by chance, when the unforeseen bounds
were implemented. Due to this complication, it may be of interest to re-visit the
simulation study and either implement a constrained solution, or remove the bounds on
the manipulated variable to determine the pure effect of nonlinearities without the

confounding factor of saturation.

5.5.2 Potential Incompatibility of Performance Measure and Control

Specification

Although the disturbances introduced in our simulations were step disturbances,

initial experimentation with pulse disturbances was performed, which resulted in some
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noteworthy revelations. Because the control law utilized in this thesis is developed from
the error trajectory description, we found that in some cases, the linear controller resulted
in artificially improved performance. The term ‘artificially' is used because although the
error between the set point and the controlled variable was smaller in the linear case, the
linear controller failed to provide the specified error trajectory. This performance was
particularly evident in the production rate when a pulse disturbance in a., was
introduced. The natural dynamics of the open-loop system result in the production rate
returning to set point very quickly. However, when the error trajectory specification is in
place in the closed-loop situation, the controller actually slows down the return of the
production rate to set point because the tuning for this output is set at a more sluggish
response than the open-loop response. For this reason, the nonlinear controller keeps the
production rate from returning to set point quickly, whereas the linear controller, having
calculated the control moves for following the specified second-order-type error
trajectory using an approximate model, fails to follow the proper trace. This failure to
conform to the specified trajectory then causes the production rate to fall back to set point
quicker in the linear case, and results in a lower [AE than the nonlinear controller, which
is actually following its specifications.

Another related concern with implementing second-order-type error-trajectory
controllers in disturbance rejection studies is the required overshoot response in the melt
index and density outputs. It is conceivable that the linear controller might not return the
output to set point with the specified overshoot, which would result in a smaller error
from set point to output. Therefore, we are falsely considering the potentially larger error

in nonlinear controller overshoots as inferior performance. Perhaps the performance

116



measure chosen is inappropriate for use when assessing second-order error-trajectory
controller performance. In future work, one might consider a simpler controller, such as
a PID controller, in which overshoots are not required, or one might consider minimizing
the overshoot specification in the second-order type error-trajectory controller.
Alternatively, one might re-define the performance measure such that controlled variable

overshoots do not confuse the issues.

5.5.3 Directionality

RMS curvature is a measure of nonlinearity that is averaged over all possible
input directions. In theory, RMS curvature may be a good predictor of control
performance if the system is subject to random shocks that drive the process in very
many directions, or if the system is subjected to grade changes that include much of the
input space. In our grade transition and disturbance rejection simulations, however, very
little of the input space was used, and the system was driven in only a few directions by
the three selected disturbances, which might mean that the system was only being
subjected to certain direction-dependent nonlinearities. For this reason, it may be of
interest to single out a grade transition or disturbance rejection, assess the performance in
that region, and compare it to the corresponding directional curvature. Presumably, the
process will experience different nonlinearities depending on the direction in which a
disturbance drives the process, or depending on the input direction taken to bring about a

given grade changeover.

117



5.5.4 The Steady-State Nature of RMS Curvature

The RMS measure of nonlinearity assesses steady-state curvature, and it is being
compared to measures of dynamic performance. Steady-state analysis focuses on gain
nonlinearity, whereas transient, or dynamic, nonlinearity is likely present as well. Guay
(1996) developed a dynamic measure of curvature that quantifies the degree of dynamic
nonlinearity experienced by a process model. A future step in related work should be to

examine the dynamic nonlinearity of the system.

5.5.5 Multivariate Nature of the Model

The RMS measure of curvature is not only a value averaged over all input
directions, but it is also a measure that combines the nonlinearity information of all
outputs into one value. Therefore, it provides little information about how each
individual output would perform; rather it indicates how all three would behave jointly.
Although we assumed that the error measure of each of the outputs would increase with
increasing curvature, we found that this did not occur. Therefore, it seems that the
multivariable nature of the model may have complicated the interpretation of the
curvature measurement with respect to individual output performance. One may choose
to step back from such a multi-dimensional problem and re-visit this research with a uni-

dimensional model, or examine individual elements in the curvature array.

5.5.6 Choosing the Appropriate Steady-State Map
In Chapter 2, it was discussed that the local geometry of the steady-state input-

output map is examined to yield RMS measures of curvature. Recall that the input-
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output map is approximated by first- and second-order Taylor series approximations, and
that first- and second-derivative information is compared to provide an estimate of
curvature. Guay et al. (1995) suggest that the nonlinearity of the steady-state input-
output map more directly explains the nonlinearity of open-loop predictions of outputs,
given inputs, and that the inverse map more directly applies to control-law nonlinearity,
which relates to the nonlinearity of input moves, given outputs. Although the steady-
state input-output map and its inverse are related, Guay et al. (1995) feel that control-law
nonlinearity is more directly related to the curvature of the inverse map.

The nonlinearity of the process input-output map was studied in this thesis as a
starting potint, with the intention that more work in this area would follow. This choice of
maps may explain some of the discrepancies in the results obtained. Further study in the

assessment of nonlinearity of the inverse map is recommended.

5.5.7 Feedback Linearization

Linear error trajectory specifications lead to input-output feedback linearizating
controllers, which may not always be the best for controlling nonlinear processes because
they can cancel out helpful nonlinear dynamics. Examples of such a phenomenon in this
work are seen in the improved performance of the linear controller relative to the
nonlinear controller (i.e. IADqorm 0r IAEqm is negative). Such scenarios are analogous to
conclusions reached in linear control theory in which the decoupling of interacting

systems does not always benefit control performance.
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5.6 Further Investigations

As a preliminary investigation into some of the recommendations made, three of
these issues are briefly examined. Specifically, the issue of bound saturation raised in
Section 5.5.1, the issue of directionality, discussed in Section 5.5.3, and the issue of the
multivariable nature of the model, raised in Section 5.5.5, are addressed. The hope is to

confirm some of the explanations of the perplexing results obtained.

5.6.1 Manipulated-Variable Saturation

The grade transition studies of the transformed model were revisited, but with the
difference that manipulated variable bounds were omitted. Although such simulations
would not be realistic because flow bounds would be breached, this type of simulation
study might help determine whether input saturation is one factor contributing to the
inconclusive results.

For these simulations, the normalized IAD value was once again used to evaluate
control performance, and this value was compared to the RMS curvature calculated for
the model in the corresponding local region. The RMS curvature values and the
normalized IAD values are plotted in Figure 5.9. Comparing Figure 5.9 to Figure 5.4, we
see that the trends in normalized [AD are unchanged for the unbounded simulation
studies, which leads to the rejection of the factor of manipulated variable saturation as
being a possible source of inconsistency between RMS curvature and control

performance.
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Normalized IAD Values for Grade Transitions, with
Unbounded MVs
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Figure 5.9. The relationship between the degree of curvature experienced by a grade
transition region within the transformed model and the RMS curvature during simulations
in which the manipulated variable action was not bounded.
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5.6.2 Directionality

Directionality can play a major role in affecting control performance. Because
RMS curvature is an average measure, the control performance results obtained in this
thesis study, which lie in specific directions, may not be correlated to it. In our narrow
view of six grade transitions and three disturbances, we have considered only a few input
directions. Quite possibly, if one were able to perform a series of experiments in which
all input directions were employed, a correlation between RMS curvature and control
performance might be found.

One way of addressing directionality is to calculate the curvature of the process
input-output map in a specific direction. Nonlinearity can be calculated in directions in
which inputs move the process to a new steady state, or return the process to steady state
after a disturbance is introduced. First, we determine the steady-state direction in which
manipulated variables must move to produce a desired response, such as rejecting a
disturbance, or changing the polyethylene grade. The input moves are calculated from
the linearized steady-state model of the form (in deviation variables):

y=Vu+V,d

Enforcing the set point, y=0, requires:

u=-vV'vd
where V is the steady-state process gain matrix, and Vq is the disturbance gain matrix,
both at the steady-state point of linearization. Vector d is the disturbance vector. Next,
the local curvature of the model is assessed in the given input direction. Finally, the
directional curvature is compared with the normalized IAE value obtained.

For brevity, we have chosen to examine the directional curvature relating to the
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disturbance rejection of a change in the parameter values of a.x and b. Each of the two

disturbances, a« and b, are introduced independently.

The directional curvatures of the process model are shown in Table 5.4. Notice

the difference in the curvatures for each disturbance.

Grade Directional Normalized IAE Normalized IAE Normalized IAE

Curvature InMI Density Production Rate
Disturbance: a.y

J(20) 0.0747 96.3 64.9 -0.0262

E(20) 0.0942 38.8 574 -0.0196

1(30) 0.152 452 50.7 0.0043

Disturbance: b

1(20) 0.000648 1.23 0.575 0.754

E(20) 0.000679 0.0793 1.00 0816

1(30) 0.00632 -0.334 0.409 4.86

Table S.4. Directional curvatures and control performance for the rejection of
disturbances in concentration of active sites in the catalyst, and bleed stream flow rate.

We see that at any one point, the two disturbances affect the process in completely
different ways. The a.: disturbance causes the process to experience much more
nonlinearity than the disturbance in bleed flow rate, which supports the idea that
directionality may play a major role in predicting control performance.

The results from Table 5.4 above are plotted in Figure 5.10 for visual comparison
purposes. Unfortunately, the results are no more encouraging than those obtained for the
RMS curvature comparisons. For each disturbance, no trend that might support a theory
that curvature can be a predictor of control performance is seen. The results look almost
randomly assigned.

The directional curvatures were calculated based on the steady-state input
solution. However, the dynamic model actually moves the process through many
different input directions to return the process to steady state under the error trajectory

specification. Perhaps the steady-state approximation of the control moves required is a
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poor one, which makes the directional curvature calculated inaccurate. Therefore,
another difficulty arises; although an approximate input direction based on a linearized
steady-state solution can be calculated, valuable dynamic information is missing, which
begs the question, should we be addressing dynamic nonlinearity as opposed to steady-

state measures of curvature?

Normalized IAE Values for the a_, Disturbance
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Figure 5.10. The relationship between the directional curvature and the normalized IAE
value for independent disturbances in a,; and b.
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5.6.3 Multivanable Nature of the Model

A further consideration is to develop a unifying performance index that takes into
account all process outputs and their corresponding contributions to the overall size of the
grade change. For example, a performance index measured for a grade change in which a
large melt index change, and small density and production rate changes occur, will be
influenced primarily by the performance of the melt index. To fairly judge all outputs in
a performance measure, the scaled values of the outputs are considered cumulatively;
each output is scaled relative to the deviation of its nominal trajectory in the grade

changeover (as in the scaling matrix S in Chapter 4). This newly developed performance

measure is:
[ A D - IAD‘I‘(I‘H )chkd + [ADD.SCG‘!d + IADPR scaled
- IAEln(M ).nom scaled + IAEp.nom.:caled + ] AE PR .nom scaled
IAD,_,_.,
where IAD, s ccated = =7
‘ output range during grade change
IAE lAE

output scaled =

output range during grade change
The grade transition study of the transformed model is revisited. The grade

transitions are listed in Table 5.5.

Grade RMS TADum
Transition curvature
value

J-K-G-K 0.625 236
0-Q-R-O 1.03 0.400
D-H-I-D 1.63 0.335
C-A-B-C 2.34 1.90
N-L-M-N 3.47 6.64
S-T-P-T 435 1.64

Table 5.5. Grade transitions for the transformed model, the associated curvatures and
cumulative normalized IAD values resulting from choosing linear, over nonlinear control.
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To prevent confounding the problem with bound saturation issues, the MV bounds were
removed in the simulations considered in this section. The simulation results are given in

Figure 5.11.

Cumulative, Normalized IAD vs. Curvature

i

0.625 1.03 1.62 2.34 3.43 4.34
RMS Curvature

Figure 5.11. The normalized and cumulative performance measure is shown relative to
the RMS curvatures. These values are based on simulations in which bound saturation

did not occur.

As seen, there is no trend in the [AD.m values with respect to RMS curvature. However,

many plausible reasons still exist for the unexpected results.

5.7 Conclusions and Recommendations

In this chapter the development of the control law was presented and the
technique used to tune the nonlinear and linear multivariable controllers was illustrated.

The control performance was assessed for several situations.
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First, the relative controller performance was compared against the curvature of
the transformed model. It was determined that no trend exists among RMS curvature and
normalized [AD for grade transitions. A possible explanation is that the manipulated
variable bound saturation was confounding the model nonlinearity with an imposed
system constraint. For disturbance rejection, no evidence was found of a link between
RMS curvature and control performance. One explanation of this lack of correlation is
that the choice of control scheme (second-order type response specified) and performance
measure may not have been suitable to be used concurrently.

The performance of the transformed model was examined relative to the
performance of the same controllers on the much more nonlinear nominal model. Once
again, there appeared to be no relationship between RMS curvature and control
performance.

Some possible explanations for the incongruity between RMS curvature and
normalized IAD and IAE values were presented. These explanations included such
possible causes as manipulated variable saturation, choice of performance measure and
control structure, the multivariable nature of the model, the effect of directionality, the
form of the steady-state map, and the steady-state nature of the RMS curvature measure.

Three of these possible causes were investigated briefly. Manipulated variable
saturation does not appear to be an issue in this instance, as grade transition simulation
results for each case (bounded and unbounded manipulated variables) resulted in similar
results. We also performed a preliminary examination of directionality within the model.
It was determined that the technique of ascertaining directional curvature yielded no link

between it and normalized IAD values. However, it must be noted that the method for
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evaluating directional curvatures employed a steady-state linear solution, which may not
have been suitable. Finally, a new normalized cumulative performance measure was
introduced, where the contribution of each output was weighted depending on the size of
the set point change for each output. Analysis of the IAD..nm for six grade transition
studies (in the absence of manipulated variable saturation) produced inconclusive results
in that no trend was detected between the performance and curvature.

Some recommendations for future work include investigating the steady-state
curvature of the inverse map, since it more directly predicts the nonlinearity of inputs,
given outputs. In addition, the dynamic curvatures should be assessed when dealing with
models having dynamic portions. As well, the steady-state and dynamic investigations
should perhaps be performed on a SISO system to avoid confusion arising from
multivariable issues. Future considerations may include choosing a different control
scheme, one that doesn't employ second-order dynamics for use with the given
performance measure; alternatively, another choice of performance measure might be

more appropriate for this type of control specification.
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Chapter 6

Conclusions, Recommendations and

Contributions

With the wealth of research being done in nonlinear control, coupled with the
inherent nonlinearity present in most processes, and the potential benefits gained by
nonlinear control, one would expect less reluctance among practitioners to implement
nonlinear control. However, because of the design, implementation and maintenance
demands of such control schemes, a curvature quantification measure would be a useful
tool for practitioners to help determine whether the benefits of a nonlinear control scheme
outweigh the efforts incurred. Of particular interest is how curvature translates to
performance degradation of linear controllers.

Such a measure is the objective of Guay et al's (1995) RMS measure of
curvature, which has been applied to McAuley et al's (1990) and McAuley and
MacGregor's (1991, 1993) model of gas-phase fluidized-bed polyethylene production in
this thesis. The main objectives of this work are to assess steady-state nonlinearity of
polyethylene product property using Guay et al.'s (1995) steady-state curvature measure
and the polyethylene model. Furthermore, the expectation is to determine whether the
curvature calculated predicts linear control performance degradation, relative to nonlinear
control. Additionally, practical implementation issues for the curvature measure are

addressed, and recommendations for future considerations in this area are provided.
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6.1 Summary and Conclusions

Background for this thesis work is given in Chapter 2. The gas-phase
polyethylene reactor model and equipment are detailed. As well, background on the
calculation and visualization of the RMS curvature measure of Guay et al. (1995) is
given, key points of this work being the examination of the geometry of the steady-state
locus. Second-order derivative information is decomposed into tangential and normal
components and a technique for scaling is described, enabling a scale-independent
measure of nonlinearity. The effects of interaction and nonlinearity of the geometry of
the steady-state locus are also discussed. Chapter 2 also provides information on error-
trajectory controller design, which is the control choice in this work.

Previous work in the area of nonlinearity assessment (e.g., Guay et al., 1995,
Allgower, 1995, Stack and Doyle III, 1997b) has been illustrated using small examples.
A detailed comparison between steady-state RMS curvature and controller performance
degradation for an industrial process has not previously been conducted. In Chapter 3, a
comprehensive study is offered by examining major components of an industrial process
example, namely state property behaviour of the polyethylene reactor model. Examples
detail the calculation of RMS curvature, its effect on the visualization of the steady-state
locus, and provide an interpretation of the elements of the relative curvature array.
Visualization of curvature (and interaction) is easily achieved by virtually reducing the
dimensionality of the model by examining 2x2 portions at a time.

In Chapter 4, the nonlinearity of properly scaled regions within the polyethylene
model is assessed.

» Conclusion i: The six regions chosen for grade transition studies in the transformed
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model display moderate curvatures ranging from crys=0.625 to crums=4.35, while the
same six transitions within the nominal model result in curvatures in the range
6.70<crms<117.

e Conclusion ii: For the steady-state regulation about a point, the curvature of the
transformed model is examined for three points, yielding a curvature range of
0.476<crms<4.27. The curvature of the nominal model is compared to that of the
transformed model at point J(20), with the nonlinearity of the nominal model being much
larger (crms=57.8) than that of the transformed model (crms=0.476).

 Conclusion iii: For all regions assessed, the nominal model displays a higher degree of
curvature than the transformed model, thus supporting the general practice in industry of
considering the transformed melt index, rather than melt index directly.

The aim in Chapter 5 is to consider the nonlinearity measures obtained in Chapter
4 and apply control to the corresponding operating regions. The performance of a linear
control scheme relative to a nonlinear controller is compared to the earlier computed
RMS curvature value. The objective was to find a relationship between RMS curvature
and linear performance such that the success or failure of linear control could be
predicted by the curvature measure.

Six grade transition studies within the transformed model are examined, and one
additional grade transition simulation is studied for the corresponding nominal model.
As well, disturbance rejection studies are examined, three using the transformed model,
and one using the nominal model. It was expected that the chosen performance index,
which quantifies the performance difference between linear and nonlinear controllers,

would increase as RMS curvature of the grade regions increased. The performance index
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for grade transition studies, the IADom, is defined as the difference between the degrees
of deviation (from the specified controlled variable trajectory) of linear and nonlinear
controllers, normalized by the nominal size of the transition. Similarly, for disturbance
rejection studies, the performance is assessed by the IAE,om, which is the difference
between the degrees of deviation (of the controlled variable from set point) of linear and
nonlinear controllers, standardized by the nominal size of the disturbance effect.

» Conclusion iv: No general trend exists between values of the performance index and
curvature values. There is no conclusive evidence supporting the theory that RMS
curvature i5 a good predictor of the quality of linear control performance, relative to
nonlinear control performance. In most cases, nonlinear control outperformed linear
control; however, the degree of improvement with nonlinear control is simply not
accounted for by RMS curvature for the polyethylene example.

Several possible reasons are given for the unexpected results obtained. These
possible causes include control issues (manipulated variable bound saturation, feedback
linearization issues, and controller type, in relation to performance index), model
structure issues (its multivariable nature), and questions concerning the RMS curvature
measure (directionality, the steady-state nature of the measure, and the form of the
steady-state input-output map). As a preliminary investigation, the issues of bound
saturation in input variables, the multivariable nature of the model, and directionality
were examined. None of the investigations yielded a solution to the question of why the

RMS curvature didn't predict linear control performance degradation in our studies.
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6.2 Recommendations for Future Work

Some recommendations are given here for consideration in the future. These
suggestions result from the investigation into possible reasons for the lack of correlation

found between RMS curvature and the specified performance measure.

6.2.1 Dynamic Consideration

One must consider the dynamic nature of the process model and ascertain whether
a steady-state measure of curvature is sufficient when considering controller performance
degradation. If the process remains in a small operating region, one might expect that
perhaps dynamic nonlinearity is of less consequence in that although the nature of the
dynamic character could change over an area, it is less likely in small regions. However,
in the simulations presented in this thesis, the steady-state measure was not capable of
predicting control performance. Therefore, dynamic nonlinearity must also be addressed.

An additional consideration may be to ascertain whether the nonlinearity resides
only in the steady-state portion of the model, or if the dynamics are also nonlinear. It is
conceivable that if the steady-state portion contains all or most of the nonlinearity, then

RMS curvature might be more indicative of linear control performance degradation.

6.2.2 Consider Inverse Map

Guay et al. (1995) suggest assessing the nonlinearity of the steady-state inverse
map as opposed to the input-output map. The nonlinearity of a controlled process is more
directly related to the ability to predict input, given a desired output, whereas open-loop

nonlinearity more directly predicts the nonlinearity of output, given input. Therefore,
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further consideration might be given to assessing steady-state nonlinearity of the inverse

map.

6.2.3 Directionality

RMS curvature is a measure that is averaged over all input directions. Therefore,
perhaps the region in which the curvature was calculated did not accurately reflect the
directions in which the process would be perturbed, since only a few directions were
actually realized in this narrow assessment of a few simulations. Although additional
work was done in assessing the importance of directionality, the curvature was calculated
for a steady-state change in inputs required to return the process to set point, given a
disturbance. In actuality, the process responded dynamically in many additional input
directions to return to steady state, thereby exposing the process to different curvatures
than those accounted for by the curvature calculation for the given direction. A resulting
recommendation is that a more thorough simulation study in which many more directions
are included may reveal a relationship between RMS curvature and linear control

performance degradation.

6.2.4 Multivariable Nature of the Model

Due to the multivariable nature of the model, it is difficult to discern the effect of
nonlinearity on individual outputs, or on the sum of outputs as a whole because RMS
curvature is a measure averaged over all outputs. An attempt was made to define a
performance measure, IAD.,,, which would allow for a measure of the culminated effect

of nonlinearity on all outputs. However, a relationship between IAD., and RMS
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curvature failed to reveal itself. Therefore, to enable a clearer investigation between
RMS curvature and performance, perhaps a good starting point might be to assess the
curvature of SISO systems. Alternatively, one might develop a different controller

performance index.

6.2.5 Scaling

The scaling used in this work was defined by a non-rotated ellipse, defined in the
output space. In fact, it is likely that an ellipse that approximates the region of operation
in the output space best is rotated relative to the output coordinates axes. Such an ellipse
results in different scaling, which may affect in turn the RMS curvature. Because rotated
ellipses may have been more appropriate, further investigations in this respect are

advisable.

6.2.6 ISE-Based Performance Index
A more appropriate performance index may have been based on the integral of the
squared error (ISE). Because the scaling in this work is based on an ellipse, the ISE may

have been more consistent with such an underlying quadratic nature.

6.2.7 Anti-reset Windup

A possible complicating factor in this work may have been the existence of reset
windup, as the integral term in the controllers accumulated error. Integral windup may
result in degraded control performance; therefore, future work in this area should

eliminate reset windup, or account for it (e.g. by using a velocity form of a control law)
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6.2 Contributions

The following contributions to chemical engineering have been provided by the

author.

6.3.1 Application of RMS Curvature Measure

Through this thesis work, it has been discovered that the application of steady-
state RMS curvature must not be done blindly. One must not expect that RMS curvature
will predict linear control performance, but rather it is only an averaged general measure
of gain nonlinearity. It was determined in this study that large values of RMS curvature
do not necessarily result in large degradations in linear control performance. Conversely,
regions displaying mild curvature can suffer very large performance losses when
controlled by linear techniques. Clearly, there exist other factors at work in the

assessment of curvature, than simply the implementation of the RMS curvature measure.

6.3.2 Nonlinearity Assessment of the Polyethylene Model

The nonlinearity of several regions of the gas-phase polyethylene model was
measured within both the state space and the output space. The assessment focussed on
the nonlinear product property behaviour described by the model. Curvature values
determined for the regions of interest range in nonlinearity from mild to severe. In
addition to quantitative assessment, qualitative assessment explained the effect of
nonlinearity on the orientation, spacing and bending of constant input lines on the steady-
state locus. A detailed investigation such as this for an industrial example has not

previously been reported in the literature.
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6.3.3 The Polyethylene Model as a Learning Tool

It was determined that the gas-phase polyethylene model is a rich model in terms
of the variety of the degree of inherent nonlinearity present in the model. Regions in the
polyethylene model display any of mild, moderate, or severe nonlinearity. As a result,

this model is a powerful teaching tool for learning RMS measures of nonlinearity.

6.3.4 Decreased Nonlinearity of the Transformed Model

A contribution that might be of particular interest to practitioners is that
quantitative evidence has been found supporting the claim that the logarithm transform of
melt index reduces the degree of nonlinearity of the model. In most cases, the
nonlinearity of the model was significantly reduced by the transformation. Therefore,
practitioners' use of the transformed model, as opposed to the nominal model, is further

validated.

6.3.5 Evidence of Robustness of Linear Control

There exists much reluctance in industry to implement nonlinear control
techniques, because oftentimes, linear controllers perform with much more robustness
than would be expected, even under highly nonlinear conditions. In this thesis, more
evidence of this phenomenon was found, in that under highly nonlinear conditions, in

some cases the linear controller performed on par with the nonlinear controller.

6.3.5 Insights and Explanations

While a relationship between RMS curvature and linear control performance was

137



not found, many insights and plausible explanations have been offered, as well as
directions and recommendations for future work. The most promising direction of

research is likely to be the examination of dynamic nonlinearity assessment.
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Appendix A

Additional Information

A.l1 Error-Trajectory Specification of the Nominal Model in
Equation 5.2
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dh _dh dh dh, . dh
Feat=1/acu*(Bs*PRep* S0 * T2 _ByapRy* T+ Zh g sppe S0 « L g spRs=
cat=1/aca*(B3*PRsp l 2 B3*PRy, &, 1 B3 | ) B3
dh dh, dh,  dn, '
—= PR_(1)— PR(OM!t * —*—-yv;*|{(PR_ (1) - PR Mt * ...
L !( ()~ PR(OM o {( ROEZ0)%
dh  dh, dhy dh ., dh dh o, dh  dh , |
2. = - haada B 1) -p(t) Mt +...
de, dx dx, dx ey dx, dx szd‘z dx, v ?‘:0)’?() o )}1
th* . dh, dh, “ dh,  dh,
In p ™ - *B,*InVvi)* =+ —= %y ¥ .
e, B1*In(MI)p ., e, B1*In(hil) ., |, Y1
% dh, dh dh, _dh dh dh
In(MI),, (1) - In(MIYOYe * T2 - Zo3 weq3r T x D0 T weq3n T o Ty
!(n( ), (1) — In(MI (1) )d R b e el L el
(( d'I tdhz dhl td':'. )t 3).
dx, dx, e, dx,  dx,
where

eql=1/Vg*(-kh*Y*H,-H,*b/Ct-g|*H,)
eq2=1/(Vg+Vs)*(-kp2*Y *M-M*b/Ct-S*M,*Y*(kp | *M1*mw, +kp2*M,*mw;))
eq3=-Y**(kp1*M1*mw,+kp2*M,*mw;)/Bw/1000000-kd*Y

and gxh' , 1,j=1..3, are as in Appendix A.1l
J

A.3 Simulation Figures

The simulation figures denoted in Chapter S are given in this appendix.
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Grade Transition S-T-P-T - Nonlinear Control
(Transformed Model)
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Figure A3.1.a. Simulation of the S-T-P-T grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error-
trajectory specification.
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Grade Transition S-T-P-T - Nonlinear Control
(Transformed Model)
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Figure A3.1.b. Simulation of the S-T-P-T grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated

variable bound.

146



Grade Transition S-T-P-T - Linear Control
(Transformed Model)
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Figure A3.1.c. Simulation of the S-T-P-T grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.
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Grade Transition S-T-P-T - Linear Control
(Transformed Model)
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Figure A3.1.d. Simulation of the S-T-P-T grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Grade Transition D-H-I-D - Nonlinear Control
(Transformed Model)
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Figure A3.2.a. Simulation of the D-H-I-D grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error
trajectory specification.
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Grade Transition D-H-1-D - Nonlinear Control
(Transformed Model)

Hydrogen Flowrate
(mol/h)
[- ]
8
o

0 50 100 150 200
Time (h)

o v e e e s e - . v . = . e - e S e T et —— o —— ame o mad

Butene Flowrate (mol/h)

o 50 100 150 200
Time (h)

Catalyst Flowrate (kg/h)
»

0 50 100 150 200
Time (h)

Figure A3.2.b. Simulation of the D-H-I-D grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated
variable bound.
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Grade Transition D-H-I-D - Linear Control
7 (Transformed Model)
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Figure A3.2.c. Simulation of the D-H-I-D grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.
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Grade Transition D-H-I-D - Linear Control
(Transformed Model)
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Figure A3.2.d. Simulation of the D-H-I-D grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Grade Transition C-A-B-C - Nonlinear Control
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Figure A3.3.a. Simulation of the C-A-B-C grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error-
trajectory specification.
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Grade Transition C-A-B-C - Nonlinear Control
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Figure A3.3.b. Simulation of the C-A-B-C grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated
variable bound.
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Grade Transition C-A-B-C - Linear Control
(Transformed Model)
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Figure A3.3.c. Simulation of the C-A-B-C grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.
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Grade Transition C-A-B-C - Linear Control
(Transformed Model)
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Figure A3.3.d. Simulation of the C-A-B-C grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable

bound.

156



Grade Transition J-K-G-K - Nonlinear Control
120 (Transformed Model)
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Figure A3.4.a. Simulation of the J-K-G-K grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error-
trajectory specification.
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Grade Transition J-K-G-K - Nonlinear Control
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Figure A3.4.b. Simulation of the J-K-G-K grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated
variable bound.
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Grade Transition J-K-G-K - Linear Control
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Figure A3.4.c. Simulation of the J-K-G-K grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.
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Grade Transition J-K-G-K - Linear Control
(Transformed Model)
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Figure A3.4.d. Simulation of the J-K-G-K grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Grade Transition O-Q-R-O - Nonlinear Control
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Figure A3.5.a. Simulation of the O-Q-R-O grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error-
trajectory specification.

161



Grade Transition O-Q-R-O - Nonlinear Control
(Transformed Model)
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Figure A3.5.b. Simulation of the O-Q-R-O grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated
variable bound.
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Grade Transition 0-Q-R-O - Linear Control
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Figure A3.5.c. Simulation of the O-Q-R-O grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.

163



Grade Transition O-Q-R-O - Linear Control
(Transformed Model)
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Figure A3.5.d. Simulation of the O-Q-R-O grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable

bound.
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Grade Transition N-L-M-N - Nonlinear Control
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Figure A3.6.a. Simulation of the N-L-M-N grade transition, under nonlinear control of
the transformed model. Dashed line: set point. Thick line: output. Thin line: error-
trajectory specification.
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Grade Transition N-L-M-N - Nonlinear Control
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Figure A3.6.b. Simulation of the N-L-M-N grade transition, under nonlinear control of
the transformed model. Solid line: manipulated variable. Dashed line: manipulated
variable bound.
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Grade Transition N-L-M-N - Linear Control
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Figure A3.6.c. Simulation of the N-L-M-N grade transition, under linear control of the
transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory
specification.
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Grade Transition N-L-M-N - Linear Control
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Figure A3.6.d. Simulation of the N-L-M-N grade transition, under linear control of the
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Disturbance Rejection at J(20) - Nonlinear Controi
(Transformed Model)
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Figure A3.7.a. Simulation of disturbance rejection at point J(20), under nonlinear
control of the transformed model. Solid line: controlled variable. Dashed line: set point
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Disturbance Rejection at J(20) - Nonlinear Control
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Figure A3.7.b. Simulation of disturbance rejection at point J(20), under nonlinear
control of the transformed model. Solid line: manipulated variable.
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Disturbance Rejection at J(20) - Linear Control
(Transformed Model)
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Figure A3.7.c. Simulation of disturbance rejection at point J(20), under linear control of
the transformed model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at J(20) - Linear Control
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Figure A3.7.d. Simulation of disturbance rejection at point J(20), under linear control of
the transformed model. Solid line: manipulated variable.
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Disturbance Rejection at E(20) - Nonlinear Control
(Transformed Model)
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Figure A3.8.a. Simulation of disturbance rejection at point E(20), under nonlinear
control of the transformed model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at E(20) - Nonlinear Control
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Figure A3.8.b. Simulation of disturbance rejection at point E(20), under nonlinear
control of the transformed model. Solid line: manipulated variable.
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Disturbance Rejection at E(20) - Linear Control
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Figure A3.8.c. Simulation of disturbance rejection at point E(20), under linear control of
the transformed model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at E(20) - Linear Control
Transformed Model
6000 ( )
[ —n
& 5000 - ~ \
d
3 = 4000 -
't 3 3000 -
SE
© ~ 2000 -
j4
£ 1000 |
0 . . . _
0 50 100 150 200 250 300
Time (h)
30000
r
S25000f T~
£ ——
S 20000 -
§ 15000 -
o
W
> 10000 -
S
= 5000
m
0 y . x [
0 50 100 150 200 250 300
Time (h)
6
=
> 5 ——\
=
2 4 —
il
HER
TS
% 2]
>
[}
1]
[&]
0 T 1 4 Ls T
0 50 100 150 200 250 300
Time (h)

Figure A3.8.d. Simulation of disturbance rejection at point E(20), under linear control of
the transformed model. Solid line: manipulated variable.

176



Disturbance Rejection at I(30) - Nonlinear Control
(Transformed Modet)
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Figure A3.9.a. Simulation of disturbance rejection at point I(30), under nonlinear
control of the transformed model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at [(30) - Nonlinear Control
(Transformed Model)
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Figure A3.9.b. Simulation of disturbance rejection at point I(30), under nonlinear
control of the transformed model. Solid line: manipulated variable.
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Disturbance Rejection at I(30) - Linear Control
(Transformed Model)

2.06
2.05 -
2.04 -
2.03
2.02
2.01

24+ .. MNP -
1.99 | \[
1.98

1.97

Melt Index (g/10 min)

0 50 100 150 200 250 300
Time (h)

Density (g/cm®)

0 50 100 150 200 250 300
Time (h)

Production Rate (t/h)

20

0 50 100 150 200 250 300
Time (h)

Figure A3.9.c. Simulation of disturbance rejection at point I(30), under linear control of
the transformed model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at I(30) - Linear Control
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Figure A3.9.d. Simulation of disturbance rejection at point [(30), under linear control of
the transformed model. Solid line: manipulated variable.
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Grade Transition J-K-G-K Nonlinear Control
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Figure A3.10.a. Simulation of the J-K-G-K grade transition, under nonlinear control of
the nominal model. Dashed line: set point. Thick line: output. Thin line: error-trajectory

specification.
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Grade Transition J-K-G-K Nonlinear Control
{Nominal Model)
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Figure A3.10.b. Simulation of the J-K-G-K grade transition, under nonlinear control of
the nominal model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Grade Transition J-K-G-K - Linear Control
Nominal Model
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Figure A3.10.c. Simulation of the J-K-G-K grade transition, under linear control of the
nominal model. Dashed line: set point. Thick line: output. Thin line: error-trajectory

specification.
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Grade Transition J-K-G-K - Linear Control
(Nominal Model)
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Figure A3.10.d. Simulation of the J-K-G-K grade transition, under linear control of the
nominal model. Solid line: manipulated variable. Dashed line: manipulated variable
bound.
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Disturbance Rejection at J(20) - Nonlinear Control
(Nominal Model)
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Figure A3.11a. Simulation of disturbance rejection at point J(20), under nonlinear
control of the nominal model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at J(20) - Nonlinear Control
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Figure A3.11.b. Simulation of disturbance rejection at point J(20), under nonlinear

control of the nominal model. Solid line: manipulated variable.

186




Disturbance Rejection at J(20) - Linear Control
(Nominal Model)
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Figure A3.11c. Simulation of disturbance rejection at point J(20), under linear control of
the nominal model. Solid line: controlled variable. Dashed line: set point.
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Disturbance Rejection at J(20) - Linear Control
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Figure A3.11d. Simulation of disturbance rejection at point J(20), under linear control of
the nominal model. Solid line: manipulated variable.
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Appendix B

Program Code

This appendix contains the Maple™ and Matlab™ code used for computations in this
thesis. Additional information considering these routines can be obtained from Jim
McLellan (mclellnj@chee.queensu.ca).

B.1 Maple™ Code

The Maple™ (Maple V Release 5) code (filename GRADE_SPECcurvinMI.mws) shown
below was employed to calculated the RMS curvature of the product properties of the
polyethylene reactor model. In addition, this worksheet calculates directional curvature
and RGA information.

GRADE_SPECcurvinMI.mws

This worksheet calculates the curvature of the In(Melt Index) and Density model..
[H2] (=) mol/L, [M2] (=) mol/L, Y(=) mol, Bw (=) Tonnes, MI(=)g/10 min,
Density(=)g/mL, PR (=) Tonnes’h

> restart;

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

ENTER THE GRADE AND PRODUCTION RATE AT WHICH RMS IS TO BE
CALCULATED.

> |InMI:= In(100):

> rho:=0.929:

> PR:=20:

Specify half-ranges of outputs:

> halfrangelnMI:=0.0620:

> halfrangerho:=0.001:

> halfrangePR:=3:

For the directional curvatures, must enter the input direction of interest (in original input
coordinates):

> e_original:=vector(3,[2876,8677,8.626])):

MODEL EQUATIONS

These are the governing equations for [H2], [M2], and Y, respectively. This form of the
model assumes perfect bed weight control, constant ethylene inflow. 'f' the time
derivative of state x, equals zero.
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> f1:=(1/Vg)*(FH2-kh*Y(FH2,FM2, Fcat)*H2(FH2,FM2, Fcat)-H2(FH2,FM2 Fcat)®b/Ct-
gl*H2(FH2,FM2, Fcat)):

> £2:=1/(Vg+Vs)*(FM2-kp2*Y(FH2,FM2, Fcat)*M2(FH2,FM2 Fcat)-

M2(FH2,FM2, Fcat)*b/Ct-

S*M2(FH2,FM2 Fcat)*Y(FH2,FM2,Fcat)*(kpl *M1*mw1+kp2*M2(FH2,FM2,Fcat)*m
w2)):

> f3:=Fcat*acat-

(Y(FH2,FM2, Fcat))"2*(kp!1 *M 1 *mw1+kp2*M2(FH2 FM2 Fcat)*mw2)/1000000/Bw-
kd*Y(FH2,FM2 Fcat):

These next equations are going to be used to calculate the steady state values, given a set
of inputs.

> flo:=(1/Vg)*(FH20-kh*Yo*H20-H20*b/Ct-gl*H20):

> f20:=1/(Vg+Vs)*(FM2o0-kp2*Yo*M20-M20*b/Ct-
S*M20*Yo*(kp1*MI1*mwl+kp2*M20*mw2)):

> f3o:=Fcato*acat-Yo"2*(kp1*M1*mwl+kp2*M20*mw2)/1000000/Bw-kd*Yo:
Enter the nonlinear mapping of states to outputs. Keep these states separate from those
above because here we are only differentiating with respect to x, not u, so the states don't
have to be in the form X(FH2, FM2, Fcat);

yl = InMI, y2=density, y3 = production rate,

> y1:=3.5*In(k0+k1*M2/M1+k3*H2/M1):

> y2:=p0+pl*yl-(p2*M2/M1)"p4:

> y3:=Y*(kpl *MI1*mwl+kp2*M2*mw2)/10"6:

PARAMETERS AND CONSTANTS

> kh:=0.28*3600: b:=18571: acat:=0.000304*3600: kp1:=84*3600: M1:=0.259634:
mw1:=28.05: mw2:=56.12: kp2:=10.68*3600:g1:=3600*10"(-12): kd:=3600*0.0001:
Vg:=423747.3: Vs:=151121.9: S:=0.0021589: Ct:=0.711: Bw:=70:

> k0:=0.40: k1:=1.50: k3:=2.20: p0:=0.96: p1:=0.0025: p2:=0.007: p4:=0.5:

GIVEN THE SPECIFIC GRADE AT THE BEGINNING, CALCULATE
CORRESPONDING INPUTS

> Y 1:=3.5*In(kO+k1*M2_/M1+k3*H2_/M1)-InMI:

> Y2:=p0+p 1 *InMI-(p2*M2_/M1)"p4-rho:

> Y3:=Y_*(kpl*M1*mwl+kp2*M2_*mw2)/1000000-PR:

> states:=solve({Y1,Y2,Y3},{H2 M2 )Y _}):

> assign(states):

> dx1dt:=(1/Vg)*(FH2_-kh*Y_*H2_ -H2 *b/Ct-gI*H2 ):

> dx2dt:=1/(Vg+Vs)*(FM2_-kp2*Y_*M2_-M2_*b/Ct-

S*M2_*Y *(kpl*MI1*mwl+kp2*M2_*mw2)):

> dx3dt:=Fcat_*acat-(Y_"2*(kp1 *M1*mwl+kp2*M2_*mw2)/Bw/1000000)-kd*Y_:
> inputs:=solve({dx1dt,dx2dt,dx3dt},{FH2 jFM2  Fcat_}):

> assign(inputs);

SOLVE THE STEADY STATE EQUATIONS

Enter the values of the inputs here:

> FH2o0:=FH2_; FM20:=FM2_; Fcato:= Fcat_;

FH2o0 := 12044.22857
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FM2o0 :=26609.17812

Fcato ;= 5.027962624

> #FM2o0 = 40869.72025; Fcato := 6.869317124; FH20 :=4511.316867,
> ss:=solve({fl0,f20,f30},{H20,M20,Yo0}):

> assign(ss):

> H20;M20:;Yo;

.3470013941
06703560091

8.521729219

FIRST DERIVATIVE INFORMATION

We have a model of the form y=h(x) where x=F(u). So y=h(F(u)). Solve for
dy/du=dh/dx*dx/du.

Differentiate h(x)

> x:=vector(3,[H2,M2,Y]):

> y:=vector(3,[yl,y2,y3]):

> dhdx:=jacobian(y,x):

Now change the above matrix so that the states appear as a function of inputs. We will
need it in this form so that we can use the relation dy/du=dh/dx*dx/du

>

dhdx:=matrix([[29.65713273*1/(.40+5.777363519*M2(FH2,FM2 Fcat)+8.473466495*H
2(FH2,FM2,Fcat)),20.22077232*1/(.40+5.777363519*M2(FH2,FM2,Fcat)+8.473466495
*H2(FH2,FM2,Fcat)),0],[.7414283183e-
1*1/(.40+5.777363519*M2(FH2,FM2,Fcat)+8.473466495*H2(FH2,FM2 Fcat)),.505519
3079e-1*1/(.40+5.777363519*M2(FH2,FM2 Fcat)+8.473466495*H2(FH2,FM2,Fcat))-
.8209907090e-

1*1/((M2(FH2,FM2,Fcat))".5),0],[0,2.157701760* Y(FH2,FM2 Fcat),2.202298671+2.15
7701760*M2(FH2,FM2,Fcat)]]):

Now find the derivatives dx/du:

> u:=vector(3,[FH2, FM2, Fcat]):

> f:=vector(3,[fl1,£2, f3]):

> alias(AdH2dFH2=diff{lH2(FH2, FM2, Fcat), FH2), AdH2dFM2=diff{H2(FH2, FM2,
Fcat), FM2), AdH2dFcat=diffH2(FH2, FM2, Fcat), Fcat), AdM2dFH2=diffiM2(FH2,
FM2, Fcat), FH2), AdM2dFM2=diff(M2(FH2, FM2, Fcat),
FM2),AdM2dFcat=diffiiM2(FH2, FM2, Fcat),Fcat), AdYdFH2=diffl'Y(FH2, FM2, Fcat),
FH2), AdYdFM2=diff{Y(FH2, FM2, Fcat), FM2) AdYdFcat=dif Y(FH2, FM2, Fcat),
Fcat));
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I, AdH2dFH2, AdH2dFM2, AdH2dFcat, AAM2dFH2, AdM2dFM2, AdM2dFcat,
AdYdFH2, AdYdFM2, AdYdFcat

> dfdu:=jacobian(f,u):

The following command was executed in order that I might copy the output and place it
in my command line. I then change the aliased vanables into ones that haven't been
aliased, and used the assign command. Note that because the governing equations don't
change, I executed the solve command once, and then copied the output. To speed up
calculation during worksheet execution, I have made the following a comment line.

> #sol1:=solve({dfdu[1,1], dfdu[1,2], dfdu[1,3], dfdu[2,1], dfdu[2,2], dfdu[2,3],
dfdu[3,1], dfdu[3,2], dfdu[3,3]}, {AdH2dFH2, AdH2dFM2, AdH2dFcat, AAM2dFH2,
AdM2dFM2, AdM2dFcat, AdYdFH2, AdYdFM2, AdYdFcat});

Now I copy the output from the above calculation so that I can assign new names to the
solution.

>soll = {dH2dFM2 =

.2232111945e35*H2(FH2,FM2,Fcat)* Y(FH2,FM2,Fcat)"2/(.1968521104e40* Y (FH2,F
M2 Fcat)*3+.1388835967e40*Y(FH2,FM2,Fcat)"3*M2(FH2,FM2 Fcat)+.6346144001¢e4
1*Y(FH2,FM2,Fcat)"2+.3958263150e41*M2(FH2 FM2 Fcat)*Y(FH2,FM2, Fcat)"2+.32
94846793e42*Y(FH2,FM2, Fcat)+.3119328896e39*Y(FH2,FM2 Fcat)"3*M2(FH2,FM2,
Fcat)"2+.9314843171e41*Y(FH2,FM2, Fcat)*M2(FH2,FM2 Fcat)+.1764395506e42+.80
82883617e40*M2(FH2,FM2 Fcat)"2*Y(FH2,FM2, Fcat)*2), dH2dFcat = -
.4555832213e21*H2(FH2,FM2,Fcat)*(.7515195212¢20*Y(FH2,FM2 Fcat)+.454356398
4e20+.1620633817e20*Y(FH2,FM2, Fcat)*M2(FH2,FM2,Fcat))/(.1968521104e40* Y (F
H2,FM2 Fcat)"3+.1388835967e40*Y(FH2,FM2 Fcat)"3*M2(FH2,FM2 Fcat)+.6346144
001le41*Y(FH2,FM2, Fcat)"2+.3958263150e41*M2(FH2,FM2, Fcat)*Y(FH2,FM2 Fcat)*
2+.3294846793e42* Y(FH2,FM2, Fcat)+.3119328896e39*Y(FH2,FM2 Fcat)"3*M2(FH2,
FM2,Fcat)"2+.9314843171e41*Y(FH2,FM2,Fcat)*M2(FH2,FM2 Fcat)+.1764395506e4
2+.8082883617e40*M2(FH2,FM2 Fcat)"2*Y(FH2,FM2, Fcat)*2), dM2dFH2 = 0,
dM2dFM2 =

.5218578417e17*(734099557.*Y(FH2,FM2,Fcat)+719233920.* Y(FH2,FM2 Fcat)*M2(
FH2,FM2,Fcat)+4200000000.)/(.1655070443e31*Y(FH2,FM2,Fcat)"2+.1167689467¢3 1
*M2(FH2,FM2 Fcat)*Y(FH2,FM2,Fcat)"2+.1046977446e32*Y(FH2,FM2, Fcat)+.30223
64210e31*Y(FH2,FM2 Fcat)*M2(FH2,FM2, Fcat)+.5724890620e31+.2622633329e30*
M2(FH2,FM2 Fcat)"2*Y(FH2,FM2 Fcat)*2), dM2dFcat = -
.3830400000e12*M2(FH2,FM2, Fcat)*(.7515195212e20+.8103 169084e19*M2(FH2 FM
2,Fcat))/(.1655070443e31*Y(FH2,FM2 Fcat)"2+.1167689467¢3 | *M2(FH2,FM2 Fcat)*
Y(FH2,FM2,Fcat)"2+.1046977446e32*Y(FH2 FM2 Fcat)+.3022364210e3 1 *Y(FH2,FM
2,Fcat)*M2(FH2,FM2 Fcat)+.5724890620e3 1+.2622633329e30*M2(FH2,FM2, Fcat)"2*
Y(FH2,FM2,Fcat)*2), d YdFM2 = -
.1876689306e26*Y(FH2,FM2,Fcat)*2/(.1655070443e31*Y(FH2,FM2 Fcat)"2+.1167689
467e31*M2(FH2,FM2 Fcat)*Y(FH2,FM2 Fcat)*2+.1046977446e32*Y(FH2,FM2 Fcat)+
.3022364210e31*Y(FH2,FM2 Fcat)*M2(FH2,FM2 Fcat)+.5724890620e31+.262263332
9e30*M2(FH2,FM2 Fcat)"2*Y(FH2,FM2 Fcat)*2), dYdFcat =
.3830400000e12*(.7515195212€20*Y(FH2,FM2 Fcat)+.4543563984e20+.1620633817¢
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20*Y(FH2,FM2,Fcat)*M2(FH2,FM2,Fcat))/(.1655070443¢3 1 *Y(FH2,FM2, Fcat)"2+.11
67689467¢e3 1 *M2(FH2,FM2, Fcat)*Y(FH2,FM2 Fcat)"2+.1046977446e32*Y(FH2,FM2,
Fcat)+.3022364210e31*Y(FH2,FM2 Fcat)*M2(FH2,FM2 Fcat)+.5724890620e3 1 + 2622
633329e30*M2(FH2,FM2 Fcat)*2*Y(FH2,FM2 Fcat)"2), dYdFH2 = 0, dH2dFH2 =
1179948.521*1/(1189388109.*Y(FH2,FM2, Fcat)+.308197243 el 1)}:

> assign(soll);

Now form matrix dx/du:

> dxdu:=matrix(3,3,[dH2dFH2, dH2dFM2, dH2dFcat, dM2dFH2, dM2dFM2, dM2dFcat,
dYdFH2, dYdFM2, dYdFcat]):

Now perform dy/du=dh/dx*dx/du

> dydu:=evalm(dhdx&*dxdu):

SECOND DERIVATIVE INFORMATION

Now calculate the accelerations. Here dyldFH2du represents d*2 yl / dFH2du. lL.e.I am
calculating the gradient.

> dy1dFH2du:=grad(dydu{1,1], u): dyldFM2du:=grad(dydu(1,2], u):
dyldFcatdu:=grad(dydu[1,3], u): dy2dFH2du:=grad(dydu[2,1], u):
dy2dFM2du:=grad(dydu([2,2], u): dy2dFcatdu:=grad(dydu(2,3], u):
dy3dFH2du:=grad(dydu[3,1], u): dy3dFM2du:=grad(dydu(3,2], u):
dy3dFcatdu:=grad(dydu(3,3], u):

By grouping the gradients by the states that they have differentiated, we are left with
three Hessians.

> accfacel:=matrix(3,3,[dyldFH2du, dyldFM2du, dyldFcatdu]):

> accface2:=matrix(3,3,[dy2dFH2du,dy2dFM2du,dy2dFcatdul):

> accface3:=matrix(3,3,[dy3dFH2du,dy3dFM2du,dy3dFcatdu]):

NOW CALCULATE THE VELOCITY AND ACCELERATION VALUES.

> vell:=subs({FM2=FM2o0, FH2=FH2o0, Fcat=Fcato, H2(FH2,FM2, Fcat)=H2o0, M2(FH2,
FM2, Fcat)=M2o, Y(FH2,FM2 Fcat)=Yo}, evalm(dydu)):

> accl:=subs({

AdH2dFH2=vell[1,1],AdH2dFM2=vel1[1,2],AdH2dFcat=vel1[1,3], AdM2dFH2=vel 1[2,
1],AdM2dFM2=vel1[2,2]),AdM2dFcat=vel 1[2,3],AdYdFH2=vel 1{3,1],AdYdFM2=vel I
3,2]),AdYdFcat=vell[3,3],FM2=FM20, FH2=FH2o0, Fcat=Fcato,

H2(FH2,FM2, Fcat)=H2o0, M2(FH2, FM2, Fcat)=M2o, Y(FH2,FM2 Fcat)=Yo},
evalm(accfacel)):

> acc2:=subs({

AdH2dFH2=vell[1,1],AdH2dFM2=vel1[1,2],AdH2dFcat=vel1{1,3], AdM2dFH2=vel {2,
1],AdM2dFM2=vel1[2,2],AdM2dFcat=vel1[2,3],AdYdFH2=vel1(3,1],AdYdFM2=vel ||
3,2],AdYdFcat=vel1{3,3}, FM2=FM2o, FH2=FH2o0, Fcat=Fcato,
H2(FH2,FM2,Fcat)=H20, M2(FH2, FM2, Fcat)=M2o, Y(FH2,FM2 Fcat)=Yo},
evalm(accface2)):

> acc3:=subs({

AdH2dFH2=vel1[1,1],AdH2dFM2=vel1[1,2], AdH2dFcat=vel1[1,3], AdM2dFH2=vel 1 [2,
1}, AdM2dFM2=vel1[2,2],AdM2dFcat=vel 1[2,3],AdYdFH2=vel1[3,1],AdYdFM2=vel I[
3,2],AdYdFcat=vell[3,3],FM2=FM2o0, FH2=FH2o0, Fcat=Fcato,
H2(FH2,FM2,Fcat)=H20, M2(FH2, FM2, Fcat)=M2o, Y(FH2,FM2 Fcat)=Yo},
evalm(accface3)):

SCALING
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Define the output scaling matrix. ##Smatrix=(Sin)*(gain matrix)"-1
> #Smatrix:=evalm(Sin&*(inverse(vel 1)));

> Smatrix:=matrix(3,3,[ 1/halfrangelnMI,0,0,0, 1/halfrangerho,0,0,0, 1 /haifrangePR]):
Now must find the nonredundant acceleration array.

> W:=matrix(3,6,[acc1[1,1], accl[1,2], accl1[1,3], accl[2,2], accl[2,3], accl[3,3],
acc2[1,1}, ace2[1,2], acc2[1,3], acc2[2,2], acc2[2,3], acc2[3,3],acc3[1,1], acc3[1,2],
acc3[1,3], acc3[2,2], acc3[2,3], acc3[3,3]]):

> VW:=augment(vell,W):

Now scale matrix

> VWscaled:=evalm(Smatrix&*VW):

ORTHOGONALIZATION OF THE TANGENT AND ACCELERATION VECTORS
Now perform QR decomposition uning Householder Transformations as described in
Bates and Watts, pp. 286.

> el:=matrix(3,1,[1,0,0]):

> x1:=matrix(3,1,[VWscaled[1,1], VWscaled[2,1], VWscaled[3,11]]):

> magn_x1:=sqrt((x1[1,1D"2+(x1[2,1])"2 + (xI[3,1])"2 ):

> u_num:=evalm(x1+magn_x1*el):

> u_den:=sqrt((u_num(1,1])"2 + (u_num(2,1])"2+(u_num{3,1])"2):

> ul:=evalm(u_num/u_den):

> Hul:=evalm(&*()-2*ul&*transpose(ul)):

> X1:=evalm(Hul&*VWscaled):

> e2:=matrix(3, 1,[0, 1,0]):

> x2:=matrix(3,1,[0, X1[2,2], X1{3,2]]):

> magn_x2:=sqrt(x2[1,1]"2 + x2[2,1]"2 + x2[3,1]"2):

> u2 _num:=evalm(x2+magn_x2*e2):
>u2_den:=sqrt(u2_num{1,1]*2+u2_num(2,1]*2 + u2_num[3,1}"2):

> u2:=evalm(u2_num/u2_den):

> Hu2:=evalm(&*()-2*u2& *transpose(u2)):

> X2:=evalm(Hu2&*Hul &*VWscaled):

> X2:=evalm(Hu2&*X1):

> R:=X2:

Since R=Q'X and R=Hu2HulX, therefore Q'=Hu2Hul:

> Qinv:=evalm(Hu2&*Hul):

> Q:=inverse(Qinv);

[ -.9881997046 -.1531568743 .002076802599]

[ ]
Q:=[ -.1531709544 9881088667 -.01339872645]
[ ]
[ -12 ]
[.9999999980 10  -.01355872338 -.9999080755 ]

> X:=evalm(Q&*R):

> evalm(VWscaled):
NOW IN NEW ORTHOGONAL BASIS:
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Now for the curvature array. First extract the submatrix R1 from R. These are the

velocities.
> R1:=submatrix(R, 1..3,1..3);

[ -.003741247250 -.0001098194917 1.913968372 ]

[ ]
f -12 1
RI :=[-3999632305 10  -.0007982318198 2.723424064 ]
[ ]
[ -14 -11 ]
[.5423489356 10 .505 10 -.9191102806]

Now we can form the redundant acceleration array.
> Arfacel:= matrix(3,3,[R[1,4], R[1,5], R[1,6], R[1,5],R[1,7], R[1,8], R[1,6],R[1,8],
R[1,9]D);

[ -5 -6 ]
(.1952726502 10 , .1207363501 10 , -.0009167318556]
| ]

Arfacel = [ -6 -8 ]
[.1207363501 10 , .8052505115 10 , -.00004532706206]
[ ]

[-.0009167318556, -.00004532706206, -.4562158536]

> Arface2:=matrix(3,3,[R[2,4], R[2,5], R[2,6], R[2,5],R[2,7], R[2,8], R[2,6],R[2,8],
R[2,91D);

[ -16 -17 ]
[.9999080763 10 9999080763 10 0]
[ ]

Arface2 = [ -17 -8 ]
[[9999080763 10 , -.1742940708 10 , .0002438785036]
[ ]
[0, .0002438785036 , -1.259382234]

> Arface3:=matrix(3,3,[R[3,4], R[3,5], R[3,6], R[3,5],R[3,7], R[3,8], R[3,6],R[3,8],
R[3,9]]);

Arface3 =

[ -17 -18 ]
[-.1355872339 10 ,-.1355872339 10 , 0]

[ -18 -10 -5]
[-.1355872339 10 , .2681288255 10 ,-.2976333591 10 ]
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[ -5 ]
[0, -.2976333591 10 , .1845160632]

> K:=inverse(R1):
> Crl:=evalm((transpose(K))&* Arfacel & *K);

[[1395110474 02123525022 0868433008 ]

[ ]
Crl :=[.02123525021 .004154176515 .03142626530]

[ ]

(08684330096 .03142626528 -.8956422355]
> Cr2:=evalm((transpose(K))& * Arface2 & *K);

Cr2 =

[ -11 -11 -10]
[ 7143766569 10 , 3127961079 10 ,-.1212549294 10 ]

[ -11 ]
[.3127961078 10 , -.002735419193 , .3243067800]

[ -10 ]
[-.1212549294 10 , .3243067799 , .4551197253]

> Cr3:=evalm((transpose(K))&* Arface3 & *K);
Cr3 =

[ -13 -13 -12]
[-.9686925943 10 , -.4227361450 10 ,.4059266410 10 ]

[ -13 ]
[-.4227361451 10 , .00004208089038 , -.003932121018]

[ -12 ]
[.4059266408 10 |, -.003932121018,.1947512054]

ROOT MEAN SQUARE CURVATURE

Calculate RMS curvature.
> P:=3;

>
c2:=1/(P*(P+2))*(2*(Cr1[1,1]"2+Cr1[1,2]"2+Cr1[1,3]"2+Cr1[2,1}*2+Cr1[2,2]2+Cr1[2
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3172 + Crl[3,1]°2 + Cr1[3,2}"2 + Crl[3,3]"2
+Cr2[1,1]7°2+Cr2[1,2}°2+Cr2[1,3]"2+Cr2[2,11°2+Cr2(2,2]"2+Cr2[2,3]"2 + Cr2[3,1]°2 +
Cr2[3,2]°2 + Cr2[3,3]"2 +
Cr3[1,1]72+Cr3[1,2]72+Cr3[1,3}72+Cr3[2,1]°2+Cr3[2,2]"2+Cr3[2,3]"2 + Cr3[3,1]*2 +
Cr3[3,2]°2 + Cr3[3,3]72)+(Crl1[1,1] +Cr1[2,2]+Cr1[3,3])"2
+(Cr2[1,1]+Cr2[2,2]+Cr2[3,3])"2+(Cr3[1, 1]+Cr3[2,2]+Cr3[3,3])2);

c2 :=.2265465463
> RMS:=sqrt(c2);
RMS :=.4759690602

Now check to see if this method of calculating RMS is correct. Compare to Jim's

calculation below.
>

c2Jim:=eval(1/P/(P+2)*sum(*2* sum(sum(Cr.ii(jj,k]"2,k=1..P),jj=1..P)+sum(Cr.ii[jj,jj .ij=
1.P)"2'1i'=1..P));

c2Jim := 2265465463
> RMSJim:=sqrt(c2Jim);
RMSJim := 4759690602

TWO-WAY INTERACTION MEASURE:

Calculate the RGA:

> evalm(vell):

> gain:=vell:

> gaininv:=inverse(gain):

> gaininvT:=transpose(gaininv):

> RGA:=matrix(3,3,[gain[1,1]*gaininvT[1,1], gain[1,2]*gaininvT[1,2],
gain[1,3]*gaininvT([1,3], gain[2,1]*gaininvT([2,1],gain[2,2]*gaininvT[2,2],
gain[2,3]*gaininvT[2,3], gain[3,1]*gaininvT[3,1], gain[3,2]*gaininvT[3,2],
gain[3,3]*gaininvT[3,3]]):

CURVATURE IN A GIVEN DIRECTION, e.

> e:=evalm(e_original/norm(e_original,2)):

> ce_numl:=evalm(transpose(e)&* Arfacel &*e):

> ce_num2:=evalm(transpose(e)&* Arface2& *e):

> ce_num3:=evalm(transpose(e)&* Arface3 & *e):

> ce_numerator:=sqrt(ce_numl“2+ce_num2”2+ce_num3”2):

> ce_den:=evalm(R1&*e):

> ce_denominator:=ce_den[1]"2+ce_den[2]"2+ce_den[3]"2:

> ce:=ce_numerator/ce_denominator:

RESULTS

So here are our final results for the 3x3 output system:
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> RMS;
4759690602
> evalm(RGA);
[.9522791298 .04250033397 .005220536340]

[ ]
[.04772087031 .9171435616 .03513556852 ]

[ ]
[ O .04035610486 .9596438953 ]

> ce;

.2401545339
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B.2 Matlab™ Code

This Matlab™ code (filename InMIgradetrans1.m) was used to run grade transitions of
the transformed model, under nonlinear control. Minor adjustments are made to run the

nominal model and linear controllers.

InMIgradetransl.m

3This is the main program for simulating the contrecl of the

ipolyethylene grade
schangeovers, where the outputs are [1ln(MI), density, production rate].

clear
*PARAMETERS

k0=0.4;
k1=1.5;
k3=2.2;
p0=.96;
pl=.0025;
p2=.007;
pd=.5;
M1=0.259634;
kpl1=302400;
kp2=38448;
mwl=28.05;
mw2=56.12;
timestep=0.1;

$CHOOSE INITIAL STEADY STATES

*For initial grade D{30) choose SSscheme=1
%For initial grade J(30) : choose SSscheme=2
*For initial grade [80, .935 30] choose SSscheme=3
3For initial grade C(30} choose SSscheme=4
*For initial grade N(30) : choose SSscheme=5
iFor initial grade 0O (30) choose SSscheme=6
2For initial grade S(30) choose SSscheme=7

SSscheme=4;

SCHOOSE SET POINT SCHEME:

SPscheme=5;
SINITIAL CONDITIONS

initlnMIgrtransil
tfholder=[];
time={];

£0=0;
ctf=timestep;
state=[1];
output={];
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input={];

SPholder=[];
tfholder=[tfholder;tf]:;
ITAE=[0;0;0];
ITAEMI=([0;0;0];
e=(0;0;0];

3START AT STEADY STATE AND RUN FOR 50 HOURS

(t,x] = model5s (1, 'polstates’', [t0 tf], x0, [], u};

state={state;x]:;

time = [time ; t];

sizet=size(t);

for k=l:sizet
input=[input; u'l;

end

sizex= size(x};

numrow=sizex(1l);

for j=l:numrow
1lnMI=3.5*1log (kO+kl*x(j,2) /M1+k3*x(3j,1)/M1);
rho=p0+pl*1nMI- (p2*x(j,2)/M1) "p4;
PR=x(j,3)® (kpl*Ml*mwl+kp2*x(j,2)*mw2) /1000000;
output=[output ; [1nMI rho PR]];
SPholder=[SPholder; y0l};

end

Ysp=yO0;

*IMPLEMENT SET POINT CHANGES

simlength=200;
tO0=tO+timestep;
tf=tf+timestep;
tfholder=[tfholder;tf];
while tf < simlength
if (tf >= 50 & tf < 100)
Ysp=SP(1l,:);
if (tf£>=50 & tf< 51)
disp(' time is 50')
end
elseif (tf >= 100 & tf£<150)
Ysp=SP(2,:):
if (tf>=100 & tf< 101)
disp(' time is 100')
end
elseif (tf >= 150 & tf <200)
Ysp=SP(3,:);
if (tf>=150 & tf< 151)
disp(' time is 150')
end

elseif (tf >= 200 & tf <250)

Ysp=SP(4,:):

if (£f>=200 & tf< 201)
disp(' time is 200')

end

elseif (tf >= 250 & tf <300)
Ysp=SP(5,:);
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if (tf>=250 & tf< 251)
disp(' time is 250°')
end

elseif (tf >= 300 & tf <350)

Ysp=SP(6,:);

if (t£>=300 & tf< 301)
disp(' time is 300"')

end

end

X=x (numrow, :);

sizeout=size (output);

lastout=sizeout(l);

Y=ocutput (lastout, :);

CHOOSE CONTROLLER

o

% 1 - nonlinear multivariable controller with integral mode.
% 2 - linear multivariable contrcller with integral mode.

% 3 - nonlinear multi-loop controller with integral mode.

% 4 - linear multi-loop controller with integral mode.

controller=1;

if controller ==
1nMInlmv

elseif controller == 2
InMIlmv

elseif controller == 3
1nMInlml

elseif controller == 4
InMIlml

end

$BOUNDS ON THE MANIPULATED VARIABLES
bounds=1; %0=o0ff, 1l=on.
if bounds==1
if FH2 < 0
FH2=0;
end
if FM2 < 0
M2=0;
end
if Fcat < O
Fcat=0;
end
if FH2 > 14000
FH2=14000;
end
if FM2>62400
FM2=62400;
end
if Fcat>10
Fcat=10;
end
end
u={FH2; FM2; Fcat]:;
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[t,x]=model5s (1, 'polstates’', [t0 tf], X, []1, u):
state=[state; x]:;
time=[{time;t};
sizex=size(x);
numrow=sizex (1) ;
for i=l:numrow
1nMI=3.5*1log(kO+kl*x(i,2)/M1+k3*x(i,1)/M1);
rho=pO0+pl*1lnMI-(p2*x(i,2)/M1l) “p4;
PR=x(i,3)* (kpl*Ml*mwl+kp2*x(i,2) *mw2)/10C00Q0;
output={output ; [1nMI rho PR]];
SPholder=[SPholder;Yspl:;
end
t0=tO+timestep;
tf=tf+timestep;
tfholder={tfholder;tf};
sizet=size(t);
for l=l:sizet
input={input; [FH2 FM2 Fcat]];
end
end

sizetime=size (time);
halftime=0.5*sizetime
halftime=round(halftime)
timea=time(l:halftime,1l);
timeb=time (halftime:sizetime,1l);

output=[exp{output(:,1))} output(:,2) output(:,3)]:
SPhelder=(exp (SPholder(:,1)) SPholder(:,2) SPholder(:,3)]:

errortraj

figure (1)
subplot(3,1,1)}
plot(time, state(:,1));
ylabel (' [Hydrogen] (mol/L}"')
%xlabel('time (h}"')

subplot(3,1,2)

plot(time, state(:,2)):
yvlabel (' {Butene] (mol/L)"')
xlabel ('time (h)')

subplot (3,1, 3)

plot{(time, state(:,3));
ylabel ('Active sites (mol) ')
xlabel ('time (h)"')

figure(2)

subplot(3,1,1)

plot(time, SPholder(:,1),'r--', time_e,exp(e_traj(:,1)),'c."',
time, output(:,1)):;

ylabel ('MI"')

xlabel ('time (h)')
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subplot(3,1,2)

plot (time, SPholder(:,2),'r--', time e,e_traj(:,2),'rc.', ...
time, output(:,2)):

ylabel('density"')

xlabel('time (h)')

subplot (3,1, 3)

plot{time, SPholder(:,3),'r--', time_e,e_traj(:,3),
time, output(:,3));

ylabel ('Production Rate')

xlabel('time (h)')

r.',

figure (3)
subplot(3,1,1)

plot (time, input(:,1))};
ylabel ('FH2 (mol/h)"')
xlabel ('time (h)')

subplot(3,1,2)
plot{time, input(:,2)};
ylabel ('FM2 (mol/h)"')
xlabel ('time (h)"')

subplot (3,1, 3)
plot(time, input(:,3));
ylabel('Fcat (kg/h)"')
xlabel ('time (h)"')

end

endnotice=bleep;

The following Matlab files are called by InMIgradetransl.m. The file polstates.m
integrates the dynamic model equations. The nonlinear control law is coded in
InMInlmv.m.

polstates.m

function xdot = polstates(t,x,uin)

5 This file contains the differential equations for the state model
and integrates them over a given time interval.

R

FH2 = uin(l);
FM2 = uin(2);
Fcat = uin(3);

% THE PARAMETERS
Vg=423747.3;
Vs=151121.9;
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kh=1008;
kpl1=302400;
kp2=38448;
kd=0.36;
gl=%/2500000000;
mwl=28.05;
mw2=56.12;
b=18571;
$S=0.0021589;
Ct=0.711;
acat=1.0944;
M1=0.259634;
Bw=70;

xdot=[1/Vg* (FH2-kh*x(3) *x(1l)-x (1) *b/Ct-gl*x (1))
1/ (Vg+Vs) * (FM2-kp2*x (3} *x(2)-x(2) *b/Ct-S*x(2)* ...
x(3)*(kpl*Ml*mwl+kp2*x(2)*mw2}); ...
Fcat*acat-x(3)"2/1000000* (kpl*Ml*mwl+kp2*x(2)*mw2) /Bw—-kd*x(3)1];

InMInlmv.m

% This is the nonlinear multivariable controller
% with INTEGRAL MODE for PE for (ln(MI), rho, PR)

$PARAMETERS
vg=423747.3;
Vs=151121.9;
kh=1008;
kd=0.36;
gl=9/2500000000;
b=18571;
5$=0.0021589;
Ct=0.711;
acat=1.0944;
Bw=70;

B1l=1:;

B2=1;

B3=1;
gammal=1/4;
gamma2=1/4;
gamma3=1/30;

enow=[ (Ysp(1l)-Y(1l))*timestep; (¥Ysp(2)-Y(2))*timestep ; (Ysp(3)-
Y(3))*timestep]:

e=enow+e;

dhldx1=3.5*k3/M1/ (kO+k1*X (2) /M1+k3*X (1) /M1);
dhldx2=3.5*k1/M1/ (kO+k1*X(2) /M1+k3*X(1)/M1);
dh2dx1=pl*dhldxl1;
dh2dx2=pl*dhldx2-p4*p2/M1* (p2*X(2)/M1) * (p4-1);
dh3dx2=(kp2*mw2*X(3))/1000000;
dh3dx3=(kpl*mwl*M1l+kp2+*X (2)*mw2) /1000000;

204



eql=1/Vg* (~kh*X(3) *X (1) -X (1) *b/Ct—-gl*X (1)) ;

eq2=1/ (Vg+Vs) * (~kp2*X (3) *X (2) =X (2) *b/Ct-S*X (2) *X(3) * (kp1*Ml*mwl+. . .
kp2*X (2) *mw2) ) ;

eq3=-X(3)"2* (kpl*MLl*mwl+kp2*X (2) *mw2) /Bw/1000000~kd*X (3) ;

FH2=Vg* (-B2*Ysp(2) *dh1ldx2+B2*Y (2) *dhldx2-gamma2*e(2) *dhldx2-
egql*dhldxl*dh2dx2+...
dh2dxl*eql*dhldx2+dh2dx2*Bl*Ysp (1) -
dh2dx2*B1*Y (1) +dh2dx2*gammal*e(1l)}/...
(dhldx1l*dh2dx2-dhldx2*dh2dx1) ;

FM2 =- (Vg+Vs)* (-dhldx1*B2*Ysp (2) +dhldx1*B2+Y (2) -dhldxl*gamma2*e (2} +...
dhldx1*dh2dx2*eq2+B1l*Ysp (1) *dh2dx1~

B1*Y(1)*dh2dxl+gammal*e (1) *dh2dx1-. ..
dhldx2*eq2*dh2dx1) / (dhldx1*dh2dx2-dhldx2*dh2dx1) ;

Fcat=1/acat* (B3*Ysp(3) *dhlidx1*dh2dx2-B3*Ysp (3) *dhldx2*dh2dx1-...
B3*Y(3) *dhldx1*dh2dx2+B3*Y(3) *dhldx2*dh2dxl+gamma3*e (3) *dhldxl*dh2dx2-

gamma3*e (3) *dhldx2*dh2dx1-
dh3dx2*dhldx1*B2*Ysp (2) +dh3dx2*dhldx1*B2*Y(2)-...
dh3dx2*dhldxl*gamma2*e (2)+dh3dx2*Bl*Ysp (1) *dh2dx1-
dh3dx2+*B1*Y (1) *dh2dx1+...
dh3dx2*gammal*e (1) *dh2dx1-dh3dx3*eq3*dhldxl*dh2dx2+. ..
dh3dx3*eq3*dhldx2*dh2dx1)/{ (dhldxl*dh2dx2-dhldx2*dh2dx1) *dh3dx3) ;
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