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Sugested short tirle: 

.VN modehg of thermal procas calculation methods 



The feasibility of using M i c i a l  Neural Network (iWN) models for application in 

thermal process calculations was smdied. As a prdiminary study, h i  models were 

developed based on tabulated data for Ba11 and Stumbo methods of process calculations. 

The .;LW models for Bal1 method related g-value. a measure of process time, and 10. a 

measure of process lethality. ûptimizing training data set size, number of hidden layers 

and PEs in rach hidden layer as we11 as leming parameters is important in obtaining an 

efficient ilcW model. Development of A i  model for Stumbo method followed the same 

procedures as the BaIl's rnerhod. except that j,, value Icooling la: factor) w u  included as 

an additional input. The deveIoped ANN models for Bail and Stumbo methods were 

validated usinp a set of processing conditions. resulting in a new set of g andjJü values. 

.A range of reton temperatures (Rn, initial temperatures (177. heatino - rate indexes (jj,), 

heating lag factors (jh) and cooiing hg factors Ci,,) were used to calculace the related 

process time and process Iethality. The developed .LW models were recalled with the 

new set of parameters. The relative prediction errors of the XW models were 1 C/c and 3 8  

for Bali and Stumbo method .hi  rnodels. respectively. The higher snor of AW models 

of Stiirnbo rnethod could be possibiy due to the smaIler number of training data and wider 

mnpe of parameters in tables of this method than the tables in Bal1 method. In p e r d .  the 

.kiW rnodels were able ro simulace ihe Bail and Stumbo methods of process calculations 

terisonably well. 

For a better undestanding of the effect of pmcess parameters on the evduation of 

thermal process, the accuncy of several formula methods (Steele & Board. Bali. Snimbo 

and Pham) were studied over a wide range of commercial conditions. A compter 

simulation based on finite difference method of numerical solutions of heat m s f e r  to 

packaged foods in cylindncai containers was applied to obtain the time-temperature data 

for desiped conditions (mort and initial tempennires. thermal diffusivity. package sizes 

and processing time). Moreover, the process time and process lethality from this 

simulation were used as the teference values for the purpose of comparïson. The accuracy 

of methods was evaiuated based on the variation of each parmeter over the range of 

a conditions employed in the snrdy. Rerort temperature had the most significant effect on 



calculaced process deviations, and Stumbo and Pham rnethods had the best performance. 

In a more specific evduation, the cornparison of the mechods was camed out based on the 

cm dimensions and g-value. Higher g-values resulted in higher errors md H/D near unity 

had the hihtist relative error- 

As the h a 1  goal of the study, a multi-layer ALW model was developed 

as an alternative to thermal process calculations. In developing this model, 

the tirne-temperature data from the h i t e  clifference simulation was used to 

compute the process lethality, process tirne as well as heat penetration 

parameters: fh, j,,, [. and je, which were needed for training and testing of the 

models. The ANN predicted process tirne or process I e t h a l i ~  was compared to 

respective values fFom finite difference model. The performance of ANN 

models mas aIso compared to the different formula methods (Bail, Stumbo and 

Pham). A i i i  model was able to predict the process tunes with a mean average 

error of 2 minutes, which was comparable to Pham method. The mean 

prediction error of pracess lethality was 2.74%, which was comparable to 

Stumbo method. 



L'applicabilité des réseaux d'intelligence artificieIle (RIA) aux calculs impliqués 

dans les traitements thermiques a été étudiée. Les travaux préliminaires consistaient à 

développer des modèles EU basés sur les données des méthodes de calcul du traitement de 

Ball et Sturnbo. Le RIA basé sur la méthode de Bail tentait d'établir la relation entre la 

valeur-y, mesurant le temps de tnitement. et jfl, mesurant le point d'asepsie du 

tnitement. L'optimisation de la taille des données d'entraînement du réseau. le nombre de 

couches cachées, les noeuds dans chaques ces couches ainsi que les parrimètres 

d'apprentissage était crucide pour ['obtention d'un modèle efficace. Pour le RW basé sur 

la methode de Stumbo. le cheminement &ait similaire i celui utilisant la méthode de Ball. 

mais celle-ci intégrait aussi la facteur de retardement du refroidissement, j,,. Les modèles 

R U  développés pour les méthodes Bail et Stumbo ont i té vdidés en utiIisrüit une série de 

valeurs de g et j f l  obtenue en variant la température du milieu (TM), la température 

initiale (TI). l'index de vitesse d'échauffement Vh). et les facteurs de retardement de 

l'échauffement ijcti) et du refroidissement Cj,,). L'emur relative de prédiction était de 1% 

pour la méthode basée sur l'approche de Ball et 3% pour celle de Stumbo. La valeur 

relativement élevée de l'erreur pour la méthode RW de Stumbo peut être rittribuie au 

nombre restreint de données d'entrainement par rapport au nombre de paramètre. En 

eénérril. les modèles RiX ont simule de façon acceptable les méthodes de Ball et Stumbo - 
pour le calcul du traitement. 

Pour mieux comprendre l'effet des panmètres de traitement sur l'6valuation du 

processus thermique, l'exactitude de plusieurs formules (Steele & Board. Bd1. Stumbo and 

Pham, a Et6 étudiée pour une variété de conditions industriellement utilisées. Une 

simulation basée sur \a méthode de différence finie à solution numérique du transfert de 

chaleur dans un produit embalIé dans un contenant cylindrique a été appliquée pour obtenir 

les données de temps et de cempérature reliées aux conditions d'itude sélectionnées (la 

cempérature du milieu. la température iniude. diffusion thermique. taille de l'emballage, et 

longueur du traitement). De plus. la Langueur de traitement et le point d'asepsie bu 

tnitement ainsi prédits ont fait l'objet de c o m p ~ s o n  pour évaluer l'effet de chaque 

paramètre. La température du milieu affectait de façon siglificative l'erreur sur la 



prédiction. Les méthodes de Srumbo et Pham ont produit les meilleurs résultats. Une étude 

plus poussée démontre qu'une augmentation de la valeur-g entraîne une erreur plus élevée. 

alors qu'un rapprochement du paramètre HD,  relié à la dimension de l'emballage. à l'unité 

se traduit par une erreur relative supérieure. 

Pour but final de cette étude, un modèle RW multi-couches a été développé. Cette 

dremative aux cdculs du processus thermique. utilise les donnSes de temps et de 

tempérixures obtenues par la simulation basée sur la méthode de différence h i e  pour 

prédire le point d'asepsie du traitement, la longueur de traitement ainsi que les 

paramètres de pénétrations de chaleurs : f,, j,,, fe and jK. Ces valeurs sont 

nécessaires pour entrainer et tester les modèles. Les valeurs prédites par les 

RLA ont été comparées aux valeurs obtenues par les calcuis basés sur la 

différence finie ainsi qu'un nombre de formules acceptées (Bali, Sturnbo and 

Pham). Les modèles R U  développés ont pu prédire le temps de traitement 

avec une erreur moyenne de 2 mins, une valeur comparable à celie obtenue 

avec la méthode de Pham. L'erreur moyenne de prédiction pour le point d'asepsie 

du traitement était de 2.74%, valeur comparable à l'approche Stumbo. 
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Significant dimension. the radius of cylinder (ni) 

Decimal reduction time (min) 
Cooiing nte  index (min) 
Heating nre index (min) 
Process iethality (min) 
Temperature difference between product md heating medium creton) at end of 
heating (OC) 
Vertical position in cyiinder I rn) 

Fluid heat transfer coefficient (w/~'.KI 

Initial Temperature ( O C )  

Cooling lag factor 
Heating lag factor 
Bessel function of order zero 
Cylinder thermd diffusivity IW/m.K) 

Lethal nte: Thickness or half thickness of a slab depending on it being heated or 
cooled from one side or both sides. respecùvely 
Number of records 
Radiai position in cyiinder I mi 
Retort Tempenture (OC) 
Tempenture c "0 
Time (min) 
Cooiing time i min) 
Cooiing warer temperature toc) 
Heating time (min) 
Product temperature at the end of heating (OC) 
Reference temperamre ( O C )  

Dimensionless temperature ratio = (T-RT)/(IT-TR) 
The equivaient of dl Lethai heat received by some designed point in the container 
dunn,o process at the retort temperature (min) 
Distame frum the coldest plane of ri siab 
.kW predicted value 
Desired vaiue 
Temperature sensitivity indicator (C') 
Step size (used with qace or time) 



Subscripts 

1.2 Refer to two levels with respect to tempennire 
I Initiai condition, space index 
K' Initiai condition of product 

j Space index 
ref Reference 
RT < Recort) heating medium 

Greek symbols 

CI Thermal diffusivity (m2/s) 

P Root of the characteristic equation (4.3) 

Y Rooc of chancreristic equation t 4.4) 

Dimension less numbers 

Bi Biot nurnber 
Fo Fourier nurnber 

Abbreviations 

.WN 
CER 
m 
LDS 
MAE 
.LIDI0 
M L i i  
SIRE 
m 
NL'R 
OCR 
PCA 
PE 
RMS 

hrtificial neural network 

Cxbon dioxide evolution nte 
Fourier uansfom infrared 
Linear discriminate rinaiysis 
Mean absolute error 
Multiple input and multiple output 
Multiple layer neud nerwork 
Mean relative error 
Near infra red 
Ninogen utilizauon rate 
Oxyzen consumption m e  

Principle component analysis 
Processing element 
Root mean square 
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This thesis research is divided into three parts. The first part is a feasibility study 

dcmonstratin_o the potential of ANN modeling in simulating two simple (and rnost popular) 

process cdculation methods (Bail and Stumbo methods). In this part. input for the A i  

modsls were obcained from tables developed by Bal1 and Stumbo. which largely simplifies 

the situation t'or generating input data The development of such simplified A i i  models is 

described in Chapter 3, and is part of the manuscript number 4 listed on next page. 

The riccuracy of existing formula methods against the data predicted by a finite difference 

computer model under a range of commercial operating conditions were evaluated in the 

next chapter as a prelude to developing a more general iLW modeI. which is the final 

objective of the study. This aspect is detailed in Chapter 4 demonstriting the discrepancy 

of somr process calculation methods in predicting accurate values under certain 

circumstances. This forms the ba is  for another publication (number 3. 

The final Chapter 5 is the principal focus of this study. Howevrr. the basis for the 

developed final XWi models crime from Chapter 3 (for optirnizing the A\ i  performance) 

and Chapter 4 ,for senerating the input data using the finite difference model). The 

differenc methods rire ultimately compared in Chapter 5. demonstnting the utilicy of AW 

models. This aspect forms the basis of the final manuscript (number 6). The details of the 

manuscripts/presentations arising from the thesis are highli~hted in the next section with an 

explmation to the role of CO-authors. 
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Thermal processing is one of the most important methods of food preservation of 

the twentieth cennrry. Since the innovation of this method by Nicholos Appert in 1810. 

thermal processing of packaged foocis has been improved extensively in dl relatsd aspects 

of the process. Design of an effective process requires a sound knowledge of the 

destruction kinetics of the concerned microorganism and temperature history of the 

product. Process calculation methods are commonly designed to compute the required 

procrssing time for a target sterilization value or to evaluate the sterilizrition value for a 

~iven process. Xccurate process calculrition rnethods are required with respect to both 
L 

saftlty and quaiity consideration of product. 

Bigclow cr al. ( 1920) established the first grriphical procedure of thermal process 

Jeterminacion, rcferred as Generai method. Bail ( 19231 introduced a mathematical method. 

known ris the fint Formulri rnethod. Bail's method has broadly served the food industry 

despite sornc of its swceping assumptions. which results in some inxcuracies. Bali's 

formula rnethod is based on the squation for the straight-line portion of ttie semi- 

Iogarithrnic heating curve at the cm center. To caiculrite the process time for defined 

process lethality or to calculate the Iethdity of a @ven process. Bail dsveloped some tables 

and p p h s .  Stumbo's method i 1966). developed as the revised version of BalI's method. 

resuln in more accunte process calculations (Smith and Tun:. 19521. However. the 

procedures of process cdculation in these two methods are quite similar and the accuncy 

of s x h  method depends on the accumcy of the evaluated panmeters and addition of 

comct cooling lethaiip to process caiculation through the tables and Lmphs. The 

rippIication of these tables and -mphs can be time consuming and may become ri source of 

crror in process calculations. In addition to these two rnethods. seved other methods cxist 

in Iiterature ris alternatives to the existing process cdculation methods developed through 

modit'ying procedures (Hayakawa 1970: Pham. 1987. 1990: Vinters, 1975: Steele and 

Board. 1979ab). 



Smith and Tung (1983,) evaiuated the xcuncy of some formula methods as 

compared to a numencd method for a range of processing conditions ruid cm sizes. ruid 

pointed out differences in their perfonnmces. Snrdies have been also canied out to check 

the accumcy of formula methods in relation to a cornputer simulation of thermal processing 

using finite difference numencal solutions for thin profile packagd foods (Ghazda er al.. 

1990). Stoforos er al. (1997) reviewed in detail the bais of different methods of process 

cdculritions and the accuncy of these methods as compared to a tinite difference 

simulation of heat tnnsfer for one set of processing conditions and can size. 

Xdvent of computers and ease of progrnmming has provided the potentid 

application of mathemarical models in process design. vdidntion. control. and optimization 

t Hayakriwa. 1970. 1975; Manson er al.. 1970: Stumbo.. 1973; Teixein et al.. 1969a. b: 

Trixcira. 1978'). These models are mainIy used in temperature profile prediction of producr 

underpoing thermal processes. as they provide a more versatile alternative to time 

consumin: and expensive heat penetration tests. In addition to time-temperature 

prediction. with these models the reton tempenmre need not be held constant and cm be 

vruicd in any prescnbed manner throughout the process. The rapid èvalurition of an 

unscheduled process deviation is anotl-ter important application of thesc models Heldman 

and Lund. 1992). 

The application of mificiai neud network r rLW3 methods hrrs been growing in 

the several areris of food technolog and agriculture. ,LW is a powerful technique for 

correlriting data using LI number of processing elements. L'sing the .LW technique. the 

computer leams to rnrike intelligent decisions using known input-output data and adjusting 

some internal parameters of the network through repetitive introduction of known 

examples. The stren-gh of A i l s  is in their ability to handle complex nonlinear 

relationships with eâse and without an? prior knowiedge of their celationships. The ANS 

has potential advantases of adaptation and Ieming ribiliry. huit tolerance of noisy or 

incornpiete data and hi@ computationd speed. Eerikainen er al. ( 1993) introduced the 

euly application of neural networks iri food related subjects. .LNN has shown a promising 

application in exmision process conml (Eerikainen et ul-. 1994). .As an alternative to 

statistical models in data anaiysis of F71R. GS-MS and sensoty evduation, hW models 

had a hi$er performance (Bocherem et al-, 1992: Tomlins and Gay. 1994: Vallejo- 



Cordoba Cr  al., 1995). Sablani et al. (1995) investigated the porentiai of AW mudels for 

prediction of optimai sterilization temperatures. 

One typicd type of AW strucntre in known as back-propagation networks. which 

has show promisin; resuks in prediction modeling and ciassification (Sreekmth et al-. 

1998: Lricroix. rr al.. 1997: Bochereau et al., 1992: Freeman. 19931. A bxk-propagation 

network consists of a sequznce of layers with €uII connection between the layes. Three 

required layers in these networks are input Iayer, hhidden layeqs) and output Iayer. Input 

Iriyer tmsfers the input information to the network to be processed by hidden Iayer(s). The 

processed information is passed to an enemd source through the output Iayer. During 

trsining, rhe internai panmeters are adjusted to produce the possible closest .hW output ro 

rhs ciesired outpuc. The ridequacy of a trained network depends on the nature and size of 

the trainin: d m  set as weH as selectin~ the optimal interna1 paramerers. In other words. 

the performance of the .LL\(N mode1 grearly depends on the training data wich respect to 

both quantity and qualiry (Swingler. 1996). Once trained. the A i  mode1 presents rapid 

rinswsrs to any input variable in the domain of training data set. If the conditions change in 

such a way chat deprives performance of the network. the .hW mode1 c m  be tnined 

hnher undrr che new conditions CO correct its performance (Briu$tman and Liu- 19951. 

Considemg these abilities. A i  rnodels render themselves as a possible alternative to 

machernacicd models and re_sssion techniques {Ni and Gunasekaran. 1998: Tomilins and 

Gay. 1994). 

During the steriiization process. there are severai parmeters, which affect the 

riccuracy and efficiency of heating process evduation. The most relevant lactors in 

evduation of ri heat marnent are type and heat resistance of rnicroorganisrns. pH of food 

product, heatins conditions. thermo-physicd properties of food and plickase size and type 

i Valencris et al.. 19911. An accunte themai. pmcess cdculation mode1 cakes into account 

the sigificrince of producing a hi& quaiity product whiie ensuring the minimum required 

qudiiy. 

The following were the objectives of this resexch: 



I. Development of RW models based on input data from Bail and Smmbo's tables as 

a preiiminary snidy to evaluate the feasibility of hW models in thermal proccss 

cdculauons, 

1 -. Evriluacing the accuracy of different formula methods over a wide r q e  of 

processing conditions and c m  sizes against a rekrence cornputer simulation mode1 

based on numericd solution of partial differential equations relaccd to heat 

conduction equation involving finite cyiinders. 

3. Development of an Ai. mode1 using the data obtained from the finite difference 

simulation under a wide m t e  of conditions ruid cornpaison of the performance of 

U N  rnodel with traditional formula methods. 

Successful thermal processing encompasses the ssurance of safety and hi$ quality 

of the food products. Sevcral methods developed to esnblish thermal processes have been 

improved with respect to innovation and application of computers in food technology. In 

this studv. arritïciril neural network technique is being evaluated to develop ri possible more 

versatile thermal process crilculation method. Due to the facc thrit ANX technique has the 

ability in modeling non-linear systems. it is hoped chat AW baseci thermaI process 

caiculrition model will be capable of pursuing the objectives of an accurare thermal process 

clilculation model. 



Frinciples of thermal processing 

Thermal processing of packaged foads basically involves heatinz of food products 

for a selected tirne at a selecced ternpenture to destroy pachogenic microor_ozinisms 

endangering public heaith as well as those microorganisms and enzymes rhat deterionte 

the food during storage. For the first tirne. Nicolas Appen. in 18 IO. introduced the concept 

of in-container thermal processes. Extensive emphiisis has been given to improvements in 

thermal processing, as this is one of the most important methods of food preservation. 

.illthoush the heat labile nature of rnicroor_oanisms is the bais of thérmdly preservation of 

food pmducts. yet ttie samr but undesirable cffect cm destroy part of nutrients and qudity 

factors. Thrrehre. an efficient thermal processing requires to be accuncely desived to 

ensure both the srtfety and qudity of food products. 

.An effective thermal processing is dcfined based on the definition of commercial 

sterilization. Commercial steriiization of food producr inhibits the p w t h  of both 

rnicroor_oanisms and their spores under normd storage conditions in the container. X 

cornmercially steriie food producc may contain viable spores. such as thermophilic spores. 

which will not deveIop under normal storage conditions. The US Food and Drue 

Administmtion in 1977 defined the concept of "minimal thermal process" as "the 

application of heat to food. either before or after seding in a hermerically seded container. 

for a period of time and iu a temperature. scientifically determined to be adequacr to cnsure 

the destruction of microorpnisms of public heaith concern," 

Severd important factors determine the extent of thermal processing. such as: 

I Type and heat resistance of rhe targer microorgruiism. spore or enzyme 

2 )  pH of food product 

3 I Heating conditions 

4) Themophysicai properties of food producr and container shape and size 

51 Stonge conditions followin,o the process 



The pnmary step in thermal process establishment, which is defining and selecting 

the target microorganisrn or enzyme. is directly related to food product conditions. 

Tempenture and oxygen are important factors in optimum -mwth of microorganisms. 

Based on appropriate temperature for growth, rnicroorganisms are classified into 

psychrophiles with npid ~ o w t h  between O-% mesophiles with optimum gowth between 

540°C and rhermophiies with optimum growth at temperanires hizher than 40°C (Rose, 

1963. With respect to oxygen requirement for growth. microor_oanisms are classified as 

obli~ate aerobes, facultative anaerobes and obligate annembes. Packaged foods under 

vacuum in sealed containers provide low levels of oxyten, thcrefore. these conditions do 

not support the growth of obligate aerobes. and further the spores of obligate aerobes are 

lttss heat resistant to herit as compared to the spores of facultative and obligate anaerobes. 

The p w t h  and activity of anaerobic microorganisms are highly pH dependent. From a 

thermal processing standpoint, foods are divided into three groups based on pH: 

I i Hieh acid foods r pHc3.7) 

2 )  Acid or medium acid foods (3.7<pH<4.5) 

3 i Low acid foods i p W . 3  

tn themai proccssing a specid attention is devoted CO CIosrrirlitm bofrilinum which 

is a highly heat-resistant. spore-forming. mrierobic pathogen rhat producrs botulism toxin. 

Clr~srridiiarl borrtiinrim does not seneraliy g o w  and produce toxin at pH below 4.6. 

Therefore. in chermai processing. a pH of 4.5 is considered as dividing line between the 

acid and low acid food products. Molds. yeasts and bactena which tolente high acidic 

conditions rire tqeced in thermal processing of hi$-acid food products. Bucifliis 

coay ufusc and Saccharom~ces cerevisiae are important in high-acid foods. 

Microorganisrns such as Bacillus Srearothennphifus. Baciftus rhennoaciduruns ruid 

Clostridium rhermoducco&ticum are more heat resistmt than C. bondinum. but they are 

mostly thermophilic in nanrre and in case of stonge of cans at temperanires below 30°C. 

they are not of much concern. 

Kinetirs of microbiai destruction 

Evaluating the thermal cesistance of target microoqanisms is required in thema1 

processing design. Thermd desuucaon of m i c r o o ~ ~ s m s  seneraily follows a first-order 



reaction indicating a Iogarithrnic order of death. Therefore. if the loyrithm of nurnber of 

microorganisrns surviving a given heat ueamient at a particulat temperature is ploned 

agziinst heating tirne. it will result in a straight line. calIed the survivor curve. The 

microbid destruction rate is generdly defined in Lems of a decimal reduction tirne (D- 

value), which is heatinz time that resulrs in 90% destruction of the rxisting rnicrobid 

population. This is concept is represenced rnathematically as: 

where: 

ri: number of survivors at tirne c l  

b: nurnber of survivors at time t: 

cl-t,: heating cime 

Detined as such. the D-value represents the negative reciprocal dope of the survivor curve. 

Themai desrh time ( T D n  is another approach retlecting the relative resistance of bacteria 

to different temperritures. These data are obtained by subjecting a rnicrobial population CO 

a senrs of heai creatment at a given tempenture and testing for survivors. TDT is the 

mesurernent with respect to an initiai rnicrobial load and it simply represents a certain 

multiple of D-wlrirs. The tempenture sensitivity of D-value is drfined by the terrn r- 

d u e .  which is temperature range resulting in ten-fold change in D-valiir: 

where: 

Di : D-vdue at temperature TI 

D:: D-vdue at temperature T1 

XIso the z-vdue cm be obtained from TDT cuve using TDT[ and TDf i  instead of Dr and 

Dz-vulues. Thus. z represents the negative reciprocal dope of D value or TDTcurve. 



In order to compare the relative sterilization capacities of thermai processes, the 

terrn Lethality (F-value) is introduced. The F-value is defined as the number of minutes 

required rit a specific temperature to destroy a specified number of microorpisrns with a 

specific :-value. For convenience a unit of lethdity is detined as equivalent heating of one 

minute rit a reference tempenture of 121°C (250°F) for che sterilization process. Thus. the 

F-vnlrrr represents a certain multiple or fraction of D-value depending on the type of 

misroorganism. Mathematicai equivdent of this definition is: 

where: 

T,, Rsfrrence temperature 

F,,: Lrthdity at T,, 

Lethal nite is defined for cornparina different processes in tems of achieved lethality and ir 

is considered to be the hwting time at the reference remperarure relative to an equivaltnt 

heriting of one miriute at the given temperature: 

[n a red process in which the Food product undergoes a rime-temperature profile. the lethai 

nte is inteynted over the processing tirne to result in an overdl process Lethality (dso 

defined by F,,): 

r 

F,, = L.dt 
1 

In terms of food product safety. assurance of a minimum lethdity at the themd center of 

food product is required However it is desinble to minimize the overai1 destruction of 

qudity hctors. 



Thermal pcocess cdculatious 

The purpose of therrnai pprcess cdculations is co determine an appropriate process 

rime under specirted heating conditions required to achieve a given process lethaiity or 

estimatins the lethality for ri given process. Thermal process detennination through a 

physicd-mathematicai approach requires the basic information of thermal destruction 

kinetics of microorganisms tuid quaIity factors conjoined with tirne-temperature data of 

product to integrare the lethd effects of thermal processing. 

Thrrefore. an efficient process design requires sound information on the heat 

pcnetrrition data and their characteristics. Heat penetntion data are function of several 

factors and different combinations of factors cm resuit in same process lethality. These 

hccors can be summarized ris follows: 

l ) Method of heating process (es. sut1 process vs. agitated process) 

1) Type of heriting medium (stem. waterl 

3) Hciiting conditions (retort rernperature. initial temperature of product) 

Ji Product type (solid. liquid. particulate 

5'1 Container tye .  shape and size 

Obraining accume data regarding the heating andlor cooling of a food product in 

container is important for accurace determination of time and tempermre wirh respect to 

srerilizarion of a given producr. However. it is impnctical CO obtain heat peneuation 

profiles t'or the whole range of conditions. Accordingly. thermal process calcularion 

procedures are developed wirh abiIity of time-temperature prediction with respect EO sorne 

experimenrally determined panmeters. Obviousiy. the applicabiiity and restrictions of each 

method are defined by the assurnptions taken into account to obtain temperature prediction 

model. 

Following each heating phase of thermal processing operation is a cooling phase to 

control and terminate the Iethd effect of thermd pmcessing. In order to account the 

cooling effecc. the lethdity equation (2.5) can be tearranged as followt 



where: 

&: total heating time 

dt: srnaIl urne interval 

t: total cooling time 

The duntion of cooling process longer than bringing the product temperature to a 

level enough to stop the lethaiity is not important. However, the achieved lethality during 

the initial cooling phase is accounted in process calculation rnethods. For a known Urne- 

remperature profile the solution of equation (3.6) will result in a relationship between Fr, 

( process lethality) and r ,  (.process time). 

Thermal process calculation methods 

The methods of process caiculations are divided into two broad goups: General 

rnethods and Formula rnethods. General methods apply the real tirne-temperature data 

from test containers to intepte gaphicaily or numerically their Iethal effects over the 

process. Therefore, this group of methods is the rnost accurate merhod for given 

experirncnted conditions. Conversely. Formula metho& apply the time-temperature data in 

the form of parameters. with use of mathematical procedures. to integraïe rhe lethal effects. 

Process calculation methods have been extensively reviewed and evrilurited (Hayakriwa, 

1977. 1975; Menon er al.. 1978: Stumbo and Longley, 1966: Smith and Tung, 1982: 

Cihuala rr 111..  1990: Larkin and Berry. 199 1 : Stoforos. 1997). 

General Method 

For the first time. Bigelow rr al. (1920) introduced the Original General rnethod. 

which is the fundamental of ail other process calculation methods. GeneraI method is the 

most accurate rnethod of process evaluation as it relies on discrete, experirnentai or 

numericd time-temperature data to determine the sterilization value of the process. Once 

the tirne-remperature is known, the sterilization value is determined by gtxphicai or 

numencal integating of equation (2.5). OveralI. Generai rnethod has the advantage of 

versatilicy in applicability for any kind of heat transfer. However. the application is 

restricted to the condition under which the time-temperature data is obtained. and any 



change in either processing conditions (retort tempenture. initial temperature), product or 

package size requires a related temperature profile. 

The original Generai method is based on lethai rate as the reciprocai of TDT value. 

The area under the lethal rate curve vs. heating rime will result in a sterilization value of the 

thermal process. In order to detemine the process sterilization value (F, , )  with Gened  

method. different works has been cmied out, both in praphicd and numerical i n t e g r a h  

to rnake this method less laborious. Schultz and Olson ( 1940) developed Iethril rate papers 

rind dirnensioniess temperature differences in forrns of T,qrT/TRTTr to account for 

variation in retort temperature and initiai temperature of product independent of 

eirperimentally obtained datri. Extended works have been camed out for different z-values 

rind procrssing temperatures (Cass. 1947: Hayakawa. 1973: Leonhardt. 1978). Simpson's 

rule. rrapezoidril rule and Gaussian inte-ption are improved techniques for numericd 

tntegration. Patashink ( 1953) used a trapezoidal rule by considering somr assumptions in 

this technique. Hayakawa ( 1965) developed a method using Gaussian inteption formula 

involving a template. which could be used with the gnphical method. 

The limitation of Gened method is in determining the process time for t q e t  

process lethdity. For this purpose a trial and error rnethod is proposed. Atso it is  tedious 

to consider a lethl rate curve during cooling which depends on the heating time. Often a 

single shape of cooling curve is imposed irrespective of the heating curve. Obviously. rhis 

cannot be risht for al1 situations as the lethai rate is related to temperamre ciifference of the 

product and heating medium at the end of heating (g-vcrlrrel and this assumption applies to 

on1 y to crises with g-value close to zero. 

Improved General Method 

Ba11 (1923) introduced improved Gened  method with a  phic cal ripproach for 

sterilization value detemination. .A hypothetical thermal destruction curve was 

constructed parailel to thermai death time curve. resulting in F-value equal to 1 min ac 

I 2 I.l"C ( 250%. This modification permitted the cornparison of different processes in 

terrns of txget Iethality. According to this method the lethai rate could be detemiined ris 



The m a  under the curve. resulting from plotting L vs. heating time, represents the 

equivalent minutes at 121.1°C. The m a  under the curve c m  be determined by counting 

the number of squares. using a plmimeter or by approximating to standard shapes. Also 

for this method. process time determination for target process lethality requires a trial and 

error technique. 

Formula blethods 

The procedure that Bal1 (19231 applied in thermal process calculrition was the basis 

fur ri new set of methods termed "Formula methods". Process determination using Formula 

methods is considerably frister due to applying heat penetration data in fonn of hea~ing and 

cooling rate indexes if;, andL) and lag factors (j~.h and j,, ). Formula mechod determines the 

process time for a pre-selected process lethality or aiternritively. process lethdity of a $ven 

procrss. Hence using the paramettic form of heat penetration data with appropriace 

mathsrnatical procedures. the effect of processing conditions c retort tcmperature and initial 

temperature of the product) as well as the effect of diffrrent package sizes. Following is a 

brief review of some of the rnost ripplied Fonnula metho&. 

Ball's method: As mentioned previously. Ball's method (1922) is considered to be 

the tïrst developed Formula method and it has a treat contribution to the value of 

mathematics in food processing (Merson cr al.. 1978). Bal1 developed squations for 

prsdicting the rempetanire at the critical point inside ri can. This equation was applied in 

~enerril rquation of (2.5') to determine the process Iethdity. The temperature prediction - 
equations were based on the experimental observations that a semilogarithrnic plot of the 

difference between medium and product temperatures vs. time. after some initial time hg, 

was usudly ri straight line. The same approach is applied for cooling portion. Such typical 

heriting and cooling curves are shown in Fipre 2.1. They basically comprise of a 

hyperbolic heating lag portion. a Iogarithrnic suai@-line heating, a hhyperbolic cooling lag 

and a logruithmic straight line cooling. Bail ignored the effect heating lag portion. as in 

usual conditions the product temperature in beIow the lethal temperature and the 

riccumuIated achieved lethdi- is negligible. However. the effect of heating lag c m  be 

0 
included for processes with high IT, large tvalue. or processes with low heating required 



Heating Curve Cooling Curve 

Figure 2.1 T-ypical srmi-logarithmic heriting and cooling cuves 



lethality. F,,h. Therefore. only the equation for the straight-line portion was considered for 

the heating portion. This equation with respect of heating nte index Cfh) and heating lag 

factor (jh) was described as foliows: 

w hue: 

TRT: retort temperature ("O 

Tm: initial temperature of the product ( O C )  

th: heating time (min) 

6: hetiting rate index (min) 

jch: heating lag factor 

For the cooling curve. the effect of cooling lag was considered in crilculation of 

steriiizxion d u e .  .ifter s tm of cooling the criticai center of the package is stirl at lerhal 

tsrnpentures and the effect of this las should be considered in addition to the logcuithrnic 

straight portion of the cooling. In order to account for cooling, Bal1 used two sepmte 

equritions to predict the tempenmre during cooling. 

For the tint portion or when O s f s f. log( j / 0.657 ) : 
L b L  

The temperature in the cnticd point of the package was predicted with Equation 

i 7.9): 

where: 

L: cooling cime 

J,: cooIing Iag factor 

f,: cooling rate index 

Tg: product tempemm at the end of heating 



TL,: cooling medium temperature 

For the straight-line portion of the cooling curve when the equation was same as 

heating portion with related cooIing f ,  log( ji /0.657 ) I r i :  

After defining the temperature prediction equritions. Bal1 substituted [hem in the 

rquation i 7.5). The resulting equation could not be integrated maiytically and concluded 

tn ri direct relation between F,, and tg (proctss tirne). Hence B d i  solved the equation 

graphicaliy by evatuating the resulting inte_@. The resutts of integals were presented in 

table and gaph formats. These tables ruid -mphs relatrd g-value. ris a merisure of process 

trrne. ro!;/Lm ratio. 3(j a mesure of sterilization value. Bal1 ripplied parameter LJ as the F 

value of the process at the retort ternpenrure. These tables and graphs couId be applied for 

tiny r-wlur.  

During developrnent of the tables ruid pphs .  Bail rissumed 3 constant cooling Iag 

factor t j . ,  i. equa1 ta 1.1 1. XIso the heatins n t e  was rippticd for the cwling portion. or 

in orher wards f ;  was equd to fi. Funher. in the devcloprnent of the rnethod iBdl and 

Oison. 19571, with respect ro two dimensionless piameten of P h  and PL. for drtermining 

the stsdization value. thcy accounted for variation ofh andfi. Obviously the condiuons of 

AI processes do noc comply w i h  these assumptions and resuIt in m o n  in pmcess 

cdculritions. Merson rr ul. (19751 and Hayakawa (1978) evalurrtrd this method ruid 

reported the inaccumcies of the method. Ball rnethod overestimates the process time. 

which provides a safety factor (Merson et al.. 1978) for process calculations. 

The time duration unril reton rexhes the pmessing tempenrure is rermed corne-up 

time i CL37 and a portion of this tirne c m  hold lethality effecc, Ball assumed 42% of this 

timc should bs added to process time. which holds the product rit mort temperature until 

rhe s tem off. He implemented ttiis Urne dumion in k s  method by shifùng the zero of the 

heating time a i s  by 0.55 of CUT. Tt should be mentioned tfiat diis percentqe is not 

dways samr: and seveni researcfiers have taken into account to carefully evduate the 

effect of CCT (Hayrikawa and Bdl. 197 I : Rmltswamy, 1993). 



Further there are some food products that do not follow a constant mode of heat 

cnnsfer. and due to modification of the nmre  of the food product dunng the heating, the 

mode of heat transfer will change- This condition of heating is known as broken heating 

and is more cornrnon of chose kinds of food products initially heat by convection: then. due 

to the activity of some thickening agents as s t n h  gelacinization, the mode of heat transfer 

changes to conduction. Bail ruid Olson ( 19573 accounted for this effect by considering two 

strriight-line secment of the heating curve with different dopes instead of one scraight line 

t broken heating) in semi-logarithrnic heating graph. 

Hicks ( 1958) found sevenl mathematicai errors telated to the lethality of heating 

phases. F,,,,. in Bal1 and OIsonS parametric values. He prepared a numericd table of 

recalculated panmetric values. Gillespy (. 1951) Jefintd a rnethod for estimating the F- 

cdue for the whole crin by using Bail's asymptotic approximation for heating and 

cieveloped rin ripproximate rnethod for cooiing. Hemdoo tir al. ( 1968) prepared computer- 

deriveci tables based on BallS rnethod. Griffin et al. ( 1969: 197 1 ) improved these tables for 

broken-heating curves and for cooling curves. Pflus ( 1965) compiied abridged tables from 

Ball and Olson's tables and dso from Hick's table in parametric values and considerably 

simpiitled the calculation required for process evduations. 

Spinak and Wiley i 1982) reviewed Bail's method and considered the accuracy of 

method in comparison with a Genenl method- In this work they compared the process 

times for processing selected food products in reton pouch with respect to Ball's method 

usumptions and real values from the process. The result showed the process time 

determined by Ball's formula m e h d  requires the effect of retort come-up time lethality 

and the rictual cooling las factor (j,,). However. actual i.;. value showed no significant 

rffect in xcuracy of Ball's formula method. 

In a fucther review a€ Bdill's method (Steele and Board. 1979a). the inaccuracy of 

Bdl's rnethod was considered to be in a safe region for underestimaring the process 

stenlization ratio. ïherefore. it wris conduded in this work that related inaccuncy 

introduces ri safety factor to some cdculated processes and of course the production of safe 

products is one of the primary criteria of thermal processing. 



Vinters et al. (1975) panmeterized the data t'rom the tables in Bail's formula 

method. replaced cables and gaphs in this method by aigebraic, regession equations. 

Therefore. this rnethod could be used in a pro~pmmable calculacor. 

Stumbo's method: While rittempting to revise the tables developed by Bail. 

Stumbo and Longicy (1966'1 developed a new set tables to accounc for the vwiability of j,, 

values. The values of these tables were obtained by gnphicai measurement of hand dnwn 

temperiturc profiles plottrd on the lethd rate papers and subsequent interpolation of these 

tables. .As the authors implied. these tables were applicable for crises in which the 

diffsrence between t;, and f, were less than 20% of the respective fh values. 

Lritsr. the revised f o m  of these tables were published (Snrmbo. 1973i. The revised 

tables wcre baisrd on cornputer intepration of tempennire profiies gcnerated trom heat 

transfer equations, usin: finitr difference simulations. However. i t  should be noted that 

thcsc tables rire rippIicable oniy when Jt& (Ray akatk'a, 1978). A correction for jh,ji. can be 

made as long as the value for the heating lethalit? cm bt  obtained throqh ri differenr 

merhod istoforos. 1997). The rest of procedures for process caiculation were samc as 

Btill's method. Cornputer implementation of Srurnbo's method wris introduced first by 

Manson and Zahradnik ( 1967). using Stumbo and Longfcy's tables and after by Tung ruid 

Garland i 1975L usins Stumbo's revised table vdues. 

Hayakawa's method: For the tint time Hriyakawa (1970) applied a set of 

empiricril formulas. r x h  of them concemed to 3 specific range of j values. The curvilinear 

pans of the hrating and cooling curve were represenced by exponentid cotangent and 

cosinc functions. The minimum and mxcimum j values chat lire related to these tables are 

0.045 and 1.0. respectiveiy. He ais0 prepared a table of new p m e v i c  vaiues by using his 

smpiricd fomuIas, and developed a procedure for the evaluation of heat processes. These 

tables wcre applicabte to aimost any :-value. resuhed in climinating the required 

interpolation for the rvalue. Therefore. the process caicuIation was significantly 

simplitled. 



SteeIe and Board's method: Stede and Board t 1979b) and Steele et al. (1979) 

reviewed Ball's method and improved this method by introducing sterilization ratios to be 

used instead of tempenture differences. This ratio was defined as the temperature 

difference between the heating (or cooling) medium and product by the siope of the 

thermal drach time curve for the concemed microorganism. Csing chese dirnensionless 

r~tios was advantageous in four main açpecrs. Firstly. the rnethod could be applied for any 

temperature scalr whilst the same scde was used in determining the sterilizacion ratios. 

Szcondly. the number of usociated tables were ltss compare ro Ball's method ris z-value 

was incorpomed in the sterilizatirion ratio. ThirdIy, the tables could be appronirnrited more 

rtradily t'or a pro,orammible calculritor. as one variable W~IS eliminated and findly. the 

limits of i n t e ~ t i o n  wrre selected in such a way thrit errors in tabulated values were 

nesli_oiblc. 

Pham's rnethod: ln an atrempt to tevise md improve the Stumbo's rnethod. Pham 

( 1987, introduced two serious of dgebnic rtquritions for thermal prwess calcuIation. The 

mcchod relied on the conduction heat transfer equrttion of a finite cylinder. Hertc rrmsfer 

cwt'ticicnc rit the container walts was inlinire and the initial tempenture distribution was 

uniform. Two m g  of srerilization values were considered: hi@ sterilization value or in 

cases when the product trmpenture is very close to heatin? medium ternpennire cic the end 

of heririnp t L:/I)I) and low sterilizarion value i I//f<L). For high sterilization value m g e  m 

ruialytical solution was applied for the temperature prediction equation. the resulting 

solution of rquations where simple ai~ebnic equations. relating g-vdue to L7 directly 

within 5% crror (Pham. 1987). For the low stedizarion value range a numencal solution 

wris applied and regression equations were generated. However. the resutt of these 

solutions wrts inuoduced in tabulaed format. in forrn of dimensionless panmeters. Pham 

considered the variability of TF and Tm in thesc tables and equations. it shouid be noted 

tfiat none of ttie previous mentioned methods took into account the variabiiity of these 

parrimeters. Also. Pham ( 19901 incorponted the variability of fh andf;. in the deveIopment 

mdies of a new method. .b the author Ïmplies. the appfied method for considering this 

vrrriabiliry cm be used in many other methods. In addition. Pham i 1990) compared his 

a method (with and without equality of fi and f,) with other methods using Smith and Tung 



( 1982) methodology. In c z e  off~fL.  Ihe meth~d was as accurate as the Stumbo's method 

and in c u r s  ofJ,&. 1% error was reporced for a 70% difference between these panmeters. 

This method has the advmtage of being applied in on-line compter control and 

optirniration of the thermal process. for king introduced in form of alpbraic equations 

rehtins U ruid g directly rogerher. 

Evaiuation of Formula methods 

The riccuncy cvaluation of formula rnethods is essential for an efficient and 

successful thermal processing detenninntian. Smith and Tung ( 1982, necessitared such a 

stuc!! for the importance of xi accumte thermal process resuIting in the minimum 

nutritional loss luid improving qudiry of the product. Five major formula msthods: Bail's 

table method. Bail's cquation method. Sturnbo's merhod. SteeIe & Board's method and 

Hayakaw's rnahod were examined in this study. The reference model was based on a 

numcricd senerril method to crilculatç the accurnulrited achirved lethalit? of the process for 

conducrion hearing food products in cylindrical packaging. A set of processing condition. 

producr ihermal difhsivity and crin dimensions were used as the initial inputs of the model 

to obtriin xhievrd process lethdity. In an initial study. unachieved ttmpenture difference 

at the end of heating tg-ruliir) and crin dimensions iH/D) were wigned as the most 

significant factors in deviritions in calculation. .A g e n e d  increrise in devixion for H D  

nrar to unit! was obsen'ed and the magnitude of g-mirie had a direct cffect on devintions. 

Sturnbo rnrthod hrid the hishest accurricy in process LethaIity cdculations. A11 the rnethods 

underestirnated the process Iethdity. which represenred an extn sdety Iirnit. 

Pham r 1990) used the same methodology as Smith and Tung i 1932) atler 

developine (i fomula method accomrnodating the variabiiity offi mdf.. Pham's formula 

method i I98T) had about the same accuracy as the method of Sturnbo and h3d the better 

accuncy thm Bail. Sreete Sr Board and Hayakawa's mechods. ï h e  s m e  iiccuracy of Pham 

and Stumbo's method is for sirniIarity in their derivation. however the major difference is 

the dpebraic enpressions used in P h m  method. 

Ghlizala et al. (1990) examined the ruicuncy of five fomula methods in 

cornparison wich a finite difference mode1 based on conduction heat transfer of thin profile 

O packagrd food producrs. The cornparison was perfomed based on a set of processing 



conditions. food properties and a range of packaging size. A fixed vahe of process 

lethality wris assumed to arrive at different process cimes with respect to seIected 

conditions. Although Pham and Snrmbo had the smailer enors compare to Steele & Board 

methods (equation and table) and Bal1 method. within the range of experimentai conditions 

the overall difference between the methods were srnail- It was believed chat finite 

difierence models based on a thin profile packaging result in a better estimation of process 

parrimeters (especidly j,.,). which formuh methods are based on. 

Larkin and Berry I 1991) had a more specific estimation of different formula 

methods based on cooling lethaiity. A range of cooiing rates (resulted from the variation in 

thermal diffusivity of producr or cm size), cooling lag factors (by changing the relative 

position rilong the radius within the cm). can dimensions and temperature differences 

between final hzating and cooling temperatures were considered for this study. AI1 the 

selected formula methods nther than Phm's and Ball's method with a constant j,,. of 1 .4 1, 

underestirnlited the cooling lethdity of the process for a complcte ranse of selected c m  

dimensions. However with an increase in j,, value. Pham's method began to underestimate 

the cool in^ lethaiiiy alsa The temperanrre difference at the beginning of cooIing and 

cooling medium temperature riffected the cooling Iethality but the differences between the 

lethrilities predicted by different formula methods did 'not change. Reton temperature had 

only effect on Pham's method in cooIing lethaiity calculation and the other formula 

methods were independent of this variable. Also this study showed that lower jcc values 

than 1.41 trsults in more overestimation of cooling lethdity. Xevenheless, smaller j,, 

values showed lower contributions of cooling lethdity to total process lethality. 

Stoforos rr al. ( 1997) carcÏed out a broad and comprehensive study on thermal 

process caiculation methods, The performance of some of the methods was compared 

rigainst temperature prediction using a finite difference model for conduction heat transfer 

equations. Bal1 method has inabiIity of tempenmre prediction rit the beginning of the 

heating. showed as a cornparison with Hayakawa's method and iïnite difference madel. 

However. this initial lag in temperature prediction is ne&ible as the product tempefanire 

is below the lethai temperature and the achieved Iethality in the initial portion of heating is 

insignitïcant. Besides. the accuracy of each model at the beginning of the heating 

0 
determines which particular mode1 can be used in handling time-varying medium 



temperamres. Numerical solutions of heat conduction equations. which arc capable of 

accommodating the medium temperature variability, are arnong the most preferred methods 

for handling time-varyine medium tempennues. 

Numerical models of thermal process calculations 

Numerical methods are based on sirnulating the conduction hea rransfer in 

packaged foods. Numerical solutions to Fourier's partial differential equation of 

conduction heat transfer results in a tempenture protile of product during the thermal 

processes. For a replar shaped container such as a cylinder or a rectanguIar slab. which 

rire more common in food industry. a finite difference solution based on a replar gridwork 

of the nodes is applied. However. for ineplar shapes. a more complex technique of finite 

elçment method is required. 

The equation. which expresses uansient temperature at the center of a finite 

cy linder. is as follows in cy lindrical coordinates: 

w here: 

T: tempenture 

t: time 

cc: thermal diffusivity 

r: ndid  position in cylinder 

h: vertical position in cylinder 

This equation is the partial differential equation for two-dimensional unsteady state 

conduction heat transfer in a finite cylinder. This equation c m  be written in finite 

diffrrences to be sotved with a numerical soiution: 



Finite differences are discrete increments of time and space defined as small 

fractions of process time and container space Ch. Ah and Ar. respectively). For 

convenience in caiculations and bsed on syrnmetry, usudly hdf or a qumer of the 

container i s  considered in cdcuIations. The temperame nodes are assigned for this 

selectrd volume as shown in Figure 2.2. Appropriate boundary and initial condicions are 

required to calculrice the new tempenture at e x h  node. dter (i srnall time interval. At the 

kginnine of the process, the interior nodes rire set equd to inirial temperature of the 

product and nodes in surface are set equd to reiort ternperarure (when the atisociated 

surface heat transfer coefficient is large). After each time inrerval the new tempenture at 

each node is caiculated, which replaces the previous temperame. This procedure is 

concinued until the end of heating when the b o u n w  conditions change from heating to 

cooling and cornputation continues usuaily with a finite heat tmsfer coefficient rissociated 

at the container surface. In this way. the tempemure at the center of c m  is cdculated after 

srich tirnt incervd. which resuits in a temperature profile from which the process 

sterilizrition value cm lx computed. 

Xurnerical models cm be used instead of heat penscration test to obrain the 

rempenture profile of the product. when the thermal propenies of the product are known. 

Also the mort temperature need not be heId constrint and crin vary during the 'process. 

Therefore these rnodels can be used in continuous processes. when the crins pas from one 

chamber to mother. and the heating medium rempenture changes dunns heating process. 

This advanrage hris providsd the potentiril of these modeis in on-line control of themai 

processing. Teixein et al. I 1969) applied such numerical models in optirnizing the nucrient 

retention in conduction-heared foods. The main importance of these models w3s providing 

the temperature at any position inside the cm. The application of these models in on-Iine 

control has been extensively studied (Dana er al.. I986: Te~xeira and Manson. 1982: 

Tucker. I99 1: Teixeira and Tuckr. 199n. 
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Figure 2.2 Grid format for temperature calcuiation using a numericd merhod 



Artificial Neural Networks 

Artificiai neurai networks (iüWs) are computing systems built up of 

interconnected processing elements, which are able to map information between ri set of 

input variables to reIated output variables. A very fundamentai component of brain or 

nerve cells, neurons, is dso the basis of the Ai. computing. 

Regard to this simiiarity, there are three main sections of biolo,oicd neurons, which 

are important in understanding the structure of m i s .  X biological neuron consists of 

three main components (Figure 1.3). Dendrites (input paths) receive the information as 

signals from other neurons. Signais rire chernicals in nature. but they have electricai side 

effects. which can be merisured, The soma or ceil body sums the incorning signais and 

after receiving sufficient inputs, it will tire signai through its axons (output paths). The 

uon  of a neuron splirs up and connects to dendrites of other neurons through a junction 

reftirred to as  ri synapse. The strength or synaptic efficiency depends on released chemicais 

from a o n  and the amount that is received by dendrites. The synaptic eficiency is what is 

rnodified when the brain lems. 

[n simuiating the brain neunl network. a processing element tPE) with its 

connections is the ..L;ÿN equivaient of a neuron. The PE acts as the ce11 body. There are 

input connections to the PE. Iikc dendrites. which transfers the sipals to the PE. Output 

connections from PE. like the inon. uansfer the signals to the other PEs. The 

incsrconneçtions possess paramecers known as weights. which will be modified through the 

Icarning procedure (as the change in synqtic strengthl. The information transformation is 

performed throu@ the interconnections between dl the PEs. In a tyical .kW structure. 

processing elements are arranged through layers (Figure 7.3). 

Usually an .hW consists of one input layer. at least one hidden layer and one 

output Iayer. Input Iayer receives the information ftom an extemai source and sends hem 

CO (the network. Hidden Iayers process the information from input layer and transfer them 

to the output Iayer. Output layer receives the processed information and sends them to an 

extemal source. When the PEs in input Iayer send the information in the fom of signals to 

the network. the strengths of interconnections are aitered based on the amplitude of the 

si_onais. ïhese changes are distributed 41 over the network through connections and at the 



Figure 1.3 Basic stnicnire of a biolo@caI neuron 
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end. manifest themselves in the form of outputs. One important characteristic of ANN is 

that it processes information numericdly mther than symbolically. The network mains its 

information through the magnitude of the signais passing tluough the network and 

interconnections between processing eiements. 

Figure 2.5 shows the basic structure of a processing element and its connections. 

The inputs into f h  layer are basically the outputs of the previous layer processing elements 

as m input vector. rr with components a, (i=l to n). The output of processing element (b,) 

is the result of a transfer tiinction (j) over a summation of inputs multiplied by weight 

parameters and addition of a bias value (T,). Transfer function can be varied depending on 

the nature of the data The most common transfer functions in solving non-linex problems 

are sigmoid tiinction and hyperbolic tangent. X sigmoid (S-shnped) function is depicted 

mathematically as follows: 

This function varies between O (at -r,=-= 1 and 1 (at x,=+= ). Si-moid functions. due to their 

limiting values. are known ris threshold functions. At vrry low input values. the threshold- 

liinction output is zero. At very high inpur vdues. the output value is one. 

Hyperbolic tangent functions dso typically produce weII-behrived networks. This 

tiinction also h a  two limiting boundaries of +1 ruid -1: 

.As the response of this hnction includes both positive and negative region. rheir 

application rire recommended for data set with negative and positive output range 

t Swingler. 1996). 

Development of an artificial neural network mode1 

.An important factor. which distinguïshes different neunl networks. is the method of 

setting the d u e s  of the weights or training the network. In training, R W s  generally c m  



Output = f(Cu,.w,) +B - 
Input variables 

Figure 1.5 Dia-enm of a processing eletnent and related cdculations 



either be supervised or unsupervised, In supervised training, there is an associateci output 

dong with any input vector in aining chta set. Therefore, the weights are adjusted 

according to the target output. The most common application of this method is in 

chssitication, prediction, and pattern association problems. On ~e other hand. in an 

unsupervised learning, a sequence of input vector is provided but no target outpucs are 

spccified. The network wilI act in a self-orgmizing mruiner to modify the weizhts so that 

mosr sirnilx input vectors are assigned to the sarne output (or ciuster) unit. As the 

detlnicion reveais. unsupetvised leming is mostly applicable in data clustering problems. 

Besides the mentioned classification, in each p u p .  there are several algorithm of 

training. Backpropagation is one of the most appiicable algorithms in pmblems invdving 

rnapping of a given set of inputs to a specikd set of target outputs (Fausett. 1994)- 

Backpropagrition algorithm is simply a gradient descent method to minimize the totai 

squared error between the ouiput computed by the network and target output. There are 

three main stages in brickpropagation dgorithm: a feedfoward of the input training pattern. 

calculation and backpropagation of associated e m r  and adjutment of weights with respect 

to crilcufrited crror. Xlthou$~ the training of Ai\ri- mode1 is cime consuming. a tnined 

nctwork wiIl onIy apply a fecdforward phase to cornpure the rissociatrd output and renders 

rhis phase very rapidly. 

Thr major task in training a network is to bring the network to a balance between 

mernorizrition and leneralization. Memorization is the abiiity of the network in correctly 

responding CO input vectors used in training. Generaiization is the ability of network to 

respond ro input vectors in the domain of training vertors but not identical to input vectors. 

h proposed procedure for achieving this goal applies two disjoint sets of data known as 

training and testing data sets. Training data set is used to updating of weights; however, at 

intervals during trainin:. the network is tested with testing data As tong E+ the network 

error for resting data is decreming. the training continues. When ~ h i s  error begins to 

increase the nerwork starts to memorize the features in input pattern too specit?caiiy and 

loses its generalization abiiity therefore at this point the training is terminated. 

To develop an optimized nenÿork, the number of hidden layers and processing 

rlements in each Iayer should be selected carefully. In addition to suucture of network 

related panmeters to improve the Ieming task should be optimized. Two of these 



important factors are momentum and leaming rate. which control how effectively 

backpropagation trains the network (Baughman and Liu. 1995). The leamine rate is a 

positive constant and conuols the rate ar which the new weight factors are adjusted based 

on the calculated gradient descent correction term. The momentum coefficient is an extra 

weioht - added onto the weight factors that accelerates the rate at which the weight factors 

are adjusted. helping the network to avoid the local minimas. A well-optimized network 

has the ability of extracring the relationship between the training data set and adapting its 

internai stmcture based on related information. 

Applications of ANN in Food Science and Agriculture 

Many problems encountered in food. agricu1tud and biologicd industries lend 

thernselves to a neural network solution. The application of .;LW in different problems is 

introduced. 

One of the tirst applications of neuro-computing in food technology was introduced 

by Thai and Shetvfslt t 1991). The combination of neuro-computing and statistical 

techniques was used to determine the rnost relevant factors in relating sensory judgment by 

human and physicd measurements of excemal color of tomrito ruid peach. [n this study'. the 

application of neural networks was faster compared to statistical techniques for having 

fewer steps in analysis scep: however. statistical techniques were slightly more 

advantageous for higher accuncy. ConsequentIy. neuro-computing technique were applied 

to set the basic feritures of the relation: and statistical techniques were used to irnprove the 

numerical accurricy of resulting mathematical functions. With respect to this study and 

above rnentioned procedure. the relationship between sensory evaluations and physicd 

rneasuremcnts of tornato and peach were identified as particularly Iinear. 

Bocheteau rr al. ! 1992) applied neurai network technique as a part of procedure for 

prediction of apple quality using Near Infra-Red INlR) spectra data in order to reduce the 

nurnber of input parameten ruid exduding uncorrelated inputs to the n e u d  network model. 

principai component andysis (PCA) was applied A multiple re_eression analysis w s  then 

crimed out to derive the best linear estirnator and finally the neural network mode1 was 

a developed to exuact the non-linear lunction input and output components. The finai result 



was a model for predicting the apple quality From NIR spectra. ANN modeling resulted in 

3 Ir, increllse in accuracy of die linear model with R' equal to 0.82 

Linko and Zhu (1992) studied the potential of ANN techniques to construct an 

appropriate real-rime state estimation and predicuon model applicable to process control in 

gfucorimylase fermentation. In cornparison with conventional modeling, h i  had the 

ability of handling uncertainties. complexity, noise and unavai lability of data which are the 

common cases in the biochernical reaction analyses. The most related on-line data as 

oicygen consumption rate (OCR), carbon dioxide evolution rate (CER) and the niuogen 

utiiizrition rate CKi'R) alone with other inputs were applied to estimate the enzyme activity 

and biomus in on-line conuol. The XNN models had the advantases of ease of use 

without a prior knowledge on the complex mechanism of microbid physiology or on the 

interrelationships of the variables. Once tnined on a t ~ i c a l  example data it .W mode1 

couic1 suppress the noisy data The developed .LXN model perfomed very satisfactory and 

compared well with red values from off-line analyses. 

. U N  models were applied as a quality prediction mode1 for black tea and resin 

samplts bued on data from chromatopphy and sensory information iTomlins and Gay. 

1994. Although multiple re,sression techniques were more accurtite compmd to rLVN 

rnodeling. the results of .WW model were improved by reducing the training variables 

lissigned by stcpwise multiple regession. in addition. rLWs for cases in which the 

accurricy is not important (for example in quality control) provides more advanta, = ~ O U S  

application in predicting several parameters simuItaneously. The combination of statistical 

procedures and XW were suggested as useFu1 tools in pattem recognition and regression 

of chr~mato~oraphic (GC and HPLC) and sensory data. 

Park er al. ( 1994) applied an & i  model for predicting and ciassifying beef 

chuacteristics usinp ultrlisonic s p e c d  t'eauntres as the input data for training the models. 

.-LW rnodeis provided better results compared to statisticai regression models for 

predicting the sensory attributes of beef as juiciness. muscle Fiber tendemess. connective 

tissue. overail tendemess and tlavor intensity. The relationships between physical 

attributes and sensory properties were mostly Iinear as an A i  model developed without 

hidden lriyers perfomed best. The accuracy of A W  model For classification were a 

0 
Function of Iearning schedules. number of processing elements in hidden layer and number 



of input variables. Increasing the u Iuaso~c  spectral feanires as input variables increased 

the accuracy of classification. 

Sayeed et al. (1995.1 investigated the possibility of an ANN model development for 

smk quslity evaluation. For this purpose a machine vision technique was applied to 

quantify the qurility features of typical snack products in the form of texture (reflecting the 

intemal structure) dong with size and shape features. The relationship between the 

mentioned variables and sensory attributes were noc adequately linear as examined by 

linear re_oression. thersfore the input variables were applied to train a backpropagation 

.&VN model to Ieam the non-lineaity kcween input and output variables. The developed 

A N S  model was vdidated with a set of untrained data and the prediction results were 

compared to those from a raste panel. The developed mechodology had a potential 

application in snack production industry as a nondesrructive rnethod of quality evaluation. 

The potential .4ii% modets for milk sheif-life prediction was evaluated by Vallejo- 

Cordoba rr d. ( 1995). Dynamic headspace gas chromatographie data collccted durin3 the 

storagc of puceurized milk were appIied ris input to be related to tlavor-based shdt'life of 

miik in days as dependent variable. .LW- and Principle Cornponent Re-mession (PCR) 

techniques were used and compared for their predictability. .LW. with 2-day standard 

srror in shslf-life prediction. perfomed better that the Cday error PCR technique. and 

indicated ri higher predictability for this concept. 

Svblani et al. (1995) investigated the potential of .-LW models for prediction of 

optimal sterilization temperamres. X finite difference model senerated the data for a set of 

assi~nèd conditions (cm size. thermal diffusivicy and kinetic parameters of quality factor) 

to obtain the associated sterilizatition tempennrrrs. Xftewards the optimum conditions and 

related quality factors were applied as inputs to tnin the AiTi model. The trained mode1 

was able to predict the optimai sterilization temperames with less than 5% error. In 

mempt to predict the overdl heat transfer coefficient and fluid to particle heat transfer 

coefficient using A i  modeling technique, Sabtani et al. (1997) obtained significantiy 

supetiot results compared ta dimensionless corretation techniques. Beside the higher 

accuracy of prediction. .LW models were more versatile than dimensionless number 

rnodels. 



Rauan et al. (1997) compared the predictability of ANN rnodels for rheoligical 

propercies of a cookie dough. The nw input data were obtained from mixing power 

consumption curves. The investigated rheological properties were farinograph peak. 

exrensibility and maimum mistance. Two specuum analysis techniques. Fast Fourier 

Trinsforrn (ETï) and power spectral density (PSD) were used for data preprocessing as a 

piut of .-LW mode1 development. LTsing these techniques the raw data (tirne domain data) 

were convened into tiequency domain data The above-mentioned techniques improved 

the training ability of AVN models for reducing the noise and size of the initial raw data 

and werr recognized as successful techniques of data preprocessing in this study. 

Ghrizanfriri et al. ( 1996) studied the suitability of multi-stmcture neural networks 

(4ISh'N) over a single multi-layer neural network (hLW3 for classification of piscachio 

nuts. The !vIS;rJi classifier was constructed frorn four single Ai' models. which were 

rrriined sepxacely with one output variable from each network reprcsencing one variety 

iclass) or pistrichio nuts. The input data for these models were physicd attributes of nuts 

derived from their images. The classification accuracy of developed MShT was compared 

with MLNY rnodel. The MSNN technique significantly increased the clrissification 

performance. In addition. M S N N  had the advantage of smdler network architecture. 

which is more preferable for hardware and software implementation. 

Anoerosa et al. ( 1996) developed an A i i i  rnodel as alternative to sensory 

svalurition performed by a taste panel for virgin olive oil by panel test. A wide range of 

'irimples icovering different variety. quality. ripeness. sanitary and geopriphical origin) was 

jubjrcted to a sensory evaluation by a taste panel. The results of quantification of volatile 

fractions using headspace gas chromato_maphic technique were used ris input data to predict 

the panel test scores (output variables). ï h e  iLW mode1 was able to seneraiize the 

relarionship between these two sets of data successfully with a hi$ d e l e  of accuracy. 

suggescing the substitution of developed A i i  rnodel with panel test. 

Briandet et al. ( 1996) applied AW technique as one of alternative statistical 

approaches for correlating data from Fourier trarsform in-d (FTlRl for detection of 

adulterated freeze dried instant coffee. This FTIR technique was applied as a rapid 

alternacive to wet chemistry rnethods; however, data anaiysis of this technique wete more 

a complicated. A\i models were cornpared to principle component re-pssion and partial 



least square regression, and the supecior performance and genenlization potential of PLNN 

model was demonstmed with an independent set of data with 100% correct classifications 

ability. 

Pamer er al. (19971 developed an ANN model to evaiuate the factors involved in 

the contamination process and also the significant factors in the magnitude of aflatoxin 

contamination of in preharvest peanuts. Alternative to ANN model- a stepwise traditional 

regression model was developed for this purpose. The input variables (soi1 temperature, 

drought duration, crop age and accumulated heat unitsi were related to aflatoxin levels. 

This .study showed the ability of Ai' models for this purpose in addition to better 

performance than lineu regression technique. 

Kim and Cho (1997) applied three developed A i  models ris a pan of a fuzzy 

controller in bread baking process. For this purpose three main parameter in bread baking 

process namely volume. browning and temperature were measured in 3 seconds and 2 

minutes intervals. resulting in uaining data for 3 ANN model development. The neural 

networks showed ri good performance for predicting tempemure. volume and browning. 

The knowIedge from developed models and an expenenced operator were used to define 

l 1 rulrs for h u y  controller. Using a fuuy controller instead of a human operator can 

reducç the cost of heating of the oven. without the loss of bread quality. 

.bW rnodels as an alternative in data-processing technique to partial l e s t  squares 

(PLS) and principle component anaiysis (PCA) showed better prediction ability ( Horimoto 

et cri.. 1993. In order to classify the tlavor quaiity of milk as ri pan of quality control. 

dynamic hrridspace gas chromato_mphic was used to quantify the off-flavor componenrs. 

L W  rndk was inoculated with various bacterial species and storage times. The content of 

training and testing data ris well as optimized parameters. which were related to Ai' 

mode1 development tleming rate. momentum factor and hidden PEs). intluenced the 

predictive ribility model. 

During Isobaric-isothermai inactivation of a-amylase enzyme. pressure and 

temperame had a complex effect (Gsenerd et ai.. 19%). A model based on Arrhenius Iaw 

presentrsd ri non-Iinear description of the system. Due to Iack of data. an &W mode1 was 

applied with respect to its ability in prediction of complex systems. The ANN mode1 was 

a able to predict the complex effect of pressure and temperature on the inactivation rate 



constant using 3 limited set of experimental data. The effect of nansfer function of each 

neuron was believed to be important in a low complex A i  model development. 

Cebri et ul. ( 1998) applied hW modeling in predicting the origin of white vinegar. 

Amon: different chemico-physicai and sensory analysis. selected panmerers such as 

pol~alcohols. pH. tartaric acid and pmline had the most diable nile in discrimination of 

the product. .A broad data set covering products from a varie- of nw materials and from 

various countrics subjected to multivariate statisucal analysis were used to devefop the 

Xi\% model. The A\X model was able to predict the botanicd oripn of the product and 

also was able to reclassify products with unknown origin. 

The above review indicates the status of available methods of process calculations 

I with sufficient scope for developing new rnethod. which cm reduce process calculation 

mors ). as wçll 3s the potential of h i  modeIs for use in process calcutations. The present 

thrsis riirns at dèveloping an .hW based process calculation model. which wouId be more 

versatile and accurate thm the existing methods. 



Xpplicarion of A\% models CO simulace Bd and Stumbo methods of rhemial process 

calculri~ons is presented in this study. .hW modeIs were developed based on reiating Bail and 

Stumbo table pwrrmerers co facilitate process calculrttions. me .kW models related ,y value (as 

ri merisure of procrss timei to fIJU (as a mesure of process lethdityi. Tables developed by 

Stumbo riccçlmmodate the j,, (cooling lag factor) while relating g .and .$m. therefore. for 

cicveloping .WN models of Sturnbo rnethod, j,, was dso considered as an additionai input 

vmriblc. The devrloped XW modeIs for Bal1 and Stumbo methods were validrited using ri new 

set of processing conditions. involving a range of recort ternpenmres. initia1 ternperatures. 

heating n t r s  and heating lag factors [and addiriondly. for Stumbo method. cooling lag factors 

i j., il. The prediction et'ticisncy of .-LW modeis were a funcrion of the size of training data set. 

number of hidden Ia*rs and PEs in each hidden layer as rvell ris other Iearning puameters. 

XI?; based B d l  models had rui average mor  of 1% for the vatidation data set whilr the A i i i  

based Sturnbo models had a slightly higher 3 8  average crror for process tirne and process 

Iethaiity crilculritions. The srnalier size of daca set and a wider m g e  of parmecers associitted 

with Siumbo tables were considered to be the reason for the associated higher errors with the 

.-LIT based Stumbo rnodels. In senerai. the Aiw rnodeIs were considered to simulate Bali and 

Srumbo methods of process cdculations well providîng a b a i s  for tùrther exploration of the 

concept. 



INTRODUCTION 

Thermal processing of packaged foods is one of the most widely used methods of 

preservation in twentieth century (TeLueira and Tucker. 1997). Nicholos Appert introduced this 

method for the first time in IS IO. The concept of themai processing is based on heating of 

packaged foods for ri cenain length of timc to obtain ri safe product complying with public hedth 

standards. Thermai processing is based on established tirne-tempenture profiles. .Associrtted 

with thermal processing is dways some degrdation of heat-sensitive quality tàcton that is 

undesirable. Since much demand is on safe and shelf-stable food products dong with a high 

quality attributes. processing schedules are designed to keep the process tirne to the required 

minimum. 

The m i n  objective of thermal process cdculations is CO determine the process time for 

~chicving 3 pre-selrcted process Icthdity or evriluriting the lerhality of a given process. For the 

f i n t  time. Bigelow er ul. ( 19201 introduced a -mphicaI procedure of evaluritin,o the eftïciency of 

herit trztltment process for packriged foods. Bal1 (19331 refined the concept and cieveloped a 

mathematical mode1 lreferred to as Ball rnethd) for calculating the required process tirne of 

canned foods. Besides some Iirnitations in this method. the Ba11 method is considered a 

mdestone in ctlnning industry and still is a widely used method in industry. This rnethod is 

positioned ris ri classical tribute to the udue of machernatics in food processing. 

Bal1 method is based on the observation thac a semi-logrinthmic graph of temperature 

ififference between product and medium vs. time is ri stnight line after an initial curveci ponion 

i Iag trrncr). Ball 1923) cdculated the process cime based on the equation of this stnight line and 

inregating the effect of process time over the kinetic daca of microbid destruction. L'sually the 

tffest of cutved portion of heatiq ts not considered. as the lethal effect of this ponion is 

nepligibie cornpared to the total xhieved lethdity. However. under conditions of high initiai 

rempenture. large :-values or processing for fow required lethality. the cfficiency of this portion 

of hearint should be taken inco consideration- 

The estimation of propcr heat processes is essentially based on the cdculation of process 

Icrhdity. F,, computed as foilows: 



where: 

TRi: reference tempenture 

T: center point tempenture 

z: temperature sensitivity indicator of F value. 

For Iow acid food products. 250°F ( 121.1°C) is widely used ris a reference temperature. Bail 

deveioped tables and p p h s  to relate process time and process lethdity. These tables and ,onphs 

were based on relating two parameters: g (tempenture difference benveen product and heating 

medium at the end of heating) as a merisure of process time to ffi' (ntio of hearin, 0 m e  to 

scerilization value) ris the merisure of process lethality. Some restrictive assumptions were made 

dunng the drvriopment of these tables and gnphs. One of the most important panmeters. which 

crin sornstimes cause enors in calculations. was a constant cooling lag factor. j,., value, equai to 

I .4 1 .  Therefore. Ball method overestimates process lethaiity when j,,c 1.4 1 and underestirnates 

ivhsn j,,>l .-CI i Ball and Olson. 1957: Hayakaws 19781. Xlso. Ball (1923) assumed an equai 

heating and coolin- rate (ji=t; i. In pnctice. the values of these two parameters d i k  from each 

orher. It htis been found that for steam heating and water coolingj.-I.3jh (Pham. 1990) and 

obviously disregarding this inequity interferes with the accurricy of process cdculncions. Bail 

method htis heçn widely reviewed md evduated by several reseluchers (Merson et d.. 1978: 

Rambert rr c d . .  1977: Steele and Board. 1979: Spinak md Wiley. 1982: Scoforos. 199 1). 

Smmbo and Longley ( 1966) reviewed and tevised tables developed b y Bal1 ( 19231. The 

variribility of j,,. value was considered in these tables for more reliable anci accurate therrnd 

procrisses cdculations (Stumbo. 1973). These tables arc obiained from hand drawn hectt- 

penstrsion curves and relate j f l  and g values with respect to variability of j,,. .AIso the 

variability of i;, and L. was considered in developing these tables. but it applies only to cases 

where the differrnce of fi andf., is not more than 20% of respectiveh value iHayaiiaw;i, 1975. 

S toforos rr al.. 1997). 

Artificial Yeunl Network ModeIs 

Xrtificial Seuni  Network (hW models are computationai models made up of s eved  

processing riiemen~s (PEsl. which are connected thnïugh weighted Iinks. Development of mode1 



is brisically based on adjusring the weights through presenting adequate number of examples 

consisting of input and output variable pairs. 

Generily Ai'N models are constructed from an input layer. an output layer and one or 

more hidden Iayer(s). input I i e r  transfers the information to the network for processing. 

Output layer receives the processed information and sends it to extemai receptor, Hidden layers 

process the received information from input layer. extracts the existing feanires in input variables 

and predict an output. Amon: different networks. back-propagation network has the most 

appl icabili ty in prediction and classificrition problems. Backpmpagation nenvork is a feed- 

forward network. which propagates back a portion of error between desired and AW ptedicted 

output to correct the weight pmmeters. 

Recrntly. .kWs have shown a potentiaI for applications in food science and technology 

areris. Ecrikainen et al. ( 1993) presented a series of examples of potentiril application of h i  

rnodels in food-related applications. Palmer rr al. (1997) applied neud  network modeling for 

estimation of ritltitoxin contamination in pemuts which perforrned bctter than tnditional linex 

 gre es si on techniques. Yi and Gunasekm f tg981 simulated the complex task of food quality 

prediction using .LW models. Bouchenu ct al- (1992) drveloped a neud-network-based 

rnethod for prediction of ripple juice quaiip using ne= intnred spectn. Yeud networks were 

uscd to determint: the si_onificant variables in hwesting and pmcessing effects on Surimi qudity 

b! Peters rr dl.  I 1996). Kim and Cho ( 1997) developed an .%LIN model for the bread baking 

proçrss. using three quaiity factors of volume. browninp and temperature. In thermal pmcessing. 

Sablani et 111. (1995) applied neud network rnodels to predict optimum thermal processinp 

conditions. A s  an application in drying. Sreekanth es ai. ( 1998) developcd an AL3 model for 

prediction of psychometric panmeters. 

The global objective of this study w u  to evduate the potentiai of .kW models as an 

alternative to conventional process caicuIation methods. .4s a tÏrst step in this direction. data 

from nvo clrissicd methods: Bail and Stumbo methods. were used to develop the .LW models 

and assess their pertormance. Hence. the specific objective of this paper is AW simulation of 

Bal1 and Stumbo formula methods of pmcess cdculations. 



U N  modeling of Ball and Stumbo methods 

Ball and Sturnbo methods relate process time and process lethality by employing two 

parameters. g and jW. in the form of tables or ,paphs. In tables developed by Stumbo. the effect 

of j,, on this relation is also considered. For a known process time dong with the other 

processine conditions. g-value will be known: alternauvely for a given process lethality. fa will 

be known. For developing A i  based process calculation models. Ball and Smmbo methods 

were simulated based on relatine the paramecers of these tables. Data Vi/U' vs. g or g vs. fh/U) for 

both trxining and verification were obtained from tabIes published in Lopez (1987) for Ball 

rnethod ruid Snimbo ( 1973) for Stumbo mctfiod. Detailed tables were available in Lopez ( 1987) 

and hence IO50 data pairs were used in Bal1 mode1 for training For Stumbo method. only 44 

data sets relatingfjfl vs. g (and vice versa). were rivailable 3t 9 different values of j,, . .A :-value 

of IOC" w ~ s  uscd t'or both models. For each method. two models were developed one for 

p~dicting./;/l' bused on y. and vice versa 

Development of .UN models 

Ball model 

YeunlWorks Professional WPlus. version 5.3 (YeunlWare Inc., Pittsburgh. PA) was 

employed for .hi5 rnodeling. .A standard back-propagation aigorithm with tangent hyperbolic 

trrinsfer tùnct~on ruid normalized cumulative deka iearning rule was applied as the basic 

xchitecture of network. AS the input and output variables had 3 broad range. for a better 

presentation of input and outputs to the nework and a more unifom data set. a mathematical 

tr~nsform function was applied. Therefore. iug g was predicted h m  1ogCffir). and 'rJV in the 

form of crri-runp~nr(1og fIJU) was predicted Crom log g. For a more convenient recalling of 

models. frorn now prediction of log g will be denoted. as -Madel .A and prediction of ffl will be 

denoted as Model B. 

It hlis been recognized that the network predictabiIity and performance should be 

oprimized with respect to the size of the training data set. structure of the network. number of 

hidden laycrs. number of processine elements in the hidden Iayer. type of leaming rule and 

a tramfer hnction. Several other variables dso affect the rtW model development and 



performance. Arnong them momentum and epoch size have the rnost significant effect on the 

network perfomance. The rnomenaim represents a fractional value €rom the previous weight 

change added to the present weight correcrion. Ets value crin change benveen O and 1, however. 

higher rnomentum values speed up the l emin t  pmcess and prevent the mode! from being 

tr~pped in 3 local minimum. At the same cime. large values of mornentum will cause larse enor 

oscillations c?lcrualWare, 1996: Baughman and Liu. 1995). Epoch is the number of training 

presentations between weight updates. This method of updating tveights which increases the 

convergence spwd is known as cumulative delta rule leming. However. using cumulative 

delta-rule Iearning for updating weights will require more calculation and. if the epoch is too 

large. the advantasr of using overall error function cm be lost. Therefore. depending on the 

problem. the epoch size should be optimized. 

The performance of an .h i  model is influenced grerttly by the quruitity and quaiity of 

data used ris the training set (Linko and Zhu. 1992). The training data should have sufîkient 

information to describe relation between input and output variables. X correct format of input 

and output variables could increrisc the learning ability of Mir 's  by detecting and entrricting the 

relation between input and output variables (NeuralWare. 19961. This stage of ANN models 

development is thus regarded ris data preprocessing, which couId be perfomed in different ways 

to improve the model efficiency i Lacroix et al.. 1997). 

Kseping the above constnints in mind. to select the required number of examples in 

training set. lertrning curve was developed. The original data i 1050 datai were sorted from the 

lowest to hiehest value. To have sin equd groups of data. wery  seventh data row was selected 

and removed t'rom the original set. These fomed the lint (Group A) data set of 175 data points. 

The same procedure was repeated with the remaining data uncil six homogenous groups (A to D 

of data each with 175 data points were obcained from the original data. Each of the group thus 

covered the cntire range of data in orignal set. Different combinations of these groups were 

used to achieve different sizes of training and testing data sets. These arrangements are shown 

in Table 3.1. The data sets that were not used for training were used for testing during 

development of model. The developed models were tested also with al1 the available data from 

the original data set to evaluate the consistency of performance. This procedure was foUowed 

for both models i A and B). 



Various network architectures and network leamin,o parameters f momenmm and epoch 

size i were examined. as sumrnarized in Table 3.2. Po woid over-mining of models. the original 

data were s e p m e d  into two Croups as training and testing data sers. Testing data were applied 

to cross-vrilidate the model during the training stage. For this purpose. the NeuraiWare software 

provides an option called "save best". Function of this option is to stop the tnining stage f i e r  3 

certain number of cycles. testing with testing data and saving the results of the network in a file. 

Each time. the result of most recent and better network replaces the Iasc saved network. This 

procedure is continued until a pre-selected error of network is reached or d e r  number of 

itrrations without any improvenient in Ieaming of network. Finally, the "srive best" network is 

retained. and the model is ready for verificrition. 

Triblc: 3. l Combinations of training and testing data for network optimizrition 

' Graupisi in Training 1 Grouplsi in Testing Yumber of dota pairs ] Nurnber of data 
set 1 set in Training set ' pairs in Testing set 

A B . C . D , E . F  1 175 Y75 
I 
I 

.XF B.C. D. E I 350 I '00 l 

l A. 1'. F B. D. E 515 I 5 25 I 

l 
I D. E 700 :\. B. C. F 3 0 0  

Table 3.7 Range of network architecture md leming parrimeters used in the smdy 

I 
. - 

1 I Number of Pes 

0.8 32 

B d i  nunabers wirli  ind der score are de~auit values provided in sofnvare. 

Snimbo model 

t hidden Iayer 

The number of data pairs available for this mode1 was 396 (44 ffl vs. g combinations for 

9 j,, vdues and ccoered a Iarger range of fN and g as compared to Bal1 wbie. input variables 

Momentum 
1 hidden Iayers 

Epoch 



in developin,o AhX model for Stumbo method were fh/U and j,, for predictins y value or 

alternatively g and j,, to predictffl. The j,  variability was considered as the second inpur. As 

in Bal1 models. notations of Model A and Model B were used for prediction of log g and fh/U 

values. respectively. A part of original data was used for tesùng. The selection of the A i  

structure and related leming parameters were foilowed as defined for die Ball model. 

Vûlidating the AYN models 

Xfter developin,o Ai'N models for Ball and Stumbo methods. a new set of data covering 

tl speciticd range of processing conditions. as shown in Table 3.3. was applied. A Lotus@ based 

hpreadsheet program for process cdculations by formula merhods, drveloped by Rarnaswamy 

i 199 1 ). was applied to calculate the corresponding process time or process ledidity. The 

c.alçulated q ior jYl.9 from the procrssing conditions and process timelprocess lethality were 

uscd to recall rhr , W N  models and obrnin the corresponding .LXN value. .Vter. these recdled 

.UN values were applied to calculate rhe ANN based process time or process lethality. the 

riccuracy of .LW predictcd vaiues were compared with rhe respective values from erich method. 

The followin_o criteria were used for evaluating .bYN rnodels performance: 

Rout Mcan Square ( RhIS) of mor= dz1" 'n Y'1 
Mean Absolute Error (MX) = Mean of I Y,, - M 

jyl, - yl >lean Relative ErrorihIRE.8) =bIeanof -*IO0 
y0 

where: 

Y,,: Desired value 

Y: .kN3 predicted value 

n: number of records 

For validating .INN models of Stumbo method. the varïabiiisy of j,, was also considered 

between the processing conditions. Tabk 3 3  shows the range of conditions used to cdculate 

Stumbo process time and process Iethality, 



Table 3.3 Range of parameters for vdidating AW based Bal1 and Stumbo models 

Parameters I I Baii S tumbo 

RT (OC) 115-125 110-130 
lT (OC) 65 70-90 

, &(min) 10-20 23- 1 85 
I 

i ]ch 1.2-2.0 1.80-2.04 

JCC 1.4 1 1 -70-2.00 1 1 Process lethality (min) 5-64 5- 15 
/ Process time (min) 13.7-137 i5-400 

Mode1 development and optimization 

[t has bern recognized that the network predictability and pertormance is dependent on 

the nature and size of training data set. structure of the network and some relevant pairameters 

during training. Training dara set should ideaIIy cover the desired range of problem and consist 

of enough records to let the network leam the katures. A i  models l e m  trend from the data in 

training data set. This capacity is based on the nurnber of processing elements (PE) or more 

specifically number of connections. if the number of PEs rire more than what is needed with 

respect to trriining of the model. the network may lose the genedization ability and begn to 

memorize the data which is mostly undesinbfe (NerudWaire. 1996). 

A well-crriined network is optitnized beween generalization ability and Ieming the 

trends in training data set. To prevent the mernorizkg problem. a seprirate data set from training 

data should normalIy be selected randody and ttiis dara set will be applied duting training stage. 

Xfter certain number of cycles. the training is stopped and the testing data set is used to cdculate 

the error. At'ter the network has converged to or reached a minimum gobai error. the training 

can be stopped. 

For developing the Ai -based  BdI modei. the first objective was to choose the correct 

size of the training set. which ensured the leamhg and generaiization abiIity of network 



sirnultaneously. F i ~ r e s  3.1 and 3.2 illustrate the effect of number of examples in training data 

sec based on recdling training data set (as a measure of network ability to lem the data). as we11 

as testing the network with testins data which were not used in training data set (as a measure of 

oenerdization ability of nenvork). Mso, each network mode1 was tested with the entire onginal 
b 

data set and the combined results are shown in these p p h s .  For both rnodefs. the etrocs 

usociared with training and testing data sets were very close for each trining set size. 

dzmonstrriting the potential ability the of network for genenlization. The resuits dso confirm 

that the gencralization ability of network was not affected by training data sec. However. the size 

of the training set had a sipiîïcant impact on the prediction ability of network. At the Iowest 

level tricd. the mors were quite high. For the h i  based Ball-method. a training data set otf size 

contriinins ris many as 175 data points could be accomrnodated because of the availability over 

1000 data points in the original set. And even at this size. the associated mors were high and 

conversed to lowcr values onIy after the size was increased- The network hrid minimum mors 

with a size of 525 data points which was selected for both models ( A  and B). the remaining 

k ing  usrd exclusively for testing. 

Thc crror parameters for selecting the required number of hidden Iayers and PEs in erich 

hidden layer are shown in Table 3.4. Changing the number of PEs in networks. with one hidden 

layer. generally resulted only in a smd1 irnprovement in performance. However. the addition of 

a. second layer. markedly improved the prediction ability. which w u  more significant for Mode[ 

B chan h r  Mode1 A. Increasing the number of hidden layers to 3 did not result in an? ridvantag 

iiver the mode1 with 2 hidden layers. but increrised the computation time. Hence. Model A was 

selecred with 2 hidden layers and 2 PEs in each layer. and a 2-hidden iayer network with 5 

processing slcments in each layer was assigned for Mode1 B. It has been generaily recognized 

thüt assigning the appropriate number of PEs and hidden layer!s) is mostly a mal and e m r  

mcthud. however. two hidden Iayers for most of problems is sufficient (Neunlware. 1996). 
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Table 3.4 Effect of PEs and hidden layer(s) an the performance of ANN based Bal1 rnodels 

Several other parrimeters have a role in a successfui training and increasing the 

performance of the network: momennim and spoch size. and learning d e .  The epoch size wm 

syrsmaricrilly varied bctween the litnits and its effect on the R M S  was evaluated (Table 3.5). 

Epoch size did not affect prediction rtbility of Model A: however, it litTected the prediction 

ability tif X.W mode1 B. M e r  sekcting the correct epoch size. this parameter was fixed and the 

variabilicy of momenmm was considered. Table 3.6 shows the irnpac~ of mornentum on learning 

of nrrwork. Increxsing this parameter decreased the error p&uneters. but increasine it byond 

some values increased the error. The increase of momentum value can speed up the lezrning rate 

and prevent the network frorn tnpping in to locd minima: however this increarie cm increase the 

error osciIIarion and consequently fiecting the performance of rnodel. 

Table 3.5 E t k t  of epoch size on prediction abiIiry: AW based Bal1 models 

1 
'unber 
hidden 

I 
r layers 

Ont! hiddrn 
: h y r  
I 
i 
i 

1 & I  1 0443 0.024 6.337 i 1.881 
1 

Mode1 B (predicting fm 
'lumber of PEs 
in layers 

1 - 
5 
I O  

15 

RiMS error 

3.584 

5.797 
1.3 18 
1.727 

M E  

1 .O4 t 
1.709 1 
(1.7 15 
0.795 

Model A f predicn'ng h g  g )  

RLCtS error 

0.068 
0.067 

0.067 

0.076 

M AE 

0.037 

0.03 8 
0.039 

0.05 1 



Table 3.6 Effect of momennim on prediction ability of AW based Bal1 Models 

Based on this initial eaercise. the optimal configuration of the necwork for the two A i  

brised Bal1 rnodels were determined and are shown in TabIe 3.7. The prediction performance of 

the ANN rnodels wirh d i  leming parameters selected as detriiled in Table 3.7 is illusrnted in 

Figure 3.3 as plots of XW predicted values vs. Bal1 table values. The predicted values were 

very close to the BaII table values and were evenly distributed throughout the entire range. 

Calçulated error panmeters and R' are given in Table 3.8 which show thtir .hW rnodels were 

able to accuritely predict Bail table panmeter. 

Momentum 
Value 

Table 3.7 Optimal Ievels of architecnird parameters for A 3 3  based Bal1 ruid Stumbo 

rnodels 

~ - 
1 

I Number of Pb; in hiddrn Iqen i l&Z / S t 5  j Z & l  Z b 2  1 

$ 

Modd A (predicting h g  g) / Mode1 B (predictinglJLn 

/ Epoch s i x  ! 4 S i 4 Y 1 I 
1 I 

1 Momentum 0.3 1 0.4 I 0.4 0.2 
I 

i i 

RMS L U E  1 RMS 1 5LAE 1 
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Fipre 3.3 Cornparison of -&;LX predicred values and Bal1 table parameters respect to input 
variable 



Table 3.5 Error panmeters for ANN based Bd and Stumbo models 

BaU bhiel A h i  Bal1 Mode1 B 

Mode1 verification 

Figure 3.4 illustrates the results of validation of the Jeveloped models with a new set of 

data which involved a wide range of operating panmeters norrnally encountered in commercial 

thermal processing opentions (Tabis 3.31. The prediction enor parameters are also summarized 

in Table 3.5. For both modeis (process tirne prediction- Mode1 A and process lethality 

prediction. klodrl B) the R' was close to unity. which showed excellent comlaùon between the 

.-\'J'Y model and Bail rnethod. The associated mean relative errors for both process time and 

process lethality predictions were I .O and 1.3%. respecùvely. The mean relative enor is more 

rneaningful with respect to process lethality. while for process tirne. the mean absolute mor  (0.5 

min, which indicates the crror in user units (min) is more easily  conc cil able. Over the range of 

process time encountered (up to 150 min). this represents a mean range error of about 0.3% 

which was considered small. 

MRE 

R' 

Error parameters 

AYN based Stumbo &Iode1 

fhnr Process lethaliîy 

t 2-48 0.165 

Error parameters 

RhIS 

ï h e  various pre-processing constraints were dso evduated with respect to the Stumbo 

4.98 

0.99 

mode1 dthough some coutd not be accommodated because of the srnaiier size of the available 

Log g 

data. For exarnple. since only 44 data pairs were avdable at each j,, vdue. the size optimization 

Process time 

1 .O25 

0.99 

0.04 1 0.607 

1.14 1.321 1 

0.99 0.99 1 
ANN Stumbo Mode1 B 

1 

fdu Process lethaiity 

A - W  Stumbo Wdel A 

h g  g Process time 



ANN wlw 

O YI 1 W lm 200 

Bail pocess tlnm (min) 



could not be done. The required number of processing elements and the number hidden 

@ Iayerswere optimized based on the RMS of erron and MAE. Since the quaiity of data between 

these rwo tables i Ball and Stumbo) were similar, optimal conditions with respect to mornentum, 

transfer hnction. and leaming rule were expected to be somewhat similar to those achieved in 

the XW based Bdl model. Again. 2-hidden-layer network performed considerably better thm 

l-hidden-layer networks. The optimal conditions for number of PEs were 2 PEs in each layer. 

whilr for one of the Bail models. the best model had 5 PEs in each hidden layer. The appropriate 

architecture of nrtworks was also used to select the proper values for epoch and momentum. and 

rhese were ais0 dighrly diffèrent. ï h e  differences in the architecturai confiprarions were 

considered to be the result of smalIer size of data set available for Stumbo model. The optimal 

conditions rire summarized in Table 3.7. 

The performance of the XW based Stumbo models as a plot of AWN predicted value vs. 

desired output value is shown in Figure 3.5. The computed errors and the rissociated R' values 

rire included in Table 3.8. The figure demonstntes an excellent agreement between predicted 

and rxpected values with a high R' value. The mean enors were. however. somewhat heher 

than those observed with AW based Ball rnodels. For Mode1 A. for example. the MRE was 

6.15 for the Stumbo model as cornpared to 5% for Bdl model for log g prediccion and 2.8% and 

1-19 .  tespectivdy for f& predictions. The differences were considered to be prirnarily the 

result of differences in the size of available data over a wider range of fdU and the addition of j,, 

ris ri second input. Accommodating these changes probably requires a larzer training set. but the 

number of data in Stumbo tables were far less than that in Ball table. tt wiis shown erirlier with 

based Bail model that the performance enors were quite hi$ even wirh the avriilability of 

175 data points. it may thus be logical to assume a hizher performance error with Stumbo 

models. 

The results for vdidating .&W models in the form of predicted vs. expected process time 

and process lethality is shown in Fi-ocue 3.6. With respect to process lethdity and process 

Irthdity predictions. the associated erros (MRE) for A i  based Stumbo rnodels, were again 

3% while they were about 1% with A i i  based Bail rnodels. 'Che associated R' were again very 

high and the quality of predictions was excellent. The slightly higher emrs with predictions by 

the XW based Stumbo models were again ascribed to non-availability of adequate number of 

0 
data sets to properly train and develop the kW- models. The associated erroa were. however. 



figure 3-5 Cornparison of Xÿ-j predicted values and Smmbo rabk parameters respect to 
input variable 
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Figure 3.6 Validation of .;LW modeIs of Smmbo's merhod 



considered low enough and demonstrate the utility of the -4NN concept for sirnulahg Bal1 and 

Scumbo procesi cdculation techniques. 

CONCLUSIONS 

The feasibility of X i i i  rnodelling for process calculations ww evduated in this smdy 

based on cheir ability to sirnulate Bal1 and Stumbo rnethods. The kW models were able to 

correlate the pumeters of Ball and Stumbo tables with good accuncy (mrm relative errors of 

l-3%). [t W;LS found essential to optimize the network contlpntion with an appropriace size of 

training data set, and several learning panmeters. The developed h i  models were vdidrited 

with a new set of data for process time and process Iethdity calculations covecing a wide range 

of commercial processing conditions. .+INN models predicted the process time and pmcess 

Iethdity with rnean relative error of 1% for Bal1 models ruid 3% for Snimbo models. The slightiy 

hisher enors associated with .LW based Snimbo models were considered to be due to a wider 

rringe of parameters and smaller size of available training data set as compared co Ball model. 

However. the rissociated low enors and hi$ R~ value wirh the AN'I based models in simulatinp 

BaII and Sturnbo data demonstnte a good potential for the development of .kW models for 

process cdculations. 



COMP.4RiSON OF FOFfhK..A METHODS OF TEERMAL PROCESS 

CALCULATIONS FOR PACKAGED FOODS Li CYTAWRICAL CONT.MNERS 

Evaluating the accuracy of formula methods provides a buis for their use and a 

better understanding of the effect of process panmeters on the required minimum process 

and hence on nuvitional and sensory qualities of processed food. Selected formula 

methods were tested for accuracy against a finite difference model accommodating 

difierent processing conditions (retort and initiai tempemures. thermal diffusivity. process 

rime) and package sizes within the range used in commercial applications. For selected 

mnse of process conditions and container sites. temperanite profiles were obcained using 

an optimized finite differcnce mode1 for conduction heat mnsfer involving cy lindrical 

shapcs. Time-temperature data gathered were used for cornpuring hcating and cooling 

parameters if and JI. Lrsin_o these parmeters and appropriace process conditions. process 

lethrlitylprocess time was computed using selected fomuia methods (Ball. Steele & Board. 

Stumbo and Pham). Prediction errors were computed based on deviations in process 

time/lethality from the finite difference model. in addition to comparing them over the 

broad nnge of testing conditions. the sensitivity of the methods to selected process 

parameters were evaiuated. The panmeters included mort tempenture ( 1 1 O- 130°C). 

product initial rempenture (70-90'0. thermal dif is ivie  of food product ( 1.0* 10"-2* 10" 
rn2/sL cms dimension (HD)  and the unaccomplished Lempenture difference (g-value). 

Retort temperature was the most significant parameter affecting the associated errors for 

the selected methods. Steele & Board's method had the highest error of process time 

calculation with a mmimum 34 min over-processing for a 1-hr process. Snimbo's method 

had the highest accuncy. however in some cases. under-estimation of process time up to 8 

min for a 1-hr process was observed. Higher g-values increrised the calculation mors and 

c m  dimensions with H/D near to unity had higher errors. 



INTRODUCTION 

Methods of process cdculations are grouped into two main cattgories: Genenl and 

Formuta methods. Using _onphicd or numericd procedures, the General methods intega~e 

the experimentdly gathered time-temperature data for lerhal effects and therefore, this 

goup of rntthods is considered the mast accurace one for test situations. However. for any 

change in processing conditions. product formulation or container size. a new tempenture 

profile il; required. For this relison their application has been restncted co product. package 

and process specific conditions. under which test data were grithered. Conversely. Formula 

methods are developed with less restrictive assumptions on food product. package size and 

cype and hcat processes. and within a certain range. they have the tlexibility for adaptation 

to variation in test conditions. Thetefore. these methods have become more popular in 

food industry. ïhe  ripproach that Bal1 ( 1923) foilowed in estabiishing a rnettiod of process 

crilcuIation is known ris chc lirst FonuIa method. After this work. extensive anaiysis has 

ken  riccomplished in enhancement of this type of methods. Formula methods have been 

reviewd by severai researchers ( H q k a w a ,  1977. 1975: Merson rr al.. 1978: Stumbo and 

Longley. 1966: Smith and Tung, 1982; Stoforos. 1997). 

The riccuncy of these methods has been che cote of attention of mm? studies CO 

assure the sdety and econornic aspects of the thermd pmcessing. While the destructive 

e ffect of chermal processes on microbial population is desinble. their deleterious çffect on 

the nutrients and qudity attributes of the food product is undesirable. In addition avoiding 

over-processing is 3 significmt step in energ conservation and economic aspects of 

thermal processes. With respect to growing appiication of compucers in retort control. an 

extensive knowledg in application of different methods of cdculation becomes necessary. 

This concept necessirates evduaaon of the accuracy of these methods with different 

process panmetes. packagising size and type and product chancteristics. Accuracy of these 

mechods shoutd ideaiIy be tested against data frorn red time-rempenture profiles. 

However. since such experiments are often enpensive and mostiy impnctical over the 

broad range of conditions encountered in food industry. alternate methods of data gathering 

has k e n  sou@t 



In this regard, cornputer genemtion of data based on numericd solution of fmite 

difference models ha ,  Iugely replaced the need to perform extensive heat penetration rests. 

The study by Texieria et al. ( 1969) perhaps, provided the first successful application of 

computer assisted finite difference technique in thermal processing research. Since then 

nurnerous studies have made use of these technique (Teixeira and Manson. 1982: Datta er 

al.. 1986: Tucker. 199 1 : Teixein and Tucker. 1997). Today it is taken for granted that 

these techniques are as accurace as expetimencd tests when the appropriate processing 

conditions. thermo-physical properties and boundary condition are incorporated into the 

model. Since the performance of hese models depends on the accuracy of input data for 

the above variables. their accuracy should nevertheless be checked to make sure they are 

compatible with the test situation. 

The objective of rhese study was to evduate the accuracy of some selected Formula 

rnethods against a finite difference model based on conduction heat tnnsfer in canned food 

products. under a wide range of processing conditions as employed in commercial 

applications. 

Brief review of Formula methods 

X fcw of the existing rnethods selected for evduation is brietly discussed in rhis 

part. The! have been derailed etsewhere (Chaprer 1). 

Ball's method 

Introduced in 1923. Ball's formula method is the most widely used method by the 

food industry. The temperature prediction equations are based on the observation chat the 

serni-logarithmic plot of temperature difference between product and heating medium 

tempenture is a suaight line d e r  an initial Iag time. Achieved process lethdity and 

process time are computed from erich other. nsing processing conditions (retort temperature 

and initiai temperature) and table or _mphs of related parameten ViJU and g). 

Development of these tables and p p h s  was cmied out with respect to some limiting 

assurnptions. which resulted in some inaccuracies in the method. The most sigificant 

assurnptions were a constant cwling Iag factor Cj,) equal to 1.41. and equal heating and 



cooling rate indexes vh=fc.). Obviously, for processes deviating from these assumptions. 

Bail's method will inaccuntely compute the process time or process lethality. 

Stumbo's method 

While revising Bdl's method to increase its accuracy, Stumbo and Longley (1966) 

published a new set of tables with respect to the variability of j,, in red processes. The 

procedure for process time and process lethdiry cdculation in this method is quite simitar 

to Ball's rnethod. These tables were originally based on data from hand drown hear 

penerration cucves. On subsequent works, the parmeters of table were ~calculated 

(Smmbo. 1973) using a finite differenct solution to predict the time-temperature data of 

product. The equütion ripplied in this mode1 was similar to what was used by Gillespy 

( 1953) and identical assumptions were used for solving them. 

Steele and Board's methûd 

This method was developed following recognition of inaccuracies in Ball's formula 

method Ior thermal processes (Steele and Board. 1979). Based on the method developed 

by Sterle and Board. the tables to bt  applied in thermal process calculritions were based on 

sterilization ratios rather than temperature differences. These tables were obtained usin: 

Simpson's rule to solve the Iethdity equation. This sterilization value was defined 3s the 

temperature difference between the cotd point of the c m  and the heating or c o o h g  

medium over the slope of the thermal death time curve t'or the microorganism of concern. 

Vinters et til. (1975) and Steele et al. (1979) inmduced some polynornials to be used 

instead of developed tables in programmable cdculations and on-line cornputers. 

Pham's method 

This method is a modified version of Stumbo's method (Pham. 1987 and 1990). and 

is based on two ranges of sterilization vaiues. For hi$ stedization vaiues (in cases that 

product temperature was dose to retort temperature) an andytical sotution was applied for 

conduction heat transfer in a finite cylinder wirh infinite heat transfer coeficients at the 

container walls and uniform initiai temperature. For low stedization values a numericd 

solution was used to solve chese equations. Vaiabiiity ofj,, value aIso was considered in 



this method by cdculatiag tempesatures at different positions in the cm. The variability of 

fh and 1; was dso considered in this method. This methad was tested against a finite 

difference rnodel simulating the center temperature in cm (Pham. 19901 and the mecfiod 

was reported to be at l e m  as accurate as Stumbo's method. The one table required for rhe 

use of this method substituted the 57 tables in Stumbo's method using dimensionless 

parameters. 

Finite difference program 

X frnice difference program was wrirten in FORTRAii langurig ruid dcveloped 

primarily by Sablani (19951. This program was rnodifred for conduction hear rranslér 

equation for cyIindricaI cm. The rnerisured process time and process lethality were the 

refirence values against which the selected Formula methock were compared. The finite 

differrnce model waç applied to generate temperature profiles baed on achieving a 

selectrd heatin: Iechdity h m  which die mua l  process time idunng which medium 

tempemure is set to heating tempcmnire) and delivered process lethalicy (total Ierhality 

crilculated at rhe end of cooling) were computed. 

The basis of finite difference models 

The finite difference models wrre brtsed on numerical solution of unsteady state 

h m  condumon for an object of known seometric shape. providing transient temperature 

distribution throughout the container- At the be@nning of che process tirne. ai1 the interior 

points of the cylinder were set to the initial ternpenmre of the product. while the 

temperature rit the surface was set at the retort tempenture. With a known set of initial 

conditions. rhese equacions were solved at each time interval. The new t e r n p e n m  

distribution at the end of each tirne interval was used to set the initial conditions for the 

following time interval. This procedure was continued for a predetermined process time. 

during which the temperame profile of product was computed. The same procedure was 

ripplied for cooIing of the product by changing the mbient tempenture to cooling water 

tempenture and continuiag the caicuiation process. 



The governùig partial differential equation for transient heric rransfer into a finite 

cylinder is as follows: 

The initial and boundriry conditions are: 

where: 

T: center cemperacure ("Cl 

t: time Is )  

r: radia1 distance (ml 

h: verticd distance {m) 

a: radius of cy Iinder (ni) 

L: hdf Iength of cylinder (m) 

hf: tluid heat uansfer coefficient (wlrn'.~) 

L: cyhnder themai diffusivity (Wirn-K) 

u: thermal diffisivity (m'ls) 

Finite difference rnethod is one of the techniques used to sotve thesr types of 

equations in which the partial derivatives are uansferred to discrece differences under 

appropriate b o u n d q  and initial conditions. Cmlaw and laeger (1956) indicated in detail 

the anaiyticril solution of this equation. Two major criteria in soIving these equations using 



numerical methods are stability and convergence of the solutions. Convergence issue is the 

convergence of the solutions of the difference equation to the solutions of the partial 

differential equations as the time and space steps are made smdler. However, stabilicy is 

the question of whether numencd errors and round-off errors demase or increrise as the 

computation time increases. Although decreasing rime step increases the converlnce of 

the solutions. it can affect the stability of the method. Since in numericd differences are 

very srnail, and the subtracted value is divided by another very smal1 value. the round-off 

enor becornes predominant when the step size is reduced beyond an optimum Iimit. Both 

rnentioned criteria depend on the form of initiai and boundary conditions. The Crank- 

Nicholson scheme was used for first and second order spatial derivatives appeiued in the 

hex tlow equations and backward difference scheme for the first order derivative in 

boundary cquations. An impiicit method was used for time derivatives. Since tnnsformed 

cquations contain temperature vlilues of next time steps. it was necessary CO empioy 

itçrativç technique in the solution procedure. 

To çvduate the accuracy of finite difference solution of heat conduction and in 

order ro optimize the required tirne step and space steps sizes. the time-tempemtures 

predicted from this mode1 were verified against the data obtained from the anaiyticat 

solution of hrat conduction in i finite cylinder. To evalurite the unsiizady temperature in a 

finite cyiinder. the solution of temperature ratios (LO under uansient temperature for 

infinite slab and infinite cylinder is applied ris a tinite cylinder is considered as intersection 

of an infinite slab with an infinite cylinder (Rmaswarny rt ul. 1982). 

The equations for inh i te  slab and infinite cylinder obtained by Carslaw and Jaeger 

r 1959). For an infinite slab the equation is as follows: 

2sin /3, 
~1 = 2 .cos(B,xI ~).exp(-P: F ,  ) ,, Be -sin ,8, cos Be 

And for an infinite cyfinder. 



L': dimensionless temperature ratio = (T-RT)/(IT-TR) 

RT: reton temperature (OC) 

iT: initial temperature (OC) 

T: temperature ("0 

Bi: Biot number 

Fo: Fourier number 

B: root of the characreristic equation (4.3) 

y root of characteristic equation (4.4) 

x: distance from the coidest plane of a slab 

L: thickness or half rhickness of ri rIab depending on it being heated or cooIed from 

one side or both sides, respectively (m) 

r: radius of a cylinder (rn) 

a: significmt dimension. the radius of cylinder 

J,,: Bessel tiinction of order zero 

When the heating tirnes are sufficiently long (Fo>O.l). the series expansion of 

cquxions 4.3 and 4.4 converges rapidly. md  U cm be estimated accurately by the first 

term of the series. Therefore. the ribove mentioned equation of 4.3 and 4.4 for the center 

tempertiture in center of an infinite slab will be simptified as follows: 

And of infinite cylinder: 

R p  R,. S,, and Sc are the characteristic hncuons of Biot number and their value is constant 

for heatinz condition with infinite heat tmsfer  coefficient (RpI.273. S,,=3.457, R,=t.602 

and S,=5.7S3\. Therefore. the unsteady temperature at the center of a finite cyiinder (Ut,*) 

c m  be obtained from sohtion for an inCinite slab and an infimite cylinder: 



The general equation to describe the temperature (T) as a function of tirne ( t )  during 

heriting or cooling periods with known initiai temperature (IT) and ambient temperature 

(Rn is a'; follows known as the Bai1 equarïon: 

Pwarneters o f f  and j are known as the heriting or cooling nte index and hg factor. 

respectively. These parameters can be obtained from following equations: 

j = R,,, .R, 

The center temperature in a finite cylinder was cdculrited through equation 4.8 to 4.10 

itintilyticai solutions) and the temperature profiles from the finite difference rnodels were 

cornpxed against the tinalyticd solution of Bail rquation. Along with the cornputrition 

rime of the model. the R\lS of the error between the finite difference model and analyticai 

solution. calcuiated s below. were used as two aiteria of modcl optimizsicion: 

where: 

TUdynd: temepnture predicted by analficd solution (OC) 

T,-: tempennire predicced by finite difference model i°C) 

i: sach time step i Sec) 

n: number of points 

Five different time steps of 1. 5. 10 and 20 seconds and four ,orid sets in both of 

horizontal ruid verticai axis (58~5. [0&10. 15&15 and ZOgrZO) were exarnined. 



Ovenll accuracy evaluation of the formula method 

A wide range of processing conditions and commercial cm sizes (15 cm sizes) 

were cmployed as testing conditions for the finite difference progam to obcain the required 

time-temperature data The finite difference mode1 was progarnmed to change the 

medium temperature from heating to cooling based on a selected heating period lethality 

(F,,) in the range of 5-15 minutes. Each ntn of the program wouId provide the process 

tirne. process lethaiity and the temperature profile of the product at the cold point of the 

cm. 

From each ternpenture profile. heating and cooling curves were sepanted in the 

tom of logirithmic temperature difference of the product and medium vs. processing time. 

Determinrition of j and f values for heating and cooling were based on repetitive repssion 

to locrite the straight portion of heating or cooling. These values dong with process time or 

process lethality obtained from finite difference program were cornpiled in a Lotus based 

progrrim. Process time and process lethrility for selected Formula methods were crilculated 

usin,o computer program developed for this purpose (Ramaswarny. 199 I ). Deviations 

from finitr difference mode1 values (reference values) were dritennined as follows: 

The same rnethod was applied CO evaluate the deviations in process time 

c;ilculations. A negative percentage deviation in process lethalit? demonstrates an 

underebtimation of the lethaiity with the respective Formula method (and hence 

undesinblel. where a positive error shows inaccuracy on the conservative side. For 

process time computations. on the other h a n 4  positive enors show underestimation of 

process time (and hence undesinble). while negative errors show overestirnarion of 

methods. but on the safe side. 

The accuracy evaluation of the methods was performed from two perspectives. 

First, the accumcy of methods was compared as a function of one parameter. while the rest 

panmeters had a constant value. In the second approach. the accuracy of each rnethod was 

svaiuated for each variable parameter over the entire set of data 



Evaluation of formula methods under specific conditions 

Accumcy evaiuation of the methods was based on die g-value and can sizes in form 

of heighr over diameter (.Hm) as these were reported exlier as conditions under which the 

methods deviate from reaiity (Smith and Tung. 1982). A retort tempetanire of 120°C and 

initial tempenture of 80°C were considered. As the tables in Bail and Snimbo rnethods 

were based on the assumption that cooling water was 100°C below retort temperature. the 

cooling water tempenture was fned to ZO°C. The instmtaneous come-up time CO retort 

temperature and instantaneous dcop in medium tCmper;lNR to the cooling water 

temperiinire was assumed. Heat uansfer coefficient of 5000 w / ~ ' c  was rissumed for 

steam as the heating medium and 500 w / ~ ' c  for water as the cooling medium. Thermal 

conductivity of the product was constant (0.6 WJrnC) within the simulation. In order to 

evaluate the effect of g-valne. the finite difference mode! wris propmmed to change the 

medium temperature from hcating to cooling based on reaching difirent g-iarlucs in the 

nnpc of 0.05-15 Co. 

RESULTS . & i  DISCUSSION 

Optimization of finite difference model 

The optirnization resulrs of the model rire s h o w  in Figure 4. 1 bascd on the number 

of nodes. both in verticai and horizontai axes, as well ris tirne step size. Increrising the 

number of nodes in each uis increased the cornpucationai tirne due CO additional 

calculritions to be performed for center temperature prediction. Smaller increments in the 

axes increase the accuracy of mode1 in temperature prediction. dthough as shown in the 

Figure 4.1. d e r  an initiai sharp drop from 5 nodes to 10 nodes. increasing the number of 

nodits Iùrther had less effect. With this respect. a IO by IO grid size was selected as the 

optimum number of nodes in both axes. Same trend was appIied to select optimum number 

of time steps used in computation. As computation time was increasing intensely for time 

step sizes less than 5 and RiiIS of e m r  was not changing significantly for variation of time 

sreps below 5 seconds. a 5 second time step size was assiped as the optimum vdue for this 

panmeter in model. 
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Nler optimization of the model. the predicted temperature profiles based on finice 

difference model and anaiyticd equation were compared with each other to validate the 

accuracy of the finite difference model. The result of validation is depicted in Figure 4.2 in 

the form of center temperature profiles. The discrepancy at the beginning of the heating is 

for the situation when Fo<0.2 under which the two procedures were not expected to match. 

However. the predicted temperatures aftcr this initiai deviation coincide with erich other. 

This should be expected as the main bais of heatinz equations used by each method is in 

agreement with the experimentai data A perfect uverlapping of these two rnethods in chis 

section of tirne-temperature curve demonstrate an excellent accuncy of the finice 

difference model. 

Overall evaiuation of formula mehods 

Ovcrall evaiuation of selected formula methods was cmied out in two direcrions. 

Fint al1 the considered parameters were maintaîned at a base condition (RT=130JC. 

fT=SO0C. CL= 1.5* 10-'m'/s and c m  size=303 x 509) and one parameter at a time wriç varied 

over a sclected range. Errors in process time ruid process lethalip calculation were 

crilcultitcd cis relative errors (percentage deviation from reference values). Subsequently, 

erich p m e t e r  was.varied over the entire m g e  with respect to ail other conditions and the 

rissoctated enors were calcuiated. Tables 4.1 and 4.7 summarize the results of errors 

associrited with different modeis for each panmeter at the base condition as well as the 

overdl. In process tiriie cdculations (Table 3.1). mort temperriture was ihr most 

intluencing factor compared to product initial tempenture and thermal difisivity for a can 

size 303 .u 509. Associated errors varied €rom a high -7 to -31% for Steefr & Board 

mcthod to 4 . 7  to -1.5% for Stumbo's method. Bali's method was close to Steele & Bo& 

modification. while the rnethod of Pham had errors varying from -1.5 to -8.3%. The 

higher error in process tirne using the Pham method was the result of using processing 

conditions and can size which resulted in hi$ sterilization values (Lr&<O.û4). below the 

range of studied by Pham. Since the developed process calculation equations (Pham. 1983 

were for a defuied range of sterilization ratios (.Y,$$: 0.04-125. processing conditions. 

which do not satisfy this range. cm result in hi& emrs in process cdculations. With 

a reference to initiai temperature and mechods of Bail and Steele & Board 
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Figure 4.2 Validation of finite difference model against the mdyticd solution 



had errors between -5 and -10%. With process Lethdity calcularions (Table 4.2), mort 

temperature was the major factot: however, thermal diffusivity and initial tempemure were 

dso factors inAuencint the a c m c y  of metfiods. An increase in thermal di-ivity 

improved the accuracy of method. while an increase in retort temperature increased the 

Table 4.1 Errors in process Ume calculaaon influenced by processing conditions and 

thermal difisivity of product 

Fu a*107 IT RT Can Process time $lean Relative Error (Yu) 

(min) cm2/s) ('CI ceCl S u e  Steele Bal1 Stumbo Pham 

Table 4.1 Errors in process Iethrili~ caiculation influenced by processing conditions 
and thermal diffusivity of product 

Can Fo Relative error ( % ) 

Steele Ball Stumbo 



Cornpareci to the process tirne. the mean relative errors associated wich process 

lethaiities were much hi$er because of prediction of fixed Iow process Iethdity of 5.0 

minutes ( while the process tirne varied €rom 25 to 500 minutes). Bdl and Steele & Board 

methods over estimated the process lethality by 17 to 80% with respect to the retort 

temperature. while the error range with respect to initial temperatuse and thermal 

difisivit! remained at 10-106. Stumbo's method wrts fairly accunte with error ranges up 

to 4%. Inicid temperature and thermal diffixiivity have been reported CO only have 

minimum cffect on calculation accuncy [Ghazala et al.. 1990: Smith rutd Tung. 1982). In 

oenerril the relative order with decreasine accursicy w u  Stumbo. Pham. Bal1 and Strele & - 
Board. it is inceresting to note that dl mean relative mors were negritive for process time 

ruid positive for process IcthaIity, indicating errors generally on the conservative side for dl 

the mcthoàs. 

In order to study the overall efiecc of each parameter on process cdculatton over a 

brorider range of processing conditions. mean and standard deviaion of mors for cach 

specific prirrimerer was calculared and summarized in Tables 4.3 and 4.4 for process time 

~ n 3  procrss lethdity cdculations. respectively. 

In process tirne cdculrition. retort tempennire and fength of processing tirni: were 

more obvious pasameters affecting the accuncy of methods. A n  increasr in reton 

rernpmture. increrised the error ternis for al1 che merfiods. sxcepr for Stumbo's metfiod. 

which had the lowest srror without any specific trend in rnean values. .Al1 methods 

overescirnacrd the process tirne. 3s shown by the negative s i p  for mean errors rxcept for 

Stumbo's method. which underestimated pmcess timc under some conditions. Sorne 

radier rizsearchers have observed simiiar results. However. it should dso be nored that 

Stumbo's rncthod was in fact most accunie amongst the different methods. The mean 

errors were less than I %  for dl situations. On an average, this accounts €or a 2 minutes 

mor  over ri 200 minutes process tïme. obviously small. In cornparison. Bail and Steele & 

Board methods had up to 15 and 10% over estimation. respectively. Pham's method was 

close to Smmbo's rnethod wirh mean errors mostly in the conservative sidc. However. as 

indicated by the xcompanying standard deviaions of che mean crrors (up CO 2%). it is 

logid CO assume situa~ons did exist for over 2shaUon of process time. As discussed 



earlier. I q t r  errors of hish retort temperatures usiag Pham rnethod is due to resulted 

sterilization values. which were not defined by Pham (Pham. 1987. 1990) 

Table 4.1 Mcms and Standard Deviations (SD) of relative errors in process time 

calculation for selected process calculation methods 

Steele Bal1 Stumbo Pham 
Panmeter Range 

Mean SD Mean SD Mean SD 41- SD 

1 IO ("cl -6.03 l.U -620 3.06 0.71 7.43 O .  0.51 

Initial 
so toc) -11.45 6.00 -1057 4.48 0.31 1.5s I l  1.13 

temperature 
90 ( "Cl -14.63 7.61 -12.48 5.66 -0.16 1.35 -0.69 2.01 

Cm Sue Sirdium - 0 . 3  6.60 -9.65 2.16 032 2.12 - 0 . ~ 7  1.76 

h g c  -13 h.51 -10.38 1.71 0.21 1.19 - 1 1  2.41 

LOW -15.73 5.05 -11.71 1.18 -0.07 1.14 -1.30 1.10 
Processing 

Medium -11.3 5.57 -9.34 3.67 0.51 1.31 -0.79 1.10 
time 

Long -3.33 5.06 -7.37 3.76 0.58 1.06 -0.11 1.17 

B s e d  on fiII weight: small: ( ~ 0 . 5  kg). Medium: (0.5-1 kg). Large: i>1 kg): Processing 
rime: Low: I <LOO min). Xverag: (100-20 min). Long: i > i 0  min) 

Trends observed with process lethdity were similar (Table 4-4)- Conditions which. 

under estirnated process rime. obviously over estirnated the process Iethaiity and vice versa. 

With process lechdity. Bail and Steele & Board methods had up to 70% over estimation. 

Methods of Stumbo and Pham performed better with mean errors less than 7%. 

Table 4.5 summarizes the parametric range. rnean and standard deviation of errors 

for combination of panmeters. The maximum error in process time calcuIation belonged 

to the method of SteeIe & Board with about 37% rnean relative error. whiie method of 

Smmbo had only 5 8  maximum mean relative error. Howevei as it is been reported 



(Smith and Tung, 1982: Ghazala er al.. 1990) Ehere were some cases that Stumbo's method 

under estimates the process time as shown in TabIe 4.3 with a positive sign. 

Table 4.4 Mems and Standard Deviations (SD) of relative enors in process lethality 

calculations for selected process calcuiation methods 

Steele Bal1 S tumbo Pham 
Panmeter Range 

Mean SD Mean SD Mean SD Mean SD 

1 1 O (OC) 11.36 7.20 11.11 5.70 -0.Y 1 3.95 O .  4.30 
Retort 

1 20 ( "0 40.77 11.66 33.03 1il.70 1.33 1.33 7.07 4.18 
temperature 

130 ("Cs 70.9 3.15 57 6.66 -3.1 6.36 29.35 10.12 

70 ( O c )  40.37 3.66 31-12 19.06 -2.06 5.3? 4.3 0.35 

Initial 
Y0 ('0 10.Y5 25-35 31.62 19.19 -1.09 1 -0.12 0.30 

ternpenture 
90 (Oc) 11.43 16.3 31.73 19.45 0.95 5.00 O .  0 . 3  

- - - 

Smdl 76.56 15.21 31.55 19.61 -0.69 5.44 -0.29 0.39 

Can Sue 4Iedium 4134 5 . 3 2  30.55 19.43 -0.66 4.31 O .  0.13 

Laree 50.76 3.31 32.7 I 17.65 -0.94 5.17 O .  0.12 

Low 55.33 13.36 42-26 16.30 -0.63 137 13.46 13.77 
Processing 

Medium 36.83 1.75 25.62 L6 -0.61 4,s: 
.A o .  0.12 

tirne 
Long t6.63 17.5s 15.62 I1.69 -[.O9 4.12 -0.19 0.14 

Baed on fiIl weight: smdl: (4.5 kg). Medium: (1-0.5 kg). Large: (>I kg): Processing 
cime: Low: (<IO0 min). Average: (100-300 min). L o q  (>100 mini 

Table 3.2 Maximum. minimum, mean and standard deviation of emrs for different 

methods 
%Emr in process time caldations % E m t  m process Iethaïity ulculations 

Methods 
Siin Max Mean SD Min Mau Mean SD 

Stumbo 0.01 5.15 1.03 0.69 0.06 19.05 2.60 3-50 

a Pham 0.00 5.64 1-71 7.18 0.M 6.05 0.60 0.60 



Specüïc evaluation of formuia methods 

Erron based on the cm shape or HID ntio had a consistent pattern for different 

Formula rnethods. The results are presented in two different formats for comparative 

purposes. First the different methods are compared at a given g-vabrr. Then each method 

ts compared at different g-values. In both situations H/D ntio was used ris the basis. 

The comparison of different ForrnuIa methods at a given g-value is shown in 

Figures 4.3 and 4.4 for the process time luid process lethality cdculritions, respectively. 

The maimum crror for almost dl the methods was observed for H/D nex to unity. Smith 

and Tung 11989) and Pham (1990) observed the sarne trend in error patterns. Steele & 

Board's method had the largest errors (-2 to -20%) among evduated methods ruid 

Stumbo's and Pham's methods were the most accurare methods. Stumbo's method 

predicted process time with accuracy of 1% for g-valiir of 0.05"C and 9% for .y-valiir of 

15°C ruid Phm's method had simillu accuncy in process time calculrition. They appexed 

to drviritr from each other more at g= 15°C. 

Trends were similx with respect to prediction of process lethality except rhat the 

mors  were on the opposite side. Steele & Board method had the highest positive error 

(10-709) while Stumbo's mechod had the les t  (~20%). Phm's method as suggested is 

on& for estimation of process time. and for pmcess lethdiry. the method hid CU be solved 

using ri [rail and error approach. While this approach was cmployed for some test 

situations. it was not possible to extend this approach for dl the test situations because of 

the time consuming itention process. Since methods of Pham and Stumbo were reported 

be sirnilar in most cases. similar trends could be probably assumed for predicting the 

process Itrthality. 

With respect to srerilization values. Lenz and Lund (1977) also considered 

processes with large g-values uncenain. The Iarger errors for processes at lar,oe ,p-values 

tire due ro accompIishmcnt of a Iarge part of sterilization during cooling section. In these 

processing conditions. cooling time and dso the product properties during cooling c m  be 

the reason for the h i 9  errors in total sterilization value of the process, However. for 

processes wich smailer g-vahes. which is more common. the e m r  values are smdl m@ng 

€rom iO% for Steele and Board's method to 1% for Stumbo and Pham methods. 



Figure 4.3 Erron in process rinie cdcuIations for different g-values (a: ,.=O.OS C", b: 
g=i C': c: ~5 C": d: g=l0 CO; e: g=I5 C"J 



Figure 1.4 Errurs in process lethdicy caicuIatioas for different g-values ix -@.O5 C"? 
b: g=I C; c: g=5 CO; d: e l 0  Ca; e: g=15 CO) 



The effect of g-value on deviations in calculation is also due to temperature 

difference rit the end of heating between heating medium and the product. For smaller g- 

~uhtes, when the product temperature and mort tempennire at the end of heating are close 

ro each other, the effect of tempenture gradient is insignificant. However, for larger g- 

vulues. when this difference is larger. this effect can cause enors in calculation. In this 

crise. while the retort temperature is changed from heating to cooling water. there would be 

ri Ionzer las for center of the cm to receive the effect of cooling writer tempermre, and 

men rifter cooling was began. the center tempenture will continue increasc: for a short 

while. Yone of the Formula methods correctly account for this cfiect and deviate from 

reality cit Itirger g-values. 

Figures 4.5 ruid 4.6 show the performance of csch formuia method for tit different 

q-values. The effect of g-value on each method crin be seen more clerirly in this 

presentrition. With rin increrise in y-value. the associated errors for crich method increased. 

showin: a systemritic increase in errors for methods of Bal1 ruid Strele & Board. With 

respect to Sturnbo and Pham methods. the erron were small up to ri g-vnltre of 5°C. but 

then the inriccurricy begins to increase mrukcdly. Agriin Stumbo and Pham had the highest 

xcuracy. The deviations in process lethrility and process time prediction increased for H/D 

close to unir! ruid for Irirger HL9 values the errors decreised. 
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Figure 1.5 Errors for process lethaiity calculations wich respect to different g-values (a: 
Steele & Board's methad 6: Bail's method: c: Stumbo's method) 



Fisure 4.6 Enors for process time caicuIations with respect CO different -values (a: 
Sceele & Borud's method. b: BaIl's rnethod: c: Snimbo's rnettiod: d: Pham's 
method) 



CONCLUSIONS 

The accuracy of selected formula methods was determined with respecr: to data 

senerated from a finite difference model. Finite difference models have the potential for 

accommodating variations in processing conditions and c m  size, and provide data for a 

wide range of processing conditions. The optirnimion of the finite difference model 

against an analyticd solution of heat transfer equation with 10x10 grid size predicred 

accurats temperature profiles. Process caiculation mors were evaluated based on the 

variation of each panmeter. Retort temperature was one of the mosc major puameters 

infiuencing the accuracy of the selected process calculation methods. Most rnethods 

overestirnated the process time with the exception of Stumbo's method for some cases of 

underestimation. Based on the can shapes. enors had an increrise for H/D values near ro 

unity. Errors increased at larger g-values. where ri substantial amounr of process 

stcrilizririon is accomplished during the early cooling stage. This trend in mors w u  

obscrved for riIl the methods. Smmbo's method wris considered the most accunte method. 

foliowine it  w u  Pham's method. 



ARTIFICIAL NEURAL iVETWORK MODELS AS ALTERNATIVES TO 

TBER,%WL PROCESS CALCIiLATION METHODS 

hificial  Neural Network (hW) is a computing system capable of 

processing information by its dynamic state response to extemal inputs. h W s  

learn from exarnples through iteration by adjustirtg the interna1 structure to 

match the pattern between input and output. In this study, finite difference 

simulations, which are widely recognized as practical alternatives to 

experimental methods, were used to generate temperature profiles for a wide 

range of can sizes under various pracessing conditions. The tirne-temperature 

data were used to compute the process lethaiity, process tirne as well as heat 

penetration parameters: f,, j,, and j,. These data were used for developing 

the .hW models tboth training and testing). The accuracy and ability of A.NN 

models were compared with selected Formula methods. both with respect to 

process tirne and process lethality computations. Process calculation results 

fkom .LW mode1 were comparable to Pham's and Stumbo's methods, which 

were previously evaluated as the most accurate amongst the process 

calculation methods. 



Xnificial Neurai Necworks (AiWs) have been the focus of interest in many diverse 

fields of science and technolog. Neural networks are basically computer models. which 

simulate very simple abilities of our bnin. Rather than being programmed for use in a 

particular application, neurd network models generate their own niles by learning from 

provided examples. AiW has the abiIity of approximating arbitriary continuous tùnctions 

based on a set of given observations. As they obtain this ability throu& the stage of 

leaming. they are known as tmiy adaptive systems, which do not need any prior knowledge 

of the nature of relationships between the set of parameters. A i  rnodels are thought to be 

robust to noise and inconsistencies In data rendenng hem more advantaseous compared to 

empirical models. hlso. .hW rnodels c m  be multiple-input and multiple-out (b1DlO) 

systzms i'Baughrnan and Liu. 1995). Therefore. variability of multiple parameters in the 

cievelopmsnt of an XLW model is possible. NeuralWare (1995) provides a wide overview 

of potential applications of neural network as classification. prediction. data association 

and optimization. Most food related work involves estimation. prediction and control 

i Eerikainen et al.. 1993). 

With respect to .-LW characteristics and their abilities in modeling. their 

application has been considered in the development of a general model in thermal process 

calculations. .-\ccunte determination of thermal processes is required with respect to 

assurance of safety. as well as retention of quaiity attributes and nutritional values of food 

products. For this purpose. different methods have been developed for facilitating thennai 

process cdculations. AI1 these diffe~nt  methctds are aimed at determining the lethality 

(F,,) for a given process or caIcuIating the process time for achieving a given process 

lethdit?. In order to estabtish themai processes. tirne-temperature data of the product 

undergoing the thermal prucesses is required. More versatile. less expensive and less time 

consuming aitemative of sxperimentd procedures are mathematical models. 

Finite difference modeIs of heat msfer into packaged food have k e n  successfuily 

ripplied in optimization and conml (Teixeira er al- a, 6' 1969: Datta et al., 1986; Teixeira 

and Manson. 1982: Tucker. 1991: Teixeira and Tucker. 1997). The main fearure of these 

models is the prediction of tempemre pmfde based on the governing heat uansfer 



equations of packaged food products- Finite difference models require some specification 

of die food product and system such ris thema1 difisivie of the food product, heat tmsfer 

coefficient of the heating or cooling medium and thermal conductivity of package. When 

these conditions are known, the time-temperature data cm be obtained at any specific point 

of the packaged food product for any processing condition and package sizes. The ease of 

use of finits difference mode1 cm be considered in providing an expanded data set. 

includins a wide m g e  of parameten. 

In Chapter 3. the potencial of A i  to simuIate two of the most widely used process 

cdculntion merhods was demonstnted. In Chapter 4. the prediction mors associateci with 

the avaiIable process calculacion methods were evduated usin- those computed from a 

finite diffei-ence numerical mode1 as reference. It was shown that the prediction errors va- 

depending on the processing conditions. ruid by far Snimbo and Pham's method are che 

most riccurtite. In Chapter 4, a basis was also established for gener~ting pararneuic values 

such as ji,.x. j,, and jh for various operating conditions involving different mon and initiai 

product temperature. thermal difisivity of the product and crin size as wcll ris the 

~ssociated process rime and Iethdity. This provides a wide ranee of input-output 

parmeters for escablishing mdor verifying usehl process calculaLion models such as the! 

rire riimsd in the present menti-an AN24 based prmess crilculrition mode[. 

Hence. rhe specific objective of this chapter was to deveIop rin A i  mode1 as an 

alternative to existing thermal process cakulation methods usine rhe wide mge of data set 

obtained from the appropriate finite difference rnodels and initial conditions. 

Data generation 

In order to obtain the uaining data set for A i l  models development. a wide range 

of processing conditions. product chmcteristics and packaging sizes were considered as 

detailed in Chapter 4 and summaïzed in TabIe 5. L. The defined range of each puameter 

covered the common ranse of processing condirious. and ciiffereut c m  sizes were selected 

from those used in industry. A linite difference pro-orant written in F o m  Ianguage 



(Sablani. 1995) was applied to obtain the related time-ternpenture profile to each set to 

conditions. This rnodel was based on the conduction heat uansfer for cylindricai packaged 

food products. The heat transfer coefficient of heating medium (steam) and cooling 

medium (water) were assumed to be 5000 (wlrn'~) and 500 (w/~'c). respectively. Each 

combination of defined values was applied as the initial inputs of finite difference mode1 to 

obtain the respective temperature profiles. 

E x h  time-temperature profile was divided into two serni-logarithrnic curves of 

heriting and cooling. In order to locate the beginning of straight line in e x h  curve an 

iterative regression technique was applied andfh,fc, j,, and jch were obtained for each set of 

condition. Hence a data set was obtained which, consisted of processing condition (initial 

temperature. retort temperature), can size (height and diameter), product characteristic 

(thermal diffusivity). process time. process lethalicy and respective heriting and cooling 

parrimerers. This data set with 1215 data records was considered as the basis for AW 

rnodels training. 

Table 5.  I Range of parameters used in finite difierence pro,mrn 

Retort Temp. j [nitid Temp. Thermd diffwUSIvity Aeating kthaüty 
1°C) ("Cl *IO'( rn2/s) (min) 
110 70 I 1 .O 5 .O 
120 Y O 1.5 10.0 
130 90 2.0 15.0 

Cnn size no. ' C m  size hpproximate fil1 wt. (kg) I Rüdius*Hieght/2lcm) 

I 6 z 
7 - S z tall 
3 No. 1 picnic 
4 1 No21 1 cylinder 
5 No. 330 
6 , 230.1 taIl 
7 Xo.303 
Y No.303 cylinder 
9 No.? vacuum 
1 O 230.1 
I I 1 Y02 cylinder 
II / No.:! Pt 
13 ! No.3 cy Iinder 
14 '10.5 
15 I No. 10 



.W'I model development 

-4 precise A i N  model training requires selection of independent inpur variables 

(Baughman and Liu. 1995). If a prior relation berween input variables in not available, one 

of the proposed methods to select the independent variables between input variables. is to 

discard one variable and vain the kW model based on the remained set of data 

Obviously. discarding variables, which are function of the other. will not affect the 

training. However, when a science of relation between variables is provided. this 

information should be applied to reduce the number of input varïribles and increase the 

riccurricy of model. Based on the information obtained. while developing RNX 

model for methods of Bal1 and Sturnbo. the key variables for relatinz process time (g- 

v a h r  1 and process lethality (fh/U) were considered as the major inputs. As the variation of 

j,, vduçs is nor intepteci. therefore j,, was considered as another independent input for 

cach modcl. 

Input variables (g-value or fm were cdculated based on the procedure rippIied in 

the Bal1 method (Figure 5.1). Accordingly. the combination of thrse variables is used in 

form of Log g or f&. dong with variability of j,,. related the process time to process 

lethrtlity or vise versa. The procedures of .Aii'N model development wcre followed much 

closely to the .L\i model development of Sturnbo's method. The data set was divided to 

training subset and testing subset to be used during the training procedure. 

?icuraiWorks Professionid IVPlus. version 5.23 (NeuraIWare Inc.. Pittsburgh. PX) 

was rrnproyed for AW modeling. A standard backpropagation algorithm with Tangent 

iyerbolic transfer function and normaiized cumulative deIta leming mle were selected 

for .-I\% models training. Same formats of input and output variables as detailed in the 

Stumbo .khi mode1 were applied. For predicting the pmcess time. f;/U were used ris welI 

as j,, to predict g-value and subsequentiy, for predicting the process lethality. g-value and 

j,, were uscd to predi~tf-&~. The predicted panmeters h m  rLUN rnodels were applied Co 

cdculated the respective process time and process lethality. For convenience Model A and 

Model B were used to name each mode1 for process time and process lethdity predîction. 

respectively. 



Figure 5.1 Xmgement and procedure of developing .kW models 



Optimization of ANN models 

The A i  models were optimized for the number of data records in training set. 

number of processing elements, mornennim value and epoch size. The assigned values for 

rrich of these parameters are sumarïzed in Tables 5.2 and 5.3. The first step was to select 

the optimum number of data in training set with respecl to default values of network 

architecture. The selected training set sizes were applied to choose the optimum ropology 

of the nrtworks. Xfterwards. two lemin_o parameters. rnomentum and epoch. were tested. 

The following cnteria were used for evaluating &UN models performance: 

Root h1ra1-1 Square of error= i ~ ' ~ '  lY': 
Mean Absolute Error I-VIAE\ = >kem of t Y,, - M 

[Y* - Y I  
Mean Relative Error (>IRE. %) = Mean of 7 * IO0 

where: 
Y,,: Desired vaiue 

Y: XW predicted value 

n: number of records 

Table 5.2 Combinations of 

1 0  

training and testing d ata for network optimization 

I , Number of data / 'iurnber of data 1 
' Group(s) in Group(s) in 

pairs in Training I pairs in Testing 1 Training set ; Testing set 
set set i 



Table 3.3 Range of nerwork architecture and learning parameters used in the study 

l l 
Numkr of Pes ! Momentum 

! 

I 
1 hidden I- 2 biddm layers 1 i I 

I I I 

I - - 0.8 i I i 32 
* Boid numbrrs rwh undrrscort- are defaulr values prorided in sojiware. 

Cornparison of ANN models 

The predicted AVN values of process tirne and process le~hülity were compmd 

wirh respective vdues of the selected formula methods. The same mechodolog as the one 

used in cornparison of formula methods was applied ro compare the performance of the 

devebped .UN models. Al1 the predicted values h m  eidier AW model or formula 

mechods wrre cornpmd rigainst the rckrence model. which was the data from tlnite 

difference rnodel, Relative error computed as fotlows. was applied ris the error parameter: 

This error parümeter was cdculated based on Lethalit! 

(5.1) 

and therefore 3 positive error 

of lerhalicy criIculation demonstrates an underestimation. while ri negcitive sign shows an 

overesrtrnation of process tirne. The error s igs  for under and overestimation are reversed. 

while predictinp the process time. 

-kW models optimization 

Figures 5.7 and 5 3  shows the required number of data for Mode1 A and Mode1 B. 

respeccively. In Mode1 A. the performance of the network was not a function of training 

sec stze, and a uaining set with 808 data i50%) was selected- However. Mode1 B was more 



Figure 5.2. L e m  ing curve for AiiX mode1 .A 

JO4 606 SOS t O I 0  

Surnkc okxamples in tmning set 

Figure 3.3 Learninp curve for .&Li mode1 B 



dependent on the training set size, and a data set with LOI0 data, which had the Iowest error 

a of prediction was used. Aithough the source of data for both models was same, the nature 

of variables affected the performance of the network and the question how well necwork 

CU Iearn depended on the input variable, 

Figure 5.4 depicts the effect of PEs and number of hidden Iayers for Model A and 

B. In both modeIs. 2 hidden layer networks had a significandy higher performance 

(Baughman and Liu. 1995: Swingler. 1996). A network with 1 and 5 PEs in rach hidden 

Iriyer had the highest performance for Model A and 2 PEs in each hidden Iayer for Model 

B. which were selected as the optimum topolog. Table 5.4 shows the resuIt of Iearning 

parameters vanations for both models. The effects of momentum and spoch were not 

significrint for Model X and increrising momenmm increased the error. .A momrntum value 

of 0.4 riod cpoch size of 4 was selected for Mode1 A. The effect of these parrimeters was 

even Iess significant for Mode1 B. Therefore. the default value of momenmm and epoch of 

4 were selrcred. 

T l  5 .  Effect of momenrum ruid epoch size on the performance of Model .A luid B 

MRE MRE 
Momentum Epoch 

O 4 ,Mode1 B .Mvdd -4 ,Vlrdel B 

Performance of the .WN models 

The performance of .h i  models A and B are shown in Figue 5.3 as plots of rLW 

predicted values vs. reference vdues from the finite difference simulation. The predicted 

vdues for both modeIs were very close to desired d u e s  and were evenly dismbuted 

titroughout the entire range. The associated error panmeters are sumrnarized in Table 55,  

High R' values shows the excellent performance of both A ?  models in predicting the 

output variables. 



1 Model A 

- I 1 

O 5 1 O 15 20 

TotaI number of PEs 

+ 1 hidden layer +2 hidden iayen 

Model B 

:::: 1 , , , , 
O 

O 5 1 O 15 20 

Total num ber of PEs 

+ 1 hidden layer -t 2 hidden layers 

Figure 5.4 Effect of PEs and hidden Iayers on the performance of modei h and B 
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atan log fhAJ 

E r  5 .  Performance of AFIN models A and B with respect to predicted output 



The performance of ANN models is shown in Figure 5.6 in f o m  of process time 

and process lethalil calculated from predicted g-value or fdLr VS. the process time 

and process lethality obtained fiom the finite difference model. Borh .kW models showed 

a - oood performance for predicting process time and process lethaiity. The error panmeters 

of ,r\li'X models prediction are summxized in Table 5.5. 00th models had a high R' close 

to unity showing excellent correlation between A i  predicted values and reference vdues. 

KMS of enors for process time prediction was higher than process lethaiity since process 

cime had higher values compare to process lethdip. however close merin relative errors of 

bah models shows close performance of models. However. with respect to process 

Iethality rnem relative error is more important error parameter and provides better 

evtiluation. In process time calculation. mean average error of 2.7 minutes indicated hi$ 

accurricy of Ah3 model in process time prediction applied range of this parameter 

r between 40450 minutes) 

Table 5.5 Error parameters for performance and veritïcation of ILW models A and B 

Cornparison of MiN modeis with existing formula methods 

The performance of AiX models were compared for nnge of processing 

conditions. thermal diffusivity of product. can size and processing rime with the 

performance of three selected Formula methods of Bail. Stumbo and Phm. ï h e  

pcrfomance of e x h  method is showed based on the mean of relative mors and standard 

devirition of m o r  for both process time and process lethality (Tables 5.6 and 5-71. 

.lithou$ no particuIar trend was obsewed in mem and SD of mors based on AiW 

models. the performance of &W models was fairly in range of merhods of Sturnbo and 

Phm, if not better. It should be mentioned these two methods have the highest accuracy of 

ANN Mode1 B 

Ahn log fdC Process IethdiQ 
Error panmeters 

ANN Mode1 .A 

1% g Process time 



O !  
O 1 O0 200 300 400 500 

Tirne (min) 

O 5 10 15 20 25 30 35 

lethality (min) 

F i p e  5.6 Performance of A i  modeIs A and B in process time and process Iethality 

prediction 



cdculations compared to other formula methods (Smith and Tung, 1982: Pham. 1990; 

Stoforos. et al., 1997). 

The general performance of the selected formula methods and the A i i  models are 

compared in Figures 5.7 and 5.8. Bail mechod. for considering the restrictive assumptions, 

had the most deviation while other methods have a close performance ( ~ 3 . 9 9 ) .  The 

same trend was applied while compacing the performance of other methods and h i  

models widi respect to process lethalit-j cdcdations. As the tinite difference program was 

n in  brised on a pre-assigned heating lerhdity. the process lethality is clustered around three 

iïxed Icthality values (one of the reasons for higher errors). 

Table 5.8 shows the range of errors for process time and process lethülity for 

formula methods and AW rnodels. The range of erron as well as the mean and SD of 

.LW mode1 for process time prediction was in range of Phm's method. Xlso. in process 

lethality prediction the range of mors varied between Stumbo's method and Pham's 

method. The range of erron in process Iechality calculations was very close to Pham-s 

method and the same trend in rang oferrors appiied for process time calculations. 



Table 3.6 Means and Standard Deviations (SD) of relative errors in process time 

calculations for selected process cdcuiation methods 

Pnnmeter Range Ball Shunbo Pham A i  
Mean SD Mean SD Mean SD Mean SD 

Retort 120 ("c) -9.91 1.72 -0.55 0.64 -0.35 0.9 -2.47 1.S8 
tempenture 

130 (Oc) -15.64 346 0.48 1.19 -3.36 1.62 2-48 3-36 

Thermal , O /  -10.93 497 0.24 1.65 -1 .3  1.95 -0.15 3-02 
diffusivity 

2 1  1 s  -10.08 4.31 0.6 1 1.93 -0.Y7 136 O .  2-76 

Srnall -1.011 9 0.43 1.08 -1.05 1.58 9 7.51 

C m  Size Medium -9.65 5.16 0.53, 2.2  -0.87 1.76 0.65 1.92 

Low -1771 1.28 -0.03 1.14 -1.80 1.10 0.20 3.03 
Processing Medium -9.54 3.67 0.51 1.31 -0.79 1.10 1.20 5.66 
time 

Long -7.Y7 3.76 O58 1.06 -0.41 1.17 O. IL 3.31 

Brised on fiIl weight: small: (<O3 kg). Medium: (0.5-1 kg). Large: i>I kg): Processing 
time: Low: (<IO0 min). Average: (100-100 min). Long: (>IO0 min) 



Table 5.7 Meluis and Standard Deviations (SD) of relative ecrors in process lethdity 

caiculations for seIecred process caiculation rnethods 

Panmeter Range Ball Stumbo Pham A i i  
Mean SD Mean SD Mean SD Mean SD 

Retort 
f 20 ( O C )  33.03 10.70 1.88 1.33 - 

temperature 1.74 3.14 

Lnitid 
80 ("C) 31-62 19.19 -1.09 4.81 -0.12 0.30 -1.3 4-89 tempenture 
90 ("C'I ji.73 19.45 0.95 5.06 -0.15 0.25 0.26 4.71 

O 31.35 19.36 0.36 5.20 -0.23 0.19 -0.43 5.33 

Can Size Medium 30.58 19.43 -0.66 4.YL -0.10 0.53 -0.31 3.79 

Long 19.61 13.69 -1.09 4.1 - 9  0 . 3  -0.14 5.49 

Busd on fil1 weight: srnail: 1~0.5 kg), Medium: (0.51 kg). Large: o l  kg): Processing 
rime: Low: ( < LOO min). Average: ( 100-200 min). Long: f >?O0 min) 

Table 5.8 Ranze. mem and standard deviation of errors for al1 the combination of 

parameten 

Error in process time crilculations 1 Error in praess lethdity calculations 
Methods 

Stin Mau Mean SD 1 Min Max Mean SD 
l 

Bal1 I .63 36.3 1 14.6 I 3.29 0.75 68.02 3 1.57 19.22 

Stumbo 0.01 5.18 1.03 0.69 : 0.06 19.05 1.60 3.50 

Pham 0.00 8 .  3.15 1.96 

.UN / 0.01 5.92 2-71 1.18 
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Figure 5.7 Performance of AW mode1 in process time cdcuIation in cornparison with 

the ochrr selected Formula rnethods 
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Figure 5.8 Pertormance of XIW mode1 in process Iehality calculation in cornpaison 

with rhe other selected ForrnuIa methods 



CONCLUSIONS 

Wirh respect to preiirninary results h m  MN modeling of Bal1 and Stumbo's 

method. the possibifity of model developmenr as an aiternative to existent rnethods of 

chermai process calculations was studied A finite ciifference model was applied ro obtain a 

wide range of data covering the applicabie range of processing conditions and c m  sizes. 

Considering the accuracy of AW based Stumbo's modeI. the same procedure ot AW 

model developmenr was applied. A i i  Mode1 A with 50% data from the cota1 d m  set. had 

the best uaining error, while the ANN Modet B required higher number of examples in 

training 1 IO I O  data). Both rnodels had 1 hidden layen, Mode1 A with 2 and 5 PEs in tach 

laver and hiodel B wirh 1 PEs in each hidden Iayer. The inirial data was cransformed to 

comply wiih Stumbo's table and relating of process rime and process lerhdity was 

performed through g ( o r j n  rrndj,, [ci ffl (or g). L'sing &W predicted values. process 

rime or prmess Iethdity was cdculared. .hW Modtl A with 2.70 minutes M X  was 

comparable with Pham rnstkod in process time prediction, AIso. the ANN Mode1 6 

predicted the process lethality with 2.748 of relative error. which wri?; very close to 

Stumbo's rnethod. .4s the methods of Pham and Srumbo were assisned as the rnost 

arcunte methods of process caiculrttions. the .kW modek had the'potential of application 

in pmcess crilculation methods. 



G E i I  CONCLUSIONS 

1. The first phase of the research was development of A i  based on Bail and Stumbo 

methods, which are the two major and most widely used rnethods of themai 

proccss calculations. This work was carried out to evaluate the potential for the 

ripplication of P L ?  technique for process cnlcuhtions. X well-tiained network 

required appropriate number of trsning data set. optimized number of processing 

slcrnents and hidden Layers and intemal parmeters of the network. For validating 

thsse .UN models for each method. a new set of processing conditions were used. 

~ n d  the .-LW predicred values were cornpared to correspondent values t'rom 

method. XNN models had 1% error in both process time and process lethdity 

prediction based on M l  table data and 3% trror for Snirnbo table data. The higher 

mor  of Stumbo method could be posstbly because of the limited number of data 

and txtended tans of va-iribles in Xhi mode1 development. However. ri close co 

unity value for R' showed good potentiül of .hW technique in thermal process 

calculations. 

1 -. The riccuncy of selected formula rnethods (Steele and Board. Bdl. Stumbo and 

Pham) were evaluated for a wide range of processing conditions. product thermal 

diffusivity and c m  sizes. A finire difference simulation was used ro provide the 

refrrence values of pracess time and process calculations as well as the heat 

penetntion panmeters (fh. jm, fc and j,). The performance of the finite difference 

mode1 was opttmized and verifred against the andytical solution of conduction heat 

tmsfer equation. Retort temperature was the most significant parameter on the 

performance of methods. ~Methods of Snunbo and Pham had the higher accuncy as 

compare to the two other methods. Aiso in a more specific evduation. the methods 

were compared based on the c m  shapes and y-values. For dimension of H/D close 

to unity the errors were highest and they farther increased with ,y-values. 



-. 
3 . .As the final god of this SN., ALW models were developed ris the alternatives to 

present process calcuiation methods. The d m  from the finite difference simulation 

wris applied to develop A i  modeis. Tnining set size was selected based on a 

developed a leriniing curve. Using two hidden fayers for networks significantiy 

increased the performance of the A i  models: however. leaniin_o parruneters were 

less memingful during development of models. kW rnodels had excellent abiliy 

in process time and process Iethality prediction with 2.7 minutes of mean relative 

mors for process tirne prediction and 0.17 minutes of mean average error for 

process lechaiity prediction. The accuracy of .WX mode1 was compared to 

pertormance of existing formula methods and they closely performed to rnethods of 

Stumbo and Pham. 
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