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ABSTRACT

The feasibility of using Artificial Neural Network (ANN) models for application in
thermal process calculations was studied. As a preliminary study, ANN models were
developed based on tabulated data for Ball and Stumbo methods of process calculations.
The ANN models for Ball method related g-value. a measure of process time, and f/U. a
measure of process lethality. Optimizing training data set size, number of hidden lavers
and PEs in each hidden layer as well as learning parameters is important in obtaining an
efficient ANN model. Development of ANN model for Stumbo method followed the same
procedures as the Ball’s method. except that j.. value (cooling lag factor) was included as
an additional input. The developed ANN models for Ball and Stumbo methods were
validated using a set of processing conditions, resuiting in a new set of g and f,/U values.
A range of retort temperatures (RT), initial temperatures (/7). heating rate indexes (f4),
heating lag factors (j.») and cooling lag factors (j.) were used to calculate the related
process time and process lethality. The developed ANN models were recalled with the
new set of parameters. The relative prediction errors of the ANN models were 1% and 3%
for Ball and Stumbo method ANN models. respectively. The higher error of ANN models
of Stumbo method could be possibly due to the smaller number of training data and wider
range of parameters in tables of this method than the tables in Ball method. In general. the
ANN models were able to simulate the Ball and Stumbo methods of process calculations
reasonably well.

For a better understanding of the effect of process parameters on the evaluation of
thermal process. the accuracy of several forrnula methods (Steele & Board. Ball. Stumbo
and Pham) were studied over a wide range of commercial conditions. A computer
simulation based on finite difference method of numerical solutions of heat transfer to
packaged foods in cylindrical containers was applied to obtain the time-temperature data
for designed conditions (retort and initial temperatures. thermal diffusivity. package sizes
and processing time). Moreover, the process time and process lethality from this
simulation were used as the reference values for the purpose of comparison. The accuracy
of methods was evaluated based on the variation of each parameter over the range of

conditions employed in the study. Retort temperature had the most significant effect on



calculated process deviations, and Stumbo and Pham methods had the best performance.
In a more specific evaluation, the comparison of the methods was carried out based on the
can dimensions and g-value. Higher g-values resulted in higher errors and H/D near unity
had the highest relative error.

As the final goal of the study, a multi-layer ANN model was developed
as an alternative to thermal process calculations. In developing this model,
the time-temperature data from the finite difference simulation was used to
compute the process lethality, process time as well as heat penetration
parameters: f,, J,, f. and j_, which were needed for training and testing of the
models. The ANN predicted process time or process lethality was compared to
respective values from finite difference model. The performance of ANN
models was also compared to the different formula methods (Ball, Stumbo and
Pham). ANN model was able to predict the process times with a mean average
error of 2 minutes, which was comparable to Pham method. The mean
prediction error of pracess lethality was 2.74%, which was comparable to

Stumbo method.
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RESUME

L"applicabilité des réseaux d'intelligence artificielle (RIA) aux calculs impliqués
dans les traitements thermiques a éié étudi€e. Les travaux préliminaires consistaient i
développer des modéles RIA basés sur les données des méthodes de calcul du traitement de
Ball et Stumbo. Le RIA basé sur la méthode de Ball tentait d’établir la relation entre la
valeur-g, mesurant le temps de traitement. et f,/U, mesurant le point d’asepsie du
traitement. L’ optimisation de la taille des données d’entrainement du réseau. le nombre de
couches cachées, les noeuds dans chaques ces couches ainsi que les paramétres
d’apprentissage était cruciale pour I’obtention d'un modele efficace. Pour le RIA basé sur
la méthode de Stumbo. le cheminement était similaire & celui utilisant la méthode de Ball,
mais celle-ci intégrait aussi la facteur de retardement du refroidissement. j... Les modéles
RIA développés pour les méthodes Ball et Stumbo ont été validés en utilisant une série de
valeurs de g et f/U obtenue en variant la température du milieu (TM), la température
initiale (TD. l'index de vitesse d’échauffement (f). ¢t les facteurs de retardement de
I"échauffement (je) et du refroidissement {je). L erreur relative de prédiction était de 1%
pour la méthode basée sur |'approche de Bail et 3% pour celle de Stumbo. La valeur
relativement élevée de |'erreur pour la méthode RIA de Stumbo peut étre attribude au
nombre restreint de données d’entrainement par rapport au nombre de paramétre. En
général, les modéles RIA ont simulé de fagon acceptable les méthodes de Ball et Stumbo
pour le calcul du traitement.

Pour mieux comprendre I'effet des paramétres de traitement sur |'évaluation du
processus thermique, I'exactitude de plusieurs formules (Steele & Board. Ball. Stumbo and
Pham) a été étudiée pour une variété de conditions industriellement utilisées. Une
simulation basée sur la méthode de différence finie 3 solution numérique du transfert de
chaleur dans un produit emballé dans un contenant cylindrique a éié appliquée pour obtenir
les données de temps et de température reliées aux conditions d’étude sélectionnées (la
température du milieu. la température initiale. diffusion thermique. taille de I'emballage, et
longueur du traitement). De plus. la longueur de traitement et le point d’asepsie du
traitement ainsi prédits ont fait 'objet de comparaison pour évaluer 'effet de chaque

paramétre. La température du milieu affectait de fagon significative 'erreur sur la



prédiction. Les méthodes de Stumbo et Pham ont produit les meilleurs résultats. Une étude
plus poussée démontre qu'une augmentation de la valeur-g entraine une erreur plus élevée,
alors qu'un rapprochement du parametre H/D, relié i la dimension de I'emballage. a I'unité
se traduit par une erreur relative supérieure.

Pour but final de cette étude, un modéle RIA multi-couches a éié développé. Cette
alternative aux calculs du processus thermique. utilise les données de temps et de
températures obtenues par la simulation basée sur la méthode de différence finie pour
prédire le point d’asepsie du traitement, la longueur de traitement ainsi que les
parameétres de pénétrations de chaleurs: f,, j,, f. and j_. Ces valeurs sont
nécessaires pour entrainer et tester les modeéles. Les valeurs prédites par les
RIA ont été comparées aux valeurs obtenues par les calculs basés sur la
différence finie ainsi qu'un nombre de formules acceptées (Ball, Stumbo and
Pham). Les modeles RIA développés ont pu prédire le temps de traitement
avec une erreur movenne de 2 mins, une valeur comparable a celle obtenue
avec la méthode de Pham. L'erreur moyenne de prédiction pour le point d asepsie

du traitement était de 2.74%, valeur comparable a I'approche Stumbo.
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NOMENCLATURE

Significant dimension, the radius of cylinder (m)

Decimal reduction time (min)

Cooling rate index (min)

Heating rate index (min)

Process lethality (min)

Temperature difference between product and heating medium (retort) at end of
heating (°C)

Vertical position in cylinder (m)

Fluid heat transter coefficient (W/m™.K)

[nitial Temperature (°C)

Cooling lag factor

Heating lag factor

Bessel function of order zero
Cvlinder thermal diffusivity (W/m.K}

Lethal rate: Thickness or half thickness of a slab depending on it being heated or
cooled from one side or both sides. respectively

Number of records

Radial position in cylinder (m)

Retort Temperature (°C)

Temperature (°C)

Time (min)

Cooling time (min)

Cooling water temperature (°C)

Heating time (min)

Product temperature at the end of heating (°C)

Reference temperature (°C)

Dimensionless temperature ratio = { T-RT)X[T-TR)

The equivalent of all lethal heat received by some designed point in the container
during process at the retort ternperature (min)

Distance from the coldest plane of a slab

ANN predicted value

Desired value

Temperature sensitivity indicator (C*)

Step size (used with space or time)
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Subscripts

Refer to two levels with respect 1o temperature
Initial condition. space index

Initial condition of product

Space index

Reference

(Retort) heating medium

Greek symbols

Thermal diffusivity (m™/s)
Root of the characteristic equation (4.3)
Root of characteristic equation (4.4}

Dimension less numbers

Bi Biot number

Fo Fourier number
Abbreviations

ANN  Arificial neural network
CER  Carbon dioxide evolution rate
FTIR  Fourier transform infrared
LDS  Linear discriminate analysis
MAE  Mean absclute error

MIMQ Multiple input and multiple output
MLNN Multiple layer neural network
MRE  Mean relative error

NIR  Near infra red

NUR  Nitrogen utilization rate
OCR  Oxygen consumption rate
PCA  Principle component analysis
PE Processing element

RMS  Root mean square
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CHAPTER1
INTRODUCTION

Thermal processing is one of the most important methods of food preservation of
the twentieth century. Since the innovation of this method by Nicholos Appert in 1810.
thermal processing of packaged foods has been improved extensively in all related aspects
of the process. Design of an effective process requires a sound knowledge of the
destruction kinetics of the concerned microorganism and temperature history of the
product. Process calculation methods are commonly designed to compute the required
processing time for a target sterilization value or to evaluate the sterilization value for a
given process. Accurate process calculation methods are required with respect to both
safety and quality consideration of product.

Bigelow er al. (1920) established the first graphical procedure of thermal process
determination. referred as General method. Ball (1923) introduced a mathematical method.
known as the first Formula method. Ball's method has broadly served the food industry
despite some of its sweeping assumptions. which results in some inaccuracies. Ball's
tformula method is based on the equation for the straight-line portion of the semi-
logarithmic heating curve at the can center. To calculate the process time for defined
process lethality or to calculate the lethality of a given process. Ball developed some tables
and graphs. Stumbo’s method (1966). developed as the revised version of Bali's method.
results in more accurate process calculations (Smith and Tung. 1982). However. the
procedures of process calculation in these two methods are quite similar and the accuracy
of each method depends on the accuracy of the evaluated parameters and addition of
correct cooling lethality to process calculation through the tables and graphs. The
application of these tables and graphs can be time consuming and may become a source of
error in process calculations. In addition to these two methods. several other methods exist
in literature as alternatives to the existing process calculation methods developed through
modifving procedures (Hayvakawa. 1970: Pham. 1987. 1990. Vinters. 1975: Steele and
Board. 1979a.b).



Smith and Tung (1982) evaluated the accuracy of some formula methods as
compared to a numerical method for 2 range of processing conditions and can sizes, and
pointed out differences in their performances. Studies have been aiso carried out to check
the accuracy of formula methods in relation to a computer simulation of thermal processing
using finite difference numerical solutions for thin profile packaged foods (Ghazala et al..
1990). Stoforos er al. (1997) reviewed in detail the basis of different methods of process
calculations and the accuracy of these methods as compared to a finite difference
simulation of heat transfer for one set of processing conditions and can size.

Advent of computers and ease of programming has provided the potential
application of mathematical models in process design. validation. control. and optimization
tHavakawa. 1970. 1978: Manson er al.. 1970: Stumbo. 1973: Teixeira et al.. 1969a. b:
Teixeira. 1978). These models are mainly used in temperature profile prediction of product
undergoing thermal processes. as they provide a more versatile alternative to time
consuming and expensive heat penetration tests. In addition to time-temperature
prediction. with these models the retort temperature need not be held constant and can be
varied in any prescribed manner throughout the process. The rapid evaluation of an
unscheduled process deviation is another important application of these models (Heldman
and Lund. 1992).

The application of artificial neural network (ANN) methods has been growing in
the several areas of food technology and agriculture. ANN is a powerful technique for
correlating data using a number of processing elements. Using the ANN technique. the
computer learns to make intelligent decisions using known input-output data and adjusting
some internal parameters of the network through repetitive introduction of known
examples. The strength of ANNs is in their ability to handle complex nonlinear
relationships with ease and without any prior knowledge of their relationships. The ANN
has potential advantages of adaptation and learning ability. fault tolerance of noisy or
incomplete data. and high compurational speed. Eerikainen er al. (1993) introduced the
carly application of neural networks in food related subjects. ANN has shown a promising
application in extrusion process control (Eerikainen er al. 1994). As an alternative to
statistical models in data analysis of FTIR. GS-MS and sensorv evaluation. ANN models
had a higher performance (Bochereau er al, 1992: Tomlins and Gay. 1994: Vallejo-



Cordoba er al., 1995). Sablani et al. (1995) investigated the potential of ANN models for
prediction of optimal sterilization temperatures.

One typical type of ANN structure in known as back-propagation networks. which
has shown promising results in prediction modeling and classification (Sreekanth et al.,
1998: Lacroix. et al.. 1997: Bochereau et al., 1992; Freeman. 1993). A back-propagation
network consists of a sequence of layers with full connection between the layers. Three
required layers in these networks are input layer, hidden layer(s) and output layer. [nput
laver transters the input information to the network to be processed by hidden layer(s). The
processed information is passed to an external source through the output layer. During
training. the internal parameters are adjusted to produce the possible closest ANN output to
the desired output. The adequacy of a trained network depends on the nature and size of
the training data set as well as selecting the optimal internal parameters. [n other words.
the performance of the ANN model greatly depends on the training data with respect to
both quantity and quality (Swingler. 1996). Once trained. the ANN model presents rapid
answers to any input variable in the domain of training data set. If the conditions change in
such a way that deprives performance of the network. the ANN model can be trained
further under the new conditions to correct its performance (Baughman and Liu. 1995).
Considering these abilities. ANN models render themselves as a possible alternative to
mathematical models and regression techniques {Ni and Gunasekaran. 1998: Tomilins and
Gay. 1994).

During the sterlization process. there are several parameters. which aftect the
accuracy and efficiency of heating process evaluation. The most relevant factors in
evaluation of a heat treatment are type and heat resistance of microorganisms. pH of food
product. heating conditions. thermo-physical properties of food and package size and type
(Valentas er al.. 1991). An accurate thermal process calculation model takes into account
the signiticance of producing a high quality product while ensuring the minimum required

gualitv.

The following were the objectives of this research:
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Development of ANN models based on input data from Ball and Stumbo’s tables as
a preliminary study to evaluate the feasibility of ANN models in thermal process
calculations.

Evaluating the accuracy of different formula methods over a wide range of
processing conditions and can sizes against a retference computer simulation model
based on numerical solution of partial differential equations related to heat
conduction equation involving finite cylinders.

Development of an ANN model using the data obtained from the finite difference
simulation under a wide range of conditions and comparison of the performance of

ANN model with traditional formula methods.

Successtul thermal processing encompasses the assurance of safety and high quality

of the food products. Several methods developed to establish thermal processes have been

improved with respect to innovation and application of computers in food technology. [n

this study. artificial neural network technique is being evaluated to develop a possible more

versatile thermal process calculation method. Due to the fact that ANN technique has the

ability in modeling non-linear systems. it is hoped that ANN based thermal process

catculation medel will be capable of pursuing the objectives of an accurate thermal process

calculation model.



CHAPTER 2
LITERATURE REVIEW

Principles of thermal processing

Thermal processing of packaged foods basically involves heating of food products
for a selected ume at a selected temperature to destroy pathogenic microorganisms
endangering public health as well as those microorganisms and enzymes that deteriorate
the food during storage. For the first time, Nicolas Appert. in 1810. introduced the concept
of in-container thermal processes. Extensive emphasis has been given to improvements in
thermal processing, as this is one of the most important methods of food preservation.
Although the heart labile nature of microorganisms is the basis of thermally preservation of
food products. yet the same but undesirable effect can destroy part of nutrients and quality
factors. Therefore. an efficient thermal processing requires to be accurately designed to
ensure both the safety and quality of food products.

An effective thermal processing is defined based on the definition of commercial
sterilization. Commercial sterilization of food product inhibits the growth of both
microorgarisms and their spores under normal storage conditions in the container. A
commercially sterile food product may contain viable spores. such as thermophilic spores.
which will not develop under normal storage conditions. The US Food and Drug
Administration in 1977 defined the concept of "minimal thermal process” as “the
application of heat to tood. either before or after sealing in a hermetically sealed container.
for a period of time and at a temperature. scientifically determined to be adequate to ensure
the destruction of microorganisms of public health concern.”

Several important factors determine the extent of thermal processing. such as:

1) Type and heat resistance of the target microorganism. spore or enzyme

2) pH of food product

3) Heating conditions

4) Thermophysical properties of food product and container shape and size

5) Storage conditions following the process



The primary step in thermal process establishment. which is defining and selecting
the target microorganism or enzyme, is directly related to food product conditions.
Temperature and oxygen are important factors in optimum growth of microorganisms.
Based on appropriate temperature for growth, microorganisms are classified into
psychrophiles with rapid growth between 0-5°C, mesophiles with optimum growth between
5-40°C and thermophiles with optimum growth at temperatures higher than 40°C (Rose,
1963). With respect to oxygen requirement for growth. microorganisms are classified as
obligate aerobes. facultative anaerobes and obligate anzerobes. Packaged foods under
vacuum in sealed containers provide low levels of oxvgen, therefore. these conditions do
not support the growth of obligate aerobes, and further the spores of obligate aerobes are
less heat resistant to heat as compared to the spores of facuitative and obligate anaerobes.
The growth and activity of anaerobic microorganisms are highly pH dependent. From a
thermal processing standpoint. foods are divided into three groups based on pH:

1) High acid foods (pH<3.7)

2 Acid or medium acid foods (3.7<pH<4.5)

3) Low acid foods (pH>4.3)

[n thermal processing a special attention is devoted to Clostridium botulinum which
is a highly heat-resistant. spore-forming. anaerobic pathogen that produces botulism toxin.
Clostridium botufinum does not generally grow and produce toxin at pH below 4.6.
Therefore. in thermal processing, a pH of 4.5 is considered as dividing line between the
acid and low acid food products. Molds. yeasts and bacteria. which tolerate high acidic
conditions are targeted in thermal processing of high-acid food products. Bacillus
coagulase and Saccharomyces cerevisiae are important in high-acid foods.
Microorganisms such as Bacillus Stearothermphilus. Bacillus rhermoacidurans and
Clostridium thermodaccolvticum are more heat resistant than C. botulinum. but they are
mostly thermophilic in nature and in case of storage of cans at temperatures below 30°C.

they are not of much concern.

Kinetics of microbial destruction
Evaluating the thermal resistance of target microorganisms is required in thermal

processing design. Thermal destruction of microorganisms generally follows a first-order



reaction indicating a logarithmic order of death. Therefore. if the logarithm of number of
microorganisms surviving a given heat treatment at a particular temperature is plotted
against heating time. it will result in a straight line, called the survivor curve. The
microbial destruction rate is generally defined in terms of a decimal reduction time (D-
value), which is heating time that results in 90% destruction of the existing microbial

population. This is concept is represented mathematically as:

D=— 274 .
[loga) —logb)] (2.1)

where:
a: number of survivors at time [;
b: number of survivors at ime t:

t--t;: heating time

Defined as such. the D-value represents the negative reciprocal slope of the survivor curve.
Thermat death time (TDT) is another approach reflecting the relative resistance of bacteria
to different temperatures. These data are obtained by subjecting a microbial population to
a series of heat treatment at a given temperature and testing for sarvivors. TDT is the
measurement with respect to an initial microbial load and it simply represents 2 certain
multiple of D-values. The temperature sensitivity of D-value is defined by the term z-
value. which is temperature range resulting in ten-fold change in D-value:
__ (T.-T)

-
~ v

[log(D,) - log(D, )]

where:
D,: D-value at temperature T,

D-: D-value at temperature T

Also the z-value can be obtained from TDT curve using TDT; and TDT: instead of D; and

Ds-values. Thus. z represents the negative reciprocal slope of D value or TDT curve.



In order to compare the relative sterilization capacities of thermal processes, the
term lethality (F-value) is introduced. The F-value is defined as the number of minutes
required at a specific temperature to destroy a specified number of microorganisms with a
specific z-value. For convenience a unit of lethality is defined as equivaleat heating of one
minute at a reference temperature of 121°C (250°F) for the sterilization process. Thus. the
F-value represents a certain multiple or fraction of D-value depending on the type of

microorganism. Mathematical equivalent of this definition is:

«T,-T)

F=nD=F,,.lOT 2.3
where:

T., Reference temperature

F,: Lethality at T,

Lethal rate is defined for comparing different processes in terms of achieved lethality and it
is considered to be the heating time at the reference temperature relative to an equivalent
heating of one minute at the given temperature:

T-Tref

L=10 * (24)

[n a real process in which the food product undergoes a time-temperature profile. the lethal

rate is integrated over the processing time to result in an overall process lethality (also
defined by F.,):

F = jL.dt (2.5)

fn terms of food product safety. assurance of a minimum lethality at the thermal center of

food product is required. However it is desirable to minimize the overall destruction of

quality factors.



Thermal process calculations

The purpose of thermal process calculations is to determine an appropriate process
time under specified heating conditions required to achieve a given process lethality or
estimating the lethality for a given process. Thermal process determination through a
physical-mathematical approach requires the basic information of thermal destruction
kinetics of microorganisms and quality factors conjoined with time-temperature data of
product to integrate the lethal effects of thermal processing.

Therefore. an efficient process design requires sound information on the heat
penetration data and their characteristics. Heat penetration data are function of several
factors and different combinations of factors can result in same process lethality. These

factors can be summarized as follows:

1) Method of heating process (eg. stiil process vs. agitated process)
2) Type of heating medium (steam, water)
3) Heating conditions (retort temperature. initial temperature of product)
4) Product type (solid. liquid. particulate)
5) Container tvpe. shape and size

Obtaining accurate data regarding the heating and/or cooling of a food product in
container is important for accurate determination of time and temperature with respect o
sterilization of a given product. However. it is impractical to obtain heat penetration
profiles for the whole range of conditions. Accordingly. thermal process calculation
procedures are developed with ability of time-temnperature prediction with respect to some
experimentally determined parameters. Obviously. the applicability and restrictions of each
method are defined by the assumptions taken into account to obtain temperature prediction
model.

Following each heating phase of thermal processing operation is a cooling phase to
control and terminate the lethal effect of thermal processing. In order to account the

cooling effect. the lethality equation (2.3} can be rearranged as follow:

F,o= [10 7™ Vsdr o J1oT T gy (2.6)
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where:

L,: total heating time

dt: small time interval

t.: total cooling time

The duration of cooling process longer than bringing the product temperature to a
level enough to stop the lethality is not important. However, the achieved lethality during
the initial cooling phase is accounted in process calculation methods. For a known time-
temperature profile the solution of equation (2.6) will result in a relationship between F,

(process lethality) and ¢, (process time).

Thermal process calculation methods

The methods of process calculations are divided into two broad groups: General
methods and Formula methods. General methods apply the real time-temperature data
from test containers to integrate graphically or numerically their lethal effects over the
process. Therefore, this group of methods is the most accurate method tor given
experimented conditions. Conversely. Formula methods apply the time-temperature data in
the form of parameters. with use of mathematical procedures, to integrate the lethal effects.
Process calculation methods have been extensively reviewed and evaluated (Hayakawa,
1977, 1978: Merson et al.. 1978: Stumbo and Longley, 1966: Smith and Tung, [982:
Ghazala er f.. 1990: Larkin and Berry. 1991: Stoforos. 1997).

General Method

For the first time. Bigelow er al. (1920) introduced the Original General method.
which is the fundamental of all other process calculation methods. General method is the
most accurate method of process evaluation as it relies on discrete, experimental or
numerical time-temperature data to determine the sterilization value of the process. Once
the time-temperature is known, the sterilization value is determined by graphical or
numerical integrating of equation (2.5). Overall, General method has the advantage of
versatility in applicability for any kind of heat transter. However. the application is

restricted to the condition under which the time-temperature data is obtained. and any
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change in either processing conditions (retort temperature. initial temperature), preduct or
package size requires a related temperature profile.

The original General method is based on lethal rate as the reciprocal of TDT value.
The area under the lethal rate curve vs. heating time will result in a sterilization value of the
thermal process. In order to determine the process sterilization value (F,) with General
method. different works has been carried out, both in graphical and numerical integration
to make this method less laborious. Schultz and Olson ( 1940) developed lethal rate papers
and dimensionless temperature differences in forms of Ter-T/Tpr-Tir to account for
variation in retort temperature and initial temperature of product independent of
experimentally obtained data. Extended works have been carried out for different z-values
and processing temperatures (Cass, 1947: Hayakawa, 1973: Leonhardt. 1978). Simpson's
rule. trapezoidal rule and Gaussian integration are improved techniques for numerical
integration. Patashink (1933) used a trapezoidal rule by considering some assumptions in
this technique. Hayakawa (1968) developed a method using Gaussian integration formula.
involving a template. which could be used with the graphical method.

The limitation of General method is in determining the process time for target
process lethality. For this purpose a trial and error method is proposed. Also it is tedious
to consider a lethal rate curve during cooling which depends on the heating time. Often a
single shape of cooling curve is imposed irrespective of the heating curve. Obviously. this
cannot be right for all situations as the lethal rate is related to temperature difference of the
product and heating medium at the end of heating (g-value) and this assumption applies to

only to cases with g-value close to zero.

Improved General Method

Ball (1923) introduced improved General method with a graphical approach for
sterilization value determination. A hypothetical thermal destruction curve was
constructed parallel to thermal death time curve. resulting in F-vaiue equal to | min at
121.1'C (250°F). This modification permitted the comparison of ditferent processes in

terms of target lethality. According to this method the lethal rate could be determined as

follow:
L = lo(T-lZI.nl:
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The area under the curve. resulting from plotting L vs. heating time, represents the
equivalent minutes at 121.1°C. The area under the curve can be determined by counting
the number of squares. using a planimeter or by approximating to standard shapes. Also
for this method, process time determination for target process lethality requires a trial and

error technique.

Formula Methods

The procedure that Ball (1923) applied in thermal process calculation was the basis
for a new set of methods termed “Formula methods™. Process determination using Formula
methods is considerably faster due to applying heat penetration data in form of heating and
cooling rate indexes (f; and £,) and lag factors (jx and j..). Formula method determines the
process time for a pre-selected process lethality or alternatively. process lethality of a given
process. Hence using the parametric form of hear penetration data with appropriate
mathematical procedures. the effect of processing conditions (retort temperature and initial
temperature of the product) as well as the effect of different package sizes. Following is a

brief review of some of the most applied Formula methods.

Ball’s method: As mentioned previously. Ball's method (1923} is considered to be
the tirst developed Formula method and it has a great contribution to the value of
mathematics in food processing (Merson er al.. 1978). Ball developed equations for
predicting the temperature at the critical point inside a can. This equation was applied in
general equation of (2.5) to determine the process lethality. The temperature prediction
equations were based on the experimental observations that a semilogarithmic plot of the
difference between medium and product temperatures vs. time. after some initial time lag,
was usuallv a straight line. The same approach is applied for cooling portion. Such typical
heating and cooling curves are shown in Figure 2.I. They basically comprise of a
hyperbolic heating lag portion. a logarithmic straight-line heating, a hyperbolic cooling lag
and a logarithmic straight line cooling. Ball ignored the effect heating lag portion. as in
usual conditions the product temperature in below the lethal temperature and the
accumuiated achieved lethality is negligible. However, the effect of heating lag can be

included for processes with high IT, large z-value. or processes with low heating required
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lethality. F,,,. Therefore. only the equation for the straight-line portion was considered for
the heating portion. This equation with respect of heating raie index (f;) and heating lag

factor (j,) was described as follows:

T=Te = ju(Tor ~ T, IO 28

where:
Tgrr: retort temperature (°C)
Trr: initial temperature of the product (°C)
ty: heating time (min)
fy: heating rate index (min)

Jen: heating lag factor

For the cooling curve. the effect of cooling lag was considered in calculation of
sterilization value. After start of cooling. the critical center of the package is still at lethal
temperatures and the etfect of this lag should be considered in addition to the logarithmic
straight portion of the cooling. In order to account for cooling, Ball used two separate
equations to predict the temperature during cooling.

For the first portion or when g < t. < f. logt j /0.657):

The temperature in the critical point of the package was predicted with Equation
2.9y

/ :( \Z
T=T 03T -T,_ )x|{l=_jl+| — [_ - ;t_;.l ,
: P ( 0-5275 log( j, 10.657) | { f. | | (2.9

-

where:
L.: cooling time
Je: cooling lag factor
f.: cooling rate index

T,: product temperature at the end of heating
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T.w: cooling medium temperature

For the straight-line portion of the cooling curve when the equation was same as

heating portion with related cooling folog( j /0.657 )< 1 :

T =Tg + j (T, —Tey YO (2.10)

After defining the temperature prediction equations. Ball substituted them in the
equation (2.5). The resulting equation could not be integrated anaiyiically and concluded
in a direct relation between F, and 1, (process time). Hence Ball solved the equation
graphically by evaluating the resulting integrals. The results of integrals were presented in
table and graph formats. These tables and graphs related g-value. as a measure of process
time. 1o /L ratio. as a measure of sterilization value. Balil applied parameter U as the F
value of the process at the retort temperature. These tables and graphs could be applied for
any z-value.

During development of the tables and graphs. Ball assumed a constant cooling lag
factor ¢, ). equal to 1.41. Also the heating rate (fy) was applied for the cooling portion. or
in other words f, was equal to f. Further. in the development of the method (Bail and
Olson. [957). with respect to two dimensionless parameters of P, und P, for determining
the sterilization value. thev accounted for vanation of f, and f.. Obviously the conditions of
alf processes do not comply with these assurnptions and result in errors in process
calculations. Merson er al. (1978) and Havakawa ([978) evaluated this method and
reported the inaccuracies of the method. Ball method overestimates the process time.
which provides a safety factor (Merson et al.. 1978) for process calculations.

The time duration until retort reaches the processing temperature is termed come-up
time (CUTY and a portion of this time can hold lethality etfect. Ball assumed 42% of this
time should be added to process time. which holds the product at retort temperature until
the steam off. He implemented this time duration in his method by shifting the zero of the
heating time axis by 0.58 of CUT. It should be mentioned thar this percentage is not
always same and several researchers have taken into accoumt to carefully evaluate the

effect of CUT (Havakawa and Ball. 197[: Ramaswamy, [993).



Further there are some food products that do not follow a constant mode of heat
transter. and due to modification of the nature of the food product during the heating, the
mode of heat transfer will change. This condition of heating is known as broken heating
and is more common of those kinds of food products initially heat by convection: then. due
to the activity of some thickening agents as starch gelatinization, the mode of heat transfer
changes to conduction. Ball and Olson {1957) accounted for this effect by considering two
straight-line segment of the heating curve with different slopes instead of one straight line
(broken heating) in semi-logarithmic heating graph.

Hicks (1958) found several mathematical errors related to the lethality of heating
phases. F.,. in Ball and Olson’s parametric values. He prepared a numerical table of
recalculated parametric values. Gillespy (1951} defined a method for estimating the F-
value for the whole can by using Ball's asymptotic approximation for heating and
developed an approximate method for cooling. Herndon et al. (1968) prepared computer-
derived tables based on Ball's method. Griffin ez al. (1969: [971) improved these tables for
broken-heating curves and for cooling curves. Pflug (1968) compiled abridged tables from
Ball and Olson’s tables and also from Hick’s table in parametric values and considerably
simplified the calculation required for process evaluations.

Spinak and Wiley (1982) reviewed Ball’s method and considered the accuracy of
method in comparison with a General method. In this work they compared the process
umes for processing selected food products in retort pouch with respect to Ball's method
assumptions and real values from the process. The result showed the process time
determined by Ball's formula method requires the effect of retort come-up time lethality
and the actual cooling lag factor (j..). However. acwal f. value showed no significant
etfect in accuracy of Ball's formula method.

In a further review of Ball's method (Steele and Board, 1979a). the inaccuracy of
Ball's method was considered to be in a safe region for underestimating the process
sterilization ratio. Therefore. it was concluded in this work that related inaccuracy
introduces a safety factor to some calculated processes and of course the production of safe

products is one of the primary criteria of thermal processing.
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Vinters et al. (1975) parameterized the data from the tables in Ball's formula
method. replaced tables and graphs in this method by algebraic. regression equations.

Therefore. this method could be used in a programmable calculator.

Stumbo’s method: While attempting to revise the tables developed by Ball.
Stumbo and Longley (1966) developed a new set tables to account for the variability of ji.
values. The values of these tables were obtained by graphical measurement of hand drawn
temperature profiles plotted on the lethal rate papers and subsequent interpolation of these
tables. As the authors implied. these tables were applicable for cases in which the
difference between fy, and f. were less than 20% of the respective f; values.

Later. the revised form of these tables were published ({Stumbo. 1973). The revised
tables were based on computer integration of temperature profiles generated from heat
transter equations. using finite difference simulations. However. it should be noted that
these tables are applicable only when f, . (Hayakawa. 1978). A correction for fn.f. can be
made as long as the value for the heating lethality can be obtained through a different
method (Stoforos. 1997). The rest of procedures for process calculation were same as
Ball’s method. Computer implementation of Stumbo’s method was introduced first by
Manson and Zahradnik (1967). using Stumbo and Longley’s tables and after bv Tung and

Garland (1978). using Stumbo’s revised table values.

Hayakawa’s method: For the first time Hayakawa (1970) applied a set of
empirical formulas. each of them concerned to a specific range of j values. The curvilinear
parts of the heating and cooling curve were represented by exponential cotangent and
cosine functions. The minimum and maximum j values that are related to these tables are
0.045 and 3.0. respectivelv. He also prepared a table of new parametric values by using his
empirical formulas. and developed a procedure for the evaluation of heat processes. These
tables were applicable to almost any :-value. resulted in eliminating the required
interpolation for the :z-value. Therefore. the process calculation was significantly

simplified.



Steele and Board’s method: Steele and Board (1979b) and Steele er al. (1979)
reviewed Ball's method and improved this method by introducing sterilization ratios to be
used instead of temperature differences. This ratio was defined as the temperature
difference between the heating (or cooling) medium and product by the slope of the
thermal death time curve for the concerned microorganism. Using these dimensionless
ratios was advantageous in four main aspects. Firstly. the method could be applied for any
temperature scale whilst the same scale was used in determining the sterilization rattos.
Secondly. the number of associated tables were less compare 0 Ball's method as z-value
was incorporated in the sterilization ratio. Thirdly, the tables could be approximated more
readily for a programmable calculator. as one variable was eliminated and finally. the
limits of integration were selected in such a way that errors in tabulated values were

negligible.

Pham’s methed: [n an attempt to revise and improve the Stumbo’s method. Pham
(19871 introduced two serious of algebraic equations for thermal process calculation. The
method relied on the conduction heat transfer equation of a finite cvlinder. Hear transfer
coeffictent at the container walls was infinite and the initial temperature distribution was
uniform. Two ranges of stefilization values were considered: high sterilization value or in
cases when the product temperature is very close to heating medium temperature at the end
ot heating (L/f>1) and low sterilization value (//<1). For high sterilization value range an
analytical solution was applied for the temperature prediction equation. the resulting
solution of equations where simple algebraic equations. relating g¢-value to U directly
within 3% error (Pham. 1987). For the low stenlization value range a numerical solution
was applied and regression equations were generated. However. the result of these
solutions was introduced in tabulated format. in form of dimensionless parameters. Pham
considered the variability of T and Tcw in these tables and equations. it shouid be noted
that none of the previous mentioned methods took into account the variability of these
parameters. Also. Pham (1990) incorporated the variability of f, and f.. in the development
studies of a new method. As the author implies. the applied method for considering this
variability can be used in many other methods. In addition. Pham (1990) compared his

method {with and without equality of f; and f.) with other methods using Smith and Tung
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( 1982) methodology. In case of fy=f, the method was as accurate as the Stumbo's method.
and in cases of fif., 1% error was reported for a 20% difference between these parameters.
This method has the advantage of being applied in on-line computer control and
optimization of the thermal process. for being introduced in form of algebraic equations

refating U and g directly together.

Evaluation of Formula methods

The accuracy evaluation of formula methods is essential for an efficient and
successtul thermal processing determination. Smith and Tung (1982) necessitated such a
study for the importance of an accurate thermal process resulting in the minimum
nutritional loss and improving quality of the product. Five major formula methods: Ball's
table method. Ball's equation method. Stumbo’s method. Steele & Board's methoed and
Hayvakaw's method were examined in this study. The reference model was based on a
numerical general method to calculate the accumulated achieved lethality of the process for
comduction heating food products in cyvlindrical packaging. A set of processing condition.
product thermal diffusivity and can dimensions were used as the initial inputs of the model
to obtain achieved process lethality. In an initial study. unachieved temperature difference
at the end of heating (g-value} and can dimensions (H/D) were assigned as the most
significant factors in deviations in calculation. A general increase in deviation for H/D
near to unity was observed and the magnitude of g-value had a direct effect on deviations.
Stumbo method had the highest accuracy in process lethality calculations. All the methods
underestimated the process lethality, which represented an extra safety limit.

Pham (1990) used the same methodology as Smith and Tung (1982) after
developing a formula method accommodating the variability of f, and f,. Pham’s formula
method (1987} had about the same accuracy as the method of Stumbo and had the better
accuracy than Ball, Steele & Board and Hayakawa's methods. The same accuracy of Pham
and Stumbo’s method is for similarity in their derivation. however the major difference is
the algebraic expressions used in Pham method.

Ghazala er al. (1990) examined the accuracy of five formula methods in
comparison with a finite difference model based on conduction heat transfer of thin profile

packaged food products. The comparison was performed based on a set of processing
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conditions, food properties and a range of packaging size. A fixed value of process
lethality was assumed to arrive at different process times with respect to selected
conditions. Although Pham and Stumbo had the smaller errors compare to Steele & Board
methods (equation and table) and Ball method. within the range of experimental conditions
the overall difference between the methods were small. It was believed that finite
difference models based on a thin profile packaging result in a better estimation of process
parameters (especially j..). which formula methods are based on.

Larkin and Berry (1991) had a more specific estimation of different formula
methods based on cooling lethality. A range of cooling rates (resulted from the variation in
thermal diffusivity of product or can size}, cooling lag factors (by changing the relative
position along the radius within the can). can dimensions and temperature differences
between final heating and cooling temperatures were considered for this study. All the
selected tormula methods rather than Pham’s and Ball's method with a constant j,, of 1.41.
underestimated the cooling lethality of the process for a complete range of selected can
dimensions. However with an increase in j.. value, Pham’s method began to underestimate
the cooling lethality also. The temperature difference at the beginning of cooling and
cooling medium temperature affected the cooling lethality but the differences between the
lethalities predicted by different formula methods did not change. Retort temperature had
only effect on Pham’s method in cooling lethality calculation and the other formula
methods were independent of this variable. Also this study showed that lower jcc values
than 1.41 results in more overestimation of cooling lethality. Nevertheless. smaller j.
values showed lower contributions of cooling lethality to total process lethality.

Stoforos er al. (1997) carried out a broad and comprehensive study on thermal
process calculation methods. The performance of some of the methods was compared
against temperature prediction using a finite difference model for conduction heat transfer
equations. Ball method has inability of temperature prediction at the beginning of the
heating. showed as a comparison with Hayakawa’s method and finite difference model.
However. this initial lag in temperature prediction is negligible as the product temperature
is below the lethal temperature and the achieved lethality in the initial portion of heating is
insignificant. Besides. the accuracy of each model at the beginning of the heating

determines which particular model can be used in handling time-varying medium
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temperatures. Numerical solutions of heat conduction equations, which are capable of
accommodating the medium temperature variability, are among the most preferred methods

for handling time-varying medium temperatures.

Numerical models of thermal process calculations

Numerical methods are based on simulating the conduction heat transfer in
packaged foods. Numerical solutions to Fourier’s partial differential equation of
conduction heat transfer results in a temperature profile of product during the thermal
processes. For a regular shaped container such as a cvlinder or a rectangular slab. which
are more common in food industry, a finite difference solution based on a regular gridwork
of the nodes is applied. However, for irregular shapes. a more complex technique of finite
eiement method is required.

The equation. which expresses transient temperature at the center of a finite

cylinder, is as follows in cvlindrical coordinates:

—_— —+ — +
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oT a-T . 2.11)

where:
T: temperature
t: time
o thermal diffusivity
r- radial position in cylinder

h: vertical position in cylinder

This equation is the partial differential equation for two-dimensional unsteady state
conduction heat transfer in a finite cylinder. This equation can be written in finite

differences to be solved with a numerical solution:
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Finite differences are discrete increments of time and space defined as small
fractions of process time and container space {(Ar. 4h and Ar. respectively). For
convenience in calculations and based on symmetry, usuaily half or a quarter of the
container is considered in calculations. The temperature nodes are assigned for this
selected volume as shown in Figure 2.2. Appropriate boundary and initial conditions are
required to calculate the new temperature at each node. after a small time interval. At the
beginning of the process. the interior nodes are set equai to initial temperature of the
product and nodes in surface are set equal to retort lemperature (when the associated
surface heart transfer coefficient is large). Afier each time interval the new temperature at
each node is calculated. which replaces the previous temperature. This procedure is
continued until the end of heating when the boundary conditions change from heating to
cooling and computation continues usually with a finite heat transfer coefficient associated
at the container surface. In this way. the temperarure at the center of can is calculated after
each time interval. which results in a temperature profile from which the process
sterilization value can be computed.

Numerical models can be used instead of heat penetration test to obtain the
temperature profile of the product. when the thermal properties of the product are known.
Also the retort temperature need not be held constant and can vary during the process.
Therefore these models can be used in continuous processes. when the cans pass from one
chamber to another. and the heating medium temperature changes during heating process.
This advantage has provided the potential of these modeis in on-line control of thermal
processing. Teixeira ez al. (1969) applied such numerical models in optimizing the nutrient
retention in conduction-heated foods. The main importance of these models was providing
the temperature at any position inside the can. The application of these models in on-line
control has been extensively studied (Datta er al. 1986: Teixeira and Manson. 1982:

Tucker. 1991 Teixeira and Tucker. 1997.
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Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems built up of
interconnected processing elements, which are able to map information between a set of
input variables to related output vanables. A very fundamental component of brain or
nerve cells. neurons, is also the basis of the ANN computing.

Regard to this similarity, there are three main sections of biological neurons, which
are important in understanding the structure of ANNs. A biological neuron consists of
three main components (Figure 2.3). Dendrites (input paths) receive the information as
signals from other neurons. Signals are chemicals in nature, but they have electrical side
effects. which can be measured. The soma or cell body sums the incoming signals and
after receiving sufficient inputs, it will fire signal through its axons (output paths). The
axon of a neuron splits up and connects to dendrites of other neurons through a junction
referred to as a synapse. The strength or synaptic efficiency depends on released chemicals
from axon and the amount that is received by dendrites. The synaptic efficiency is what is
modified when the brain learns.

[n simulating the brain neural network. a processing element (PE) with its
connections is the ANN equivalent of a neuron. The PE acts as the cell body. There are
input connections to the PE. like dendrites. which transfers the signals to the PE. Qutput
connections from PE. like the axon. transfer the signals to the other PEs. The
interconnections possess parameters known as weights. which will be modified through the
learning procedure (as the change in synaptic strength). The information transformation is
performed through the interconnections between all the PEs. In a typical ANN structure.
processing elements are arranged through layers (Figure 2.4).

Usually an ANN consists of one input layer. at least one hidden layer and one
output laver. Input layer receives the information from an external source and sends them
to the network. Hidden layers process the information from input laver and transfer them
to the output layer. Output layer receives the processed information and sends them to an
external source. When the PEs in input layer send the information in the form of signals to
the network. the strengths of interconnections are altered based on the amplitude of the

signals. These changes are distributed all over the network through connections and. at the
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end. manifest themselves in the form of outputs. One important characteristic of ANN is
that it processes information numericaily rather than symbolically. The network retains its
information through the magnitude of the signals passing through the network and
interconnections between processing elements.

Figure 2.5 shows the basic structure of a processing element and its connections.
The inputs into j* layer are basically the outputs of the previous layer processing elements
as an input vector. a. with components 4, (i=1 to n). The output of processing element (b))
ts the result of a transfer function (f) over a summation of inputs multiplied by weight
parameters and addition of a bias value (7}). Transfer function can be varied depending on
the nature of the data. The most common transfer functions in solving non-linear problems
are sigmoid function and hyperbolic tangent. A sigmoid (S-shaped) tunction is depicted

mathematically as follows:

flx)= —— (2.13)

This tfunction varies between O (at x,=-o<) and | (at x=+e<). Sigmoid functions. due to their
limiting values. are known as threshold functions. At very low input values. the threshold-
function output is zero. At very high input vajues. the output value is one.

Hyperbolic tangent functions also typically produce well-behaved networks. This

function also has two limiting boundaries of +1 and -1:

f(x)=tanh(x) = .e‘_—e_‘ (2.14)
e +e

As the response of this function includes both positive and negative region. their
application are recommended for data set with negative and positive output range
tSwingler. 1996).

Development of an artificial neural network model
An important factor. which distinguishes different neural networks, is the method of

setting the values of the weights or training the network. In training, ANNs generally can
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[nput vanables

Figure 2.5 Diagram of a processing element and related calculations




either be supervised or unsupervised. In supervised training, there is an associated output
along with any input vector in training data set. Therefore, the weights are adjusted
according to the target output. The most common application of this method is in
classification, prediction, and pattern association problems. On the other hand, in an
unsupervised learning, a sequence of input vector is provided but no target outputs are
specified. The network will act in a self-organizing manner to modify the weights so that
most simifar input vectors are assigned to the same output (or cluster) unit. As the
definition reveals., unsupervised learning is mostly applicable in data clustering problems.

Besides the mentioned classification, in each group. there are several algorithms of
training. Backpropagation is one of the most applicable algorithms in problems involving
mapping of a given set of inputs to a specified set of target outputs (Fausett. 1994).
Backpropagaiion algorithm is simply a gradient descent method to minimize the totai
squared error between the output computed by the network and target output. There are
three main stages in backpropagation algorithm: a feedforward of the input training pattern.
caleulation and backpropagation of associated error and adjustment of weights with respect
to calculated error.  Although the training of ANN model is time consuming. 2 trained
network will only apply a feedforward phase to compute the associated output and renders
this phase very rapidly.

The major task in training a network is to bring the network to a balance between
memorization and generalization. Memorization is the ability of the network in correctly
responding to input vectors used in training. Generaiization is the ability of network to
respond to input vectors in the domain of training vectors but not identical to input vectors.
A proposed procedure for achieving this goal applies two disjoint sets of data known as
training and testing data sets. Training data set is used to updating of weights: however, at
intervals during training, the network is tested with testing data. As long as the network
error for testing data is decreasing, the training continues. When this error begins to
increase the network starts to memorize the features in input pattern too specifically and
loses its generalization ability therefore at this point the training is terminated.

To develop an optimized network, the number of hidden lavers and processing
elements in each laver should be selected carefully. In addition to structure of network.

related parameters to improve the learning task should be optimized. Two of these
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important factors are momentum and leaming rate. which control how effectively
backpropagation trains the network (Baughman and Liu. 1995). The learning rate is a
positive constant and controls the rate at which the new weight factors are adjusted based
on the calculated gradient descent correction term. The momentum coefficient is an extra
weight added onto the weight factors that accelerates the rate at which the weight factors
are adjusted. helping the network to avoid the local minimas. A well-optimized network
has the ability of extracting the relationship between the training data set and adapting its

internal structure based on related information.

Applications of ANN in Food Science and Agriculture

Many problems e¢ncountered in foed. agricultural and biological industries lend
themselves to a neural network solution. The application of ANN in different problems is
introduced.

One of the first applications of neuro-computing in food technology was introduced
bv Thai and Shewfelt (1991). The combination of neuro-computing and statistical
techniques was used to determine the most relevant factors in relating sensory judgment by
human and physical measurements of external color of tomato and peach. In this study. the
application of neural networks was faster compared to statistical techniques for having
fewer steps in analysis step: however. statistical techniques were slightly more
advantageous for higher accuracy. Consequently. neuro-computing technique were applied
to get the basic teatures of the relation: and statistical techniques were used to improve the
numerical accuracy of resulting mathematical functions. With respect to this study and
above mentioned procedure. the relationship between sensory evaluations and physical
measurements of tomato and peach were identified as particularly linear.

Bochereau er al. (1992) applied neural network technique as a part of procedure for
prediction of apple quality using Near Infra-Red (NIR) spectra data. In order to reduce the
number of input parameters and excluding uncorrelated inputs to the neural network model.
principal component analysis (PCA) was applied. A multiple regression analysis was then
carried out to derive the best linear estimator and finally the neural network model was

developed to extract the non-linear function input and output components. The final result



was a model for predicting the apple quality from NIR spectra. ANN modeling resulted in
3 % increase in accuracy of the linear model with R? equal to 0.82

Linko and Zhu (1992) studied the potential of ANN techniques to construct an
appropriate real-time state estimation and prediction mode! applicable to process control in
glucoamylase fermentation. In comparison with conventional modeling, ANN had the
ability of handling uncertainties. complexity, noise and unavailability of data. which are the
common cases in the biochemical reaction analyses. The most related on-line data as
oxygen consumption rate (OCR), carbon dioxide evolution rate (CER) and the nitrogen
utilization rate (NUR) along with other inputs were applied to estimate the enzyme activity
and biomass in on-line control. The ANN models had the advantages of ease of use
without a prior knowledge on the complex mechanism of microbial physiology or on the
interrefationships of the variables. Once trained on a typical example data. it ANN model
could suppress the noisy dara. The developed ANN model performed very satistactory and
compared well with real values from off-line analyses.

ANN models were applied as a quality prediction model for black tea and resin
samples based on data from chromatography and sensory information (Tomlins and Gay.
1994).  Although multiple regression techniques were more accurate compared to ANN
modeling. the results of ANN model were improved by reducing the training variables
assigned by stepwise multiple regression. I[n addition. ANNs for cases in which the
accuracy is not important (for example in quality control) provides more advantageous
application in predicting several parameters simultaneously. The combination of statistical
procedures and ANN were suggested as useful tools in pattern recognition and regression
of chromatographic (GC and HPLC) and sensory data.

Park er al. (1994) applied an ANN model for predicting and classifying beef
characteristics using ultrasonic spectral feautures as the input data for training the models.
ANN models provided better results compared to statistical regression models for
predicting the sensory attributes of beef as juiciness. muscle fiber tenderness. connective
tissue. overall tenderness and flavor intensity. The relationships between physical
attributes and sensory properties were mostly linear as an ANN model developed without
hidden lavers performed best. The accuracy of ANN model for classification were a

function of learning schedules. number of processing elements in hidden layer and number
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of input variables. Increasing the ultrasonic spectral features as input variables increased
the accuracy of classification.

Sayeed et al. (1995} investigated the possibility of an ANN model development for
sank quality evaluation. For this purpose a machine vision technique was applied to
quantity the quality features of typical snack products in the form of texture (reflecting the
internal structure) along with size and shape features. The relationship between the
mentioned variables and sensory attributes were not adequately linear as examined by
linear regression. therefore the input variables were applied to train a backpropagation
ANN model to learn the non-linearity between input and output variables. The developed
ANN mode! was validated with a set of untrained data and the prediction results were
compared to those from a taste panel. The developed methodology had a potential
application in snack production industry as a non-destructive method of quality evaluation.

The potential ANN models for milk shelf-life prediction was evaluated by Vallejo-
Cordoba er al. (1995). Dynamic headspace gas chromatographic data collected during the
storage of pasteurized milk were applied as input to be related to flavor-based shelt-life of
milk in days as dependent variable. ANN and Principle Component Regression (PCR)
techniques were used and compared for their predictability. ANN. with 2-day standard
error in shelf-life prediction. performed better that the 4-day error PCR technique. and
indicated a higher predictability for this concept.

Sablani er al. (1993} investigated the potential of ANN models for prediction of
optimal sterilization temperatures. A finite difference model generated the data for a set of
assigned conditions (can size. thermal diffusivity and kinetic parameters of quality factor)
to obtain the associated sterilization temperatures. Afterwards the optimum conditions and
related quality factors were applied as inputs to train the ANN model. The trained model
was able to predict the optimal sterilization temperatures with less than 5% error. In
attempt to predict the overail heat transfer coefficient and fluid to particle heat transfer
coefficient using ANN modeling technique, Sablani ¢r al. (1997) obtained significantly
superior resuits compared to dimensionless correlation techniques. Beside the higher

accuracy of prediction. ANN models were more versatile than dimensionless number

models.
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Rauvan er al. (1997) compared the predictability of ANN models for rheoligical
properties of a cookie dough. The raw input data were obtained from mixing power
consumption curves. The investigated rheological properties were farinograph peak.
extensibility and maximum resistance. Two spectrum analysis techniques. Fast Fourier
Transform (FFT) and power spectral density (PSD) were used for data preprocessing as a
part of ANN model development. Using these techniques the raw data (time domain data)
were converted into frequency domain data. The above-mentioned techniques improved
the training ability of ANN models for reducing the noise and size of the initial raw data
and were recognized as successful techniques of data preprocessing in this study.

Ghazantari er al. (1996) studied the suitability of multi-structure neural networks
(MSNN) over a single multi-layer neural network (MLNN) for classification of pistachio
nuts. The MSNN classifier was constructed from four single ANN models. which were
trained separately with one output variable from each network representing one variety
(class) of pistachio nuts. The input data for these models were physical attributes of nuts
derived from their images. The classification accuracy ot developed MSNN was compared
with MLNN model. The MSNN technique significantly increased the classification
performance. In addition, MSNN had the advantage of smaller network architecture.
which is more preferable for hardware and software implementation.

Angerosa et al. (1996) developed an ANN model as alternative to sensorv
evaluation performed by a taste panel for virgin olive oil by panel test. A wide range of
samples (covering different variety. quality. ripeness. sanitary and geographical origin) was
subjected to a sensory evaluation by a taste panel. The results of quantification of volatile
fractions using headspace gas chromatographic technique were used as input data to predict
the panel test scores (output variables). The ANN model was able to generalize the
relationship between these two sets of data successfully with a high degree of accuracy.
suggesting the substitution of developed ANN model with panel test.

Briandet er al. (1996) applied ANN technique as one of alternative statistical
approaches for correlating data from Founer transform infrared (FTIR) for detection of
adulterated freeze dried instant coffee. This FTIR technique was applied as a rapid
aliernative to wet chemistry methods: however, data analysis of this technique were more

complicated. ANN models were compared to principle component regression and partial
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least square regression, and the superior performance and generalization potential of ANN
model was demonstrated with an independent set of data with 100% correct classifications
ability.

Pamer er al. (1997) developed an ANN model to evaluate the factors involved in
the contamination process and also the significant factors in the magnitude of aflatoxin
contamination of in preharvest peanuts. Alternative to ANN model. a stepwise traditional
regression model was developed for this purpose. The input variables (soil temperature,
drought duration, crop age and accumulated heat units) were related to aflatoxin levels.
This study showed the ability of ANN models for this purpose in addition to better
performance than linear regression technique.

Kim and Cho (1997) applied three developed ANN models as a part of a fuzzy
controtler in bread baking process. For this purpose three main parameter in bread baking
process namely volume, browning and temperature were measured in 3 seconds and 2
minutes intervals, resulting in training data for 3 ANN model development. The neural
networks showed a good performance for predicting temperature, volume and browning.
The knowledge from developed models and an experienced operator were used to define
Ll rules for fuzzy controller. Using a fuzzy controller instead of a human operator can
reduce the cost of heating of the oven. without the loss of bread quality.

ANN models as an alternative in data-processing technique to partial least squares
(PLS) and principle component analysis (PCA) showed better prediction ability (Horimoto
et al.. 1997). In order to classify the flavor quality of milk as a part of quality control.
dynamic headspace gas chromatographic was used to quantify the off-flavor components.
UHT milk was inoculated with various bacterial species and storage times. The content of
training and testing data as well as optimized parameters. which were related to ANN
model development (leaming rate. momentum factor and hidden PEs). influenced the
predictive abilitv model.

During isobaric-isothermal inactivation of o-amylase enzyme, pressure and
temperature had a complex effect (Geeraerd et al.. 1998). A model based on Arrhenius law
presented a non-linear description of the system. Due to lack of data. an ANN model was
applied with respect to its ability in prediction of complex systems. The ANN model was

able to predict the complex effect of pressure and temperature on the inactivation rate



constant using a limited set of experimental data. The effect of transfer function of each
neuron was believed to be important in a low complex ANN model development.

Gebri et al. (1998) applied ANN modeling in predicting the origin of white vinegar.
Among different chemico-physical and sensory analysis, selected parameters such as
polvalcohols. pH. tartaric acid and proline had the most reliable rule in discrimination of
the product. A broad data set covering products from a vanety of raw materials and from
various countries subjected to multivariate statistical analysis were used to develop the
ANN model. The ANN model was able to predict the botanical origin of the product and
also was able to re-classify products with unknown origin.

The above review indicates the status of available methods of process calculations
(with sufficient scope for developing new method, which can reduce process calculation
errors . as well as the potential of ANN models for use in pracess calculations. The present
thesis aims at developing an ANN based process calculation model. which would be more

versatile and accurate than the existing methods.
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CHAPTER 3

ANN SIMULATION OF BALL AND STUMBO FORMULA METHODS OF THERMAL
PROCESS CALCULATIONS

ABSTRACT

Application of ANN models to simulate Ball and Stumbo methods of thermal process
calculations is presented in this study. ANN models were developed based on relating Ball and
Stumbo table parameters to facilitate process calculations. The ANN models related g value (as
a measure of process time) to f/U (as a measure of process lethality). Tables developed by
Stumbo accommodate the j, (cooling lag factor) while relating g and f,/U. therefore. for
developing ANN models of Stumbo method, j.. was also considered as an additional input
vanable. The developed ANN models for Ball and Stumbo metheds were validated using a new
set of processing conditions. involving a range of retort temperatures. initial temperatures.
heating rates and heating lag factors [and additionaily. for Stumbo method. cooling lag factors
1.1} The prediction efficiency of ANN models were a function of the size of training data set.
number of hidden layers and PEs in each hidden layer as well as other learning parameters.
ANN based Ball models had an average error of [% tor the validation data set while the ANN
based Stumbo models had a slightly higher 3% average error for process time and process
lethality calculations. The smaller size of data set and a wider range of parameters associated
with Stumbo tables were considered to be the reason for the associated higher errors with the
ANN based Stumbo models. In general. the ANN models were considered to simulate Ball and

Stumbo methods of process calculations well providing 2 basis for turther exploration of the

concept.
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INTRODUCTION

Thermal processing of packaged foods is one of the most widely used methods of
preservation in twentieth century (Teixeira and Tucker. [997). Nicholos Appert introduced this
method tfor the first time in 1810. The concept of thermal processing is based on heating of
packaged foods for a certain length of time to obtain a safe product complying with public health
standards. Thermal processing is based on established time-temperature profiles. Associated
with thermal processing is always some degradation of heat-sensitive quality factors that is
undesirable. Since much demand is on safe and shelf-stable food products along with a high
quality attributes. processing schedules are designed to keep the process time to the required
minimum.

The main objective of thermal process calculations is to determine the process time for
achieving a pre-selected process lethality or evaluating the lethality of a given process. For the
first time. Bigelow er al. (1920) introduced a graphical procedure of evaluating the efficiency of
heat treatment process for packaged foods. Ball (1923) refined the concept and developed a
mathematical model (referred to as Ball method) for calculating the required process time of
canned foods. Besides some limitations in this method. the Ball method is considered a
milestone in canning industry and still is a widely used method in industryv. This method is
positioned as a classical tribute to the value ot mathematics in food processing.

Ball method is based on the observation that a semi-logarithmic graph of temperature
difference between product and medium vs. time is a straight line after an initial curved portion
(lag ume). Ball ¢1923) calculated the process time based on the equation of this straight line and
integrating the effect of process time over the kinetic data of microbial destruction. Usually the
etfect of curved portion of heating is not considered. as the lethal effect of this portion is
negligible compared to the total achieved lethality. However. under conditions of high initial
temperature. large z-values or processing for low required lethality. the efficiency of this portion
of heating should be taken into consideration.

The estimation of proper heat processes is essentially based on the calculation of process

lethality. F,, computed as follows:

¢ TuT
F,=[10 = ar 0
0
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where:
Tes: reference temperature
T: center point temperature

z: temperature sensitivity indicator of F value.

For low acid food products. 250°F (121.1°C) is widely used as a reference temperature. Ball
developed tables and graphs to relate process time and process lethality. These tables and graphs
were based on relating two parameters: g (temperature difference between product and heating
medium at the end of heating) as a measure of process time to f,/U (ratio of heating rate to
sterilization value) as the measure of process lethality. Some restrictive assumptions were made
during the development of these tables and graphs. One of the most important parameters. which
can sometimes cause errors in calculations. was a constant cooling lag factor. /., value. equai to
{.41. Therefore. Ball method overestimates process lethality when j..<1.4| and underestimates
when j, >1.41 (Ball and Olson. 1957: Hayakawa. [978). Also. Ball (1923) assumed an equal
heating and cooling rate (f,=f,). In practice. the values of these two parameters ditfer from each
other. It has been found that for steam heating and water cooling f.~1.3f, (Pham. 1990) and
obviously disregarding this inequity interferes with the accuracy of process calculations. Ball
method has been widely reviewed and evaluated by several researchers (Merson er al.. 1978:
Flambert er af.. 1977: Steele and Board. 1979: Spinak and Wiley. 1982: Stoforos. 1991).

Stumbo and Longley (1966) reviewed and revised tables developed by Ball (1923). The
variability of j,. value was considered in these tables for more reliable and accurate thermal
processes calculations (Stumbo. 1973). These tables are obtained from hand drawn heat-
penetration curves and relate /U and g values with respect to variability of j,.. Also the
vanability of fi, and f. was considered in developing these tables. but it applies onlv to cases
where the difference of f; and f. is not more than 20% of respective f, value (Hayakawa. 1978.
Stoforos er al.. [997).

Artificial Neural Network Models

Artiticial Neural Network (ANN) models are computational models made up of several

processing elements (PEs). which are connected through weighted links. Development of model
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is basically based on adjusting the weights through presenting adequate number of examples
consisting of input and output variable pairs.

Generally ANN models are constructed from an input layer. an output layer and one or
more hidden layer(s). Input layer transfers the information to the network for processing.
Output layer receives the processed information and sends it to external receptor. Hidden layers
process the received information from input layer. extracts the existing features in input variables
and predict an output. Among different networks, back-propagation network has the most
applicability in prediction and classification problems. Backpropagation network is a feed-
forward network. which propagates back a portion of error between desired and ANN predicted
output to correct the weight parameters.

Recently, ANNs have shown a potential for applications in food science and technology
areas. Eerikainen et al. (1993) presented a series of examples of potential application of ANN
models in tood-related applications. Parmer er al. (1997) applied neural network modeling for
estimation of aflatoxin contamination in peanuts which performed better than traditional linear
regression techniques. Ni and Gunasekaran ( [998) simulated the complex task of food quality
prediction using ANN models. Boucherau er al. (1992) developed a neural-network-based
method for prediction of apple juice quality using near intrared spectra. Neural networks were
used to determine the significant variables in harvesting and processing effects on Surimi quality
by Peters er ul. (1996). Kim and Cho (1997) developed an ANN model for the bread baking
process. using three quality factors ot volume. browning and temperature. In thermal processing.
Sablani er al. (1995) applied neural network models to predict optimum thermal processing
conditions. As an application in drying. Sreekanth e al. (1998) developed an ANN model for
prediction of psychometric parameters.

The global objective of this study was to evaluate the potential of ANN models as an
alternative to conventional process calculation methods. As a first step in this direction. data
from two classical methods: Ball and Stumbo methods. were used to develop the ANN models
and assess their performance. Hence. the specific objective of this paper is ANN simulation of

Ball and Stumbo formula methods of process calculations.
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MATERIAL AND METHODS

ANN modeling of Ball and Stumbo methods

Ball and Stumbo methods relate process time and process lethality by employing two
parameters. ¢ and f/U. in the form of tables or graphs. In tables developed by Stumbo. the effect
of j.. on this relation is also considered. For a known process time along with the other
processing conditions, g-value will be known: alternatively for a given process lethality. /U will
be known. For developing ANN based process calculation models. Ball and Stumbo methods
were simulated based on relating the parameters of these tables. Data (f,/U vs. g or g vs. fyyU) for
both training and verification were obtained from tables published in Lopez (1987) for Ball
method and Stumbo (1973) for Stumbo method. Detailed tables were available in Lopez (1987)
and hence 1050 data pairs were used in Ball modet for training. For Stumbo method. only 44
data sets relating fi/U vs. g (and vice versa). were available at 9 different values of .. A z-value
of 10C” was used for both models. For each method. two models were developed one for

predicting fi/U based on g, and vice versa.

Development of ANN models

Ball model

NeuralWorks Professional [I/Plus. version 3.23 (NeuralWare Inc.. Pittsburgh. PA) was
employed for ANN modeling. A standard back-propagation algorithm with tangent hyperbolic
transfer function and normalized cumulative delta learning rule was applied as the basic
architecture of network. As the input and output variables had a broad range. for a better
presentation of input and outputs to the network and a more uniform data set. a mathematical
transform function was applied. Therefore, log g was predicted from log(fiU). and f/U in the
form of arctangent(log fy/U) was predicted from log g. For a more convenient recalling of
models. trom now prediction of log g will be denoted. as Model A and prediction of fi/U will be
denoted as Model B.

It has been recognized that the network predictability and performance should be
optumized with respect to the size of the training data set. structure of the network. number of
hidden layers. number of processing elements in the hidden layer. type of leaming rule and

transfer function. Several other variables also affect the ANN model development and
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performance. Among them momentum and epoch size have the most significant effect on the
network performance. The momentum represents a fractional value from the previous weight
change added to the present weight correction. {ts value can change between 0 and 1, however.
higher momentum values speed up the learning process and prevent the model from being
trapped in a local minimum. At the same time, large values of momentum will cause large error
oscillations (NerualWare, 1996: Baughman and Liu. 1995). Epoch is the number of training
presentations between weight updates. This method of updating weights which increases the
convergence speed is known as cumulative deita rule learning. However, using cumulative
delta~-rule learning for updating weights will require more calculation and. if the epoch is too
large. the advantage of using overall error function can be lost. Therefore. depending on the
problem. the epoch size should be optimized.

The performance of an ANN model is influenced greatly by the quantity and quality of
data used as the training set (Linko and Zhu. 1992). The training data should have sufficient
information to describe relation between input and output variables. A correct format of input
and output variables could increase the leaming ability of ANNs by detecting and extracting the
relation between input and output variables (NeuralWare. 1996). This stage of ANN models
development is thus regarded as data preprocessing, which could be performed in different ways
to improve the model efficiency (Lacroix et al.. 1997). '

Keeping the above constraints in mind. to select the required number of examples in
training set. a learning curve was developed. The original data ( 1050 data) were sorted from the
lowest to highest value. To have six equal groups of data. every seventh data row was selected
and removed from the original set. These formed the first (Group A) data set of 1735 data points.
The same procedure was repeated with the remaining data until six homogenous groups (A to F)
of data each with 175 data points were obtained from the original data. Each of the group thus
covered the entire range of data in original set. Different combinations of these groups were
used to achieve different sizes of training and testing data sets. These arrangements are shown
in Table 3.1. The data sets that were not used for training were used for testing during
development of model. The developed models were tested also with ail the availabie data from
the original data set to evaluate the consistency of performance. This procedure was followed

for both models (A and B).



Various network architectures and network learning parameters {momentum and epoch
size) were examined, as summarized in Table 3.2. To avoid over-training of models. the original
data were separated into two groups as training and testing data sets. Testing data were applied
to cross-validate the model during the training stage. For this purpose, the NeuralWare software
provides an option called “save best”. Function of this option is to stop the training stage after a
certain number of cycles, testing with testing data and saving the results of the network in a fiie.
Each time. the result of most recent and better network replaces the last saved network. This
procedure is continued until a pre-selected error of network is reached or after number of
iterations without any improvement in learning of network. Finally, the “save best™ network is

retained. and the model is ready for verification.

Table 3.1 Combinations of training and testing data for network optimization
Groupis) in Training ! Group(s) in Testing Number of data pairs ‘ Number of data
set set in Training set : pairs in Testing set .
A . B.C.D.EF | 175 | 375 |
AF B.C.D.E ! 350 i 700
A.C.F B.D.E ' 525 l 525
A.B.C.F ; D.E 700 300
ABCDF E 875 | 175
Tuble 3.2 Range of network architecture and learning parameters used in the study
Number of Pes
Momentum Epoch
t hidden laver 2 hidden layers
2 2&2 0.2 4
5 2&5 0.3 3
1 5&5 0.4 i
13 10&35 0.6 20
- - 08 2

* Bold numbers with underscore are default values provided in software.

Stumbo model
The number of data pairs available for this model was 396 (44 £/U vs. g combinations for

9 j,. values) and covered a larger range of /U and g as compared to Ball table. Input variables
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in developing ANN model for Stumbo method were fi/U and j.. for predicting g value or
alternatively g and j,. to predict fi/U. The j.. variability was considered as the second input. As
in Ball models. notations of Model A and Model B were used for prediction of log g and fiy/U
values, respectively. A part of original data was used for testing. The selection of the ANN

structure and related learning parameters were followed as defined for the Ball model.

Validating the ANN models

After developing ANN models for Ball and Stumbe methods. 2 new set of data covering
a specified range of processing conditions, as shown in Table 3.3, was applied. A Lotus® based
spreadsheet program for process calculations by formula methods, developed by Ramaswamy
(1991). was applied to calculate the corresponding process time or process lethality. The
calculated ¢ (or £/l from the processing conditions and process time/process lethality were
used to recall the ANN models and obtain the corresponding ANN value. After, these recalled
ANN vulues were applied to calculate the ANN based process time or process lethality. the
accuracy of ANN predicted values were compared with the respective values from each method.

The following criteria were used for evaluating ANN models performance:

. (Yq - Y)Z
Root Mean Square (RMS) of error= z—n—

Mean Absolute Error (MAE) = Meanof i ¥, - Y1

EYu -Yi

Mean Relative Error (MRE. %) = Mean of L+ 100

0

where:
Y.,: Desired value
Y: ANN predicted value

n: number of records

For validaing ANN models of Stumbo method. the variability of j., was also considered
between the processing conditions. Table 3.3 shows the range of conditions used to calculate

Stumbo process time and process lethality.



Table 3.3 Range of parameters for validating ANN based Ball and Stumbo models

Parameters # Ball Stumbo
RT (°C) L 115-125 . 110-130
IT (°C) 65 L 70-90
fn (min) 10-20 23-185
e 1220 1.80-2.04
b e 1.41 1.70-2.00
! Process lethality (min) 5-64 5-15 |
{  Process time (min) - 13.7-147 25400 1_
RESULTS AND DISCUSSION
ANN based Ball Model

Model development and optimization

[t has been recognized that the network predictabilitv and pertormance is dependent on
the nature and size of training data set. structure of the network and some relevant parameters
during training. Training data set should ideally cover the desired range of problem and consist
of enough records to let the network learn the features. ANN models learn trend from the data in
training data set. This capacity is based on the number of processing elements (PE) or more
specifically number of connections. [f the number of PEs are more than what is needed with
respect to training of the model. the network may lose the generalization ability and begin to
memorize the data which is mostly undesirable (NerualWare. 1996).

A well-trained network is optimized between generalization ability and learning the
trends in training data set. To prevent the memorizing problem. a separate data set from training
data should normally be selected randomly and this data set will be applied during training stage.
After certain number of cycles. the training is stopped and the testing data set is used to calculate
the error.  After the network has converged to or reached a minimum global error. the training
can be stopped.

For developing the ANN-based Ball modei. the first objective was to choose the correct

size of the traiming set. which ensured the learning and generalization abilitv of network



simultaneously. Figures 3.1 and 3.2 illustrate the effect of number of examples in training data
set based on recalling training data set (as a measure of network ability to learn the data). as well
as testing the network with testing data which were not used in training data set (as a measure of
generalization ability of network). Also. each network model was tested with the entire original
data set and the combined results are shown in these graphs. For both models. the errors
associated with training and testing data sets were very close for each training set size.
demonstrating the potential ability the of network for generalization. The resuits also confirm
that the generalization ability of network was not affected by training data set. However. the size
of the training set had a significant impact on the prediction ability of network. At the lowest
level tried. the errors were quite high. For the ANN based Ball-method. a training data set of size
containing as many as 175 data points could be accommodated because of the availability over
1000 data points in the original set. And even at this size, the associated errors were high and
converged to lower values only after the size was increased. The network had minimum errors
with a size of 525 data points which was selected for both models (A and B). the remaining
being used exclusively for testing.

The error parameters tor selecting the required number of hidden layers and PEs in each
hidden laver are shown in Tabie 3.4. Changing the number of PEs in networks. with one hidden
layer. generally resulted only in a small improvement in performance. However. the addition of
a second layer. markedly improved the prediction ability. which was more significant for Model
B than for Model A. Increasing the number of hidden layers to 3 did not result in any advantage
over the model with 2 hidden lavers. but increased the computation time. Hence. Model A was
selected with 2 hidden layers and 2 PEs in each layer. and a 2-hidden laver network with 5
processing elements in each laver was assigned for Model B. It has been generally recognized
that assigning the appropriate number of PEs and hidden layer(s) is mostly a trial and error

method. however. two hidden layers for most of problems is sufficient (Neuralware. 1996).
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Table 3.4

Effect of PEs and hidden layer(s) on the performance of ANN based Ball models

* Number of Model A (predicting log g) Model B (predicting /1)
Lo Number of PEs
X hidden .
- in layers
: aAYErs RMS error MAE RMS error MAE
2 0.068 0.037 3384 1.041
: laver 10 0.067 0.039 2418 0715
g 15 0.076 0.051 2710 0.798
1
! 1% 0.043 , D024 6.332 | 1.881
2 hidden 1&5 0.042 . 0.023 1.903 0.589
layers 5&S 0.057 ' 0.032 1093 0.361
IN&5 0.473  0.051 3.106 (1.903 ;

Several other parameters have a role in a successful training and increasing the

performance of the network: momentum and epoch size. and learning rule. The epoch size was

svstematically varied between the limits and its effect on the RMS was evaluated (Tabie 3.5).

Epoch size did not affect prediction ability of Model A: however. it affected the prediction

ability of ANN model B. After selecting the correct epoch size. this parameter was fixed and the

variability of momentum was considered. Table 3.6 shows the impact of momentum on learning

of network. Increasing this parameter decreased the error parameters. but increasing it beyond

some values increased the error. The increase of momentum value can speed up the leamning rate

and prevent the network from trapping in to local minima: however this increase can increase the

error oscillation and consequently affecting the performance of model.

Table 3.3 Effect of epoch size on prediction ability: ANN based Ball models
Cpoch sie | Model A (predicting log g} Model B (predicting fy/U)
RMS MAE RMS MAE
1 0.020 0.015 0.712 0.811
8 0.021 0.016 0.542 0.836
16 8.021 0.016 ; 1.093 04936
f 0 0.021 0.016 | 1.481 1.031
i n 0.022 0.017 2.505 1.448
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Table 3.6

Effect of momentum on prediction ability of ANN based Ball Models

| Momentam Model A (predicting log ) Model B (predicting fyU)
. Value RMS MAE RMS MAE |
0.2 0.047 0.024 1.756 L2
0.3 i 0.039 0.018 1.426 1010
0.4 0.043 0.024 }.093 | 0.936
0.6 0.045 0.028 } 1.610 ! 1.057
;l 0.8 ‘ 0.080 0.050 1721 ( 1.071

Based on this initial exercise, the optimal configuration ot the network for the two ANN

based Ball models were determined and are shown in Table 3.7. The prediction performance of

the ANN models with all learning parameters selected as detailed in Table 3.7 is illustrated in

Figure 3.3 as plots of ANN predicted values vs. Ball table values. The predicted values were

very close to the Ball table values and were evenly distributed throughout the entire range.

Calculated error parameters and R” are given in Table 3.8 which show that ANN models were

able to accurately predict Ball table parameter.

Table 3.7 Optimal levels of architectural parameters for ANN based Ball and Stumbo
models
Parameter  ANNModel A | ANNModel B - ANN Model A | ANN Model B |
X Ball method Ball method Stumbo method | Stumbo method |
; Number of hidden layers . 2 2 2 2 |
| Number of PEs in hidden layers | 2&2 5&S 2&2 2&2
i Epoch size i 4 8 4 8
Momentum 0.3 0.4 | 0.4 0.2 |
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Table 3.8 Error parameters for ANN based Ball and Stumbo models

ANN Ball Model A ANN Ball Model B

Error parameters

Logg Process time fW/U  Process lethality
RMS 0.04 0.607 248 0.165
MAE 0.02 0.458 0.66 : 0.084
MRE 4.98 1.025 L.14 1.321
R 0.99 0.99 099 0.99

ANN Stumbo Model A ANN Stumbo Model B
Error parameters :

Logg Process time WU Process lethality
RMS 0.08 6.43 3.25 0.33
MAE 0.06 5.06 .35 0.24 ‘
MRE 6.13 3.04 2.78 3.03
R" 0.99 0.99 0.9 0.99

Model verification

Figure 3.4 illustrates the results of validation of the developed models with a new set of
data which involved a wide range of operating parameters normally encountered in commercial
thermal processing operations (Table 3.3). The prediction error parameters are also summarized
in Table 3.8. For both models (process time prediction. Model A and process lethality
prediction. Model B) the R* was close to unity. which showed excellent correlation between the
ANN model and Ball method. The associated mean relative errors for both process time and
process lethality predictions were 1.0 and 1.3%. respectivelv. The mean relative error is more
meaningful with respect to process lethality. while for process time. the mean absolute error (0.5
min) which indicates the error in user units (min) is more easily reconcilable. Qver the range of

process time encountered (up to 150 min). this represents a mean range error of about 0.3%

which was considered small.

ANN based Stumbo Model

The various pre-processing constraints were also evaluated with respect to the Stumbo
model although some could not be accommodated because of the smaller size of the available

data. For example. since only 44 data pairs were available at each j,. value. the size optimization
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could not be done. The required number of processing elements and the number hidden
layerswere optimized based on the RMS of errors and MAE. Since the quality of data between
these two tables (Ball and Stumbo) were similar, optimal conditions with respect to momentum,
transfer function. and learning rule were expected to be somewhat similar to those achieved in
the ANN based Ball model. Again. 2-hidden-layer network performed considerably better than
1-hidden-laver networks. The optimal conditions for number of PEs were 2 PEs in each layer.
while for one of the Ball models. the best model had 5 PEs in each hidden layer. The appropriate
architecture of networks was also used to select the proper values for epoch and momenwum. and
these were also slightly different. The differences in the architectural configurations were
considered to be the result of smaller size of data set available for Stumbo model. The optimal
conditions are summarized in Table 3.7.

The performance of the ANN based Stumbo models as a plot of ANN predicted value vs.
desired output value is shown in Figure 3.5. The computed errors and the associated R” values
are included in Table 3.8. The tigure demonstrates an excellent agreement between predicted
and expected values with a high R value. The mean errors were. however. somewhat higher
than those observed with ANN based Ball models. For Model A. for example. the MRE was
6.1% for the Stumbo model as compared to 3% for Ball model for log g prediction and 2.8% and
1.1%. respectively for fi/U predictions. The differences were considered to be primarily the
result of differences in the size of available data over a wider range of fi/U and the addition of j..
as a second input. Accommodating these changes probably requires a larger training set. but the
number of data in Stumbo tables were far less than that in Ball table. [t was shown earlier with
ANN based Ball model that the performance errors were quite high even with the availability of
175 data points. It may thus be logical to assume a higher performance error with Stumbo
models.

The resuits for validating ANN models in the form of predicted vs. expected process time
and process lethality is shown in Figure 3.6. With respect to process lethality and process
lethality predictions. the associated errors (MRE) for ANN based Stumbo models. were again
3% while they were about 1% with ANN based Ball models. The associated R* were again very
high and the quality of predictions was excellent. The slightly higher errors with predictions by
the ANN based Stumbo models were again ascribed to non-availability of adequate number of

data sets to properly train and develop the ANN models. The associated errors were, however.
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considered low enough and demonstrate the utility of the ANN concept for simulating Ball and

Stumbo process calculation techniques.

CONCLUSIONS

The feasibility of ANN modelling for process calcuiations was evaluated in this study
based on their ability to simulate Ball and Srumbo methods. The ANN models were able 10
correlate the parameters of Ball and Stumbo tables with good accuracy (mean relative errors of
1-3%). It was found essential to optimize the network configuration with an appropriate size of
training data set. and several learning parameters. The developed ANN models were validated
with a new set of data for process time and process lethality calculations covering 2 wide range
of commercial processing conditions. ANN models predicted the process time and process
lethality with mean relative error of 1% for Ball models and 3% for Stumbo models. The slightly
higher errors associated with ANN based Stumbo models were considered to be due to a wider
range of parameters and smaller size of available training data set as compared to Ball model.
However. the associated low errors and high R* value with the ANN based models in simulating
Ball and Stumbo data demonstrate a good potential for the development of ANN models for

process calculations.
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CHAPTER 4

COMPARISON OF FORMULA METHODS OF THERMAL PROCESS
CALCULATIONS FOR PACKAGED FOODS IN CYLINDRICAL CONTAINERS

ABSTRACT

Evaluating the accuracy of formula methods provides a basis for their use and a
better understanding of the effect of process parameters on the required minimum process
and hence on nutritional and sensory qualities of processed food. Selected formula
methods were tested for accuracy against a finite difference model accommodating
different processing conditions (retort and initial temperatures, thermal diffusivity. process
time) and package sizes within the range used in commercial applications. For selected
range of process conditions and container sizes. temperature profiles were obtained using
an optimized finite difference mode! for conduction heat transfer involving cylindrical
shapes. Time-temperature data gathered were used for computing heating and cooling
parameters (f and /). Using these parameters and appropriate process conditions. process
lethality/process time was computed using selected formula methods (Ball. Steele & Board.
Stumbo and Pham). Prediction errors were computed based on deviations in process
time/lethality trom the finite difference model. In addition to comparing them over the
broad range of testing conditions. the seasitivity of the methods to selected process
parameters were evaluated. The parameters included retort temperature (110-130°C).
product initial temperature (70-90°C). thermal diffusivity of food product (1.0*107-2*107
m*/s). cans dimension (H/D) and the unaccomplished temperature difference (g-value).
Retort temperature was the most significant parameter atfecting the associated errors for
the selected methods. Steele & Board’s method had the highest error of process time
calculation with a maximum 34 min over-processing for a 1-hr process. Stumbo’s method
had the highest accuracy. however in some cases. under-estimation of process time up to 8
min for a [-hr process was observed. Higher g-values increased the calculation errors and

can dimensions with H/D near to unity had higher errors.
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INTRODUCTION

Methods of process calculations are grouped into two main categories: General and
Formula methods. Using graphical or numerical procedures, the General methods integrate
the experimentaily gathered time-temperature data for lethal effects and therefore, this
group of methods is considered the most accurate one for test situations. However. for any
change in processing conditions. product formulation or container size. a new temperature
profile is required. For this reason their application has been restricted to product. package
and process specific conditions. under which test data were gathered. Conversely, Formula
methods are developed with less restrictive assumptions on food product. package size and
tvpe and heat processes. and within a certain range. they have the flexibility for adaptation
to variation in test conditions. Therefore. these methods have become more popular in
food industry. The approach that Ball (1923) followed in establishing a method of process
calculation is known as the first Formula method. Afier this work, extensive analysis has
been accomplished in enhancement of this type of methods. Formula methods have been
reviewed by several researchers (Hayakawa. 1977, 1978: Merson er al.. 1978: Stumbo and
Longlev. 1966: Smith and Tung, 1982: Stoforos. 1997).

The accuracy of these methods has been the core of attention of many studies to
assure the safety and economic aspects of the thermal processing. While the destructive
effect of thermal processes on microbial population is desirable. their deleterious effect on
the nutrients and quality attributes of the food product is undesirable. In addition avoiding
over-processing is a significant step in energy conservation and economic aspects of
thermal processes. With respect to growing application of computers in retort control, an
extensive knowledge in application of different methods of calculation becomes necessary.
This concept necessitates evaluation of the accuracy of these methods with different
process parameters. packaging size and tvpe and product characteristics. Accuracy of these
methods should ideally be tested against data from real time-temperature profiles.
However. since such experiments are often expensive and mostly impractical over the
broad range of conditions encountered in food industry. alternate methods of data gathering

has been sought.



In this regard. computer generation of data based on numerical solution of finite
difference models has largely replaced the need to perform extensive heat penetration tests.
The study by Texieria er al. (1969) perhaps, provided the first successful application of
computer assisted finite difference technique in thermal processing research. Since then
aumerous studies have made use of these technique (Teixeira and Manson, 1982: Datta er
al.. 1986: Tucker. 1991: Teixeira and Tucker, 1997). Today it is taken for granted that
these techniques are as accurate as experimental tests when the appropriate processing
conditions. thermo-physical properties and boundary condition are incorporated into the
model. Since the performance of these models depends on the accuracy of input data for
the above variables. their accuracy should nevertheless be checked to make sure they are
compatible with the test sitwation.

The objective of these study was to evaluate the accuracy of some selected Formula
methods against a finite difference model based on conduction heat transfer in canned food
products. under a wide range of processing conditions as emploved in commercial

applications.

Brief review of Formula methods
A few of the existing methods selected for evaluation is briefly discussed in this

part. They have been detailed elsewhere (Chapter 2).

Ball’s method

Introduced in 1923. Ball's formula method is the most widelv used method by the
food industry. The temperature prediction equations are based on the observation that the
semi-logarithmic plot of temperature difference between product and heating medium
temperature is a straight line after an initial lag time. Achieved process lethality and
process time are computed from each other. asing processing conditions (retort temperature
and initial temperature) and iable or graphs of related parameters (f,/U and g).
Development of these tables and graphs was carried out with respect to some limiting
assumptions. which resulted in some inaccuracies in the method. The most significant

assumptions were a constant cooling lag factor (j.) equal to 1.41, and equal heating and

57



cooling rate indexes (f=f.). Obviously. for processes deviating from these assumptions,

Ball’s method will inaccurately compute the process time or process lethality.

Stumbo’s method

While revising Ball's method to increase its accuracy, Stumbo and Longley (1966)
published a new set of tables with respect to the variability of j.. in real processes. The
procedure for process time and process lethality calculation in this method is quite similar
to Ball's method. These tables were originally based on data from hand drown heat
penetration curves. On subsequent works, the parameters of table were recalculated
(Stumbo. 1973) using a finite difference solution to predict the time-temperature data of
product. The equation applied in this model was similar to what was used by Gillespy

(1953) and identical assumptions were used for solving them.

Steele and Board’s method

This method was developed following recognition of inaccuracies in Ball's formula
method for thermal processes (Steele and Board. 1979). Based on the method developed
by Steele and Board. the tables to be applied in thermal process calculations were based on
sterilization ratios rather than temperaiture differences. These tables were obtained using
Simpson’s rule to solve the lethality equation. This sterilization value was defined as the
temperature difference between the cold point of the can and the heating or cooling
medium over the slope of the thermal death time curve for the microorganism of concern.
Vinters et al. (1975) and Steele er al. (1979) introduced some polynomials to be used

instead of developed tables in programmable calculations and on-line computers.

Pham’s method

This method is a modified version of Stumbo’s method (Pham. 1987 and 1990), and
is based on two ranges of sterilization values. For high sterilization values (in cases that
product temperature was close to retort temperature) an analytical solution was applied for
conduction heat transfer in a finite cviinder with infinite heat transfer coefficients at the
container walls and uniform initial ternperature. For low sterilization values a numerical

solution was used to solve these equations. Variability of j.. value also was considered in
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this method by calculating temperatures at different positions in the can. The variability of
. fa and f. was also considered in this method. This method was tested against a finite
difference made! simulating the center temperature in can (Pham. 1990) and the method
was reported to be at least as accurate as Stumbo’s method. The one table required for the
use of this method substituted the 57 tables in Stumbo’s method using dimensionless

parameters.
MATERIAL AND METHODS

Finite difference program

A finite difference program was written in FORTRAN language and developed
primarilv by Sablani (1993). This program was meodifted for conduction heat transfer
equation for cylindrical can. The measured process time and process lethality were the
reference values against which the selected Formula methods were compared. The finite
difference model was applied to generate temperature profiles based on achieving a
selected heating lethality from which the actual process time (during which medium
temperature is set to heating temperature) and delivered process lethality (total lethality

calculated at the end of cooling) were computed.

The basis of finite difference models

The finite difference models were based on numerical solution of unsteady state
heat conduction for an object of known geometric shape. providing transient temperature
distribution throughout the container. At the beginning of the process time. all the interior
points of the cylinder were set to the initial temperature of the product. while the
temperature at the surface was set at the retort temperature. With a known set of initial
conditions. these equations were solved at each time interval. The new temperature
distribution at the end of each time interval was used to set the initial conditions for the
following ume interval. This procedure was continued for a predetermined process time.
during which the temperature profile of product was computed. The same procedure was
applied for cooling of the product by changing the ambient temperature to cooling water

I temperature and continuing the calculation process.



The governing partial differential equation for transient heat transfer into a finite
. cvlinder is as follows:

aT 3°T
+

a’T 1
ar dh* a

ar’

I aT
+ — - 4.1)
r ar R

The inittal and boundary conditions are:

Tir.h0)=T, at =0
aTO.hn o at >0 and O<h<lL.
or
M =0 at 0 and O<r<a
ar
aT
& 5, =h, AT -T) atr=a:0O<h<l and t>0
ar
oT
k ™ =h,iT =T} ath=L ;O<r<a and 0

T: center temperature (°C)

t: ime (s}

r: radial distance (m)

h: vertical distance {m)

a: radius of cylinder (m)

L: haif [ength of cylinder (m)

h¢: fluid heat transfer coefficient (W/m?’.K)

ke: cvlinder thermal diffusivity (W/m.K)

a: thermal diffusivity (m*s)

Finite difference method is one of the techniques used to solve these types of
equations in which the partial derivatives are transferred to discrete differences under
appropriate boundary and initial conditions. Carslaw and Jaeger (1986) indicated in detail

. the analytical solution of this equation. Two major criteria in solving these equations using
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numerical methods are stability and convergence of the solutions. Convergence issue is the
convergence of the solutions of the difference equation to the solutions of the partial
differential equations as the time and space steps are made smaller. However, stability is
the question of whether numerical errors and round-off errors decrease or increase as the
computation time increases. Although decreasing time step increases the convergence of
the solutions, it can affect the stability of the method. Since in numerical differences are
very small. and the subtracted value is divided by another very small value. the round-off
error becomes predominant when the step size is reduced beyond an optimum {imit. Both
mentioned criteria depend on the form of initial and boundary conditions. The Crank-
Nicholson scheme was used for first and second order spatial derivatives appeared in the
heat flow equations and backward difference scheme for the first order derivative in
boundary equations. An implicit method was used for time derivatives. Since transformed
equations contain temperature values of next time steps. it was necessary to employ
iterative technique in the solution procedure.

To evaluate the accuracy of finite difference solution of heat conduction and in
order to optimize the required time step and space steps sizes. the time-temperatures
predicted from this model were verified against the data obtained from the analytical
sofution of heat conduction in a finite cylinder. To evaluate the unsteady temperature in a
finite cvlinder. the solution of temperature ratios (U) under transient temperature for
infinite slab and infinite cylinder is applied as a tinite cylinder is considered as intersection
of an infinite slab with an infinite cylinder (Ramaswamy er al.. 1982).

The equations for infinite slab and infinite cylinder obtained by Carslaw and Jaeger

(1939). For an infinite slab the equation is as follows:

= 2sinf ? |
v= “—— cos(B,x/ L).exp(-BF,) (4.3)
Z{ B, +sin B, cos B, (B ).exp(=B,F,

And tor an infinite cylinder:

o J (y.rla)

U=2Bi - 3
= (Bi* +y, )W ,(¥.)

exp(-y,>.F,) (4.4)

where:
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U: dimensionless temperature ratio = (T-RT)/IT-TR)

RT: retort temperature (°C)

[T: initial temperature (°C)

T: temperature (°C)

Bi: Biot number

Fo: Fourier number

B: root of the characteristic equation (4.3)

1 root of characteristic equation (4.4)

x: distance from the coldest plane of a slab

L: thickness or half thickness of a slab depending on it being heated or cooled from

one side or both sides, respectively (m})

r: radius of a cylinder (m)

a: significant dimension, the radius of cylinder

J.: Bessel function of order zero

When the heating times are sufficiently long (Fo>0.2), the series expansion of
equations +.3 and 4.4 converges rapidly. and U can be estimated accurately by the first
term of the series. Therefore. the above mentioned equation of 4.3 and 4.4 for the center

temperature in center of an infinite slab will be simplified as follows:
U, =R, exp(=S F,) 4.3)
And of infinite cylinder:
U, =R exp(-S_.F,) (4.6)
Rp. R.. Sp and S, are the characteristic functions of Biot number and their value is constant
for heating condition with infinite heat transfer coefficient (R,=1.273. §,=2.467. R=1.602
and $,=5.783). Therefore, the unsteady temperature at the center of a finite cylinder (U}

can be obtained from soiution for an infinite slab and an infinite cylinder;

v, =U_U @7
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The general equation to describe the temperature (7) as a function of time (¢) during
heating or cooling periods with known initial temperature (/T) and ambient temperature

(RT) 1s as follows known as the Ball equation:

log(T - RT|) =—t/ f +log(j(IT - RT}) (4.8)

Parameters of f and j are known as the heating or cooling rate index and lag factor.

respectively. These parameters can be obtained from following equations:

P 2.303
(S, /L +S laa “9
i=R,R (4.10)

The center temperature in a finite cylinder was calculated through equation 4.8 o 4.10
tanalytical solutions) and the temperature profiles from the finite difference models were
compared against the analytical solution of Ball equation. Along with the computation
time of the model. the RMS of the error between the finite difference model and analytical

solution. calculated as below. were used as two criteria of model optimization:

!

Z(TmL _Tmuh-ncu)- “4.1h
RMS of errors)=

n
where:
Tanaiveeat: temeprature predicted by analytical solution (°C)
Tinode: temperature predicted by finite difference model (°C)
1: each time step (Sec)
n: number of poiats
Five different time steps of 1. 5. 10 and 20 seconds and four grid sets in both of

horizontal and vertical axis (5&3. [0&10. 15&15 and 20&20) were examined.



Overall accuracy evaluation of the formula method

A wide range of processing conditions and commercial can sizes (15 can sizes)
were employed as testing conditions for the finite difference program to obtain the required
time-temperature data. The finite difference model was programmed to change the
medium temperature from heating to cooling based on a selected heating period lethality
(F.) in the range of 5-15 minutes. Each run of the program would provide the process
time. process lethality and the temperature profile of the product at the cold point of the
can.

From each temperature profile. heating and cooling curves were separated in the
form of logarithmic temperature difference of the product and medium vs. processing time.
Determination of j and t values for heating and cooling were based on repetitive regression
to locate the straight portion of heating or cooling. These values along with process time or
process lethality obtained from finite difference program were compiled in a Lotus based
program. Process time and process lethality for selected Formula methods were calculated
using a computer program developed for this purpose (Ramaswamy. 1991). Deviations

from finite difference model values (reference values) were determined as follows:

F,

noref ) - Fm methody

F

oiret )

Error =

x100 (4.5)

The same method was applied to evaluate the deviations in process time
calculations. A negative percentage deviation in process lethality demonstrates an
underestimation of the lethality with the respective Formula method (and hence
undesirable). where a positive error shows inaccuracy on the conservative side. For
process time computations. on the other hand, positive errors show underestimation of
process time (and hence undesirable). while negative errors show overestimation of
methods. but on the safe side.

The accuracy evaluation of the methods was performed from two perspectives.
First, the accuracy of methods was compared as a function of one parameter, while the rest
parameters had a constant value. In the second approach. the accuracy of each method was

evaluated for each variable parameter over the entire set of data.



Evaluation of formula methods under specific conditions

Accuracy evaluation of the methods was based on the g-value and can sizes in form
of height over diameter (H/D) as these were reported earlier as conditions under which the
methods deviate from reality (Smith and Tung, 1982). A retort temperature of $120°C and
initial emperature of 80°C were considered. As the tables in Ball and Stumbo methods
were based on the assumption that cooling water was 100°C below retort temperature. the
cooling water temperature was fixed to 20°C. The instantaneous come-up time to retort
temperature and instantaneous drop in medium temperature to the cooling water
temperature was assumed. Heat transfer coefficient of 5000 W/mC was assumed for
steam as the heating medium and 500 W/m’C for water as the cooling medium. Thermal
conductivity of the product was constant (0.6 W/mC) within the simulation. [n order to
evaluate the effect of g-value, the finite difference mode! was programmed to change the
medium temperature trom heating to cooling based on reaching different g-values in the

range of 0.05-15 C°.
RESULTS AND DISCUSSION

Optimization of finite difference model

The optimization results of the model are shown in Figure 4.1 based on the number
of nodes. both in vertical and horizontal axes. as well as time step size. Increasing the
number of nodes in each axis increased the computational time due to additional
calculations to be pertormed for center temperature prediction. Smaller increments in the
axes increase the accuracy of model in temperature prediction. although as shown in the
Figure 4.1, after an initial sharp drop from 5 nodes to 10 nodes. increasing the number of
nodes further had less effect. With this respect. a 10 by [0 grid size was selected as the
optimum number of nodes in both axes. Same trend was applied to select optimum number
of time steps used in computation. As computation time was increasing intensely for time
step sizes less than 5 and RMS of error was not changing significantly for variation of time
steps below 3 seconds. a 5 second time step size was assigned as the optimum vaiue for this

parameter in model.



8 ; 25

71 n
z _ -2
2 °
=S5 -1.5§
s o
: M
s 4t 5
:':.3.E -1
2 g
22
o - 0.5

1-

0 Q

0 5 i0 15 20 25

Number of grids in each axis

—a— Computational time —e— RMS of error

0.79
+0.78
077
- 0.76
- 075
-074
-0.73

Computational time (s)
RMS of error

0.68
0 3 10 18 20 25

Time Step

—a— Computational time —e—RMS of error
Figure 4.1 Optimization of finite difference model for a) number of nodes in each axis

and b) time step

66



After optimization of the model. the predicted temperature profiles based on finite
difference model and analytical equation were compared with each other to validate the
accuracy of the finite difference model. The result of validation is depicted in Figure 4.2 in
the form of center temperature profiles. The discrepancy at the beginning of the heating is
for the situation when Fo<0.2 under which the two procedures were not expected to match.
However. the predicted temperatures after this initial deviation coincide with each other.
This should be expected as the main basis of heating equations used by each method is in
agreement with the experimental data. A perfect overlapping of these two methods in this
section of time-temperature curve demonstrate an eXcellent accuracy of the finite

difference model.

Overall evaluation of formula methods

Overall evaluation of selected formula methods was carried out in two directions.
First all the considered paramefters were maintained at a base condition (RT=120"C.
[T=80°C. a=1.5*10"m"/s and can size=303 x 509) and one parameter at a time was varied
over a selected range. Errors in process time and process lethality calculation were
calculated as relative errors (percentage deviation from reference values). Subsequently.
each parameter was varied over the entire range with respect to all other conditions and the
assoctated errors were calculated. Tables 4.1 and 4.2 summarize the results of errors
associated with different models for each parameter at the base condition as well as the
overall. In process time calculations (Table 4.1). retort temperature was the most
influencing factor compared to product initial temperature and thermal diffusivity for a can
size 303 x 509. Associated errors varied from a high -7 to -21% for Steele & Board
method to 0.7 to ~1.3% for Stumbo’s method. Ball’s method was close to Steele & Board
modification. while the method of Pham had errors varving from -1.5 to -8.3%. The
higher error in process time using the Pham method was the result of using processing
conditions and can size which resulted in high sterilization values (U/f;<0.04). below the
range of studied by Pham. Since the developed process calculation equations (Pham. 1937)
were for a defined range of sterilization ratos (Uffy: 0.04-1.5). processing conditions.
which do not satisfy this range. can result in high errors in process calculations. With

reference to initial temperature and methods of Ball and Steele & Board
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had errors between -5 and —10%. With process lethality calculations (Table 4.2), retort
temperature was the major factor: however, thermal diffusivity and initial temperature were
also factors influencing the accuracy of methods. An increase in thermal diffusivity

improved the accuracy of method. while an increase in retort temperature increased the

associated errors.

Table 4.1 Errors in process time calculation influenced by processing conditions and

thermal diffusivity of product

F, o107 IT RT Can Process time Mean Relative Error (%)

(min) im0 O Size Steele Ball  Stumbo Pham

5 l 70 110 303x509 -7 -6.8 -1.5 -1.5

5 ! 70 120 303x 3509 -155 -tLS 0.8 222

5 l 70 130 303x509  -21 -17.5 -0.7 8.3

5 l 70 110 303x509 -8 -6.8 -1.5 -1.6

5 l 80 L0 303x509 -9 -15 -0.9 -0.8

5 ! 90 110 303x509 -10 -8.7 -1.5 -0.4

5 1 70 110 303x509 -8 -6.8 -1.5 -1.6

5 1.5 70 110 303x3509  -6.7 -5.5 -0.3 -0.7

5 20 70 110 303x509 -6 -5.35 -0.5 -0.5

Table 4.2 Errors in process lethality calculation influenced by processing conditions
and thermal diffusivity of product

F, o*107 IT RT Can F, Relative error (%)

(mmin) (m¥/s) "0 0 Size Steele Ball Stumbo

5 l 70 110 303 x 509 203 17.0 3.8

5 l 70 120 303 x 509 56.6 47.6 4.3

5 l 70 130 303 x 509 80.0 73.0 42

5 i 70 110 303 x 509 203 16.0 38

5 ! 80 L10 303 x 509 20.7 17.0 238

5 1 90 110 303 x 509 215 18.0 3.3

5 1 70 10 303 x 509 20.3 17.0 3.8

5 L5 70 [10 303 x 509 13.2 1.5 0.5

5 20 70 110 303 x 509 10.1 10.0 1.1

6%



Compared to the process time. the mean relative errors associated with process
lethalities were much higher because of prediction of fixed low process lethality of 5.0
minutes (while the process time varied from 23 to 400 minutes). Ball and Steele & Board
methods over estimated the process lethality by 17 to 80% with respect to the retort
temperature, while the eror range with respect to initial temperature and thermal
diffusivity remained at 10-20%. Stumbo’s method was fairly accurate with error ranges up
to 4%. Initial temperature and thermal diffusivity have been reported to only have
minimum ¢ffect on calculation accuracy (Ghazala er al.. 1990: Smith and Tung. 1982). In
general the relative order with decreasing accuracy was Stumbo, Pham. Ball and Steele &
Board. [t is interesting to note that all mean relative errors were negative for process time
and positive for process lethality, indicating errors generally on the conservative side for all
the methods.

In order to study the overall effect of each parameter on process calculation over a
broader range of processing conditions. mean and standard deviation of errors for each
specific parameter was calculated and summarized in Tables 4.3 and 4.4 for process time
and process lethality calculations, respectively.

In process time calculation. retort temperature and {ength of processing time were
more obvious parameters affecting the accuracy of methods. An increase in retort
temperature. increased the error terms for all the methods. except for Stumbo’s method.
which had the lowest error without any specific trend in mean values. All methods
overestimated the process time. as shown by the negative sign for mean errors except for
Stumbo’s method. which underestimaied process time under some conditions. Some
earlier researchers have observed similar results. However. it should also be noted that
Stumbo’s method was in fact most accurate amongst the different methods. The mean
errors were less than 1% for all situations. On an average. this accounts for a 2 minutes
error over a 200 minutes process time. obviously small. In comparison. Ball and Steele &
Board methods had up to 15 and 20% over estimation. respectivelv. Pham’'s methed was
close to Stumbo’s method. with mean errors mostly in the conservative side. However. as
indicated by the accompanying standard deviations of the mean errors (up to 2%). it is

logical to assume situations did exist for over estimation of process time. As discussed
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earlier. larger errors of high retort temperatures using Pham method is due to resulted

sterilization values. which were not defined by Pham (Pham, 1987. 1990)

Table 4.3 Means and Standard Deviations (SD) of relative errors in process time
calculation for selected process calculation methods
Steele Ball Stumbo Pham
Parameter  Range
Mean SD Mean SD Mean SD Mean SD

110 (°C) 603 1M 620 306 071 243 025 05!
Retort o

120(°C) -1293  3.66 991 1M 035 064 035 090
temperature

130 (°C) 940 443 -I564 346 048 LI9 -336 262

70 (°C) -IL3 535 955 392 0.48 1.56 176 220
Initial 30 °C) 245 600 -1057 448 032 158 -151 218
temperature

90 (°C) -14.63 762 <1248 5.66 016 185 069 201

12107 (/s 1345 6.90 1151 520 021 L34 -183 275
Thermal - . - -

15710 im¥s)  -12.58  6.34 -1093 497 0.24 1.65 125193
diffusivity -

2107 (m/si AL 597 -10.08 431 0.61 1.93 087 156

Small -1 585 -LOIT 439 0.43 2.08 -1.05 138
Can Size Medium -1043  6.60 965 516 0.82 R .87 L76

Large -13 6.51 -1038 474 02} .19 SL12 24t

Low -1578 505 -1271 128 003 114 -1.30 210
Processing .

Medium -11.8 5.57 -9.34 3.67 0.51 1.31 -0.79 210
time

Long -$.83  5.06 787 376 0.58 2.06 041 117

Based on fill weight: small: (<0.5 kg). Medium: (0.3-1 kg). Large

time: Low: (<100 min). Average: (100-200 min). Long: (>200 min)

: (>1 kg): Processing

Trends observed with process lethality were similar (Table 4.4). Conditions which.

under estimated process time, obviously over estimated the process lethality and vice versa.

With process lethality. Ball and Steele & Board methods had up to 70% over estimation.

Methods of Stumbo and Pham performed better with mean errors less than 7%.

Table 4.5 summarizes the parametric range. mean and standard deviation of errors

for combination of parameters. The maximum error in process time calculation belonged

to the method of Steele & Board with about 37% mean relative error. while method of

Stumbo had only 3% maximum mean relative ertor. However, as it is been reported
3 p
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(Smith and Tung, 1982: Ghazala et al.. 1990) there were some cases that Stumbo’s method

. under estimates the process time as shown in Table 4.3 with a positive sign.

Table 4.4 Means and Standard Deviations (SD} of relative errors in process lethality
calculations for selected process calculation methods

Steele Ball Stumbo Pham
Parameter Range

Mean SD Mean SD Mean SD Mean SD

110 (°C) 1136 7.0 .12 570 081 395 023 440
Retort 0 _

120 (°C) 3077 1166 3303 1070 1.88 233 707 418
temperature

130 (°C) 709 .15 57 6.66 -3.2 6.36 2985 1012

70(°C) 3037 2566 3122 1906 206 3327 025 035
Initial 30 (°C) 3085 3585 3162 1919  -1.09 481 022 030
temperature

90 (°C) 4143 2634 3173 1945 095 5.06 005 025

1*10" im/s) 4568 2613 3185 1936 036  5.20 023 0.9
Thermal LS4 107 amfs) 4049 2587 3135 1906 075 491 025 0.38
diffusivity o

=107 amYs) 3687 2521 3151 1906 -1.85 532 019 024

Small 3646 2521 3185 (961  -069 544 029 039
Can Size Medium 1154 2582 3058 1943 066 1381 016 023

Large 5076 2531 3271 1765 094 537 017 0

Low 5533 18.86 422 1630 063 582 1346 1377
Processing
. Medium 3683 2578 2562 16 062 183 033 042
time

Long 1663 17.58 1562 (369 109 122 019 024

Based on fill weight: small: (<0.5 kg). Medium: (1-0.5 kg), Large: (>| kg): Processing
time: Low: (<100 min). Average: (100-200 min). Long: (>200 min)

Table 4.5 Maximum. minimum. mean and standard deviation of errors for different
methods

% Error in process time calculations %Error in process lethality calculations
Methods - "

Min Max Mean SD Min Max Mean SD
Steele 1.75 37.60 i8.44 421 202 89.09 41.0t 2599
Ball 1.63 26.31 15.61 3.29 0.73 68.02 31.57 19.22
Stumbo 0.01 5.18 1.03 0.69 0.06 19.05 2.60 3.50

. Pham 0.00 8.64 2.71 2.18 0.04 6.05 0.60 0.60




Specific evaluation of formula methods

Errors based on the can shape or H/D ratio had a consistent pattern for different
Formula methods. The results are presented in two different formats for comparative
purposes. First the different methods are compared at a given g-value. Then each method
is compared at different g-values. In both situations A/D ratio was used as the basis.

The comparison of different Formula methods at a given g-value is shown in
Figures 4.3 and 4.4 for the process time and process lethality calculations, respectively.
The maximum error for almost all the methods was observed for H/D near to unity. Smith
and Tung (1989) and Pham (1990) observed the same trend in error patterns. Steele &
Board's method had the largest errors (-2 to -20%) among evaluated methods and
Stumbo’s and Pham’s methods were the most accurate methods. Stumbo’s method
predicted process time with accuracy of 1% for g-value of 0.05°C and 9% for g-value of
15°C and Pham's method had similar accuracy in process time calculation. They appeared
to deviate from each other more at g=15"C.

Trends were similar with respect to prediction of process lethality except that the
errors were on the opposite side. Steele & Board method had the highest positive error
(20-70¢) while Stumbo’s method had the least (<20%). Pham’s method as suggested is
only for estimation of process time. and for process lethality. the method had to be solved
using a trail and error approach. While this approach was emploved for some test
situations. it was not possible to extend this approach for all the test situations because of
the time consuming iteration process. Since methods of Pham and Stumbo were reported
be similar tn most cases. similar trends could be probably assumed for predicting the
process lethality.

With respect to sterilization values. Lenz and Lund (1977) also considered
processes with large g-values uncertain. The larger errors for processes at large g-values
are due to accomplishment of a [arge part of sterilization during cooling section. In these
processing conditions. cooling time and also the product properties during cooling can be
the reason for the high errors in total sterilization value of the process. However. for
processes with smailer g-values, which is more common. the error values are small ranging

from 10% for Steele and Board’s method to 1% for Stumbo and Pham methods.
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The effect of g-value on deviations in calculation is also due to temperature
difference at the end of heating between heating medium and the product. For smaller g-
values. when the product temperature and retort temperature at the end of heating are close
to each other, the effect of temperature gradient is insignificant. However, for larger g-
values. when this difference is larger. this effect can cause errors in calculation. In this
case. while the retort temperature is changed from heating to cooling water. there would be
a longer lag for center of the can to receive the effect of cooling water temperature. and
even after cooling was began. the center temperature will continue increase for a short
while. None of the Formula methods correctly account for this effect and deviate from
reality at larger g-values.

Figures 4.5 and 4.6 show the performance of each formula method for at different
g-values. The effect of g-value on each method can be seen more clearly in this
presentation. With an increase in g-value. the associated errors for each method increased.
showing a systematic increase in errors for methods of Ball and Steele & Board. With
respect to Stumbo and Pham methods. the errors were small up to a g-value of 3°C. but
then the inaccuracy begins to increase markedly. Again Stumbo and Pham had the highest
accuracy. The deviations in process lethality and process time prediction increased for #/D

close to unity and for larger H/D values the errors decredsed.
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CONCLUSIONS

The accuracy of selected formula methods was determined with respect to dara
generated from a finite difference model. Finite difference models have the potential for
accommodating variations in processing conditions and can size, and provide data for a
wide range of processing conditions. The optimization of the finite difference model
against an analytical solution of heat transfer equation with 10x10 grid size predicted
accurate temperature profiles. Process calculation errors were evaluated based on the
variation of each parameter. Retort temperature was one of the most major parameters
influencing the accuracy of the selected process calculation methods. Most methods
overestimated the process time with the exception of Stumbo’s method for some cases of
underestimation. Based on the can shapes. errors had an increase for H/D values near to
unity. Errors increased at larger g-values. where a substantial amount of process
sterilization is accomplished during the early cooling stage. This trend in errors was
observed for all the methods. Stumbo’s method was considered the most accurate method.

following it was Pham’s method.
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CHAPTER S

ARTIFICIAL NEURAL NETWORK MODELS AS ALTERNATIVES TO
THERMAL PROCESS CALCULATION METHODS

ABSTRACT

Artificial Neural Network (ANN) is a computing system capable of
processing information by its dynamic state response to external inputs. ANNs
learn from examples through iteration by adjusting the internal structure to
match the pattern between input and output. In this study, finite difference
simulations, which are widely recognized as practical alternatives to
experimental methods, were used to generate temperature profiles for a wide
range of can sizes under various processing conditions. The time-temperature
data were used to compute the process lethality, process time as well as heat
penetration parameters: f,, j,, f. and j_. These data were used for developing
‘the ANN models (both training and testing). The accuracy and ability of ANN
models were compared with selected Formula methods, both with respect to
process time and process lethality computations. Process calculation results
from ANN model were comparable to Pham’s and Stumbo’'s methods, which
were previously evaluated as the most accurate amongst the process

calculation methods.
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INTRODUCTION

Artificial Neural Networks (ANNs) have been the focus of interest in many diverse
fields of science and technology. Neural networks are basically computer models, which
simulate very simple abilities of our brain. Rather than being programmed for use in a
particular application, neural network models generate their own rules by learning from
provided examples. ANN has the ability of approximating arbitrary continuous functions
based on a set of given observations. As they obtain this ability through the stage of
learning. they are known as truly adaptive systems, which do not need any prior knowledge
of the nature of relationships between the set of parameters. ANN models are thought to be
robust to noise and inconsistencies in data. rendering them more advantageous compared to
empirical models. Also. ANN models can be multiple-input and multiple-out (MIMO)
svstems (Baughman and Liu, 1995). Therefore, variability of multiple parameters in the
development of an ANN model is possible. NeuralWare (1995) provides a wide overview
of potential applications of neural network as classification. prediction. data association
and optimization. Most food related work invelves estimation. prediction and control
(Eerikainen er al.. 1993).

With respect to ANN characteristics and their abilities in modeling. their
application has been considered in the development of a general model in thermal process
calculations. Accurate determination of thermal processes is required with respect to
assurance of safety. as well as retention of quality attributes and nutritional values of tood
products. For this purpose. different methods have been developed for facilitating thermal
process calculations. All these different methods are aimed at determining the lethality
(F,) for a given process or calculating the process time for achieving a given process
lethality. In order to establish thermal processes. time-temperature data of the product
undergoing the thermal processes is required. More versatile, less expensive and less time
consuming alternative of experimental procedures are mathematical models.

Finite difference models of heat transfer into packaged food have been successfuily
applied in optimization and control (Teixeira er al. a, 5. 1969: Datta er al., 1986; Teixeira
and Manson. 1982: Tucker. 1991: Teixeira and Tucker. 1997). The main feature of these

models is the prediction of temperature profile based on the goveming heat transfer
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equations of packaged food products. Finite difference models require some specification
of the food product and system such as thermal diffusivity of the food product, heat transfer
coefficient of the heating or cooling medium and thermal conductivity of package. When
these conditions are known, the time-temperature data can be obtained at any specific point
of the packaged food product for any processing condition and package sizes. The ease of
use of finite difference model can be considered in providing an expanded data set.
including a wide range of parameters.

[n Chapter 3. the potential of ANN to simulate two of the most widely used process
calculation methods was demonstrated. In Chapter 4. the prediction errors associated with
the available process calculation methods were evaluated using those computed from a
finite difference numerical model as reference. [t was shown that the prediction errors vary
depending on the processing conditions. and by far Stumbo and Pham’s method are the
most accurate. In Chapter 4. a basis was also established for generating parametric values
such as fi. f. j.. and j. for various operating conditions involving different retort and initial
product temperature. thermal diffusivity of the product and can size as well as the
associated process time and lethality. This provides a wide range of input-output
parameters for establishing and/or verifving useful process calcuiation models such as they
are aimed in the present research-an ANN based process calculation model.

Hence. the specific objective of this chapter was to develop an ANN model as an
alternative to existing thermal process calculation methods using the wide range of data set

obtained from the appropriate finite difference models and initial conditions.

MATERIAL AND METHODS

Data generation

[n order to obtain the training data set for ANN models development. a wide range
of processing conditions. product characteristics and packaging sizes were considered as
detailed in Chapter 4 and summarized in Table 5.1. The defined range of each parameter
covered the common range of processing conditions. and different can sizes were selected

from those used in industry. A finite difference program written in Fortran language



(Sablani. 1995) was applied to obtain the related time-iemperature profile to each set to
conditions. This model was based on the conduction heat transfer for cylindrical packaged
food products. The heat transfer coefficient of heating medium (steam) and cooling
medium (water) were assumed to be 5000 (W/m’C) and 500 (W/m’C), respectively. Each
combination of defined values was applied as the initial inputs of finite difference modeli to
obtain the respective temperature profiles.

Each time-temperature profile was divided into two semi-logarithmic curves of
heating and cooling. In order to locate the beginning of straight line in each curve an
iterative regression technique was applied and f3, f:. j. and j., were obtained for each set of
condition. Hence a data set was obtained which. consisted of processing condition (initial
temperature. retort temperature), can size (height and diameter), product characteristic
{thermal ditfusivity). process time. process lethality and respective heating and cooling
parameters. This data set with 1215 data records was considered as the basis for ANN

models training.

Table 5.1 Range of parameters used in finite difference program
Retort Temp. i  [nitial Temp. ;|  Thermal diffusivity Heating lethality
o (’C) : *10"(m%S) (min)
110 : 70 i 1.0 ; 5.0
120 : 30 g 1.5 ‘ 10.0
130 i 90 ; 2.0 i 15.0
Can size no. | Can size . Approximate fill wt. (kg) | Radius*Hieght/2(cm)
l 62 ! 0.170 : 270 x 4.50
b '8zl | 0.240 | 34 x 413
3 . No.I picnic | 0.300 341x5.08
4 i No.211 cylinder | 0.370 341 x6.19
5 - No. 300 ! 0.410 381 x5.04
6 " No.1 tall ‘ 0.454 3.89x35.95
7 ' No.303 ' 0.454 ; 405 x3.56
8 - No.303 cvlinder l 0.595 «' 4,05 x 7.07
9 - No.2 vacuum : 0.340 436x4.29
10 ' No.2 ; 0.568 4.36 x 5.80
[ | No.2 cviinder % 0.738 4.36 x 7.30
2 INo24 ] 0.822 5.16 x 5.95
13 ' No.3 cvlinder | 1.420 5.40x8.89
4 ' No3 ' 1.645 6.51 x 7.15
15 ! No.10 3.000 7.86 x 8.89
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ANN model development

A precise ANN model training requires selection of independent input variables
(Baughman and Liu, 1995). If a prior relation between input variables in not available. one
of the proposed methods to select the independent variables between input variables, is to
discard one variable and train the ANN model based on the remained set of data
Obviously. discarding variables, which are function of the other. will not affect the
training. However, when a science of relation between variables is provided. this
information should be applied to reduce the number of input variables and increase the
accuracy of ANN model. Based on the information obtained. while developing ANN
model for methods of Ball and Stumbo. the key variables for relating process time {g-
value) and process lethality (fy/U) were considered as the major inputs. As the variation of
Jee values is not integrated. therefore j.. was considered as another independent input for
each model.

[nput variables (g-value or fy/U) were calculated based on the procedure applied in
the Ball method (Figure 5.1). Accordingly. the combination of these variables is used in
form of log g or fy/U. along with variability of j.. related the process time to process
lethality or vise versa. The procedures of ANN model development were tollowed much
closely to the ANN model development of Stumbo’s method. The data set was divided to
training subset and testing subset to be used during the training procedure.

NeuralWorks Professional [I/Plus. version 5.23 (NeuralWare Inc.. Pittsburgh. PA)
was emploved for ANN modeling. A standard backpropagation algorithm with Tangent
hyperbolic transfer function and normalized cumulative deita leaming rule were selected
for ANN models training. Same formats of input and output variables as detailed in the
Stumbo ANN model were applied. For predicting the process time. /U were used as well
as j,. to predict g-value and subsequently, for predicting the process lethality. g-value and
Joo were used to predict fi/U. The predicted parameters from ANN models were applied to
calculated the respective process time and process lethality. For convenience Model A and
Model B were used to name each model for process time and process lethality prediction,

respectivelv.
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Figure 5.1

Arrangement and procedure of developing ANN models
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Optimization of ANN models

The ANN models were optimized for the number of data records in training set.

number of processing elements, momentum value and epoch size. The assigned values for

each of these parameters are summarized in Tables 5.2 and 5.3. The first step was to select

the optimum number of data in training set with respect to default values of network

architecture. The selected training set sizes were applied to choose the optimum topology

of the networks. Afterwards. two leamning parameters. momentum and epoch, were tested.

The following criteria were used for evaluating ANN models performance:

f -7

n

Root Mean Square (RMS) of error= ‘JZ

Mean Absolute Error (MAE) = Mean of | ¥, - 1

ly -y
Mean Relative Error (MRE. %) = Mean of M* 100

]

where:
Y., Desired value
Y: ANN predicted value
n: number of records
Table 5.2 Combinations of training and testing data for network optimization
; . i . Number of data | Number of data
‘ Group(s) in ! Group(s) in P . e . .. .
. i R . pairs in Training | pairs in Testing
Training set | Testing set ! ;
; : set set :
; A i B.C.D.E.F 202 ! 1010
f AF | B.C.D.E 404 i 104
A.C.F B.D.E 606 606
| ABCF | D.E 808 808
' A.B.C.D.F E 1010 202 -

36



Table 3.3 Range of network architecrure and learning parameters used in the study

I
Number of Pes Momentum Epoch
1 hidden layer 2 hidden layers

2 ; 1&2 0.2 4

5 | 2&5 0.3 8
: 10 5&5 0.4 ‘* 16
| L3 10&35 0.6 20
’ - [ - 0.8 32

= Bold numbers with underscore are default values provided in software.

Comparison of ANN models

The predicted ANN values of process time and process lethality were compared
with respective values of the selected formula methods. The same methodology as the one
used in comparison of tormula methods was applied to compare the performance of the
developed ANN models. All the predicted values from either ANN model or formula
methods were compared against the reference model. which was the data from finite

difference model. Relative error computed as fotlows. was applied as the error parameter:

F

atref - F'mmgxlmdn

Error = xi00 (3.1

wiref !
This error parameter was calculated based on lethality and therefore a positive error
of lethality calculation demonstrates an underestimation. while a negative sign shows an

overestimation of process time. The error signs for under and overestimation are reversed.

while predicting the process time.

RESULTS AND DISCUSSIONS

ANN models optimization
Figures 3.2 and 3.3 shows the required number of data for Modei A and Model B,
respectively. In Model A. the performance of the network was not a fuaction of training

set size. and a training set with 808 data (50%) was selected. However. Model B was more
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dependent on the training set size, and a data set with 1010 data, which had the lowest error
of prediction was used. Although the source of data for both models was same. the nature
of variables affected the performance of the network and the question how well network
can learn depended on the input variable.

Figure 5.4 depicts the effect of PEs and number of hidden lavers for Model A and
B. In both models. 2 hidden layer networks had a significantly higher performance
(Baughman and Liu. 1995: Swingler. 1996). A network with 2 and 5 PEs in each hidden
layer had the highest performance for Model A and 2 PEs in each hidden laver for Model
B. which were selected as the optimum topology. Table 3.4 shows the result of learning
parameters variations for both models. The effects of momentum and epoch were not
significant for Model A and increasing momentum increased the error. A momentum value
of 0.4 and epoch size of 4 was selected for Model A. The effect of these parameters was
even less significant for Model B. Therefore. the default value of momentum and epoch of

4 were selected.

Table 5.4 Effect of momentum and epoch size on the performance of Model A and B
Momentum . MRE Epoch j MRE
- ModelA . Model B - Model A Model B
0.2 0039 0.029 ; 4 ' 0.035 : 0.028
03 00% . 009 | 8 0037 , 0028
04 1 004 0029 | 16 ol | 0029
06 009 0029 ;20 | 0043 0029
08 ou6 000 | 3 | 0053 | 003

Performance of the ANN models

The performance of ANN models A and B are shown in Figure 5.5 as plots of ANN
predicted values vs. reference values from the finite difference simulation. The predicted
values for both models were very close to desired values and were evenly distributed
throughout the entire range. The associated error parameters are summarized in Table 5.5.
High R* values shows the excellent performance of both ANN models in predicting the

output variables.
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Figure 5.4  Effect of PEs and hidden layers on the performance of model A and B



Model A

& -

ANN log g

log g

Model B

ANN atan log fn/U

.

<

atan log fn /U

Figure 5.5 Performance of ANN models A and B with respect to predicted output
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The performance of ANN models is shown in Figure 5.6 in form of process time
and process lethality calculated from ANN predicted g-value or fi/U vs. the process time
and process lethality obtained from the finite difference model. Both ANN models showed
a good pertormance for predicting process time and process lethality. The error parameters
of ANN models prediction are summarized in Table 5.5. Both models had a high R* close
to unity showing excellent correlation between ANN predicted values and reference values.
RMS of errors for process time prediction was higher than process lethality since process
time had higher values compare to process lethality. however close mean relative errors of
both models shows close performance of models. However. with respect to process
lethality mean relative error is more important error parameter and provides better
evaluation. [n process time calculation, mean average error of 2.7 minutes indicated high
accuracy of ANN model in process time prediction applied range of this parameter

(between 40-430 minutes)

Table 3.5 Error parameters for performance and verification of ANN models A and B
ANN Model A ANN Model B
Error parameters
logg Process time Atan log fi/U Process lethality

RMS 0.05 +4.17 0.02 .41

MAE 0.03 270 0.01 0.27

MRE 193 214 444 ; 274

R 0.998 0.997 0.997 : 0.999

Comparison of ANN models with existing formula methods

The performance of ANN models were compared for range of processing
conditions. thermal diffusivity of product. can size and processing time with the
performance of three selected Formula methods of Ball. Stumbo and Pham. The
performance of each method is showed based on the mean of relative errors and standard
deviation of error for both process time and process lethality (Tables 5.6 and 5.7).
Although no particular trend was observed in mean and SD of errors based on ANN
models. the performance of ANN models was fairly in range of methods of Stumbo and

Pham. if not better. [t should be mentioned these two methods have the highest accuracy of
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calculations compared to other formula methods (Smith and Tung, 1982: Pham. 1990;
Stoforos. et al., 1997).

The general performance of the selected formula methods and the ANN models are
compared in Figures 3.7 and 5.8. Ball methad, for considering the restrictive assumptions,
had the most deviation while other methods have a close performance (R1>0.99). The
same trend was applied while comparing the performance of other methods and ANN
models with respect to process lethality calculations. As the finite difference program was
run based on a pre-assigned heating lethality, the process lethality is clustered around three
fixed lethality values (one of the reasons for higher errors).

Table 5.8 shows the range of errors for process time and process lethality for
formula methods and ANN models. The range of errors as well as the mean and SD of
ANN mode! tor process time prediction was in range of Pham'’s method. Also. in process
lethality prediction the range of errors varied between Stumbo’s method and Pham'’s
method. The range of errors in process lethality calculations was very close to Pham’s

method and the same trend in range of errors applied for process time calculations.



Table 5.6

Means and Standard Deviations (SD) of relative errors in process time

calculations for selected process calculation methods

Parameter Range Ball Stumbe Pham ANN
Mean SD Mean  SD Mean  SD Mean _ SD
110 (°C) 6.2 3.06 0.71 2.43 025 051 005 218
Retort 120 (°C) 991 272 055 064 035 09 2247 1.88
temperature N
130 (°C) -1564 346 048 119 336 262 248 336
70 (°C) 955 392 048 156  -1.76 22 018 3.00
Initial 80 (°C) -1057 348 032 .58  -15t 218 007 32
temperature
90 (°C) 1248 566 006 185  -069 201 031 353
1107 (m¥s)  -11.51 5.2 021 L3 -183 275 037 387
Thermal L5107 (ms) <1093 497 024 165  -125 195 005 3.m
diffusivity
=10 (mfs) -10.08 431 0.6l 1.93 087 136 022 276
Small L0l 439 043 208 105 158 029 232
Can Size Medium 965 516 082 12 087 176 065 292
Large [1038 474 021 L19 -L12 0 24l 084  3.64
Low 270 428 003 L4 180 210 020 3.03
g;“’:‘ss'“g Medium 934 367 051 131 079 110 130 366
Long 787 376 0358 0 206 041 L1700l iR

Based on fill weight: small: (<0.5 kg). Medium: (0.5-1 kg). Large: (>1 kg): Processing
time: Low: (<100 min). Average: (100-200 min). Long: (>200 min)
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Table 5.7 Means and Standard Deviations (SD) of relative errors in process lethality

‘ calculations for selected process calculation methods
Parameter Range Ball Stumbo Pham ANN
Mean SD Mean SD Mean SD Mean SD
110 (°C) 1112 570  -08t 395 023 032 023 440
Retort 120 (°C) 3303 1070 188 233 - 3 L7431
temperature
130(°C) 57 666 3.2 6836 - . 023 440
70(°C) 3122 1906 2206 532 025 035 191 520
[nitial 30 (°C) 362 1909 -109 431 022 030 .125 489
temperature
90 (°O) LTI 1945 095 5.06 015 025 0.36 371
(=107 ¢m7s) 3185 1936 036 520 023 029  .043  5.33
Thermal L5*107 (m*s) 3135 19.16 075 491 025 038 072 437
diffusivity L.
>0 ms) 3151 19.16  -1.85 532 .09 024 -159 536
Small 3185 1961 069 543 079 039 435 512
Can Size Medium 3058 1943 066 431 0.6 023 031 379
Large 327 17.65  -094 337 -0.17 .22 -1.14 6.50
Low 4226 1630 -063 582 .- - 178 4TS
:’i:":mi“g Medium 562 16 062 483 033 042 007 493
Long 1562 1369 -1.09 322 019 02 004 549

Based on fill weight: small: (<0.5 kg), Medium: (0.3-1 kg). Large: (>1 kg): Processing
time: Low: (<100 min). Average: (100-200 min). Long: (>200 min)

Table 5.8 Range. mean and standard deviation of errors for all the combination of
parameters

Error in process time calculations “ Error in process lethality calculations

Methods 1
. Min Max Mean SD Min Max Mean SD

Ball - 1.63 26.31  15.61 3.29 1 0.75 68.02  31.57 19.22
Stumbo | 0.01 5.18 1.03 0.69 ‘ 0.06 1905 .60 3.50
Pham 0.00 8.64 325 1.96 . 0.00 6.05 0.60 0.60
ANN  j001 892 271 218 006 663 160 3.00
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CONCLUSIONS

With respect to preliminary results from ANN modeling of Ball and Stumbo's
method. the possibility of ANN model development as an alternative to existent methods of
thermal process calculations was studied. A finite difference model was applied to obtain a
wide range of data covering the applicable range of processing conditions and can sizes.
Considering the accuracy of ANN based Sumbo’s model. the same procedure of ANN
modet development was applied. ANN Model A with 30% data from the total data set. had
the best training error, while the ANN Model B required higher number of examples in
training (1010 data). Both models had 2 hidden layers, Model A with 2 and 3 PEs in each
laver and Model B with 2 PEs in each hidden layer. The initial data was transformed to
comply with Stumbo’s table and relating of process time and process lethality was
performed through g (or fyU) and j.. to fy'U (or g). Using ANN predicted values. process
time or process lethality was calculated. ANN Model A with 2.70 minutes MAE was
comparabie with Pham method in process time prediction. Also. the ANN Modet B
predicted the process lethality with 2.74% of relative error. which was very close to
Stumbo’s method. As the methods of Pham and Stumbo were assigned as the most
accurate methods of process calculations. the ANN models had the potential of application

in pracess calculation methods.
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CHAPTER 6

GENERAL CONCLUSIONS

The first phase of the research was development of ANN based on Ball and Stumbo
methods. which are the two major and most widely used methods of thermal
process calculations. This work was carried out to evaluate the potential for the
application of ANN technique for process calculations. A well-trained nerwork
required appropriate number of training data set. optimized number of processing
clements and hidden lavers and internal parameters of the network. For validating
these ANN models for each method. a new set of processing conditions were used.
and the ANN predicted values were compared to correspondent values from
method. ANN models had 1% error in both process time and process lethality
prediction based on Ball table data and 3% error for Stumbo table data. The higher
error of Stumbo method could be possibly because of the limited number of data
and extended range of variables in ANN model development. However. a close to
unity value for R showed good potential of ANN technique in thermal process

calculations.

The accuracy of selected formula methods (Steele and Board. Ball. Stumbo and
Pham) were evaluated for a wide range of processing conditions. product thermal
diffusivity and can sizes. A finite difference simulation was used to provide the
reference values of process time and process calculations as well as the heat
penetration parameters (fy, jon, f: and j). The performance of the finite difference
model was optimized and verified against the analytical solution of conduction heat
transter equation. Retort temperature was the most significant parameter on the
performance of methods. Methods of Stumbo and Pham had the higher accuracy as
compare to the two other methods. Also in a more specific evaluation, the methods
were compared based on the can shapes and g-values. For dimension of H/D close

to unity the errors were highest and they farther increased with g-values.
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As the final goal of this study, ANN models were developed as the alternatives to
present process calculation methods. The data from the finite difference simulation
was applied to develop ANN models. Training set size was selected based on a
developed a learning curve. Using two hidden layers for networks significantly
increased the performance of the ANN models: however. learning parameters were
less meaningful during development of models. ANN models had excellent ability
in process time and process lethality prediction with 2.7 minutes of mean relative
errors for process time prediction and 0.27 minutes of mean average error for
process lethality prediction. The accuracy of ANN model was compared to
pertormance of existing formula methods and they closely performed to methods of
Stumbo and Pham.
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