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Abstract 

In recent years the following rational system 

Pm(al,a2,. -. ,arr) := 
P(4 I nt, ix - a.1 , P o m }  

has been efficiently used in numerical analysis, where {ak)z,i C q[-1,1]. This thesis 

considers constructive approximation ptoblems in the rational system above with prescribed 

poles {ak);=, C @\ [- 1,1]. Our constructive tools are interpolation, including Lagrange- 

type interpolation and Hermite-type interpolation, aad the Bernstein-type 'polynomials'. 

We also consider the Bernstein-Markov inequality with respect to this rational system, which 

plays an important role in Lagrange-type interpolation and Hermite-type interpolation. 

Chapter 1 introduces rational systems and related Chebyshev polynomialç as weLl as 

some notations- 

Chapter 2 characterizes the denseness of rational systems {Pnei (al, . . . , %)) in C[- l,1]. 

This extends a weU-known result of Achiezer. 

Chapter 3 is related to inequalities in rational systems. We fkst give a sharp (to con- 

stant) Markov-type inequality for real rationd functions in Pn (a l ,  a*, . . . , h). The corre- 

sponding Markov- type i n e q u a l i ~  fUr high derivat ives is est ablis hed, as well as Nikolskii-type 

inequalities. A sharp Schur-type inequality is &O proved, which plays a key role in the 

proofk of Markov-type inequalities. Finally, we consider inequalities for rationd functions 

in %(ai, az, . . . , &n) with constrained conditions such as with curved majorants as well as 

with restricted real zeros for rational functions in %(ai, a*, . . . ,a,J , which generalize some 

well-known results for classical polynomials. 

Chapter 4 considers Lagrange-type interpolation in rational systems. The Lagrange-type 

interpolation is based on the zeros of the Chebyshev polynomial for the rational system 



P,(al,. . . , G) with distinct real poles {at)!=, c Ri[-1,1]. The corresponding Lebsegue 

constant is estimated, and is shown to be asymptotically of order Lnn when the poles stay 

outside an interval which contains [-1,1] in its interior. Moreover, We conclude that the 

corresponding LP-convergence (O < p < w) always holds for the continuous functions on 

[-1,1] when the poles stay outside a circle which contains the unit circle in its interior. 

This ext ends the ErdOs-Feldheim t heorem for classical polynomial interpolation. As an 

application of the corresponding Lagrange-type interpolation, we &O ob tain a positive 

Gaussian-type quadrature formula. 

Chapter 5 considers Hermite-type interpolation in rational systems with nonreal elements 

in { a k ) k l  c @\[- 1,1] paired by complex conjugation. The Hermite-type interpolation is 

based on the zeros of the Chebyshev po~ynomial for the rational system P,(al, . . . , a,). This 

extends some well-known results of Fejér and Grünwald for the classical polynomid case. 

More precisely, we prove that the corresponding Hermite-Fejér-type interpolation converges 

uniformly to the continuous function on [-1,1] under the some conditions. Moreover, we 

characterize the uniform convergence of corresponding Grünwald-type interpolation. 

In Chapter 6, we consider Bernstein-fype 'polynomials' for the rational space 

{p(x)/n?=,(l+ tix), p E Pn) associated wità ti > -1, i = 1,. . . ,n on the interval [O, 11. 

Popoviciu-type t heorem and asymp totic formula are estab lished for t hese Bernstein-type 

polynomials. Some shape preserving properties of these Bernstein-type polynomiais are 

presented. As an application of these Bernstein-type polynomials, we also consider the a p  

proximation problem in (p(x) / I-IEl (1 + t i ~ ) ,  p E Pn) with p(x) having integral coefficients. 
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Chapter 1 

Introduction 

1.1 Chebyshev System 

A Chebyshev system {ut);=., on an interval [a, b] is a set of n + 1 continuous k c t i o n s  on 

[u,b] such that any element of II, := span(uo,u~, ..., un) that has n + 1 distinct zeros in 

[a, b] is identically zero. The following simple equivdences hold: 

Proposition 1.1.1 (Equivalences) Let {u~};=~ on an interval [a, b] 6e a set of n 4- 1 

continzrous functions on [a, b]. Then the following are eqerivalent: 

(a)  Euery O # p E span(uo, ui, ..., un) has at most n distinct zeros in [a, b]. 

(b) If xo,. . . ,x, are distinct points of [a, b] and yo,. . . ,y, are real nurnbers, then there 

exists a unique p E span(u0, ui, . . . , q) such that 

(c) If xo, . . . , xn are distinct points of [a, b],  then D(xo, . . . , x,) # O ,  where 

We Say that (uo , ul , ..:, G) is a Markou system on [a, bj if each % E C[a, b] and {uo , ui , ..., h} 
is a Chebyshev system for each m = 0,1,. . . , n. 



For a given Chebyshev system {uk);=-), we can define the genemlized Chebyshev poly- 

nomial as (cf. 111 [6] [12] [15] [32] [40] [69]) 

for Rn on [a, b] by equi-oscillation properties. More preciseiy, there exists an alternation set 

of length n+1: a 5 xo < x i  < - - .  < xn 5 b for T, on [a,b], that is 

In the above formula and throughout this paper, denotes the supremum n o m  on 

A c R  

Many extrema1 problems are solved by the Chebyshev polynornials (cf- [6], [69]) and 

the denseness of the Markov space is also intimately tied to the location of the zeros of 

the associated Chebyshev polynomials (cf. [4, Theorem 11). Chebyshev polynomîals are 

ubiqiÿtous and have many applications, ranging fÎom analysis, stat istics, numerical met h- 

ods, to number theory (cf. [6], (231, [32] and [69]). In this chapter, we introduce rational 

systems wit h prescribed poles and related Chebyshev polynornials, which will be often used 

throughout chapter 2 to chapter 3. 

1.2 Rational Syst ems and Relat ed Chebyshev Polyacmials 

We let 

and 

where  fi=^ c @\[-1, l] is a £ked set of poles such that nhl(x - cck)  E Pn. In other 

words, the nomeal poles form complex conjugate pairs. We d e h e  the numbers {C~)E=~ by 
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that is, 

Note that (ak f 4 s )  (at - JG) = 1, throughout this paper, JF will always 

When all the poles {ak )L1 are distinct and real, Pn (ai, a2, . . . , an) and 7, (al, az, . . . , k) 

are simply the real spans of the following two systems 

and 

{1, l i s i n t  l z t s i n t  
y . . .  

COS t - a l  cos t - a*, 
I I s i n t  ) ;  tE[0,2r) ,  

y cost -an 

respectively. Moreover, t hey are Chebyshev systems (cf. [6] [32] (691). 

There are very few situations where Chebyshev polynornials can be explicitly com- 

puted. However, the explicit formulae for the Chebyshev polynomials for the systerns 

P, (al, an, . . . , an) and Tn (ai, a2, . . . , k) with distinct real poles outside [-1,11 are im- 

plicitly contained in Achiezer [Il. Recently, Borwein, Erdélyi and Zhang [8] have derived 

analogue Chebyshev polynomials of the first and second kinds for these systems. Moreover, 

they d o w  repeated poles and nonreal poles in these systems, in which the nonreal poles form 

complex conjugate pairs. These Chebyshev polynornials are constructed as follows (cf. [SI). 

Given {ak)F=l C @\[-1,1] such that its nonreal elements are paired by complex conju- 

gation, therefore Pn (ai, az, . . . , h) and 7;7 (ai, az, . - . h) are red  rational spaces. 

Let 

where the squaxe root is defined so that Mn(z) = rnM,(z-') is analytic in a neighbourhood 

of the closed unit disk, and let 



Then the Chebyshev polynomiak of the f i rs t  knd for the rational systerns 

P,,(al, aq, . . . , a,) and %(al, aa, . . . , h) are defrned by 

and 

Fn (t) = T,(COS t) , t E W, 

respectively, and the Chebyshev polynomials of the second kind are defined by 

and 

On@) = U,(cos t) sin t ,  t E W (1.2.11) 

It is shown in [8] that these Chebyshev polynornials preserve almost all of the elementary 

properties of the cIassical Chebyshev poIynomiais. More precisely, we have 

Theorem A (cf. [8, Theorem 1.2, Corollaq 4.91) Let Tn and Un 6e d e f i e d  by (1.2.8) and 

(1.2.10) fmm {ak)Zzi c @\[-l,l] with nonreal elements  paired by cornplez conjugation. 

Then 

(a) TnEpn(ai:aî,---,%)andUnEpn-i(al,a2,---,~)- 

( b )  llTnll[-1~11 = l l ~ W z ( ~ ) l l ~ - ~ , l ~  = 1- 

(c)  There are -1 = y, < y,-1 < - - - < y1 < y0 = 1 such ë n t  

(e) Tn(x) has ezactly n zeros in [-1,1] : 



CEWTER 1. INTRODUCTION 

The conclusion that T, (x) has exactly n zeros can also be found in [62]. 

We denote by 

which are called the Bernstein 

nonreal elements in { a k ) h i  are 

factors and they play important roles in [8]- When the 

paired by complex conjugation, it is easy to check that 

Theorem B ([8, Theorem 2-11) Let Fn and On be def ied  by (1.2.9) and (1.2.11) fmm 

{ak)EZi c @\[-1,1] with nonreal elements paired by complez conjugation. Then 
- 

(t) = -Bn (t) On (t) Y O )  = B ( ) ~ ( )  t E B (1.2-14) 

and 

where &(t) is def ied  by (1-2.13). 

Theorem C ([8, Lernma 4-41) Let Tn be defined 6y (1.2.8) from ( a b ) f  C IR\[-lrl]. Then, 

for O 5 m < n, we have 

where {~k);!~ is defined b y  (1.2.3), and the empty pmduct is  understood to be 1 for n = O 

or  rn = n. 

Therefore, {Tn ( x ) ) ? ? ~  are no t orthogonal in general, t his property is diEerent from t hat 

of the classical Chebyshev polynomials. However, a simple linear combination of Tn and 

Tn-r: 

RQ := 1, R, := T, + GT*-~, 



is orthogonal with respect to the weight & fkoom { a k ) b ,  c IR\[-l,1] with distinct 

numbers. That is, 

Many aspects of orthogonal rational functions and their applications can be found in the 

literature, for exampie, see [9] [Il] [17] [39] [59] and the references therein. 

The next explicit formulae of the Chebyshev polynomials with respect to Pn (a l ,  . . , G) 

are found recently by Borwein, Erdélyi and Zhang [8]. 

Theorem D ([6, Theorem 3.5.41 or 18, Proposition 4.11) Let (ak)E=l C @\[- 1,1] be distinct 

such that the nonreal elements are paired b y complex conjugation, and let T, be the Chebyshev 

polynomial of the p s t  kind for Pn (al, az, . . . , a,). Then 

where 

and 

1.3 Why Should We Study the Rational Systems? 

It is known that it is not good enough for the approximation of functions to use the das- 

sical polynomials in many practical problems. For example, for integrands having poles 

outside the intenml of integration, it would be more natural to design quadrature rules to 

integrate exactly rational functions (not polynomials), which have the same or almost the 

same poles, of maximum possible degrees (cf. [25] [78]). Recently, Gautschi (cf. [25], 1261) 

has successfdiy used this idea for the computation of the following generalized Fermi-Dirac 

and Bose-Einstein integrah (also cf. [61] [?Il): 
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The computation of all of these are closely tied to rational interpolation. 

Moreover, since orthogonal rational functions play a very important role in Hankel and 

Toeplitz operators, continued fractions, moment problems, Carat héodory-Fejér interpola- 

tion, function algebras, and solving electricd engineering problems, related studies of ratio- 

na1 systems and related orthogonal rational systems are now very active (cf. [8] [9] I l l ]  1101 

[17] [38] (391 and the references therein). 

1.4 Assumption (A) 

For the simplicity of the statements of our results, we here introduce an assumption, which 

plays an important role in the pro06 of our main results of this thesis. 

Assumption (A) Let the nonreal elements in {ak)i,i c C\[-1, 11 be paired by complex 

conjugation. If there exists some constant a such that 

Le, the poles rnust stay outside a circle which contains the unit circle in its interior, then 

we Say that {ak}Fzl c @ \ [ - I l  11 satisfy Assumption (A). 

It is easy to see that Assumption (A) is equivalent to 

where O 5 7 = a - < 1. If this condition is satisfied, we Say that {c~):=~ satisfy 

Assumption (C). For convenience, we oRen use Assumption (C) later, instead of assumption 

(A) 

Next we conclude that the Assumption (A) is equivalent to the assertion: the orthonor- 

mal rational systems { x ( x ) )  defined by (1.2.17) are uniformly bounded on [ - I l  11. 

Theorem 1.4.1 Let {ak);=, c Et\[-1, 11. Then Assumption (A) is true if and only if 
{ x ( x ) )  is unifomly bounded on [-1,1]. where { % ( x ) )  LP defined by (1.2.17). 
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Proof. Note that Assumption (A) is equivalent to Assumption (C) and IT,(x)l 5 1 for 

x E [-1,1], then we can easily prove the only if part. Next we prove the if part. We 

suppose that Assumption (A) doesn't hold, then there &ts a subsequence {G, ) such that 

Without loss of the generality, we assume h, + 1, k -t m. That is, 

But, we also have 

This contradicts the assumption, and we have completed the proof of the if part- D 

1.5 Notations 

In this section, we give some notations which wili be used later. 

Let 

be the set of all red algebraic polynomials of degree at most n and 

be the set of a l l  real trigonometric polynomials of degree at most n. 

Let {ak}:=, c @\[-1,1]. Then we denote 

Pm(al, as,. . . ,al) := 
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and 

Modulus of Continuity: Let f (x) be dehed on [-1,1]- Then 

w(f ,  4 = SUP 
z1y€[-1,ll1lz-~lS~ 

If ( 4  - ml 
a Dini-Lipschitz Condition: If the condition 

holds, then we Say that the continuous function f satisfies the DintLipschitt condition on 

C-1, 11- 

We use l l . l I A  to denote the supremum norm on A C R 

If f (x) is d e h e d  on [-1,1], then we denote 

E d f  := inf I l f  - PI[-1.11 
pEP, 

Let { a k } ~ = l  C q[-l, 11. Then 

E : = 2 R f z  - ("+---+- x - a l  

and 

For O < p  < CQ, we denote 

and 

Ilf llp := (j: l f  (41' dx) lh - 



We use C[-l,1] to denote the set of ail continuous functions on [-1,1] and we &O denote 

Ge[-1, l] := {f, f E C[-1, 11, f (-1) = f (1) = O ) . 

The symbol "-" is used as foUows: if A and B are two expressions depending on some 

variables and indices, t hen 

A - B  o lAB-'l 5 c and IA-'BI 5 c. 

We use (a) (i = 1,2, . . , ) to denote some positive constant depending only on cr, respec- 

t ively. 



Chapter 2 

On the Denseness of Rational 

Systems 

Overview 

This chap ter characterizes the denseness of the rational system 

with the nonreal poles in { a k } h l  c @\[-1, l] paired by complex conjugation. This extends 

an resdt of Achiezer. 

2.1 Introduction 

With respect to the denseness of the systern span{&)Ll in C[-1,1], the following weu- 

known result is due to  Achiezer [l, P254, Problem 71: 

00 
Achiezeryç Theorem Let { a k ) g l  c Et\[-1, l] be distinct. Then spart{+) is dense = =k k=l 

in Ci-1, 11 if and only if 
00 

(1 - IckI) = m, 
k=l 

where {ck)& are defied in (1.2.3). 
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In [5] Borwein and Erdélyi also proved this by using entirely different methods. 

Note that Pn-l(al,. . . ,%) is still a red  rationai system wheo the nonred poles of 

{ a k ) f ,  form complex conjugate pairs. So, it is natural to ask: whether we can extend 

Achiezer's Theorem to the case: the nonreal elements in {ak)& c @\[-1,1] are paired by 

complex conjugation? We consider the above question and give an f i m a t i v e  answer. 

2.2 Extension of Achiezer's Theorern 

Theorem 2.2.1 Let the nonreal elernents in {ak)F=, c q [ - 1 , 1 ]  be paired by complex 

conjugation. Then {Pn-l(al, . . . , a,)) is dense in CL-1, 1] i f  and only if 

Our proof of Theorem 2.2.1 is m d y  based on the Chebyshev polynomials with respect 

to Pn(al , .  . - , G). We still use Tn(x) to denote the Chebyshev polynomial of the first kind 

with respect to Pn(aI, a*, - . . , a,.,) . 

Lemma 2.2.2 Let the nonreal elements in  {ak) tZl  c @\[-1,1] be paired by complex 

conjugation, and let T,(z) be the Chebysheer polynomial of the first kind with respect tu 

(al7 an, . . . , an). Then the best approximation to 1 from P,-i (al, az7 - - - , a,) is 

Moreover, we have 

where A. is given by  (1.2.20). 

Let Tn+i be the Chebyshev polynomial of the f%st kind with respect to Pn+l(al,.. . ,a,, a).  

Then, Lemma 2.2.3 gives the best approximation to fkom pn(ai, . . . , an). That is, 
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Lemma 2.2.3 Let the nonred elements in (at)E=l C q[-1,1] be p a i d  by c o m p k  con- 

jugntion. Then, for a E W \ [-1,1] and a $ {ai )g l ,  the best approximation & from 
Pn(ai , ---  9 % )  i s  

where 

Proofs of Lemmas 2.2.2 - 2.2.3. Their proofi are similar and they can be proved by an 

argument of counting zeros. So we just prove Lemma 2.2.3. Since a E W \ [-1,1] and 

a # we then can construct the Chebyshev polynomial of the h t  kind T,+l for 

Pn+, (a1, . . - , G, a) and it can be expressed as: 

Bn+l Tn+i (x) := s(x) + - 
x - a '  

where s(x) E %(al, -. . ,an). Since 

it is easy to show (2.2.6) by a simple calculation. Moreover, q(x) = -s(x)/B,+~. Clearly, 

q E %(ai, .. . ,a,). Moreover, note that (cf. [8, Theorem 1-21) [~Tn+l~~~-l,ll  = 1, we have 

Suppose that there exists some t E P, (al, . . . , a,) such that 

Recd  that (cf. [8, Theorem 1-21) there exist n i- 2 nodes: -1 = y,+l < y, < . - < yl < 
go = 1 such that Tn+i(gj) = (-l)j, j = O,. . . , n + 1. So, 

changes sign between any two consecutive extrema of T,+i. Furthermore, it has at least 

n + 1 zeros in (-1,l) , and consequently, it must vanish identically. This contradicts (2.2.8). 

O 
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Proof of Thwrem 2.2.1. We f i s t  prove the on23 if part. Note that (ckj < 1 (k = 1,2,. . - )  

and by (1.2.20) we then have 

that is l/IAol - n&, lckl. If {Pn-t(al,. . . , k))W, are dense in C[-l,l], then by Lemma 

2.2.2 we have l/IAol + O (n + co). That is ng, Ickl = O. This implies (2.2.1). 

Next we prove if part. By (2.2.6) and (2.2.7) we have 

Note that nz, is an infinite Blaschke product. Then by [82, Theorem 1, P281] or 

[70, Theorem 15.23, P3111 we conclude that (2.2.1) implies 

Consequently, with (2.2.7), we conclude that can be uniformly approximated by 

{Pn(ui, . . . , on [-1,1]- Also, if (2.2.1) holds, then by the analysis of the proof of the 

only if part and Lemma 2.2.2, we see that any constant can be uniformly approximated by 

P l  ( a  , . . . , ) = -  Thus, we conclude that (2.2.1) implies that c m  be uniformly 

approximated by (al, . . . , on [-1, 11. Note that a E R\ is an arbitrary num- 

ber, so we can take a to be any of a sequence of distinct number satismg the condition 

(2.2.1). This means can be taken as any of a dense sequence of distinct basis functions 

formed by A. Therefore, the ÿ part follows. O 



Chapter 3 

Inequalities in Rational Systems 

Overview 

This chapter considers inequalities for the rational system Pn(ai, az, . . . , h) with prescribed 

poles {ak)hi C @\[-1,1]. Section 3.2 introduces the Bernstein-Szeg&type inequality and 

the Bernstein-type inequality in this rational system. These inequalities are developed by 

Borwein, Erdélyi and Zhang [8]. A sharp Schur-type inequality is proved in section 3.3, 

and plays a key role in the proof of our ~Markov-type inequdity. Section 3.5 gives a sharp 

(to constant) Markov-type inequality for real rational functions in %(al, aa, . . . , h). The 

correspondhg Markov-type inequality for higher derivatives is &O established in section 

3.6. The Nikolskii-type inequalities are established in section 3.7. Section 3.8 considers in- 

equalities for rational functionç with some restrictions in Pn(al, aa, . . . , a,). More precisely, 

some sharp Markov- and Bernstein-type inequalit ies with curved majorants for rat ionai 

functions in Pn (al, a2, . . . , an) aze obtained, and Turiin-type inequalities are established for 

the derivatives of rationai functions, whose zeros are a.ll real and lie inside [-1,1] but whose 

poles lie outside (-1, l), in the supremum- and ~ ~ - n o r m s ,  respectively. Several well-known 

results for classical polynornials are generalized. 

3.1 Introduction 

The following two inequalities are fundamental to the proofs of many inverse theorems 

in polynomial approximation theory and of course have their own ixitrinsic interest, see, 



for example, Borwein and Erdélyi [6, Chapter 51, Cheney [L2], Lorentz [40], MilovanoviC, 

Mitrinovié and Rassias [45, Chapter 61, Natanson [54], Rivlin [69]. 

Markov Inequality . The inequality 

holds for P, € P,,. 

Bernstein Inequality. The inequality 

holds for P, E P,. 

There are many results on Bernstein's and blarkov's inequalities and their generalization. 

For the interested readers, see, for example, Borwein and Erdélyi [6], Milovanovié, MitrinoviE 

and Raçsias [45, Chapter 61 and Rahman and Schmeisser [68] and references therein. 

On the other hand, the Bernstein-Markov type inequality does not exist for the a r b i t r q  
62 rational function. For example, if r ( x )  = -.-Tl then 5 1 but rl(b) = & (cf. 

Lorentz [40]). 

Eowever, we can develop Bernst ein-Markov type inequalit ies for rat ional functions wit h 

restricted denominators (cf. Borwein [4]). Recently, Borwein and Erdélyi and Zhang [8] 

considered the inequalities of rational functions with prescribed poles. For more information 

about inequalities of rational functions with prescribed poles on the unit disk or on the 

whole real axis, see, for exampie, Borwein and Erdélyi [6, Section 7-11 [7], Li [37], Jones 

Li, Mohapatra and Rodriguez [31] [38] and Petnishev and Popov [60]. This is an area of 

curent research activity. For the application in the numerical analysis and related historicd 

remarks concerning this kind of inequalities, see [36] [72] and [83]. 

3.2 Bernstein-Szeg6-type Inequality 

Borwein, Erdélyi and Zhang (cf. [B, Theorem 3.11) obtained a remarkable extension of the 

well-known Bernstein-Szeg6 inequaliw for system Tn (al, a2, . . . , a,), that is, 



Theorem E (Bernstein-SzegGtype Inequality) Let {ak)Ll  C @\(-1,1] with its non- 

real elements being complex conjugation, and &(t) k defined by (1.2.13). Then 

hold for every P in Tn(al, a2,. - - , an), and equality holds in (3.2.1) i f  and only i f  t i s  a 

maximum point of lPl, or P LS a Zinear combination o f &  and Un, where 9, and Ü,, are 

defined b y (1.2.9) and (1.2.11) respectiuely. 

Bonvein, Erdélyi and Zhang [8] also got a Bernstein-type inequality (cf. [8, Corollary 

3.41): 

Theorem F (Bernstein-type Inequality) Let the nonreal elements in {ak)Zzl C @\[-l, l] 

be paired by complex conjugation, and Bn(x) be dejhed by (1.2.13). Then 

holds for every P E Pn(al, al,. . . , a,,), and equality holds in (3.2.2) if and only i f  P i s  a 

constant multiple of Tn and x is  one of zeros of Tn, where T, i s  dejned by (1.2.8). 

3.3 Schur-type Inequality 

In this section, we establish a sharp Schur-type inequality which plays a key role in the 

proof of our Markov-type inequality. 

Theorem 3.3.1 (Schur-type Inequality) Let the nonreul elements in {ak)E=l C @\[-1,1] 

be paired by complex conjugation, and B,(x) be def ied  by (1.2.13). Then 

holds for every P E %-1 (ai,  a2, - - - , an) - 

Proof. We may assume that d G 2 1 ~ ( x ) l  6 1, and we must prove llpll~-lyll I IIBnll[-i,ll- 

It is easy to see that our hypothesis implies that  sint P(cos t) E 7,(al, az, . . . , u,J and 

1 sin t P(cos t) [ 5 1. Applying the Bernstein-Szeg6 inequality (3.2.1) for sin t P(cos t), we 

then have 

( 
d 2 

B:(t) sin2 t p2(rns t) + cos t ~ ( c o r  t )  + sin t { z ~ ( c o s  1))) < Bn(t). 



Let to be a maximum point of IP(cos t)l, that is, [P(cos ta) 1 = [[P(cos t) (1. Then we have 

that g { ~ ( c o s  t))ltZs = O. Therefore, 

B: (to ) sd to p2 (cos to) + cos2 t 0  P* (COS tO) < B: (tO) , (3.3.5) 

(13: (to) - 1) sin2 to p2(cos to) + p2 (cos to) < B: (to). (3.3.6) 

We distinguish two cases: (i) a ( t o )  3 1 and (ii) Bn(to) < 1. In the first case, (3.3.6) 

impfies that IP(costo)l I Bn(t01 < IIBnll[-i,il- 

Ln the second case, (3.3.5) implies that 

1 
P ( c o s  t,) + (- - 1) cos2 to P~(COS tO) < 1, 

B: !to 

hence, IP(cos to) 1 < 1 follows. Ako, from the definition of B,(z) we have IlBn ll[-i,il 2 1. 

Thus, we still have IP(cos to)l 5 [lBn 11 [-i,ll. On combining cases (i) and (ii), we complete 

the proof of Theroem 3.3.1. O 

Remark. For the real poles case {ak}g=C=, c Et\[-1, 11, [6,  E.8, p. 3371 also showed (3.3.3) 

using an entirely difEerent met hod. 

3.4 How Large Are the Bernstein Factors? 

We now make an observation about the Bernstein factors Bn (x) as defined by (1.2.13). We 

will show that Bn(x) is a convex function on [-1,1] when the poles (ak);=, are real. There- 

fore, we can eady  calculate its norm which is usually dependent on {ak}gi.  Moreover, we 

show that its L1-norm with Chebyshev weight is independent of { a k } ~ = , .  More precisely, 

we have 

Lemma 3.4.1. Let {at)L1 c IR\[-1, 11 and Bn(x) be defied by (1.2.13). Then &(x) is 

a conuez function on [-1,1] and its maximum on [-1,1] is always attained at &l: 
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Moreouer, we have 

Proof- Note that 

where Ja: - 1 denotes the principal square root of a: - 1. We can quickly show that 

Bn(x) 2 O on [-1, 11. This implies that B,(x) is a convex function on [-1,1]. Note that 

B, (x) > 0, so the first equality of (3.4.7) follows. By a slightly longer calculation we may 

show the second equaiiS in (3.4.7). Note that 

for any dk > O. Hence, we may also prove the Iast inequality in (3.4.7). 

In fact, Bn (x) cm be expressed as 

where ,/= denotes the principal square root of a: - 1. By a simple calculation, we have 

Thus, it follows, 

This completes the proof. O 

Remark. Io general, Lemma 3.4.1 does not hold for {ak)F=l c @\[-1,1]. For example, 

take al = i, a2 = -i. It iS not hard to show that 

which is not a convex function and IIB2111-i,11 = B2(0). 

Note that IIBnllt-l,ll 2 n and equality holds when y = O (k = 1,. . . ,n), that is classical 

polynomial case. Lemma 3.4.2 gives a sufEicient condition which guarantees B,(x) to be 

asymptotic to n. 



Lemma 3.4.2 Let {at)E=l C @\[-1,1] satisfy Assumption (A). Then 

and 

Proof. By a simple caiculation we can show that 

Therefore, we have 

and 

So, we have completed the proof. [7 

Example. We let 
1 

2k 1 where cos e n  (k = 1, . . . , n) are the zeros of the classical n-th Chebyshev polynomial of 

the first kind. Then, for k = 1, . . . , n, we have 

2k 1 where Ok = +x, k = 1,. . . ,n. 

Note that the zeros of the classical Chebyshev polynomial are symmetric about the y- 

axis, and one then can check that B,(z) is an even function on [-1,1]. Furthermore, we 

have I I  Bn ll[-l,q = Bn (1) by Lemma 3.4.1. Therefore, by a simple calculation, we have 

Note that 
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and we conchde that 

Recd that 

I +cosBk - sinek 

k=l -1 + cos Bk + sin Bk Bk 

and we thus have 

3.5 Markov-type Inequality 

Now we state our main resdt. 

Theorem 3.5.1 (Markov-type Inequality) Let the nonreal elements in {ak) iZl  t C\[-1,1] 

be paired by  complez conjugation, and B,(x) be defined by (1.2.13). Then 

CorolIary 3.5.2 if {ak)kCl C Et\[-l,l] are real poles, then 

Corollary 3.5.3 Let the nonreal elements in {ab);=, C - 1 ,  ] be by comp[= 

conjugation, and Bn(x )  be defined by (1.2.13). Then 

for p E Pn(al ,  a2,. . . ,an). Particularly, i f  O 5 P ( x )  5 1 fo r  -1 5 x 5 1, we have 

~lpfl1[-~,i] 5 ~ ~ ~ n ~ f - i , l ~ ~  (3.5.13) 
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and these inequalities are shorp up  to a constant for {a~):=~ C R\[-l,l]. 

Proofs of Theorenz 3.5.1 and Corollary 3.5.2. Note that we d o w  repeated poles in Pn(ar, a2,. . . , a,), 
and we denote %+L := al ,  -. - , := an- We can consider 

But, in this case, it is easy to see that 

B2n (x) = 2% (2) 

Hence, combining (3.5.13) and (3.2.2) we conclude that 

IIP' II[-i,il I 21Pnll~-i,il llpli[-i,il. 

Next we WU show the left-side inequality in (3.5.11)- From Theorem A(d) we have 

Thus one can easiiy get that 

This implies 

Hence, by taking P := T, E P, (al, az, . . . , a,) and using Lemma 3.4.1, one can show the 

left-side inequality in (3.5.11). C] 

Remark. If {ak}F=l c R\[-1, 11, then (3.5.11) can also be expressed as 

where the supremum is taken for P E P,(ai, a,, . . - , G), and T,(z) is defined by (1-2-8) - 
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Rom the above t heorems, the estimate of I I  Pf  I I  L-l,il (Markov-type inequality) and the 

pointwise es tirnate of 1 Pf  (x) 1 (Bernstein-type inequality) are dependent on the given poles 

for P E P,(ai, a l , .  . . , a,). However, Borwein, Erdélyi and Zhang [8] observed the 

following result : 

v"(0) 1 5 n ~ ~ ~ ~ ! [ - l , ~ ]  (3.5.17) 

for P E Pn (al, a,, . . . , h) and real poles {ak)Ll C R\[-l,l]. Therefore, by a linear 

transformation , they obtained (cf. [8, Corollary 3-71) 
12 

lpt(x)1 5 - IIPII[-I,~]Y X (-191) (3.5.18) 
1 - 1x1 

for every P E Pn(ar,aî , .  . . ,%) and real poles {ak)bt  c Ri[-l,l]. 

It may be reasonable to replace the factor 1 - 1x1 by 1 - x2 in (3.5.18). Indeed, we have 

Lemma 3.5.4 Let {ak);=, C IR\[-1, 11. Then 

Hence, it is possible to obtain the following Markov-type inequa.lity by exactly the same 

way as the proof of [8, Theorem 3-51 : 

Theorem 3.5.5 Let (ak)k,l c Et\[-1, l] and {ck)E=, be defined by (1.2.3). Then 

hold for every P E s ( a l , a z , .  .. ,&), n = 1,2, ... . 

Remark. [8, Theorem 3.51 got similar estimates to (3.5.20), but instead of a by &. 



3.6 Nlarkov-type Inequality for High Derivatives 

We may establish a corresponding Markov-type inequality for high derivatives. 

Theorem 3.6.1 (Markov-type Inequality for High Derivatives) Let the nonreal el- 

ements in { a k } h l  c Ci[-1: 11 be paired by complez conjugotion, and Bn(x) 6e defined 6y 

(1.2-13). Then 

holds for every P E Pn(al, as,. . . ,a,) and m = 1,2,. . . . 

Proof We prove this by induction on m. The case of m = 1 is from Theorem 3.5-1. 

Suppose that (3.6.21) is true for m = k, that is 

for every P E p,(a~, az ,  . - . , h). 

Let ai,+l = ai , .  . . , = an, i = 1,. . . , k + 2, then we can consider 

as in the proof of Theorem 3.5.1. Similady, we have 

where B(k+2)n (x) is the corresponding Bernstein factor w-ith respect to 

P(k+2)n(ai,a~7... , u ( ~ + ~ ) ~ ) .  NOW using (3.6.22) and applying the S b - t y p e  inequdity 

(3.3.3) and the Bernstein-type inequality (3.2.2) for ~ ( ~ " 1 ,  we have 

Hence (3.6.21) hoIds for m = k + 1 and we complete the proof. O 
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3.7 Nikolskii-typ e Inequality 

Theorem 3.7.1 (Nikolskii-type Inequality) Let the nonreal elements in {ak)gl c 
@\[-1,1] be paired by complex conjugation, a n d  B,(x) be defined by (1.2.13), then 

2(1/q-l/p) 
llpllp 5 2 (211~n 11[-1,1]) wlh (3.7.23) 

Proof. First we prove this for p = m. For given P E P, (al, as, . . . , an), we may suppose 

that IP(y)l = IIPII[-l,il, where y E [-1,1]. Also we denote A, := 2 1 1 ~ ~ l l f - ~ , ~ ~ -  Then by 

Theorem 3.5.1 and the Mean Value Theorem we get that 

for every z E I := { t  : ~t - y1 < &,t E [-I,I]). ~ h u s  

Therefore, for O < q < p < oo, we conclude that 

This yields (3.7.23). iï 

In a certain weighted L*-nom, we can get an exact Nikolskii-type inequality which has 

a srnaller Nikolskii constant under some conditions. Precisely, we have 

Theorem 3.7.2 Let { a t ) h l  c 
Then 

IR\[-I,l] be distinct a n d  {ck)hi be defined by (1.2.3). 





Rahman [66, Theorem 11 completely solved the above problem b y  

Theorem G Let P, E P, satisfy IP,(x)l 5 d m f o r x  E [-1,1]. Then 

~~~~~~ 5 q b  - l), (3.8.26) 

and (3.8.26) is sharp by Pn ( x )  = (1 - x~)u , -~ (x ) ,  where Un-2 (x) is the classical Chebyshev 

polynomial of the second kind. 

For the case of the restriction 

2 -1/2 l p n ( ~ > l I ( I - ~ )  9 

Lachance [35] obtained the following Bernstein- and Markov- type inequalities 

Theorem Ei Let Pn E Pn satisfy (3.8.27). Then 

IPA(x)l 5 2(n  + 1)(1 - x2)-', -1 < x < 1, 

and 

IIP'll[-i.11 5 n(n + il2, 

and these ineqvalàties are sharp to constant, respectiuely. 

Rahman and his associates have extensively investigated these kinds of inequalities for 

classical polynornials. For more details, see, for example, [45, Section 6.1.41 and the refer- 

ences t herein. 

For Bernstein-Markov inequaüties of polynomials with restricted zeros, The s e i n g  

point of these gemalizations is the following well-known result of Erd6s [18]: 

Theorem 1 (Erdos) Let Pn E P,, having al1 its zems in IR\(-& 1). Then 

and 
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Another fundamental result is the so-called inequality which establishes a converse 

Markov inequality for polynomials with restricted real zeros (cf. T u r h  [76]), more precisely, 

Theorem J (Tur6.n) Let P, E having al1 ifs zeros in [-Il 11, Then 

Since then, a lot of extensions of Erd6s3 and Tu&nls results have been made, see, for 

example, Borwein and Erdélyi [6, Appendix A51 and MilovanoviC, Mitrinovié and Rassias 

[45, Section 6-21 and the references therein. 

It is natural to ask if we can extend the above resdts to the rational system R, = 

@/q, p, q E P,) with restricted zeros and poles? 

In the sixties ELahman i65] and Malik [44 established an analogue of (3.8.31) for rational 

fimctions which have neither zeros nor poles inside the unit circle. Moreover, in 1991 

Rahman [67] sharpened it and found the correspondhg best constant. But as far as 1 know, 

the question of how to establish the analogue of (3.8.30) for the rational functions is stU 

open. 

3.8.1 Inequalities for the Rational Functions with Some Curved Majo- 
rants 

Here w e  try to generalize the above results for polynomials with curved majorants to rationd 

systems. More precisely, we have 

Theorem 3.8.1 Let the nonreal elements in {ak)&i c @\[-1,1] be paired by cornplex 

conjugation, and B, (x) be defied by (1.2.13). Then, for P E Pn (al, a2,. . . , a,) , we have 

and 
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for -1 < x < 1. 

Furthermore, i f  { a k } L l  satisfy Assumption (A) ,  then 

for {at)t,l c IR\[-l,i], n = 2,3..  . ., where P:(al,a2,. .. ,%) are defined by (1.5.28). 

Theorem 3.8.2 Let the nonreal elements in c ê\[-1,1] be paired by complex 

conjugation, and B, (x )  be defined by (1.2.13) - Then, for P E P;Yl (a l ,  a?, . . . , a,J, we have 

and 

Furthemore, if { a k } f  satisfy Assumption (A) ,  then (3.8.36) Cs sharp u p  to a constant and 

holds, where the supremum is taken for P E PGil ( a l ,  al, . . . , a,) defined by (1.5-29), { a c } b l  c 
R\[-L 11- 

Proof of Theorem 3.8.1. Our hypothesis implies that 

and Q(cos t )  E 7,(ai, a?, . . . , a,J, by the Bernstein-Szeg6-type inequality (3.2.1) for 

7-,(al, az, . . . ,a,) we have 

That is, 
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Note that (1 - x~)- ' /~Q(x)  E %-l(ai,  a?, - - . y a n )  Moreover, 

Thus, Theorem 3.3.1 yields 

for -1 < x < 1. Combining (3.8.40), (3.8.41) and (3.2.2), we obtain (3.8.33). 

Next we prove (3.8.35). Obviously, the right-side inequality in (3.8.35) follows kom (3.8-33) 

and (3.8.39). 

Let 

where Un(z) is dehed by (1.2.11). Since (cf. [BI) J T T ? ~ u ~ - ~ ( x ) ~  < 1 for -1 5 X 2 1, 
thus, P E Pn(ai, a*, . . . , %) and (P(x)I 5 d m .  By Theorem B, it is easy to see that 

and 

Furthermore, in this case, we easily get from (2.8.44) that 

Similady, we have 

Hence, we have shown the left-side inequality in (3.8.35). 
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Moreover, since Q(COS t) E Pn (al, a?, . - . , an), on using Rahman's argument (cf.[66]), the 

Bernstein-Szeg6 inequality (3.2-1) and (3.8.40) we have 

IPf(z)l 5 Ixl(1- X ~ ) - ' / ~ I Q ( X ) ~  f (-Q'(x)~ 
2 1/2 5 l4(1  - x ~ ) - ~ ' ~ I Q ( x ) I  + ( l l ~ n l l ~ - ~ , i l  - 1) (1 - IQ(x)l 1 

This implies (3.8.34). 0 

Proof of Theorem 3.8.2. From our hypothesis, we know that sintP(cos t) E %(ai, as, - . . ,a,) 
and 1 sin tP(cos t) [ 5 1. Then, applying the Bernstein-Szeg6 inequality (3.2.1) to sin tP(cos t )  , 
we have 

1 cos t ~ ( c o s  t) - sin2 tpJ  (cos t )  1 5 B~ (t), 

and combining Theorem 3.3.1 we get 

Next we show that (3.8.36) is sharp up to the constant under the hypothesis. Let P ( x )  := 

Un(x), the Chebyshev polynornial of the second kind d e h e d  by (1.2.11). Taking x = x k ,  as 

the zeros Un (x) in Theorem A(d), we have from (3.8.44) 

Hence (3.8.36) is sharp to constant by Lemma 3.4.2. 

Combining the Markov-type inequality (3.5.10) and the Schur-type inequality (3.3.3), 

one can easily see tbat 

and (3.8.37) follows. 

On the other hand, by (3 -8.44) we can easily get 



this implies 

1 
lG(-l)l > 5 ( m - 1 )  - lB;(-l)l- ~n( -1 ) )  

Hence combining Lemma 3.4.2 and (3.8.47) we can show that 

but Un E P:Pn'l (ai, a2, . . . , a,), so the left-side inequality in (3.8.38) follows. The right-side 

inequaliw in (3.8.38) follows fcom (3.8.37). O 

3.8.2 Inequalities for the Derivatives of Rational Functions with Real 
Zeros 

In this section, we s h d  try to generaLize the Tur6.n inequality to rational functions whose 

zeros are all reai and lie inside [-1,1] but whose poles lie outside (-1,l). 

For convenience in stating our results, we give the foilowing definition: 

Definition 3.8.3 Let { p k )  be a complex sequence, if there exists some p > O such that 

I~ct l -1  > p, then we say that the {ph) are away from the unit circle centered a t  the origin by 

P. In ~articular, we c d  { ~ t )  away from the intenial [-1,1] by p if (pk) is a red sequence. 

Theorem 3.8.4 ( T u r h  Type Inequality in the Supremum-norm) Let  the nonreal 

elements in C @\[-1,1] be paired by cornplex conjugation, and let { a k ) h l  be away 

from the unit circle centered at  the origin by p, p > 2. Then, for P E Pn(ai, aa, . . . , an) 
with al1 its reros in [-1,1], we have 

Note that the Bernstein-Markov inequality does not exist for an arbitrary rational func- 

tion (cf. [4O]), therefore, it is reasonable to restrict the poles of rationai functions. However, 
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whether the restriction o f  p > 2 can be removed is still open. Anyway, Wniran's result (3.8.32) 

is the luniting case of the above result on letting all the poles go t o  f ai. 

T h e o r e m  3.8.5 (Turh Type InequaIity in the ~ ~ - n o r m )  Let the nonreal elements in 

{ a k ) g l  c @\[-1,1] be paired by eomplez conjugation. Then, for P E Pn(a1, a2,. . . , an) 

with al1 its zeros i n  the intenial [-1,1], we haue 

and M e  equdity holds i f  and only i f  P ( z )  = % ( 1  - x ) ~  (1 + x)'/ nk=l (x - ak), where 

rn + t! = n, m, t E N and e, E W. In particular, we have 

where 

is a conuex function on [-1, 11 for {ak}Zvl - c R\[-l,i]. 

Corollary 3.8.6 Let { a k ) L i  C IR\[-& 11. Then, for P E Pn(a1, a2,. - .  ,%) with its 

zeros in [-1,1], we haue 

P* ( x )  dx. 
k=l 

In  particular, if {ak}t=l are away from [-1, 11 by  p for some p > 0, then, 

Obviously, Varma's resuit (cf.  [79, Theorem 11 or [80]) is the limiting case o f  the above 

result (3.8.54) on letting al1 the poles go to *m. 

Proof of Theorern 3.8.4. W e  modify %Win's argument t o  prove this. Let { x k } h l  be the 

zeros of P(z) ,  that is, P(x) := e, nE=, (x - x k / x  - a*), where e, E W One can show that 
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and 

Assume that 1 1  PjlI-i,ll = 1 and some a E [-1,1] such that IP(a) 1 = 

loss of generality, P(a) = 1).  Now we distinguish two cases. 

Case 1. If a = I l ,  for example, a = 1. Then kom (3.8.55) we have 

for n 2 $B. 
Case 2. If a E (-1, l ) ,  then P 1 ( a )  = O. Without loss of generality, 

1 (for example, without 

we assume a E [-1,0]. 

Let I := [a, a + 2 p / J p 2 - 4 J n ]  c [-1, 11 for n 2 $&. -4 

(i). Lf IPf(x)l  5 *fi on 1, then P(z)  2 2/3 on 1, otherwise, by the Mean Value 

Theorem we see if there exists h E I such that P(E1) < 2 / 3 .  Then 

In short, we can assume that P ( x )  2 2/3 and that there exists some C E 1 such that 

IP"(E) 1 5 ~&$n Then, under the hypotheses, we have fkom (3.8.56) 

and (3.8.49) now foilows by a simple calculation. 0 
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Proofs of theorem 3.8.5 and Corollary 3.8.6. We stilI denote P(x)  by P(x)  := e, n;CZl (x - 
xk/x - ak), where e, E R F'rom (3.8.55) and (3.8.56) and by a slightly longer calculation, 

we have 

Hence, under the hypotheses, (3.8.S?), we have 

and the equality holds if and only if ail zeros of P ( x )  are kl. Therefore, integrating both 

sides of the above inequality from -1 to 1, (3.8.50) follows. 

Next we daim that &(x) > O for x E (-1,1]. Since the nonreal elements in {ak)&, are 

paired by complex conjugation, we have 

a2 -1 Hence, we need only to show that ! R e 2 '  > O for x E [-1,1]. 

Let ak := <rk + ih, ~k := 44 + (> 1) , then, 

Note that Dr;(x) > O for x E [-1, l] and 

hence we see that & (x) > O for x E [-1,1]. 

On the other hand, since Bg(x)  > O on [-1,1] for {ak)~,i c IR\[-il il, it is strictly a 

convex function on [-1,1], which implies that IIBnllr-l,li = max{Bn(1), &(hl)). Thw we 

conclude t hat 



for { a k ) b i  c R\[-1, 11, now (3.8.53) follows. 

Actually, from (3.8.57) we can obtain an analogue of Erdiis' result (3.831) for the rational 

system Pn(ai, az, - . . , h) in L2-nom: 

Theorem 3.8.7 Let the nonreal elements in {at)EZl C @\[-1, l ]  be p a i d  by complex 

conjugation, and Bn(x) be d e f i e d  by  (3.8.52). Then, for P E P,,(al, a2, . . . , a,) with al1 its 

zeros in IR\(-l,1), we have 

and the epuality holds i f  and only i f  P(x)  = e , ( l - ~ ) ~ ( l + x ) ' /  ~ ~ l ( x - a k ) ,  where m+e = n 

, m, .t? E N and e,, E R In pairticular, we have 

for { U ~ ) E = ~  c EX\[-l,l], where IIBn[lr-l,il is given by (3.8.58). 

3.9 Problerns 

Problem 3.10.1. The best constant in Markov-type inequaiity (3.5.10) is still an open 

problem. 

Problem 3.10.2. It would be interesting to establish an Lp version of the Markov-type 

inequalify for rational functions with prescribed pores. 



Chapter 4 

Lagrange-type Interpolation in 

Rat ional S yst ems 

Overview 

This chapter considers Lagrange-type interpolation in the rational system %- (ai, . . . , n) 
with distinct { u ~ ) ; = ~  c R\[-1,1]. This Lagrange-type interpolation is based on the zeros 

of the Chebyshev polynomial of the &t kind for the rational system %(ai, . . . , n). The 

corresponding Lebesegue constant is estimated, and is shown to be asymptotically of order 

Inn when the poles stay outside an interval which contains [-1,1] in its interior. The mean 

convergence of this Lagrange-type interpolation is &O established. As an application of 

this interpolation, we construct a quadrature formula? it is a positive quadrature formula; 

moreover, it is exact for any element in Rzn-l(al,. . . , n). Some well-known results of 

classical Lagrange polynomial interpolations are extended. 

4.1 Introduction 

Interpolation by polynomials iç probably the oldest profession in Approximation. Turh 

[77] wrote 'Newton, who wanted to draw conclusions fiom the observed location of cornets 

at equidistant times as to their location at  arbitrary times mived a t  problem of determin- 

ing a 'geometric' curve passing through arbitrarily many given points, solved this problem 
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by the interpolation polynomial bearing his name. How highly he esteemed his result is 

revealed by his Ietter to Oldenburg of 1676, in which he wrote that this was one of the most 

beautiful results he had ever achieved. Newton uses his formula to give the exact value 

of J," f (x) dx in te- of the values of f (xk) when f (z) is a polynomial of degree n, and 

x k  = a + ( ( b  - a ) / n )  k, k = O, . . . , n. His student Cotes called this quadrature formula 'pul- 

cherrima et utilissima regula7 and calculated its coefficients for n 5 10. This work, based on 

Newton% interpolation formula, must have been quite awkward. Application of Lagrange's 

interpolation formula would have simplified it, but that was published only in 1795. Gauss' 

quadrature formula was also motivated by astronomy, namely by the investigation of the 

orbit of the planet Pallas. How important this formula was for Gauss is shown by the 

fact; that unlike many other results, this one was not only worked out in his diary but also 

published, even prepublished. He used the zeros of n-th Legendre polynomid instead of 

equidistant points of observation. Ris treatrnent was later greatly simplified by Jacobi. 

Thus we see that interpolation and the theory of mechanical quadrature are just two 

aspects of the study of functions given by a f i t e  number of observations." 

Interpolation theory up to now serves as an important tool of numerical analysis and 

computer science. 

Let us briefly describe it. For a given function f (x) on [-1,1], let 

then the corresponding Lagmnge interpolatory polynomial of degreel n - 1 is defined by 

where wn(x) := nL1 (x - x k ) ,  and 

are the fundamental polynomials of Lagrange interpolation. 

It's weIl-known that Ln (f) is not guaranteed to converge to a continuous function f (x) 

W o r m l y  on [-1,1]. This result, which can be considered as the starting point of the 

divergence theory for Lagrange interpolation, is due to Faber [21]. 

=ber Theorem For any nodes system { x ~ ) ! = ~  there ezists an f 1 E Cl-1, l] with 
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Note that this result does not exclude a pointwise convergence result at l es t  at a single 

point. This question was negatively answered by Bernstein (cf. [2] [73, Chapter 41 or [54, 

Chapter 2 Vol. q). 

Bernstein Theorem For a n y  nodes systern {x~);=~ the= Qists a point xo Ço [-1,1] and 

an fs C[-l,1] such that 

Later, Bernstein showed (cf. [54, Chapter 2, Vol. III] or [73, Chapter 41) that Lagrange 

interpolation diverges everywhere for the function 1x1 on [-1,1] except x = O when the 

system of nodes is taken as  the "badn equidistant matrix E := (-1 + 2(k - l)/(n - 1));=,. 
Moreover, Grùnwald [28] [29] and Marcinkiewicz [46] showed that even if the system of 

nodes is taken as the "goodn nodes: the zeros of the Chebyshev polynornial of the first kind, 

there exists some function f3 E Ci-1, 11 such that 

- 
I . imn-+oo lLn( f3 ,~ )1=~  ~ o T u Z ~ X E [ - 1 , 1 ] .  

A stronger result was obtained by ErdSs and Vértesi [20] in 1980. That is, 

Erdos and Vértesi Theorem For any nodes system, there &st f4 E CL-1, 1] such that 

- 
L ~ R I ~ + ~ ~ L ~ ( ~ ~ , x ) ~ = c x  a.e.in[-l,l].  (4.1.6) 

Moreouer, the divergence set is  of second category in [-1,1]. 

4.2 Lagrange-type Interpolation in pn-~ (al, . . . , a,) 

Let f be a function defined on [-1,1]. We construct the Lagrange interpolation based on 

the zeros ( x ~ ) ~ = ~  of Chebyshev polynomial of the fkst kind T,(x) with the rational system 

P, (al, . . . , G) as follows: 

where T,(z) is d e h e d  by (1.2.8) and {lk(x))&l are the Lagrange fundamental fun~tions: 
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It is easy to check that 

L n ( f , x k ) = f ( x k ) ,  k = l , - - - , n ,  

Lemma 4.2-1 Let f be defined on [-1, l] and {ar):=, c @\[-i,l]. Then 

Proof. Since we may suppose that 

where Q,(x) := %(z - xi) - - (x - x,), h ( x )  := (x - ai) . - -  ( x  - h), and e, depends on 

both n and ak. Then we have 

where 

Therefore, it is easy to sw that L,(f) E Pn-1 ( a l , .  . . , an). O 

4.2.1 Lebesgue Constant and Uniform Approximation 

It is weU-known that the Lebesgue constant of classical polynomial interpolation plays an 

important role in uniform polynomial approximations (cf. [54] [69] [73]). For given n E N, 
we also define the associated Lebesgue function: 

and the Lebesgue constant: 

Ln := I ILn(~) l l~- l , i~> 

where Zk(x) is dehed by (4.2.8). Clearly, Ln depends on ( a k ) b l  - 

Theorem 4.2.2 Let ( u ~ ) ; = ~  C IR\[-1, l] be distinct and satisfy Assumption (A) .  Then 

Therefore, with respect to the uniforrn approximation, we have 
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Coroliary 4.2.3 Let f E CL-1, 1] and {ak)F=l C Et\[-1, 1] be distinct and satisfy Assump- 

tion (A). Then 

where E:( f )  is defined by (1.5.33). Furthemore, if f (x) satisfies the Dini-Lipschitz condi- 

tion, then 

Ln(f = f (x) n300 

uni fomly  on [-1,1]. 

In order to prove the above results, we first prove several auxiliary resdts which will be 

used later. 

Lernma 4.2.4 Let f E C[-l,1], {u~):!~ C IR\[-1,1] be distinct and {ck)g1 be defined by 

(1.2.3)- Then 

where En(f) is defined by (1.5.32) . 

Proof. Let p,(z) := r,xn + - . . + y0 (7, # O) be the best polynornial approximation of degree 

n to f (x) on [-1,1], that is 

Ibn - f ll[-i,i] = En(f ) -  

Using [l, Problem 7, p. 2541, we know that there exist f i  (k = 1, ..., n) such that 

IL 
Pk 

n 

l l f ( ~ )  - k=l -11 5 Hf - ~ n l [ - i , i l  + P ~ ( x >  - x 
1-1,11 II k = ~ x - a k  Alli-l,li 

Moreover, by the Chebyshev inequaliw (6 [54, Corollary 2, Vol. 1, p. 561) we have 
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By the classical Jackson Theorem (cf- [54, Vol. 11) and Lemma 4.2.4 we can prove the 

following coroLlary in the usual way. 

Lemma 4.2.6 gives aa expLicit formula for the Lagrange fundamental interpolatory h c -  

tions. 

Lemma 4.2.6 Let {ak);=, C @\[-1,1]. Then, for k = 1,2,. . . ,n, 

where E = 1 o r  -1. 

Proof. By Theorem A(d) and (4.2.8) we can deduce Lemma 4.2.6. O . 

Lemma 4.2.7 Let { b ( x ) ) h ,  be defined by (4.2.8). If { a k ) L 1  C q[-1,1] satisfy Assump- 

tion (A) ,  then we have 

Proof. We need to prove this only for m = 2. Since T, can be expressed as (4.2.9), then 

we have 
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and 

Under the given assumption, it is easy to see that 

1 1 1 <- 
(X - ak) 2 ' ( / a h ~  - 1)2 - a2 - 1- 

Fkom (3.8 -44) we conclude t hat 

and on combining Theorem A(b), (3.8.44), (3.8.45), Lemma 3.4.2 and Theorem 3.3.1 we 

have 

T: (x) (1 - x2)  I 
.-. < d3 (4 - 

(Z - ~ k ) ~  - 
k=l 

7-LZ 

Similady, we can prove that 

Tn (4 
n2 

Furthermore, &om Lemma 3.4.2 and Lemma 4.2.6 we conclude that 

Therefore, on combining (4.2.19) (0.220) and by some simple calculations, we have 

and this lemma follows. 

We let { u ~ ) ; = ~  be a Markov system on [a, b] and iet 
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where E, (f) is the best approximation o f  f kom span{ w j ,  ui, -.-, %). Then we have 

Lemma 4.2.8 (cf .  [34]) Let { u ~ } ~ = ~  be a Murkov systern on [a, b]. Then 

Mn:= max I s ~ - x ~ + ~ ~  5 3 2 E ( f ) :  
I<_ksn+L 

(4.2.22) 

where {zk)gzl are the zeros of the corresponding Chebysheu polynomial T,(z) with respect 

to span(uo, Ur ,  ..., u,), xo = a, xn+1 = b. 

Lemma 4.2.9 gives the estimate of the distance between two consecutive zeros of Cheby- 

shev polynomials of the first khd with respect to the rational system Pn(a l , .  . . , h). This 

will be used in the proof of Theorem 4.2.2. 

Lemma 4.2.9 ( i )  Assume { a k ) h l  c IR\[-1, i] are distinct and {ck)L1 a 4  defined by 

( 1 2 . 3 )  If nt, ick( = O ( l / n ) ,  then the largest distance between two consecutive rems of 

Chebysheu polynomial of the first kind satisjïes 

where xo := 1,  x,+i := - 1 .  Moreover, if ( a k ) h i  satisfi Assumption (A) ,  then 

1 
Ixk - za+ll 2 '& (a) (4-2.24) 

(ii) Let x k  = COS&, and {a&, C R\[-1, l] be distinct and satisfy assurnption (A) .  Then 

1 

Proof. By Corollary 4.2.4 we know that if f E CI[ - l ,  l ] ,  then 

so,  it is easy to obtain (4.2.23) by Lemma 4.2.8. 

On the other hand, since 

by Theorem 3.5.1, Lemma 3.4.2 and (4.2.161, (4.2.24) follows. 



Now we let fk(e) := lo(cos O ) ,  k = 1, ..., n. Note that (cf. the proof of Theorem 4.2.2) 

assumption (A)  implies that nh, Ick 1 = O(l/n). Thus, by (4.2.23) and the Bernstein-Szeg6- 

type inequality (3.2.1), it is easy to show (4.2.25) by the same method as the estimates in 

(4.2.23) and (4.2.24). O 

Proof of Theorern 4.2.2. First we claim that Assumption (A) implies that nbl lck1 = 

O( l /n ) .  By the inequality 

Hence Assumption (A)  irnplies that 

Let s = cosB,zk = cosBk and xj = cosBj be the nearest point to x and let i = (k - jl. 

Then by (4.2.25) we have 

0 + ek 
sin ek 5 2 sin -, k = 1, ..., n, 

2 

and 

so, by Lemma 3.4.2 one can show that 
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Hence 

On the other band, by Lemma 3.4.2 we have 

- 1  1 - 7 1  
L n  2 Ln(1) 2 -- -- --- ek C cot 2. 

l+7nk=l 1 + 7 n k l  

Note that 
2 

b"co"t - :) C h  = ln-, 7r 

and (4.2.26) implies Ok - 8, k = 1,. . . , n. We now conclude that 

and 

But 

and hence, we c m  prove that 

Ln 2 dl0 (a) n- 

Thus, Theorem 4.2.2 fouows. O 

Lemma 4.2.10 Let the nonreal elernents in {u~);=~ C Ci[-1,1] 6e paired by complez 

wnjugation.  Then 

for p E Pn-l (aI, . . . , n). 

Proof. The proof is similar to that of Lemma 5.2.2, and we omit it. O 

Proof of CoroZZary 4.2.3. Let p(x)  be the best approximation for f fiom Pn-l (al, -. - , n) on 
[-1,1], then 



hence, it is easy to obtain (4.2.12) in the mual way. 

Since Assumption (A) implies that ng=, lckl = O(i/n), Corollary 4.2.5 implies that 

lim,,,L,(f,x) = f ( x )  uniformlyon [-1,1]. O 

Theorem 4.2.2 has indicated that the Lagrange-type interpoIation does not converge uni- 

formly for any continuous h c t i o n  on [-1,1]. However, in this section, we show that its 

LP-convergence always holds under the Assumption (A)- More precisely, we have 

Theorem 4.2.11 Let { a k } f  c q[-1,1] satisfy Assumption (A).  Shen for any O < p < 
m, we have 

for f E C[-1, 11. 

Therefore, with Theorem 2.2.1, we have 

Corollary 4.2.12 Let the nonreal elements in {as)& c q[-l, 11 be paired b y  complez 

conjugation, and let {ar)k,i c @\[-l,l] satisfy Assurnptzon (A). Then 

for f E C[-1,1]. 

Remark. When aU an. -t co (k = 1,2 . . . ), Theorem 4.2.1 1 degenerates the case of classical 

polynomial interpolation, whieh was considered by ErdGs and Feldheim [19]. 

First we need to prove a Lemma which generalizes a classical result of Erd6s and Feldheim 

(cf. 1691). 
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Lemma 4.2.13 Let the nonred elements in c @\[-l,l] be paired by cornplex 

conjugation, and let pl , .  . . , pk be distinct integers Letween 1 and n. Then, for an euen 

number k ,  we have 

Proof. Note that 

where 

Hence, it follows fiom Leauna 4.2.6 that 

k k ( - l ) p j + L , / q  
= C A p i  II lpi (x) T:-~ (z) . 

i=L j=lj+i Bn(xPj 

Therefore, to prove Lemma 4-2-13, it is sufficient to prove that 

First we show that 

if ak E W with the multipliciQ r in {ak)z=i. Using the transformation x = ( z  + 2-')/2, we 

have 

where Cf is the upper half circle. 



Note that k - 1 is an odd number, so applying the transformation w = l/z to convert 
-(k-1) the ter- f,-'(z) , . . . , f, (z) to the lower half circle C-, we conclude that 

is analytic in the unit disk for p = 1,. . . , r and j = 0,. . . , [$] - 1, and (4.2.33) immediately 

follows. 

For the case of %ai # O with multiplicity q in {u~):=~, and +y = 1, -. - , q, by the same 

fashion, we conclude that 

since the integrand is analytic in the unit disk. 

Note that l j  (x) E Pn-l (al, . . . , R) , by the partial fiaction decomposition combined with 

(4.2.33) and (4.2.34), (4.2-32) follows. This finishes the proof of Lemma 4.2.13. O 

Proof of Theurem 4.2.11. With Lemma 4.2.7 and Lemma 4.2.13, we can prove this in the 

same fashion as in [19] or [53]. Obviously, for any given O < p < CO, there exists r E N such 

that 2(r - 1) 5 p 5 2r. Then, by the Holder inequality we have 
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We suppose that pn E Fnel(al ,  .. . ,a,) is the best approximation to f (x) on [-1,1]. By 

Lemma 4-2-10 we have Ln(pn,  x) = p,, and the b1IIikowski's~ inequality yields 

Hence, we need only to prove 

Recall t hat 

where C denotes multiple sum and O 5 ri 5 2r, i = 1, ... , S .  Note that the £hst term 

(single sum) in (4.2.36) is 
n 1 

-1 d- l ? ( ~ )  dx. 
k=L 

Lemma 4.2.7 yields 

Also, the second term (double sum) in (4.2.36) is 

For m = 1, we have 

Using the Cauchy's inequality and recalling Lemma 4.2 -13, we conclude t hat 
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Combining (4.2.38) - (4.2.40) we conclude that 

L,,q 5 44 (E,R(~))~~* 

In the same fashion, we can prove that  

In,(,> < c(r)(~nR(f ))*'-> 2 5 m 1 2r - 1- 

F'rom (4.2.41) and (4.2.42) we conclude that 

In2 5 c ( m Z ( f )  - 

Similady, we can prove that 

In; 5 C(T]E$(~)~  3 < i s 2 r - l ,  

where In, is the i-th t e m  (i-fold mm). For the 2r-th term in In, by Lemma 4.2.13 we 

have 

On combining (4.2.37) and (4.2.43) - (4-2-45), (4.2.35) follows. This cornpletes the proof of 

Theorem 4.2.11. O 

Next we show that the L'-convergence also holds even if the Assumption (A) is dropped. 

That is 

Theorem 4.2.14 Let f E CL-l,l], and let the nonreal elements in { a k ) h i  c @\[-l7 11 be 

paired by wmplex conjugafion. Then 
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We now let 

Next we prove that (&)Li are positive. This extends a classicd resuit for polynomid 

interpolation. That is, 

Lemma 4.2.15 Let the nonreal elernents in {ak)Zzl c @\[-1,1] be paired by complez 

conjugation. Then 

and 

Rernark. Note that Zk(x) E PnP,_i(al,. . . , an) (k = 1,. . . , n) implies that CF=, [C(X) $ 1, 

which &Eers hom the classical Lagrange polynomial interpolation. Hence, we cannot use 

the standard method to prove (4.2.50) (cf. [54, Vol. IIq). Moreover, (4.2.50) implies that 

Proof. By  (4.2.32), we conclude that 

where H,( f ,x )  is the so called Hermite-type interpolation defhed by (5.2.6). Fkom (52.6)- 

(4.2.8) and (4.2.51) we obtain 

and then (4.2.49) follows. 
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Recall that Lemma 2.2.2 or Theorem D implies that Tn(x) - A0 E Pn-,-i(ai,. . . , %). On 

applying Lemma 42-10 we have 

It is easy to show that (cf. [8, Corollary 4.6 (4.13)]), 

and on combining (4.2.53) and (4.2.54), (4.2.50) follows. O 

Proof of Theorem 4.2.14. Let P(x) be the best approximation of f (x) in Pn-1 (ai, - - - , an)- 
Then, by (4.2.29) and Lemma 4.2.16 we have 

so, (4.2.46) folIows. 

Moreover, C&(l- lckl) = ca implies that (P,-l(al,. . . , a,)} is dense in C[-1, l] (cf. 

Theorem 2.2.1). Hence we obtain (4.2.47). O 

4.3 Quadrature Formula 

By using Lagrange-type interpolation (4.2.7) we obtain a quadrature formula: 

where Ah (k = 1,. . . , n) are defined by (4.2.48). We denote its error by 
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With respect to this quadrature formula, based on the above resdts about meên convergence 

of Lagrange-type interpolation, it is easy to show that 

Theorem 4.3.1 Let f E C[-l,1], and let the nonreal elernents in { a k ) k l  C @\[-1,1] be 

paired b y complex conjugation. Then 

(a) Q n ( f )  is a positive quadrature fornula, that is X k  > O, k = 1, ..., n. 

(b) For any f ER2n-l(al,... >%), (4.3.59) is ezact. 

( 4  

G3f = 0(W,R(f 1- (4.3.57) 

The quadrature formulas based on the rational interpolation were recently considered 

by Van Assche and Vanherwegen [78] and Gautschi [25]. Gautschi (cf. [25], [26]) has 
successfully used this idea for the computation of generalized Fermi-Dirac and Bose-Einstein 

integrals (&O cf.  [61] [71]). 

Theorem 4.3.2 characterizes the convergence of quadrature formula (4.3.55). 

Theorem 4.3.2 Let the nonreal elements in {ak)r=o=l c @\[-1,1] be paired by complex 

conjugation. Then 

By Theorem 2.2.1, we may prove the sufficient condition. On the other hand, since 

for every continuous function, by S teklov's Theorem (cf .  [54, Theurem 4, Vol. III, p. 1241) 

we know that the system of interpolating nodes is dense on [-1,1], that is Mn -t O, (n + m) , 
where Mn is defined by (4.2.22). Thus, using Borwein's Theorem (cf. [4, Theorem 11) we 

have ~ c ( f )  _t O, (n + 00). Therefore, we complete the proof of the necessary condition by 

using Theorem 2.2.1 again. 

Remark. It's well-known that all of the weight coeficients {Xk)csl are equal in the classical 

case based on the zeros of the classid Chebyshev polynonial of the fùst kind. That is, 
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X k  = rr/n (k = 1,. . . , n). But, in general, the weight coefficients Xi in (4.2.48) are not 

equal. Here we give an example to austrate this. 

Example. Let n = 2, ai = 10 and a2 = 11, then we denote the corresponding Chebyshev 

polynomid of the first kind by Tz(x). By some simple calculations, we can show that 

and 

4.4 Remarks and Problems 

1. For the case of {ak}z=,  C IR\[-1, l] distinct, as we have mentioned before, Ik(x) E 

1) ,plies span {& 9 - -  - 7  =-a,, 

where { l k ( x ) )  are d e h e d  by (4.2.8). 

Therefore, in order to keep the property Cg=1I lk ( x )  = 1 we m u t  construct Lagrange 

interpolation in another rational system Pn-l(al ,  . . . , a,-,), that is 

1 1 
1, -, - Y " '  1 x - a l  2 - 0 2  x - an-1 

It is easy to see that 

satisfies 

and 



where 

is the correspondhg Lagrange fundamental function with respect to the rational system 

pn-l(a19 - - - 1 an-1)- 

One can check that 

and 

1 
i= l , . - .  ,n-1, 

x - a ,  

and it follows that 

We can also prove the following approximation theorem with respect to d o r m  approxi- 

mation: 

Theorem 4.4.1 Let f E C[-1, l] and { a k ) ~ = l  C R\[-1,1] satisfy assumption (A). Then 

I M f  1 - f ILJ] 5 dl&) hng?-df ) *  (4.4.66) 

Furthemore, i f  f (x) satisfies the Dini-Lipschitz condition, then 

The proof is the same as that of Theorem 4.2.2, and we omit it here. 

2. On the other hand, by some simple cdculations we may get 

- - T: (x) dz. 
Bn(xk)Bn(xj)(xk -ak)(zj -aj) 
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Hence we conclude that 

Therefore, in order to keep the property Cjt=, tk(x) =- 1, the beautiful orthogonality (4.2.31) 

is destroyed. 

We may also get a similar theorem with respect to mean convergence. We omit the 

details here. 

3. When { a k ) g l  c R\[-1,1] satisfy Assumption (A) ,  we have shown that the correspond- 

h g  Lebesgue constant for the rational system is asymptotically of order ln n. This is the 

same as the case of classical polynomial interpolation based on the zeros of the classical 

Chebyshev polynomial of the fhst kind (cf. [54, Theoiem 2, Vol. III, p. 481, [69] or 1731). 

But, whether (4.2.11) implies Assumption (A) is still open. 

4. We also construct a Lobatto-type quadrature formula for the rational space 

with the nonreal elements in ( a k ) h i  C @\[-1, l] paired by complex conjugation. This 

Lobatto-type quadrature formula is based on the extreme points of the Chebyshev polyno- 

mial of the £kt kind with the rational space P, (ai, . . . , a,). Moreover, it is exact for any 

element in R Î ~ - ~  (ai, . . . , G). For more details, see [50]. 



Chapter 5 

Hermit e-type Interpolation in 

Rat ional S yst ems 

Overview 

This chap ter considers Hermite-type interpolation in rational system- The correspond- 

ing uniform approximation t heorem of Hermite-Fejér-type interpolation is es tablished. The 

characterization theorem of corresponding Grünwald-type interpolation is also given. Fur- 

thermore, we prove that LP-convergence of Griinwald-type interpolation always holds for 

every continuous function on [-1,1]. 

5.1 Introduction 

It is known that the Lagrange interpolation can 

a continuous function on [-1,1]. On the other 

not be guaranteed to converge unifordy to 

hand, Fejér [22] discovered, on considering 

a special nodes system and interpolatory process, that we can get positive results. This 

interpolatory process now called Hermite-Fejér interpolation is as follows (where y i  = 0) : 

where 
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and 

( x )  ( x - x k ) ( x )  k = l  ,... ,n. 

Fejér [22] gave a constructive proof of Weierstras' Theorem using the above interpolation. 

More precisely, we have 

Fejér Theorem Let f E C[-l,l], {xk}E=, be the rems of the classicul n-th Chebyshev 

polynomial of the first kind and y i  = O (k = 1,. . . , n) in (5.1.1). Then 

Fejér's result was extended by G. Szeg6 [75]. For a systematic investigation of interpolation 

for the classical case, readers may consult [73] [74] [75] [55] and [57]. In this chapter, we will 

consider Hermite(-Fejér) interpolation in the rational space R2,-i(ai,.. . , an): 

When the nonrea! elements in {ak)k=i are paired by complex conjugation, R2,-1 (al, a2, - . . , a,-,) 
is a real rational space. In particular, when {ar}:=, are real and distinct, R2,-i(ai, al,. . . , an) 
is simply the real span of 

5.2 Hermite-type Interpolation In Rz,-l(al, . . . , a,) 

Let f be a h c t i o n  dehed on [-1,1] and {&);=l E W We know (cf. [8, Corollary 4.91 or 

[62, Theorem 1-11) that the Chebyshev polynomial of the first kind T,(z) for the rational 
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system %(ai,. . . ,an) has exactly n distinct zeros on (-1, l]: -1 < xn < - - - < xi < 1- We 

construct the Hermite interpolation based on the zeros { x ~ ) ~ ~  of Tn(x) as follows. 

where 

and 

where I r  (x) (k = 1, . . . , n) are defined by (4.2.8). 

One can verify that 

Hn(f>xk) = f (xk), k = 1, - Y ~ Y  

and 

H;(f,xk) = yk, k = 1 ,  ... ,n. 

Lemma 5.2.1 Let the nonreal elements in {at)F=l C q[-1 ,  11 be paired by cornplez con- 

jugation. Then 

Proof. Since ( l k ( x ) )  E P,,-l(ai,. . . ,an) (cf. Lemma 4.2.1) and Tn E Pn(ai , .  . . ,a,), then, 

(5.2.9) follows £rom (5.2.6)-(5.2.8). O 

Lemma 5.2.2 gives the h e d  elements of the generahed Hermite-type interpolation 

&(f 1 4 .  

Lemma 5.2.2 Let the nonreal elements in { C Z ~ ) ~ , ~  c @\[-1,1] be paired by cornplex wn- 

jugation. Then for any p E Rzn-r(~l , .  . . , an), we houe 

Proof. If Pp,(al,. . . , %) has a pole of order m at the point ai E W, then we first claim that 



Here we just prove this for r = m since the other cases can  be proved in the same fashion. 

By a simple calcdation we conclude that 

Then by (5.2.6)-(5.2.8) we have 

We now denote 

then 

Therefore, by the classical Hermite interpolation we have 

which is nothing but (5.2.11). 

SimilarIy7 we can prove 

1 1 
Hn ((x - a i l P r  ,x) E (x - 4%' r = ly-..  ,m, (5.2.12) 

and, If Pn(a1,. . . ,%) has a pole of order 1 in the point a j  and Daj # 0, then, we also have 
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and 

Therefore, on combining (5.2.1 1) - (5.2.16) and using the partial Eraction decomposition we 

have completed the proof of Lemma 5.2.2. O 

We now state our main result. Theorem 5.2.3 asserts that Hermite-Fejér-type interpo- 

lation converges d o r d y  to the continuous function on [-1,1] under the hsumption (A). 

Theorem 5.2.3 Let f E C[-1,1], y i  = O ( k  = 1, .. . ,n), and let {ak)Yel C @\[-1,1] 

satisfy the Assumption (A). Then 

The proof is based on several lemmas given below. Lemma 5.2.4 shows that the cor- 

responding Chebyshev polynomials for Pn (ai, al, . . . , an) still satisfy a certain dinerential 

equation. 

Lernrna 5.2.4 Let {ak);=, c @\[-1,1], and let T, and Un be the Chebyshev polynomials 

of the first and second kinds for Pn (al, aa, . . . , an), respectiuely. Then 

Pmof. Let f, ( t )  := T,(COS t )  and &(t) := U, (cos t )  sin t. We then have (cf. [8, Theorern 

2-11) 

t = - O n t  0; (t) = &(t)T,(t), t é R 

where B, (t) := Bn (cos t) . Hence, 

So, by (5.2.19) it is easy to check (5.2.18). O 



Remark. When ak -+ m, then we have Bn (x) = n for x E [-Il 11, consequently, Bn (x) O 

on [-1,1]. Then (5-2.18) degenerates to the case of the classical Chebyshev polynomial of 

the first kind. 

Lemma 5.2.5 gives an expLicit formula for the Hermite hindamental interpolatory func- 

t ions. 

Lemma 5.2.5 Let {ak)g=i c @\[-l, l]. Then, for k = 1'2, . . . , n, 

and 

Proof. From (5.2.18) and (5.2.19) we have 

Also, by L'Hospital d e  we can show that 

Therefore (5.2.20) follows, and (5.2.21) follows immediately fiom Lemma 4.2.6. 

Lemma 5.2.6 Let {ak}L, c q[-1,1] satisfy the Assumption (A ) .  Then 

5 IX -Xkllhk(z)[ = 
k=l fi' 
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and 

Proof. We prove only (5.2.23) because the others may be proved in exactly the same way. 

By (4.2.9) we have 

and 

Assump t ion (A) implies t ha t 

Note that a Schur-type inequality (cf. Theorem 3.3.1) 

holds for P E P,-(al,. . . ,an), we then deduce 

Thus by a slightly longer calculation, and combining Lemma 3.4.2 and Lemma 5.2.4 as well 

as the above resuits, we have 

n 

= C(1 - x 2  +x(x - xt)) 
k=t 
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On recalling Lemma 3.4.2 and using the Cauchy's inequality we have 

Now (5.2.23) follows fiom (5.2.29) and (5.2.30). 

Lemma 5.2.7 Let {ak}p==, c @\[-1,1] satisfy the Assumption (A). Then 

and 

Remark. By Lemma 5.2.1 we can see that C;=, hk (x) $1, Thus we m o t  prove (5.2.31) 

in the usual way (cf. [69]). 

Pmof. By the partial fkaction decomposition we know that there exist some constant A. 

and some qn E Pn-1 (ai, . . . , a,) S U C ~  that 

Cledy ,  A0 = limz+, T, (x) . B y the defhition of Tn and a simple calculation we have (cf. 

[6, Theorem 3 - 5 4  

&=- 
2 
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Moreover, note that llT'llr-l,ll = 1 (cf- [8, Theorem 1-21), so, if we take pn := qn/Ao, we 

have 

By the Bernstein-type inequality (3.2.2), Lemma 3.4.2 and (5.2.33) one can conclude that 

for n 2 N(cy). 

From Lemma 5.2.2 we can conclude that H&) pn. Thus, by (5.2.23), (5.2.27) and 
(5.2.34), we can show that 

(5.2.31) implies that Lm,,, Si(x) = O uniformly on [-1, 11. By Lemma 5.2.4 we can show 

t hat 

We may see that S2 (2) + O uniformly on [-1, 11 as n -f m by u s h g  similar techniques to 

those of Lemma 5.2.6. Therefore, we have completed the proof of Lemma 5.2.7. O 

Proof of Theorem 5.2.3. We can now prove this in the usud way. One can easily show that 
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Note that 

where w (f, .) is the modulus of continuity of f. 

Hence, fiom (5.2.23) we have 

Taking b = in the above inequality and using (5.2.25) we can conclude that 

u n i f o d y  on [-1,1]. Also, from (5.2.33) we conclude that 

uniformly on [-1,1]. Therefore we complete the pmof of Theorem 5.2.3. O 

Remark. Actudy, we have also derived estimates of approximation for f (x) by &(f, x) 

on [-Il 11- 

5.3 Characterization on Grünwald Interpolation 

If we drop the h e a r  term 1 - 2!k(xk)(x - xk) in hk(x), k = l,.. . ,n (cf. (5.2.7)), then we 

obtain a n  simple positive operator: 

which was f i s t  studied by GrÜnwaId for the classical po1ynomial case in 1940 (cf. [25]), 

hence, we here call it the generaüzed Griinwdd interpolation. The studies of Griinwald 

interpolation and its applications can be found (421 [43] [49] [51] [64] and the references 

therein. It is ako a close cousin of Nevai's G, and F, operators (cf. [57, (4.5.6), (4.10.35)] 

[551[481). 
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Theorem 5.3.1 Let f E C[-1, l] and { U ~ ) S = ~  c @\[-1,1] satisfy Assumption (A). Then 

uniformly on the closed subset [-o,o], where O < o < 1. 

Theorem 5 -3 -2 characterizes the uniform approximation of Grünwald-type interpolation 

on the whole i n t e 4  [-1,1]. 

Theorem 5.3.2 Let f E C[-1, l] and {ar)& C C\[-1,1] satisfy Assumption (A). Then  

(5.3.29) holds un i f omly  on whoZe interval [-1,1] i f  and only if 

Therefore, Grünwald-type interpolation, in general, c m  not uniformly converge t O all 

continuouç functions on the whole interval [-1,1]. But by Theorem 5.3.2, one can easily 

show that mean convergence always holds for every continuous function on [-1,1]. That is, 

CoroUary 5.3.3 Let f E C[-1,1], {ak)r=l C @\[-1, l] satisfy Assumption (A). Then, for  

O < p < m ,  we have 

Lemma 5.3.4 gives a sdficient condition for the corresponding GNnwald interpolation 

to converge uniformly for the continuous function on [-1,1]. 

Lemma 5.3.4Let { u ~ ) ~ ~  C q[-1,1] satisfy assumption (A). Then, for f (x) = d m g ( x ) ,  
g E C[-l,1], we have 

IIWf - f Il[-l,l] = 0- 
n+Oo 

Proof. Note that 
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By (5.2.24) (5.2.26) and using the same method in the proof of Theorem 5.2.3 we may 

deduce that 

s, (x) = g (z) d C 2  C &x) dl -9. 
by (5.2.32) we can show that Ss (x) + O uniformly on [-1,1] as n + m. Therefore, Lemma 

Proof of Theorem 5.3.1. We ean prove this in exactly the same method as in the proof of 

Theorem 5.2.3, so we omit it. O 

Proof of Theorem 5.3.2. First we prove the only $part. By Hermite-Fejér interpolation and 

Lemma 4.2.6, as well as (5.2.20) (5.2.22), we can show that 

Note that (5.3.41) yields 
n 

and (5.2.3 1) implies 

n+m 

Combining Lemma 3.4.2 and (5.3.41) we have 
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and 

Hence, by a simple cdculation and [8, Theorem 2-31 we have 

also, note that Assumption (A) is equivalent to Assumption (C), we may conclude that 

Also, Lemma 3.4.2 asserts that 

Therefore, fiom (5.3.42) and the hypothesis of the uniform convergence we conclude that 

f (1) = O. Simiiarly, we can prove f (-1) = 0. 

Next we prove the if part. By using the Bernstein fundamental po'ynornials (cf. [40]) and 

a linear transformation, one can show that 

is dense in Cu [-1, l] := { f E C[- 1, 1] , f (-1) = f (1) = O). Therefore, we only need to check 
t hat 

"formly on [-1,1], where rt(x) := (1 + ~ ) ~ ( l -  x ) ~ - ~ ,  k = 1, ..., m - 1, m = 2, ...- Since 

rk(x) contains the factor d m ,  on applying Lemma 5.3.4, we complete the proof of the 

if part. 0 



Chapter 6 

Bernst ein-type Polynomials in 

Rat ional Systems 

Overview 

This chapter considers Bernstein-type poiynomials for rational systems 

{p(x) / nn.l (1 + t i x ) ,  p E P,) associated with ti > - 1, i = 1, . . . , n on the interval [O, 11. 

A Popoviciu-me theorem and asyrnptotic fonnula are established for these Bernstein-type 

polynornials. Some s hape preserving prop erties of these Bernstein-type polynomials are 

presented. As an application of these Bernstein-type polynomials, we also consider the ap- 

proximation problem in ( p ( x ) /  n:=l=, (1 + tiz), p E Pn} with p(x) having integral coefficients. 

6.1 Introduction 

The Weierstrass Approximation Theorem states that every continuous function f (x) on 

O 5 x < 1 can be unifonnly approximated there by polynomials. In 1912, Bernstein gave 

an explicit method of constructing the approximation as foliows: 

For a proof t hat B, (f, x )  converges uniformly to continuous function f ( x )  on [O, 11 as n + co, 
see, for example, Lorentz [40], DeVore and Lorentz [15, Chapters l and 101 or Ditzian and 
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To tik [16]. Moreover, the Bernstein polynomials have some important shape preserving 

properties that play an important role in Computer Aided Geometric Design (CAGD) (cf. 

Farin [21]). 

6.2 The Construction of Bernstein-type Polynomials 

In 1979, Videnskii [81] introduced a set of generaüzed Bernstein po1pomiaI.s for the rational 

system with prescribed poles 

where 2 0 (i = 1,. . . ,n). 

They are constmcted as follows. For given ti 2 O (i = 1, . . . , n) , let 

Since V;(X) > O on [O, 11, <p,(x) is strictly increasing. The nodes (T~}L., are uniquely 

determined by the equatios 

k vn(+Tk) =;, k = O , I ,  ... ,n. (6-2.4) 

Clearly, {T~):!~ are funetions of {ti)?=, and r o  = 0, T, = 1. Note that 1 + t ix  = (1 - x) + 
(1 + t i ) x ,  thus, 

Obviously, {ak);=o(> 0) are functions of {ti)r=l, too. Then, for a given function f (x) and 

n E Z, the Bernstein-type polynomial for the system (6.2.2) is defined as follows: 

where 
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One can easily see that (6.2.6) is aiways defined for ti > -1 (i = 1,. . . ,n), not only for 

the case ti 2 O (i = 1, . . . , n), the Iatter was treated by Videnskü 1811. &O, Bn (f, x) E 

%(tl,. . . , t,). We encounter a problem of terminology that our Bernstein "polynomial" 

here is a c t u d y  a rational fwrction with prescribed poles -l/ti, i = 1,. . . , n. For more 

information about the system (6.2.2) and related topics, see, for euample, [l] [6, Chapter 71 

[8] [9] 1171 1251 [78] and references therein. It should be mentioned when ail ti = 0, (6.2.6) 

degenerates t O classicd Bernstein 

By introducing the index 

and assumîng s, + ca, (n + ca), Vindeskii [81] proved that the operator (6.2.6) converges 

uniformly for continuous function on [O, 11. More precisely, Videnskii [81] obtained the 

follow ing 

Theorem K. Let f E C[O, 11, and ti 2 O (i = 1,. . . , n). Then 

where w( f, .) is the modulus of wntinuity of the function f o n  [O, 11. 

Therefore Videnskii [81] extended Popoviciu's estimate for classical Bernstein polynorni- 

als. He aJso established an asymptotic formula for these Bernstein polynomials under some 

condit ions, which extended Voronovskaya's formula for classical Bernstein polynomials (cf. 

Theorem 6.4.1). As early as 1960, Videnskii and Shabozov (cf. [81] and references therein) 

tried to generalize classical Bernstein polynomials for the system (6.2.2), but they needed 

more restricted conditions and they constructed Bernstein-type operators of a somewhat 

dinerent type fkom (6.2.6) (cf. [81] and references therein). 

Since Videnskii [81] restricted ti 2 O (i = 1, . . . , n) , he excluded the interesting case 

when the poles approach the end point 1. Moreover, we can easily see that the measure 

index (6.2.8) is not suitable in the case ti > -1 (i = 1,. . . , n). The restriction ti > -1 (i = 

1 .  , ) is necessary (otherwise, it is impossible for B,(f, x )  to uniformly approxhate 

continuous functions on [O, 11). 



In this paper, we shall study Bernstein-type polynomials (6.2.6) for the general case 

ti > -1 (i = 1, . . . , n). By introducing armther index 

which, indeed, is exactly (6.2.8) for the case of ti 2 O (i = 1, . . . , n) , we shall extend Viden- 

skii's results. Moreover, we sha,ll show t hat (6.2.6) still has some shape preserving properties. 

As an application of these Bernstein-type polynomials, we &O consider the approximation 

problem by {p(x)/ ny=l (1 + tir), p E Pn P,) with ~ ( x )  having integral coefficients. 

6.3 Uniform Approximation 

We first state our approximation t heorem by Bernstein- type polynomials (6.2.6), which 

extends Theorem A. 

Theorem 6.3.1. Let f E C[O, 11 and ti > -1 (i = 1,. . . ,n). Then 

Before we prove this, we make some observations. 

Note that the distance between two consecutive interpolation nodes is l/n for classical 

Bernstein polynomials, l/n is exactly the square of the measure index of order of uniform 

approximation by classical Bernstein polpomials (cf. Lorentz [40]). Hence, we fîrst estirnate 

the distance between two consecutive nodes in order to find the measure index concerning 

the order of approximation by Bernstein-type polynomials (6.2.6). By the definition (6.2.4), 

we have 

It immediately follows t hat 

But 
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and 

We thus have 

Fact 1: Ifti > -1 (i = 1,. . . ,a), then 

This is how we know to introduce the measure index s,. 

Due to Fact 1, we further revise a function Q,(z) given in Videnskii [81]: 

by a simple caiculation, we then have 

We introduce another function 

instead of vk (x) as in [8 11. 

Fact 3: If ti > -1 (i = 1,. . . , n), then 

Proof. By a slightly longer calculation, we can show that 

Fact 3 follows. 

We now let 
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Fact 4: If ti > -1 (i = 1,. . . ,n), then 

Proof. Since pk (x) = 1, it foilows, x;=o pi (x) = O. By a simple calculation we have 

and it follows that 

DiEerentiating (6.3.20), we then have 

By a slightly longer calculation, we can check that 

for ti >_ O and O < x 5 1, and 

for -1 < ti < O and O $ x 5 1. Therefore (6.3.18) follows. O 

Proof of Theorem 6.3.1. We can now prove this in a usual way based on these facts. Noting 

that pk(x) = 1 and applying Cauchy's inequaliw, we have, 

We denote that 
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By the definition of An (x), we c m  easily check that 

Using Facts 2-4, we then have 

-1/2 We thus complete the proof by taking 6 = sn . O 

6.4 Asymptotic Formula 

We now let 

and 

Next we shall estabiish a Voronvskaya-type theorem. Its special case, in which ti 2 
O (i = 1, . . . , n), was proved by Videnskii [81]. Moreover, when ti = O (i = 1, . . . , n), it is 

exactly Voronvskaya's formula (cf. [15] @O]). 

Theorem 6.4.1. Let f E C3[0, 11, ti 2 -1/2 (i = 1,. . . , n), and p,, Wn(x) be defined by 

(6.4.24) and (6.4.25), respectiuely. If 
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holds unifomly on [O, 11. 

Remark. Here ti 2 -1/2 (i = 1, . . . , n) is a technical assumption (cf. (6.4.33)), whether it 

can be dropped is still open. 

integration by parts twice yields 

where 

Recalling (6.3.20) and (6.3.21), we then have 

Therefore, we need only t o  show that 

hoids uniformly on [O, 11 under the condition of (6.4.26). 

%y some simple cdculations, we can show that 

and 

for ti > -l(i = l , .*. ,n). 

Moreover, if ti 2 -1/2 (i = 1,. . . , n), we then have 



Mhermore,  by some slightly longer calculations, we can check that 

2 Ill 
~ l d ( z ) l  52dt(x) ,  X <p&) <Id,(z), O<z11- (6-4.33) 

for ti 2 -1/2 (i = 1,. . . ,n). 
We now denote 

n 

Then we twice differentiate (6.3.2 1) to yield the foLlowing identity: 

Note that fact 1(1 - x)( l  - 2x)I 5 1 and 11 - 6x(l - x)l $ 1 for x cz [O, 11. Thus, if 
ti 2 -1/2 (i = 1 , .  . . ,n), by (6.4.31) and (6.4.33) we have 

By the monotonicity of Qk(z) ,  we can show that 

for t behveen x and Q. Recalling (6.4.31) - (6.4.33) and by a slightly longer calculation, we 

conclude that 

where Cf := max{llf 'll[0,i]9 Ilf "Il[o.i1, Ilf '"ll[0,i])- 

Hence, using (6.4.35) and (6.4.37), and applying Cauchy's inequality, we have 

Now (6.4.30) follows, and we have completed the proof. O 
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We denote 

and No E Z such that s, 2 1 for n 2 No, respectively. 

Using the same idea as in the est imate of D, (x) , we can obtain that 

for n > N o .  

Combining Theorem 6.3.1 and (6.4.39), and using the exactly same method of the proof 

as in Theorem 3 in (811, we can show the following approximation result of f '(x) by BL (f, x) . 

Corollary 6.4.2. Let f E c'[o, 11, ti 2 -1/2 (i = l, . . . , n) , and l e t  p, be defined by  

(2.14)- Then 

6.5 Shape Preserving Properties 

We now extend some basic shape preserving properties of classical Bernstein polynomials 

to the Bernstein-type polynomials (6.2.6). 

Let Z(o,il f and S(o,i) f denote the number of zeros and the number of sign changes of the 

function f (x) on [O, 11, respectively, and let Var f denote the total variation of the function 

f (x) on [O, 11. We then have 

Theorem 6.5.1.Let B, (f, x) be defined by  (6.2.6) and ti > -1 (i = 1, . . . ,1). Then 

(1) The polynornial B,( f, x) increoses o n  [O, 11 i f  f (x) is increasing o n  this interual. 

(2) One hm Z(o,l)Bn(f 5 S(O,I)~ 
(3) VarB,,(f) 5 Varf .  
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Proof. Note that 
II 

and ~ & o p ~ ( x )  = 0, and it follows that 

So, r o m  (6.3.19) we have 

We now suppose that x E [ ~ ~ ~ , r ~ ~ + ~ ] ~  where O 5 ko 5 n - 1. Since f ( x )  and rp,(x) are 

increasing on [O, 11, then f (rk) - f (x) 2 O and %(rk) - v n ( x )  > O for k 2 ko + 1. Similady, 

f (rk) - f ( x )  5 O and (P, (rk) - ( ~ ~ ( 5 )  < O for k 5 ko. Therefore we conclude that 

for k = 0 ,1 ,  ... ,n. Xt follows that x ( f , x )  2 O for O 5 x 5 1  and we have shown the 

conclusion (1) .  

Recall that ak > O ( k  = 0 ,1 ,  . . . , n) (cf. (6.2.5)) .  Thus, by a trivial modification of [15, 

p. 3091 and applying Descartes d e  (cf. Borwein and Erdélyi [6] or P6lya and Szego [62]), 

one can easily show (2). 

Since Bn( f ,  x) preserves constants and Z(o, l )Bn(f )  5 Spi) f, the conclusion (3)  now 

follows by a nice observation of DeVore and Lorentz (cf. [15, Remark, p. 3091). O 

6.6 An Application to Approximation by Rational Systems 

with Integer Coefficients 

Let Pn denote the set of all polynomials of degrees n with integral coefficients. We further 

let 



and 

As an application of the Bernstein-Spe polynomials (6.2.6), we treat an approximation 

problem by Pz(ti, . . . , t) for continuous funttions on [O, 11. 

In this section, we suppose ti 3 O (i = 1,. . . ,n). Clearly, f (O) has to be integer if f E 

C[O, 11 cm be uniformly approximated by Pg (tl , . . . , t,) . Using Bernstein-type polynomials 

(6.2.6), we can prove 

Theorem 6.6.1. Let f E C[O, 11, and let f (O) be an integer. If ti(i = 1, . . . , n) are integers 

and f (1) is a k o  intege~) then, when s, + oo (n + m), we have 

Proof We denote that 

where the symbol [] deno tes the greatest integer function. Therefore, [B, (f, x)] E PE (ti , . . . , t,) . 
Recalling the definition of {ak)z=o (cf- (6.2.5)), we have a0 = 1 and ai = ngl (L f ti) . Since 

f (O) and f (1) are integers, we then have fiom the given assumption 

and, by the usual method (cf. Ferguson [22]), one can easily prove this. O 

Corollary 6.6.2. Let f E C[a, b], where O < a < b < 1, and let ti 2 0 (i = 1, . . . , n). If 
s, + oo(n + m) . Then 

Remark. The assumption of f (1) being integer is not necessary if f E C[O, 11 can be 

uniformly approximat ed by Pz (t i, . . . , t,) . Indeed, we have 

Theorem 6.6.3. Let f E C[O, 11, and let f (O) Be integer. then, when s, -+ ca,-y, + m 

(n -t oo), we have 
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where 

Proof. In this case, we have 

Since is kreasing hinction on [O, 11, we have 

Note that 

so the conclusion folIows. 0 

For the case ti = O (i = 1, . . . , n), Theorem 6.6.1 states that a continuous function f (x) 

is uniformly approximated by classical polynomials with integral coefficients on [O, 11 if f (O) 

and f (1) are integers. This was treated by Kantorovic (cf. Ferguson [22] or Lorentz (401)- 

6.7 Problems 

1. It's well known that classical Bernstein polynomials preserve convexity. This means, it 

is convex if f (x) is convex. But, whether Bernstein-Spe polynomials (6.2.6) preserve th% 

property or not is stili open. 

2. The question of how to establish the necessary and suf£icient condition for the uniform 

approximation in Pg (tl, . . . , t,,) is certainly worth studying. 
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