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Absîract 

Most chetnical processes are inherently nonlinear in nature. Although a wealth o f  
information on nonlinear processes and control exists, the implementation o f  nonlinear 
control techniques is not cornmonplace in industry. Instead, due to the additional design, 
implementation and maintenance efforts required for nonlinear control, practitioners 
often accept the performance and economic losses that result fiom employing linear 
controllers. In some cases, the losses are minor; however, in others, they may be 
significant due to the nonlinearity o f  the process. It would be advantageous to bridge the 
gap between the nonlinearity o f  a process and whether the potential benefits of a 
nonlinear control scheme outweigh the additional efforts required. 

The primary objectives of this thesis are to measure the steady-state nonlinearity 
of a gas-phase fluidized-bed polyethylene reactor, and to  relate those rneasures o f  
curvature to the performance degradation that results fiom the use of linear control, 
relative to nonlinear control. 

Recently defined steady-state RMS curvature is used to examine the product 
property behaviour of a published polyethylene reactor model. Ulustrative examples 
detail the calculation and interpretation of  the elements of curvature. 

A comprehensive study is undertaken to examine the nonlinearity of regions of 
product property grades of polyethylene, including grade transition regions, and operation 
about a steady-state point. Curvature values for the regions examined ranged fiom 
insignificant ( C W S ~ )  to severe (cRMS=I 17). A cornparison is made between two forrns 
of the model, one being the nominal form, and the other, the transformed version in 
which the melt index property is logarithmically transformed. In al1 cases considered, the 
transfonned model displays less curvature than the nominal model; significant reduction 
in nonlinearity is seen in ail cases. 

The curvature values obtained for the selected grade regimes are compared to the 
performance of  Iinear controllers, relative to nonlinear controllers. The expectation was 
that as the curvature of a region increased, the degradation o f  linear control performance 
would intensiQ. An input/output linearizing feedback controller was designed for use 
with simulation studies. Scaled performance measures adapted from IAE were used to 
compare the performance of linear controllers, relative to nonlinear control schemes. The 
outcome of comparative studies was that no trend between RMS curvature and the 
chosen performance measure was found. 

Several possible rasons  were given for the lack of correlation between linear 
control performance and RMS curvature. The most promising explanation is that RMS 
curvature is a steady-state measure, which is i nsuficient in determining the non1 inearity 
of the dynamic polyethylene model. Consequently, an important recommendation for 
future work is the assessrnent of  dynamic nonlinearity of  the model. 
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Chapter 1 

Introduction 

Most processes in chernicd engineering industry are inherently nonlinear in 

nature. This, combined with increasing pressures to conserve energy, reduce capital cost, 

and provide tighter control of highly integrated processes @ee and Sullivan, 1988), 

motivates the practitioner to implement a control law commensurate with such objectives. 

To fiirther actuate this end, a wealth of research and results are available on nonlinear 

processes and control. 

Although the implementation of nonlinear control provides important benefits, the 

use of Iinear control strategies still dominates industry. Presumably, linear techniques 

ofien provide adequate control of processes displaying mild to moderate nonlinearity. 

However, processes display ing a high degree of nonlinearity may require noniinear 

control strategies. Nonetheless, practitioners tend to be reluctant to implement such 

controllers due to the considerable amount of developmental effort required, and 

disregard the economic and performance losses associated with the inadequacies of linear 

control. In this vein, it would be of practical importance to be able to assess the degree of 

nonlinearity of a process or a region of interest within a process, in order to ascertain 

whether nonlinear control is merïted. 

The topic of nonlinearity assessrnent has been an active area of research in recent 

years. Ogunnaike et al. (1993), Nikolaou (1993), and Ailgower (1995) have proposed 

operator-based techniques for measunng nonlinearity. However, these approaches 



provide little insight into the process structure and do not describe the specific elements 

that account for curvature (Guay et al., 1995). Koung and MacGregor (1991, 1992) 

examine the influence of nonlinearity on the singular-value decomposition of local 

steady-state gain information. Stack and Doyle III (1995, 1997 a,b) advocate using an 

optimal-control stxucture as a tool to assess control-relevant nonlinearity. Once the 

optimal-control structure is designed, an open-loop measure can be used to examine 

nonlinearity. Haber (1985) presented various methods of detecting nonlinearity within a 

process from input-output records. 

An intriguing result is presented by Guay et al. (1995), which quantifies the 

magnitude and riature of the nonlinearity. This technique defines the nonlinearity of a 

process as its departure from a firstsrder Taylor series approximation. The curvature is 

estimated by comparing the magnitude and direction of the second-order terms to the 

first-order terms. Moreover, this technique allows for the appropriate representation of 

the size and orientation of the operating region by a careklly selected scaling. Guay 

(1996) fùrther extended his work on steady-state measures of curvature to inctude a 

measure of dynamic nonlinearity. 

The primary objectives of this thesis are to illustrate and exemplie Guay et a1.k 

steady-state open-loop measure of curvature, to put it to practical use by assessing the 

nonlinearity of regions within a gas-phase fluidized-bed polyethylene reactor model, and 

to determine if these measures are helphl in predicting control performance. 

Background information is given, practical implernentation issues are raised, and some 

recommendations for fbture work are given. 

Guay et a1.k measures of nonlinearity are applied to and assessed using the gas- 



phase polyethylene reactor model developed by McAuley et al. (1990), and McAuley and 

MacGregor (1 99 1, 1993). Background on the gas-phase production of polyethylene is 

given in Chapter 2, in addition to the model used to describe the process. This chapter 

also provides the prerequisite material for Guay et al.'s steady-state measure of curvature. 

The key points of Guay et ah's work are: the decomposition of second-order derivative 

information into tangential and normal constituents, and the development of a scale- 

independent measure of curvature. The effects of interaction and of various components 

of nonlinearity (specifically tangential and normal elements) on the geometry of the 

steady-state locus are discussed. Additionally in Chapter 2, the error-trajectory approach 

to nonlinear controller design is presented, as this control scheme is used later in the 

thesis. 

In Chapter 3, we examine 2x2 portions of the polyethylene reactor model to 

visualize interaction and curvature on the steady-state locus. Examples are also provided 

detailing the calculation of steady-state RMS curvatures and the interpretation and 

illustration of the components of curvature. 

In Chapter 4, nonlinearity assessrnent of the polyethylene reactor model is 

performed. Regions of operation in the model are chosen based on realistic grade 

settings, which include film resins, and injection and rotational molded polyethylene. To 

properly define a region of operation about the selected grades, and to provide a generic, 

scale-independent measure of curvature, the regions around the grades are scaled. The 

nonlinearity of numerous regions within the polyethylene model is calculated, yielding a 

wide range of curvature values. Two forms of the polyethylene model are investigated; 

because practitioners often opt to control the logarithm transform of melt index (rather 



than melt index directly) on the theory that this transform reduces the nonlinearity of the 

model, we assess the curvature of regions within each form of the model. The curvature 

results of each form of the model are compared. 

The objective of Chapter 5 is to determine whether operating regions with high 

curvatures suffer larger linear control performance losses than regions with lower 

curvatures. Closed-loop simulations were perfonned to assess this relationship. First in 

Chapter 5, the control law is developed, which is based on an error-trajectory nonlinear 

controller design. This control scheme is an input-output linearizing controller with state 

feedback, and is tuned such that the error-trajectory response specification reflects the 

natural dynamic behaviour of the system. A normalized measure of performance is 

defined and utilized to quanti@ control performance. This measure quantifies the 

normalized difference between the integral absolute error (or deviation) of nonlinear and 

linear controllers. It is our expectation that the performance measure for linearly 

controlled processes should increase with increasing curvature. The specific results 

obtained for the investigation of the relationship between RMS curvature and control 

performance are discussed. In addition, Chapter 5 includes a discussion of possible 

explanations for unexpected results, as well as recommendations for fbture 

considerations. 

A summary and conclusions to the work investigated in this thesis are given in 

Chapter 6. Contributions presented by the author, as well as recommendations for fùture 

consideration are also imparted in this final chapter. 



Chapter 2 

Background 

2.1 Production of Polyethylene 

Polyethylene has become one of the most widely produced polymers in the world, 

with a production of over 55 million tons expected for 1999 (Modem Plastics, p. 1 14, July 

1999). Improvements in process understanding and control stand to benefit this large 

business. Such improved understanding can evolve nom the ability to assess the degree 

of nonlinearity inherent in the process. This knowledge may aid control practitioners in 

control scheme design and irnplementation. In this investigation, recently developed 

measures of curvature (Guay et al., 1995) are used to assess the steady-state nonlinearity 

of a gas-phase polyethylene reactor model. In what follows, the polyethylene production 

process is briefly outlined. Moreover, the model developed by McAuley et al. (1990) and 

McAuley and MacGregor (1 99 1, 1993), to describe this process is introduced. 

2.1.1 Process Description 

The process being studied here is one that makes use of a fluidized-bed reactor for 

gas-phase polyethylene production, which is of the same type as Union Carbide's 

W O L  process (Miller, 1977), or BP's Ruidized bed polyethylene production process 

(Chinh and Durnain, 1990). The polymerization involves the reaction of ethylene, an 

alpha-olefin comonomer such as 1-butene, and hydrogen, using a Ziegler-Natta or 

metallocene catalyst. A schematic of the process is shown in Figure 2.1. 
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Figure 2.1. Schematic of a fluidized-bed polyethylene reactor. 

The feed to the coiumn is comprised of hydrogen, nitrogen, ethyiene, and 

cornonomer. The role of these gases is to supply reactants to growing polymer chains, 

and to act as fluidization and heat transfer media. Catalyst and CO-catalyst are fed to the 

reactor continuously. A valve near the bottom of the reactor opens perïodicalty, allowing 

polymer product to be removed. Unreacted gases are recovered fkom the produa, and 

recycled back into the reactor. The discharged polyethylene is degassed and sent for 

additive incorporation, and pelletization. The enlarged upper section of the reactor 



allows the polymer particles to disengage fkom the fluidizing gas. A bleed stream, 

located at the top of the reactor, prevents the accumulation of inerts and impurities. The 

recycle stream is rather large compared to the sue of the feed stream, typically a ratio of 

20 or 40: 1. This large ratio is due to the relatively low single-pass conversion 

experienced within the reactor. The recycle Stream is fed through a coder to remove heat 

generated by the exothermic polymenzation reaction. The reactor system is outfitted 

with several sensors, including pressure sensors, that indicate the mass of material in the 

bed, temperature sensors, and a gas chromatograph, which determines gas composition 

on-line (McAuley et al., 1990, and McAuley and MacGregor, 199 1). 

2.1 -2 The Polyethylene Reactor Mode1 

The polyethylene reactor model used in this work is that of McAuley and 

MacGregor (1991, 1993). It is a two-tiered nonlinear model comprised of a static 

algebraic component (McAuley and MacGregor, 199 l), and a dynamic gas mass-balance 

component (McAuley and MacGregor, 1993). 

The algebraic model equations predict instantaneous melt index and density from 

reactor temperature and gas compositions: (2- 1) 

where T and To are the current temperature and a reference temperature, Ni] are gas- 

phase rnonomer concentrations (i = 1, 2, 3 indicates ethylene, butene, and a higher alpha- 

olefi n, respective1 y). Pol yethylene is usual ly produced using a single al p ha-olefin 

comonomer, but two different comonomers can be present in the reactor during grade 



changeovers. m2], IR], and [Il are each the hydrogen, cocatalyst, and reactive impurity 

concentrations in the reactor. Appropriate values for parameters ki to k depend on the 

specific type of  catalyst used in the reactor. 

Polyethylene density depends on the number and type of  short-chain branches. 

The incorporation of butene and higher alpha-order olefins result in short branches 

protruding fiom the polymer backbone. These branches inhibit crystalinity, thereby 

reducing density. To relate the density of the polymer being produced to gas-phase 

reactant concentrations, McAuley and MacGregor (1 99 1) developed the following model: 

The comonomer to monomer ratio t e m s  in equation (2.2) reflect the fact that the relative 

rates of  comonomer and ethylene incorporation into the polymer depend on their gas- 

phase concentrations. Parameters pz and p3 reflect the kinetic rate constants for 

propagation reactions, and the ability of  short-chah branches of different lengths to 

reduce density. For complete derivations of the models in equations (2.1) and (2.2), see 

McAuley et al. (1 990), and McAuley and MacGregor (1 99 1). 

The models presented above are instantaneous property models, in that the model 

predicts the properties of polymer being produced at a given instant in time. The 

instantaneous properties may be quite different from the bulk or  cumulative properties of  

the polymer in the reactor if reactor operating conditions have changed with tirne. In 

what follows in this research, the instantaneous properties are of interest for control. 

Alternatively, the cumulative properties could be controlled. In such case, the above 

models would need to be integrated over time, using an appropriate mixing model 

(McAuley and MacGregor, 1991). McAuley and MacGregor (1993) recommend 



controlling the instantaneous product properties, shown in Mc Auley and MacGregor 

(1 99 1), rather than cumulative properties. 

In addition to the above nonlinear static portion of the reactor model, a dynarnic 

portion exists. This dynamic portion is based on mass balances made on reactive species 

in the gas phase. The gas mass-balance model was presented by McAuley and 

MacGregor (1 993): 

Y is the number of moles of active sites in the reactor. Bw is the mass of polymer in the 

fluidized bed. FH2, FM2, and Fm are each the inlet molar flow rates of hydrogen, butene, 

and catalyst, respectively. Vg is the volume of the gas-phase. Vs represents the gas 

volume equivalent of butene dissolved in the polymer (hydrogen is negligibly soluble in 

polymer.) The parameter a, is the concentration of active sites in the entering catalyst. 

Ct denotes the total gas concentration in the reactor, b is the molar flow rate of the bleed 

Stream, S is the solubility of butene in the polymer, and Op is the polymer outflow rate. 

The molecular weights of ethylene and butene are mwt and mwz, respectively. The 

parameters k,~, k,,2, and k~ are kinetic rate constants for ethylene, butene and hydrogen 

consumption reactions, whereas kd is the rate-constant for deactivation of active catalyst 

sites. The parameter gl is a mismatch factor to account for some rnodel imperfections; it 

is often updated recursively. 



Notice that the dynamic material balance equations (2.3) do not contain an 

ordinary differential equation to predict the ethylene concentration. This is because fast 

and accurate measurements for ethylene concentration are available on-line. Also, the 

ethylene concentration, or partial pressure, in the reactor can be tightly controlled around 

a set-point. Changes between different polyethylene grades are typically made by 

adjusting the hydrogen and butene concentrations in the reactor, while holding the 

et hylene partial pressure relative1 y constant. Also, note that this set of model equations 

does not include balances on other comonomers. For simplicity, only polyethylene 

grades with butene as the cornonomer will be considered in this thesis. However, 

extension of the results to other comonomers would be straightforward. 

As it stands, the complete model ((2. l), (2.2), and (2.3)) depends on a number of 

assumptions. The reaction zone has been modelled as a well-mixed gas, interacting with 

a well-mixed solid phase (Le., modelled as a CSTR). The assumption of a well-mixed 

gas phase holds (McAuley, Talbot, and Hams, 1994) by virtue of the high recycle to 

fiesh feed ratio, and negligible axial and radial temperature and concentration gradients. 

Additionally, the total molar concentration in the gas-phase, Ct, which is proportional to 

the reactor pressure, and the ethylene concentration, Ni], are assumed to be held 

constant by controllers that adjust the flow of ethylene and nitrogen. Similarly, the bleed 

flow rate is kept steady by a flow controller, unless an operator adjusts the flow rate set 

point. Finally, the reactor is assumed to be operating under perfect bed-weight control, 

and perfect temperature control about a set-point temperature, To. 



2.1.3 Simplifications of the Mode1 Equations 

The state equations of  (2.3) c m  be simplified slightly. Based on  the assumption 

that bed weight is maintained at a constant mass, the quantity dBw/dt becomes zero. 

Substituting and rearranging yields the final state model: (2-4) 

A table of  parameter values that wili be used in the simplified output and state models is 

given in Table 2.1: 

Table 2.1. Parameter values used in the simplified output and state rnodels. 

- 

Vg (L) = 423747 
Vs (L) = 15 1 122 

b1 (L/mol h) = 302400 
k,? (Wmol h) = 38448 

kd ( l h )  = 0.36 

Note that appropriate values for the parameters depend on the particular catalyst being 

used in the reactor. 

This work focuses on a system employing only one comonomer: butene. Higher 

alpha-order olefin cornonomers are neglected. The final outputs that are o f  control 

interest in this thesis consist of melt index, density, and production rate, and therefore, the 

S (Wg) =0.002159 
mwl (&mol) = 28.05 
mwZ &/mol) = 56.12 

(moVkg) = 1 .O944 
Bw (tonnes) = 70 

k3 (&10 min))"' ' =2.20 
po (g/cm3) =0.96 

pi ((g/cm3)/ln(g/ 1 Omin)) =0.0025 
3 I l+  pz (@/cm ) ) =0.0070 

p, =OS0 



final output model takes the fom: 

Following McAuley and MacGregor (1991), the impurity and cocatalyst terms in the 

instantaneous melt index model have been condensed into a single paramter, ko, because 

measurements of al1 of the different impurities that can affect melt index are typically not 

avai lable on-line. Mc Auley and MacGregor ( 1 99 1 ) developed a technique to update 

parameters ka and po using off-line laboratory data, so that melt index and density could 

be monitored between off-line product propeity measurements. Subsequently, McAuley 

and MacGregor (1993) developed and simulated a nonlinear melt index and density 

control scheme using the models in Equations (2.1), (2-2), and (2.3). Since melt index 

and density measurements are not available on-line, irnplementation of the proposed 

nonlinear control scheme requires estimates of melt index and density from the produa 

property monitoring scheme (McAuley and MacGregor, 199 1). In addition, an Extended 

Kalman Filter was required as part of the nonlinear control scheme to update parameters 

kP2 and kd and to obtain a reasonable estimate of polymer outflow rate. This parameter 

updating would ensure that the nonlinear ODE model would match plant behaviour. To 

make such a complex nonlinear control scheme work well, the designer must make 

certain that dl of the nonlinear mathematical models used give good predictions, and that 

the monitoring scheme, Extended Kalman Filter, and the nonlinear control algorithm al1 

work well together. An important question that arises is whether the potential benefits 



that could be achieved using a nonlinear product property control scheme, compared to 

the tradit ional linear control scheme, merit the extra effort involved in i mplementation 

and maintenance. 

In this thesis, the assessment of nonlinearity is perfonned on the simplitied form 

of the model. Techniques used for nonlinearity assessment are reviewed in the next 

section, and the theory behind the curvature assessment employed throughout this work is 

descri bed. 

2.2 Nonlinearity Assessrnent 

Most chemical processes exhibit some degree of nonlinearity. The severity of 

nonlinearity can greatly affect the stability and performance of the controller being 

irnplernented. Although much research has been done in the area of nonlinear process 

control (see reviews: Bequette (1 99 l), Kravaris and Kantor (1 WOa,b), and McLellan et 

al. (1990)), reluctance exists among many practitioners to employ nonlinear control 

schemes due to the extra design, implementation, and maintenance efforts required and 

because the benefits of employing a nonlinear control scheme are ofien hard to quanti& 

at the design stage. However, some processes, or parts thereof, exhibit such a severe 

degree of nonlinearity that linear techniques compromise control performance. Both the 

degree of nonlinearity of the process at a given operating point, and the intended range 

and direction of operation (Guay et al., 1995) are of particular importance. This being so, 

it is of great value to be able to assess the degree of nonlinearity of a process, in order to 

gain insight into whether the benefits of a nonlinear controller would warrant the 

additional efforts required. 



In recent years, a few authors have developed methods for assessing nonlinearity. 

Operator-based approaches have been proposed by Nikoloau (1993), Ogunnaike et al. 

(1993), and Allgower (1995). Nio loau  measures dynamic nonlinearity by calculating 

the 2-nom of the best Iinear approximation of a nonlinear operator, where the 2-nom is 

based on a newly constructed inner product. Degree of nonlinearity is measured by 

Ogunnaike et al. by first determining the linear approximation of  the nonlinear operator 

and then calculating the n o m  of the difference between the iinear approximations of 

adjacent regions on a domain of process operation. A short-coming of  this technique is 

that it is designed for SIS0 systems only, and that extension to  dynamic nonlinearity 

measurement is dificult. Allgower describes degree o f  nonlinearity as the n o m  of  the 

largest difference between the output of a nonlinear system and the output o f  its best 

Iinear approximation, considered for the worst-case input sequence. This measure of  

nonlinearity is computationally involved and depends on the choice of input signals 

considered. Each of  these operator-based approaches suffers fiom limited insight into 

process structure, and does not describe the specific causes of curvature (Guay et al., 

1995). 

Koung and MacGregor (1991, 1992) define detenninistic nonlinearities as a 

structured mode1 mismatch seen in the singular-value decomposition of steady-state gain 

matrices. The extent of mismatch is measured by the relative degree of input o r  output 

rotation of  the steady-state gain information, as well as  a change in the magnitude of  the 

singular values of the decomposed gain matrix. 

Haber (1985) presented various computationally simple methods of determining 

the presence of nonlinearity within a system fiom input-output records. However, these 



methods only detect nonlinearity, but don't quantify it. 

Stack and Doyle III (1995, 1997qb) describe using an optimal-control structure to 

analyze nonlinearity, since it includes controlier performance specifications in addition to 

the control-law dynamics of a given process, which they claim is important in measuring 

control-relevant nonlinearity. (Control-relevant nonlinearity is defined as the influence 

that nonlinearities have in a closed-loop, taking into consideration specific performance 

goals.) The optimal-control structure can be designed analytically using Lagrangian 

methods. Controi-relevant nonlinearity is then assessed using any open-loop nonlinearity 

measure that incorporates the effects of scaling. The nonlinearity measure is applied to 

the optimal control law. The value of this approach is that it assesses the nonlinearity 

that is eliminated to achieve optimal control performance rather than complete process 

nonlinearity. 

In what follows, the curvature masure of Guay et ai. (1 995) is outlined. Guay et 

a1.k steady-state rneasure of curvature is an extension of earlier work measuring 

curvature in nonlinear least squares regression by Bates and Watts (1 980, 1988). Key 

points of Guay et d.'s work are the decomposition of second-order derivative information 

into tangential and normal constituents, and the development of a scale-independent 

measure of curvature. Although not considered in this thesis, Guay's steady-state 

measure was extended to provide a measure of dynamic nonlinearity. The tùndamental 

theory behind this dynamic measure is an extension of the steady-state nonlinearity case. 

Guay (1996) describes measuring dynamic nonlinearity of a process by considering first- 

and second-order derivat ive informat ion in an operator setting, treating the dynamic 

process as an input-output operator. Provisions are made for scaling strategies. 



Leung (1998) investigated the relationship between steady-state RMS and 

controller performance degradation for several simple examples, using the progression of 

IAE as a fùnction of set point change as an indication of degradation. Leung also 

investigated curvature of the set point - IAE relationship. This work assessed controller 

performance changes over a range of varying set points about a fixed operating point. 

The distinction between Leung's work and the work presented here is as follows: the 

work in this thesis focuses on a multi-input multi-output industrial process example, and 

provides an in-depth investigation of steady-state curvature behaviour, including 

interpretations of the diagnostics in terms of input contours on the steady-state locus. 

Additional l y, this work provides a detailed investigation of the relationship between RMS 

curvature and controller performance degradation over major changes in operation and 

for disturbance rejection. 

2.2.1 The Steady-State Locus 

The technique presented here is Guay et a1.k (1995) open-loop steady-state 

measure of curvature. Guay et al. (1995) also developed extensions of this steady-state 

work to process dynamics. Although dynamic measures of nonlinearity are not examined 

in this thesis, it is recommended that the assessment of dynamic nonlinearity of the 

polyethylene reactor mode1 be done in the hture. 

Guay et a1.k steady-state measure of nonlinearity is performed by first analyzing 

the local geometry of the input-state rnap, and then applying corresponding output 

mappings to assess the nonlinearity of the input-output map. In applying measures of 

nonlinearity, either the input-state rnap or its inverse could be considered, however, the 



work in this thesis focuses only on input-state and inputsutput maps, and not their 

inverses. 

Consider the input-state relationship of the following asymptotically stable 

nonlinear system: 

i = f (x, u) (2-6) 

where x is an n-dimensional vector of  states, and u is a p-dimensional vector o f  inputs. 

In the polyethylene reactor model, the corresponding input-state relationship is: (2.7) 

The stea4-state input-state map is termed the steady-state locus, H(u), a constmct used 

to describe static input-state behaviour. The steady-state locus, Z(u), c m  be considered a 

hyper-surface, parameterized by p inputs, residing in n-dimensional state space (for the 

polyethylene reactor model above, p=n=3). More simply. E(u) is the plot of the final 

values of the model states, after one or  more inputs have been adjusted. generated by 

setting the state time-derivatives to zero and solving for the values of states, given a set of 

input values. 

The measure of nonlinearity used by Guay et al. is one that employs a second- 

order Taylor series approximation of the process, and compares it to the linear 

approximation of the locus at a aven point. The degree to which the second order 



approximation deviates fiom the linear approximation provides an estimate o f  the 

nonlinearity of the process at that point. A schematic of these concepts for a 2-state 

system, for changes in a particular input is show in Figure 2.2. 

'l r Point of linearization 

Linear approximation 

Steady-state locus 
for changes in a 
particular input 

Figure 2.2 The steady-state locus, and its first- and second-order approximations. 

2.2 -2 Towards a Measure of Curvature 

A mode1 is said to be nonlinear when any second-derivative of the states with 

respect to the input parameters is nonzero; thus, nonlinearity is assessed by investigating 

the second derivatives of the states with respect to the inputs. A set of locally defined 

velocity and acceleration vectors are calculated at the steady-state operating point of 

interest: 



where vl is the first derivative of the state vector with respect to input i ,  and Y,, is the 

state vector twice-differentiated: once with respect to input i and again with respect to 

input j. These velocity and acceleration vectors are important elements in assessing 

nonlinearity. The first-order, or velocity, vectors help define the tangential 

approximation of the steady-state locus. The second-order information, obtained fiom 

the acceleration vectors, describes both the degree of nonlinearity, and its causes. This 

information is of importance because the components of acceleration which lie along the 

tangent ial approximation result in curvature which is fùndamentall y di fferent t han the 

curvature resulting fiom components which lie normal to the tangential approximation. 

For this reason, second-order information is resolved into tangentiat and normal 

components. The nonlinearity resulting fiom tangential and normal acceleration 

components are appropriately called tangential curvature and the normal cornponent of 

curvature, respectively. 

Tangential curvature, also called parameter effects nonlinearity, depends on the 

parameterization of the model and presents itself as unequally spaced curves of constant 

input-parameter values on the steady-state locus. This type of nonlinearity is the result of 

the changing magnitudes and directions of the velocity vector components that lie tangent 

to the steady-state locus. Tangential acceleration causes linear, orthogonal, unifomly 

spaced lines in the input-space, when mapped ont0 the steady-state locus, to become 

skewed, curved, and unequally spaced, as is s h o w  in Figure 2.3. OAen a 

repararneterization of the model inputs, such as logarithmic or square root transforms, can 



reduce the severity of this type of nonlinearity (Bates and Watts, 1988). 

Figure 2.3 Schematic representing the consequences of tangential nonlinearity. 
Constant input Iines are mapped into the state-space, where they may become distorted. 

Intrinsic curvature, which is another term for the normal component of curvature, 

depends on the forrn of the steady-state map, and presents itself as the curvature of the 

steady-state locus relative to its surrounding space. It results fiom the changes in 

magnitude and direction of velocity vector components that lie normal to the tangent 

space. Unlike the case for pararneter-effects nonlinearity, intrinsic curvature is invariant 

under a reparameterization of the model (Bates and Watts, 1988). 

The acceleration vectors of a model can be decomposed into these two types of 

curvature by projection ont0 the space tangent to the steady-state locus, and ont0 the 

space orthogonal to the tangent space, respectively. In this thesis, space will refer to a 

general class of hyperplanes (i.e. vectors planes and hyperplanes). Once the acceleration 

vectors have been resolved in this way, one can determine how the nonlinearity is 

distributed in the model. 

To separate the acceleration vectors into their tangential and normal components, 

one must define an orthogonal basis for the state-space. p basis vectors will span the 



tangent space, andp" basis vectors span the space normal to the tangent space (the normal 

space that is spanned by the acceleration vectors). Note that it is possible to have 

additional normal dimensions that are not spanned by the acceleration vectors, and thus, 

p" is not necessarily equal to n-p. The onhogona1 basis is defined by first taking the 

velocity and nonredundant acceleration vectors, and arranging them in an nxp(p+3)/2 

matrix, [V,W], given by: 

. . 
[V, W] = (+,v2-.-v,v,,v,~,v12 --v,-,--a ~ p . p )  (2.10) 

Taking the QR decomposition of the above matnx yields an onhonomal basis, Q, 

for the tangent space and the space normal to the tangent space, but that is spanned by the 

acceleration vectors. Pre-multiplication of the velocity, and acceleration matrices, V and 

W, by Q' yields the equivalent matrices in the new transformed basis. In keeping with 

Guay et a1.k nomenclature: 

A = Q W  (2.1 1)  

R, = Q'V (2.12) 

where RI is apxp upper triangular matrix of velocities in the transformed basis. A is an 

wp@+1)/2 matrix, where the first p rows comprise the tangential components, and the 

next p" rows yieid the normal components. 

Curvature measures can now be presented in this transfonned basis. The curvature 

of the steady-state locus, measured at a given point, dong a direction, e, in the input 

space, is given as the ratio of the nom of the resulting acceleration vector to the squared 

norm of the corïesponding velocity vector: 



where A, is a 3-dimensional array of n matrices, ai, obtained fiom rearranging A. Each ai 

is the pxp Hessian of transformed state i (see Guay et al., 1995): 

A, = [a, ,a2,.*-, an)) 

To aid in the visualization of A ,  it may altematively be represented as a three- 

dimensional block consisting ofpxp Hessians of the transformed states, x',: 

Figure 2.4 Another representation of the structure of A, Each slab (Hessian) of the three- 
dimensional block represents a face. 

The subscript r, denotes some redundancy in the acceleration values as a result of 

rearranging the matrix A (e-g., both dZxt/&&2 and ~ ~ ' ~ h i ~ û u ~  are shown in the array, 

though they represent the same quantity. Ar can be used to decompose the tangential and 

normal curvature contributions by evaluating either the first p, or the Iast pn faces, 

respective1 y. 

The curvature measure developed above displays a high dependence on the 

scaling of the problem. Because the identical problem with different scaling of the states 



and input parameters can produce very different curvature results, it can be dificult to 

obtain an appreciation of the degree of nonlinearity. A more usehl approach would be 

one which is capable of producing a unique measure of curvature; one that is scale- 

independent. 

In addition to rernoving the unit-dependency of curvature on state variables, 

scaling is performed to reflect the intended region of operation on the steady-state locus. 

A larger operating region often results in a greater deviation of the process fiom its linear 

approximation such that the nonlinearity effects are more severe than when operating the 

same process in a smaller operating region. Appropriate scaling can account for this. 

Assume that the operating region can be approximated, around a given point, by 

an ellipse of the form: 

AX'(SO""SO"~)AX = i (2.15) 

where soW is an invertible scaling matrix that takes into account the size of the region of 

interest in the state space, and AFX-r, is the deviation of the state variables fiom the 

steady-state point of interest. S~ can be chosen as a diagonal matrix, whose eiements 

reflect the expected range of operation for the States. This is termed output-prescribed (or 

more accurately, in this case, state-prescribed) scaling (Guay et al., 1 995). 

Alternatively, one could specify an elliptical region of interest in the input space, 

which corresponds to a region in the state space that, due to nonlinearity, might not be 

elliptical. Note that these two regions are related by the process map, and cannot be 

specified independently. The elements of an input-prescribed scaling matnx, s*, are 



chosen to reflect the intended region of operation within the input space. The equation of 

the ellipse in the input space is: 

This elliptical region is then mapped into the state space, where it may become non- 

elliptical due to nonlinearity. However, the scaling procedure described by Guay et al. 

(1995) is defined for an elliptical region in the state space. Thus, a linear rnapping of the 

input ellipse into the state space results in an elliptical approximation of the input 

prescribed region in the state space: 

where V is the steady-state gain matrix. The corresponding elliptical approximation in the 

state space of the region defined in the input space is: 

The equivalent scaling matrix, S z ,  in the state space would take the form: 

where S 4 typicaliy becomes non-diagonal. This alternative procedure is termed input- 

prescribed scaling (Guay et al., 1995). 

For simplicity, let S represent either the output prescribed scaling matrix, Sou'. or 

the equivalent output scaling matrix, Syt . Once S is chosen, the resulting ellipse in the 

state space, (2.15) or (2.18), can be transformed into a unit circle, by a linear change of 

coordinates z=SAr such that: 

z'z = i (2.20) 



The velocity and acceleration amys may be scaled using the S matrix, by pre- 

multiplication by S prior to perfoming the QR decomposition. In z-coordinates: 

v=sv (2.2 1 )  

w = s w  (2.22) 

where the tilde indicates a scaled quantity. 

In addition to the selection of the orthogonal basis vectors in the state space, u can 

be transforrned into orthogonal inputs, a, such that the denominator on the right-hand 

side of (2.13) is unity for a perturbation of unit length in any direction in a. The 

transformation is given by a linear change of coordinates as follows: 

= R,Au (2.23) 

In this form the perturbation of each individual input will affect a change of the state 

variables along the direction of only one of the new basis vectors defined for the state 

space. Therefore, this transformation removes first-order interaction effects. The 

velocity vectors due to these new properly scaled orthogonal inputs are simply the 

tangential basis vectors defined for the state space. The velocity and acceleration vectors 

become: 

Q' is the rnatrix defined by the first p columns of Q, and Cr is the rearranged relative 

curvature array for the region defined by S. Cr is similar in structure to A, in that it is a 

3-dimensional array ofpxp Hessian matrices, and contains ti faces. 



2.2.4 Root Mean Squared Curvature 

Recall, the procedure for quantieing nonlinearity described in 2.2.2 measures the 

cunrature of a process perturbed in a specific input direction. However, it is desirable to 

acquire a mean measure of curvature, averaged over al1 possible input directions. Such a 

curvature measure is called the rwt mean squared (RMS) curvature, c (or c~\ls ,  as it will 

be denoted in later chapters). It is calculated as follows (Guay et al., 1995, Bates and 

Watts, 1988): 

L - J 

- 
where cijk is the ih face, j' row, kth element of the relative curvature may Cr. 

The curvature measure of Guay et al. (previously illustrated in Figure 2.2), is the 

RMS curvature. As shown in Figure 2.5, it quantifies the degree of deviation between a 

second-order approximation of the properly scaled rnodel and a linear approximation, 

Figure 2.5 Schematic illusrrating the relationship between RMS curvature, and percent 
deviation (following Guay et al., 1995). 

where the nonlinear steady-state locus is locally approximated by a sphere of radius l/c. 

The magnitude of the deviation fiom the tangent plane approximation can be measured at 



the boundary of the region of interest to be 

As a benchmark value, Guay et al. suggest that an RMS curvature value of 0.3 or 

greater indicates considerable nonlinearity. This RMS curvature value of 0.3 corresponds 

to a 15% deviation between the second-order approximation and the linear 

approximation, measured at a unit distance in z-coordinates, fiom the point of 

linearization. This measure of deviation can be conveniently cornpared to the size of the 

region of interest, which has been scaled to unity. Guay et al. also provide an outiine of 

various other values of c and their corresponding percent deviations. 

2.2.5 Extension to the Input-Output Map 

What is presented above allows for the measurement of nonlinearity of the input- 

state map. An extension to the input-output relationship, developed by Guay et al., i s  

now presented. Consider the following output fiinction: 

Y = (2.28) 

where y is an m-dimensional vector of output variables. In the poiyethylene reactor 

model, the outputs are related to the States in the following way: 

and the input-state relation was given in equation (2.7). In an open region surrounding a 



point of interest, if ah/& and the differentiated input-state map, both have fùll 

ranks of m and p, respectively, and if the input-output gain matrix, dh/air.E/du, has full 

rank p everywhere on the operating region, then the first- and second-derivative 

information is determined by: 

dy a h E  Y -=-- (2.3 0 )  
du axh 

The above rank conditions hold for the polyethyiene rnodel, so that input-output 

nonlinearity can be assessed by employing equation (2.30). The remainder of the 

procedure for calculating RMS curvature, now between inputs and outputs rather than 

inputs and States, is as before. 

2.2.6 Effects of Curvature and interaction on the Geometry of the Steady- 

State Locus 

The presence and severity of both interaction and curvature can significantly 

hinder the performance of a controller; thus, the detection and measurement of these 

characteristics can be of assistance in the design of a control scheme. Although the main 

goal of this thesis is to compare the performance of linear and nonlinear controllers 

operating at various RMS curvatures and to examine the control performance 

improvement that resuits from implementing a nonlinear controller, background on 

interaction is also presented because it will aid in the visualization and understanding of 

the steady-state locus. The purpose of this section is to illustrate the effects of curvature 

and interaction on the geometry of the steady-state iocus. Piette et al. (1995) have 

presented a graphical interpretation of interaction measures to analyze multivariable 



processes. Geometric descriptions of nonlinearity have been presented by Bates and 

Watts (1988) and Guay et al. (1995). 

Consider a 2-input-pararneterized steady-state locus residing in 2-dimensional 

state space. That is, a 2-dimensionai surface comprised of 2 'sets' of constant input 

contours, 1 'set' for each input variable. The orientation with respect to the coordinate 

axes and the bending and spacing of the constant input lines demonstrates the presence 

and degree of interaction and nonlineanty in the steady-state model. 

Linear interaction presents itself in two forms: one-way and transmission 

interaction. One-way interaction occurs as the result of one state variable being 

dependent on both manipulated variables, and the other state variable being affected by 

only one of the input variables. This is illustrated in Figure 2.6. A change in u2 affects 

only XZ, whereas a change in ui results in changes in both States. 

Constant ul lines 

I 

Figure 2.6 A graphical illustration of one-way interaction. 



Transmission interaction, which causes the most serious control problems 

(Mariin, 1995) is also calied figure-8 interaction, and occurs due to the existence of paths 

from both inputs to both outputs. Transmission interaction occurs when a change in the 

set point of one controller affects its output via a path through another controller. 

Visually, transmission interaction presents itself as shown in Figure 2.7. Now a change 

in either u, or u2 will effect a change in both state variables. Transmission interaction is 

indicated by the rotation of both sets of constant input contours, relative to the coordinate 

axes, regardless of whether the contours are orthogonal to one another (Piette et ai, 1995). 

t Constant ui Iines 

Figure 2.7 Graphical representation of a process displaying transmission interaction. 

A tool for detecting and quanti6ing transmission interaction is the relative gain. 

The relative gain is calculated as (Marlin, 1995): 



L, depicts the degree to which the effective gain is amplified or attenuated as a 

result of the other loops being closed. 

The relative gains can be placed into a square matrix or calculated directly in 

matrix form to yietd the reiative gain array (e.g., Marlin, 1995): 

RGA = V. * V-T (2.32) 

V is the gain matrix, and .* denotes the Hadamard product (element-wise multiplication). 

Although the relative gain array measures linear transmission interaction, a 

change in interaction structure along the steady-state locus indicates nonlinearity. In 

addition to a change in interaction structure, nonlinearity is also detected by the bending 

of the steady-state locus relative to surrounding state space, and to the cuMng and non- 

uniformity of spacing of the constant input contours on the locus itself. 

Bending of the steady-state locus relative to surrounding state space is a result of 

the changing magnitude and direction of acceleration vectors that lie in the space normal 

to the tangent space. As mentioned earlier, this type of curvature is called intrinsic 

curvature, or the normal component of nonlinearity. A necessary, but not sufficient, 

condition for this type of nonlinearity to exist is that the state space rnust be of larger 

dimension than the input space. If input and state spaces are of the same size, the steady- 

state locus will completely "till up" the state space, leaving no extra dimension relative to 

which the locus can bend. In this case, only the tangential component of nonlinearity 

may be present. 



The conseguence of the tangential component of nonlinearity is that evenly 

spaced, linear, orthogonal, constant input contours in the input space are mapped into the 

output space where they may become rotated, bent, non-uniformly spaced, and non- 

orthogonal. Tangential curvature itself can be assessed either by calculation of the RMS 

curvature over the first p faces of the relative curvature array Cr, or by examining the 

individual cornponents of Cr. 

Consider Figure 2.8, where the orthogonal basis vectors, qb qt, obtained fiom the 

Q matrix, span the tangent space. Notice the absence of normal components, since 

n=p=2. Bates and Watts (1988) explain how to interpret the elements cijk of the relative 

curvature array. Er is sirnilar in stmcture to A. in that it is a 3-dimensional array 

consisting of n faces of pxp Hessian matrices; however, Cr is defined for the scaling 

region prescribed by S, and for the transformed States and input coordinates. For the 2 x 2  

system, the relative curvature array structure is as follows: 

The Ciii elements are the cornpumion, or self-acceleration, tems. These elements of 

tangential nonlinearity cause compression or expansion of the constant input contours. 

Cornpansion results fiom the change in length of the velocity vector Y I  (associated with 

6, ) along the qr direction as 6, undergoes a unit change. Another characteristic of 

tangential acceleration is arcing, which results fiom the arcing terrns, cjii, i#j. These 

tems reflect bending of the constant input contours, and are a consequence of the change 

in the velocity vector Y, dong the direction qi, as 4, changes. Another feature seen in 



Figure 2.8 is the fanning out of the constant input lines. The fmrning terms, qj; are the 

result of a change in the qj direction of the Y ,  velocity vector as 4, is changed. Because 

of syrnmetry, Gi=cjij are also considered fanning tenns. 

Figure 2.8 A steady-state locus dispIaying tangential nonlinearity. 

To summarize the key aspects of the preceding work, nonlinearity can be 

qirahjied in terms of its effect on the geometry of the steady-state locus. Changing 

interaction structure, and tangential and normal components of nonlinearity al1 impact on 

the graphical representation of the steady-state locus. The degree of curvature is 

cpantrfied by examining the magnitude of the second-order derivative information in a 

Taylor series approximation, relative to the first-order information. To permit 

cornparison of curvature results with a benchmark value, appropriate scaling is appiied. 

Scaling is chosen to properly reflect the region of operation, and remove the unit- 



dependency of  the RMS curvature measure on state variables. These measures were 

performed on  the input-state map. Extension to the output space is easily accomplished 

by an output mapping. 

2.3 Generic Model Control - An Error Trajectory Approach 

The nonlinear controllers implemented in this work were al1 developed using the 

error-trajectory approach, resulting in controllers with the Generic Model Control (GMC) 

structure of Lee and Sullivan (1988). The error-trajectory approach is one that enables 

the direct implementation of the nonlinear process model, which is an appropriate choice 

beanng in mind that most chernical processes are inherently nonlinear in nature. The 

error-trajectory technique for controller design incorporates the process model, fi-om 

which the explicit nonlinear control law is solved. Effectively, GMC is an example of 

input-output linearization using state feedback, with subsequent pole placement. 

Feedback linearization of  nonlinear systems is described in fiirther detail by Isidori 

(1 989). 

The polyethylene reactor model is a nonlinear model that can be written in the 

control affine form given below: 

i = f (x) + g(x)u 

Y = h W  

where, in keeping with the earlier convention, x is an n-dimensional vector of States, u is 

a p-dimensional vector of inputs, and y is an output vector of dimension m. The error- 

t rajectory approach can al low for the incorporation of  known disturbances within the 

process model, thereby providing a feedfonvard element to the control law. Modelled 



disturbances pertaining to the polyethylene mode1 can include changes in bleed valve 

position, changes in pressure, and hence, Cc, changes in ethylene partial pressure, and 

therefore Nd,  and changes in Bw due to changing bed level set point. From (2.34), it 

foilows that: 

The goal of the error-trajectory control law is to rehim the true process back to its 

desired set point by reducing the output tracking error. The output tracking error is 

defined to be: 

where y,,(t) is the output set point. The controller is designed and tuned by specifling a 

desired tracking error-trajectory, which is a suitably well-behaved fùnction K(-) of the 

tracking error and its higher-order denvatives (McLellan et al., 1990). Suitably well- 

behaved means that the control action will evolve directly from the error-trajectory 

description of the process. The tracking-error function is a linear function of the form: 

(-1 1 K[e'a' (t),e (t), . . ., ê(t), e(Q, t ]  = O (2.37) 

where a is the relative order of the process. Relative order (also referred to as relative 

degree or difference order) is the number of times the output must be differentiated 

before the control will appear explicitly in the output hnction (Isidori, 1989) and 

represents the inherent integration of a process between the input and the output 

variables (Kravaris and Kantor, 1990). 

In order to be able to solve for a control law expression, the error-trajectory 

function specified must be a function of at least the ah-order denvative of the tracking 



error (McLellan et al., 1990). For a process model that has relative order one, the 

appropriate tracking-error fùnct ion is: 

where is a diagonal matnx of tuning parameters. Equation (2.38) defines an error 

trajectory controller with proportional action, that, in an ideal world would ensure that the 

process returns to steady state. However, if unmodelled nonstationary disturbances result 

in planUrnode1 mismatch, there will be offset (unless appropriate steps are taken to adapt 

model parameters to eliminate the mismatch). For this reason, integral action must be 

added to the error-trajectory specification: 

The motivation for including integral action in the controller is two-fold. Not only does it 

elirninate offset, thereby enhancing disturbance rejection and improving robustness, but it 

also serves as an approximate model inverse for unmeasured outputhput or statdinput 

disturbances (McLellan et al. 1990). This feature is necessarily applied to the present 

work, as many of the disturbances entering the polyethytene reactor are unmeasured and 

unmodelled. 

Equation (2.39) is the GMC design equation. Lee and Sullivan (1988) chose the 

GMC parameter set such that (for the SIS0  case): 

2 r  p = -  1 
and y = - (2.40) 

T 7' 

where r and 5 are tuning parameters chosen from generalized GMC profile specification 

plots (see Lee and Sullivan, 1988) to give the desired shape and timing of response. For 

the MIMO error-trajectory speci fication given in equation (2.3 9), the coefficient matrices 



p and y are typicall y diagonal for decoupled performance. Equation (2.3 9) effectively 

specifies a pole placement for the error trajectory to asymptotically approach perfect 

tracking. The result is feedback linearization with pole placement. 

Harris and McLellan (1990) proposed a set of necessary conditions that must be 

met for the implementation of the GMC algorithm: 

i) The process relative order must be one. 

ii) The process must have invertible dynamics. 

iii) The inverse of g(x) must exist and be non-singular everywhere on the operating 

region. 

iv) The control actions extracted fiom the GMC formulation must be feasible. 

V) Al1 of the states are measured or observable. 

Al l  of these conditions are met by the polyethylene reactor. Although Y, the number of 

moles of active sites in the reactor, cannot be measured, it can be observed using an 

Extended Kalman Filter (McAuley and MacGregor, 199 1, 1993). 

The final steps in the development of the control iaw are now presented. Given 

the GMC expression, the approximate or known process model is substituted into 

equation (2.39). Due to the control affine nature of the model, the control action, u(t), 

appears explicitly in the error-trajectory equation. For simplicity, the control algorithm 

for a SIS0 process is exemplified below. Recall that the output model once 

differentiated is: 

Substituting the above into the GMC expression, and rearranging, yields the control law: 



In the above, Lr and L, are the Lie derivatives of the output map, h(x). Lie derivatives 

are directional derivatives of h(x), in the direction of the specified vector field; for 

exampie, L&)= (x) ax 

For the case of multiple inputs and outputs, equation (2.42) becomes: 

where f3 and y are each a diagonal matrix of error-trajectory tuning parameters. L& can 

be computed as the matrix multiplication of the Jacobian of h(x) with respect to x, and 

ah 
f(x). SimiIarly, L,h can be computed as the matrix multiplication of the Jacobian - 

d n '  

and g(x). It is clear that L,h(x) must be non-singular to yield a solution, which implies 

that the relative order of the MlMû process must be one. In the MIMO case, if the 

dimensions m andp  are the same, and if at least one element of u appears in each of  the 

m equations, the problem reduces to solving m equations in m unknowns. This is the case 

with the polyethylene mode1 of interest, where m = 3. Simultaneous solution of these m 

equations results in a full  multivariable control law. If, however, each of the m equations 

is solved independently for each of the elements of u, a multi-ioop control Iaw results, 

with m SIS0 controllers. In this thesis, only multivariable control laws are employed. 

The issue of constraints on manipulated variables can be readily addressed by clamping; 

if a manipulated variable value is calculated such that it exceeds its upper or lower limit, 

the limiting value shall be implemented in its stead. 



Dadebo et al. (1997) and Lee and Sullivan (1988) proposed similar approaches for 

selecting the tuning parameters of f3 and y for an individual loop. Dadebo et al. treated 

the issue as a pole-placement problem, whereby and y were chosen to reflect a specified 

desired closed-loop dynamic response. They chose an over-damped closed-loop response 

with al1 poles placed at the same location. Lee and Sullivan propose a tuning metnc, also 

based on a pole-placement solution. The desired shape and timing of the response is 

chosen from a correlational figure from which the individual elements of P and y can be 

selected. Using Lee and Sullivan's tuning, the closed-loop response of the controller is a 

decaying second-order type, possibly oscillatory trajectory with initial overshoot in the 

controlled variable. Focussing on the linear error trajectory, the corresponding 

relationship between a single output and set point is a second-order closed-loop transfer 

fùnction: 

Note the presence of the process zero, which is the cause of controlled variable 

overshoot. Clearly, the presence of oscillations and the size of the overshoot are 

dependent on the choice of parameter values. It is important to note that these parameters 

must be chosen to reflect realistic process behaviour; a tuning trade-off exists between 

performance and manipulated variable action. 

2.4 Summary 

This chapter provides the necessary background information for the work 

considered in the rest of this thesis. In Section 2.1, the process for the production of 



polyethy lene was described, with the introduction of the mode1 equations deveioped by 

McAuley et al. (1990), and McAuley and MacGregor (199 1, 1993). The polyethylene 

reactor model is a nonlinear two-tiered model consisting of  dynamic and static 

components. Simptifications to the original model were made, resulting in a three-input, 

three-output nonlinear dynamic model. This model is used in later chapters to assess the 

nonlinearity of the polyethylene reactor process. 

In addition to  providing a literature review of alternative work done in 

nonlinearity assessment, Section 2.2 also details the development of Guay et al.'s (1995) 

measure of curvature. Guay et d. estimate curvature by examining the local geometry of  

the steady-state locus. Second-order derivative information is decomposed into scaled 

tangential and normal cornponents, which can then be manipulated to yield a local 

averaged measure of  curvature. 

To summarîze the controller formulation in Section 2.3, an error-trajectory 

approach was taken in designing a nonlinear control scheme. M e r  recognizing the need 

for integral action, a GMC controller resulted. A set of necessary conditions for the 

implementation of  this GMC algorithm was described, of which al1 conditions are met by 

the polyethylene model, and finaIly, tuning suggestions were discussed. 



Chapter 3 

The Geometry of the Steady-State Locus: 

Visualizing Curvature and Interaction 

3.1 Introduction 

The objective of this chapter is to provide an understanding of the physical 

relationships within the polyethylene reactor, and to relate those to the geometry of the 

steady-state locus. The characteristics of the geometry of the steady-state locus are 

i 1 lustrated graphicall y to demonstrate the effects of curvature and interaction, which were 

introduced in Chapter 2. 

In what follows, the hl1 polyethylene model presented by McAuley and 

MacGregor (1993), show in Chapter 2, is simplified to a 3-state, 3-input (3 x3) model. 

but to a different form than that show in equation (2.4). Then, 2x2 portions of that 

model are explored. The simplified model form examined in this chapter consists of the 

following states: hydrogen and butene gas concentrations within the reactor and the 

production rate of polyethylene: 

The choice of these states was motivated by the fact that they are measurable states that 

represent imporuint variables within the reactor. Other states could have been selected. 



The number of moles of active sites, although directly related to the production rate, is 

not a measured quantity, whereas gas concentrations and production rate are. The input 

variables are as before: 

Because visualization of the interaction and curvature structure of the fùll 3x3 

model is dificult, the steady-state loci of the 2x2 portions of the model are presented and 

employed to illustrate these effects. The relevant masures, RMS curvature and RGA, 

are calculated and discussed. 

3 -2  Scaling Region 

The region of interest in this chapter was arbitrarily chosen to encompass most of 

the steady-state locus. The region of interest in the input space is approximated by the 

ellipsoid: 

The choice for input-prescribed scaling was done for illustrative purposes, although it has 

a potential benefit over output-prescnbed scaling in that it does tend to capture the 

inherent orientation of the steady-state process (Guay et al., 1 995). 

It is important to note that for practical purposes, a scaling region should be 

chosen to reflect the true process deviations. If we examine the scaling region defined by 

the ellipsoid in equation (3.3), we see that it would have M e  significance around the 

input [500 10000 21'. This would imply that the manipulated variable ranges are: 



Clearly, the lower bounds on the input flow rates are nonsensical. Consider the ellipse 

defined for the first two manipulated variables, s h o w  in Figure 3.1 : 

Figure 3.1. A schematic of the scaling region in the input space. A large portion of the 
scaled region is unattainable (shaded). An artificially large RMS curvature value may 
result . 

This scaling implies a much larger operating region than is achievable, and may result in 

an artificially inflated curvature value. Therefore, a practitioner should take care to select 

an appropriate scaling. RMS curvatures can also be computed over non-elliptical 

regions; however, in this instance numerical integration of the curvatures over the region 

would likely be required. The curvature assessrnent in what follows in this chapter 

ignores this shortcoming of the scaling chosen. Rather, this choice provides an 

illustrative, not practically realizable view. This scaling is preserved for each point on 

the steady-state locus. 



3.3 The Gas Mass-Bal ance Steady-State Loci 

Because the states of interest in this evaluation are slightly different from those 

given in the final simplified mode1 in Chapter 2, the fiil1 state mode1 of (2.3) must be re- 

simpli fied t o  represent the proper states. At steady-state, equation (2.3) becomes: 

Note that the differential bed weight equation contains the production rate equation: 

PR = Y(&,, [M, w, + k,, [M, l m 2  ) (3 -6) 

Therefore, PR=Op. Now we have four steady-state equations describing the relationship 

among four states, w], w], Y, and PR. To reduce this to a 3x3 problem, relation 

dY 
= O is solved for Y in tenns of Fa, bc, kd, PR, and Bw and substituted into the 

dl 

remaining equations: 



Curvature and interaction effects for this form of the model will be examined. The 

parameter values and constants are as presented in Chapter 2. 

The effect of a pair of input variables on a pair of state variables is assessed in the 

following sections. The simplified gas mass-balance model shown in (3.7) is a three 

state, three input model; since the examination involves al1 possible combinations of 

states and inputs on the 2x2 level, nine views of the steady state locus result. The 

assessrnent will be divided into three parts, each of which will focus on the effects of two 

input variable combinations on a specific set of states- The steady-state loci were 

generated by varying hydrogen gas flowrate fiom 500 to 2300 moUh, butene gas flowrate 

from 10000 to 64000 moVh, and catalyst flowrate fiom 2.0 to 9.2 W. The spacing 

between constant input contours corresponds to input increments as follows: 200 moVh 

hydrogen flow, 6000 moVh butene flow, and 0.8 kgBi catalyst flow. Recall that a single 

input is held constant while the other two are varied. The constant nominal value for 

hydrogen flow is 1500 mol/h, for butene flow it is 40000 moVh, and 5.6 kg/h for catalyst 

flow rate. 

To demonstrate the calculation of RMS curvature and the interpretation of the 

entries of the relative curvature array, Cr, two examples are given in 3.3.1.1. 

3.3.1 Effect on Hydrogen and Butene Concentration 

This section presents the effects of two input variables at a time on the 

concentration of butene and hydrogen gases in the reactor. 



3.3.1. I Effects of Butene and Cataiyst Flow Rate 

In this ponion of the overall steady-state model, the effects of varying FhlZ and 

Fat on m] and ( M 2 ]  are assessed. FH2 is held constant at 1 500 molBi. 

Exampie 3.1 

These calculations show how the curvature around point 1, shown in Figure 3.2, 

was determined. Point 1 is centered at: 

FH 2 1500 mollh =[i-] = [ ~ 6 0 0 0 m o i ~ h ]  2.0 kglh 

The expected manipulated variable range is 54000 mol/h for butene flow and 7.2 k g h  for 

catdyst flow. Hydrogen flowrate is held constant. This choice of input range suggests 

the use of input prescribed scaling. The velocities are found by differentiating equation 

set (3.7) with respect to each input and solving for v, , and v 2 ,  where Y ,  is dddui. The 

corresponding velocity matrix, V, is: 

Differentiating the velocity expressions with respect to inputs again, the acceleration 

array, W,, results: 

# 

The input-prescribed el1 iptical scaling region is represented b y : 



Its elliptical approximation in state-space is: 

The scaled matnx of velocity and non-redundant acceleration vectors is: (3.13) 

- - 3.703 - IO-' O 6.967-10-" 1.290-10-~ 0.1143 [v, w]= s:[v,w]= 
- 2 - 10-16 0.2778 2.705 1 O-'' - 3 -923 - 1 O-' - 0.07503 1 

Similady, Ar would be calculated as A, = S r  A, . Taking the QR decomposition of 

[s, W] yields: 

R is the matrix of velocity and acceleration values for the new orthogonal basis obtained 

from Q. The f i r s tp2  columns of R comprise the submatrix RI. The columns of R1 are 

the p=2 velocity vectors in the bais defined by Q. The last p@e1)/2 columns of R 

comprise the A matrix, which consists of the non-redundant acceleration vectors defined 

in the Q basis. A, is constructed fiom rearranging the entries in A, with some 

redundancy. The relative curvature array, Cr, is calculated from velocity matrix RI and 

the (scaled) acceleration array, Ar. From equation (2.25) 

From equation (2.26): M S  = 1.409 E17d of example. 



Figure 3.2 shows the corresponding steady-state locus for the effects of varying 

F,~22 and Fa on and Ml. Consider a change in FMZ. FXQ affects Nz] considerably 

and has a very small effect on m2]. This srnaIl effect on m] is due to the following: by 

increasing monomer concentration, production rate is increased. Because the assumption 

that bed weight is held constant by a controller was imposed on this modef, an increase in 

production rate implies an increase in polymer outflow rate. This in turn means that the 

residence time of the polymer decreases, thereby decreasing the concentration of active 

sites. Since there are fewer active sites, less chain transfer occurs and the hydrogen 

concentration goes up. F, also affects both [Hz] and @&]. An increase in FCa provides 

more sites with which Hz and M2 can react, and thereby both Pt] and Frz] decrease. 

Since both rnanipulated variables affect both controlled variables, transmission 

interaction must be present. This transmission interaction is seen in Figure 3.2, as both 

sets of constant input lines are rotated relative to the coordinate axis. Since the constant 

F,, contours are rotated only slightly, a low degree of transmission interaction results, as 

seen by the relative gains given in Table 3.1. 

Notice the small change in interaction structure in Table 3.1. Athough the 

individual relative gain values indicate nothing about curvature, the change in relative 

gains over the steady-state locus hints at nonlinearity (in this case, however, the change in 

relative gains is almost negligible). 

A large degree of curvature is immediately apparent, especially at high 

concentrations. Point 2 displays the lowest degree of curvature as verified by the RMS 

curvature value shown in Table 3.1. (Recall that Guay et al. (1995) concluded that an 

RMS curvature value less than 0.3 indicates negligible curvature.) 



interest for the steady-state locus of Figure 3.2. 

Point 

1 
2 
3 
4 

steadyaate Locus 
EIkct of Buhne and Catalyst Fiomafes 

Schernatic of 
basis vectors ql 

and q 2  for point 1 

Table 3.1 Locations and corresponding RMS curvature measures of specific points of 

Fm value 
( m o w  

16000 
16000 
64000 
58000 

Figure 3.2. Steady-state locus of hydrogen and butene concentration, parameterized by 
inputs butene flow and catalyst flow. 

Very linle fanning, arcing, or cornpansion enects are seen at point 2. The area 

surrounding point 1 displays some degree of al1 of fanning and arcing (of constant Fha 

contours) as well as cornpansion effects (of constant F- contours). Some of these effects 

Fm value 
( k m  

2.0 
8.4 
2.8 
8 -4 

RMS 
curvature 

value 
1 -409 
0.300 
1 -978 
0.328 

7~ 1 1 =A22 

-0.0 15 
-0.0 10 1 
-0.054 
-0.036 

AI 2=A2 I 

1.015 
1.0101 
1 .O54 
1 .O36 



become much more pronounced at point 3. Example 3.2 examines these tangential 

effects in more detail. For the following example, the matrix RI is virtualty diagonal, as 

seen in Example 1. Therefore, although the interpretation of elements cijk relate to 

changes in gains due to changes in 4, , we discuss them in terms of u, because both of 

these input bases lie along the sarne direction. 

Example 3.2 

The relative curvature anays calculated for the four specified points in Table 3.1 

and Figure 3.2 are shown here: 

- L 0.953 -2.94J 
Point 3 : C. = 1 , 

- 0.00220 0.0330' 
Point 4 : Cr = 

0.2" - '1 J 

0.00303 0.0 137 

0.0137 0.355 

- 
Point 2 : Cr = 

Cornpansion elements are the c,,  , and c= elements. They represent the degree 

of compression or expansion experienced by constant input contours. Consider points 1 

and 2, Constant Fd contours experience expansion as one moves along the steady-state 

locus fiom point 2 to point 1. This is a result of the changing magnitude of the gain 

associated with Fm tu2), along the q, basis vector, as Fat is varied. Recall, the vector q, 

is a vector in the transformed basis, and is onhogona1 to q, . Correspondingly, we see 

1 0.273 -0.05691 r- 0.00308 0.0 1261 

that the c, =0.97 term at point 1 is p a t e r  that at point 2, where the value is 0.37. In 

contrast, the spacing of constant FM2 contours is equally uniform at points 1 and 2. 



Therefore, it follows that cl,, entries for point 1, c,, , = -0.05 1, and point 2, c,, , = -0.034, 

are simiiar. 

Consider arcing efiects next, which are reflected by the cI2 and c2,, elements of 

the relative curvature anay. Considering points 1 and 2 again, a greater degree of arcing 

is seen in constant F m  contours at point 1 than at point 2. This is the result of a change 

in the q, direction of the velocity vector associated with Fcai (uz) as Fat is varied. The 

degree of arcing in the Fm contours relates to the cl, - element, which is cl= = - 1.48 at 

point 1 and cl= = -0.057 at point 2. Similarly, the degree of arcing of the F M ~  contours at 

point 1 is less than at point 3, leading to a srnaller cl, - entry for point 1 than for point 3, 

where cl= = -2.94. The arcing of constant F-r contours is negligible at al1 four points. 

The corresponding values are the cLll elements of Cr. For points 1 through 4, the clIl 

entries are -0.0020, -0.003 1, -0.0022, -0.0030, respectively . 

Finally consider the efEect of fanning, corresponding to the cl (or cI2, ) and c,,, 

(or c2,,) entries. Comparing points 1 and 2 again, it is clear that the constant Fsl2 

contours fan out as one moves along the steady-state locus from point 2 to point 1. This 

fanning result is due to a change in the q, direction of the gain associated with FCu ( u ~ )  as 

FhlZ (ui) is varied, or aitematively, to a change in the q, direction of the gain associated 

with Fh12 (uI) as Fa (ut) is varied. Thus, the cIl2 4 - 2 5  entry at point i is larger than the 

corresponding entry at point 2, which is cII2 = 0.27. Because the constant Fat contours 

experience no obvious fanning, the c2, elements for each point are negligible, ranging 

fiorn 0.0 13 toO.03 8. 

End of Example 



3.3.1.2 Egects of Hydrogen and Butene Flow Rates 

This section deals with the result of varying FHZ and Fku on and w2], while 

F, is held constant at 5.6 kgh .  The physical effects on the steady-state locus of 

changing inflow rates are illustrated in Figure 3.3. 

SteadySQte Locus: 
€Ra of Hydrogen n d  Budcne Fionnades 

Increasing F m  - 
Increasing 
FM2 

Figure 3.3 Steady-state locus of hydrogen and butene concentration, parameterized by 
inputs hydrogen and butene flow. 

An increase in each reactant effects an increase in the concentration of the 

comesponding component. The plot displays no transmission interaction, which wouId 

be indicated by both sets of constant input contours being rotated relative to the state- 



space axes; however, a very low degree of one-way interaction is present. This is 

demonstrated by the slight deviation of the constant Fm contours fiom the vertical. The 

physical interpretation is that while a change in F H ~  bears no consequence on [M2], a 

change in Fsu causes a change in both m2] and, a much smaller change in w2]. The 

dual effect of Fhu on FI2] and w2] was explained in 3.3.1.1. This one-way interaction is 

not reflected by the relative gains calculated in Table 3.2 for this locus, as relative gains 

measure two-way, or transmission interaction information. 

By inspection, it appears that there is a very low degree of curvature associated 

with this steady-state locus. This is confirmed by the RMS curvature measures given in 

Table 3.2, al1 of which are well below the benchmark value of 0.3. This is of littie 

surprise considering the appearance of the locus; the spacing of the constant input 

contours is uniform, and no arcing or fanning is apparent. 

points of interest on the steady-state locus in Figure 3.3. 

Point 

1 
2 
3 
4 

3.3.1.3 Ejects of Hydrogen and Cataiyst FI0 w Rates 

In the following investigation on state variables m 2 ]  and w2]> F H ~ ,  and Fa are 

Table 3.2 Locations and corresponding curvature and relative gain rneasures for specific 

FH2 value 
(moVh) 

2300 
500 
900 
1500 

manipulated. It is observed from Figure 3 -4 that increasing F H ~  serves only to increase 

[H2]> while manipulating Fm affects both p z ]  and for reasons already described. 

Fh12 value 
( m o w  

64000 
10000 
52000 
40000 

This would indicate one-way interaction and result in a , which is veritied by Table 

RMS 
curvature 

value 
0.0230 
O. 0243 
0.0233 
0.0236 

1 I =k22 

1 
1 
1 
1 

h12=h 

O 
O 
O 
O 



Steady4tate Locus: 
EIlbctdH@rogscrand Catdyst Clam- 

0.35 

Figure 3.4 Steady-state locus of hydrogen and butene concentration, parameterized b y 
inputs hydrogen and catalyst flow. 

Examining the nonlinearity of this plot, curvature is expected to be smaliest at 

point 1. This point represents an area that shows a small degree of arcing and fanning in 

constant FHZ contours, but none in Fa contours. As welf, this point exhibits the most 

uniformity of spacing of both FM and Fa contours. Although the degree of compansion 

remains reiatively unchanged along the locus to point 2, the degree of arcing of constant 

Fxz contours increases, indicating higher inherent nonlinearity. Point 3 displays 

significantly higher consequences of compansion among constant Fcat curves than at 

points 1 and 2. Point 4 marks an area of greatest combination of fanning, arcing, and 

compansion properties, suggesting the highea degree of curvature. This assessrnent is 

supported by the calculated RMS curvature values in Table 3.3. 



-- 

Table 3.3 Locations and corresponding cuwature and relative gain measures for specific 
points of interest on the steady-state locus in Figure 3.4. 

Point 

1 
2 
3 
4 

3.3.2 Effect on Hydrogen Concentration and Production Rate 

This section is similar in spirit to the previous one in that the effects of input 

FHf value 
( m o w  

500 
2300 
500 

2300 

variables, two at a time, on a given set of states are investigated. 

3.3.2.1 Eflects of Hydrogen and Butene Flow Rates 

Fa value 
(kgm 

8 -4 
8.4 
2.8 
2.8 

The steady-state locus given in Figure 3.5 is generated by varying FHZ and Fm, 

and observing [Hz] and PR. As before, Fh12 affects PR and w 2 ] .  FHZ has no effect on PR, 

RMS 
curvature 

value 
0.453 
0.456 
1.356 
1.404 

but serves to influence p2]. Therefore, a small degree of one-way interaction is present. 

By inspection, it appears that the curvature structure is similarly small at all 

1=k22 

1 
1 
1 
1 

points. No obvious bending of the corstant input contours is visible, and they appear to 

L12=h2 1 

O 
O 
O 
O 

be equally spaced. LittIe or no curvature over al1 points is observed in Table 3.4, as RMS 

curvature values are very small and almost indistinguishable. 

points of interest on the steady-state locus in Figure 3.5. 

Point 

1 
2 
3 
4 

Table 3.4 Locations and corresponding curvature and relative gain measures for specific 

FHZ value 
( m o w  

500 
2300 
500 

2300 

F M ~  value 
(moVh) 

16000 
16000 
58000 
58000 

RMS 
curvature 

value 
0.00727 
0.00727 
0.00675 
0.00675 

L 1 =A22 

1 
1 
1 
1 

h i  2=x21 

O 
O 
O 
O 



Increasing Fm 

f Increasing Fha 

Figure 3.5 Steady-state locus of hydrogen concentration and production rate, parameterked 
by inputs hydrogen and butene flow. 

3.3.2.2 Effects of ffyciioge~~ arrd Cafaiyst FIow Rates 

Next, the combined effects of F H ~  and Fm on PR and [Hz] are presented in Figure 

3 -6. As discussed previously, FH2 affects only [&]; however, Fat causes changes in both 

CHz] and PR. As F- increases, the number of active sites in the reactor increases thereby 

stimuiating production rate, and providing more sites on which hydrogen can react. The 

result is a one-way interaction structure. As is seen in Figure 3.6, the interaction structure 

changes over the area of the steady-state locus, implying the presence of nonlinearity. 



points of interest on the steady-state locus in Figure 3.6.  

Point 

1 
2 
3 
4 

Figure 3.6. Steady-state locus of hydrogen concentration and production rate, 
parameterized by inputs hydrogen and catalyst flow. 

Nonlinearity is assessed at the given points in Table 3.5. Point 3 displays the least 

arnount of curvature in that the constant input lines are straight and most uniformly 

Table 3.5 Locations and corresponding curvature and relative gain measures for specific 

F H ~  value 
(moW 

500 
2300 
500 

2300 

Fa value 
( W h )  

2.8 
2.8 
8.4 
8.4 

RMS 
curvature 

value 
0.324 
0.334 
O. 134 
O. 136 

AI 1=A22 

1 
1 
1 
1 

12=k2 1 

O 
O 
O 
O 



spaced. Fanning does not appear to be present. Moving along the constant FH2 contour 

corn point 3, it is clear that expansion in the spacing between Far contours develops. 

Point 4 is similar to 3 except that fanning becomes evident as one-way interaction 

becomes more pronounced, resulting in an increase in RMS curvature. Point 2 displays 

the greatest degree of curvature; the constant FHZ contours are bent, and fanning becomes 

more visible. These observations are confirmed by calculation of RMS curvature values 

in Table 3.5. 

3.3.2.3 Eects  of Butene and Cataiyst Flow Rates 

The steady-state locus in Figure 3.7 portrays the effects of F M ~  and FCat on 

and PR. (The scales of this plot are inconsistent with the other plots because when 

viewed in the original coordinate range, the constant input contours are too closely 

spaced to be distinguishable.) The presence of transmission interaction is seen as 

follows: a shift in Fm affects change in both w2] and PR, as does the manipulation of 

Fbf2. The relative gains are shown in Table 3.6, indicating a fair amount of transmission 

interaction. 

Table 3.6 Locations and corresponding curvature and relative gain measures for specific 
points of interest on the steady-state locus in Figure 3.7. 

Point 

1 
2 
3 

It is difficult to discem the nonlinearity structure in the plot in Figure 3.7, 

however, a compansion effect in constant Fd contours becomes pronounced at low Fm 

F M ~  value 
(moVh) 

16000 
58000 
16000 

Fa value 
(kg/h) 

2.0 
2.0 
8.4 

RMS 
curvature 

value 
2.47 
1.95 

A i  !=A22 

0.2 13 
0.204 

h.12=h.21 

0.787 
0.796 

0.620 1 0.337 0.663 



values. In addition, it appears that some degree of fanning is present in the area of points 

1 and 2, since the constant FM2 lines spread out very slightly at the higher @2] end. 

These characteristics indicate that curvature is most prominent at the higher @2] end of 

the locus; this is found to be so by calculation of RMS curvatures in Table 3.6. 

Stmdyatate Locus: 
EClbd of Bubanc and Catalyrt Fkmates 

1 Increasi ng 

0.035 0.037 0.039 0.041 0.043 0.045 0.047 0.049 0.051 0.053 0.655 

Concentration of Hydrogcn (md/L) 

igure 3.7. Steady-state locus of hydrogen concentration and production rate, 
parameterized by inputs butene and catalyst flow. 

3 -3.3 Effect on Butene Concentration and Production Rate 

This final section of 2x2  plots deals with the assessrnent of curvanire in the w2]- 
PR state space. 



3.3.3.1 Effects of Butene and Cuta&st Fiow Rates 

The steady-state locus of interest, shown in Figure 3.8, is generated by varying 

Fsrz and Fa. Once again, transmission interaction is evident. Recall that an increase in 

F~12 resuIts in a corresponding increase in Mt] and also in propagation rate, and thus, in 

PR. Fa increases the amount of active sites in the reactor, stimulating PR and a higher 

consumption of butene. Although Table 3.7 does not show much interaction, it does 

indicate changes in the relative RGA structure, which fùrther indicate the presence of 

Sdeady-State Locus: 
Eibcb of Bufaria and CÎtrlyrt Fiowrates 

- 
Increasing F ~ Q  

Figure 3.8 Steady-state locus of butene concentration and production rate, parameterized 
by inputs butene and catalyst flow. 



1 FLU value 1 Fa value 1 RMS 1 
Point 

1 
2 

points of interest on the steady-state locus in Figure 3.8. 

Consider the points of interest in Figure 3.8. Point 3 displays the straightest and 

most uniformly spaced constant input Iines, and therefore, has the lowest corresponding 

RMS curvature, as seen in Table 3.7. Point 4 hints at mild bending of constant F M ~  Iines, 

which explains the slightly elevated RMS curvature value. Point 1 lies in an area of bent 

F h l ~  Iines and expanding spacing between FM contours. Point 2 displays more of the 

same, except of a stronger nature, justi@ing the highest calculated RMS curvature. 

The following two sections are special cases. Because both steady-state Ioci 

examine state variables PR and wz] and the effects of F H ~ ,  the 2x2 structure reduces to a 

2x  1 structure which occurs due to the complete independence of PR and [M2] fiom FH2 

In other words, FH2 cm be considered constant. Therefore, the resulting steady-state loci 

are effectiveiy parameterized by one input, Fat in the locus in 3.3.3.2, and Fh12 in 3.3.3.3. 

The interesting consequence is that since the curvature assessrnent is performed 

on a one-dimensional locus in a two-dimensional state space, the state space becomes of 

higher dimension than the input space, allowing for the presence of intrinsic nonlinearity. 

Therefore, the RMS cuwature can be broken into tangential and normal components. 

(moVh) 

l6ûûO 
64000 

0.0 19 
0.074 

L 

3.3.3.2 Efects of CutuZysf Flow Rate Only 

The steady-state locus in Figure 3.9 was generated by varying FM and F,,r, and 

Table 3.7 Locations and corresponding curvature and relative gain measures for specific 

( k m  

2.8 
2.8 

3 
4 

0.230 
0.308 

cuwature 
value 
O. 760 
1.899 

0.98 1 
0.926 

16000 
64000 

8.4 
8.4 

1=h22 

0.959 
0.855 

h2=h21 

0.041 
O. 145 



observing PR and [M2]. As mentioned above, F H ~  has no effect on either w2] o r  PR 

while increasing Fm has the effect of raising PR and decreasing for reasons aiready 

discussed in previous sections. 

Note the nonlinearity structure in Figure 3.9. Point 3 shows little bending of the 

steady-state locus relative to w2]-PR space. In addition, the spacing of points along the 

locus is most uniform here. This would indicate the least degree of both tangential and 

normat curvature. Moving across the locus to point 1, it is observed that the bending of 

the locus and the non-uniformity of spacing of points becomes more pronounced, 

explaining the trend of increasing components of nonlinearity, and thus in overall RMS 

curvature, as seen in Table 3.8. 

SteadyStaîe Locus: 
Effect of Citalyrt Flowrrte 

Concmtation of Butene (mol/L) 

Figure 3.9. Steady-state locus of butene concentration and production rate, parameterked 
by input catatyst flow. 



Point 1 Fcat (kg/h) 1 overall R M S  ] tangent ial 1 normalRMS 1 

Table 3.8 Locations and corresponding RMS curvature measures of specific points of 
interest for the steady-state locus in Figure 3.9. 

1 
2 

Notice that for the 2x1 case, overall RMS curvature is the mean square value of 

tangential and normal RMS curvature, in accordance with the definition of root mean 

square curvature given in Chapter 2. 

3.3.3.3 E_tjcts of Butene Flow Rate On& 

The final steady-state locus of the simplified mode1 is presented in Figure 3.10. 

Again, this locus is 1-dimensional, and resides in 2-dimensional state space as a 

consequence of PR and independence of Fm 

By inspection, it appears that the locus is essentially linear in the intrinsic sense. 

Indeed, the normal RMS curvature values in Table 3.9 support this claim, being that they 

are so small. 

2.0 
5.6 

1 Point 1 Fcat ( k g h )  ( overall RMS 1 tangential 1 normal RMS 1 

curvature 
1.55 1 
0.570 

1 1 1 1 

Table 3.9 Locations and corresponding RMS curvature measures of specific points of 

1 
2 

interest for the steady-state locus in Figure 3.10. 

RMS curvature 
1.301 
0.488 

Additionally, the tangential component of nonlinearity appears to be negligible, as the 

curvature 
O. 844 
0.295 

- 

1 O000 
40000 

spacing of points along the steady-state locus appears to be uniform. The tangential RMS 

value of approximately 0.02 over the entire locus supports this. Resultantly, the overall 

curvature 
0.0203 
0.0 196 

RMS curvature 
0.0 174 
0.0 168 

curvature 
0.0 103 
0.0 1 O 1 



RMS curvature value, and therefore the overall nonlinearity displayed by this locus is 

negiigible. 

StmadyState Locus: 
Effoct of Butono Flowrato 

O 0.05 O. 1 0.15 0.2 0.25 0.3 0.35 

Conerntntion of Butonr (mollL) 

Figure 3.10 Steady-state locus of butene concentration and production rate, parameterized 
by input butene flow. 

3 -4 Conclusions 

The main objective of this chapter is to offer a visual interpretation and graphical 

description of interaction and curvature as they are represented on a steady-state locus for 

the polyethylene reactor. A constant scaling was defined over most of the operating 

region, not so much to reflect realistic operating conditions, but to fiord a consistent 



basis in which RMS curvature measures could be compared. Changing interaction 

structure over the steady-state locus is also an indication of the presence of nonlinearity, 

and examples of this were presented. 

Several 2x2 portions of the simplified 3x3 mode1 display varying degrees of 

tangential nonlinearity, including arcing, f a ~ i n g ,  and compansion effects. Tangential 

curvature ranged fiom negligible (c=0.00675) to moderate (2.47). Additionally, speciaI 

cases in which the 2x2 portions reduced to 2 x  1 portions introduced the appearance and 

assessment of intrinsic curvature. In one case, the normal component of nonlinearity 

over the whole steady-state locus was concluded to be negligible (normal RMS of 0.01). 

In another view, the degree of intrinsic curvature ranged fkom small (c=0.174) to 

moderate (c-0.844) across the locus. 

Ideall y, this type of information, speci fical 1 y the calculation of RMS curvature 

values, can be used to make an informed decision regarding the choice of best control 

scheme to be implemented. Ntematively, curvature assessment can be employed to draw 

comparisons of calculated RMS curvature values and control performance based on both 

Iinear and nonlinear controllers. This subject will examined in Chapters 4 and 5. 



Chapter 4 

Nonlinearity Assessment 

4.1 Introduction 

This chapter is concerned with the nonlinearity assessrnent of the h l 1  

polyethylene reactor model, and the theory that predicts control performance based on the 

root-mean-square measure of curvature. To investigate the nonlinearity of the model, 

certain issues such as scaling, grade setting, output transformations, and the presence of 

disturbances must be addressed. The structure of this chapter proceeds by discussing 

result expectations based on theory, selecting appropriate grade transitions and 

disturbances, and calculating their corresponding RMS curvature values. In Chapter 5 we 

examine control performance results and relate thern to calculated RMS curvature values. 

The model examined in this chapter and in Chapter 5 is the fonn s h o w  in 

equations (2.4) and (2.5). This form of the rnodel is transformed in that the first output is 

the logarithrn of melt index. The nominal model is one in which melt index appears 

directly, without transformation. We will examine the transformed version in detail, but 

we also discuss the nominai form. 

4.2 Curvature Theory and Results Expectation 

In later sections of this chapter, various regions of operation are chosen, defined 

either by transitions among a series of grades, or by disturbances around steady-state 



operating points, and the RMS curvature measure associated with these regions is 

caiculated. This type of curvature assessrnent will enable a technique for comparing 

anticipated and simulated results. Curvature theory implies that regions of high rwt- 

mean-square measures of curvature d l  exhibit significant nonlinear behaviour. One 

expectation is that, under linear control, the process will display greater control 

performance degradation over regions displaying a larger degree of curvature. As 

curvature increases, the deviation of the linearized-process gain, fiom the tme process 

gain, would increase; therefore, a linear controller operating over increasingly nonlinear 

regions would contain increasingly inaccurate gain information. It is this conjecture on 

which the following expectations of results are based. 

Both servo-control performance and regulatory control performance are expected 

to relate to the RMS curvature measures of the associated operating regions of the 

polyethylene reactor. On regions of low RMS curvatures, we hypothesize that the 

departure of the control performance of a linear control scheme fiom the best possible 

control, which would be achieved by a nonlinear controller, will be small. Conversely, 

on regions with high RMS curvature values, much poorer control performance should 

occur in the linear control case relative to the nonlinear case. 

We have made an implicit assumption above; we expect that the best control 

performance, barring input or output saturation, will be achieved by the nonlinear 

controller. In fact, due to the nonlinear MIMO nature of this model, we expect that the 

best control performance wiI1 come fiom the nonlinear multivariable controller. 

Additionally, the assumption is made that although the process model contains dynamic 

information, these steady-state RMS measures of curvature will appropriately predict 



control behaviour of the dynamic system. 

In the presence of extreme nonlinearity, it may be advantageous to perform an 

output transformation, as has been done with melt index. Instead of controlling melt 

index directly, practitioners usually opt to control the logarithm of this output; that is, 

In(M1). Therefore, by assessing the cuwature of  the present form of the model, the 

transformed form, [ l n M ) , p ,  PR]', and another form, the untransformed or  nominal 

for- p ,  PR]', we shall determine whether in fact the logarithm transformation 

removes much nonlinearity. If the natural logarithrnic transform of melt index does 

indeed reduce the degree ofnonlinearity, it is then reasonable to predict that the degree to 

which a linear controller would suffer performance loss would be greater in the w, p ,  

PR]' model than in the associated [In(MI), p , PR]' model representation. 

4.3 Grade Selection for Servo- and Regulatory Control 

One of the advantages of gas-phase polyethylene technology, over liquid-phase 

technology, is its capability to produce a wide range of  grades. Gas-phase polyethylene 

reactors are capable of producing a melt index range of  greater than 0.01 g/10 min to 200 

g/10 min, and densities between 0.910 g/cm3 and 0.97 &rn3 (James, 1986, Speakrnan, 

199 1). 

In selecting operating regions over which servo- and regdatory control are 

simulated and analyzed, Our goals were to choose sets of realistic grades, which cover 

most of the possible grade slate, and which display varying degrees of nonlinearity. With 

these goals in mind, commercial polyethylene grade information was obtained fiom the 

Nova Chemicals website (http://www.novachem.com/OurProducts~pdsrinde~E.cfm, 



April 8, 1999), fiom personnel at Imperial Oil (personal communication with T imothy K. 

Bean, Senior Account Executive, April 7, 1999), and Union Carbide (personal 

communication with Kimberly Parker, April 8, 1999). A slate of commercial 

polyethylene grades was identified on which control performance and nonlinearity 

measures could be assessed. These grades are given in Table 4.1 dong with processing 

and product application information. 

Grade 

A 
I I 1 I 

film. 
General-purpose pac kaging, liners. 

Processing 

Film Resin 

El 

C 

D 1 5.5 1 0.935 1 Rotational 

Typical Application 

Endustrial liners, heavy duty bags. 

Melt Index 
dl0 min 

1 

2 1 0.9 18 1 Film Resin 1 Trash bags, bag-on-roll, garment 

Density 
g/cm3 
0.918 

0.8 

E 

F 

Injection 

Rotational 

0.92 1 

G 

Film Resin 

12 

22 

1 Molding 
Table 4.1. Grade slate information obtained fi01 

50 

J 

Toys, carts, custom molding. 

0.926 

0.925 

Caps, closures. 
Molding 
Injection 
Moldinp: 
Injection 

0.926 

1 00 

Large houseware containers 1 
Molding 
Injection 

(e.g trash cans). 
Lids, general-purpose housewares 

0.929 

(e-g. trash cans). 
Industria1 containers, industrial 

Molding 
Injection 

1 ids. 1 
Large agricultural tanks, industrial 1 
products. 1 
Carrier resin for colour 
concentrates. 
Nova Chemicals, Imperial Oil, and 

Union Carbide. 

The grade transitions that were chosen are changes among grades; 

4 B , C  (film grades) 

ii) D,HJ (mid-MI molding grades) 

iii) J,G (high MI molding grades) 



These grades were chosen because much of the grade date is represented in the 

transitions. An additional intermediate grade, K, was designed to accompany J and G in 

a transition study. Grade K was chosen to have a melt index of 75 g/10 min and a density 

of 0.925 g/cm3. 

Choosing additional grades that provide broader coverage over the grade slate 

allows for a relative1 y thorough comparative study among grade transitions. The 

additional grades chosen for this purpose were selected by sirnply translating the MI 

values of Table 4.1 to different nurneric values on the grade slate. The newly selected 

grades are show in Table 4.2. 

Table 4.2. Additional grades chosen for comparative study with grade transitions chosen 
fiom Table 4.1. 

Although melt index and density define a grade, our output mode1 also predicts 

production rate. Therefore, grade information will include production rate as part of the 

grade specification. Production rate is given in brackets next to the grade name. For 

example, A(20) refers to the grade with a melt index of 1 g/10 min, and a density of 

0.918 g/cm3 being produced at a rate of 20 to~es /h .  The complete set of grade 

transitions is depicted in Figures 4.1 and 4.2. Figure 4.1 shows the grade slate in p and 

MI coordinates, while Figure 4.2 is given in p and ln(M1) coordinates. 



Grade Slate 

+ œ 

S-T- P-T 

O-Q-R-O 

J-K-G-K 

O 20 40 6 0  80 1 O0 120 

Melt Index 
0/4@ min 

Figure 4.1. Grade date information in MI-p coordinates. Each transition has a 
production rate sequence of 30-20-30-30 th. 



Grade Slate 

/ CA-BC 

4 

O-Q-R-O 

J-K-G-K 
$3 

a N-L-M-N 

* 

In(Meît Index) 
@ I O  min 

Figure 4.2. Grade date information in In(MI)-p coordinates. Each transition has a 
production rate sequence of 30-20-30-3 0 th. 



Appropriate grades must also be chosen for disturbance rejection analysis. 

Because the relationship between control performance and curvature is of interest, we 

should choose operating regions that provide a wide range of RMS curvature values. 

M e r  performing a preliminary assessment of RMS curvature values of the candidate 

grades, the following grades were chosen on which to examine regulatory control: 

i) E at a production rate 0120 tomesh 

i i) 1 at a production rate of 30 t o ~ e d h  

iii) J at a production rate of 20 t o ~ e d h  

Before the rwt-mean-square measure of curvature cm be computed for the grades 

proposed for servo- and regulatory control, appropriate operating regions in the output 

space must tirst be specified, and those regions scaled to unity. 

4.4 Scaling 

Grade specifications are given in terms of melt index, and density, and in this 

thesis, a target production rate is also associated with grade information. Because the 

grade transitions are defined for outputs, it is reasonable that output-prescribed scaling 

(rather than input-prescribed scaling) is used to approximate the desired regions of 

operation. 

4.4.1 Scaling for Grade Transitions 

The regions of operation for each grade transition set were estimated by the grade 

set-point ranges for each output. For example, grade transition J(3 0)-K(20)-G(30)-K(3 0) 

is characterized by a total melt index variation of 50 to 100g110 min, a total density range 



of 0.925 to 0.929g/cd, and a production rate varying fiom 20 to 30 tomesh. Ellipsoidal 

regions in the operating space were prescribed using these values. In effect, a 

hypothetical 'box' is defined by these limits, wherein an ellipsoidal region within this box 

defines the region of operation. 

The ellipsoids specified are aligned with the output coordinate axes, whereas the 

minimum area ellipsoid for the given grade specifications would, in general, be rotated, 

as shown in Figure 4.3. 

Figure 4.3. Schematic comparing rotated and non-rotated el1 ipses encompassing the 
scaling region. The corners of the triangles define arbitrary grade settings. The dashed 
ellipses represent scaling regions. The rotated ellipse may bener define the region of 
operation. Notice the size difference between ellipses. 

However, because the size of the scaling region is an approximate description of the size 

of the operating region, this non-rotated technique is appropriate. To account for 

overshoot in the controlIed variables, the edges of the specified ellipsoids were extended 

by 20% fiom their centres. 

In Chapter 2, ellipsoidal scaling regions were detined by scaling matrices such 

that: 



Ay' (S' S)Ay = 1 (4-2) 

where Ay is the deviation of the output variable from steady-state. In the case where the 

scaling region defines a region of interest for grade transitions, Ay is the deviation of the 

output variable from its mid-point. S is the diagonal scaling matnx. Each diagonal 

element of S is the inverse of half of the corresponding output range. By extending that 

range by 20%, the size of the ellipsoid grows by 20% along each of its axes. For 

example, the haif-ranges of the transit ion J(30)-K(20)-G(30)-K(30) and S(30)-T(20)- 

P(3 0)-T(3 0) are: 

for melt index: 25 g/lOmin 

for density: 0.002 glcm3 

for production rate: 5 tomedh 

An increase in these ranges by 20% gives: 

for melt index: 30 g/lOmin 

for density: 0.0024 g&rn3 

for production rate: 6 tomedh 

and the corresponding scaling matrix for grade transitions J(30)-K(2O)-G(30)-K(30) and 

S(30)-T(20)-P(30)-T(30) is given as: 

For the grade transitions D(3 0)-H(20)-1(3 0)-D(3 0) and 0(3 0)-Q(20)-R(3 0)-O(3 O), the 

scaling matrix becomes: 



and for the C(3 0)-A(20)-B(3 0)-C(30) and N(30)-L(20)-M(30)-N(3 O) grade transit ions, 

the scaling matrix is given as: 

To illustrate the use of the scaling matnx, Figure 4.4 shows the associated scaling 

ellipse around grade transition J-K-G-K. Both the original scaling (without the 20Y0 

extension in principal axes) and the extended scaling ellipses are shown. 

Figure 4.4. Diagram showing how a scaling ellipse is defined for a region of operation. 
This schematic shows the smaller original scaling ellipse, and the larger ellipse 
encompassing the 20% increase in principal axes. 

Grade Transition J-K-G-K 

Scaling must also be perfomed for the [ln(MI), p .  PR]' mode]. Only the value of 

0.94 - 

0.935 - 

O 

5 0.93 - 
I 

O 
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O 
O 

0.92 - 

0.915 , 

the first diagonal element of each scaling matrix will change because the output 

. 
O 2 O 40 60 80 1 O 0  120 

Melt Index a110 min 



transformation is applied only to melt index. Because In(MI) is a nonlinear transform of 

melt index, it would not be accurate to calculate In(half of the range in MI coordinates) 

for the grade transition sets. Rather, the range should be calculated as half of the range in 

terms of In(M1). For example, for C-A-B-C, the half-range of In(MI) is calculated as: 

)-(h(2) - h(0.8)) = 0.458 1 (4-6) 

For N-L-M-N, the half-range of In(M1) is: 

~ ( l n ( 2  1) - ln(19.8)) = 0.02942 (4.7) 

Notice the dramatic difference in the size of the ranges for the same size output changes 

in melt index coordinates. Now the 20% increase to account for overshoot must be 

included. The increased length of the ellipsoid along the In(MI) axis is reflected by the 

foilowing relation for half of the range: 

120%~(1nMI ha - InMI ,, )) (4-8) 

The corresponding (1,I) entries in the S matrices for the grade transitions are given in 

Table 4.3. 

Grade 

transition 

C-A-B-C 

Table 4.3. The half-ranges of the variation of In(h4i) must be calculated differentlithan 
those for MI. The calculation technique and the first diagonal entry of S are shown. 

Half of the range including the 20% increase 

N-L-M-N 

D-H-1-D 

O-Q-R-O 

J-K-G-K 

S-T-P-T 

(1,l) entry of S 

1 20%& (ln(2) - ln(0. 8))) 1 /0.5498 

1 20%& (ln(2 1 ) - ln( 1 9.8))) 

120%& (ln(5.5) - ln(2))) 

1 20%& (ln(20) - ln( 1 6.5))) 

1 2 0 ~ 6 3 :  (ln( 1 00) - ln(5 O))) 

1 20%& (ln(5 5) - ln(5))) 

1/0.03530 

1 / 0.6070 

l/O. 1154 

1/0.4159 

1 / 1 -439 



4.4.2 Scaling for Disturbance Rejection 

The appropriate region of interest for operation around a steady state depends on 

the nature and size of anticipated disturbances. An approximate region of operation can 

be estimated either fiom historical plant data, or fiom simulating the disturbance under 

feedback control, and observing typical deviations between output and set point. In this 

work, the scaling regions were obtained by simulation studies. 

The disturbances considered were 25% step increases in both the active site 

concentration in the cataiyst feed, h, and in the catalyst deactivation parameter, kd, 

occumng at t=50 h and t=150 h, respectively, and a 25% step decrease in the bleed 

stream flow rate, b, at t=250 h. By observing the responses of the controlled system to 

these disturbances, appropriate deviations of melt index, density, and production rate, 

from their corresponding set points, were determined. 

In Chapter Sr we assess the curvature of one disturbance rejection point in the 

nominal model, point J(20), while we look at three points in the transformed model. 

Therefore, we must determine the scaling for each. The first point considered is that of 

the nominal model, point J(20). 

The expected region of operation at point J(20) was obtained by assigning the 

half-ranges of w, p, PR]' to the largest deviations of these outputs from their set points. 

These 'largest deviations' are actually those largest deviations obtained when the system 

was subject to either of the control designs given in Appendix A.3, Figure A3.11 .a or c. 

A value of 3.8g/lO min is an appropriate half-range for the MI, while half of the ranges of 

p and PR are 0.001g/cm3 and 3 tonne* respectively. The resulting scaling matrix for 

operation around point J(20) is: 



1/3.8 O O ; 1/0;1 l;j 
Once again, appropriate scaling must be determined to calcdate curvature in the 

transformed model, [In(MI), p , PR]'. As before, only the (1,l) element of the S matrix is 

subject to change. The scaling for the transformed melt index output at a given point is 

the greater value of: 

The In(MI) half-ranges for the three grade regdation points are given in Table 4.4. 

The scaling matrices for each of the steady-state points, E(20), I(301, J(20), of the 

transforrned model are given below: 

Grade 

E(20) 

I(30) 

J(20) 

Table 4.4. Table displaying half-ranges of ln(MI) required for the computation of 
scal ing regions for nonlinearity anal ysis when operating around individual grades. 

Half of the ln(MI) range 

(h(12.4) - h(l2)) 

(h(2.055) - h(2)) 

(h(i 06.4) - h(l00)) 

(1,l) element of S 

1 /0.0328 

1 / 0.027 1 

1 / 0.0620 



Now that the expected regions of operation have been identified for both servo- and 

regulatory studies, we may now proceed to calculate the RMS curvature measure for each 

case. 

4.5 Nonlinearity Assessrnent 

The cuwatures of each of the forms (transformed and nominal) of the 

polyethylene reactor model were assessed for both servo- and regulatory control for 

operation within the regions specified in Section 4.4. 

4.5.1 The Nonlinearity of Grade Transitions 

The grade transitions defined in Figures 4.1 and 4.2 are the subjects of this 

nonlinearity assessment. The transformed [In(Mi), p ,PR]' fom of the polyethylene 

model is investigated in detaii, and the nominal [1W, p, PR]' form is examined briefly to 

determine the effect of the logarithm transform on the curvature measurement. 



4.5. .  1 Nonlinediy of the Transformed Motiei, [ / I O ,  p, PR/' 

Six sets of grade transitions were examineci for the transforrned model. The RMS 

cuwatures for each grade transition are shown in Table 4.5. 

Table 4.5. The grade transitions and their associated RMS measures of curvature for the 
transformed model, [In(MI), p ,  PR]'. 

Grade Transition 

Please note that for brevity, the nomenclature of the grade transitions shown in Table 4.5 

will be shortened to omit the production rate information. 

Scaiinp: ' RMS cuwature 



From Table 4.5, we see a diversity of RMS curvature measures, ranging form 

0.625 to 4.35, indicating moderate nonlinearity. From the curvature values in Table 4.5, 

a conjecture is made; it is expected that the grade transition J-K-G-K will result in the 

best linear control performance because this transition has the smallest curvature value. 

Notice that no grade transition displays mild nonlinearity, in that the RMS curvature 

values obtained al1 lie above the suggested cut-off value of 0.3 (Guay et al., 1995). 

Arbitrari1 y cornparhg the grade transitions J-K-G-K and S-T-P-T, we anticipate that J-K- 

G-K will display a much lower error fiom set-point than S-T-P-T when linear controllers 

are used because the estimated degree of curvature for S-T-P-T is much higher. 

4.5-1.2 Non/ànemoty of the Nominal Model,/Ml, p PM' 

The purpose of this section is to show that, indeed, the loganthm transform of 

melt index does reduce the degree of nonlinearity of the model. Ln Table 4.6, the RMS 

curvature values have been calculated for each of the six grade transitions in the w, p, 

PR]' model and compared to those of the transformed model. 

In al1 cases, the transformed model results in lower nonlinearity measures; 

therefore, we see that the practitioners' choice of controlling In(MI) versus MI directly, is 

justified. The degree of nonlinearity reduction by the logarithm transform varies fiom 

transition set to transition set. In comparison to the nonlinearity reduction of most 

regions on the grade slate, a relatively small decrease in curvature is seen in the C-A-B-C 

transition, as the nonhnearity is reduced fiom c~~s'6.70 to c ~ ~ = 2 . 3 4 .  AI1 other 

transitions display an impressive decrease in curvature due to this logarithmic 

transformation. 



- - -  

Cmde 
Transition curvature 

6.70 
Fa. 

p. PR]' 

Fa* 

their associated RMS measures of curvature for the Table 4.6 The grade transitions an 
nominal model, w, p ,  PR]'. The curvatures of the transformed model are given for 



In Chapter 5, the results of  one grade transition example are given, in which a simulation 

study compares the linear control performance between the grade transition J-K-G-K 

controlling MI versus the same transition in In(MI). 

4.5 -2 Nonlinearity of Operation About a Point 

Often, it is not just the nonlinearity associated with large excursions such as grade 

transitions that is of interest, but also the nonlinearity existing in a small region about a 

steady-state point of operation. Disturbances will occur, and cause the reactor to deviate 

from steady state. Because disturbance rejection performance may be a function of 

nonlinearity, the assessrnent of curvature around an operating point rnay aid in the 

decision of control scheme choice. Three steady-state points are examined in the 

transformed model; additionally, the transformed model is compared to the nominal 

model at one point. 

4.5.2.1 Nonlineariîy of the Tranqormed Model, fln(îM9, p, PR/' 

In this investigation, three steady-state points with varying RMS curvatures are 

the focus. In Chapter 5, the disturbance rejection performance for the transformed- 

model -based controller around points E(20), I(3 O), and J(20) is studied. 

Using the scaling information given in Table 4.4, the RMS curvature information 

at each of  the three points is calculated and displayed in Table 4.7. The curvatures 

associated with operation about an individual steady-state point display curvatures in the 

moderate range ( ~ ~ ~ 4 . 4 7 6  at J(20), to cRv&.27 at ((30)). 



- 1 Grade 1 ScaIing 1 RMScurvature 
4 4 

measures of 

J(20) 

F~~~ the calculated RMS curvature values, the control performance expectations 

are that linear controIiers will perform better at J(20) than at I(30). 

T~ eualuate the impact of the logarithm transfom on the curvature of the 

T ~ ~ J ~  4.7. fhe steady state regions of operations and their associated RMS 
curvature foi the [ M W ,  P , PRl' model- 

A ~ M I '  A A P R ~  

~ + G ? + T = '  

polyethylene model in the disturbance rejection case, the nominal model, w, p, PR]', is 

0.476 

compared to the transformed model [In(MI), p, PR]', at one point. J(20). The scaling for 

In the w, p, PR]' model, the curvature around point J(20) is cR~~=57.8, which is  much 

larger than the curvature of the same point in the transformed model (which has an 

RMS measure of nonlinêarity of 0.476). 

AS a result of the large difference in curvatures, it is expected that linear control 

of I n w )  wilI result in lower error than the linear control of MI directly, as compared to 

the respectiv$ noniirleaf COUflterpârts. 



4.6 Conclusions 

In this chapter, the focus has been selecting appropriate grades for servo- and 

regulatory-control simulation studies to select representative regions of operation for each 

simulation and to calculate the RMS nonlinearity values for each grade transition and 

disturbance rejection for the transformed model. Additionally, two examples were 

chosen for which the nonlinearity was assessed for the nominal model, w, p, PR]', in 

which the melt index is cuntrolled directly. 

The chosen grades for transition studies were C(30)-A(20)-B(30)-C(30), D(30)- 

H(20)-I(3 0)-D(3 O), J(3 0)-K(20)-G(3 0)-K(3 O), N(3 0)-L(20)-M(3 0)-N(3 O), 0 (3  0)-Q(20)- 

R(30)-O(30). and S(30)-T(20)-P(30)-T(30). For operation about steady state, subject to 

disturbances, the grades of interest were E(20), I(30), and J(20). 

Corresponding scaling regions were chosen for the grade transitions by detining 

an ellipse within a 'box' defined by the upper and lower specifications of the grade 

transitions. The dimensions of the ellipse were then extended outward by 20% to account 

for the controlled variable overshoot. Scating regions for grades subject to disturbance 

rejection were detemined by controlled variable fluctuations in simulation studies. 

Varying degrees of curvature were calculated for both servo- and regulatory 

control. In servo-control of the transformed model, RMS curvature ranged from 0.625 to 

4.35. In the nominal model, w, p, PR]', c~i i s  ranged fiom 6.7 to 117. The curvature of 

each grade transition in the nominal model was substantially larger than in the 

transformed model. In disturbance rejection studies, the RMS curvature ranged fom 

0.476 to 4.27 for the transformed model, indicating the presence of a range of moderate 

nonlinearity. 



For the nominal model, the curvature was calculated for regulation about one 

grade and found to be much higher (cLkfs=57.8) than at the same point in the transformed 

model. This finding and the cornparison of RMS curvature for nominal and transformed 

models in grade transition studies indicates that the iogarithm transformation of the meIt 

index does reduce the degree of nonlinearity. 



Chapter 5 

Closed-Loop Performance Assessrnent 

5.1 Introduction 

In Chapter 4, nonlinearity assessrnent was performed for various grade transition 

and disturbance-rejection regirnes for both the transformed model, [In(MI), p , PR]', and 

the nominal model, w, p ,  PR]'. The nonlinearity information obtained was calculated 

so that the expectations regarding the impact of RMS curvature on control performance 

could be tested. In this chapter, we determine whether operating regions of the 

polyethylene model with high RMS curvature values indeed suffer noticeabty iarger 

performance losses when subjected to linear control, than regions in the model displaying 

only mild nonlinearity. Such a cornparison is done in two ways; first, the control 

performance of linear and nonlinear controllers for the transformed model is examined 

over a large portion of the grade slate, with both servo- and regdatory control goals, and 

compared to the corresponding RMS curvatures. Second, the performance of linear 

versus nonlinear controllers is assessed for both the transfomed and the nominal models 

at identical regions on the grade slate. We will determine whether linear control of the 

nominal model (which displays much higher nonlinearity) is less successfbl than linear 

control of the transformed model, and whether a correlation exists between performance 

degradation and RMS curvature. 

This chapter is structured in the following way. First, the control laws are 



developed from the error trajectov approach. The derivation of the linear and nonlinear 

controllers from the model is demonstrated. Then, a comparative study is performed to 

determine the relationship between RMS curvature and control performance prediction. 

5.2 Control Law Development 

The design of the error-trajectory ccntroller (McLellan et al., 1990) begins with 

the error-trajectory specitication, which must be a function of at least the a& order 

derivative of the tracking error (where a is the relative order of the process). Because the 

polyethyiene reactor model is a relative order one process, the error-trajectory 

specification, as given in equation 2.39, is: 

r 

=(t) + Pe(t) + yp(z)& = O (2.39) 
(0 

where e(t) = y, ( t )  - y ( f )  , and y and fl are diagonal weighting, or tuning, matrices. To 

design a nonlinear controller, the nonlinear process model, (2.4) and (2.5): 



is substituted into the error trajectory specification, with y, =O (set points are a senes of  

steps): 

The formulation in equation 5.1 amounts to pole-placement o f  an input/output path with 

ûh d x  
added integral action. Substituting the Jacobian -, and the state equations - into 

& dr 

equation (5.1 ), 

dt 
dY PR, -PR 

k, 3.5 - 
ah, - -- rM, 1 ko + k l  M l  + k, -- W l ) '  

[Ml 1 [Ml 1 



k, 3 S p ,  - ( P . - 1 )  

chz - CM, 1 - P. - P' ( w) -- P2 - 
a 2  [M.  1 + k3 W.]) [Ml 1 

+ '*' mi [Ml1 

The controller equations are obtained by solving equations (2.43) in Chapter 2.  

Note that the above formulation corresponds to the controllers designed for the 

transformed model. To design a control scheme where melt index is controlled directly, 

as in the nominal model, one must substitute instead the corresponding model into 

equation (5.2), as shown in Appendix A. 1. 

If one is designing a linear controller, the linearized process model is instead 

substituted into equation (5.1). The linearized polyethylene reactor process mode1 is of 

the form: 

The linearization was obtained by performing a first-order Taylor series approximation 



about a nominal steady-state point. Matrix A is the Jacobian of the process state 

equations with respect to the vector x, and evaluated at a steady-state point. Similarly, B 

is the Jacobian of the state equations with respect to the input vector, u=FH~, Fkt2, Fa]'- 

C is the Jacobian of the output fiinction h(x). The matrices A, B, and C are evaluated at 

the point of linearization, and the x, u, and y vectors are presented in deviation variables. 

Nonlinear equation (5.2), and its linear counterpart, are each a set of three 

equations in three unknowns. The three equations can be solved simultaneously for each 

of the inputs. For completeness, the nonlinear control solution of the transformed model 

is shown in Appendix A.2. It is important to note that, although the linear and nonlinear 

controllen incorporate different model forms, their error-trajectory specifications are the 

same. 

5.3 Tuning 

Tuning the resulting individual controllen is accomplished by selecting 

appropnate values for the diagonal elements of matrices f3 and y. The selection of tuning 

parameters is akin to selecting the desired closed-loop response of the process. A 

reasonably conservative choice for P and y is one in which the response specification 

matches the dynamic behaviour of the system. By performing open-loop step tests on the 

process model, a set of tuning parameters for individuai input/output channels was 

chosen for the process: (5.4) 



Although the dynamics due to butene flow are faster than those due to hydrogen flow, as 

seen in Figure 5. l a  and b, we have chosen equal error trajectory specifications for melt 

index (predominantly affected by hydrogen concentration) and density (predominantly 

affected by butene concentration). Such tuning will ensure more aggressive hydrogen 

valve movement, as seen in Figure 5.2b, which is desirable because o f  the inherently 

slower open-loop hydrogen dynamics o f  the system. With these tuning parameters, the 

closed-loop responses for instantaneous In(me1t index) and density also have overshoot 

(see Figure 5.2a), which beneficially increases the rate o f  change in cumulative 

properties. For a set point change in production rate, an overshoot is not desired because 

it might lead to excessive heat removal requirements. To  minimize the size of the 

overshoot in production rate response, the integral action parameter, y3, was reduced 

relative to  y ,  and y2 (those of  melt index and density), resulting in the control system 

responses shown in Figure 5.2. The particular error-trajectory specification defined by 

equation (2.43) and tuning factors in equation 5.4 were used in al1 o f  the control 

simulations shown in the remainder of  this thesis. 

Manipulated variable bounds exist, and are defined by the following limits: 

O 5 FH2 5 14000 mollh 

O r FkfZ 5 64200 mol l h 

O r Fa, 5 10 kg lh  

These bounds are imposed after the controller has solved an unconstrained solution. If 



Open-Loop Step Test 

b 

i 

a The was subjected changes 
variables, as shown. 



Open-Loop Step Test 
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variables, which resulted in the output responses shown above. 
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Figure 5.2.. The specified error trajectories and the nonlinear controller results 
given above. The tuning parameters for this output response are bl=b2=b3=lY 
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gl=g2=1/4, and g3=1/30. Dashed line: set point. Thick line: Output. Thin line: output 
specification (output and specification overlap). 
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Figure 5.2b. The manipulated variable action required to yield the specified error 
trajectories and the nonlinear controller results in Figure 5.2a. Solid line: manipulated 
variable. Dashed line: M V  bound. 



the control law returns any value outside these limits, the manipulated variables are 

clamped at their specified bounds. Due to manipulated variable clamping, there exists 

the potential for reset windup, although it didn't appear to pose significant problems in 

the simulations in this thesis. 

5.4 Performance Assessrnent 

This section examines the control performance for grade transitions and 

disturbance rejection scenarios previously defined in Chapter 4. First, a performance 

measure must be defined. The performance of the controllers in this thesis is evaluated 

using a modified version of the integral of the absolute value of the error (IAE). 

The simulation work done in this thesis was accomplished in MatlabTM 5, in which 

the ODE1 5s routine was used to solve differential mode1 equations. 

5 -4.1 Performance Measures 

The IAE measure is the accumulation of the absolute value of the deviation of the 

output fiom its target. Marlin (1995) defines the integral o f  the absolute value of the 

error as: 

IAE = P ISP(~) - cv ( t )p t  
O (5-6) 

where SP is the set point and CV is the current value of the controlled variable. Although 

the controlled variables in the grade transition work have a set point target, the controllers 

have been designed süch that the control led variables follow an over-damped second- 

order-type, with overshoot, error trajectory back to set point, as in equation (2.43). 



Therefore, instead of comparing the outputs to the set points, we compare them to the 

desired output trajectories determined using the error-trajectory specifications. Therefore, 

for grade transition studies, we define a modified form of the IAE, called the integral of 

the absolute deviation, or IAD: 

IAD = ~Icv,(~) - C V ( ~ ) P  

where CV,,, is the desired controlled variable action, defined tiom the error-trajectory 

specification. Therefore, IAD is a measure of the deviation of the controlled variable 

from its specified trajectory. Unless manipulated variable saturation occurs, the IAD 

value for simulations under nonlinear controller will be approximately zero. For 

disturbance rejection simulations, the IAE remains the measure of choice because the 

goal is to return the output values back to the original set point. 

The IAE and IAD are tiirther manipulated to yield measures of relative 

performance; that is, the performance of a linear controller is assessed relative to the 

performance of the nonlinear controller, which enables a standardized measure of the 

degree of degradation that occurs as a result of choosing linear, over nonlinear, control. 

We define normalized IAD (for grade transition studies) as: 

and normalized 1A.E for (disturbance rejection studies) as: 

where IAE- = C ~ S P ( ~ )  - CV, (t*t . Therefore, IADn- is the difference between 

the deviation fiom CV,,, incurred by using a linear versus a nonlinear controller, 



standardized by the IAE of the difference of the grade set point and the expected 

controlled variable action. Similarly, I&- is the difference in the error incurred as a 

result of using a linear versus a nonlinear control scheme, norrnalized by the area 

between SP and CV,. 

For visual aid, illustrations of IAD and IAE,, are shown in Figure 5.3. 

gure 5.3. Illustration showing how IAD, and IAE,,,, are measured. 

Analogous performance masures could have been defined, such as integral of the 

product of time and absolute error (ITAE), or integral of the squared error (ISE). 



The remainder of this chapter is hrther broken down into three segments, in 

which control performance is assessed. In Section 5 -4.2, the nonlinearity and control 

performance of the transformed model subjected to nonlinear and linear multivariable 

contro1 is examined. In 5.4.3, we look at how the logarithm transform of melt index 

affects linear performance relative to the linear performance of the nominal model. In 

Section 5.5 we look at possible causes for some unexpected results, and provide a 

preliminary investigation into three of these possible causes. 

5.4.2 The Transfonned Mode1 - Control Performance 

Two sets of simulations were investigated: one set in which grade transitions were 

the focus and one in which the focus was disturbance rejection. One might expect that 

RMS curvature values predict a larger degradation in linear controt performance relative 

to nonlinear control, as the value of the RMS curvature increases. Therefore, we 

conjecture that the performance of linear multivariable controllers will suffer greatest 

losses at high C M ~  values, and suffer little loss at RMS curvature values less than 0.3. 

5.4.2.1 Grade Transi fions 

Six grade transition policies of varying curvatures are studied in this section. It is 

our expectation that, as the value of RMS curvature increases, the success with which 

linear control is achieved will decrease. The success of controI performaiice is measured 

as the norrnalized IAD value for each output. The set of grade transitions studied is 

shown in Table 5.1, dong with the corresponding RMS curvature values. We see from 

Table 5.1 that these regions in the model display nonlinearities ranging fiorn c~us=0.625 



to c~ , ,~~=4 .3  5, indicating moderate nonlinearity . In al1 instances, the curvatures are 

significant relative to the benchmark value of c~k&l.3 proposed by Guay et al. (1995). 

The simulations of  al1 grade transitions under both linear and nonlinear control are given 

in Appendix A.3, Figures A3.1 to A3.6. We see fiom Table 5.1 that al1 of  the outputs at 

al1 curvatures, but one (IAD,, of STPT), experience greater performance losses when 

controlled by linear rather than nonlinear means. 

It was expected that linear control would result in higher IAD values than for the 

nonlinear controllers, and hence, positive normalized IAD values. The one exception 

Grade 
Transition 

s -T-P-TI 

D-H-1-D 
C-A-B-C 
J-K-G-K. 
O-Q-R-O 
N-L-M-N 

noted above is the one of grade transition S-T-P-T, ironically the region for which the 

Table 5.1. Grade transitions for the transforrned model, their corresponding curvatures, 
and their norrnalizeâ IAD values that result fiom choosing linear control, over nonlinear 
control. 

Indicates that the grade transition simulation resulted in manipulated variable saturation. 

Normal ized IAD 
Density 

3 -60 
0.346 
4.30 
6.00 
0.340 
8.95 

highest degree of curvature was calculated. In this case, the I n w )  is controlled better by 

Nonnalized 
IAD Production 

Rate 
0.289 
0.3 12 
0.220 
0.38 1 
0.22 1 
0.573 

RMS 
cuwature 

value 
4.35 
1.63 
2.34 

0.625 
1 .O3 
3.47 

the linear controller than by the nonlinear controller. (However, the improvement is 

Nomal ized IAD 
In(MI) 

-0.0450 
O. 182 
0.5 16 
1 .O8 

0.941 
11.0 

insignificant since the value is close to zero). Although such a result çontradicts 

expectations, it can potentially be explained by addressing the issue of manipulated 

variable saturation. This unexpected result may be due to the effect of input saturation 



rather than nonlinearity compensation since linear control has no capaci ty to compensate 

for curvature (other than its integral action, which will return an output to set point). The 

controllers are not designed to deal with manipulated variable saturation; the linear 

controller calculated an unconstrained (in terms of MV bounds) solution, which, due to 

Our manipulated variable bounds, happened to be more appropriate than that calculated 

by the unconstrained nonlinear soIution. As seen in Figure AS. 1 b,d in Appendix A.3, the 

hydrogen gas flow rate reaches its lower bound of O moVh at t=50h and t=l OOh, and then 

reaches its upper bound of 14000 moVh at t=150h. Therefore, the slight irnprovement 

seen in linear control is likely due to imperfect calculation of input values by the linear 

controller, which by chance, happen to compensate better for the bound saturation. 

It is our expectation that the trend between normalized IAD values and RMS 

curvature values should exhibit a positive correlation. The trend of normalized LAD 

values with respect to curvature values is shown in Figure 5.4 for each of the three 

outputs. For each output, a positive correlation is completely lacking. The degree to 

which nonlinear control resulted in lower normalized IAD values than the linear 

controller appears to be independent of the curvature experience by the model. 

These findings are somewhat unexpected. Possible explanations are that input 

saturation disrupts the results by artificially favouring the linear controller results, or  that 

directional curvatures may be more adequate for calculating nonlinearity due to the 

relatively few directions involved in such a limited simulation study. Additionally, 

because the RMS curvature is an average measure that encompasses al1 of  the outputs, it 

doesn't describe the effect of curvature on individual inputs. 



Nomalized IAD Values for Grade Transition Study 
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Figure 5.4. The relationship between the degree of curvature experienced by a 
grade transition region within the transformed mode1 and the degree of 
degradation that occurs as a result of using linear control, as opposed to nonlinear 
control. 



5.4.2.2 Disturbance Rejectior~ 

The performance of nonlinear and linear controllers also must be assessed with 

regard to operation about a point; that is, the disturbance rejection capabilities of each 

controller must be reviewed. In what follows, the control performance about three points 

is examined. Operation about these points, J(20), I(30), and E(20), results in moderate 

RMS curvatures that range fiom 0.476 to 4.27. The measure of performance for 

disturbance rejection studies is the nonnalized IAE, which measures the performance of 

the system under linear control, relative to the performance under nonlinear control. 

However, unlike in the grade transition case, the absolute value is calculated as the error 

between SP and CV, as is typically done. 

Each of the grades have been subjected to identical disturbances. The open-loop 

disturbance effects on grade E(2O) are shown in Figure 5.5.  M e r  50 hours of steady- 

state operation, the system is subjected to a 25% increase in active site concentration in 

the entering catalyst. Variation in catalyst activity is a common disturbance, especially 

because of batch-to-batch variation. An increase in catalyst activity affects both 

production rate and the gas consumption rate, which results in a decrease in hydrogen and 

butene concentrations. These decreases then cause a lowering of In(MI) and an increase 

in density. The increase in density comes about due to the lowering of butene 

concentration. Despite hydrogen concentration decreasing, which independently would 

result in a decrease in density, butene concentration has a more dominant effect on 

density, and therefore, the density increases. After the active site concentration 

disturbance is resolved, another disturbance is introduced at t=100h. This time the 

catalyst deactivation constant, kd, is increased by 25%. This increase in kd represents a 

105 
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Figure 5.5. The open-loop effect on outputs of increasing kt at t=SOh, increasing 
at t=100h and decreasing b at t=lSOh. Solid line: outputs. Dashed line: set point. 



deactivation of active sites, which might occur as a result of increased levels of poisons in 

the reactor. Such impurities react with the polymerization site, thereby rendering the site 

inactive. This disturbance has an opposite effect on Y compared to the previous 

disturbance. Finally, the last disturbance enters the system afier 150 hours of operation. 

This disturbance represents a decreased flow rate of the bleed Stream. Such a situation 

might occur if the operator adjusted the bled valve position, or if the pressure 

downstream of the bleed valve had changed. This disturbance is simulated as a 25% 

decrease in b. 

Simulation studies were performed on the three above-mentioned steady-state 

grades. Both linear and nonlinear control schemes were used to retum the process to 

steady state following the introduction of disturbances. The simulation runs are plotted in 

Figures A3.7 to A3.9 in Appendix A.3. 

The curvature of the region of operation about each of the three points defined 

earlier is shown in Table 5.2. 

1 curvature 
Grade RMS 

c 
Table 5.2. Grades for the transfomed rnodel, their corresponding curvatures, and the 
normalized IAE values that result fiom choosing linear control, over nonlinear control. 

From Table 5.2, we see that for each of the situations, except one (production rate of 

1(30)), linear control results in pwrer control than nonlinear control. For the steady-state 

operation about point 1(30), the linear controller perfonns marginally better in production 

Normalized IAE 
Production Rate 

0.0 128 
0,0233 

Normalized IAE 
In(M1) 
3 -92 
1 -90 

Nonnalized IAE 
Density 

21.8 
18.4 
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Figure 5.6. The relationship between the degree of curvature experienced by a region 
under regdatory control within the transformed mode1 and the degree of degradation 
that occurs as a result of using linear control, as opposed to nonlinear control. 



rate than the nonlinear controller; however, the improvement is so negligible, that for al1 

intents and purposes, we can conclude that the linear and nonlinear controllers 

maintained the production rate equdly as well, and for ail curvatures. 

To examine the performance degradation of linear control (relative to nonlinear 

control) in relation to the degree of curvature, we look at Figure 5.6. The trend in the 

normalized IAE values with respect to the RMS curvature is inconclusive. Each of the 

outputs, ln(ML), density, and production rate, exhibit different trends. The linear melt 

index controller appears to perform better at higher curvatures, which contradicts the 

anticipated results. For each of the other two outputs, there is no observable trend that 

would lead one to conclude that the success with which a process is controlled by linear 

means has any bearing on the local steady-state nonlinearity of the process. 

Although Figure 5.6 shows no definite trends supporthg the expectation that 

higher RMS curvatures result in more degradation of linear control, a reIationship 

between linear control performance and curvature must not be discounted. Rather, 

perhaps the choice of second-order error-trajectory specification controllers may have 

been incompatible with the performance assessment measures defined. The IAL,, may 

be favouring the linear controller because the linear controller may not be providing large 

enough overshoots to match the desired performance specification. This shortcoming of 

the linear controller would result in a lowered IAE value as compared to the nonlinear 

controller, which is pedorming overshoots as directed. This issue is discussed in Section 

5. S.  One might suggest comparing the disturbance rejection profiles against the 

corresponding specified trajectory as is done for grade transitions; a trial of the nonlinear 

controller without bound saturation would provide a good approximation of the specified 



controlled variable trajectory. However, in some instances, due to different gains in the 

linear control law, the linear controller forced the outputs in a direction opposite to that of 

the nonlinear controller. Therefore, calculating the corresponding M D  would result in 

enlarged deviations, which would imply artificially degraded performance. The linear 

controller may have been following close to a second-order type response but was 

init ially forced in different output directions. Therefore, due to t his shortcoming, the 

alternative has been to assess performance by comparing the output trajectory to the 

specified set point. 

5 -4.3 Nominal vs. Transformed Mode1 

Practitioners may often opt to implement the transformed version of the 

polyethylene rnodel in linear control applications due to the anticipated lower degree of 

nonlinearity exhibited by the model. As calculated in Chapter 4, the transformed model 

displays much less nonlinearity than the nominal model, at al1 of the points considered. 

A large difference in RMS curvature values might imply that the control performance 

would differ significantly between models when subjected to linear control. It would be 

of interest to determine whether any control performance benefit is gained by this 

transformation. The focus of this section, therefore, is to examine the performance of the 

linear controller as applied to the transformed model, [In(MI), p ,  PR]', versus its 

performance on the much more nonlinear nominal model, [Mi, p , PR]'. 

Two different scenarios are considered in this section. First, we look at the 

difference in control performance for one grade transition, J-K-G-K, for both nominal 

and transformed models. In addition, the control performance of disturbance rejection is 



also studied, at the point J(20), for both models. The curvatures that were calculated for 

these two scenarios represent two cases in which the nominal and transformed models 

difFer significantly. 

The grade transition study is considered first. The simulations of the process for 

each controller of the nominal model are show in Appendix Figures A3.10a-d. Recall 

that the simulation J-K-G-K for the transformed medei was shown earlier, in Figure 

k3.4a-d. Table 5.3 shows the curvatures and normalized IAE values for both the 

transformed and nominal model simulations for the grade transition. 

Grade and Model 1 RMS 1 Normalized ME 1 Normalized ME 1 Normalized LAE 

Nonnalized IAD 
Production Rate 

0.38 1 
0.38 1 

1 

Grade and Model 

J-K-G-K, Transfomed , 

1 J-K-G-K. Nominal 

Table 5.3. Grades for the transformed and nominal models, their corresponding 
curvatures, and the normalized IAD and IAE values that result fiom choosing linear 
control, over nonlinear control. 

J(20), Transformed 
J(20). Nominal 

This table includes a negative normalized IAE value for one output of the nominal model 

grade transition, once again indicating that the Iinear controller in some cases serves to 

control as well as, or better, than the nonlinear controller, even under severe nonlinearity. 

To attain an appreciation for the difference in control performance between the linear 

controllers of the transformed and nominal models, we consider Figure 5.7. Figure 5.7 

shows the normalized LAD values of each of the outputs at the low and high RMS 

curvature values of the transformed and nominal models, respectively. 

From Figure 5.7, we note that this simulation study fails to support the conjecture 

that significant steady-state curvatures translate into performance degradation for linear 

Normalized LAD 
Density 

6.00 
9.16 

R M S  
curvature 

0.625 
89.6 

curvature 
0.476 
57.8 

Normalized iAD 
ln(M1) or MI 

1 .O8 
-0.170 

l n 0  or MI 
3.92 

-0.599 

Density 
21.8 
22.9 

Production Rate 
0.0 128 
-0.02 10 



controllers. The normalized IAD values for melt index do not support expectations, by 

resulting in a lower performance error masure at the much higher RMS curvature of 

89.6; density, however, appears to lend support to the theory as the corresponding 

norrnaiized iAD value is somewhat higher at the higher R M S  curvature value. On the 

other hand, the production rate results in the same normalized IAD value at both the low 

RMS curvature value, and the high value. These three observations result in another 

inconclusive result; the conclusion cannot be made that the performance of the linear 

controllers suffers greater losses as the degree of curvature of the mode1 increases. 

Additionally, there is no evidence to support any relationship between performance losses 

of linear controllers and RMS curvature values. 

Nonnalized IAD For Grade Transition J-KIGU for Nominal 1 
and Transforrned Models 

i 0.625 89.6 

RMS Cuwatum 

o Mett lrdex l:? 

Figure 5.7. The relationship between the degree of curvature experienced by grade 
transition regions (within the nominal and transfomed models) and the degree of 
degradation that occurs as a result of using linear control, as opposed to nonlinear control. 



Next, the nominal and transfomed models are compared in another control 

simulation study; the performance of the linear control scheme is examined for each level 

of curvature in a dimirbance rejection study about point J(20). The simulation plots for 

this study are given in Appendix A.3, Figures A3.7a-d and A3.11 a-d. The linear control 

performance is examined for the transfomed model, with a ck%ts of 0.476, and for the 

more nonlinear nominal model at which the curvature is c~~~s=57.8 .  These curvature 

values and their corresponding output results in the form of normalized IAE values are 

shown in Table 5.3 above. We expect that the linear control scheme will perform better 

with the transfomed model than for the much more nonlinear nominal model. By 

observing the values in Table 5.3, we see that some negative normalized IAE values are 

agai n present. These negative values indicate that the linear control scheme performed 

with less error than the nonlinear controller, which in itself is unexpected; however, the 

fact that this result was observed under the very nonlinear model is even more 

perplexing. 

To observe the trend between RMS curvature values and normalized IAE values, 

consider the plot in Figure 5.8. Figure 5.8 shows the same types of trends for each 

individual input as does Figure 5.7 above. The normalized IAE for the melt index 

actually decreases with an increase in CRMS, while the density ME,,,, increases, and the 

production rate IAE-,, stays relatively constant. This simulation study also fails to draw 

a correlation between control performance and RMS curvature. 
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Figure 5.8. The degree of performance degradation that results fiom linear, versus 
nonlinear, control as applied to a region of regulatory control for one of each of the 
transformed model (c~tis=0.476) and the nominal model (cRMs=!%~) 

5.5  Looking Ahead - Possible Explanations 

Many plausible explanations exist for the unexpected results that were obtained in 

the performance assessment section above. These factors include control implementation 

issues, such as manipulated variable bound saturation, feedback iinearization issues, and 

the possible incompatibility of the performance measure and the type of controller 

implemented, model structure issues, such as the multivariable nature of the problem, and 

concerns about the RMS curvature measure itself The matters concerning the RMS 

measure of curvature include the issue of directionality, the form of the steady-state map, 

the fact that a steady-state measure is being compared to dynamic performance, and that 



RMS curvature is a measure averaged over al1 outputs. A discussion of each of these 

topics follows. A preliminary investigation of some of these topics is provided. 

5.5.1 Manipulated Variable Saturation 

One possible explanation for the unexpected results obtained in the grade 

transition study in Section 5.4.2.1 is that the manipulated-variable bound saturation was 

obscuring the nonlinearity effects- The control laws used in the simulation studies solved 

for manipulated variable actions using an unconstrained solution (no MV bounds 

enforced); however, if the computed values exceeded the MV bounds, they were clamped 

at their corresponding bound value. In such a scenario, although the nonlinear controller 

would initially calculate a set of MV moves to provide the specified performance, the 

implementation of the input bounds might result in degraded performance away fiom the 

design specification. It is conceivable that the MV action computed by the linear 

controller might be more appropriate, purely by chance, when the unforeseen bounds 

were implemented. Due to this complication, it may be of interest to re-visit the 

simdation study and either implement a constrained solution, or remove the bounds on 

the manipulated variable to determine the pure effect of nonlinearities without the 

confounding factor of saturation. 

5.5.2 Potential Incompatibility of Performance Measure and Control 

Specification 

Aithough the disturbances introduced in our simulations were step disturbances, 

initial experimentation with pulse disturbances was perfomed, which resulted in some 



noteworthy revelations. Because the control law utilized in this thesis is developed from 

the error trajectory description, we found that in some cases, the linear controller resulted 

in artificial l y improved performance. The terrn 'artificiail y' is used because alt hough the 

error between the set point and the controlled variable was smaller in the linear case, the 

linear controller failed to provide the specified error trajectory. This performance was 

particularly evident in the production rate when a pulse disturbance in & was 

introduced. The natural dynamics of the open-loop system result in the production rate 

returning to set point very quickly. However, when the error trajectory specification is in 

place in the closed-loop situation, the controller actually slows down the return of the 

production rate to set point because the tuning for this output is set at a more sluggish 

response than the open-loop response. For this reason, the nonlinear controller keeps the 

production rate from returning to set point quickly, whereas the linear controller, having 

calculated the control moves for following the specified second-order-type error 

trajectory using an approximate model, fails to follow the proper trace. This failure to 

conform to the specified trajectory then causes the production rate to faIl back to set point 

quicker in the linear case, and results in a lower iAE than the nonlinear controller, which 

is actually following its specifications. 

Another related concern with implementing second-order-type error-trajectory 

controllers in disturbance rejection studies is the required overshoot response in the melt 

index and density outputs. It is conceivable that the linear controller might not return the 

output to set point with the specified overshoot, which would result in a smaller error 

from set point to output. Therefore, we are falsely considering the potentially larger error 

in nonlinear controller overshoots as inferior performance. Perhaps the performance 



measure chosen is inappropriate for use when assessing second-order error-trajectory 

controller performance. In future work, one might consider a sirnpler controller, such as 

a PID controller, in which overshoots are not required, or one might consider minimizing 

the overshoot specification in the second-order type error-trajectory controller. 

Alternat ive1 y, one might re-define the performance masure such t hat controlled variable 

overshoots do not confùse the issues. 

5.5.3 Directionality 

RMS curvature is a measure of nonlinearity that is averaged over ail possible 

input directions. In theory, RMS curvature may be a good predictor of control 

performance if the system is subject to random shocks that drive the process in very 

many directions, or if the system is subjected to grade changes that inciude much of the 

input space. In Our grade transition and disturbance rejection simulations, however, very 

little of the input space was used, and the system was driven in only a few directions by 

the three selected disturbances, which might mean that the system was only being 

subjected to certain direction-dependent nonlinearities. For this reason, it rnay be of 

interest to single out a grade transition or disturbance rejection, assess the performance in 

that region, and compare it to the comesponding directional curvature. Presumably, the 

process wil l experience different nonlinearities depending on the direction in which a 

disturbance drives the process, or depending on the input direction taken to bring about a 

given grade changeover. 



5.5 -4 The Steady-State Nature of RMS Cwature 

The RMS measure of  nonlinearïty assesses steady-state curvature, and it is being 

compared to measures of dynamic performance. Steady-state analysis focuses on gain 

nonlinearity, whereas transient, o r  dynamic, nonlinearity is likely present as well. Guay 

(1996) developed a dynamic measure o f  cuwature that quantifies the degree o f  dynamic 

nonlinearity experienced by a process model. A fbture step in related work should be t o  

examine the dynamic non1 inearity o f  the system. 

5.5 -5 Multivariate Nature of  the Mode1 

The RMS measure of cuwature is not only a value averaged over al1 input 

directions, but it is also a measure that combines the nonlinearity information of  al1 

outputs into one value. Therefore, it provides little information about how each 

individual output would perform; rather it indicates how al1 three would behave jointly. 

Although we assumed that the error measure of each of the outputs would increase with 

increasing curvature, we found that this did not occur. Therefore, it seems that the 

multivariable nature of  the model may have complicated the interpretation of the 

curvature measurement with respect to individual output performance. One may choose 

to step back fiom such a multi-dimensional problem and re-visit this research with a uni- 

dimensional model, o r  examine individual elements in the curvature array. 

5.5.6 Choosing the Appropriate Steady-State Map 

In Chapter 2, it was discussed that the local geometry o f  the steady-state input- 

output map is examined to yield RMS measures o f  curvature. Recall that the input- 



output rnap is approximated by first- and secondsrder Taylor series approximations, and 

that first- and second-derivative information is compared to provide an estimate of 

curvature. Guay et al. (1995) suggest that the nonlinearity of the steady-state input- 

output rnap more directly explains the nonlinearity of open-loop predictions of outputs, 

given inputs, and that the inverse rnap more directly applies to control-law nonlinearity, 

which relates to the nonlinearity of input moves, given outputs. Although the steady- 

state input-output rnap and its inverse are related, Guay et al. (1995) feel that control-law 

nonlinearity is more directly related to the curvature of the inverse map. 

The nonlinearity of the process input-output rnap was studied in this thesis as a 

starting point, with the intention that more work in this area would follow. This choice of 

maps may explain some of the discrepancies in the results obtained. Further study in the 

assessment of nonlinearity of the inverse rnap is recommended. 

5 -5.7 Feedback Linearization 

Linear error trajectory specifications lead to inputsutput feedback linearizating 

controllers, which may not always be the best for controlling nonlinear processes because 

they can cancel out helpful nonlinear dynamics. Examples of such a phenornenon in this 

work are seen in the improved performance of the linear controller relative to the 

nonlinear controller (Le. IAD., or 1- is negative). Such scenarios are analogous to 

conclusions reached in linear control theory in which the decoupling of interacting 

systems does not always benefit control performance. 



5.6 Further investigations 

As a preliminary investigation into some of the recommendations made, three of 

these issues are briefly examined. Specifically, the issue of bound saturation raised in 

Section 5.5.1, the issue of directionality, discussed in Section 5.5.3, and the issue of the 

multivariable nature of the model, raised in Section 5.5 -5,  are addressed. The hope is to 

confirm some of  the explanations of the perplexing results obtained. 

5 -6.1 Manipulated-Variable Saturation 

The grade transition studies of the transformed model were revisited, but with the 

difference that manipulated variable bounds were omitted. Although such simulations 

would not be realistic because flow bounds would be breached, this type of simulation 

study might help determine whether input saturation is one factor contributing to the 

inconclusive results. 

For these simulations, the normalized IAD value was once again used to  evaluate 

control performance, and this value was compared to the RMS curvature calculated for 

the mode1 in the corresponding local region. The RMS curvature values and the 

normalized IAD values are plotted in Figure 5.9. Comparing Figure 5.9 to Figure 5.4, we 

see that the trends in normalized IAD are unchanged for the unbounded simulation 

studies, which l a d s  to the rejection of the factor of manipulated variable saturation as 

being a possible source of  inconsistency between RMS curvature and control 

performance. 



Nonnalized IAD Values for Grade Transitions, with 
Unbounded MVs 
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Figure 5.9. The relationship between the degree o f  curvature experienced by a grade 
transit ion region within the transforrned mode1 and the RMS curvature during simulations 
in which the manipulated variable action was not bounded. 



5.6.2 Directionality 

Directionality can play a major role in affecting control performance. Because 

RMS curvature is an average measure, the control performance results obtained in this 

thesis study, which lie in specific directions may not be correlatexi to it. In Our narrow 

view of six grade transitions and three disturbances, we have considered only a few input 

directions. Quite possibly, if one were able to perform a series of experiments in which 

d l  input directions were employd, a correlation between RMS cumature and control 

performance might be found. 

One way of addressing directionality is to calculate the curvature of the process 

input-output map in a specific direction. Nonlinearity can be calculated in directions in 

which inputs move the process to a new steady state, or return the process to steady state 

after a disturbance is introduced. First, we determine the steady-state direction in which 

manipulated variables must move to produce a desired response. such as rejecting a 

disturbance, or changing the polyethylene grade. The input rnoves are calculated from 

the linearized steady-state mode! of the form (in deviation variables): 

y = VU + Vdd 

Enforcing the set point, y=O, requires: 

U = -V-'Vdd 

where V is the steady-state process gain rnatrix, and Vd is the disturbance gain matrix, 

both at the steady-state point of linearization. Vector d is the disturbance vector. Next, 

the local curvature of the mode1 is assessed in the given input direction. Finally, the 

directional curvature is compared with the normalized IAE value obtained. 

For brevity, we have chosen to examine the directional curvature relating to the 



disturbance rejection of a change in the parameter values of and b. Each of the two 

disturbances, and b, are introduced independentl y. 

The directional curvatures of the process model are s h o w  in Table 5.4. Notice 

the difference in the curvatures for each disturbance. 

disturbances in concentration of active sites in the catalyst, and bleed Stream fl& rate. 

m- 

- -- - 

Disturbance: b 

We see that at any one point, the two disturbances affect the process in completely 

Grade Norrnalized ME 
lnMI 

different ways. The disturbance causes the process to experience much more 

Directional 
Curvature 

Disturbance: aul 

wu 
E(20) 
N30) 

nonlinearity than the disturbance in bleed flow rate, which supports the idea that 

Normalized IAE 
Density 

Table 5.4. Directional curvatures and control performance for the rejection of 

0.000648 
0.000679 
0.00632 

1.23 
0.0793 
-0.334 

directionality may play a major role in predicting control performance. 

Normalized IAE 
Production Rate 

J(20) 
E(20) 

0.575 
1 0.754 

1 .O0 0.8 16 
0.409 4.86 

The results tiom Table 5.4 above are plotted in Figure 5.10 for visual cornparison 

96.3 
38.8 

0.0747 
0.0942 

purposes. Unfortunately, the results are no more encouraging than those obtained for the 

RMS curvature comparisons. For each disturbance, no trend that might support a theory 

64.9 
57.4 

that curvature can be a predictor of control performance is seen. The results look almost 

-0.0262 
-0.0196 

randomly assigned. 

The direct ional curvatures were calculated based on the steady-state input 

solution. However, the dynamic model actually moves the process through many 

different input directions to retum the process to steady state under the error trajectory 

speci fication. Perhaps the stead y-state approximation of the control moves required is a 



poor one, which makes the directional curvature calculated inaccurate. Therefore, 

another dificulty arises; although an approximate input direction based on a linearized 

steady-state solution cm be calculated, valuable dynamic information is missing, which 

begs the question, should we be addressing dynamic nonlinearity as opposed to steady- 

state measures of curvature? 

Nonnalized IAE Values for the Disturbance 

Directional Cunrature 

O In(MI) 
I Density 
O Production Rate 

Norrnalized IAE Values for the b Disturbance 

5 - - 
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Density 
2 - 

1 - 

O --l-p I 

-1 
0.000632 0.000648 0.000679 

Directional Cu watum 

Figure 5.10. The relationship between the directional curvature and the normalized IAE 
value for independent disturbances in and b. 



5.6.3 Multivariable Nature of the Model 

A fhther consideration is to develop a unifjhg performance index that takes into 

account al1 process outputs and their corresponding contributions to the overall size of the 

grade change. For example, a performance index measured for a grade change in which a 

large melt index change, and small density and production rate changes occur, will be 

influenced primarily by the performance of the melt index. To fairly judge al1 outputs in 

a performance measure, the scaled values of the outputs are considered cumulat ively ; 

each output is scaled relative to the deviation of its nominal trajectory in the grade 

changeover (as in the scaling mattix S in Chapter 4). This newly developed performance 

measure is: 

where - I ' m , t  
r ~ p u t . s c o f d  - output range during grade change 

- IAE,,,s&d - 1 4 ,  
output range during grade change 

The grade transition study of the transformed model is revisited. The grade 

transitions are listed in Table 5.5. 

Table 5.5. Grade transitions for the transformed model, the associated curvatures and 
cumulative normalized IAD values resulting from choosing linear, over nonlinear contml. 



To  prevent confounding the problem with bound saturation issues, the MV bounds were 

removed in the simulations considered in this section. The simulation results are given in 

Figure 5.11. 

Cumulative, Nonnalized IAD vs. Cuwature 
7 ,  

0.625 1 .O3 1 -62 2.34 3.43 4.34 
RMS Cunratum 

Figure 5-11. The normalized and cumulative performance measure is shown relative to 
the R M S  curvatures. These values are based on simulations in which bound saturation 
did not occur. 

As seen, there is no trend in the IAD,, values with respect to RMS curvature. However, 

many plausible reasons still exist for the unexpected results. 

5.7 Conclusions and Recommendations 

In this chapter the development of the control law was presented and the 

technique used to tune the nonlinear and linear muftivariable controllers was illustrated. 

The control performance was assessed for several situations. 



First, the relative controller performance was compared against the curvature of 

the transformed model. It was determined that no trend exists among RMS curvature and 

normalized IAD for grade transitions. A possible explanation is that the manipulated 

variable bound saturation was confounding the model nonlinearity with an imposed 

system constraint. For disturbance rejection, no evidence was found of a link between 

RMS curvature and control performance. One explanation of this lack of correlation is 

that the choice of control scheme (second-order type response specified) and performance 

measure may not have been suitable to be used concurrently. 

The performance of the transformed rnodel was examined relative to the 

performance of the same controllers on the much more nonlinear nominal model. Once 

again, there appeared to be no relationship between RMS curvature and control 

performance. 

Some possible explanations for the incongniity between RMS curvature and 

normalized IAD and IAE values were presented. These explanations included such 

possible causes as maniputated variable saturation, choice of performance measure and 

control structure, the multivariable nature of the model, the effect of directionality, the 

forrn of the steady-state map, and the steady-state nature of the RMS curvature measure. 

Three of these possible causes were investigated briefly. Manipulated variable 

saturation does not appear to be an issue in this instance, as grade transition simulation 

results for each case (bounded and unbounded manipulated variables) resulted in similar 

results. We also performed a preliminary examination of directionality within the model. 

It was detemined that the technique of ascertaining directional curvature yielded no link 

between it and normalized IAD values. However, it must be noted that the method for 



evaluating directional curvatures employed a steady-state tinear solution, which may not 

have been suitable. Finally, a new normalized cumulative performance measure was 

introduced, where the contribution of each output was weighted depending on the sire of 

the set point change for each output. Analysis of  the MD,, for six grade transition 

studies (in the absence of manipulated variable saturation) produced inconclusive results 

in that no trend was detected between the performance and curvature. 

Some recomrnendations for fùture work include investigating the steady-state 

curvature of  the inverse map, since it more directly predicts the nonlinearity of inputs, 

given outputs. In addition, the dynamic curvatures should be assessed when dealing with 

models having dynamic portions. As well, the steady-state and dynamic investigations 

should perhaps be performed on a SES0 system to avoid confùsion arising fiom 

multivariable issues. Future considerations may include choosing a different control 

scheme, one that doesn't employ second-order dynamics for use with the given 

performance measure; altematively, another choice of performance measure might be 

more appropriate for this type of control specification. 



Chapter 6 

Conclusions, Recommendations and 

Contributions 

With the wealth of research being done in noniinear control, wupled with the 

inherent nonlinearity present in most processes, and the potential benefits gained by 

nonlinear control, one would expect less reluctance among practitioners to implement 

nonlinear control. However, because of the design, implementation and maintenance 

demands of such control schemes, a curvature quantification measure would be a usefùl 

tool for practitioners to help determine whether the benefits of a nonlinear control scheme 

outweigh the efforts incurred. Of particular interest is how curvature translates to 

performance degradation of linear controllers. 

Such a measure is the objective of Guay et a1.k (1995) RMS measure of 

curvature, which has been applied to McAuley et al.'s (1990) and McAuley and 

MacGregof s (1 99 1, 1993) model of gas-phase fluidized-bed polyethylene production in 

this thesis. The main objectives of this work are to assess steady-state nonlinearity of 

polyethylene product property using Guay et al.'s (1995) steady-state curvature measure 

and the polyethylene model. Furthemore, the expectation is to detennine whether the 

curvature calculated predicts linear control performance degradation, relative to nonlinear 

control. Additionally, practical implementation issues for the curvature rneasure are 

addressed, and recomrnendations for tùture considerations in this area are provided. 



6.1 Summary and Conclusions 

Background for this thesis work is given in Chapter 2. The gas-phase 

polyethylene reactor model and equipment are detailed. As well, background on the 

calculation and visualization of the RMS curvature measure of Guay et al. (1995) is 

given, key points of this work being the examination of the geometry üf the steady-state 

locus. Second-order derivat ive information is decomposed into tangential and normal 

components and a technique for scaling is described, enabling a scale-independent 

measure of nonlinearity. The effects of interaction and nonlinearity of the geometry of 

the steady-state locus are also discussed. Chapter 2 also provides information on error- 

trajectory controller design, which is the control choice in this work. 

Previous work in the area of nonlinearity assessment (e.g., Guay et al., 1995, 

Nlgower, 1995, Stack and Doyle lIi, 199%) has been illustrated using small examples. 

A detailed cornparison between steady-state RMS curvature and controller performance 

degradation for an industrial process has not previously been conducted. In Chapter 3, a 

comprehensive study is oîTered by examining major components of an industrial process 

exarnple, namely state property behaviour of the polyethylene reactor model. Examples 

detail the calculation of RMS curvature, its effect on the visualization of the steady-state 

locus, and provide an interpretation of the elements of the relative curvature array. 

Visualization of cuwature (and interaction) is easily achieved by virtually reducing the 

dimensionality of the model by examining 2x2 portions at a time. 

In Chapter 4, the nonlinearity of properly scaled regions within the polyethylene 

model is assessed. 

ConcItision i :  The six regions chosen for grade transition studies in the transformeci 



model display moderate curvatures ranging fiom ~ ~ ~ ~ ~ = 0 . 6 2 5  to ~Rhfsd.35, while the 

saine six transitions within the nominal model result in curvatures in the range 

6 . 7 0 I ~ ~ s ~  1 17- 

Concltrsiort ii: For the steady-state regulation about a point, the curvature of the 

transformed model is examined for three points, yielding a curvature range of 

0 . 4 7 6 5 ~ ~ ~ 1 4 . 2 7 .  The curvature of the nominal model is compared to that of the 

transformed model at point J(20), wïth the nonlinearity of the nominal mode1 being much 

larger (cMS=57-8) than that of the transformed model (cRMs=0.476). 

Conclusion iii: For al1 regions assessed, the nominal model displays a higher degree of 

curvature than the transformed model, thus supporting the general practice in industry of 

considering the transformed melt index, rather than melt index directly. 

The aim in Chapter 5 is to consider the nonlinearity measures obtained in Chapter 

4 and apply control to the comesponding operating regions. The performance of a linear 

control scheme relative to a nonlinear controller is compared to the earlier computed 

RMS curvature value. The objective was to find a relationship between RMS curvature 

and Iinear performance such that the success or failure of linear control could be 

predicted by the curvature masure. 

Six grade transition studies within the transformed model are examined, and one 

additional grade transition simulation is studied for the corresponding nominal model. 

As well, disturbance rejection studies are examined, three using the transformed model, 

and one using the nominal model. It was expected that the chosen performance index, 

whic h quantifies the performance di fference between linear and non1 inear controllers, 

would increase as RMS curvature of the grade regions increased. The performance index 



for grade transition studies, the MD-, is defined as the difference between the degrees 

of deviation (fiom the specified controlled variable trajectory) o f  linear and nonlinear 

controllers, nonnalized by the nominal size of the transition. Simi larly, for disturbance 

rejection studies, the performance is assessed by the w,, which is the difference 

between the degrees of  deviation (of the controlled variable fiom set point) of linear and 

non1 i near controllers, standardized by the nominal size o f  the disturbance effect . 

Conclusion iv: No general trend exists between values of  the performance index and 

curvature values. There is no conclusive evidence supponing the theory that RMS 

curvature ie a good predictor of the quality of  linear control performance, relative to  

non1 inear control performance. In most cases, nonlinear control outperformed Iinear 

control; however, the degree of  improvernent with nonlinear control is simply not 

accounted for by RMS curvature for the polyethylene example. 

Several possible reasons are given for the unexpected results obtained. These 

possible causes include control issues (manipulated variable bound saturation, feedback 

linearization issues, and controller type, in relation to performance index), model 

structure issues (its multivariable nature), and questions concerning the RMS curvature 

measure (directionality, the steady-state nature of the measure, and the form of  the 

stead y-state input-output map). As a preli minary investigation, the issues of bound 

saturation in input variables, the multivariable nature of the model, and directionality 

were examined. None of the investigations yielded a solution to the question of  why the 

RMS curvature didn't predict linear control performance degradation in our studies. 



6.2 Recomrnendations for Future Work 

Some recommendations are given here for consideration in the fùture. These 

suggestions result fiom the investigation into possible reasons for the lack of correlation 

found between RMS curvature and the specified performance measure. 

6.2.1 Dynamic Consideration 

One must consider the dynamic nature of the process model and ascertain whether 

a steady-state measure of curvature is suficient when considering controller performance 

degradation. If the process remains in a small operating region, one might expect that 

perhaps dynamic nonlinearity is of less consequence in that although the nature of the 

dynamic character could change over an area, it is less likely in small regions. However, 

in the simulations presented in this thesis, the steady-state measure was not capable of 

predict ing control performance. Therefore, dynamic nonlinearity must also be addressed. 

An additional consideration may be to ascertain whether the nonlinearity resides 

only in the steady-state portion of the model, or if the dynamics are also nonlinear. It is 

conceivable that if the steady-state portion contains al1 or most of the nonlinearity, then 

RMS curvature might be more indicative of linear control performance degradation. 

6.2.2 Consider Inverse Map 

Guay et al. (1 995) suggest assessing the nonlinearity of the steady-state inverse 

map as opposed to the input-output map. The nonlinearity of a controlled process is more 

directly related to the ability to predict input, given a desired output, whereas open-loop 

nonlinearity more directly predicts the nonlinearity of output, given input. Therefore, 



further consideration might be given to assessing steady-state nonlinearity o f  the inverse 

map. 

6.2 -3 Directionality 

RMS curvature is a measure that is averaged over al1 input directions. Therefore, 

perhaps the region in which the curvature was calculated did not accurately reflect the 

directions in which the process would be perturbed, since only a few directions were 

actually realized in this narrow assessrnent of a few simulations. Although additional 

work was done in assessing the importance of directionality, the curvature was calculated 

for a steady-state change in inputs required to return the process to set point, given a 

disturbance. In actuality, the process responded dynamicaily in many additional input 

directions to return to steady state, thereby exposing the process to different curvatures 

than those accounted for by the curvature calculation for the given direction. A resulting 

recommendation is that a more thorough simulation study in which many more directions 

are included may reveal a relationship between RMS curvature and linear control 

performance degradation. 

6.2.4 Multivariable Nature of the Mode1 

Due to the multivariable nature of the model, it is difficult to discern the effect of 

nonlineanty on individual outputs, or  on the sum of  outputs as a whole because RMS 

curvature is a measure averaged over all outputs. An attempt was made to define a 

performance measure, IAD,,, which would allow for a measure of  the culminated effect 

o f  nonlinearity on al1 outputs. However, a relationship between iAD,., and RMS 



curvature failed to reveal itself. Therefore, to enable a clearer investigation between 

RMS curvature and performance, perhaps a gwd starting point might be to assess the 

curvature of SIS0 systems. Alternatively, one might develop a different controller 

performance index. 

6.2.5 Scaiing 

The scaling used in this work was defined by a non-rotated ellipse, defined in the 

output space. In fact, it is likely that an ellipse that approxirnates the region of operation 

in the output space best is rotated relative to the output coordinates axes. Such an ellipse 

results in different scaling, which rnay affect in turn the RMS curvature. Because rotated 

ellipses rnay have been more appropriate, fùnher investigations in this respect are 

advisable. 

6.2 -6 ISE-Based Performance index 

A more appropriate performance index rnay have been based on the integral of the 

squared error (ISE). Because the scaling in this work is based on an ellipse, the ISE rnay 

have been more consistent with such an underlying quadratic nature. 

6.2.7 Anti-reset Windup 

A possible complicating factor in this work rnay have been the existence of reset 

windup, as the integral term in the controllers accumulated error. Integral windup rnay 

result in degraded control performance; therefore, fùture work in this area should 

eliminate reset windup, or account for it (e.g. by using a velocity form of a control law) 



6.2 Contributions 

The following contributions to chemical engineering have been provided by the 

aut hor. 

6.3.1 Application of RMS Curvature Measure 

Through this thesis work, it has been discovered that the application of steady- 

state RMS cuwature must not be done blindly. One must not expect that RMS cuwature 

will predict linear control performance, but rather it is only an averaged general measure 

of gain nonlinearity. It was deterniined in this study that large values of RMS curvature 

do not necessady result in large degradations in linear control performance. Conversely, 

regions displaying mild curvature can suffer very large performance losses when 

controlIed by linear techniques. Clearly, there exist other factors at work in the 

assessment of curvature, than simply the implementation of the RMS curvature measure. 

6.3 -2 Nonlinearity Assessrnent of the Polyethylene Mode1 

The nonlinearity of several regions of the gas-phase polyethylene model was 

measured within both the state space and the output space. The assessment focussed on 

the nonlinear product property behaviour described by the model. Curvature values 

determined for the regions of interest range in nonlinearity fiom mild to severe. In 

addition to quantitative assessment, qualitative assessment explained the effect of 

nonlinearity on the orientation, spacing and bending of constant input lines on the steady- 

state locus. A detailed investigation such as this for an industnal example has not 

previousl y been reported in the Iiterature. 



6.3 -3 The Polyethylene Model as a Learning Tool 

It was determined that the gas-phase polyethylene model is a rich model in terms 

of the variety of the degree of inherent nonlinearity present in the model. Regions in the 

potyethylene model display any of mild, moderate, or severe nonlinearity. As a result, 

this mode1 is a powerfùi teaching tool for learning RMS masures  of nonlinearity. 

6.3 -4 Decreased Nonlinearity of the Transformed Model 

A contribution that might be of particular interest to practitioners is that 

quantitative evidence has been found supporting the daim that the logarithm transform of 

melt index reduces the degree of nonlinearity of the model. In most cases, the 

nonlinearity of the model was significantly reduced by the transformation. Therefore, 

practitioners' use of the transformed model, as opposed to the nominal model, is tiinher 

validated. 

6.3.5 Evidence of Robustness of Linear Control 

There exists much reluctance in industry to implement nonlinear control 

techniques, because oftentimes, linear controllers perform with much more robustness 

than would be expected, even under highly nonlinear conditions. In this thesis, more 

evidence of this phenomenon was found, in that under highly nonlinear conditions, in 

some cases the linear controller performed on par with the nonlinear controller. 

6.3.5 Insights and Explanations 

While a relationship between RMS curvature and linear control performance was 



not found, many insights and plausible explanations have been offered, as well as 

directions and recommendations for fiiture work. The most promising direction of 

research is likely to be the examination of dynamic nonlinearity assessment. 
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Appendix A 

Additional Information 

A. 1 Error-Trajectory Specification of the Nominal Mode1 in 
Equation 5.2 

pl O O M I , - M  
= [ O p2 O] . [  P. -P  ]+- 

O O p3 PR,,, - P R  



A.2 Nonlinear Control Law Solution for the Multivariable 
Controller (Nominal Model) 



where 

ah, 
and - , i,j=1..3, are as in Appendix A. 1 

&/ 

A.3 Simulation Figures 

The simulation figures denoted in Chapter 5 are given in this appendix. 
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Figure ALI .a. Simulation of the S-T-P-T grade transition, under nonlinear control of  
the transformed model. Dashed line: set point. Thick line: output. Thin line: error- 
trajectory speci fication. 



Grade Transition S-T-P-T - Nonlinear Control 
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Figure A3.1.b. Simulation o f  the S-T-P-T grade transition, under nonlinear control of 
the transformed model. Solid line: rnanipulated variable. Dashed line: manipulated 
variable bound. 



Grade Transition S-T-P-T - Linear Control 
(Transfomed Model) 
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Figure A3.l.c. Simulation of the S-T-P-T grade transition, under linear control of the 
transformed model. Dashed I ine: set point. Thick line: output. Thin line: error-trajectory 
specification. 



Grade Transition S-T-P-T - Linear Control 
(Transfonned Model) 
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Figure A3.l.d. Simulation of the S-T-P-T grade transition, under linear control of the 
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transformed model. Solid line: rnanipulatedvariable. ~ a s h e d  line: rnanipulated variable 
bound. 



Grade Transition 0-H-1-0 - Nonlinear Control 
(Transformed Model) 
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Figure A3.2.a. Simulation of the D-H-1-D grade transition, under nonlinear control c 
the transformed model. Dashed line: set point. Thick line: output. Thin line: error 
trajectory specification. 
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Figure A3.2.b. Simulation of the D-H-1-D grade transition, under nonlinear control 01 
the transformed model. Solid line: manipulated variable. Dashed line: manipuIated 
variable bound. 



Grade Transition 0-H-I-D - Linear Control 
(Transformed Model) 
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Figure A3.2.c. Simulation o f  the D-H-1-D grade transition, under linear control of  the 
transformed model. Dashed line: set point. Thick li ne: output. Thin line: error-trajectory 
specification, 
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Figure A3.2.d. Simulation of the D-H-1-D grade transition, under linear control of the 
transformed model. Solid line: manipulated variable. Dashed line: manipulated variable 
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Figure A3.3.a. Simulation of the C-A-B-C grade transition, under nonlinear control of 
the transformed mode]. Dashed line: set point. Thick line: output. Thin line: error- 
trajectory specification. 
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Ggure A3.3.b. Simulation of the C-A-B-C grade transition, under nonlinear conûol 
transformed model. Solid line: manipulated variable. Dashed line: rnanipulated 
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iigure A3.3.c. Simulation of the C-A-B-C grade transition, under linear control of the 

transformed model. Dashed line: set point. Thick line: output. Thin line: error-trajectory 
specification. 
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transformed model. Solid line: manipulated variable. Dashed line: rnanipulated variable 
bound. 
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Figure A3.4.a. Simulation of the EK-G-K grade transition, under nonlinear control of 
the transformed mode]. Dashed line: set point. Thick line: output. Thin line: error- 
trajectory specification. 
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Figure A3.4. b. Simulation of the J-K-G-K grade transition, under nonlinear control of 
the transfonned model. Solid line: manipulated variable. Dashed line: manipulated 
variable bound. 
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Figure A3.4.c. Simulation of the J-K-G-K grade transition, under linear contrd of the 
transfonned model. Dashed line: set point. Thick line: output. Thin line: error-trajectory 
specification. 
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transfomed model. Solid line: manipulated variable. Dashed line: manipulated variable 
bound. 
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Figure A3.S.a. Simulation of the O-Q-&O grade transition, under nonlinear control O 

the transformed model. Dashed line: set point. Thick line: output. Thin line: error- 
trajectory specification. 
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ure A3.5.c. Simulation of the O-Q-R-O grade transition, under linear control of the 
trakfonned model. Dashed line: set point. Thick line: output. Thin line: error-trajectory 
specification. 
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Figure A3.6.b. Simulation of the N-L-M-N grade transition, under nonlinear control of 
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variable bound. 
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Figure A3.6.c. Simulation o f  the N-L-M-N grade transition, under linear control of tl 
trakformed mode]. Dashed line: set point. ~ h i c k  line: output. Thin line: error-trajectory 
specification. 
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Figure A3.6.d. Simulation of the N-L-M-N grade transition, under linear control of the 
transforrned model. Solid line: manipulated variable. Dashed line: manipulated variable 
bound. 
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Disturbance Rejection at J(2O) - Nonlinear Control 
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Figure A3.7.a. Simulation of disturbance rejection at point J(20), under nonlinear 
control of the transformed model. Solid line: controlled variable. Dashed line: set point 
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Figure A3.7.b. Simulation o f  disturbance rejection at point J(20), under nonlinear 
control of the transformed rnodel. Solid line: manipulated variable. 
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"gure A3.7.c. Simulation of disturbance rejection at point J(20), under linear contra 
the transformed model. Solid line: controlled variable. Dashed line: set point. 
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Figure A3.7.d. Simulation of disturbance rejection at point J(20), under linear control of 
the transformed model. Solid line: manipulated variable. 
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Eure A3.8.a. Simulation of disturbance rejection at point E(20), under nonlinear 
control of the transfomed model. Solid line: controlled variable. Dashed line: set point. 
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Figure A3.8.b. Simulation of disturbance rejection at point E(20), under nonlinear 
control of the transformed mode]. Solid line: manipulated variable. 
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Disturbance Rejection at E(20) - Linear Control 
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the transformed model. Solid line: controlled variable. Dashed line: set point. 
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Tigure A3.8.d. Simulation of disturbance rejection at point E(20), under linear contrc 
the transformed model. Solid line: manipulateci variable. 



Disturbance Rejection at l(30) - Nonlinear Control 
(Transfonned Model) 

2.06 
A 

.E 2.045 - 
E 
O 2.03 - = 
0) 

2.015 - 
4) u 
c 2 - 
L. - 

1.985 - 

1.97 

A 

J 

9 

O 50 1 O0 150 200 250 300 
Tirne (h) 

0.9424 

LL 

0.9422 - 

"g - m '5: 0.9418 - 
Y .- K 0.9416 - 
O 

0.9414 - 
0.9412 . 

0 . 9 4 2 - w  

. 
O 50 100 150 200 250 300 

Time (h) 

40 
38 - 

f 36 - 
O 34 - 

3 2 -  
c 30 
O 
*ü 28 - 

2 6 -  u 2 24 + 

22 - 
20 8 I 

O 50 100 150 200 250 300 
Time (h) 

iigure A3.9.a. Simulation o f  disturbance rejection at point 1(30), under nonlinear 
control of  the transformed model. Solid line: controlled variable. Dashed line: set point. 
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Figure A3.9.b. Simulation of disturbance rejection at point I(30), under nonlinear 
control of the transformed model. Solid line: manipulated variable. 
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Figure A3.9.c. Simulation of disturbance rejection at point I(30), under linear contro 
the transformed model. Solid line: controlled variable. Dashed line: set point. 
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Figure A3.9.d. Simulation of disturbance rejection at point I(30), under linear contrc 
the transformed model. Solid line: rnanipulated variable. 
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Figure A3.10.a. Simulation of the J-K-G-K grade transition, under nonlinear control c 
the nominal model. Dashed line: set point. ~ h i c k  line: output. Thin line: error-trajectoiy 
specification. 
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Figure A3.10.c. Simulation of the J-K-G-K grade transition, under linear controi of the 
nominal model. Dashed line: set point. Thick line: output. Thin 1 ine: error-trajectory 
specification. 
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Figure A3.10.d. Simulation of the J-K-G-K grade transition, under linear control of the 
nominal model. Solid line: manipulated variable. Dashed line: manipulated variable 
bound. 
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Disturbance Rejection at J(20) - Nonlinear Control 
(Nominal Model) 
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Figure A3.l la. Simulation of disturbance rejection at point J ( t O ) ,  under nonlinear 
control o f  the nominal model. Solid line: controlled variable. Dashed line: set point. 
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Figure A3.11.b. Simulation of disturbance rejection at point J(ZO), under nonlinear 
control of the nominal rnodel. Solid line: manipulated variable. 
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Figure A3.11~. Simulation of disturbance rejection at point J(20), under linear control of 
the nominal model. Solid line: controlled variable. Dashed line: set point. 
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Figure A M  Id. Simulation of disturbance rejection at point J(20), under linear control of 
the nominal model. Solid line: manipulated variable. 



Appendix B 

Program Code 

This appendix contains the MapleW and MatlabTM code used for computations in this 
thesis. Addit ional information considering these routines can be obtained fiom Ji m 
McLel lan (mclellnj@chee.queensu.ca). 

B. 1 MapleTM Code 

The MapleTM (Maple V Release 5) code (filename GRADE-SPECcurvlnMl.rnws) shown 
below was employed to calculated the RMS curvature of the product properties of the 
polyethylene reactor model. In addition, this worksheet calculates directional curvature 
and RGA information. 

This worksheet calculates the curvature of the In(Melt Index) and Density model.. 
v] (=) moVL, w] (=) rnoVL, Y(=) mol, Bw (=) Tomes, MI(=)g/l O min, 
Density(=)g/mL, PR (=) Tomedh 
> restart; 
> with(lina1g): 
Warning, new definition for nom 
Warning, new definition for trace 
ENTER THE GRADE AM) PRODUCTION RATE AT WHICH RMS IS TO BE 
CALCLJL,ATED. 
> l M : =  ln(100): 
> rho:=0.929: 
> PR:=20: 
Specify half-ranges of outputs: 
> halfrangelnM[:=0.0620: 
> halfrangerho:=O.OO 1 : 
> halfrangePR:=3 : 

For the directional curvatures, must enter the input direction of interest (in original input 
coordinates): 
> e-original :=vector(3,[2876,8677,8.626]): 
MODEL EQUATIONS 
These are the goveming equations for w], NI, and Y, respectively. This fonn of the 
model assumes perfeçt bed weight control, constant ethylene inflow. 'f ,the tirne 
derivative of state x, equals zero. 



> fi:=( 1 Ng)*(FH2- kh* Y(FH2,FM2, Fcat) *H2(FH2, FM., Fcat)-H2(FH2,FM2, Fcat) b/Ct- 
gl*H2(FH2,FM2,Fcat)): 
> fi:= ~/(V~+VS)*(FMS-~~~*Y(FH~,FM~,FC~~)*M~(FH~,FM., Fcat)- 
M2(FH2,FM2,Fcat)*b/Ct- 
S* M~(FH~,FM~,Fc~~)*Y(FH~,FM~,F~~~)*(~~ 1 *M 1 *mw 1 +kp2*M2(FH2,FM2,Fcat)*m 
w2)): 
> f3 :=Fcat*acat- 
(Y(FHî,FM2,F~at))~2*(kp 1 *M 1 *mw 1 +kp2*M2(FH2,FM2,Fcat)*mw2)/ 1 000000/B w- 
kdSY(FH2,FM2,Fcat): 
These next equations are going to be used to calculate the steady state values, given a set 
of inputs. 
> flo:=(lNg)*(FH2o-kh*Yo*H2o-H20*b/Ct-gi*H20): 
> f2o:=l/(Vg+Vs)*(FM2o-kp2*Yo*M20-M20*b/Ct- 
S*M2o*Yo*(kp 1 *Ml *mw 1 +kp2*M2o*mw2)): 
> EJo:=Fcato*acat-YoA2*(kp 1 *Ml *mwl+kp2*M2o*mw2)/1000000/Bw-kd*Yo: 
Enter the nonlinear mapping of states to outputs. Keep these states separate fiom those 
above because here we are only differentiating with respect to x, not u, so the states don't 
have to be in the fonn X(FH2, FM2, Fcat); 
y 1 = InMI, y2 = density, y3 = production rate, 
> y1 :=3.5*In(kO+klfM2/Ml+k3*H2/M1): 
> y2:=pO+p 1 *y 1 -(p2*M2/Ml)^p4: 
> y3:=Y*(kp1*M1*mw1+kp2*M2*mw2)/10"6: 
PARAMETERS AND CONSTANTS 
> kh:=0.28*3600: b:=l8Wl: acat:=O.000304*3600: kp 1 :=84*3600: Ml :=0.259634: 
mw 1 :=28.05: mw2:=56.12: kp2:=10.68*3600:gl:=3600* 10A(- 12): kd:=3600*0.000 1 : 
Vg:=423747.3: Vs:= 15 1 12 1.9: S:=0.002 1589: Ct:=O.7 1 1 : Bw:=70: 
> k0:=0.40: kl:=l.sO: k3:=2.20: p0:=0.96: pl :=O.OOZ: ~ 2 ~ 0 . 0 0 7 :  p4:=0.5: 
GWEN THE SPECIFIC GRADE AT THE BEGINNING, CALCULATE 
CORRESPONDrNG INPUTS 
> Y 1 :=3S*ln(kO+kl *M2-/Ml +k3 *H2-/Ml)-InMI: 
> Y2:=pO+p 1 *lnMI-(p2*M2M2/Ml)Ap4-rho: 
> Y3 :=Y-*(kp 1 *M1 *mw 1+kp2*M2~*mw2)/1000000-PR: 
> states:=solve({Y 1 ,Y2,Y3 ), (H2,M2,Y-1): 
> assign(states): 
> dxldt:=(lNg)*(FH2--kh*Y-*H2--H2_*b/Ct-gl*H2J: 
> dx2dt:= 1 / ( V ~ + V S ) * ( F M ~ ~ - ~ ~ ~ * Y ~ * M ~ ~ - M ~ ~ * ~ I C ~ -  
S*M2-*Y *(kp 1 *Ml *mwl+kp2*M2 *mw2)): 
> dx3dt:=&at-*acat-(~-~2*(k~l*~l~mwl+k~2*~2 *rnw2)/Bw/1000000)-kd*Y-: 
> inputs:=solve({dx ldt,dx2dt,dx3dt), {FHZ,FM~,FC~~-)): 
> assign(inputs); 
SOLVE THE STEADY STATE EQUATIONS 
Enter the values of the inputs here: 
> FHîo:=FH2; FMZo:=FM2_; Fcato:= Fcat; 



Fcato := 5.027962624 

> #FM20 := 40869.72025; Fcato := 6.8693 17 124; FH2o := 45 1 1.3 16867; 
> ss:=solve({fl o,Qo,f30}, {H2o,Yo)) :  
> assign(ss): 
> H2o;MSo;Yo; 

FIRST DERIVATIVE INFORMATION 
We have a mode1 of the forrn y=h(x) where x=F(u). So y=h(F(u)). Solve for 
dy/du=dh/dx*dxldu. 
Differentiate h(x) 
> x:=vector(3, [H2,M2,YJ): 
> y:=vector(3,[y 1 ,y2,y3]): 
> dhdx:=jacobian(y,x): 
Now change the above matrix so that the States appear as a fiinction of inputs. We will 
need it in this forrn so that we can use the relation dy/du=dh/dx*dx/du 
> 
dhdx:=matrix([[29.657 13273* 1/(.40+5.7773635 19*Mî(FH2,FMS,Fcat)+8.473466495 *H 
2(FH2,FM2,Fcat)),20.22077232* 1/(.40+5.7773635 19*M2(FHS,FMS,Fcat)+8.473466495 
*H2(FH2,FM2,Fcat)),0],[.74 14283 183e- 
1 * 1/(.40+5.7773635 19*M2(FH2,FMS,Fcat)+8.473466495 *HS(FH2,FM2,Fcat)),.5055 19 
3 O79e- 1 * 1 /(.4O+5 .777363 5 19*M2(FH2,FM.,Fcat)+8.473466495 *HS(FH2,FM2,Fcat))- 
.8209907090e- 
1 * 1 /((M~(FH~,FM~,FC~~))"S),O], [0,2.15770 1 760SY(FH2,FM2,Fcat),2. 20229867 1 +2.15 
770 1 760*M2(FEK!,FM2,Fcat)]]): 
Now find the derivatives dddu: 
> u:=vector(3,@?H2, FM2, Fcat]): 
3 f qector(3, [fl , Q, Dl): 
3 al ias(AdH2dFH2=dim(FH2, FM2, Fcat), Fm),  AdHîdFM2=diffCH2(FH2, FM2, 
Fcat ), FM2), AdHZdFcat=diqH2(FH2, FM2, Fcat), Fcat), AdM..dFH2=di-(FH2, 
FM2, Fcat), FH2),AdM2dFM2=dim(FH2, FMî, Fcat), 
FM2), AdM2dFcat=difY(M2(FH2, FM2, Fcat),Fcat), AdYdFH2=di ff(Y (FH2, FM2, Fcat), 
FH2),AdYdFM2=diff(Y(FW2, FM2, Fcat), FM2),AdYdFcat=diff(Y(FH2, FM2, Fcat), 
Fcat)); 



AdYdFH2, AdYdFM2, AdYdFcat 

> dfdu:=jacobian(f,u): 
The following command was executed in order that 1 might copy the output and place it 
in my cornmand line. 1 then change the aliased variables into ones that havent been 
aliased, and used the assign command. Note that because the governing equations dont 
change, 1 executed the solve command once, and then copied the output. To speed up 
calculation during worksheet execution, 1 have made the following a comment line. 
> #sol 1 :=solve({dfdu[l, 11, dfdu[l,2], dfdu[l,3], dfdu[2,1], dfdu[2,2], dfdu[2,3], 
dfdu[3,1], dfdu[3,2], dfdu[3,3 3 ), (AdH2dFH.2, AdH2dFM2, AWdFcat, AdM2dFH2, 
AdM2dFM.2, AdmdFcat, AdYdF'H2, AdYdFM2, AdYdFcat)); 
Now 1 copy the output fiom the above calculation so that I can assign new names to the 
solution. 
> sol 1 := { dH2dFM2 = 
-2232 1 1 1945e35*H2(FH2,FM2,Fcat)*Y(FH2,FM2,Fcat)̂ 2( 196852 1 104e40*Y(FH2,F 
M2,Fcat)"3+. 13 88835967e40*Y(FH2,FM2,F~at)~3 *M2(FH2,FM2,Fcat)+.6346 14400 1 e4 
1 *Y(FH2,FM2,Fcat)"2+.3958263 150e4 1 *M~(FH~,FM~,Fc~~)*Y(FH~,FMZ,FC~~)~~+.~~ 
94846793e42*Y@Hî7FM2,Fcat)+.3 1 19328896e39*Y(FH2,FMS,F~at)~3 *M2(FHZ7FM2, 
Fcat)^2+.93 14843 17 le4 1 *Y~,FM~,Fc~~)*M~(FH~,FM~,Fc~~)+. 1764395506e42+.80 
828836 1 ~~~O*M~(FH~,FM~,FC~~)~~*Y(FH~,FM~,FC~~)~~), dH2dFcat = - 
-45558322 13e2 1 *H2(FHS,FM2,Fcat)*(.75 15 195212e20*Y(FH2,FM2,Fcat)+.454356398 
4e20+. 16206338 1 7e20f Y(FH~,FM~,FC~~)*MS(FH~,FM~,FC~~))/(. 196852 1 104e40fY(F 
H2,FM2,Fcat)^3+. 13 8883 5967e40*Y(FH2,FMS,Fcat)"3 *M2(FHZ,FM2,Fcat)+.6346 144 
00 1 e4 1 *Y(FH2,FM2,F~at)~2+.3958263 150e4 1 *M~(FH~,FM~,Fc~~)*Y(FH~,FM~,Fc~~)^ 
2+.3294846793e42*Y(FH2,FM2,Fcat)+.3 1 19328896e39*Y(FH2,FM2,Fcat)̂ 3 *M2(FH2, 
FM2,Fcat)^2+.93 14843 1714  1 *Y(FHî7FM2,Fcat)*M2(FH2,FM2,Fcat)+. 1764395506e4 
2+.8082883617e40*M20;HS,FM2,Fcat)^2*Y(FH2,Fcat)2), dM2dFH2 = 0, 
dM2dFM2 = 
-52 185784 17el7*(734099557.*Y(FH2,FM2,Fcat)+7 19233920. *Y(FH2,FM2,Fcat)*M2( 
FH2,FM2,Fcat)+4200000000.)/(. 1655070443e3 1 *Y(FH2,FM2,Fcat)"2+. 1 167689467e3 1 
*M~(FH~,FM~,F~~~)*Y(FH~,FM~,FC~~)~~+- 1046977446e32*Y(FH2,FM2,Fcat)+.30223 
642 1 0e3 1 *YO;HS,FM2,Fcat)*M2O;H2,FM2,Fcat)+.572489062Oe3 1 +.262263 3 329e3O* 
M~(FH~,FM~,Fc~~)~~*Y(FH~,FM~,Fc~~)^~), dM2dFcat = - 
.3830400000e12*M2(FH2,FM2,Fcat)*(.75 15 195212e20+.8 103 169084e19*Mî(FHS,FM 
2,Fcat))/(. 1655070443e3 1 *Y(FH2,FM2,Fçat)^2+. 1 167689467e3 1 *M(FH2,FM2,Fcat)* 
Y(FH2,FM2,Fcat)^2+. 1046977446e32*Y(FH2,FM2,Fcat)+.3 0223642 1 0e3 1 *Y(FH2,FM 
2,Fcat)*M2(FH2,FM2,Fcat)+. 5724890620e3 1 +.26226333 29e3 O*MZ(FHS,FM~,FC~~)~~* 
Y(FH2,FM2, Fcat)"2), dYdFh4.2 = - 
.1876689306e26*Y(FH2,FM2,F~at)~2/(. 1655070443e3 1 *Y(FH2,Fh07Fcat)^2+. 1 167689 
467e3 1 *M2(FH2,FMSYFcat)*Y(FH2,FM2,Fcat)"2+. lO46977446e3 2 *Y(FH2, FM2,Fcat)+ 
-3 0223642 1Oe3 1 *Y(FHî,FMS,Fcat)*M2(FH2,FMS,Fcat)+. 5724890620e3 1 +.262263332 
~~~O*M~(FH~,FM~,FC~~)~~*Y(FH~,FM~,FC~~)/, dYdFcat = 
.3830400000e12*(.75 15 195212e2O*Y(FH2,FMS,Fcat)+.4543563984e20+. 1620633817e 



20*Y(RIz7FM2,Fcat)*M2~,FM2,Fcat))/(. 1655070443e3 1 * Y ( F H ~ , F M ~ , F c ~ ~ ) ~ ~ + .  1 1 
67689467e3 1 *M~(FH~,FM~,Fc~~)*Y(FH~,FM~,Fc~~)*~+. 1 O46977446e3 2*Y(FH2,FM2, 
Fcat)+.30223642 1Oe3 1 *Y(FX2,FM2,Fcat)*Mî(FH2,FM2,Fcat)+.5724890620e3 1 +.2622 
63 3 3 Z~~~O*M~(FH~,FM~,FC~~)~~*Y(FH~,FM~,FC~~)~~), dYdFH2 = 0, dH2dFH2 = 
1 179948.521*1/(1 l89388109.*Y(FHî,FM2,Fcat)+-308197243 le1 1)): 
> assign(so 1 1 ); 
Now form matrix dddu: 
> dxdu:=matrïx(3,3, [dH2dFH2, dH2dFM2, WdFcat ,  dM2dFH2, dM2dFM.2, W d F c a t ,  
dYdFH2, dYdFM2, dYdFcat]): 
Now perform dy/du=dh/dx*dx/du 
> dydu:=evalm(dhdx&*dxdu): 
SECOND DERIVATIVE INFORMATION 
Now calculate the accelerations. Here dyldFH2du represents dA2 y1 / dFH2du. Le. 1 am 
calculating the gradient. 
> dy 1 dFH2du:=grad(dydu[ 1,1], u): dy 1 dMdu:=grad(dydu[ l,2], u): 
dy 1 dFcatdu:=grad(dydu[l,3], u): dy2dFHîdu:=grad(dydu[2,1], u): 
dy2dFM2du:=grad(dydu[2,2l9 u): dy2dfcatdu:=grad(dydu[2,3], u): 
dy3 dFH2du:=grad(dydu[3,ll7 u): dy3dFM2du:=grad(dydu[3,2], u): 
dy3 dFcatdu:=grad(dydu[3,3], u): 
By grouping the gradients by the States that they have differentiated, we are left with 
three Hessians. 
> accface 1 :=rnatrix(3,3,[dy 1 dFH2du, dy 1 dFW2du7 dy ldFcatdu]): 
> accface2: =rnatrix(3,3, [dy2dFH2duYdy2dFM2du, dy2dFcatdul): 
> accface3 :=matrix(3,3, [dy3dFH2du,dy3dFM2du, dy3dFcatdul): 
NOW CALCULATE THE VELOCITY AND ACCELERATION VALUES. 
> vel 1 :=subs({FM2=FM20, FH2=FH207 Fcat=Fcato, H2(FHZ,FM2,Fcat)=H2o, M2(FH2, 
FM2, Fcat)=M2o, Y(FH2,FM',Fcat)=Yo ), eval m(d ydu)) : 
> acc l :=subs({ 
AdH2dFH2=vell[ 1, l],AdH2dFM2=vel 1 [ 1,2],AdH2dFcat=veIl[ 1 ,3],AdM2dFH2=vel 1 12, 
1 ],AdM2dFM2=vel 1 [2,2],AdM2dFcat=vel1[2,3],AdYdFH2=vel1[3,1 ],AdYdFM2=vell[ 
3,2],AdYdFcat=vel1[3,3],FM2=FM20, FH2=FH2o, Fcat=Fcato, 
H2(FW2,FM2, Fcat)=HSo, M2(FHZ, FM2, Fcat)=M20, Y(FHZ,FM2,Fcat)=Yo ), 
eval m(accface 1 )): 
> accZ:=subs({ 
AdH2dFH2=vell [l ,  l],AdH2dFM2=vell [l  ,2],AdH2dFcat=vel1[1,3],AdM2dFH2=vell[2, 
1IyAdM2dFM2=vel 1 [2,2],AdWdFcat=veI 1 [2,3],AdYdFH2=ve11[3,1],AdYdFM2=vell[ 
3 ,2],AdYdFcat=vell [3,3],FM2=FM207 FH2=FH2o, Fcat=Fcato, 
H2(FHî,FM2, Fcat)=H20, M2(FH2, FM2, Fcat)=M2o, Y(FH2,FMS,Fcat)=Yo ) , 
eval m(accface2)): 
> acc3 :=su bs({ 
AdH2dFH2=vell[l, l],AdH2dFM2=vell[l ,2l9AdH2dFcat-vel 1 [173],AdM2dFH2=vel 1 [2, 
1],AdM2dFM2=vel1[2,2],AdM2dFcat=vel1[2,3],AdYdFH2=ve11[3, l],AdYdFM2=vel 1 [ 
3,2],AdYdFcat=vell [3,3],FM2=FM207 FH.2=FH2o7 Fcat=Fcato, 
H2(FH2,FM2, Fcat)=H20, Mî(FH2,  FMî, Fcat)=M20, Y(FH2,FM2, Fcat)=Yo ) , 
evaIm(accface3)): 
SCALING 



Define the output scaling matnx. MSmatrix==Sin)*(gain matrix)^- 1 
> #Smatrix:=evalm(Sin&*(inverse(vel1))); 

> Smatrix:=matrix(3,3,[ l/halfiangelnMI,0,0,0, I/halfrangerho,O,O,O, lhalfkangePR]): 
Now must find the nonredundant acceleration array . 
> W:=rnatrix(3,6,[accl[l,l], accl[l,2], accl[l,3], acc1[2,2], acc1[2,3], acc1[3,3], 
acc2[1,1], acc2[1,2], acc2[1,3], acc2[2,2], acc2[2,3], acc2[3,3],acc3[1,1], acc3[1,2], 
acc3 [ 1,3], acc3 [2,2], acc3 [2,3], acc3 [3,3]]): 
> VW:=augment(vel 1 , W): 
Now s a l e  matrix 
> VWscaled:=evalm(Smatrix&*VW): 
ORTHOGONALIZATION OF THE TANGENT AND ACCELERATION VECTORS 
Now perfom QR decomposition uning Householder Transformations as described in 
Bates and Watts, pp. 286. 
> e 1 :=matnx(3,1,[1,0,0]): 
> xl  :=matrix(3,I,[VWscaled[1,1], VWscaled[2,1], VWscaled[3,1]]): 
> magn-xl :=sqrt((xl [l ,  1])A2+(x1 [2,1])"2 + (x 1 [3,1])"2 ): 
> u num:=evalm(x 1 +magn-x 1 *el): 
> uIden:=sqrt((u-nurn[l, 1 ])".2 + (unum(2,l J)A2+(u-num[3, 1])"2): 
> u 1 : =eval m(unum/u-den): 
> Hu 1 :=evalm(&*O-2*u l&* transpose(u 1)): 
> X 1 :=evalm(Hu 1 &*VWscaled): 
> e2:=matrix(3,1,[0,1,01): 
> x2:=matrix(3,1,[0, X1[2,2], X1[3,2]]): 
> magn-x2:=sqrt(x2[1, 1IA2 + x2[2, 1JA2 + x2[3, 1IA2): 
> u2_num:=evalm(x2+magn-x2*e2): 
> u2-den:=sqrt(u2-num[l, 1 IA2+u2-num[2, 1IA2 + u2_num[3, 1lA2): 
> u2 :=eval m(u2_num/u2_den): 
> HuZ:=eval m(&*O-2*u2&* transpose(u2)): 
> X2:=evalm(Hu2&*Hu 1 &*VWscaled): 
> X2:=evalm(Hu2&*Xl): 
> R:=X2: 
S ince R=QIX and R=Hu2Hu 1 X, therefore Q1=Hu2Hu 1 : 
> Qinv:=evalm(Hu2&*Hu 1): 
> Q:=inverse(Qinv); 

> X:=evalm(Q&*R): 
> evalm(VWsca1ed): 
NOW IN NEW ORTHOGONAL BASIS: 



Now for the curvature array. First extract the submatrix R1 6om R. These are the 
velocities. 
> R1 :=submatrix(R, 1 ..3,1..3); 

Now we can forrn the redundant acceleration array. 
> Arfacel:= matrix(3,3,[R[174], R[1,5], R[I,6], R[1,5],R[lY~, R(1,8], R[1,6],R[1,8J7 
R[ 1,911); 

1 -5 -6 1 
[.1952726502 10 , .1207363501 10 , -.0009167318556] 
C 

Arface 1 := [ -6 -8 
1 

1 
[. 120736350 1 10 , .8O525O5 1 15 10 , -.00004532706206] 

1 
[-.O0091673 18556, -.O0004532706206 , -.4562 1585361 



[ -5 1 
[O, -.2976333591 10 , -18451606321 

ROOT MEAN SQUARE CURVATURE 
Calculate RMS curvature. 
> P:=3; 



RMS := .4759690602 

Now check to see if this method of calculating RMS is correct. Compare to Jim's 
calculation below. 
> 
c2Jim:=eval(l/P/(P+2)*sum('2*sum(sum(Cr.ii~, kIA2,k== 1 ..P)ji= 1. .P)+surn(Cr.ii~jyjj],jj= 
1 . - P)"2','iit= 1. .P)); 

TWO- WAY INTERACTION MEASURE: 
Calculate the RGA: 
> evaim(vel1): 

> gaininvT:=transpose(gaininv): 
> RGA:=matnx(3,3,[gain[1, lJ4gaininvT[1, 11, gain[l ,2I4gaininvT[1 ,2] , 
gaincl ,3ItgaininvT[1 ,3], gain[2,l]*gaininvT[2,l],gain[2,2]*gaininvT[2,2], 
gain[2,3]*gaininvT[2,3], gain[3, lJ4gaininvT[3, 11, gain[3,2I4gaininvT[3,2], 
gain[3,3]*gaininvT[3,3]]): 
CWRVATURE IN A GM3N DIRECTION, e. 
> e:=evalm(e-original/norm(e-onginal,2)): 
> ce-num 1 :=evalm(transpose(e)&* Arface 1 &*e): 
> ce~num2:=evalm(transpose(e)&*Arface2&*e): 
> ce~num3:=evalm(transpose(e)&*Arface3&*e): 
> ce-numerator:=sqrt(ce_num 1 A2+ce-num2A2+ce-num3 "2): 
> ce-den:=evalm(Rl&*e): 
> ce-denominator :=ce-den[ 1 ]"2+~e-den[2]~2+ce-den[3]"2 : 
> ce:=ce~numerator/ce~denominator: 
RESULTS 
So here are our final results for the 3x3 output system: 



> RMS; 



B.2 MatlabTM Code 

This MatlabTM code (filename InMgradetram 1 .m) was used to run grade transitions of 
the transformeci model, under nonlinear control. Minor adjustments are made to mn the 
nominal model and linear controllers. 

%This  i s  t h e  main program f o r  s imu la t i ng  the  c o n t r o l  of t h e  
spo lye thy lene  grade 
"shangeovers, where t h e  ou tpu t s  a r e  [ l n ( M I ) ,  d e n s i t y ,  p roduc t i on  r a t e ] .  

c l e a r  

k0=0.4; 
kl=1.5; 
k3=Z .2; 
PO=. 96; 
pl=. 0025; 
pz=. 007; 
p4=.  5 ; 
Ml=O.S59634; 
kpl=302400; 
kp2=38448; 
mwl=28.05; 
mw2=56.12; 
t i m e s  tep=O .l; 

BCHOOSE INITIAL STEADY STATES 
ZFor i n i t i a l  g rade  D(30) : choose SSscheme=l 
$For i n i t i a l  g rade  J(30) : choose SSscheme=Z 
%For i n i t i a l  g rade  [80, .935 301 : choose SSscheme=3 
%For i n i t i a l  g rade  C(30) : choose SSscheme=4 
?For i n i t i a l  g rade  N(30) : choose SSscheme=5 
?For i n i t i a l  g rade  O(30) : choose SSscheme=6 
f For i n i t i a l  g rade  S (30) : choose SSscheme=7 

SCHOOSE SET POINT SCHEME: 

%INITIAL CONDITIONS 



input= [ J ; 
SPholder= [ J ; 
tfholder= [tfholder; tfl ; 
ITAE=[O;O;OI ; 
ITAEMI=[O;O;O] ; 
e=[0;0;0] ; 

?START AT STEADY STATE AND RUN FOR 50 HOURS 
[t,~] = mode15s (1, 'polstates', [tO tf], xO, [], u) ; 
state= [state;~] ; 
time = [time ; t]; 
sizet=size (t) ; 
for k=l:sizet 

input= [input; u' ] ; 
end 
sizex= size ( x )  ; 
numrow=sizex(l) ; 
for j=l : numrow 

lnMI=3. S'log (kO+kl*x (j, 2) /Ml+k3+x (j ,1) /MI) ; 
rho=pO+pl+lnMI- (p2*x( j,2) /Ml) "p4; 
PR=x (j, 3) (kpl*Ml*mwl+kpZ*x (j, 2) *mw2) /1000000; 
output= [output ; [lnMI rho PR] J ; 
SPholder= [SPholder; y01 ; 

end 
Ysp=yO; 

SIMPLEMENT SET POINT CHANGES 

simlength=200; 
tO=tO+timestep; 
tf=tf+timestep; 
tfholder=[tfholder;tfl; 
while tf < simiength 

if (tf >= 50 & tf < 100) 
Ysp=SP (1, : )  ; 

if (tf>=50 & tf< 51) 
disp ( ' time is 50' ) 

end 
elseif (tf >= 100 & tf<150) 
Ysp=SP (2, : ) ; 
if (tf>=100 & tf< 101) 

disp(' time is 100') 
end 
elseif (tf >= 150 & tf <200) 
Ysp=SP (3, : )  ; 
if (tf>=150 & tf< 151) 

disp(' time is 150') 
end 

elseif (tf >= 200 & tf <250) 
Ysp=SP ( 4 ,  : 1 ; 
if (tf>=200 & tf< 2011 

disp(' time is 200') 
end 

elseif (tf >= 250 & tf <300) 
Ysp=SP ( 5 ,  : ) ; 



if (tf>=250 & tf< 251) 
disp(' time is 250') 

end 

elseif (tf >= 300 & tf <350) 
Y s p = S P  (6, : ) ; 
if (tf>=300 & tf< 301) 

aisp(' time is 300' 
end 

end 

X=x ( n w o w ,  : ) ; 
sizeout=size (output) ; 
lastout=sizeout (1) ; 
Y=output (lastout, : 1 ; 

5 CHOOSE CONTROLLER 
B 1 - nonlinear multivariable controller with integral mode. 
3 2 - linear multivariable controller with integral mode. 
3 3 - nonlinear multi-loop controller with integral mode. 
f 4 - linear multi-loop controller with integral mode. 

controller=l; 
if controller == 1 

lnMInlmv 
elseif controller == 2 

lnMI lmv 
elseif controller == 3 

lnMInlml 
elseif controller == 4 

lnMIlrnl 
end 

SBOUNDS ON THE MANIPULATED VARIABLES 
bounds=l; SO=off, l=on. 
if bounds==l 

if E'H2 < O 
FH2=0; 
end 
if FM2 < O 
FM2=0; 
end 
if Fcat < O 
Fcat=O; 
end 
if FH2 > 14000 
FH2=14000; 
end 
if E?42>62400 
FM2=62400; 
end 
if Fcat>lO 
Fcat=lO; 
end 

end 
u=[FH2; FM2; Fcat]; 



[t,x]=rnodel5s (1, 'polstates', [tO tf], X, [], u) ; 
state=[state; x] ; 
time=[time; t] ; 
sizex=size (x) ; 
numrow=sizex (1) ; 
for i=l:numrow 
lnMI=3.5*log(kO+kl+x(i,2) /Ml+k3*x(iI 1) /Ml1 ; 
rho=pO+pl*lnMI- (p2*x (i,2) /Ml) *p4; 
PR=x (i, 3 )  * (kpl*Ml*mwl+kp2+x(i, 2) *mw2) /1000000; 
output=[output ; [lnMI rho PR] ] ; 
SPholder= [SPholder; Ysp ] ; 
end 
tO=tO+timestep; 
tf=tf+timestep; 
tfholder=[tfholder;tfl; 
sizet=size (t) ; 
for l=l: sizet 
input=[input; [EX2 FM2 Fcat] ] ; 
end 

end 

sizetime=size (time) ; 
halftime=0.5*sizetime 
halftime=round (halftime) 
timea=time(l:halftime,l); 
timeb=time(halftime:sizetime,l); 

output=[exp(output(:,111 output(:,S) output(:,3)1; 
SPholder=[exp (SPholder( : , 1) S~holder ( : ,2) SPholder ( : ,3} ] ; 

errortra j 

figure (1 1 
subplot (3,1,1} 
plot ( time, state ( : , 1) ) ; 
ylabel ( ' [Hydrogenj (mol/L) ' 
xlabel ( ' time (h) ' ) 

subplot (3,1,2) 
plot (time, state (: ,21 1 ; 
ylabel ( ' [Butene] (mol/L) ' ) 
xlabel( ' time (h l  ' ) 

subplot (3,1,3) 
plot(time, state(:,3)); 
y l a b e l (  'Active sites (mol) ' ) 
xlabel ( ' tirne (h) ' ) 

figure (2) 
subplot (3,1,1) 
plot(time,SPholder(:,l), Ir--' , tirne-e, exp (e-tra j ( : , 1) 1 , ' K . ' ,  . . . 
time, output ( : , 1) ) ; 
ylabel ( 'MI ' 1 
xlabel ( ' time ( h )  ' ) 



subplot (3,1,2) 
plot (time, SPholder ( : ,2) A-- ' , time-e,e-traj (:,2), 'r.', . . . 
time, output(:,2)); 
ylabel ( 'density ' 
xlabel ( ' time (h) ' 

subplot (3,1,3) 
plot(time,SPholder(:,3) , I f - - '  , time_e,e_traj(:,3), 'r.', . . .  
time, output(:,3)); 
ylabel('Production Rate') 
xlabel ( ' time (h) ' ) 

figure (3) 
subplot(3,1,1) 
plot (time, input ( : , 1) ; 
ylabel ( ' EH2 (mol/h) ' ) 
xlabel ('time (hl ' ) 

subplot(3,1,2) 
plotitime, input(:,2)); 
ylabel ( ' FM2 (mol/h) ' 
xlabel ( ' time (hl ' 1 

subplot (3,1,3) 
plot (time, input ( : ,3) ) ; 
ylabel('Fcat (kg/h) ' 1  
xlabel ( ' time (h) ' ) 

end 

The following Matlab files are called by InMIgradetransl .m. The file po1states.m 
integrates the dynamic model equations. The nonlinear control law is coded in 
1nMInlmv.m. 

function xdot = polstates(t,x,uin) 

% This file contains the differential equations for the state model 
3 and integrates them over a given time interval. 

FH2 = uin(1); 
FM2 = uin(2) ; 
Fcat = uin(3); 

3 THE PARAMETERS 
Vg=423747.3; 
vs=151121.9; 



f This is the nonlinear multivariable controllex 
3 with INTEGRAi, MODE for PE for ( l n ( M I ) ,  rho, PR) 

% PARAMETERS 
Vg=423747.3; 
Vs=151121.9; 
kh=1008; 
kd=O. 36; 
g1=9/2500000000; 
b=18571; 
S=O. 0021589; 
Ct=O. 711; 
acat=1.0944; 
Bw-70; 
Bl=l; 
B2=1; 
B3=1; 
gammal=1/4; 
gamma2=1/4; 
garnma3=1/30; 






