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Abstract 

Exploring Qualitative Probabilities for Image Understanding 

Jennifer Listgarten 

hIaster's of Science 

Graduate Department of Cornputer Science 

University of Toronto 

1000 

In this thesis ive explore and work with a particular probabilistic frarnework for image 

interpretation called Qualitative Probabilit ies. Int roduced by Jepson and Mann, Qual- 

itat ive Probabili t ies formalize the notion of non-accidentalness. a cornerstone of object 

recognition. 

First we examine the search space associated wit  h Qualitative Probabilit ies. We also 

experimentally verify one of t h e  underlying principles of the theory. the asymptotic rate 

of 'accidents'. Then we incorporate Qualitative Probabilities into a relatively simple 

search which ive find to be efficient and effective. Comparing search for interpretations 

using Qualitative Probabilities to search using a more standard 'cover' rneasure. we find 

that the former is far superior both in terms of efficiency and quality of block models 

found. Lastly. we design and test a new search algorithm. called Cascade search, that 

uses Qualitative Probabilities. 
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Chapter 1 

Introduction 

One goal of computational vision is to get machines to arrive at interpretations of the 

world that are similar to the ones human observers would have arrived at. given the 

same visual stimuli. Photons incident on the retinas spawn a series of synaptic activities 

whose pathways and purposes are litt le understood. t hough heavily studied. The end 

result is that humans look around and know with great certainty what are coherent 

objects. how they are positioned relative to one another. how they are moving relative 

to one another. and very often. their name and purpose. Our perception of the world 

is near perfect despite noisy and rnissing data. occlusion of objects and varied lighting 

sources. In fact. Our visual perception is so finely tuned that most people would be hard 

pressed to describe why the task of vision is difficult at  all. 

The task is amazingly daunting for the cornputational vision researcher. The specific 

problem of object recognition. a major component of the entire vision problem, is far 

frorn being solved. 

David Lowe. one of the  pioneers of modern day object recognition. nicely defines the 

problem of object recognition in his oft-cited. 1985 book on perceptual organization and 

visual recognition: 

"Recognition implies t hat a correspondence has been found between elements 



of the image and a prior representation of objects in the world.' [22] 

Thus t here are two essential elements involved in computat ionai recognition: 

1. sensor data which makes up an image 

2. some previously defined notion of which objects exist. in a format suitable to being 

matched up with the sensor data. or derivatives thereof. 

Some object recognition algorit hms use laser rangefinder data. w hile others use inten- 

sity images. Somet irnes data are processed to form. say. edge-images. or 'line-drawings'. 

which are then used to index into the model database. There are rnyriad combinations 

used of image data. data processing and types of models. each with unique advantages 

and difficult ies wit h respect to the recognition problem. 

The object model may be two-dimensional. three-dimensional. it may be purely ge- 

ometric. or it may also include colour and other properties. .A typical categorization 

of object models is i )  CAD-based ( L e .  geometric). i i )  view-based ( c g .  eigenspace). iii) 

primitive based ( e.g. geon-based). C V e  discuss each of these at  greater length in the next 

section. 

While some object recognition research is oriented toward fairly specific goals. such 

as face recognition. or detection of vehicles on a road. the nork presented in this thesis 

is oriented toward -generic object-recognitiony . t hat is, recognition of previously unseen 

objects such as  a new coffee cup. or a tree. This thesis explores object recognition from 

line drawings derived from real world images of simple objects. That the objects used 

are simple is a reflection of the state of the art in this area of research. 

Contribut ions 

In [20]. Jepson and Mann introduce 'Qualitative Probabilities' for image understanding. 

They work in the domain of edge images derived from real images, formdizing the notion 



of non-accidentalness, a cornerstone of object recognition. This thesis builds on this work 

in several ways: 

0 By examining the search space associated with this particular probabilistic frame- 

work from the current literature (Qualitative Probabilities/QP [-O]), we provide a 

deeper understanding of the framework. In doing so. we are also able to experi- 

mentally verify one of the underlying principles of the theory. the asymptotic rate 

of so-called 'accidents'. 

a CVe compare search for interpretations using Qualitative Probabilities to search 

using a more standard 'cover' measure. and show that Qualitative Probabilities 

far outperform the cover measure. This iurther motivates and justifies use of the 

Qualitative Probabilities for the purpose of object recognition. 

0 We introduce a new search algorithm which uses the Qualitative Probabilities. Ear- 

lier searches using the Qualitative Probabili t ies required some preset. hard t hresh- 

olds. This new search algorithm is more self-adapting. and no longer requires these 

t hresholds. 

1.2 Thesis Outline 

0 Chapter 2 This chapter presents relevant background materiai. 

0 Chapter 3 This chapter provides a thorough explanation of the Qualitative Prob- 

abilities presented in (201. 

0 Chapter 4 This chapter explores the search space associated with Qualitative 

Probabilities in the context of searching for blocks from edge images. We also ex- 

perimentally verify the asymptotic nature of the Qualitative Probabilities discussed 

in Chapter 3. 



a Chapter 5 This chapter explains how depth-first search is used to hypothesize 

interpretations for line drawings. given a model. Its purpose is to prepare the 

reader for Chapter 6. 

a Chapter 6 This chapter begins by showing that Qualitative Probabilities can be 

incorporated into a search algorithm in an effective. efficient way. CVe then compare 

how QP compares to a more standard 'cover' measure which is introduced. 

a Chapter 7 In this chapter. ive discuss a new algorithm that uses QP to search for 

interpretations in edge images. 

0 Chapter 8 This chapter contains a conclusion of the work presented as well as 

some future direct ions. 



Chapter 2 

Background 

2.1 View-Based Approaches 

In the introduction we framed the object recognition problern as one ivhere image data are 

assigned to ob ject rnodels. For some approaches. usually called view- based approaches. 

the object models are derived from a set of training images. For erample. eigenspace 

approaches approximate the training images with a linear 'object-space'. Then unknown 

images are projected into this object space to determine which object forms the closest 

match. 

Limitation of these methods are that they are sensitive to changes in lighting con- 

ditions. and to translation. scaling and rotations (51. Also. it is often assumed t hat the 

object has been segmented ahead of time. a key problem in generic object recognition. 

Lastly. t hese approaches often produce litt le or no semantic breakdown of the object being 

recugnized. However. for tasks that are quite specific in nature. such as face recognition, 

eigenspace rnethods have proven to be very powerful. 

For the purpose of this thesis. we leave these methods aside, and assume that our 

models are known ahead of time and are specified in terms of simple image features such 

as Lnes. 



2.2 The Search Problem 

Given that we know which rnodels are to be used in trying to semantically parse an 

image and t bat these rnodels specify the presence of particular image features, object 

recognition can be viewed. fundamentally. as a search problem. We have a set of image 

features. and a set of rnodels. and we must search through a hypothesis space to find the 

right interpretation. 

Sometimes this is posed as a labeling ~ r o b l e m  [16]. The interpretation space consists 

of every possible assignment of image feature to rnodel. in every possible way. Suppose we 

have only ten objects in our database. and that each is rnodeled by describing the relative 

position and orientation of only five lines. Suppose that there are only 50 lines in total in 

the image. This gives a space of cardinality greater than ( 10 * s ) ~ * .  a number so huge that 

the problem is already intractable in even such a sirnplified universe. Clearly sorne way 

of getting to the correct answer. without searching this whole space is necessary. Note 

also that the problems of impetfect data due to noise. occlusion. varied illumination. 

unknown viewpoint etc. have not even been mentioned e t .  

Grimson and LozanePerez's 1987 paper [16] sheds sorne light on sorne of the problems 

and possible solutions to the search problem in this context. Grimson and Lozan* 

Perez try to identify and locate overiapping objects by modeling objects as polyhedra 

of up to six sides. The algorithm consists of a generate-and-test loop. Hypotheses 

are generated. tested for consistency based on geometric constraints, and discarded if 

found to be inconsistent. Thus they use a depth-first search. pruaing entire subtrees 

when geometric inconsistencies are found. Extraneous data can be assigned to a nul1 

model. Finding this technique to be unacceptable in terms of time. they introduce 

several heurist ics. including the following t wo: 

1. Hough Clustering - A generalized Hough transform is used to reduce the number 

of poses that need to  be examined, and thus a good portion of the search space 



is pruned. Hough transforms work by collecting 'votes' for different poses based 

on local geometric constraints. Poses with the most votes are considered the most 

likely candidates. The authors find this crucial in reduciog the search time, but 

note that it causes the algorithm to miss some correct interpretations occasionally. 

A theoretical analysis is given in [l5. 1-11, where it is shown that this method is 

not r ~ l i a h l ~  in noisy or r l i i t t~r~rf  wmrg. or  r h o ~ p  w r n w  that havr miirh orclii+ion. 

A related met hod to Hough clustering is Geometric Hashing. Geometric Hashing 

works by storing transformation invariant properties of objects in a hash table. 

By calculating invariants from the image data. the table is t hen indexed to find 

possible corresponding object models. Those models that are indexed most often 

are the most likely candidates. Overviews of the technique are given in [M. 301. 

Geometric Hashing suffers from the same types of problems as Hough transforms. 

In [-1, Beis and Lowe try to improve on these indexing schemes by using a modified 

k-d tree search algorithm instead of a hash table. In [il. they propose learning a 

probabilistic indexing function to help disambiguate among indexed hypotheses. 

Overall. it is not clear that these types of subspace localization rnethods based 

on voting for local image features scale up well ivith t h e  number of models. This 

is due to the fact that the feature primitives used to index are relatively simple: 

simple features will potentially correspond to many objects. .As alluded to in [IO], 

more complex primitives are required for generic object recognition. More complex 

primitives make for less complex object models, and fewer matches to these rnodels. 

However. t hese richer primitives are far more difficult to extract from the original 

data. The work in t his thesis is a step toward being able to robustly and efficiently 

recover sufliciently complex primitives. 

2. Early tennination - When an interpretat ion is deemed sufficient ly 'good', the search 

is terminated. Grimson and LozanwPerez conclude that this is crucial to an efficient 



solution. Goodness is judged by the total length of image edges in the interpre 

tation. In fact. the key idea to take away from Grimson and Lozmo-Perez's work 

is that using a rudimentary and ad hoc measure of 'goodness of interpretations'. 

we c m  more effectively prune the search tree than with consistency alone. This 

leads us to believe that with a more rigorous and theoretically sound measure of 

goodness. we might be able to do much better. Qualitative Probabilities [20]. which 

are explained in detail in Chapter 3 .  are such a rneasure. 

2.3 Perceptual Grouping 

The number of subsets of image features that can be forrned is responsible for the corn- 

binatorial explosion of the search space. This in turn is a result of the number of image 

features. or in our case. the number of lines. This nuniber could be reduced, if, for in- 

stance. we first grouped al1 collinear line segments t hat 'belonged together' into larger 

lines. and then only used t hese to index into t h e  mode1 database. Alternatively. we could 

group together lines that formed V's. This idea of grouping the more primitive features 

into higher order features is called perceptual grouping or perceptual organization and 

is acknowledged to be a necessary step in the recognition process [ X ] .  Essentially its 

purpose is to uncover causal relationships between real world objects and image features, 

that is. to find image features that corne from the same object in the r e d  cvorld. In the 

context of generic object recognition. we cvould use perceptual grouping to help us pick 

out complex primitives. 

Finding these higher order features reduces the search in two different ways: i) By 

reducing the size of the total search space. ii) By allowing us to abandon certain paths 

(and thus subtrees) earlier on. because a more complex feature will match fewer models. 

.A third reason for performing perceptual grouping is to help overcorne noisy data and 

occluded objects. If we can correctly determine which image lines belong toget her, then 



given some prior knowledge about the ivorld such as expectations of continuity. we may 

fil1 in the gaps in intelligent ways. Additionally. perceptual organization allows us to do 

some grouping tbat is independent of which particular object ive are looking for. 

Much work has gone into finding out what cues are good for perceptual grouping and 

how to reliably and efficientiy detect t hem in images. We will next introduce this area 

of work with the Gestdt psycho!ogists. 

2.3.1 Gestalt Psychology 

[n the early twentieth century, before its use in machine vision. perceptud grouping 

was studied substantiaily by the Gestalt psychologists. Their main contribution was the 

design and execution of a large number of experiments dealing with grouping phenornena 

in humans. Their work forms the bu i s  and motivation for much of the work in grouping 

by computer vision researchers. The upshot of the Gestaltists work was that grouping 

can be broken into six main classes [22]: 

1 .  Prorimity - elernents that are closer together tend to be grouped together 

2. Sirnifan'ty - elements that are similar in physical attributes. such as color. orienta- 

tion or size are grouped toget her 

3. Continuation - elements that lie along a common line or smooth curve are grouped 

toget her 

1. Closure - there is a tendency for curves to be completed so that they f o m  enclosed 

regions. 

5. Symmetry - any elements that are biiaterally symmetric about sorne axis are 

grouped toget her 

6. Familiarity - elements are grouped toget her if we are used to seeing t hem together. 

It is clear what an impact the Gestaltist's studies have made in the area of compu- 

tational vision, as reference is made to them throughout the computer science grouping 



literature. [li. 22. 18, '26, 11, 291 to name a few. W e  should be careful not to at- 

tribute too special a meaning to these particular features. Though important, they are 

most useful as a guide rather than as  necessary and sufficient properties for perceptual 

organizat ion. 

According to Saund [-61. -The challenge facing the modern computational study of Per- 

ceptual Organization is to formalize and extend the gestaltists' intuitive insights in terms 

of testable theories and implementable programs.- One way of formalizing the Gestalt 

laws is in terms of their non-accidental nature. which is closely related to notions of 

generici ty and view point invariance. 

According to Lowe and many others. the most important property for a feature is 

non-accidentalness, that is. the property that the feature is unlikely to have arisen by 

accident. For example. me might wish to group image lines together if they are parallel. 

as the Gestaltists suggest that humans do. Intuitively we may reason that this is a good 

thing to do because if two lines in an image are parallel. they must either be parallel in 

the real world. or else Mie must be viewing the object from one particular view. that is. 

from a non-generic viewpoint. which is highly unlikely. One can argue in t his way for 

each property the Gestaltists mention. 

An equivalent way of stating this idea is in terms of viewpoint invariance. Lowe 

suggests that only features that are mostly viewpoint invariant should be looked at. 

Because a viewpoint inmriant structure projects to the same set of image features. these 

features are more likely to occur. and when they do. are more likely to have arisen by 

some reai JD structure than by accident. 

However. as shown formally by Jepson e t  al in [19]. non-accidentalness alone will not 

Lead to reliable inferences about the real world. One further criterion is that the feature 

needs to have a non-zero a prion' probability of occurring in the given context. This fdls 



out of the Bayesion formulation of the problem. 

In (12.131, Feldman proposes a formal. logical framework for capt uring non-accident alness. 

He calls it 'regularity-based' grouping. 'Grouping interpretations' are logical expressions, 

and a logical inference theory is presented to work with these expressions. Parse trees 

store the degees of genericity present. and those interpretations with the highest gener- 

irity are r o n s i r l ~ r ~ d  t h e  most plaiis ihl~.  These idpas are rlosdy l i n k d  w i t h  J ~ p s o n  and  

Mann's Qualitative Probabilities [ZO]. An ent ire chapter is devoted to  t his (Chapter 3) .  

so it is not discussed further here. 

2.3.3 Other Work in Perceptual Grouping 

In Lowe's SCERPO system [2]. straight lines are grouped together using collinearity. 

proximity of endpoints and parallelism. Only lines that are close enough together have 

the possibility of being grouped. A potential group is assigned significance inversely 

proportional to the likelihood that it is accidental in origin. This likelihood contains 

little information and is simply the ratio of i )  the separation of the lines involved. to ii) 

the length of the shortest line segment involved. 

Jacobs' GROPER system [l ï]  est imates the probability t hat two convex contours 

corne from the same object. The estimate is based on the distance separating the two 

contours. d. as well as on their relative orientation. t. Let Oi = Oz indicate that the 

objects that produced groups one and two are the same. Jacobs calculates p(Oi = Ozld. t )  

through use of Baye's rule. By making certain assumptions and massaging equations, he 

in the end needs only to calculate four fairly simple probabilities ( i .e. simpler than the 

ones required by Baye's rule alone). An approximation to t hese probability distributions 

is obtained by generating random polygons. and caiculating several statistics. 

Jacobs pursues his convex grouping further in [18]. He contends that convex collec- 

tions of line segments. in which a large fraction of the convex hull of these segments is 

covered, are salient cues for detection of underlying structure. Later in this thesis, we 



CHAPTER 2. BACKGROUND 

show that coverage is actually not a particularly useful property on its own. 

2.3.4 Primitive-Based Recognition 

One class of approaches to the recognition/grouping problem that fdls under the heading 

of primitive- based recognition is mot ivated by Biederman's Recognition- by-Components 

theory [dl. Biederman contends that -prima1 access. the first contact of a perceptual input 

from an isolated. unanticipated object to a representation in memory' is edge-based. He 

posits that humans understand images by parsing objects into their component shapes. 

'geons'. and conducts studies to back his theory. The geons are simple. pararneterized. 3D 

shapes t hat he postulates are recognized by their 2D edges a!one. based on qualitative 

measures. such as curved versus straight. He reasons that surface characteristics of 

objects play only a secondary role because they are generally Iess efficient for indexing 

into the hurnan mode1 base. He even goes so far as to say that the parsing into visual 

primitives -does not appear to depend on our familiarity with the particular object being 

identified'. that is. it does not depend on context. 

Some of the attempts to put this theory into practice can be found in [3. 7. 101. and a 

discussion of the successes and problems encountered in some of these attempts are given 

in [9]. In this panel discussion paper. the consensus is that Biederrnan's idea of parsing 

images into a finite number of visual primitives is extremely valuable. However, it is 

argued that many parts of the real world cannot be represented by geons alone. Also, the 

problem of extracting good line drawings from real images is considered to be extremely 

difficult . and many of the at temp t s at implement ing Recognit ion-By-Components start 

with images that are completely noise-free. 

Primitive-based object recognition is perhaps the method best suited to the task of 

generic object recognition. as it allows for very loosely defined classes of objects. An 

object is defined as consisting of several. of a finite group, of generic primitives, as well as 

a qualitative descript ion of how t hese are interconnected. Though geons themselves might 



not be the basis required to represent prototypical objects, work in trying to recover them 

from images and ensuing object recognition has been enlightening, especially in terms of 

the types of algorithms used, which are rnostly independent from the geons themselves 

(especially for the Latter task of 'gluing' the primitives together). 

In this thesis. we are on one level preoccupied with searching for blocks. however. 

the iinderlying goal and incentive is  t.o ?rovirl~ a rohiist and ~ f f i r i e n t  methoci of extrart- 

ing complex primitives from real images. pushing us toward the goal of generic object 

recogai t ion. 



Chapter 3 

Qualitative Probabilities for Image 

Interpret at ion 

In the previous chapter it was shown that the  property of non-accidentalness plays a 

central role in object recognition. It helps one deduce which image features are likely 

to belong tu the same object in the real tvorld. and therefore helps to make the search 

in object recognition more tractable. in Jepson and Mann's Qualitative Probabilities for 

Image Interpretation [?O]. the notion of non-accidentalness is formalized from a Bayesian 

point of vietv. The qualitative probabilities (QP)  act as a measure of goodness for 

hypothesized image interpretations. 

The theory is introduced in a 'card-world' domain. that is. line images are interpreted 

as a combination of sticks and convex. opaque polygons. For example, Figure 3.la 

shows the input image of straight line segments. while (b). (c) .  and (d)  show different 

global interpretations of the image. Using the QP metric. it is found that of the three 

hypot hesized interpretat ions. ( b) is preferred. This interpretat ion also corresponds to 

what we would intuitively describe as a correct interpretation of the scene, a property 

clearly desired from any rnetric in this context. 

In this chapter we review the details of these Qualitative Probabilities and consider 
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t heir application to simple images. 

3.1 Bayes Theorem and Mode1 Cornparison 

From a Bayesian point of view. in order to deduce correct interpretations for an image, 

one :rsuts to  Se able tu calcdatc the probshility of an intcrpretrtion or sccne modcl 

given the image data. p(:\II 1). where .CI is a given interpretation or scene model and 1 is 

the image data. Models that produce a high value for this expression should correspond 

to the 'good' models. Examples of different .LI for the same 1 can be  seen in Figure 3.1. 

where in (b). .CI describes the lines as a triangle in front of a quadrilateral. as well as a 

stick. whereas in (d). .I.I describes each line as a simple stick. independent from the other 

line segments. 

For the purpose of calculation. we must appeal to Bayes theorem: 

w here. p( .\Ill) is termed the post erior. p( I ( JI). the likelihood of the  model. and p( M). 

the pnor for the model. 

Often. one is comparing different models for the same set of data. I .  and thus the 

denominator is not needed. This is a lucky thing since 

that is. the probability of the  image is equal t o  the summation over the probability of 

the data. given every possible model in the universe. a usually intractable calculation. 

When this term can be ignored. one cornputes instead the unnormalized posterior. 
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Figure 3.1 : Example of image edges and t hree hypot hesized 'card-world' models Legend: 

Thin black [ines - image segments. Thick gre y lines - sticks. Shaded grey regions - opaque 

polygonal card. Crosses - breakpoints in the image segments for sticks and polygon edges. 

(a) image edges ( b )  rnodel consists of a triangle in front of a quadrilateral. and a stick (c)  

model consists of a triangle behind a quadrilateral. and a stick (d )  model consists of 10 

different sticks. üsing the Qualitative Probabiiities introduced in this chapter. we find 

that (b) is the preferred interpretation. ( Figure courtesy of M a n  Jepson (201) 

Before explaining the details of QP. it would be nice to understand this equation on 

an intuitive level. We will do so by means of an example. 

Suppose for instance that the image data we are looking at  is (a)  in Figure 3.1. and 

that the underlying true scene is shown in (b) .  a triangle in front of a quadrilateral. 

and a stick. A s  a first stab at finding the correct rnodel for this scene. we might try to 

mâuimize the match between scene model and image data. that is. we would choose the 

rnodel which maximizes the likelihood of the model, P(I1M).  Of al1 possible models. the 

one which would be selected in this case is the one in Figure 3.ld - a perfect match. 

But we know that cameras produce images with missing and noisy data and that edge 
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detectors are imperfect. What is in the image is not a mirror reflection of reality. If 

we were to select a model based on the maximum likelihood criterion, we would need 

to select a very complev model. in fact. an overly complex model that could account for 

al1 of the noise. What we really need is a way of balancing the fit of the data to the 

model. with the complexity of the model. This is exactly what p(iC1) in equation 3.1 

does. It i s  t h e  p n o r  of the  model. and reflects how prohahl~ the model is in its own 

right. Under normal circumstances. the more complex the rnodel, the more unlikely it 

is. a principle sometimes referred to as Okham O Razor. This concept is closely related 

to ideas in coding thcory. such as  minimum description length. ' 

3.2 Qualitative Prior Probabilities 

-4 common criticism of Bayesian statistics is that it is impossible to choose the correct 

prior. However. in practice the prior need not be specified perfectly. Priors that are 

'guesses' and that may only be correct to rvithin an order of magnitude still prove to 

be extremely useful. In their Qualitative Probabilities paper [-O], Jepson and Mann de- 

fine a wide equivalence class of' prior probability densities. instead of selecting particular 

quantitative prior probabilities. From this class of densities. they are able to asymptot- 

ically analyze prior probabilities, resulting in a qualitative prior probability. They also 

show how to cornpute a qualitative likelihood to use with this prior. The qualitative 

probabilities presented are both intuitively pleasing and easy to cornpute. 

First they set out the conditions imposed on the prior probability density for the 

occurrence of a single line segment. From this al1 prior probabilities for models in the 

specified domain foilow. 

lCurve fitting real, noisy data is similar. If we fit the c u v e  that best matches the data, that is, the 
least squares solution. then we may end up with a very bad estimate of the underlying function because 
we will have chosen a c u v e  of very high order to ensure that it goes through every point. We need to 
balance the fit of the data with the complexity of the curve in order to get a truly meaningful mode1 of 
the data. 



CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 123 

3.2.1 Prior Probabilities from the Probability Density 

Let p(L(Zl .12))  denote the prior probability density for a particular line segment with 

independent endpoints Il and &. The conditions imposed on this density are that it is 

bounded away from zero and that it is bounded from above. That is. for some do and dl: 

Since the .Fi's are continuous and since the density is bounded from above, integrating 

over any one set of line endpoints gives a probability of zero: 

where S0 denotes a particular pair of endpoints. (.FI..&) = (&.lg). In other words. 

the prior probability of a line whose endpoints have been specified to infinite precision 

is zero. To get a non-zero probability for a particular line. one can only specify it to 

some finite precision. Furthermore. because the density is bounded away from zero. any 

line segment specified with finite precision has non-zero probability of occurring. Both 

of these results satisfy our intuition about the problem. 

To find out the prior probability of a line segment specified with finite precision. one 

integrates over the region of uncertainty. Suppose that one specifies the precision of a 

line segment with r .  tha t  is. the position of each of the endpoints is known t o  within a 

radius c. Then the prior probability of this line. given this resolution. follows from the 

bounds imposed on the  density in Equation 3.4 ( the  bracketed expressions are squared 

because the uncertainty of each of the two endpoints rnust be integrated over): 

where Si denotes the set of line endpoints (&, &) such that 5, and Z2 lie within a disk 

of radius c centered on  ZA and ZB respectively ( s e  next page) 
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( i - e *  Si = {(& 2 2 )  1 (1151 - 5-4  11 5 € I l ) *  

and (Il52 - fsll I cil))). 

Let us denote a model. :W. specified to resolution e to be Me, and the prior probability 

of this model. obtained by integration as  in Equation 3.6, to be p ( M c ) .  In particular. 

denote the prior probability of a line segment. specified to precision c to be p(L ' (& .  24). 

or sirnply p [ L L ! .  Whcn no power of epsilon i s  shorvn. it rvill mpan that the ~xpressinn is 

a probability density rather than a probability. In this notation Equation 3.6 becornes: 

According to the standard terminology in Computer Science [6]. Equat ion 3.7 indicates 

that p( L') is tightly bound by cd: 

Similarly. one can show that the prior probability of a single endpoint. specified to reso- 

lution E. is tightly bound by 2. 

For the remainder of this thesis. ive say that events that have probabilities tightly 

bound by some power of epsilon are -of order" that power of epsilon. For example, 

ive will Say that the prior probability of a line segment is of order 6'. This makes for 

less curnbersome phrasing. Similarly. we will often omit the epsilon in p ( M e )  when it is 

obvious from the context. and instead write only p(:CI) .  

They key ideas oeeded in deriving the  prior probability for a single line segment were 

i )  the bounds placed on the probability density and ii) integrating over each area of 

uncertainty. A s  presented. each area of uncert ainty actually corresponds to two degrees 

of freedom in the model. each having the same resolution (proportional to 6). Each point 

in a plane has two degrees of freedom. Thus two independent points specifying a line 

have four degrees of freedom. This is intuitively very satisfying since our epsilon order 

estimates were just these numbers. Furthermore, this indicates that these QP's rnight 
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be extended to more complev objects. This is done by keeping the same bounds on the 

probability densities. but integrating over the appropriate number of degrees of freedom. 

To specify a convex n-gon to resolution c. C:, one must specify n points in the plane 

at this same resolution. Following the analysis described above. it is found that the prior 

probability for such an n-gon. p(Ci) E 0 ( c 2 " ) .  

of degrees of freedom does not correspond to the number of vert ices as is the case in a 

polygonal world? The orthographic projection of a JD block is fully specified by four 

points in the plane. These four points are not unique. but this is unimportant for the QP 

analysis which tells us that the prior probability for a block. p ( B C )  E 0 ( c 4 * * )  = 0 ( c 8 ) .  

Again. one need only integrate over each degree of freedom. regardless of whether we 

know where specifically in the image they are located. 

For a scene model consisting of multiple objects. Jepson and Mann take the shape and 

position of each object to be independent. Thus sirnply multiplying the prior probabilities 

of each object together gives the 'composite' prior probability for the entire scene model. 

For example. in Figure 3. lb.  the prior for the entire scene is calculated by multiplying 

together the the prior for the triangle. p ( T C )  E 0(8). the quadrilateral. p ( Q c )  E O(€')? 

and the stick. p ( L c )  E 0 ( c 4 ) .  producing a result of p ( T C Q '  L e )  E @(cls) .  

The issue of depth ordering of objects in the scene has so far been ignored. Since 

objects in the specified domain are opaque and convex. depth layerings are reduced to 

binary choices between pairs of overlapping objects. Suppose ive had a scene consisting 

of n objects. with m possible depth orderings. Suppose that the prior. before we take 

these depth possibilities into account is p ( M ) .  Then the prior reflecting the number of 

depth orderings is p ( :C l ) / rn .  assuming that every depth ordering is equally likely. But 

since rn is independent of the resolution. the c order estimate remains unchanged. 

Thus. from the simple assumption that the prior probability density of a line segment 

is bounded from above, and from below, away from zero, we obtain a simple but elegant 
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qualitative expression for the prior probability of any scene model in the given domain. 

In the next section we will describe how these qualitative probabilities are extended so 

that the second term in Equation 3.1. the likelihood. can be computed, and thus the 

posterior. 

3.3 Posterior Probabilities and Likelihood 

In order to assess the likelihood of a scene model. p ( l ( M ) .  an imaging modei [-O] is 

needed. The imaging model should embody the types of errors that are typically made 

by eit her t h e  camera or the edge detector. or both. O bviously one could have an imaging 

model at any level of detail. One might choose to physically model the camera's lens 

for example. However. in the given domain. the imaging process c m  be treated very 

simply. In fact. so that the likelihood and the prior may be combined in a meaningful 

way. one needs to make sure that their descriptions are of the same currency. Thus 

it would prove fruitless to have a more quantitative model than is set out in the prior 

probability calculat ions. 

One of the errors accounted for in the irnaging model presented in PO] is that various 

segments may be missing entirely. or in part. from the output of the edge detector. 

Jepson and Mann refer to these missing pieces as 'drop-outs'. Analogously to the prior 

calculations, the endpoint(s) of the dropout must be specified. If an entire segment is 

rnissing, then. no additional points need to be specified (Figure 3.2b). If a single. middle 

segment is missing, two additional points need to be specified. each at a cost of c1 (since 

each is constrained to lie on the line) for a total of c2. If an end of a segment is missing, 

one additional point needs to be specified at a cost of cl (Figure 3 . 2 ~ ) .  

The probability of a dropout error is not only dependent on the probability of the 

endpoints, but also on the image contrast needed by the edge detector, which Jepson and 

Mann cal1 6. For every missing section of a line. the probability of that line is decreased 
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Figure 3.2: 
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Use of the imaging model to account for noise. (a)  Perfectly imaged line: p( ll LU) = e060. 

p ( M )  = 6'. p(.CI 1 1 )  = c' ( b )  Endpoints present. but entire line missing: p ( l l ~ b 1 )  = CO& 

p ( M )  = e4. p ( M I  I )  = c4b1 (c )  End of segment rnissing: p( Il hl )  = c'dL. p(i\.I) = c'. 

p(:CI(I) = e56' (d)  Middle and end of segment rnissing: p ( l l M )  = c 3 6 ,  p(iM) = c'. 

p( iC1I i )  = c V .  (Figure courtesy of Allan Jepson["]) 

by a factor 6. Note that 6 is independent of the length of the missing segment. Intuitively 

this makes sense since if an image edge does not have enough contra t  over sorne length 

of the segment. it it likely due to shadow or poor lighting. There is no reason to believe 

that up to a certain size. the probability of a large shadow has a different asymptotic 

order than that of a smaller one. One can argue similarly for poor lighting. However. 

to get two dropouts along the same line segment. one would need two processes. such 

as two shadows. which should be less likely than a single shadow. Thus each further 

drogout becornes less likely. See Figure 3.2 for a few simple examples. 

Another error accounted for by the imaging model is that there is only limited res- 

oiution. Because of this fact. two image lines resulting from Say two different blocks. 

may by accident be extremely close and nearly collinear (see Figure 3.3). Thus the image 

Iine-finder will identify them as a single line segment. and we need to be able to 'use' only 

part of a line segment. A part of a line segment not being used to explain a particular 

model (when the rest of that segment is being used) is calied a taif. In Section 5.5 we 

will show an exampie t hat discusses how t ails affect computation of probabilit ies. 

Lastly. enors in position and orientation are accounted for by the concept of a cover. 
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Figure 3.3: (a) ( b )  

(a) Two blocks abut. their edges forming a single image edge. ( b )  An erample of a 'cover': 

angular tolerance is dictated by r d .  while tolerance of p. -~endicular extent is governed 

by T,,. The baseline is the middle horizontal line. (Picture courtesy of .Man Jepson [-O]) 

.A cover is defined to be a rectangular box. of any length. and some pre-specified width. 

Associated with the cover is a baseline (see Figure 3.3b). .A cover is a mode1 for a real- 

world st raight line: the mode1 'covers' the various imaged Line segments t hat make up the 

true line (or cice cema). if several image line segments can fit inside of a cover. and the 

angle they form with the cover baseline is not larger than some maximum allotved angle. 

rd. then they are considered to be a single line. This allows us to robustly group together 

image segments into single lines. tolerating errors in position and orientation. Yote also 

t hat t his defini t ion allows parallel. or nearly parallel line segments to be grouped together, 

provided they are sufficiently close together. 

An important and nice feature that cornes out of the definition of covers is the fol- 

lowing: no matter what order image segments are added to a cover. we will obtain the 

same result - yes they form a cover. or no t hey do not f o m  a cover. Thus the 'growing' 

of covers. through the inclusion of additional image segments. is transitive. 

3.4 Can QP be used for Search? 

As alluded to at the start of this chapter. scene rnodels with high QP values, correspond 

well to intuitively 'correct' models. Thus what QP has provided so far is a measure of 
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the 'qudity' of different global scene models for a particular set of image data. To see 

which mode1 best fits the data. one needs to find, of al1 possible scene models, the one 

which maximizes the posterior. 

But how can such a measure help in the search for the correct interpretation*? As 

presented. one would first need to generate al1 possible scene models in order to find 

t h e  maximal va!uei of the posterior a d  the rorresponding rnode!~. This is exact!y the 

problem that must be avoided. since these hypothesis spaces are combinatoriai. and a 

complete search through them is intractable. What is required is a means of evaluating 

partial hypotheses. Given such a mechanisrn, one could build hypotheses bottom-up. 

keeping around only the better interpretations to explore further. 

3.4.1 Evaluating Partial Hypot heses 

Can QP be directly applied to partial hypotheses to produce a meaningful metric.? S u p  

pose there is a line image in which it is desired to find al1 block interpretations (for 

example. see Figure 4.9). Building hypotheses bottorn-up. one will at some point en- 

counter two hypothesized interpretations. each consisting of a different set of lines. Let 

us cal1 the two sets of lines. Il and 12. where tl. l2 C 1. If applied directly. QP tells 

us to compute the  posterior as in Equation 3.1 for each of the two hypotheses. Since 

the two sets of image lines are not the same. p ( l i )  and p ( 1 2 )  must each be computed as 

in Equation 3.2. These are unwieldy and practically speaking, impossible calculations. 

To overcome this hurdle, Jepson and Mann 'norrnalize' the posterior by other means. 

Strictly speaking it is not a normalization. but its desired functionality is the same. the 

desired functionali ty being t hat i t allows one to compare different hypot heses of different 

data 'fairly'. How fairly is another question. one which is addressed for the specific case 

of a blocks world in Section 33.4.3. 

Instead of taking the ratio of the unnormalized posterior to the probability of the data 

( i .e .  the posterior), t hey take the ratio of the unnormalized posterior to the unnomalized 
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posterior of the same subset of data.  I l .  under the most simple of scene interpretations - 

one which considers each image fine to be a Stick'. The value of this ratio corresponds to 

the following: how much more likely is it that this subset of image data. 11. was generated 

b y  a scene. M. as compared to a scene consisting entirely of sticks. S.? 

Toward the end of this section. we will use a detailed example in the blocks domain to 

demonstrate what a full cornputation might look like. 

If the odds were an ideal metric. the most intuitively plausible interpretation rvould 

be the one with the highest odds. However. QP  does not mode1 al1 of reality. and consists 

of only order estimates. Furthermore. the  odds are an approximation made to overcome 

the difficulties of calculating the posterior. In particular. t hey consider only one subset of 

image data. 1,. and not any further evidence that might be  obtained from the remainder 

of the image data. Thus in practice. one cannot expect that the odds be ideal. Instead. 

it is important to note that if  the intuitively correct mode1 lies in the top percentage of 

al1 models. as ordered by QP odds. then a good heurist ic will have been found. If this 

is not the case. al1 hope can be abandoned for this approach. In their experiments in 

a blocks worid domain. Jepson and Mann find that the correct block interpretations do 

normally lie in the top one percent of block hypotheses [-O]. This issue is also explored 

further in Chapter 6 and Chapter 7. 

Given a small set of interpretations in which the  correct one is known to exist, further 

qudity checks can then be used to select the best among these top interpretations. Since 

the combinatorial explosion of the search space will have been battled and won, one can 

then spend the time and resources on more quantitative models. The beauty of QP is 

that it is simple, general, elegant and easy to compute. 
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Figure J.4: Example of image edges and a hypot hesized block model Legend: Solid b d d  

fine - Block model ( i.e. the baseline of the cover for each edge is  shown). Solid line - 

Actual image edge rlrrom - Indicates that the  end position of that mode1 edge is not 

known (2.e.  it is not constraioed. it is a free endpoint) 

3.4.2 Example Computation of QP Odds for a Block 

We will now show a full computation of t h e  odds of a particular block model and partic- 

ular image line segments: these are shoivn in Figure 3.4. 

First we will calculate the asymptotic unnormalized posterior probability of a block 

model. given the image data. then we will calculate the asymptotic unnormalized poste- 

rior probability of an ail sticks model. and. finally. the odds for the block modei. In what 

follows we will cal1 asymptotic probabilities just plain probabilities. 

To obtain the prior probability of the block model, we note that there is one free 

parameter in the model shown - downward length. and that a fiilly specified block rnodel 

has S known parameters. Thus the prior probability. p ( B )  is given by: 

Now we need to use the imaging model to find the likelihood of this block model, p(I l  B). 
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How many gaps are there? There is one at the end of each of model edges 2 and 6, 

and 2 gaps on edges 4 and 3. Thus there are 6 gaps. contributing a factor of d6 to the 

likelihood. Furthermore. each of the gaps in edge 3 each have one endpoint that needs 

to be specified. costing c l  each. as do the 'end' gaps on edges 2. 4. and 6. This adds a 

cost of c5. while the gap in edge four needs two endpoints specified, adding c2. Thus the 

likelihood for the mode1 that we have ralriilated sr ,  far is: 

and the iinnormalized posterior. 

However. note that one of the image edges projects beyond the end of model edge 

1 - the model edge has what we cal1 a tail. How do we account for this tail in our 

computation'! We must add sornething to our model so that the tail is accounted for. 

Thus we must add a term to both Our prior and our likelihood. In ot her words. we need 

to rnultiply the unnormalized posterior in equation 3.12 by the unnormalized posterior 

for a 'tail model'. 

Going back to our polygonal world. we could explain the tail by saying that it came 

from a stick wi t h an uncertain Ieft endpoint. lying along the image line in the sub-segment 

covered by the baseline. This is the worst case/highest cost scenario (barring gaps in 

the tail), and the unnormalized posterior would be of order c3 - we would 'charge' e2 for 

the known endpoint .and c'  for the uncertain endpoint. Alternatively, the tail could be 

explained by it belonging to some polygon. Since a polygon with R sides bas unnormalized 

posterior eZn. the prorated unnormalized posterior of any one side of a polygon can be 

said to be E' .  f i t  another alternative is that the tail can be explained by it belonging 

to part of another block model. or some other kind of model entirely, unspecified and 

unknown. The higher the ratio of model edges to degrees of freedom of this model, the 



higher the prorated unnormalized posterior of a single edge. and the less of a 'penalty' 

incurred. 

Clearly the problem is intractable - we do not know what to charge for the tail. The 

best we can do is take a guess at an appropriate choice. For the images we are using, not 

very many spurious edges (those not actually belonging to a true underlying block) are 

present. Sinre most edges in the images z e  lrse !dong to 2 block. the prorated cost of 

an edge is. on average. (c8)  a. because a block has 9 model edges. Thus. throughout this 

thesis. we cvill use a tail cost of c l .  

Our final unnormalized posterior probability for the block model then. is. 

One last cornputation needed before ive can obtain the odds. is the unnormalized 

posterior probability of the 'sticks' model. where each image edge is explained by a 

different stick. Lking this model. each image edge has unnormalized posterior 1", and the 

whole image has unnormalized posterior c'xnUmkr *lcdger. However. using this formulation. 

the probability of the stick model is relatively small when many image edges are present, 

and thus the odds of a block model can be relatively high for images where in fact 

little block structure is observed. The problem is that collinear image line segments. by 

t hemselves. are providing evidence of blocks. because t here are no ot her linear processes 

in the domain. However. intuitively. we know that while a few collinear line segments 

provide some evidence of a block. this evidence should be at most incrementdy more 

than the evidence provided by a single image line segment. 

To remedy this situation. we introduce a second linear process. We do this by re- 

vamping our definition of -sticks'. Sticks are now a new type of scene object. modeled 

in the same way as other scene objects. Rather than treating each individual image line 

segment as a stick. we now allow several collinear (or close and parailel) line segments to 

model a stick. accounting for gaps with the imaging rnodel previously described. Some 

examples are shown in Figure 3.3. 
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To calculate our odds then, we use the best, al1 sticks model for the denominator in 

Equation 3.9. By best we mean the model that has the highest, asymptotic probability. 

This results in each set of collinear line segments being treated as a stick object, possibly 

with interior gaps (gaps that do not extend to an endpoint of the stick object). In turn, 

this means that any set of collinear line segments. on their own. provide no evidence for 

the existmce of a S10ck. 

In our particular example. there are seven sets of collinear lines. two of which have 

interior gaps. thus the unnormalized posterior for the best ail sticks interpretation is. 

q(S11) E O ( ~ ' ~ ~ 2 6 )  = O(cmd). 

Thus. the equation tve've been waiting for. the odds of the block 

Figure 3.4. for the image edges shown is: 

mode1 shown in 

(3. L - I )  

Now that we have our odds. how can we use them? What meaning does an cd term 

have? In order to use the odds. we must be able to compare different odds and say which 

one is bigger. .A simple way of doing this is to say that for some constant. q 2 O. as E -t O: 

A s  it turns out. the specific value of q turns out not to matter in practice ["O]. Thus for 

the remainder of this thesis. we treat e CC 6 (since the power of e is negative in almost 

al1 cases. and since both c and 6 are less than one). In this thesis. we will actually ignore 

iT altogether. ..\lso, since almost all block rnodels will have odds of zero or lower, we will 

drop the negative sign on the epsilon odds throughout the remainder of this thesis. With 

this notation. the higher the power of epsilon. the more evidence we have for a block. 

3.4.3 Odds for Single Block Int erpretations 

At the start of Section 3.4.1 it was rnentioned that calculating the odds of the probability 

of some mode1 CO the probability of a sticks model serves as a sort of normalizing factor, 
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Figure 5.5: The maximum possible odds ( power of epsilon) is shown, for blocks instan- 

tiated to different degrees. that is. one edge only. two edges only . . . ). 

allowing for cornparisons between different hypot heses of different data. in what is hoped. 

a fair way. Let us look a little more closely a t  hoiv the odds behave for a blocks world to 

see just how fair this measure is. 

Figure 3.5 shows the maximum possible epsilon odds for single. partial block hypot he- 

ses instantiated to different degrees. that is. for blocks that have only one rnodel edge 

filled. two rnodel edges filled etc. ( A  description of how to calculate the maximum possi- 

ble odds is provided in Section 3.4.4). Immediately it is obvious that this 'normalization' 

is not fair. Clearly one cannot compare the quality of two hypotheses if they do not have 

the same nurnber of block edges filled. Based on the definition of the odds. t his intuitively 

rnakes sense: a hypothesis that consists of only one or two block edges cm never be as 

convincing as the best one with five or six. no matter how good a two-edge hypothesis 

is present. This imposes some restrictions on how a search for true interpretations can 

proceed, which is discussed a t  greater length in Chapter 4. 
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3.4.4 Calculating the Maximum Possible Block Odds 

The maximum odds in Figure 3.5 can be calculated in two ways, one by hand, the 

other automatically. To calculate the maximum odds by hand. we must realize that the 

maximum odds for a block mode1 with a given number of edges occurs when the block 

is perfectly imaged. Thus it has n o  tails or gaps and p ( l l  M )  E O(1) and al1 junctions 

are periectiy CO-terminating. Given these îacts. the probiem of mavimizing the odds is 

reduced to mavimizing p ( M )  (with a specified number of edges). To maximize p(1b.I). 

one needs to reduce the number of free ends. and have as non-generic a set of edges as 

possible. Thus by coming up with block models ( L e .  hand drawing some 'image edges' 

in particular locations and orientations) that satisfy these constraints. one can determine 

the maximum possible odds. .Alternatively. one can give an exhaustive search algorithm 

an image consisting of a perfect block. such as the one in Figure 4.1. run the algorithm. 

and then extract the highest QP odds blocks at each level of filled edges. noting the QP  

odds. 

For this t hesis. we calculated the odds by hand. and the double-checked the values 

using the search algorit hm met hod. 
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Exploring the QP Blocks World 

From Jepson and Mann's results [20] it is clear that the Bayesian framework of qualitative 

probabilities can be used to efticiently explore the huge space of al1 hypothesized block 

models. Different algorithms can be used to traverse this space. In order to use QP to 

its potential and discover how large is this full potential. it would be instructive to take 

a look at the model space from the point of view of QP. In this chapter ive do just that 

by contrasting the QP block hypothesis space for random line images, to the space for 

images containing blocks. In this framework. we are also able to experimentally prove 

the asymptotic nature of QP. 

4.1 Basic Vocabulary 

In this section ive will introduce some basic vocabulary in order to facilitate later discus- 

sion. 

Let I,v denote an input image consisting of LV line segments (for example, Figure 

1.9. or Figure 1.2). Let a subset of this input image be ln, that is. a subset of n line 

segments. Let a block model. brn. be an eight parameter mode1 of a block (fully or 

partially constrained), which is a least-squares fit to line segments ln, for n 2 1. The line 
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segments associated with the model must be consistent with a block. ' .A block model also 

specifies which edges in the rnodel have been instantiated (since a block model may be 

only partial). and assigns labels to these edges. .A formd definition of the labels appears 

Iater in this section. Figure 4.1 shows a fully instantiated block model with labels for 

each edges. Denote the set of al1 unique block models for image 14v as ,dl. Sornetimes 

wr rvill cal1 t h i s  the  morl~! <pare for an image. 

In order to understand what constitutes a unique model in this contert we need to 

understand the symrnetries that exist in a projected block model. Looking at Figure 

1.1 which shows the edges of a block model as directed line segments. we see that there 

are essentially three classes of edges: those edges that point into a triple junction where 

the two other edges point away ({0 .3 .6}) .  those whose edges point into a triple junction 

where the two other edges also point into this junction ({l..). 7 ) ) ,  and those whose edges 

point into a double junction. where the other edge points out of the junction ( {2 .5 .S) ) .  

These are the single-edge syrnrnetry classes of directed block edges. Analogously. we see 

that pairs of edges may be formed into syrnrnetry classes. For example. the pair {O. 2) is 

equivalent to the pairs ( 3 .  .j} and { 6 .  Y}. In fact. al1 of the syrnrnetry is captured by the 

labelling presented in Figure 4.1. In the following we will lormally define syrnrnetry. 

Definition of Symmetric Block Labellings 

.-\ block labelling is an assignment of numbers and directions to image edges, as in Figure 

1.1. and is represented rnathematically as a function. 

L : image edge + (edge label. direction). For better clarity in the definition to follow, 

we break d o m  the labelling function into two functions, Li : image edge -t edge label. 

and Ld : image edge + direction. The dornain of a labelling is the set of image edges 

'Consistency is determined by criteria such as Robert's criterion, which states that the three edges 
forming the triple junction in the orthographie pmjection of a block must al1 form angles which are 
obtuse or right with one another[24]. The other constraints are collinearity of line segments along a 
given edge, up to some tolerance, as describeci in Section 3.3. and that the least squares fit is sufficiently 
good. 
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Figure 1.1: Singleedge symmetry classes of directed block edges: {O, 3.6). (1.4. i ) ,  

{2.5. s} 

which it labels. and the range of Li is an integer between O and S. while the range of 

Ld is {O. 1). Two block labellings. L t .  and L2, with edge domains {ell. elz,. . . , el,} and 

ez~. . . . . E ~ ~ )  respectively. are said to be symmetric iff i )  their domains are identical. 

and i i )  3i E {0.3.6}  such that V j  'j n. 

Without Ioss of generality we have assumed in i i )  that the domains are the same and 

that the orders of the edges in the domains of the two functions are identical. Ncte that 

the labelling function. L. is not one-teone: several image edges may map to the same 

edge label. 

Uniqueness of Block Models 

Two block models are the same if they have symmetric block labellings. Thus if two 

block models are the same. they have the same set of labelled image edges, and these 

edges are either labelled in exactly the same way, or in a way that is symmetric with 

respect to each other. 4 block model is unique if it is not the sarne as any other block 

model. 
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4.2 The QP Hypothesis Space 

.A rigorous. experimental method to explore how QP behaves is. for a given image 1, to 

conduct a full depth-first search through JI, .  thereby encountering every possible model 

for this set of images. In the first part of this section we will report on the results from 

such an experiment. using ten randomly generated line images (see Section -12.1) such 

as the one shomn in Figure 4.2. During the course of the depth-first search through dr,. 

the number of image lines added to a model increases with the depth of the search tree. 

At each depth step. another line segment is added. To be more precise. at each depth 

step. ench remaining line segment is added in every possible way consistent with a block 

rnodei. Thus an image edge could be added up to 1s (9 edges x 2 directions) different 

ways to a given block model. depending on how many of these ways were consistent with 

a block model. Tolerances on the errors allowed were the same as was used in ('101. 

What is important to understand at this point is not so much the details of this search 

algorithm. which is in no way proposed as an efficient search. Rather. we would like to 

emphasize t hat the end result of the search in this section is a list O/ every possible blocl; 

model. (which. recall. includes both fully and partially instantiated blocks) for the image 

line segments on which the search was conducted. We use this complete set of block 

models to investigate how QP breaks it down according to different criteria through 

the use of histograms and graphs. We hope that by doing this we will gain a better 

understanding and intuition of QP in this domain. and perhaps this information will 

motivate an efficient search. A more detailed explanation of the search in this section 

can be found in Chapter 5 .  while a more sophisticated search is described in Chapters 6 

and 7. 

Al1 results reported in this section are from aggregate data ( i - e .  sumrning the data 

from the set of ten random images). 
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4.2.1 Random Line Images and QP 

The random lines were generated by first selecting a single endpoiat. uniformly, at ran- 

dom over the image area. Then an orientation was selected uniformly over 360 degrees. 

Lengths of image lines were selected from a uniform distribution of lengths from 20 to 

220 pixels (similar to the lengths of the lines in [-O]). If the randomly selected length 

took the Line outside of the image area. the  line was not used. The size of the image 

was the same as those of the block images in [?O]. namely. 64Ox4SO pixels. Each image 

contained 30 line segments. again. a number comparable to the images found in [%O]. 

Figure 1.3 shows a bird's eye view of the full 3D di-space in several formats, on a 

normal scale as cvell as a loglo scale. Figure -1.4 shows slices through the 3D space. Figure 

4.5 shows the same data yet again. t his t ime collapsed along the epsilon odds axis so t hat 

the number of models at each number of filled edges can be seen. 

4.2.2 Observations and Implications 

.A fecv observations should be noted about the plots just described: 

1. From Figure 4.3 we see that the data is consistent with Figure 3.5 cvhich shows the 

maximum possible epsilon odds for each number of filled edges in a model. 

2. No real blocks are present in the random images used. yet there are still 218.899 

models found. with epsilon odds going up to a power of 7. This indicates that 

accidents do happen. QP formalizes the notion of non-accidentalness, and tries to 

filter 'good' from 'bad' based on this property, but accidents will happen no matter 

how good a measure of non-accidentalness is used. This is not a problem specific 

to QP. rather one that is inherent in the property we are measuring. 

3. Figure 4.5 and Figure 4.1 show that the most block interpretations occur when the 

number of edges filled is 2, 3 or 4. With fewer than 2 edges, the combinatorics of 
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Figure -1.2: (a) ( b )  

Example of one of the random line input images. Shown are two different block hypothe- 

ses which clearly do not correspond to truc blocks. Legend: Green lines are input data 

consisting of line segments. Red lines are t hose lines that have been assigned to a partial 

block hypothesis (some are covered in blue). Blue lines correspond to the portion of 

the hypot hesized block mode1 t hat is const rained. ( Note t hat Roberts criterion (Section 

4.1) did not need to be niet exactly: the angle constraints were enforced. up to some 

predefined tolerance. ) 
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Figure 4.3: Yumber of rnodels in .JI, for aggregate data of ten random line images. broken 

down according to number of edges filled and epsilon odds. The top two images show 

interpolated versions. while the bottom two show the actual discrete data. The right 

moût plots are loglo versions. Their bins have been forced to a minimum of -1. 
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Figure 4.4: Same data as in Figure -4.5. but shown as slices of the 3D space. 

Figure 4.5: Same data as in 4.3. but collapsed dong the epsilon odds axis. 
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selecting k image edges don't corne into full swing, while with more than 5 edges, 

it becomes extremely difficult to find a large collection of lines t hot are consistent 

with a block model. In fact. no collections of size greater thon 6 are found. 

4. The test images used had ooly 30 lines. The number of accidents t hot occur should 

scale up in a very nasty way. We can see this by looking at the combinatorics. If 

we double the number of lines in t h e  image from 30 to 60. the number of t hree-edge 

subsets goes from 30C3 = 1.060 to rnC3 = 34.920, increasing by a factor of Y. 

The number of four-edge subsets changes from = 27.405 to = 487,640, 

increasing by a factor of 17. Since al1 three-edge sets and a large percentage of 

four-edge sets are consistent with a block model. this means that the number of 

interpretations should scale in a similar way to the number olsubsets - an extremely 

worrisome prospect. 

5 When we do the same analysis on images that actually contain blocks. we will see 

t hat t here are still. relatively speaking. many accidental models with 2. 3. and 1 

edges. and thus these are quite difficult to sift through. However. we also see that 

the high-odds tails of the curves in the right-rnost plot of Figure 4.1 extend further 

to the right since true blocks should score higher epsilon odds. 

One might ask how sensitive these result are to changes in the tolerance of the block 

consistency check. This issue will be addressed in Section 4.3. 

4.2.3 Block Images and QP 

Using the six block images from [20] (shown in Figure 4.10), we ran the sarne experi- 

ment as in Section 1.2.1. An example of one of the input images dong with two block 

hypotheses is shown in Figure 4.9. Figures 4.6. 4.7 and 4.8 are analogous to the plots 

presented Section 1.2.1. 

?Hertz is the standard notation for 'N choose R'. where NC, = -. 



Figure 4.6: Xumber of models in JI, for aggregate data from six images from PO]. Data is 

broken dotvn according to number of edges filled and epsilon odds. The top two images 

show interpolated versions. while the bottom t t o  show the actual discrete data. The 

right most plots are log,, versions. Their bins have been forced to a minimum of -1. 
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Figure 4.7: Same data as in 4.6. but coilapsed dong the epsilon odds auis. 

Figure 4.S: Same data as in Figures 4.6. but collapsed along the epsilon odds a i s .  Also 

shown for comparison is the data for random input images (Figure 4.5). which has been 

normalized so that the total number of models found is the same for both plots. 



Figure 4.9: Examples of block line images from ['>O]. Legend: Green lines are input data 

consisting of line segments. Red lines are those lines that have been assigned to a partial 

block hypothesis (some are covered in blue). Blue lines correspond to the portion of the 

hypothesized block model that is constrained. Note that each of the blocks models has 

a 'correct' subset of block lines. as well as one or more that do not belong to the true 

block. Yevert heless. bot h sets of lines are consistent wit h a block model. 

4.2.4 Observations and Implications 

L. -Again. the epsilon odds are consistent wit h Figure 3.5. which shows the maximum 

possible epsilon odds for each number of filled edges in a model. 

2. We see in Figure 4.S that there is an enormous concentration of models with 3. -1 

and .j edges. as opposed to 2 .  3 and 4 in Figure 4.5. Relatively speaking within 

each plot. there are norv far more models with more than 5 edges. This is simply an 

indication that there are now some true underlying blocks present in the images. 

3. .As predicted. the tails in the right-most plot of Figure 4.7 are far longer than in 

Figure 4.4. This is promising since these high odds interpretations must be a result 

of having red biocks in the image. Thus we have evidence to suggest that QP is 

working correctly in that it assigns high odds to a significant portion of correct 

block models. and that it does not assign very high odds to spurious block models. 

Furthermore, it is likely that small variations of the true block models produce 
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Figure 4.10: Edge images used in [-O] and in this thesis. (a)  im4, (b) im5. ( c )  im7, (d) 

im9, ( e )  imd, (F) ime 
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lower odds models. dong with the 'accidents'. thus making for many more models 

overall. 

4. In Figure 4.7. it is apparent that the number of edges in a block model dictates what 

kind of epsilon odds it can have. Distinct windows of odds for each number of edges 

is present in the right-most plot. In particular. every window has a distinct lower 

bound for the epsilon odds. Why is t his:' The larger the set of lines t hat is consistent 

with a block model. the less likely this set is to be cornpletely spurious. and thus the 

higher the odds. Suppose that we have three edges that instantiate a block model, 

and that they are neither parallel. nor CO-terrninating with one another (any three 

lines are consistent with a block model). Then t here are no 'accidents' accurring 

between these lines: t hey are completely generic. If we add a Fourth block edge to 

this set. and the resulting set is still consistent with a block model. then it is not 

possible that al1 four lines are generic. There must be some accident. such as that 

two of t hem are parallel or wterminating. Because of this new non-degeneracy. the 

odds will increase by an amount proport ional to the .degree' of the non-degeneracy 

introduced. Yote that if only one accident (loosely speaking) is introduced. like 

parallelism. then this new 4-edge block will be the lowest possible odds model. yet 

the odds will have systematically gone up from the 3-edge interpretation. Similar 

arguments can be made for larger groups of lines. based on how constrained a block 

model is at a particular number of edges. Any block that has six or more edges is 

Fully constrained. Adding another edge necessarily introduces more non-degeneracy 

(provided the edge is consistent with a block), and thus the lowest possible odds 

are increased. In practice. the 'tail-costs' mentioned in Section 3.3 make some of 

the Lowver bounds lower than one might actually think. 

5. The distinct windows of odds further corroborate our earlier point that only hy- 

potheses with the same number of instantiated edges can be fairly compared for 
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the purposes of search. 

6. The window for the three edge interpretations is one of the narrowest, indicating 

that the different three edge-interpretations do not diKer significantly in quality. 

according to QP. Since the most number of interpretations have three edges, and 

since rnany 'accidents' occur with three edges, this makes them even harder to sift 

t hrough. 

4.3 Verifying the Asymptotic Nature of QP 

Recall that in Section 3.4. the spatial resolution parameter. c. was introduced. We said 

that the position of planar mode1 points was known to within a disk or radius e. From this 

we were then able to calculate c-order estirnates of the  posterior probability of various 

models. given the image data. In this section we set out to experimentally verify the 

asymptotic predictions made by QP. 

The prior probability of a block model. Be. in a random Iine edge image. according 

to QP. is proportional to its epsilon odds (Equation 4.2). The reason this should be is 

that the odds are directly related to estimates of how often certain accidents are likely 

to occur. such as two lines coterminating. etc.. Thus. if we randomly generate lines, we 

would hope to observe these accidents with the prescribed probability. and hence block 

rnodels wi t h probability proport ional to the epsilon odds. 

How c m  we verify that this is so? Suppose we had a carnera with different resolution 

settings. Then if we captured the same images at several different resolutions and did 

a full depth-first search through the models. we could see exactly how the number of 

rnodels changes with changed resolution. Equivdently, we couid use the same random 

Line images used in Section 42.1.  changing the resolution parameters in the search code 
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rather than the resolution of the actual images. Such parameters would include the 

tolerance allowed for two line segments to be collinear. the angle tolerance for two lines 

to be parallel. the tolerance for the least-squares fit, and the tolerance for ceterminating 

lines. Each of these parameters is either a linear function of t or can be approximated 

as such. Thus by changing c, we change each of them by an amount proportional to r. 

Since the images wpre randornly generated and h a v ~  no inherrtnt risolution (the random 

lines had real-valued endpoints). the results should be the same as if we had captured the 

images at different resolutions. This second experiment is the one we opted for because 

of its convenience, and will now be discussed. 

4.3.1 Theoretical Predictions 

As the resolution increases our intuition tells us that the number of models found should 

decrease. QP predicts exactly hoiv this number should decrease. in the limit as c + 0. 

Let the number of block models with epsilon odds of order rk be denoted by .V(ck), then 

in the limit c + 0. 

Therefore. so long as e is sufficiently small. 

for some c.C. such that O < c 5 C. In order to experirnentaily verify the asymptotic 

behaviour. it will be convenient to have the log of this expression: 

logl0 c $ log,,(N(ck)) - k log,, c 5 log,, C 
-- 

' ~ ~ ~ a r i o n  4.4 is obtained as follows. Since, for some m. iV(ck) = mp(BC ) , and for some do, d i ,  where 
O < dl 5 d2, dock 5 p(BL) 5 dlck. Thus it follows that mdock 5 N(ck) 5 mdlck. Setting c = mda, and 
C = m d l ,  we obtain Equatioa 4.4 



CHAPTER 4. ESPLORING THE QP BLOCH WORLD 48 

Now suppose we change the resolution. c. by a factor of p. so that c' = pc. and let 

d = logl,(cck) and D = loglo(C~'). then 

d 5 log,,(:v(r")) - k log,, p 5 D (4.6) 

Thus. if we conduct the experiment described above. and then plot for a given epsilon 

odds. ! G ~ ~ , ( Y ( ~ ' ~ ) ) )  as a fmction sf !og,&). ;vc shodd sbtalii a resdt  boünded abwe 

and below by straight lines with slope equal to k. Next we will discuss exactly how we 

conducted the experiment. 

4.3.2 Analysis and Results 

Figure 4.11 shows the results of the experiment described at the  start of t his section. The 

data for this figure was generated as follows: Ten line images were generated randomly as 

described in Section 42.1. .A depth-first search was performed on each of these images. 

for values of p = 1. f . f . i. in order to obtain al1 possible models (as described in Section 

1.2). Then. for the results of each of these fourty searches. histograms were calculated. 

with each bin counting the nurnber of models for a given epsilon odds. ignoring how many 

edges were present. W e  will call the bins counting the number of odds = x models, the 

'odds = x-bins'. ÇVe will call searches t hat were performed wit h the resolution scded by 

a factor p = k. the ' p  = k-searches'. 

To calculate. for example. the left-most point frorn the red line in Figure 4.11, the 

odds = O-bins from each of the ten histograrns that resulted from p = 1-searches were 

averaged. Cal1 this average value. avg. The data point then is l ~ g , ~ ( a v g ) .  The error 

bars on each data point is calculated as follows (see [23] for details): First calculate the 

standard error of the mean of avg and call this value stderr. Then the error on the 

plotted data point is the fractional error of the  average. that is. = * 
a vg 

. Each 

Line drawn in Figure 1.11 is a weighted least-squares fit. using the inverse error as a 

weight ([23]). The slopes presented in the figure are the slopes of the fitted lines, and 



Figure -1.11: Results confirming the asymptotic behaviour of QP. Each line corresponds 

to the number of models found. at different resolut ions. for a given epsilon odds. The 

slopes match the epsilon odds as predicted. except for epsilon odds of zero.. 

the errors on t hese slopes fail out of the weighted least-squares formulation ([23]). 

Data points that have fewer than three models are not shown. nor are lines that have 

fewer than two data points. Though the odds do not go very high because randorn line 

images were used. tve nevertheless have excellent agreement with theory. Al1 lines except 

for epsilon odds of zero have slopes within error of their predicted values as dictated 

by Equation 4.6. For epsilon odds of both 4 and -1. there are not very rnany rnodels. 

and the error bars are t hus larger. Note that the odds - I line is only just within error. 

. h y  mode1 that has an odds of -1 necessarily has been penalized a tail cost (see Section 

5.Z). The part of the QP theory involving tail-costs is not as clean as the rest of the 

t h e o .  Recall that the tail cost used was a bit of a guess - it was derived frorn guessing 

what the underlying explanation might be. on average. for the tail. Thus any theoretical 

predictions for models where the tail cost dominates should be taken with a grain of salt 

(just a small one). O d y  when the ratio of tails used to accidents present( i .e.  parallelism, 
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CO-termination, collinearity) is small. can the tail cost dominate in this way. This happens 

in only a small percentage of cases and thus we needn't worry too much if our predictions 

are off in such circumstances. Though the error for the odds 1 line is also high, notice 

that the slope matches the theory without even taking the error into account. In other 

words, our experimental points ivith odds equal to 4 bounced around quite a bit, but 

they always bounced around the true theoreticai d u e .  

Thus we have convincingly shown that QP is asymptotic in practice as well as in 

theory, and that the theory and ensuing predictions form a sound basis upon which one 

may build. Moreover. the resolution used ( i .e .  for p = 1)  appears to be within the 

asymptotic regime both in [-O] and in subsequent sections of this t hesis. 

4.4 Resolution in Computational Vision 

In Section -4.2 we showed that accidents happen - lots of them! We claimed that no 

rnatter how careful a measure of non-accidentdness can be found. that accidents will 

occur. Why then doesn't the human visual system have 'accidents'? 1s it that we 

do have such accidents but that somehow we have evolved such a fantastically good 

measure for sifting through interpretations that we efficiently and effectively sift out 

these accidents'? Perhaps. There is also another possibility, one not often discussed in 

the vision communi ty. 

The resolution in typical computational vision systems is far ivorse than hurnan foveal 

resolution. If we used images with resolution as high as the human fovea, we could cut 

down tremendously on spurious hypotheses. However. this would be a t  a cost of increased 

computational tirne because of the increased number of edges that results from increased 

resolution. Presumably a human with full cognitive capabilities, in particular visual 

attention ( P T ,  BI), can avoid this trade-off by seeing in a more intelligent way, looking 

where it needs to when it  needs to. 
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An interesting study of exactly how resolution affects faise target rates can be found 

in [SI. By individually varying a oumber of 'basic parameters' related to resolution, such 

as focal lengt h of the camera. separation of object points. etc., Dickinson e t  al show how 

view degeneracy increases with decreased resolution. They also compare their table-top 

vision system view degeneracy rates with human view-degeneracy rates, showing that 

the two are order of magnitudes apart. 



Chapter 5 

Searching for Models 

Chapter 4 briefly talked about using a depth-first search in order ta generate al1 possible 

block models for a given image. Since search is a central part of the object recognition 

problem. we feel it is worthwhile to devote an entire chapter to properly describing how 

a simple depth-first search can be used to find block models from image line segments. 

Understanding this search is also crucial because it forms the ba i s  for al1 other searches 

presented in t his document. 

In this chapter we will discuss how a depth-first search can be used to build up block 

models from image line segments. and exemplify this search in a simple. alphabet world 

dornai n. 

5.1 Building Blocks 

Recall from Section 4. I that a block mode1 consists. in part. of a labelling of sorne image 

edges describing which part of the block model the edges belong to. as for example in 

Figure 1.1. k e p  in mind also that a block model may be only partially instantiated, t hat 

is. sorne edge labels between O and 8 may be missing because no image line segments 

have been assigned to these parts of the block model. Thus a block model may have 

anywhere between zero and nine block edges present. as a result of assigning any number 
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of image edges to the nine block model edges. 

One way of building up a block model from image line segments is to choose some 

image edge. assign it to some part of the empty block mode1 (a model that has no 

edges assigned to it). and then to try adding. one after another. other image edges, in 

every possible way ( i. e. every possible labelling). checking to make sure that the set of 

labelled edges is consistent with a block. At each step of this building process we  have. 

by definition. a block model. CVhen no further image edges may be added to a particular 

block model. (because of either a lack of consistency or a lack of further edges) the block 

model is said to be a marimai biock mode!. If we start building from one particular edge. 

we may arrive at several different maximal block models. t hough it is unlikely that more 

than one of them corresponds to a true underlying block in the image. ' 

In the building up process of a block model. ive said that al1 edges are added in 

every possible way to a pacticular model. so long as they are consistent. But during the 

control of the building process. how can we know which image edges have been tried and 

rejected. and which ones have simply not been tried yet'? CVe do this by keeping a list 

of lrozen edges with every block model that we build. .A Jrozen edge is defined to be 

any edge that we have not yet tried to add to the model. and is defined in relation to a 

particular model. in the context of the building up process. Thus a particular model will 

have associated with it a fro:en list. consisting of possibly many frozen edges. 

The simplest (though not efficient) way to systematically build up block models from 

a given set of image line segments is to use a depth-first search to control the building 

process. In Section 5.2 we will write down an algorithm for dept h first search for models, 

introducing nerv terms and concepts dong the way. 

'TO get two maximal. correct block models. starting with the same initial edge segment, the two 
blocirs would need to share an image edge, as would happen if the two blocks abutted one another, for 
example see Figure 3.3. 



CHAPTER 5 .  SEARCHING FOR MODELS 

5.2 Depth-First Search 

~ l ~ o s t h r n  1 Depth-First Search with a Stack 
stack.push(root) 
while stack.notEmpty() { 

currentNode : =stack .pop () 
visit (currentNode) 
for every child, u, of currentNode < 

st ack . push (u) 
3 

1 

.A standard way of implementing a depth-first search and one convenient for describing 

the task at hand is to use a stack ([%Il). Recall that a stack is a first-in-Iast-out data 

structure. To place an item on the stack. we say that we push the item on to the stack. 

To remove an item from the  stack. we say that ive pop the item from t h e  stack. Any 

recursive algorithm can be written non-recursively using a stack: in particular. depth-first 

search can be written using a stack. For a tree ( a  directed. acyclic graph [6]), we conduct 

such a search starting at the root as shown in Algorithm 1. Later in this chapter we will 

show a picture of this algorithm in action. 

When searching for block models from a set of image line segments. each node of 

the search tree consists of a block rnodel and an associated frozen list. The first node 

that we push onto the stack is the node consisting of the empty model, and a frozen list 

consisting of al1 image line segments (since we have uot yet tried CO add any of them to 

this empty model). This starting node is the 'seed' of a11 other nodes, from which the 

depth-first search promises to deliver al1 possible rnodels. 

In our case. the function visit. in Algorithm 1. would add the model associated with 

the current node. to a 1i;st of rnodels already rtisited during the search. so that we have a 

record of these for analysis. Also. during the course of the search. we want to keep a list 

of maximal block models that have so far been found. To do the second task we need the 

notion of a shadowed model. 
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Shadowed Mode1 

.A shadowed block model is a block model that is a sub-mode1 of a model already en- 

countered during the search. By sub-mode1 we mean the following: Block model .-! is a 

sub-mode1 of B. if. when al1 image edges that are in B and are not in .4 are removed 

from B to form B'. then A is the same as B'. as defined in Section 4.1. Put another way, 

.4 is a sub-mode1 of B. if  it does not contain any image edges that B does not. and if the 

labelling of its image edges is equivalent under syrnmetric relabelling to the labelling of 

t hose same image edges in B. 

Instead of thinking about whether or not a given block model is shadowed by a known 

block model. it might be easier to understand the concept by thinking of al1 possible block 

rnodels that a given block model can shadow. Suppose for example that we have a block 

model such as the one in Figure 5.la. Then to find out which block models this block 

model bas the potential to shadow. we systematically remove image edges. Thus a block 

model with k image edges shadows zk unique block models. These are shown in Figure 

5.1 b through (O) for the model in Figure 5. la. Note also that blocks (b )  through ( O )  cm 

be called sub-models of the block model shown in (a).  Of course. the same is true if block 

(a)  is relabelled symmet rically. 

Wit h t his definit ion in hand. we can now descri be how to maintain the  list of maximal 

block models. 
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Figure 5.1: (a)  shows a block model. while ( b )  through (O) show al1 block models that 

are shadowed by the model in (a). Additionally. we note that (b)  shadows (d),  that ( i )  

shadows (m). etc. To the right of each figure is the asymptotic epsilon odds. 
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Updating the List of Maximal Models 

To maintain an on-line list of maximal block models. we must update the list of maximal 

blocks when visiting each node during the search. We do this as follows: Upon visiting 

a node. check to see if the current rnodel is either: 

the same. is shadowed by any mode1 in the list of maximal models that we have to 

date. If it is. then do not add it to the  list. If it is not, then add i t  to the list of 

maximal models. 

shadows any of the models in the list of maximal models (this can only happen if it 

was added to the list of maximal blocks). For every mode1 that it shadows. remove 

that model from the list so that we may maintain the maximal property. 

5.2.1 Finding the Children 

An important detail of Algorit hm 1 was glossed over: we  did not specify how to get the 

children of currenthlode. This is a key point as this is how we build new models from 

old ones. 

Generating a child involves generating a new model. as well as an associated frozen 

list. The frozen list associated with a model contains the information telling us which 

line segments we should try adding to form a new model. To get a child model from a 

given node, we oeed to take an edge from the frozen list associated with this node, and 

add it in some way that is consistent with the mode1 of the given node. For block models, 

there are up to IY ways ive can try (9  edges x 2 directions). To get the new frozen list 

associated with this model. we oeed to do one more thing - impose an ordering on the 

initial list of image segments. Then the frozen list associated with this new model is the 

frozen list associated with the original node, except without any edges that are smailer 

(according to the ordering we imposed) thm the frozen edge we used to construct the 

child model. We use a function cdled keepBigger(edge, edgelist) to do this. If we 



were only to remove the edge we used, and no others. we would end up checking many 

more nodes t han we need, as will be discussed in Section 5.4. 

Pseudo-code for the depth-first search algorithm is shown in hlgorithm 2. In the next 

section we will demonstrate how the search algorit hm works in a simple alphabet world. 

Algorithm 2 Function to get children for depth-first search 
function childrenList = getChildren(aNode) { 

model:=aNode.model 
frozenList:=aNode.frozenList 
childrenList:=n 
newChild:=null, newModel:=null, newFrozen:=null 
for each frozen item, fz, in frozenList ( 

for each possible labelling, lb, of fz in model { 
newModel:=model+fz (according to labelling, lb) 
if isConsistent(newMode1) ( 

newChild.rnodel:=newModel 
newFrozen:=frozenList-fz 
newFrozen:=keepBigger(fz, frozenlist) 
newChild.frozenList:=newFrozen 
childrenList:=childreaList + newChild 

1 
> 

1 
return childrenList 

5.3 Alphabet World 

For illustrative purposes we will now introduce an alphabet world. analogous to our 

blocks world. The analogue to a set of input image edge lines will be the set of letters 

{A. B. C. D. E). Instead of block models. we will have 'alphabet rnodels', each consisting 

of a string of letters. Instead of searching for maximal block models. we will search 

for maximal alphabet models. Alphabet model consistency is defined by fiat : the set 

of maximal, (consistent) alphabet rnodels is: {AC D. AB).  (Order is unimportant in 
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the strings, thus .4CD = ADC = CD.4 etc . )  We will Say that if a set of letters is 

consistent. then so too are dl subsets of this set. Thus the set of al1 consistent alphabet 

strings is {AC D, AC. -4 D. CD. .4, C. D. .-l E. E). ' These are the only alphabet rnodels 

in our world. since so far in this document we have called models only those sets that are 

consistent (it doesn't make sense to hypothesize a block model made up of edges that 

are inconsistent with a blcick). 

Definitions for a frozen letter and a shadowed alphabet model are directly analogous 

to definitions for edges and block models described above. -4 frozen letter is one that 

we have not yet tried to add to the alphabet model in question. One alphabet model 

shadows another model if it contains al1 of the same letters (in any order) as the other 

model. and possibly more. 

5.4 Permutations and Pruning 

Note that as written. .Algorithm 2 will search through only one one permutation of model 

edgeslalphabet letters because of the way we create the new frozen list. Suppose we had 

only 3 letters. -4. C. and D. Then the algorithm described above. would try only one 

of the following sequences (we  assume that the three letters are consistent with one 

another): 

For the tasks described so far this is perfect - we do not need to go through every one 

of these permutations. and to do so would be a waste of tirne. This is because if 

letters are consistent with an alphabet model, then so too is any subset of those 

three 

t hree 

'The empty string is also considered to be consistent. 



letters. Likewise, if any three edges are consistent with a block model, then any subset 

of these edges must also be consistent with a block model. Thus only one of the six 

sequences above need be attempted. A search that goes through al1 permutations would 

be O(n!) ,  when in fact, it need be only O(2") .  as it is in the pseudo-code presented. 

(where n is the number of input items: edges or letters). 

Is thcrc anj :cason that ; ~ c  a igh t  ;*;an: tû hacc a scarch that can go through d l  

permutations*? h s .  Suppose we wanted to make our search more efficient. and that we 

wanted to prune the search tree not only when a rnodel that is inconsistent is found. but 

also when a model that is implausible. according to some criteria. is found. Depending 

on the criteria, we might need pursue al1 of the permutations. since many more will be 

pruned. This will be explained in more detail in Section 5.5. and we will corne back to 

this point in Chapter 6. However. we norv show the reader how the algorithm is changed 

so that it searches through al1 permutations. 

We adjust our algorithm by changing our getchildren function ever so slightly - 

we no longer remove the smaller items from the frozen list in order to generate the new 

frozen list. This change is shown in Algorithm 3.  where the only difference is that one 

line of code has been commented out. If the distinction betrveen the two algorithms is 

not entirely clear ?et. the example that f'ollows will be helpful. 

5.5 Example: Search for Alphabet Models 

In this section we will trace through an example of a depth-first search to find d l  maximal 

alphabet models. 

We remind the reader that consistency of an alphabet model has the same property 

as consistency of a block model. If a set of letters is consistent. then so too is every 

hah! 
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( b) 
Figure 5.2: Alphabet World Depth-First Search for .4CD and AE 

a)  not al1 permutations. using Algorithm 2 b)  al1 permutations using Algorit hm 3 

Legend: Each node in the search tree is drawn as i )  the number of the node, representing 

when the node was visited. ii) the proposed model. denoted by square brackets. iii) the 

associated frozen list. following the colon. For example. the twelfth node visited in (a) is 

mode1 CD, with associated frozen List ( E). -4 dashed line indicates that the subtree is 

not shown (due to lack of space). .An 'S' below a proposed mode1 denotes that the string 

of Ietters is not consistent. Note that if we were searching for blocks in an image, then 

we could never assume that a mode1 was complete since at any stage it might be possible 

to add an extra image edge to a model edge, even if the model is fully constrained. 



Of course use of Algorithm 2 ivill compile this list much more quickly, and with less 

redundancy. So why would we want to use Algorithm 3? Suppose that want to make 

the search more efficient by pruning certain hypotheses that we deem to be implausi- 

ble. In particular. suppose that in the specified alphabet example. that only subsets 

{A. B. C. D, E. CD, -4 E. AC D} are coasidered to be plausible (order is unimportant). If 

we do not use the al1 permutations search. we will cut out some intermediate nodes that 

we need to get to Our final models. tn particular. rve would cut out the whole branch 

rooted at node 1) in Figure 5.-a. and thus end up missing .4C D. a maximal alphabet 

model. In other words. some subsets of ACD are less plausible than others. Thus. using 

Algorithm 2 .  we might generate a non-plausible interpration first. pruning the branch at 

t his interpretation. and never encountering the more promising one. 

It is possible t hat the trade-off between increased computation due to searching al1 

permutations and decreased computat ion due to implausibility pruning can have a net 

beneficial result. We revisit this point in Section 6.2.1. 

Having seen how the depth-first search works in the alphabet world, we hope that 

the reader is now more cornfortable with how a depth-first search can be used to look 

for block models from a set of image edges. In the next section, we will describe a more 

efficient search that uses QP. and is based on the depth-first search presented here. We 

will introduce yet another search. also dependent on the depth-first search. in Chapter 7. 



Chapter 6 

Cornparison of QP to a Cover 

Measure 

6.1 Can QP be used for Search ? 

Chapters 3 and 4 suggested that QP rnight be useful in the search for biock interpre- 

tations. but did not directly address the issue. It was shown how QP breaks down the 

set of al1 block models. but not how to traverse this set using QP. In Chapter 5.  we 

described how a depth-first search can be used to find block models. In this chapter, we 

will show that using QP for search is feasible by using it in a simple search based upon 

the depth-first search. We will then go on to compare QP to another heuristic in the 

context of this simple algorithm. 

6.2 Depth-First Search with Pruning 

The simple search used in t his chapter is a dept h-first search (as described in Chapter 5, 

using some metric (either QP, or a cover measure which we will introduce) as a pruning 

measure. LVe will now describe pruning the search tree with QP. 

Recall from Section 3.4.1 that the odds of a block mode1 is a number that reflects 
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Figure 6.1: Plot of both the mwimum QP odds possible for a block model. as well as 

the 'half-max' QP odds used as a search heiiristic. 

how much more likely the underlying set of image lines are of belonging to a biock. B. 

as compared to independent sticks. S. 

The asymptotic odds are expressed as a power of epsilon times a power of delta. In 

t his section we look only at the poiver of epsilon. but still refer to it as the odds. Roughly 

speaking, the higher the poiver of epsilon. the more promising a block model (recail that 

ive dropped the negative sign on the power of epsilon in Chapter 3) .  

The pruning heuristic can be described as follows: during the search, whenever a node 

is reached that has a model with less than the minimum 'half-mai odds for a rnodel with 

the same number of filled edges (shown in Figure 6.1), then the sub-tree rooted at this 

node is not explored further. ' CVe will cd1 this search. the QP Half-Mas Odds search. 

In terms of implementation, the change is very simple. R e d  that a depth-first step 

LStrictly speaking, it is nat exactly baif. 



involves removing a node from the stack. adding an image edge to the corresponding 

model, altering the frozen list. and then placing this new mode1 on the stack. With 

pruning, the only tliing that changes is that before placing the new model on the stack, 

we first check to see if it satisfies our Half-Max criterion. Thus, we would add one line 

to Algorithm 1 as is shown in Algorithm 4. where halfMaxOdds(aNode) is a boolean 

fiinrtion rettirning w h ~ t h ~ r  or  not the modrl assoriatrd with aNode haî at I~aqt half thr 

maximum possible odds for a block model with the  same number of' edges. 

6.2.1 Permutations, Subset-Independent Property and Shadow- 

Depth 

In Section J.4 we talked about how consistency of a block or alphabet model has a 

nice property that allows us to search more efficiently: we did not need to search al1 

permutations. When we start pruning the search tree with QP. can the same thing be 

said? To answer this question ive will now introduce the notion of a subset independent 

property. 

A subset independent property is one. which. if the property holds for any model 

(block or otherwise). then it holds for all sub-models (rnodels formed by removing for 

example image edges. such as in Figure 5.1). 

Thus. as dready mentioued, consistency of a block model or alphabet rnodel is a 

subset independent property. The QP Half-Max odds property is not. If a block model 

has more than half the rnavimum possible odds for a given number of edges. this is not 

necessarily so for sub-models of this block model. Consider the block models in Figure 

5.1. where ( b )  through (O) are dl sub-models of the model shown in (a). Sibling rnodels 

( t  hose occurring a t  the  sarne depth in the search tree) have different epsilon odds. Thus. 

if we follow only certain paths in the search tree. we are not guaranteed to end up with 

the same rnodels as if we had followed dl paths ( i -e .  al1 permutations). For example, 



according to the Half-M.lax function shown in Figure 6.1, models (b), (d )  and ( f )  in Figure 

5.1 will be pruned. 

The implication this has on our search is that we must, if we want to use the QP 

Half Max property to prune. use the al1 permutations search, Algorithm 3. 1s the loss 

larger than the gain*? .As it turns out. for the examples we consider. the pruning power 

of QP Half 4 I u  O dds is so cfkctiic. t hat it compictc!y dorninatcs t hc zccd to scaich dl 

permutations. We can make it dominate even more if we add one little twist - keep track 

of the shadow-dept h. 

The shadow-depth of a model is a nurnber. representing, how long. in terms of depth- 

first steps. this rnodel has been shadowed by another known mode1 (one that has already 

been generated during the course of the search). For erample. in Figure 5.Zb. node 10) 

has a shadow-dept h of 1 (it is shadowed by node 6). while node 12) has a shadow-depth 

of 2 ( i t  is shadowed by nodes 10) and 6)) .  In Figure 52a. there are also models with 

non-zero shadow-depths. for exampie nodes 1 1 ) and 12). but there are far fewer of them. 

If a branch in the search tree terminates with a shadowed model (such as the branch 

2- IO-12 in Figure 52b. then nothing will have been gained by exploring that branch. In 

retrospect. we see that it was a waste of time. 1s there some way to predict this ahead 

of time*? There is no guaranteed way. but we can take a guess. The longer a model 

is shadowed. the iess freedom it has to differentiate itself from the shadowing model, 

because it has fewer and fewer frozen edges associated with it. Thus we can make a guess 

as follows: if a mode1 has a shadow-depth larger than some maximum shadow depth 

parameter. then we will not pursue that branch any further. In practice, by adjusting 

this parameter we can achieve a much more efficient search, while still obtaining the 

desired models. (This will be shown in the next section.) 

What determines how large a shadow-depth is needed? Larger shadow-depths are 

needed when the sarne image edge plays a role in rnany plausible (as deemed by, Say, 

QP Hdf-Max Odds) models. This in turn is related to the resolution of the image (see 



Section .LA), arnong other factors. 

If one could find a property that is effective at filtering the good from the bad inter- 

pretations. and was subset independent. then one could cut down an even larger portion 

of the search space. 1s such a subset independent property likely to esist ? Given that we 

want our algorithm to work on noisy and incomplete data. we can probably answer no. 

In the gerierd czse. imperfect datz ( i . ~ .  n i ~ s i n m  0 t de oem~ents. a-& i m p e r k t  co-terminatioo 

of line segments. line segments not eractly placed due to aliasing . . . ) can only be built 

up a small proportion of ways to iorm the correct model. if we maintain at each step of 

the building process a minimum criterion of 'goodness'. However. the better we are at 

guessing which branches will be useful. the less important it is to find such a property. 

6.3 Results of the Simple QP Search 

The QP Haif-blax Odds search rvas run. using a maximum shadow-depth of 2. on each of 

the six images in ['O]. and the results aggregated. So that we may describe the results. 

we wili now introduce a few more terms. 

Recall from Section 5.2 that during the search. we keep a list of al1 of the models 

visited. as well as a list of the  maximal models found. During the course of the search. 

some models are visited more than once. CVe cal1 these duplicate models and make note 

of this in our list of rnodels visited. For example. in Figure X b .  nodes 6)  and 12) are 

duplicates. We will cal1 the list of models visited containing no duplicates, unique rnodels, 

and the whole set. containing unique and duplicate models, simply as al1 rnodels. Note 

that the list of maximal models contains no duplicates. 

6.3.1 Number of Nodes Visited 

In Section 4-23. there were 592.952 unique models visited (over dl six images). Using 

the QP Half-Max Odds search. the number of unique models visited was 7,346, only 1% 



of the total number of unique models. Thus in terrns of cutting down the search space, 

QP Haif-Mau Odds is doing an excellent job. The number of al1 models visited was 

11.468. thus the search is not as efficient as one might Like (because of the duplicates), 

but is still doing extremely well in terms of numbers. 

Figure 6.2 ( the blue lines) shows how how many nodes there are for each number of 

filleri P@S. Nnt~  t.hat in cont.rast to Figi i r~ 4.8. t.hr 3 a n d  1 edgea intmprrtat ians  n o  

longer dominate. In fact. there is a visible dip in the graph for these numbers of filled 

edges. QP Half-Max Odds is managing to cut a swath through the densest portion of 

the search space. We will see shortly whether or not it is doing so with a compass. 

6.3.2 Quality ofNodes Visited 

In order to discuss the quality of the results. we need the notion of a t r u e  block. True 

blocks for each image used are those block models deemed by the author to correspond 

to real-world blocks. This is in fact Far less subjective than it might seem. as agreement 

was easily obtained frorn several people. There is a one-to-one correspondence between 

a given block and its true model. 

Given this definition. there are four ways to assess the quality of the search results: 

1. False Positive Rate: Of the unique models visited. the percentage t hat were not 

either sub-models of a t rue block model or equivdent to a true block model. This 

is calculated by examining the list of unique models visited, checking each one. 

(We compared this rneasure. using both the unique models visited. and al1 models 

visited. and found Little difference - thus ive use only the one.) 

2. True Positive Rate: Each image has either three of four true blocks in it (see for 

example Figure 4.9). The True Positive Rate is the ratio of the number of true block 

' i . e .  is the algorithm wandering around in no particular direction, or is it following paths in the tree 
that Iead to the desired solution? 



models visited to the total number of true blocks. This is calculated by eramining 

the list of rnodels uisited. and. anytime we encounter a block model that is the same 

as a true block model (not a sub-mode1 of a true block), we count it. (Obviously if 

a true block is found more than once. it is only counted a single tirne.) 

:3. T m e  and i'l.laxztimal Positive Rate: In order for the search to be most useful, we 

would like a t  the end of the search to look at the list of marimal blocks found. not 

at al1 the nodes visited. The True Positive Rate does not take this into account. 

Thus the True and Maximal Positive Rate is the ratio of the number of true blocks 

found in the maximal list to the total number of true blocks. It is calculated by 

esamining the list of maximal blocks. and. when we encounter a true block model 

(or equivalent). then it is counted. 

4. Position of True Bloch: Not only is the presence (or lack thereof) of a true block 

an important issue. but so too is where in the final list of maximal blocks the true 

blocks lie. If QP is indeed a good metric. then if we order the list of maximal blocks 

according to their QP odds. the true blocks will lie near the top. 

The first three of these values. for the QP Half-Max Odds search. appear in the first 

row of Table 6.2. Clearly QP is finding the true blocks most of the time, and is also 

finding many other blocks. which is reasonable because of the enormous search space 

(of course we would like to do better). The  positions of the true blocks can be seen in 

Table 6.3. The last column of the table shows how rnany maximal blocks are found by 

the exhaustive search in Section 4.2.3 ( i.e search with no pruning). With the exception 

of 'im4'. al1 of the blocks Lie in the top 25 blocks of the maximal blocks list. This is 

tremendous given the number of nodes in the search space, and the number of possible 

rna.ximal models that can be found! As noted in [-O]! one of the blocks in "im4" is not 

3 ~ 1 1  of the data presented in this chapter are aggregate data. that is, the data for the six images used 
were addeci together. For the rates described above, this rneans that the denominators and numerators 
were each aggregated separately, and then the division carried out. 



fully constrained. and even a human observer is unable to fully describe the underlying 

true block. It is this block that causes the 11.5 rank in Table 6.3. 

Table 6.1: Number of Nodes Visited for Different Search Heuristics 

Haifing demonstrated that QP shows promise in helping the search for interpretations. 

we will compare QP to another metric in the next section. 

6.4 Comparing QP to a Cover Measure 

Total Number Nodes Visited 

11.468 

Search Heuristic 

QP Half Max Odds 

Images such as those used in ["O] are simple. There are not too many extraneous lines. 

Blocks are simple objects. Sure a few of the lines are broken or missing, and some are 

not perfectly aligned. or coterminating. but take a look a t  Figure 4.9. and note that the 

blocks virtually pop out to the human observer. Do we really need something Iike QP 

to get a machine to see the same blocks that we do ? Maybe our brains aren't cavorting 

among fanciful priors and perverse normalizing constants . . . maybe they are. 

Number of Unique Xodes Visited 

7.346 

At present we may not know what Our brains are computing, but we can demonstrate 

t hat seemingly easy problems are in fact quite hard. For the specific problem dornain 

discussed in this thesis, block interpretations. one might argue that a much simpler 

measure than QP could be used. For example. one might argue that a simple cover 

measure will suffice, such as one motivated by Jacob's convex hull heuristic[l8]. In this 

section, w e  describe such a cover measure, and then systematically compare it to QP. 
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Table 62 :  True P x  
. . 

itive and False Positive Rates for Different Search Heurist~cs 

6.4.1 Definition of Cover Measure for a Block 

Search Heuristic 

QP Half Max Odds 

Cover= 70% 

Cover=zSO% 

Recall that a block model. brn,  has associated wit h it a set of image line segments. 1, (see 

Section 4.2.3). as well as a least squares fit to an eight-parameter block model. There 

are some cases where the eight parameters of a block model are fully specified, while 

0.95 

O. 76 

0.33 

in others. some are free. For example. in Figure 1.9. the left-most image has a block 

model with one free parameter - downward length. while the right-most image has a 

False Positive Rate True f ositive Rate 

block model that is fully constrained. 

True and Maximal 
Positive Rate 

0.90 

O. 76 

0.33 

For the rnodel in the right-most image. we know the endpoints of every mode1 edge - 

0.78 

0.91 

0.97 

we say that each model edge has no free endpoints. rather. each has two fized endpoints. 

In contrast. for the model in t he  left-rnost image. where there is one free block rnodel 

parameter. t here are t hree mode1 edges. 2.4. and 6 for which we do not know an endpoint 

( in  each case. the bottom-most endpoint). Mie will Say that each of these three model 

edges has one free endpoint and one fixed endpoint. It is possible that some models have 

an edge with two free endpoints. such as a model consisting of only a single line segment 

assigned to some model edge. In such a case. we don't know where either of the two 

rnodel edge endpoints might be. hlso. ive cvill Say that if a mode1 edge has no image 

edges assigned to it. then the model edge is not instantiated. 

Now cve can define cover fraction for a block model. which varies continuously in the 

range [O. 11. An exarnple is sbown in Figure 6.3. 

Amount acutally couered 
Cover Fraction = 

klarimum potential cover 

The Amount actually couered is calculated as follows: 



Algorithm 4 Depth-First Search with QP Half- mit,^ Odds Prunine: 
stack .push(root) 
while stack.notEmpty() ( 

currentNode : =st ack . pop () 
v i s  it (currentNode) 
for every child, u ,  of currentNode { 

if halfMaxOdds(u) ( 
stack . push(u) 

1 
> 

Figure 6.3: Calculat ing the Cover Fraction (a) Legend: Solid 602d fine - Covered segments 

of model edges Dashed line - Maximum potential cover, Sofid line - Actual image edge 

Amow - Indicates a free endpoint. (b) Blow-up of model edge 3, showing the projected 

endpoints and the covered segment of the model edge. 



r Add up the lengths of al1 the covered segments of mode1 edges. 

The Maximum potential coaer is calculated as follows: 

For each mode1 edge do the following, and then add up the values from al1 of the model 

edges: 

a If the model edge is not instantiated. ignore it. 

a If the model edge has no free endpoints. then add the length of the model edge. 

This rvould be the case for model edges O. 1. 3. 7 in Figure 6.3. 

r If the model edge has  only one free endpoint. then add the following: the length of 

the model edge. from the fixed endpoint. to the furthest projected endpoint from 

this fixed endpoint. This would be the case for model edges 2. 1. 6 in Figure 6.3. 

r If the model edge has two free endpoints then add the following: the length of the 

model edge between the two projection endpoints that are furt hest away from one 

anot her. 

6.4.2 Experimental Results 

In order to compare how a cover measure compares to QP Half Max Odds. we ran the 

search described in Section 6.2. with maximum shadow depth of 2. except that each of 

three difFerent pruning heuristics were used. on  the same data set ( the six images from 

PO]). 

1. QP Hall-blax Odds - call this QPHM for brevity 

'2. Pruning whenever the cover fraction is Less than 0.7 - call t his C70 for brevity 

3 .  Pruning whenever the cover fraction is less than 0.8 - cal1 this C80 for brevity 

Pruning with the cover measure is directly andogous to pruning with QP - we do not 

pursue branches of the search tree when the 'pruning' measure is not satisfied for the 

root of that branch. 



Table 6.3: Positions of True Blocks Found in OP Half Max Search 

Image 

[TF 

Positions of 
True Blocks Found 

Actual Number 
True Blocks 

Tabie 6.4: Positions of True Blocks 

I l}  4 

Xumber of b1a~irna.i Blocks 
from Exhaustive Search 

rme 
L 

:ound in Cover=SO% Search 

from Exhaustive Search 

9.185 

Image 

4 

(These are the positions of true blocks found in the  list of marimal blocks) 

{l. 2 , 1 0 , 2 1 }  

tm5 

i m î  t 

9.185 

{l. 2.6.21} 1 -4 

1 11,272 

Found in Cover=îO% Search 

Number of hlaximal Blocks 
from Exhaustive Search 

Table 6.5: Positions of True Blocks 

Image Positions of 
True Blocks Found 

(476) 

imî 

Actual Number 
True Blocks 

4 

ime 



Nurnber of Nodes Visited 

Table 6.1 shows how many nodes (with and without duplicates) were visited by each of 

the three searches. QPHBI visits 10% the number of unique nodes that C f 0  does. and 

14% that CYO does. For al1 nodes visited. the numbers are respectively 11% and 17%. 

Thus QPHM explores far less of the search space then either of C7O or (280. 

iVe can get even more information if we show how many nodes occur at each number 

of filled edges. for each of the three searches. This is shown in Figure 6.2. A few points 

should be noted: 

0 Again. we note that the number of nodes visited by QPHM is far Less than either 

of C7O or CSO. Ci0  has the most nodes visited. and aIso has the largest. absolute 

duplication in nodes. However. the fraction of duplicate nodes visited is roughly 

the same for each of the searches. as can be seen on the log scale. 

a The shapes of the curves for C i 0  and CS0 strongly resemble t hose in Figure 1.8 - 

they have a large concentration of 3 and 4 edge models. in contrat. the QP curve 

is far flatter. and in fact ha .  more 5 and 6 edge models than 3 and 4 edge models. 

a That QPHM found more nodes than C7O and CS0 for models with more than 6 

edges can likely be explained by the fact that QPHM is missing Far fewer of the 

true blocks than CIO and C80. Mie will see this in the next section. 

Quality of Nodes Visited 

Table 6.2 and Tables 6.3.6.4. 6.5 show how the rneasures of quality set out in Section 6.3.2 

compare for each of the three searches. Additionally. Figure 6.4 shows the breakdown of 

fdse positives for each number of filied edges. Some important points follow: 

a From Table 6.2, we see that QPMH finds far more of the tnie blocks than either 

C70 or CSO. and also finds significantly fewer fdse targets. In light of the fact that 



QPMH explores an order of magnitude fewer nodes than do C70 and CSO, these 

results are al1 the more striking. One point of interest here is that the True Positive 

Rate and the True and hfaxirnal Positive Rate are the same for both Cf0 and CSO, 

but not for QPMH. This means that QPMH is incorrectly 'growing' some of the 

true blocks, while CIO and CS0 are not. In other words, once a true block model is 

found. there are still other image edges that c m  be added to the model. while stili 

satisfying the QP Half Max Odds criterion. even thought they don't 'truly' belong 

to the model. However. we do need to keep in mind that C7O and CS0 are finding 

far fewer of the true blocks to start with. and thus have fewer to 'grow'. 

a Tables 6.3. 6.4. 6.5 show the positions of the true blocks in the list of maximal 

blocks. Overall. QPMH is finding more of the true blocks. and is doing no worse in 

ordering them. Note that for imï. using CSO. al1 4 blocks are found. while neit her 

QP or C70 find the fourth block. How is it possible that CS0 found blocks that 

C70 did not. given that CS0 should filter out more modelsY The answer lies with 

the shadow-depth (which was set to 2 for al1 of C'iO. CS0 and QPMH). Somewhere 

during the search. C ï 0  must have abandoned a particular path because the shadow- 

depth of a model became too large. However. CYO could very well have arrived at 

this same mode1 with a srnaller shadow-depth. because CYO may have filtered out 

some of the models which shadow this model. which C i 0  did not filter out. Thus 

the shadow-depth would have been smaller. and we could have continued to explore 

this path. Though counter-intuitive at first. and probably a very rare event. this 

actually makes perfect sense. 

Figure 6.4 shows how the fdse positive rate changes for models with different 

numbers of filled edges. QPMH has a lower rate than do C70 and CS0 for 3 

and 4 edge interpretations. This is a crucial point since we showed that this is 

where the search space is most dense. and needs the most pruning. For 6 to 9 edge 



models, C7O and CS0 have a lower false positive rate. but we must keep in mind 

that they are not finding many of the correct blocks - thus we are likely witnessing 

the t rade-off betwveen false positives and t rue positives. 

Summary 

In this chapter we demonstrated two important ideas. We showed that QP can be 

incorporated into a relatively naive search algorithm. and produce pleasing results, in 

terms of both the  number of nodes visited. and the quality of the results. Secondly. 

we showed that QP as a pruning heuristic compares very favorably to the simpler cover 

measure. It visited roughly an order of magnitude fewer nodes than the cover measure, 

wvhile at the same time producing higher quality results. This indicates that QP is on 

the right track. and that the simpler cover rneasure does not suffice. In the next chapter, 

ive discuss how to use QP in a more sophisticated search algorithm. 



Chapter 7 

Cascade Search 

In this chapter we will present a search algorithm that we cal1 Cascade Search. First we 

will motivate its development. then we will explain the algorithm in detail. and lady.  

rve will present experimental results ivith discussion. 

7.1 Motivation 

Both the search used in (-01. and the QP Half-Max Odds search presented in Chapter 

6 use the Kalf-Mau Odds function shown in Figure 6.1. Though both of these searches 

work estremely nell. and prove t hat QP can be effectively used wit h search. they are not 

ideal. as we will now explain. 

Recall that in Chapter 3 and Chapter 4 we showed how block models that have dif- 

Ferent numbers of edges filled cannot be compared fairly. Models with different numbers 

of filled edges create different 'windows' of odds (see Figure 4.7). The way we make use 

of this fact in the Half-Max Odds search in Chapter 6 is to use a pruning measure that is 

dependent on the number of edges filled for the model in question. Specifically, we said 

that if a given mode1 had less than 'half' the maximum odds, then we would not explore 

the search branch rooted at this model. What's not ideal about this? 

The fact that we have to deriveldeduce the Half-Max Odds function is a littie un- 



palatable. If we wanted to search for more complex models, or many different models. 

we would in each case need to re-derive this function. Furthermore. in Chapter 4 we 

did not use exactly half the maximum possible odds. ratber. we tweaked it a little for 

more optimal results. It would be both more elegant and more practical if instead the 

algorithm were self-adapting. That is. we would like an algorithm that does not need 

to know ahead of time whât kind of cut-off measures axe needed for models at different 

stages ( i.e. with different numbers of filled edges). We want an algorithm that can adapt 

on the fly. to different models. at different stages of developrnent. The Cascade search 

presented in this chapter is a first attempt at achieving this goal. 

7.2 Overview of Cascade Search 

The cascade search operates by first building al1 1-edge block models. using the depth- 

first search described in Chapter 5.  l Once al1 l-edge models have been found. it uses 

these models as 'seeds' ' for another search. this time looking for al1 2-edge models. This 

process continues. from one level to the next. until we have al1 9-edge models. However. 

at each stage. alter the search for k-mode1 edges is complete. we filter some of these 

k-edge models. based on a QP criterion. before continuing ont0 the k + L-edge model 

search. ÇVe cal1 the algorithm that filters. Grouping and Culling. A s  in Chapter 6. we 

keep around a list of maximal models found. as well as lists of al1 models. and unique 

models visited during the course of the search. 

In essence. we are cascading from window to window. only filtering out models from 

within one window at  a time. Thus we call it Cascade Search. .\ pictorial representation 

of the search can be seen in Figure 7.1. though some of the elements have not yet been 

lThe basic depth-first search used in this chapter is searching for al1 permutations, using a shadow- 
depth of O (see Section 6.2-1). This is discussed at greater Iength in Section 7.4.1. 
' We call them seeds because we buiid/grow other rnodels frorn these rnodels. These seed models are 

the only models upon which we build at the next stage. That is, we do not allow the depth-first search 
to build upon the empty model, except at the first stage, where the seed models consists of a single 
mode[, the ernpty model. 



CASCADE SEARCH 

Figure 7.1 : Schemat ic of Cascade Search - The search starts off looking for 1-edge rnodels. 

starting from the empty rnodel. I t  does so using no pruning criteria other than enforcing 

an increase in odds. as explained in Section 7.3. This produces a set of 1-edge result 

models. These result models are grouped and culled (GSrC). as explained in Section 

7.4. producing a smaller list of models which are then used as seedslstarting models for 

the next level of search. Xote that at each stage. the depth-first search is looking for 

al1 k-edge rnodeis from al1 (k-1)-edge rnodels. Several depth-first steps may be needed 

because collinear image segments can be added to existing rnodel edges. 

discussed. 

In addition to the motivation set out at the start of this chapter for Cascade search, 

there are a few more minor ones. stemming from characteristics of QPHbI that can be 

improved upon. We wiil noow delve in to t hese. after which point Cascade search should 

be clear in its entirety. 

7.3 Enforcing an Increase in the Odds 

If we look at the bottom-most plot in Figure 6.2. showing the number of models for 

different numbers of filled edges resulting from QPMH, we note that the graph dips down 

at 3-edge models and then curves back up. peaking at  5-edge models before dipping down 



again. Why is the number of models found increasing from the 3-edge rnodels through 

to the 5-edge rnodels? Part of the esplanation has to do with the combinatorics, as 

explained in Section 4.2.0. That is. with more image edges, there are in general more 

ways to build blocks. However. a more interesting part of the explanation has to do with 

the Half-blax Odds function we use for pruning. shown in Figure 6.1. Using this function 

to prune the search tree restricts ils to rnodels with odds that lie above the Half-Max 

Odds curve in Figure 6.1. However. having shown in Table 6.3 that true blocks typically 

lie in the top fraction of al1 block interpretations. we could potentially do even better. 

Instead of restricting the search to an entire area above the curve. we might be able 

to restrict the search to a band above the curve. thereby cutting out even more of the 

search space. How can we do this intelligently? C'an we simply shift the Half-Max Odds 

curve upward. or warp it upward? No. this r d 1  not do - we would likely prune block 

hypotheses t hat we need. Furthermore. this makes the whole Half-Max Odds function 

even more ad hoc. something we were trying to avoid in the first place. What other 

approach might we take? 

Consider that during the course of the QPHM search. we may come across a 4-edge 

model that has close to the maximum possible odds of clo.  Say. d. Then. proceeding 

along in the QPHM search. we might add some very 'bad' image edges to this model. 

while maintaining the necessary Half-hlâu criterion. since we had such high odds to start 

with. Thus block models that are actually quite bad are kept around and built upon. 

when in fact. we can actually deduce that they are bad. By simply stating that we will 

not accept a new block model unless it has higher odds than its parent model. we can 

help to eliminate this particular problem. In doing this, we will very likely reduce the 

larger area explored above the Half-&Law Odds curve. to sorne sort of band, still bounded 

above by the maximum possible odds. and below by the Haif-Max Odds function. This 

also helps us achieve OUF goal of a self-adapting algorit hm. 

If we enforce an increase in odds. as described, we would hope at best that the same 



number of true blocks would be found. with lower false positive rates for block models 

with more than 3 edges. while visiting fewer nodes during the course of the search. 

However, since we have also changed the underlying control of the search to a cascade. 

we rnay not get al1 that we hope for. In Section 7.5 we rvill see the outcorne. 

For the results presented in this chapter. we enforced an increase in epsilon odds of 

at 1rai.t a yuwrr uf i. T i i a ~  ia. giveii aiiy pr l i cu iar  biuck iiiodei. w e  oiiiy accrpk il ( i . e .  

pursue the branch rooted a t  this model) if its epsilon odds are at least a power of one 

greater than its parent mode1 in the search tree. This has the effect of allowing us to add 

only image edges that: 

I .  are collinear with one of the instantiated block model edges. (For example see 

Figure ;.L'a) 

'2. rneet with the line defined by the base/cover of one of the instantiated block model 

edges. if the image line were to be extended. We cal1 this a type 1 endpoint on line. 

(For example see Figure i.2b) 

3. have an endpoint that is on the extended line defined by the base/cover of one the 

instantiated block model edges. (For example see Figure 7 . 2 ~ )  We cal1 this a type 

2 endpoint on h e .  

Of course a perfect 'V' (between image edge and model edge) is either case 2 or 3. Also. 

we have a maximum gap allowed for the endpoint on lines (Figure Xb,c) .  Lastly. we 

d s o  dlow any image edge to  be added to an empty model. 

3By instantiated block mode1 edge. we mean a mode1 edge that either has at least one image segment 
assigneci to it, or is fully constrained ( i.e. has no free endpoints), 



(4 
Figure 7.2: Examples of the  only three types of image edges that can be added to a 

current model such that  the increase in odds is sufficient. (a) image edge is collinear wit h 

model edge 1 (b )  mode1 edge 7 (and. incidentally. mode1 edge 1) has eodpoint on image 

line (c)  image edge has endpoint on line formed by mode1 edge 4 (and. incidentally. a 

type L endpoint on line with model edges O and 2 )  



7.4 Grouping and Culling as a Branch Predictor 

R e d  that in Section 6.2.1 we taiked about using the shadow-depth to estimate 

86 

how 

fruitful a particular branch of the search tree might be. '' We said that the larger the 

shadow-depth. the Less useful a particular branch would likely turn out to be. Because 

the control process during the Cascade search is fundamentally different. we are able to 

do a similar thing in a quite different way. one which leaves more room for improvement. 

Maximum S hadow-Dept h of Zero 

Xote that during the cascade search we have al1 of the k-edge models that will be explored 

during the search. on hand at the same time (as opposed to QPHM. which is in essence 

depth-tirst. and has a list of rnodels at any stage of development at any given tirne). This 

is the case because we are cascading frorn one level to the next. only moving on to the 

search for k-edge models rvhen we have found al1 of the (k-1)-edge models. Because of 

this fact. we can simply set the maximum shadow-depth parameter to O. It is best to 

think of this in an inductive way - not as a forma1 proof. but as a convincing argument: 

Initially. we are looking for 1-edge rnodels from the empty model. There is clearly no 

need to have a non-zero shadow depth since we do not need 1-edge models that subsume 

one another. Then. assume we are looking for k+l-edge models. from a sufficient set 

of k-edge rnodels ( L e .  this is our inductive assumption - we did not prune any vital 

models at the previous level). Again. it is clear t hat we do not need to have a non-zero 

shadow-depth. since we do not need shadowed models if we are only adding at most one 

edge. 

In other words. QPHM needs to. conceivably. guess if some f edge  model. which is 

shadowed by some 4-edge rnodel. or 5-edge model. will lead to a better model than the 

+edge or 5-edge model. In contrast. Cascade search needs to guess if sorne bedge model 

'Of course any time we prune the search tree in any way, we are attempting to make such a prdiction. 



will lead to a better model than only other 3-edge models. Rather than using shadow- 

depth to rnake this guess. it instead uses the Grouping and Culling algorithm that we 

will now explain. 

Note t hot it is still possible for us to miss some needed models by setting the  shadow- 

depth to zero. This is because we might need several depth-first steps in forming a(kf1)- 

e d ~ e  - mode1 from a k - e r l g ~  modd. sinre col l in~ar  edges can be added to an ~x is t ing  mode1 

edge. However. with the images used. it is unlikely: in practice, it is not a significant 

problem. 

7.4.2 Grouping and Culling 

When we are finished searching for ail k-edge models. having used the 'best' (k- 1 )-edge 

rnodels as seeds. we are left with a group of maximal k-edge block models. Cal1 these 

models the k-edge result models (see Figure 7.1). Iieep in mind that we have not been 

using the Half-Max Odds criterion when building the models from one level to the next. 

though we have been enforcing an increase in odds. 

By grouping together Ledge models that are similar (definition to follow ). and then 

keeping only the best of these ( i . e .  culling the bad ones). according to their QP odds. we 

are predicting which Ir-edge rnodels will be useful for building up the true blocks. wit hout 

the need to play around wit h a shadow-depth parameter. 

We will now present our similarity definition. The culling and grouping algorithm 

will follotv. 

Similarity Definition for Two Block Models 

Firstly. the similarity measure takes a parameter, called the sirnilan'ty fraction. Thus. 

ive Say that two block models are k-similar. for It = 0.8 if they are 80% similar according 

to Our definition. The sirnilarity is basically a measure of how many image line segments 

two block models have in common. Now we will formally define k-similarity. 



Let Il = l12.. . . . I I , ,  } be the image segments that have been assigned to one 

block. BI .  Similarly. let L2 = {121, l z2 .  . . . . lZn2 } be the image segments t hat have been 

assigned to another block. B2. NOW let S = 1 Il n I2 1. Then. Bl and B2 are said t o  be 

k-similar iff either i) 2- 2 k or i i )  i )  2- 2 k. Clearly O 5 k 5 1. Now we are ready to 
II1 I I I 2  l 

describe how grouping and culling works. 

The G&C Algorithm 

The Grouping and Cuiling aigorithm requires that the initial list of models be sorted by 

non-increasing epsilon odds. Then. starting with the first model in the list. it looks for al1 

other models that are k-similar. grouping them together. Then. it keeps sorne predefined 

topFraction of these (according to their epsilon odds). ensuring that no fewer than 

minGroupSize are kept around. unless the group is not large enough (in practice. we set 

k.0.6, minGroupSize=lO and topFract ion=0 .IO). CVe do this iterativeiy. until every 

model has been placed in a group. Xo model is assigned to more than one group. even if 

it is culled from this group. Pseudwcode is given in Algorithm 5. 

The GkC algorithm is exploiting the fact that image iine segments, in general. play 

a role in at most one. or very few real world objects. By using the best of the interpre- 

tations. as determined by QP. we con hope to eliminate the less useful search paths. We 

can only use G&C in Cascade search. and not in QPHM (which is depth-first). because 

it requires that we have al1 k-edge models at the same time. 

7.5 Results and Discussion 

7.5.1 List of Maximal Block Models 

In order to compare our Cascade search results with our QPHM search, it will be useful 

to construct a list of maximal blocks from the cascade search. 



Algor i thm 5 Grouping and Culling 
//precondition: modelList is sorted by non-increasing epsilon odds 

//k is the similarity fraction to be used by the similarity function 
//topFraction is the fraction of each 'group' to keep around 
//minGroupSize is the minimum number of models to keep in a 'group) 

f unct ion newModelList = GroupAndCull (modelList , k, topFract ion, minGroupSize) { 
remainingModels:=modelList //models not yet grouped 
modelGroup:= ni1 //current mode1 group 
oneModel : = ni1 //representat ive mode1 for a group 
while (remainingModels != nil) { 

oneModel:= removeFirst(remainingModels) 
modelGroup : =oneModel 
remainingModels:=allButFirst(remainingModels) 
for each model, md, in remainingnodels { 

if kSimi1a.r (oneModel , md , k) 
modelGroup:= modelGroup + md //append to list 
//note this keeps tham in non-increasing odds order 

> 
remainingModels:=remainingModels-modelGroup //set difference 
if size(keepTopFraction(modelGroup, topFraction))>=minGroupSize 

modelGroup:=keepTopFraction(modelGroup, topFraction) 
else 

modelGroup:=keepMinGroupSize(modelGroup, minGroupSize) 
newModelList:=newModelList+modelGroup //append to list 

> 
> 

Suppose that a true block is poorly imaged. and that one or more lines are missing. 

Then the maximal model for this block will have fewer than 9 model edges. For the 

cascade search. we obtain the final list of maximal models by i) concatenating al1 the 

maximal. k-edge models that made it past GSrC. for any 1 5 k 5 9. Then. starting at 

level k = 2 edges, and going up to k = 9 edges. we rernove al1 (k-1)-edge models that are 

shadowed by k-edge models. This leaves us wit h a final, maximal list of block models, 

malogous to the maximal list found in Chapter 5. 



7.5.2 Experimental Result s and Discussion 

Again. the same six images used in [?O]. and shown in Figure 4-10 were used. and again. 

the results aggregated. 

Results are presented in a similar way to those in Chapter 6 .  

Table 7.1 shows the positions of true blocks found. and compares these to the QPHM 

search. We see that Cascade search is doing very nearly as well as QPHM. In im4. the 

right-most block is missed by Cascade. but found by QPHM. This is because one of the 

bottom edges does not form an endpoint-on-line with eiisting mode1 edges (specifically. 

the bot tom, left-mos t edge. because the gap is too large). Addi t ionally. Cascade is missing 

the bottom-most block in ime. though QPHM is finding it. The same explanation as for 

the missing block in im-L is appropriate. 

Table 7.2 shows the number of nodes visited. The number visited by QPHM is 

comparable to those found by Cascade. Thus. two different algorithms. QPHXI and 

Cascade. though controlling the search very differently. are operating at the same level of 

efficiency. This suggests that for this type of search ( L e . .  not using fragments of blocks 

first. but building up blocks in one go). we are doing as well as we could hope. 

Table 7.3 shows that the lalse positive rates are roughly the same for Cascade as 

for QPHbI. However. looking at Figure 7.3b. we see that the breakdowns according to 

number of filled edges are quite different. For models wit h more than 3 and fewer than 

9 edges. Cascade has a much lower false positive rate. This is directly related to Our 

discussion earlier in the chapter about how QPHM allows us to add 'bad' image edges 

to models that have fairly high odds. thereby producing rnany 'bad' models. Cascade 

search. likely through its use of enForcing an increase in odds. has helped avoid this 

problem. 

The aberration in this pattern. for models with 9 edges. can be traced back to the 

left-most block in im4. which does not have enough data to be properly constrained, even 

to the human viewer. Thus quite poor hypotheses are put forth, and built upon. In fact, 



because of the vertical structure in the image. as well as a few accidents. Cascade is able 

to form consistent 9 edge block models for this block, that are not very good, but do 

not get pruned because there are no better ones. Since there axe not very many 9 edge 

models found overall, the fdsepositive rate appears to be very high. In fact. only 2 faise 

9-edge models are found over al1 six images. 

Tablc 7.3 a h  sho;rs the t x o  dlffcrent tiüc positive rates. The Rue arid SIziximal 

Positive Rate is lower than the True Positive Rate for both Cascade and QPHBf. As 

stated in Chapter 6? this is because both algorithms allow us to incorrectly grow blocks. 

past the  state when they are true blocks. Though both of the positive rates are lower for 

Cascade than for QPHM. we should remember that this difFerence can be explained by 

missing only two blocks. over al1 2 1 blocks. 

Lastly. Figure T.3a shows a breakdown of the nurnber of models, by number of edges 

filled. visited by both Cascade and QPHSI. The increase in models from f e d g e  models 

to 5-edge models that we spoke about at the start of this Chapter has vanished, again. 

iikely due to the fact that we forced the odds to increase at every depth-first step. Note 

that there are more 7 and 3 edge models found by Cascade than by QPHiLI. This could 

be because of the difference in the pruning-during-search that the two algorithms use. 

QPHM prunes during search using the Half-Max function. while Cascade demmds that 

the odds increase. For models with fewer than 3 edges. it is relatively easy to have an 

increase in odds from a parent. while having less than the epsilon odds prescribed by the 

Half-Max funct ion. 

7.6 Summary 

The control of the building process in Cascade search dlows us to improve upon some of 

the less desirable properties of QPHM. 
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Figure 7.3: Cascade Search Results (a) Number of models for difFerent numbers of filled 

edges (b) False positive rate for different number of filled edges. 



a We no longer need to calculate the Half-Mau Odds function since Cascade search 

is self-adapting. This is more practical because there is less of a need to play 

with parameters. and the algorithm has the potential to scale up better with more 

models. It is also more elegant. 

Due to the fact that with Cascade search we have al1 15-edge models on hand a t  

the same tirne. we can automatically set the shadow-depth to zero. eliminating the 

need to fiddle with yet another parameter. (Of course. we did introduce a few 

parameters of our own for Cascade. namely. the similarity fraction, and the group 

size) . 

Additionally. independent from the control process of Cascade search. we tried en- 

forcing an increase in odds during the dept h-first portion of the search. W e  found that 

this was useful and produced nice results. 

The end results of Cascade Search are almost identical to those of QPHbI. Though 

the results are quite good. there is still much room for irnprovement in terms of getting 

closer to a general purpose search algorithm. However. Cascade search is an important 

step toward the goal of achieving an efficient. effective. and self-adapting search algorit hm 

for line-based object recognition using Qualitative Probabilit ies. 



Chapter 8 

Conclusion 

8.1 Contributions 

CVe summarize the contributions of t his t hesis as follows: 

1. We erplored the search space induced by Qualitative Probabilities in a block world 

domain. it was found that the odds calculated using QP were 'windowed'. with 

the size and position of the window dependent on how many rnodel edges were 

accounted For by image edges. Furt hermore. we gained a better understanding of 

how the combinatorics of forrning geomet rically consistent modeis from image edges 

interplays with the QP odds of the  corresponding rnodels. 

2 .  We showed that 'accidents' do happen. and showed that the number of different 

types ( L e .  degree of genericity) of accidents is correctly modeled by QP. 

%. CVe incorporated QP into a simple search to find block models. The search was 

found to be effective and efficient. Additionaily. we compared the use of Q P in this 

search. to a more standard measure of goodness. a 'cover' measure. We found that 

QP is a much stronger predictor of good interpretations than the cover measure. 

That is, search using QP was far more efficient, and produced better block models 



t han the cover measure. 

1. Based on observations in 1. we designed a search algorit hm tailored to use of QP. 

This search algorithm does not require calculation of a 'Hdf-Max Odds' function. 

as the search in 3 required. This makes for a more elegant and practical search 

algorit hm. 

8.2 Discussion and Future Directions 

The work presented in this thesis is only the beginning of how QP can be used to 

achieve object recognition. Mary additions and extensions can be made. both to the 

QP framework. as well as to the search framework. CVe will now mention a few, ranging 

from issues quite specific to work presented in this thesis. to those more loosely associated 

with it. 

1. The Grouping and Culling function presented in Chapter 7 was useful as a first 

attempt. but could potentially be rnuch improved upon. The grouping part of the 

algorithm is dependent upon the order of the list of models given to it. We work 

around this by insisting that the list is in order of non-increasing odds. However. 

it would better if the grouping function was not dependent on order. Rather. it is 

desirable for the function to partition the list of models into equivalence classes. 

This requires the similarity definition to be reflexive. symrnetric and transitive. 

the first two of which are currently satisfied. If this was achieved. the grouping 

would correspond better to our intuition of grouping as a precursor to culling. 

Addit ionally. the notion of similarity presented is rather rudimentary, and could no 

doubt be impcoved upon in other ways as ivell. 

2. The Grouping and Culling algorithm is an attempt to predict which paths in the 

search tree will be usefd. It look  only a t  the current set of models with their 



associated QP odds. .As is. the search algorithm does not use the object model 

to predict where image edges should be found. We could probably make better 

predictions by also taking into account this information. For instance we could do 

a 'look-ahead' of what different hypotheses are likely to lead to. That is. given a 

hypothesis. and given some general knowledge of the domain we are working in. 

for example. the density of image edges. their average length. etc.. as well as which 

parts of the hypothesized model have not yet had image edges assigned to them. 

we might be able to further distinguish the good hypotheses from the bad. 

3. Other cues such as colour/grayscale could to be integrated into the search frame- 

work in cooperation with the Qualitative Probabilities. It will be interesting to 

see whether a trade-off between added cornputation due to more calculations. and 

less cornputation due to better pruning power exists. and if so. to what degree. 

Moreover . how do we in telligent ly incorporate the cues? Simply ordering t heir 

importance is likely too naive. 

4. QP itself will need to be extended to handle more complex objects made up of 

parameterized cuves. as well as straight lines. The number of resolved parameters 

for a particular curve mode1 should provide the order of the prior probability. 

5. The motivation behind the work in this thesis is to develop a method that can be 

applied to the extraction of primitives which are sufficiently complex, that with a 

large enough. finite group of them we rnight be able to represent most objects. and 

achieve generic object recognition. This extraction method must be robust to many 

types of noise. including occlusions. shadows and rnissing data. A logical next step 

would be to find a suitable set of primitives for generic object recognition. and try 

to search for them using an extended form of Qualitative Probabilities. 

6. In the work presented in this t hesis. we only search for one object at a time. How 

can we intelligently look for more than one object at a time? Clearly the human 



brain is not running serial computations. nor even parallel ones, as information 

about one object reinforces information about other potential objects. CVe need to 

find an computationdly efficient way of searching for multiple objects. 
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