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Abstract

In recent years the following rational system

P(z)

_P@ ey,
Hk:l‘x_ak‘ ™

Pm(al1021"' :an) = {

has been efficiently used in numerical analysis, where {ax}}_, C C\[-1,1]. This thesis
considers constructive approximation problems in the rational system above with prescribed
poles {ax}?_; € C\[-1,1]. Our constructive tools are interpolation, including Lagrange-
type interpolation and Hermite-type interpolation, and the Bernstein-type ‘polynomials’.
We also consider the Bernstein-Markov inequality with respect to this rational system, which

plays an important role in Lagrange-type interpolation and Hermite-type interpolation.

Chapter 1 introduces rational systems and related Chebyshev polynomials as well as

some notations.

Chapter 2 characterizes the denseness of rational systems {Pn_1(a1,... ,an)} in C[-1,1].
This extends a well-known result of Achiezer.

Chapter 3 is related to inequalities in rational systems. We first give a sharp (to con-
stant) Markov-type inequality for real rational functions in P,(a;,as,... ,an). The corre-
sponding Markov-type inequality for high derivatives is established, as well as Nikolskii-type
inequalities. A sharp Schur-type inequality is also proved, which plays a key role in the
proofs of Markov-type inequalities. Finally, we consider inequalities for rational functions
in Pp(a1,as, ... ,a,) with constrained conditions such as with curved majorants as well as
with restricted real zeros for rational functions in P,(a1,a2,... ,a,) , which generalize some

well-known results for classical polynomials.

Chapter 4 considers Lagrange-type interpolation in rational systems. The Lagrange-type
interpolation is based on the zeros of the Chebyshev polynomial for the rational system



Pn(ay, ... ,a,) with distinct real poles {ax};_; < R\{—1,1]. The corresponding Lebsegue
constant is estimated, and is shown to be asymptotically of order Inn when the poles stay
outside an interval which contains [—1,1] in its interior. Moreover, We conclude that the
corresponding LP-convergence (0 < p < oo) always holds for the continuous functions on
[—1,1] when the poles stay outside a circle which contains the unit circle in its interior.
This extends the Erdés-Feldheim theorem for classical polynomial interpolation. As an
application of the corresponding Lagrange-type interpolation, we also obtain a positive

Gaussian-type quadrature formula.

Chapter 5 considers Hermite-type interpolation in rational systems with nonreal elements
in {ax}i_, C C\[-1,1] paired by complex conjugation. The Hermite-type interpolation is
based on the zeros of the Chebyshev polynomial for the rational system Pp(a1,... ,a,). This
extends some well-known results of Fejér and Grinwald for the classical polynomial case.
More precisely, we prove that the corresponding Hermite-Fejér-type interpolation converges
uniformly to the continuous function on [—1,1] under the some conditions. Moreover, we

characterize the uniform convergence of corresponding Griinwald-type interpolation.

In Chapter 6, we consider Bernstein-type ‘polynomials’ for the rational space
{p(z)/ [T, (1 + tiz), p € Pn} associated with ¢; > —1,7 = 1,... ,n on the interval [0, 1].
Popoviciu-type theorem and asymptotic formula are established for these Bernstein-type
polynomials. Some shape preserving properties of these Bernstein-type polynomials are
presented. As an application of these Bernstein-type polynomials, we also consider the ap-
proximation problem in {p(z)/ [Ti=1(1 + tiz), p € P} with p(z) having integral coefficients.

iv
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Chapter 1

Introduction

1.1 Chebyshev System

A Chebyshev system {ur}Z_g on an interval [a,b] is a set of n + 1 continuous functions on
[a,b] such that any element of Hj, := span{wug,u,...,us} that has n + 1 distinct zeros in

[a, b] is identically zero. The following simple equivalences hold:

Proposition 1.1.1 (Equivalences) Let {ux}f_, on an interval [a,b] be a set of n +1

continuous functions on [a,b]. Then the following are equivalent:

(a) Every 0 # p € span{ ug, u1, ..., Un} has at most n distinct zeros in [a, b].

(b) If zo,... ,zn are distinct points of [a,b] and yq,-.. ,yn are real numbers, then there
erists a unigue p € span{ ug, u1,... ,Un} such that

p(zi) =v, 1=0,1,...,n.

(c) If zo,... ,za are distinct points of [a,b], then D(zy,... ,zn) # 0, where

UO(.‘L'Q) cen un(zo)
D(zo,...,Zn) = uo(-xl) e Un(.m)
uo(xn) . un(xn)

We say that {ug,u1, .., un } is a Markov system on [a, b] if each u; € Cla, b] and {ug, u1, ..., Um}
is a Chebyshev system for each m =0,1,... ,n.
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For a given Chebyshev system {ug}Z_y, We can define the generalized Chebyshev poly-
nomial as (cf. (1] [6] [12] [15] (32] [40] [69])

n
Th = Z opUE
k=0

for H, on [a, b] by equi-oscillation properties. More precisely, there exists an alternation set

oflengthn+1:a<zg <7 <--- <zp <bfor T, on [a,b], that is
Tn(xk) = (—l)k”Tn”[a,b] = (—l)ka k= 0! 1’ ey 1L,

In the above formula and throughout this paper, ||.[l4 denotes the supremum norm on
ACR

Many extremal problems are solved by the Chebyshev polynomials (cf. [6], [69]) and
the denseness of the Markov space is also intimately tied to the location of the zeros of
the associated Chebyshev polynomials (cf. [4, Theorem 1]). Chebyshev polynomials are
ubiquitous and have many applications, ranging from analysis, statistics, numerical meth-
ods, to number theory (cf. [6], {23], [32] and [69]). In this chapter, we introduce rational
systems with prescribed poles and related Chebyshev polynomials, which will be often used
throughout chapter 2 to chapter 3.

1.2 Rational Systems and Related Chebyshev Polynemials

We let
_ P(z)
Pr(ar,. .. ,an) = {——mzl e Pe ’Pm} (1.2.1)
and
,_ P(t)
Talar, ... an) = {H}:=1 o=y P€ Tm} , (1.2.2)

where {ar}f_; < C\[-1,1] is a fixed set of poles such that [[g_;(z — ax) € Pn. In other
words, the nonreal poles form complex conjugate pairs. We define the numbers {cx}i—; by

Gk +c;1

A 1= 2 3 lckl < 1’
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that is,

Cr = Qg — \/a% -1, Ickl < 1. (1.2.3)
Note that (ak + /a2 —1) (alc — /a2 — 1) = 1, throughout this paper, /a2 — 1 will always

be defined by (1.2.3).

When all the poles {ax}}_, are distinct and real, Pr(a1,as,... ,a,) and Tp(a1,a2,. .. ,an)
are simply the real spans of the following two systems

1 1
{11 b] 1 1" }, T E [_1, 1], (1.2-4)
r~—ay T—ay, I —an
and
1 +sint i 1 i
{l, sin , l=+sint o *sint }, t € [0,2m), (1.2.5)
cost —a; cost— ag, cost —an

respectively. Moreover, they are Chebyshev systems (cf. (6] [32] [69]).

There are very few situations where Chebyshev polynomials can be explicitly com-
puted. However, the explicit formulae for the Chebyshev polynomials for the systems
Pn(ar,2,---,a,) and Tn(a1,a2,...,a,) with distinct real poles outside [—1,1] are im-
plicitly contained in Achiezer [1]. Recently, Borwein, Erdélyi and Zhang [8] have derived
analogue Chebyshev polynomials of the first and second kinds for these systems. Moreover,
they allow repeated poles and nonreal poles in these systems, in which the nonreal poles form
complex conjugate pairs. These Chebyshev polynomials are constructed as follows (cf. [8]).

Given {ax}?_; C C\[—1,1] such that its nonreal elements are paired by complex conju-
gation, therefore Pr(a;,as,...,a,) and T,(ay, as,... ,a,) are real rational spaces.

Let

n 1/2

M,(z) == (kH (z —cx)(z — Ek)) ) (1.2.6)
=1

where the square root is defined so that M(z) = 2" M, (z™!) is analytic in a neighbourhood

of the closed unit disk, and let

M, (2)

ZTIMTZ_T)'. (12.7)

fn(2) ==
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Then the Chebyshev polynomials of the first kind for the rational systems
Pn(ala a2;..., an) and 7-r'l‘(aly a2;.--, aﬂ) are defined by

T(a) = 122) + G z_+2_z:‘_ 2] =1, (1.2.8)
and
To(t) = Ta(cost), teR, (1.2.9)

respectively, and the Chebyshev polynomials of the second kind are defined by

falz) = fal(2) z+2z7!
== = — = .2.
Un(z) T 0 ° 5 — ld=1, (1.2.10)
and
Un(t) = Up(cost) sint, t€R (1.2.11)

It is shown in [8] that these Chebyshev polynomials preserve almost all of the elementary
properties of the classical Chebyshev polynomials. More precisely, we have

Theorem A (cf. [8, Theorem 1.2, Corollary 4.9]) Let T, and U, be defined by (1.2.8) and
(1.2.10) from {ax}?_; C C\[-1,1] with nonreal elements paired by complez conjugation.
Then

(a) Tn € Pu(ar.a2,---,aq) and Uy € Pr-i(ay,as, ... ,an).

®) Nl = V1 = 22Un(@)l[-1,y = 1.

(¢) Thereare —1=yp, <yn—1 <---<y1 <yo=1 such that

Ta(y;) = (-1y, j=0,1...,n.

(d)
T2(z) + (\/1 —z2 n(z))2 =1, ze[-1,]1]

(e) Tn(z) has ezactly n zeros in [—1,1]} :

-l<zy <<z < 1. (1.2.12)
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The conclusion that T,,(z) has exactly n zeros can also be found in [62].
We denote by
\/ -1 -
Bn(z) : }: R ,  Bp(t) := Bn(cost), (1.2.13)
k=1 Gk — T

which are called the Bernstein factors and they play important roles in [8]. When the
nonreal elements in {ag}7_; are paired by complex conjugation, it is easy to check that

n 4Jal-1 \/ak—l
Ba(z) =Y RY—=
= ak—< k_ ak —z
Theorem B ([8, Theorem 2.1]) Let T, and U, be defined by (1.2.9) and (1.2.11) from
{ax}p—; C C\[-1,1] with nonreal elements paired by complez conjugation. Then
T!(t) = —Bn(t)Un(t), UL®E) = Bo()Tn(t), teR (1.2.14)
and
T () +UL(1)2 = Ba(t)?, teR (1.2.15)
where By (t) is defined by (1.2.13).

Theorem C ([8, Lemma 4.4]) Let T}, be defined by (1.2.8) from {ax}7_; C R\[-1,1]. Then,
for 0 <m < n, we have

——=Tn(z)Tm(z) dz = —( 1)n+m(1 + CL Cfn)cm+1 Tt Cny (1.2.16)

L=
where {ck}i_, is defined by (1.2.3), and the empty product ts understood to be 1 for n =0

orm=mn.

Therefore, {T,(z)}52, are not orthogonal in general, this property is different from that
of the classical Chebyshev polynomials. However, a simple linear combination of T, and
Th-1:

Ry:=1, Rp:=T,+cnTn-1,

or

o 2
= F’ Rn. = 1{(1 — C‘%) (Tn + chn—l)- (12.17)
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is orthogonal with respect to the weight ﬁ from {ar}2, C R\[-1,1] with distinct
numbers. That is,

L 1 - * —
/ | T Bae) Bin(e) dz = 6. (12.18)

Many aspects of orthogonal rational functions and their applications can be found in the
literature, for example, see [9] [11] {17] [39] [59] and the references therein.

The next explicit formulae of the Chebyshev polynomials with respect to Pp(ay, .., an)
are found recently by Borwein, Erdélyi and Zhang [8].

Theorem D ([6, Theorem 3.5.4] or [8, Proposition 4.1]) Let {ax}?-; € C\[—1,1] be distinct
such that the nonreal elements are paired by compler conjugation, and let T, be the Chebyshev
polynomial of the first kind for Pn(a1,az,... ,a,). Then

Ay An

= 12.1
Tn(z) A0+:z:—a1+ +x_an, (1.2.19)
where
-1\
t0= (e e en), (1.2.20)
and
-1 _ 2 g _ .
Ap = — (%_2"'_’5) I Lfﬁ, k=1,...,n. (1.2.21)
j=tj#k O TG

1.3 Why Should We Study the Rational Systems?

It is known that it is not good enough for the approximation of functions to use the clas-
sical polynomials in many practical problems. For example, for integrands having poles
outside the interval of integration, it would be more natural to design quadrature rules to
integrate exactly rational functions (not polynomials), which have the same or almost the
same poles, of maximum possible degrees (cf. [25] [78]). Recently, Gautschi (cf. [25], [26])
has successfully used this idea for the computation of the following generalized Fermi-Dirac
and Bose-Einstein integrals (also cf. [61] [71]):

:z:"\/l+161:
V. 2

o0
Fk(n19)=-/.0 8—'7+=+1 3 920,7761&
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o0 xk1/l+19$
Gk(n16)=-/0‘ ’_-_—2d$1 920;17S0-

e—T+T — |
The computation of all of these are closely tied to rational interpolation.

Moreover, since orthogonal rational functions play a very important role in Hankel and
Toeplitz operators, continued fractions, moment problems, Carathéodory-Fejér interpola-
tion, function algebras, and solving electrical engineering problems, related studies of ratio-
nal systems and related orthogonal rational systems are now very active (cf. [8] [9] [11] [10]
(17] [38] [39] and the references therein).

1.4 Assumption (A)

For the simplicity of the statements of our results, we here introduce an assumption, which

plays an important role in the proofs of our main results of this thesis.

Assumption (A) Let the nonreal elements in {ax}j_,; € C\[—1,1] be paired by complex

conjugation. If there exists some constant o such that

a> 1, (1.4.22)

%

jak]
i.e, the poles must stay outside a circle which contains the unit circle in its interior, then
we say that {ax}}?_;, C C\[~1,1] satisfy Assumption (A).

It is easy to see that Assumption (A) is equivalent to
le|S’Y, k=l"-'tn1

where 0 < v = @ — Va2 —1 < 1. If this condition is satisfied, we say that {c}?_, satisfy
Assumption (C). For convenience, we often use Assumption (C) later, instead of assumption
(A)..

Next we conclude that the Assumption (A) is equivalent to the assertion: the orthonor-
mal rational systems {R;,(z)} defined by (1.2.17} are uniformly bounded on [~1, 1].
Theorem 1.4.1 Let {ax}i_; C R\[-1,1]. Then Assumption (A) is true if and only if
{R5(z)} is uniformly bounded on [—1,1]. where {R%(z)} is defined by (1.2.17).
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Proof. Note that Assumption (A) is equivalent to Assumption (C) and |Th(z)] < 1 for
z € [—1,1], then we can easily prove the only if part. Next we prove the if part. We
suppose that Assumption (A) doesn’t hold, then there exists a subsequence {a,, } such that

an, >1, or a, — -1, k— oo
Without loss of the generality, we assume a,, + 1, k — oo. That is,
Cnpy 2 1, k— oo

But, we also have

1Bt 2 B3 (] = | 2528 s 0, k= oo

(1 — cn,

This contradicts the assumption, and we have completed the proof of the if part. O

1.5 Notations

In this section, we give sone notations which will be used later.

@ Let
n
Pr = {p :p(z) =) bk, be € R} (1.5.23)
k=0
be the set of all real algebraic polynomials of degree at most n and
Tn = {t 1 £(8) = bg + Z(bk cos kt + di sinkt), by,dg € R} (1.5.24)
k=1

be the set of all real trigonometric polynomials of degree at most n.

®Let {ar}i_, C C\[-1,1]. Then we denote

Pm(ah Q2y -0y G[) = {"_[ﬂ_"—'v Pe Pm} 1 (15'25)
Hk:l I:IZ - akl
Tm(ay,a2,... ,q) == P PeTny, (1.5.26)
e Hi=1]cost—a,k|’
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P(z)
Hf::l |$ - a’k|2 ’

Rm(ai, ... a) == { Pe ’Pm} (1.5.27)

Prlar,6z,... ,a1) = {P € Pmlar,a2,--- ,a) : |[P(@)| S VI—22, s € [-1, 1]} , (1.5.28)
and
Pr1(a1,02,... ,a1) := {P € Pm_1(a1,02,--- ,a1) : V1= 22|P(z)| < 1, = € [-1,1}{1.5.29)
@ Modulus of Continuity: Let f(z) be defined on [—1,1]. Then

w(f,8) = sup |f () — f(W)I (1.5.30)

:1y€[_1-1]![z"yls6

e Dini-Lipschitz Condition: If the condition

}i_x)%w(f,tf)lné'zo (1.5.31)
holds, then we say that the continuous function f satisfies the Dini-Lipschitz condition on
[—1,1].
® We use ||.||4 to denote the supremum norm on A C R

@ If f(z) is defined on [—1, 1], then we denote

Ba(f) = izf IIf =Pl (1.5.32)

®Let {ax}i_; C C\[-1,1]. Then

R o _ :Bl . 511
EZ(f) = a‘,,%fg f(z) (m o +oo = an) ‘ i’ (1.5.33)
and
Q c— _ 161 . ,371—1

B = 1o - (o4 o r )| asas

e For 0 < p < oo, we denote

1 1/p

1fls = ([, F=1F@IP as) (1.5.35)

and

£llp == ( /_ 11 [f(z)IP dzv) llp. (1.5.36)
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e We use C[—1, 1] to denote the set of all continuous functions on [—1, 1} and we also denote
c*[-1,1]:={f, feC[-1,1],f(-1) = f(1)=0}.
e The symbol “~7 is used as follows: if A and B are two expressions depending on some
variables and indices, then
A~B & |AB7Y<c¢c and [A7!B[<ec

e We use d;(a) (i =1,2,...) to denote some positive constant depending only on ¢, respec-

tively.



Chapter 2

On the Denseness of Rational

Systems

Overview

This chapter characterizes the denseness of the rational system
P(z)
HZ:I (ﬂ? - ak) '
with the nonreal poles in {ax}2, C C\[-1, 1] paired by complex conjugation. This extends

an result of Achiezer.

'Pn_l(al,...,an)(n=1,2...):={ Pe’Pn}n=l,2...,

2.1 Introduction

With respect to the denseness of the system span{ L }:il in C[—1,1], the following well-

T—Qr

known result is due to Achiezer [1, P254, Problem 7]:

Achiezer’s Theorem Let {ax}2, C R\[—1,1] be distinct. Then spa.n{ z_lak }:o_l is dense
in C[—1,1] if and only if

Z(l - lckl) = 0,

k=1
where {cx}52, are defined in (1.2.3).

11
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In [5] Borwein and Erdélyi also proved this by using entirely different methods.

Note that Pp_1(a1,---,an) is still a real rational system when the nonreal poles of
{ak}i-; form complex conjugate pairs. So, it is natural to ask: whether we can extend
Achiezer’s Theorem to the case: the nonreal elements in {a;}{2, C C\[—1,1] are paired by
complex conjugation? We consider the above question and give an affirmative answer.

2.2 Extension of Achiezer’s Theorem

Theorem 2.2.1 Let the nonreal elements in {ar}y, C C\[-1,1] be paired by complez
conjugation. Then {Pnp—1(a1,-.. ,an)} is dense in C[—1,1] if and only if

> (1 —lex]) = co. (2.2.1)
k=1

Our proof of Theorem 2.2.1 is mainly based on the Chebyshev polynomials with respect
to Pnlai,..- ,an). We still use T, (z) to denote the Chebyshev polynomial of the first kind
with respect to Pp{ay,as,...,as) -

Lemma 2.2.2 Let the nonreal elements in {ag}}_, C C\[-1,1] be paired by complez
conjugation, and let Tp(z) be the Chebyshev polynomial of the first kind with respect to

Pr(ai,az,... ,an). Then the best approzimation to 1 from P,_1(a1,az,--- ,a5) is
p:=1—T,/A,. (2.2.2)
Moreover, we have
11 = pli—1,1 = 1/|4ol. (2.2.3)
where Ag is given by (1.2.20).

Let a € R\ [—-1,1] such that a & {ax}}.,, then we define the constant ¢ by

c+ct
a = 5 s

Let Th4+1 be the Chebyshev polynomial of the first kind with respect to Pp+1(a1,--- ,@n,a).
Then, Lemma 2.2.3 gives the best approximation to ;1= from Pp(a1,.-- ,@s). That is,

lef <1. (2.2.4)
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Lemma 2.2.3 Let the nonreal elements in {ax}f_; C C\[~1,1] be paired by complezx con-
jugation. Then, for a € R\ [—1,1] and a & {ar}}—,, the best approzimation to z—i—a from
Pn(ai,.-. ,an) is

. L __ Tf;lff) (2.2.5)
where
B . c—c1 on 1 —cc;
] = ( > ) leIl o (2.2.6)

Proofs of Lemmas 2.2.2 — 2.2.3. Their proofs are similar and they can be proved by an
argument of counting zeros. So we just prove Lemma 2.2.3. Since a € R\ [-1,1] and
a & {ar}?_;, we then can construct the Chebyshev polynomial of the first kind Ty, ; for

Pn+1(ai,-.- ,an,a) and it can be expressed as:
Bn+1
T, = —_—
ﬂ-+1(x) 3($)+l’—'a’
where s(z) € Pp(ay,-..,an). Since

Bniy = lim(z — a)Tn1(z),

it is easy to show (2.2.6) by a simple calculation. Moreover, q(z)} = —s(z)/Bnr+1. Clearly,
q € Pal(ai,-.. ,an). Moreover, note that (cf. 8, Theorem 1.2]) [|Th+1ll{—1,1j = L, we have

1
—q(z = . 2.2.7
== - @ o™ TP (2.27)
Suppose that there exists some ¢ € Pnp(ay,--- ,an) such that
1
-tz < —. 2.2.8
‘I —a ( )l [—1,1] !Bn+l| ( )

Recall that (cf. [8, Theorem 1.2]) there exist n + 2 nodes: —1 = yp41 < yYn < - < Y1 <
yo =1 such that Thyi(y;) = (—1)7, j =0,... ,n+1. So,

Tn1 1 ) _
Bnt1 (:L’—a. t(z) | = g+t € Pplay,-.. ,an)

changes sign between any two consecutive extrema of Tj,,;. Furthermore, it has at least
n+1 zeros in (—1, 1), and consequently, it must vanish identically. This contradicts (2.2.8).
O
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Proof of Theorem 2.2.1. We first prove the only if part. Note that |cx] < 1(k = 1,2,...)
and by (1.2.20) we then have

i 1 2[15=; texl
fee| < = k=1 <2 lek|,
,g [Aol 1+ [TR=1 lexf? H

that is 1/]Ao| ~ [Ti=y lekl- If {Pa-1(a1,...,an)}32, are dense in C[—1, 1], then by Lemma
2.2.2 we have 1/|4g] = 0(n — o). That is [[f>, |ck| = 0. This implies (2.2.1).

Next we prove if part. By (2.2.6) and (2.2.7) we have

1 2 2=
an+1|"(c-c-1) 11

2

C—Cj
l—CCj

, M —oQ.

Note that [I52, {—"z— is an infinite Blaschke product. Then by [82, Theorem 1, P281] or
[70, Theorem 15.23, P311] we conclude that (2.2.1) implies

Consequently, with (2.2.7), we conclude that lea can be uniformly approximated by
{Pnlay,--. ,an)}32; on{-1,1]. Also, if (2.2.1) holds, then by the analysis of the proof of the
only if part and Lemma 2.2.2, we see that any constant can be uniformly approximated by
{Pr-1(a1,... ,an}}52;. Thus, we conclude that (2.2.1) implies that I-I_—a can be uniformly
approximated by {Pn_1(a1,--. ,as)}32; on [-1,1]. Note that a € R\ is an arbitrary num-
ber, so we can take a to be any of a sequence of distinct number satisfying the condition
(2.2.1). ThlS means - L = can be taken as any of a dense sequence of distinct basis functions
formed by z_ = Therefore, the if part follows. O



Chapter 3
Inequalities in Rational Systems

Overview

This chapter considers inequalities for the rational system P,(ay, a2, - .. ,a,) with prescribed
poles {ag}f_; C C\[-1,1]. Section 3.2 introduces the Bernstein-Szeg&-type inequality and
the Bernstein-type inequality in this rational system. These inequalities are developed by
Borwein, Erdélyi and Zhang [8]. A sharp Schur-type inequality is proved in section 3.3,
and plays a key role in the proof of our Markov-type inequality. Section 3.5 gives a sharp
(to constant) Markov-type inequality for real rational functions in Py(ai,as,... ,as). The
corresponding Markov-type inequality for higher derivatives is also established in section
3.6. The Nikolskii-type inequalities are established in section 3.7. Section 3.8 considers in-
equalities for rational functions with some restrictions in P, (a1, a2,--. ,a,). More precisely,
some sharp Markov- and Bernstein-type inequalities with curved majorants for rational
functions in Pp(a;,a2,... ,a,) are obtained, and Turin-type inequalities are established for
the derivatives of rational functions, whose zeros are all real and lie inside [~1, 1] but whose
poles lie outside (—1,1), in the supremum- and L?—norms, respectively. Several well-known

results for classical polynomials are generalized.
3.1 Introduction

The following two inequalities are fundamental to the proofs of many inverse theorems

in polynomial approximation theory and of course have their own intrinsic interest, see,

15
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for example, Borwein and Erdélyi [6, Chapter 5], Cheney [12], Lorentz [40}, Milovanovié,
Mitrinovi¢ and Rassias [45, Chapter 6}, Natanson [54], Rivlin {69].

Markov Inequality. The inequality

I1Pali=1,1) < 7*llPall~1.q)
holds for P, € Py,.
Bernstein Inequality. The inequality

[Pa(z)| < T € (-1,1)

n
ﬁllpn"[—m],
holds for P, € Py.

There are many results on Bernstein’s and Markov’s inequalities and their generalization.
For the interested readers, see, for example, Borwein and Erdélyi [6], Milovanovié, Mitrinovié
and Rassias [45, Chapter 6] and Rahman and Schmeisser [68] and references therein.

On the other hand, the Bernstein-Markov type inequality does not exist for the arbitrary
rational function. For example, if r(z) = -—;25—_:37, then ||rfii—1,y < 1 but 7'(6) = 55 (cf.
Lorentz [40]).

However, we can develop Bernstein-Markov type inequalities for rational functions with
restricted denominators (cf. Borwein [4]). Recently, Borwein and Erdélyi and Zhang (8]
considered the inequalities of rational functions with prescribed poles. For more information
about inequalities of rational functions with prescribed poles on the unit disk or on the
whole real axis, see, for example, Borwein and Erdélyi [6, Section 7.1] [7], Li [37], Jones
Li, Mohapatra and Rodriguez [31] {38] and Petrushev and Popov [60]. This is an area of
current research activity. For the application in the numerical analysis and related historical
remarks concerning this kind of inequalities, see [36] [72] and [83].

3.2 Bernstein-Szegi-type Inequality

Borwein, Erdélyi and Zhang (cf. [8, Theorem 3.1]) obtained a remarkable extension of the

well-known Bernstein-Szeg6 inequality for system 7(a;,as,--- ,an), that is,
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Theorem E (Bernstein-Szegd-type Inequality) Let {ax}z_, C C\[—1,1] with its non-
real elements being complez conjugation, and By, (t) be defined by (1.2.13). Then

P'(t)? + B2(¢) P%(t) < B2(t) max |P(r)?, teR (3.2.1)

hold for every P in Tp(a1,a2,...,an), and equality holds in (3.2.1) if and only if t is a
mazimum point of |P|, or P is a linear combination of ’f‘n and I:"n, where f[-‘n and l’fn are

defined by (1.2.9) and (1.2.11) respectively.

Borwein, Erdélyi and Zhang [8] also got a Bernstein-type inequality (cf. [8, Corollary
3.4]):

Theorem F (Bernstein-type Inequality) Let the nonreal elements in {ax}7_; C C\[-1,1]
be paired by complezr conjugation, and Bp(z) be defined by (1.2.13). Then

P@)l < 2Py, 2e (LY (3:22)

holds for every P € Pp(a1,az,--.,an), and equality holds in (3.2.2) if and only if P is a
constant multiple of T,, and z is one of zeros of Ty,, where Ty, is defined by (1.2.8).

3.3 Schur-type Inequality

In this section, we establish a sharp Schur-type inequality which plays a key role in the
proof of our Markov-type inequality.

Theorem 3.3.1 (Schur-type Inequality) Let the nonreal elements in {ax}3-; € C\[-1,1]
be paired by complex conjugation, and B,(z) be defined by (1.2.13). Then
”P”[—l,l] < ”Bn”[—l,l] lv1— zzp(f)“[—l,l] (3.3.3)

holds for every P € Pp—i(a1,a2,-.. ,an).

Proof. We may assume that V1 — z2?|P(z)| < 1, and we must prove [[P||(_1,1 < [Bnll[-1.0-
It is easy to see that our hypothesis implies that sint P(cost) € Tn(a1,a2,-.. ,an) and
|sint P(cost)] < 1. Applying the Bernstein-Szegd inequality (3.2.1) for sintP(cost), we

then have

520\ win? 5 P2 . d 2 _ a2
B2(¢) sin? £ P?(cos ) + (costP(cost) +sint {d—tP(cos t)}) <B2). (334
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Let tp be a maximum point of |P(cost)|, that is, [P(costg)| = [[P(cost)||. Then we have
that %{P(cos t)}e=t, = 0. Therefore,

B2(tg) sin? £ P?(cos tg) + cos? tg P?(cos tg) < BZ(to), (3.3.5)
or
(B2(to) — 1) sin® tg P(cos to) + P2(cos ta) < B(to)- (3.3.6)

We distinguish two cases: (i) B.(to) > 1 and (ii) Bn(to) < 1. In the first case, (3.3.6)
implies that |P(cos to)| < Bnl(to) < | Ballf—1,1]-
In the second case, (3.3.5) implies that

1
B2(to)

P?(costy) + ( - 1) cos? tg P?(cos tg) <1,

hence, [P(costp)} < 1 follows. Also, from the definition of By (z) we have | Bn[ji—1,;] > 1-
Thus, we still have |P(costp)| < || Bnll-1,;;- On combining cases (i) and (ii), we complete
the proof of Theroem 3.3.1. O

Remark. For the real poles case {ar}?_; C R\[-1,1], [6, E.8, p. 337] also showed (3.3.3)
using an entirely different method.

3.4 How Large Are the Bernstein Factors?

We now make an observation about the Bernstein factors Bn(z) as defined by (1.2.13). We
will show that Bp(z) is a convex function on [—1, 1] when the poles {ax}}_, are real. There-
fore, we can easily calculate its norm which is usually dependent on {ax}:_,. Moreover, we
show that its L!-norm with Chebyshev weight is independent of {ax}?_;. More precisely,
we have

Lemma 3.4.1. Let {ax}}_; C R\{—1,1] and Bp(z) be defined by (1.2.13). Then Bn(z) is

a convez function on [—1,1] and its mazimum on [—1,1] is always attained at *1:

| Brll{-1,1) = max{Bn(—1), Bn(1)}
(3.4.7)




CHAPTER 3. INEQUALITIES IN RATIONAL SYSTEMS 19

Moreover, we have

1 Balliy = mn.

Bn(z) = Z __Vaz%_-;l.{_ Z __Va'z‘_l

—ap +z’

Proof. Note that

a >0 ap<0

where 4/ a% — 1 denotes the principal square root of ai — 1. We can quickly show that
Bj(z) > 0 on [—1,1]. This implies that Bn(z) is a convex function on [—1,1]. Note that
B, (z) > 0, so the first equality of (3.4.7) follows. By a slightly longer calculation we may
show the second equality in (3.4.7). Note that

2
n 1 n n l
2
for any di > 0. Hence, we may also prove the last inequality in (3.4.7).
n Vai—1

Bn(z) = ) _ sgn(ak)"———,

k=1 Gk —

In fact, B,(z) can be expressed as

where ,/az — 1 denotes the principal square root of a,% — 1. By a simple calculation, we have

-1V1l—-z%2a—z a? -1

/ 1 1 1 dr = sgn(a)w

Thus, it follows,

1
/ Bnl®)
-t vV1—z2

This completes the proof. O

Remark. In general, Lemma 3.4.1 does not hold for {ax}p_; € C\[—1,1]. For example,

take a; = 7,a2 = —1. It is not hard to show that
2v2
Ba(z) = Z11

which is not a convex function and || Bz||[—1,1] = B2(0).

Note that || Byl|(—1,1; > n and equality holds when ¢y =0(k =1,... ,n), that is classical
polynomial case. Lemma 3.4.2 gives a sufficient condition which guarantees B,(z) to be
asymptotic to n.
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Lemma 3.4.2 Let {ax}7_; C C\[-1,1] satisfy Assumption (A). Then
1—9 1 +7)2
—'n< < (=L — 4.
i B(z)"(l_7 n, zel[~1,1], (3.4.8)

and
BL(2)| < d(e)n, =z €[-1,1]. (3.4.9)

Proof. By a simple calculation we can show that

Therefore, we have

and

(:r:|<z - —! 2i—ﬂ < d(a)n.

1)2 - = 1 Ick|2 -

So, we have completed the proof. m

Example. We let

1
g '=———, k=1,...,n,
FT cos =Ly ’
where cos 2" 11r (k =1,...,n) are the zeros of the classical n-th Chebyshev polynomial of

the first kmd. Then, for £k =1,... ,n, we have
¢ = secl — tan by,

where 0 = 2=l kK =1,.

Note that the zeros of the classical Chebyshev polynomial are symmetric about the y-
axis, and one then can check that B,(z) is an even function on [—1,1]. Furthermore, we
have || B, ||(~1,1) = Bn(1) by Lemma 3.4.1. Therefore, by a simple calculation, we have

i 1+sec —tanf; i 1 4 cosfx —sinéx

Brli-in = = .
1Bl 1 —sec @y + tanb; —1+4cos B +sinf

k=1 k=1

Note that

T/ 1 — si 2
f +cosz su.lz __) da:=21n3,
o0 \—l4+cosz+sinz =z T
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and we conclude that

1 i( 1 + cosfr —sin 8y _3_) 1
n {5 \—1+cosf +sinbr 6 )

Recall that

= Z 1/6x ~ Inn,
Ic—l

and we thus have
| Ball{=1,;] ~ n1nn.

3.5 Markov-type Inequality

Now we state our main result.

Theorem 3.5.1 (Markov-type Inequality) Let the nonreal elements in {ax}i.; C C\[-1,1]
be paired by complex conjugation, and By(z) be defined by (1.2.13). Then

1P =11y < 20BallPy I Pl (3.5.10)
holds for every P € Pp(a1,a2,...,8n)-

Corollary 3.5.2 if {ax}f_, C R\[-1,1] are real poles, then

| P'}l[-1, PNy 2
B2, 1 < su < 2|BallZ 1- 3.5.11)
" ”[ 1,1] ;éPE'Pn(alpaz’ ,aﬂ) ”P”[_ “ "[ 1,11 (

Corollary 3.5.3 Let the nonreal elements in {ax}f_; € C\[—1,1] be paired by complezx
conjugation, and Bp(z) be defined by (1.2.13). Then

1Pty < 1Balry sz, P@) - _min P() (3.5.12)
for p € Pp(a1,a2,... ,as). Particularly, if 0 < P(z) <1 for —1 <z <1, we have

“P'”[—I,ll < "Bn”%—]_,],], (3.5.13)
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and these inequalities are sharp up to a constant for {a;}p_, C R\[-1,1].

Proofs of Theorem 3.5.1 and Corollary 3.5.2. Note that we allow repeated poles in Pr(a;,a2,.-. ,an),

and we denote a4 := ay,..., a2, := a,. We can consider

P’ € Pan-1(a1,a2,--. ,a2,).
Thus, by Theorem 3.3.1 we have

1P lli-1,4 < 1Benll-1,l P (2} V1 = 221,y (3.5.14)
But, in this case, it is easy to see that
Bon(z) = 2B, (z)-
Hence, combining (3.5.13) and (3.2.2) we conclude that
1P Nl(=1,y < 2||Bn"[2-1,1] | Plli=1,1-

Next we will show the left-side inequality in (3.5.11). From Theorem A(d) we have

1-T)

U3 (z) = ——=2;

Thus one can easily get that
Up(£1) = |Tn(£1)} = [Ba(¥1)Un(1)]-
This implies
To(1) = (Ba(1))?,  |Ta(=1)| = (Ba(-1))%. (3.5.15)

Hence, by taking P := T, € Pr(a1,az,..- ,an) and using Lemma 3.4.1, one can show the
left-side inequality in (3.5.11). O

Remark. If {a;}}_; C R\[-1,1], then (3.5.11) can also be expressed as

1P -1,

11] ; ,
R BNy < 2 (LG, (3516)

max {|T,,(-1)], | T, (1)]} S SUP T Pllsa

where the supremum is taken for P € Pp(a1,a2,..- ,a5), and T,,(z) is defined by (1.2.8).
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From the above theorems, the estimate of [|[P||(_1,3; (Markov-type inequality) and the
pointwise estimate of |P’(z)| (Bernstein-type inequality) are dependent on the given poles
{ar}?_, for P € Pnp(ay,a2,--- ,an). However, Borwein, Erdélyi and Zhang (8] observed the
following result:

|P7(0){ < nl|Plli—1,g (3-5.17)
for P € Ps(a1,as,-..,an) and real poles {ax}f_; C R\[-1,1]. Therefore, by a linear
transformation , they obtained (cf. [8 Corollary 3.7])

[P(@)| € 77 I1Pll-1y, z€(-1,1) (3.5.18)

| l
for every P € Pp(a;,az,... ,an) and real poles {ag}f_; C R\[-1,1].

It may be reasonable to replace the factor 1 — |z| by 1 —z? in (3.5.18). Indeed, we have
Lemma 3.5.4 Let {ar}i_;, C R\[-L,1]. Then
n
IP'(@)] < Pl (3.5.19)

for P € Py(ay,az,... ,a,) and = € (—1,1).

Proof. Let Qy) := P(%) for given z € (-—1,1), then it is easy to see that Q €

Pn(b1(z),b2(2)s - - - 2 bn(2)) and |Qll(—1,11 = IPll-1,yy, Where be(z) = (ar — 2)/(1 — zax) €
R\[—1, 1]. Moreover, by (3.5.17) we have

(1 —2®)|P'(2)] = |Q'(0)| < n|Qll{-1,1; = Pl Pll{-1,1»
which is nothing but (3.5.19). O

Hence, it is possible to obtain the following Markov-type inequality by exactly the same
way as the proof of [8, Theorem 3.5]:

Theorem 3.5.5 Let {ax}2_; C R\[—1,1] and {cx}}_; be defined by (1.2.3). Then
' I1+|c
lwwm_f+ﬁi{§ iﬂ"WHﬂ

1
SVaT3 CZ * :sz [Pl—1,1]

hold for every P € Pp(a;,as,--- ,a,), n=1,2,.

(3.5.20)

Remark. (8, Theorem 3.5] got similar estimates to (3.5.20), but instead of /%5 by 21.
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3.6 Markov-type Inequality for High Derivatives

We may establish a corresponding Markov-type inequality for high derivatives.

Theorem 3.6.1 (Markov-type Inequality for High Derivatives) Let the nonreal el-
ements in {ar}p_, C C\[—1,1] be paired by complezx conjugation, and Bp{z) be defined by
(1.2.13). Then

1P I,y < m! (m+ DU BllET I Pll-1,y (3.6.21)
holds for every P € Py(a1,a2,--- ,8n) and m=1,2,....

Proof. We prove this by induction on m. The case of m = 1 is from Theorem 3.5.1.
Suppose that (3.6.21) is true for m = k, that is

I1P® gy < k(K + DUBAIE 4l Pll-1y (3.6.22)
for every P € Py(ay,as,--. ,a5)-
Let ains1 =ay, ... 18i+1)n = an, t = 1,... ,k + 2, then we can consider
ple+1) € P(k+2)n—1(alv a2;---, a(k+2)n)

as in the proof of Theorem 3.5.1. Similarly, we have
Bkt2)n(z) = (k + 2)Br(z),

where B(z19)n(z) is the corresponding Bernstein factor with respect to
P+2)n{a1,a2,. .. ,ak2)n). Now using (3.6.22) and applying the Schur-type inequality
(3.3.3) and the Bernstein-type inequality (3.2.2) for P+l we have
1P 1y S 1Bsjnll-1,lVI = 22PED ()]l
<(k+ 2)"Bn“[—l,l]”B(k-i-l)n"[—l,l]np(k) fl-1.
< (k+ D1k +2)! (1Balionn) ™ 1Pl ny-

Hence (3.6.21) holds for m = k + 1 and we complete the proof. O
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3.7 Nikolskii-type Inequality

Theorem 3.7.1 (Nikolskii-type Inequality) Let the nonreal elements in {ax}R—; C
C\[—1, 1] be paired by complex conjugation, and Bn(z) be defined by (1.2.13), then

}2(1/4-1/p) 1Pl (3.7.23)

1Pllp < 2 {2l Ballf-1

1
holds for every P € Pp(ay,az,-- - ,an), where |Pll, == (J2,|P(z)P dz) /P and0<qg<p<

CO.

Proof. First we prove this for p = co. For given P € Pyp(a1,as,... ,a,), we may suppose
that |P(y)| = [|Pll(~1,;, where y € [—1,1]. Also we denote A, := 2”311”%—1’1]- Then by
Theorem 3.5.1 and the Mean Value Theorem we get that

IP()] > 2P@) = 5 1Pl

forevery z € I := {t: It —y| < ﬁ:,t € [—1,1]}. Thus

1 1
(P2 > fIlP(t)l" dt > E"PWII—I,I]E,\—“’

it follows that
1Pll=11] < 2{2Xn}Y2 || P]l,-

Therefore, for 0 < ¢ < p < 0o, we conclude that
1
1PIZ = [ IP@P-dt < |PIE, Pl
< {2Xa 79| P2~ P)IS.
This yields (3.7.23). O

In a certain weighted L?-norm, we can get an exact Nikolskii-type inequality which has

a smaller Nikolskii constant under some conditions. Precisely, we have
Theorem 3.7.2 Let {ax}?_;, C R\[-1,1] be distinct and {c;}}_, be defined by (1.2.3).
Then

n 1/2
1 2 1 + |eil
e L e
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for P € Pu(a1,az,-.. ,a,). Moreover, if {ar}?_, keep constant sign, then (3.7.24) is ezact.
1/2
Here [[Plloy := (J1, 77A|P(@)Pdz) .

Proof. Let {R;}2, be the orthonormal system with respect to the rational system
Pn(a1,a2,--. ,a,), which is defined by (1.2.17). We may denote P := Y k=0 ok R; and
assume that ||P|la,, = 1, which implies Y"}_q o2 = 1. Moreover, note that (Talli—r,y =1
and by Cauchy’s inequality we then have

n n . 1 2

Pzggo&g(Rk)zS; Z(” g cg)(1+lck|))
_ 1 214
1r+7rkZ=:ll—lel'

Hence, conclusion (3.7.24) follows. Taking

1 21+ sgn(ckg)er .
P= { RO E ( —__.) Rk ,
1/2 1—s
( ; Zn_1 ii-:gn(z:)z:) v T gn(ck)ck

we can easily show that (3.7.24) is best possible under the hypotheses. O

3.8 Inequalities for Rational Functions with Restricted Con-

ditions

Since the well-known Bernstein-Markov inequalities for the derivatives of polynomials were
established, a series of papers has been devoted to sharpen and generalize these inequalities
to polynomials with some curved majorants, with restricted zeros, and for other (weighted)
norms. In these cases, the corresponding Bernstein-Markov inequalities can be improved.

In 1970, at a conference on “Constructive Function Theory” held in Varna, Bulgaria, P.
Turdn raised the following problem:

Problem. Determine max_j<z<i |P;(z)| for all polynomials P,(z) of degree at most n
satisfying the restriction that
P,
sup 2@ _ (3.8.25)
-1<z<1 V1 — z2

For real-valued polynomials, the hypothesis says that the graph of P,(z) on the interval
—1 <z <1 is contained in the closed unit disk.
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Rahman (66, Theorem 1] completely solved the above problem by
Theorem G Let P, € Py, satisfy |Pn(z)| < V1 —22 for z € [-1,1]. Then
| Pall < 2n — 1), (3.8.26)

and (3.8.26) is sharp by Py(z) = (1 — 22)Un—2(z), where Up—2(z) is the classical Chebyshev
polynomial of the second kind.

For the case of the restriction

|Pa(z)] < (1—22)71/2, (3.8.27)
Lachance [35] obtained the following Bernstein- and Markov- type inequalities
Theorem H Let P, € P, satisfy (3.8.27). Then

[Pr(z)| <2(r+1)(1-2%)71, —-1<z<l, (3.8.28)

and

IPalli-1,y € n(n+1)% (3.8.29)
and these inegualities are sharp to constant, respectively.

Rahman and his associates have extensively investigated these kinds of inequalities for
classical polynomials. For more details, see, for example, [45, Section 6.1.4] and the refer-

ences therein.

For Bernstein-Markov inequalities of polynomials with restricted zeros, The starting
point of these generalizations is the following well-known result of Erdés [18]:

Theorem I (Erdés) Let P, € P, having all its zeros in R\(—1,1). Then

1Pt < S 1Pl oy (3.8.30)
and
, 4
|Pa(z)l < —‘/i—lanll[_l,ll, z € (-1,1). (3.8.31)

1-29?
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Another fundamental result is the so-called Turdn inequality which establishes a converse
Markov inequality for polynomials with restricted real zeros (cf. Turén [76]}, more precisely,

Theorem J (Turan) Let P, € P having all its zeros in [—1,1]. Then

1B l-s > 0 Pl (3.8.32)

Since then, a lot of extensions of Erdés’ and Turdn's results have been made, see, for
example, Borwein and Erdélyi [6, Appendix A5] and Milovanovié, Mitrinovié and Rassias
(45, Section 6.2] and the references therein.

It is natural to ask if we can extend the above results to the rational system R, =
{r/q,p,q € Pp} with restricted zeros and poles?

In the sixties Rahman [65] and Malik [44] established an analogue of (3.8.31) for rational
functions which have neither zeros nor poles inside the unit circle. Moreover, in 1991
Rahman [67] sharpened it and found the corresponding best constant. But as far as I know,
the question of how to establish the analogue of (3.8.30) for the rational functions is still

open.

3.8.1 Inequalities for the Rational Functions with Some Curved Majo-

rants
Here we try to generalize the above results for polynomials with curved majorants to rational
systems. More precisely, we have

Theorem 3.8.1 Let the nonreal elements in {ar}i_; C C\[-1,1] be paired by complez
conjugation, and Bn(z) be defined by (1.2.13). Then, for P € Pj(a1,a2,--. ,an) , we have

1P 1,1 < 2[lBnll-1, (3.8.33)
and

1/2
IP@ < (20— + (1Bl - 1)) (3.8.34)
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for —-l1<z<1.
Furthermore, if {ax}}i_, satisfy Assumption (A), then

1—7)\° 1+
2 (—-—-—) n—2)< sup WP ll—yn <2 n, (3.8.35
Ty (n—2) P R P N-1y 29— p” )
for {ax}i_; CR\[-1,1], n=2,3... ., where P;(a1,az,...,a,) are defined by (1.5.28).

Theorem 3.8.2 Let the nonreal elements in {ar}}_, C C\[-1,1] be paired by complez
conjugation, and By(z) be defined by (1.2.13). Then, for P € P;*,(a1,as2,--- ,an), we have

(1-2?)|P ()| < 2l|Ball(~rypy z€[-1,1] (3.8.36)
and
”PIH[—I,I] < 2"Bn”:[3_1,1]- (3.8.37)

Furthermore, if {ax}}_, satisfy Assumption (A), then (3.8.36) is sharp up to a constant and

L/1-7\3 5 (1+7)2+2y 1+7\% 3
5((m) w - S ) <ol <2 (7). (8

holds, where the supremum is taken for P € P;*(a1,as, ... ,a,) defined by (1.5.29), {ax}?_, C
R\[—1, 1].
Proof of Theorem 3.8.1. Our hypothesis implies that

P(z) = &= )Po2(@) _ o pYloePua(z) i 22Q(z),  (3.8.39)

HZ:I(Q: - ak) HZ:]. ($ - ak)

and |Q(z)| < 1.

Since
P'(@)] = |-2(1 — 2%)72Q(=) + V1 - 2°Q/(z)|
< el - 2?7 2Q (=)l + |VI=22Q'(3)|

and Q(cost) € Tn(a1,as,--- ,a,), by the Bernstein-Szegs-type inequality (3.2.1) for

Talay, a2, ... ,a,) we have

(3.8.40)

|2 (Qeos )| < Bat)
That is,

Vi=22 (@)| < Ba(a). (3.8.41)
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Note that (1 — 22)~Y2Q(z) € Pa_1{a1,a2,--. ,a,). Moreover,
|1 2921 - 2%)72Q(@)| = Q@) <1, —1<z<l.
Thus, Theorem 3.3.1 yields
|1~ 2712Q(@)| < IBalli-vy (3-8.42)

for —1 < z < 1. Combining (3.8.40), (3.8.41) and (3.2.2), we obtain (3.8.33).

Next we prove (3.8.35). Obviously, the right-side inequality in (3.8.35) follows from (3.8.33)
and (3.8.39).
e (1 = 2)Vpal2)
1 —z%)U,-2(z
P(z) = S —1) — an-1)(sgn(aa) — a
(z) (z —an—l](m—aﬂ.)( gn(an—1) — @n—1)(sgn(aa) n)
where Up(z) is defined by (1.2.11). Since (cf. [8]) V1 ~z?|Up—2(z} L1 for -1 <z L1,

thus, P € Pp(ai,82,.-. ,a,) and |P(z)] < V1 — z2. By Theorem B, it is easy to see that

T, (z) = Bn(z)Un(z), (3.8.43)
and
U (a) = Zol2) — Bn()Talz), (3.8.44)
Furthermore, in this case, we easily get from (2.8.44) that
P02 Wealt) + Baca ) ot i =
_ 1—jen—1)\2 (1= lea])?
=280 (72y) (T5e) (3.8.48)
- 4 — 5
Similarly, we have
1—7)\°
P-n22(152) -2, (3.8.46)

Hence, we have shown the left-side inequality in (3.8.35).
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Moreover, since Q(cost) € Prp(a1,as,.-.,a,), on using Rahman’s argument (cf.[66]), the
Bernstein-Szeg6 inequality (3.2.1) and (3.8.40) we have
IP'(2)] < lzI(1 — 22)21Q(a)| + [VI—22Q/ ()|
< |2l = 22)7Y2Q(@) + (IBall-1 — 1) @ — Q=)
< max {J21(1=2%)7 2y + (I Balii-ry — 1) (1 - )}

o 1/2
< (Pa =+ (1Bl - 1)) -
This implies (3.8.34). O

Proof of Theorem 3.8.2. From our hypothesis, we know that sintP(cos t) € Tn(ai,a2,-.. ,an)
and |sintP(cost)| € 1. Then, applying the Bernstein-Szeg6 inequality (3.2.1) to sintP(cos ),
we have

lcos tP(cost) — sin® tP’(cos t)l < Bn(t),
and combining Theorem 3.3.1 we get

(1 —2?)|P'(2)| = |sin®tP’(cost)| < Ba(t) + [[Pll—1,1 < 2[|Ball

Next we show that (3.8.36) is sharp up to the constant under the hypothesis. Let P(z) :=
Un(z), the Chebyshev polynomial of the second kind defined by (1.2.11). Taking ¢ = z, as
the zeros U,(z) in Theorem A(d), we have from (3.8.44)

(1 — 2)|Un (2k)| = |Ba(zk)Tn(zk)| = Bn(zk)-

Hence (3.8.36) is sharp to constant by Lemma 3.4.2.
Combining the Markov-type inequality (3.5.10) and the Schur-type inequality (3.3.3),

one can easily see that
1P ll—1, < 2”Bn”[2—1,1]||P||[—1,1] < 2f|Bn||?—1,1],
and (3.8.37) follows.
On the other hand, by (3.8.44) we can easily get

_Un(£1) + Up(£1) — Bp(&1) — Ba(£1)Un (1)

5 , (3.8.47)

Unp(£1) =
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this implies
(UL = 3 |BE() + B4 (1) — Ba(1)] > 5 (B(1) ~ B4 (1)] - Ba(D)) -
Similarly, we have
1 1 :
UA(=1)] > 3 (BR(=1) = |By(=1)| - Ba(-1)) -

Hence combining Lemma 3.4.2 and (3.8.47) we can show that

—\3 2
10l > max{[U; (1)), 10A(-1)I} 2 3 ((.}1_3) nd — %ln) , (3848)

but U, € P;%,(a1,0a2,...,a,), so the left-side inequality in (3.8.38) follows. The right-side
inequality in (3.8.38) follows from (3.8.37). O

3.8.2 Inequalities for the Derivatives of Rational Functions with Real

Zeros

In this section, we shall try to generalize the Turdn inequality to rational functions whose
zeros are all real and lie inside [—1, 1] but whose poles lie outside (-1, 1).

For convenience in stating our results, we give the following definition:

Definition 3.8.3 Let {ux} be a complex sequence, if there exists some p > 0 such that
[2e]| —1 > p, then we say that the {u,} are eway from the unit circle centered at the origin by
p- In particular, we call {ur} away from the interval [—1,1] by p if {ui} is a real sequence.

Theorem 3.8.4 (Turdn Type Inequality in the Supremum-norm) Let the nonreal
elements in {ax}3_; C C\[—1,1] be paired by complez conjugation, and let {ar}}_; be away
from the unit circle centered at the origin by p, p > 2. Then, for P € Py(a1,az,--- ,an)

with all its zeros in [-1,1], we have
Vet —4
1P M1,y > T\/H”PII[_M] (3.8.49)

for n > max {g%_zzy, ﬁ%}.

Note that the Bernstein-Markov inequality does not exist for an arbitrary rational func-
tion (cf. [40]), therefore, it is reasonable to restrict the poles of rational functions. However,
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whether the restriction of p > 2 can be removed is still open. Anyway, Turdn’s result (3.8.32)
is the limiting case of the above result on letting all the poles go to Foo.

Theorem 3.8.5 (Turdn Type Inequality in the L2-norm) Let the nonreal elements in
{ak}p_, € C\[-1,1] be paired by complex conjugation. Then, for P € Pn(a1,az,--- ,an)

with all its zeros in the interval [—1,1], we have
1 1
/ (1 — 22)(P'(2))2dz > % / B (z)P*(z) dz (3.8.50)
-1 —-1

and the equality holds if and only if P(z) = en(l — z)™(1 + z)%/[13=i(z — ax), where
m+f=n,m,l €N and e, € R In particular, we have

1 1 1
/ (P'(2))%dz > = / Ba(z)P?(z) dz, (3.8.51)
1 2J/_1
where
Bn(z) := Z WE (> 0) (3.8.52)
k-1

is a convez function on [—1,1] for {ax}}_, C R\[-1,1].

Corollary 3.8.6 Let {ax}?-; C R\[-1,1]. Then, for P € Pp(a1,a2,.-.,an) with all its

zeros in [—1,1}, we have

1 2 / 2 lak|
/_1(1—3: )(P'(z))2dz > = Z |+1/ P2(z) dz. (3.8.53)
In particular, if {ag}R_; are away from [~1,1] by p for some p > 0, then,
/ (P'(z))%dz > 5(3?7) B ' P(z) d. (3.8.54)

Obviously, Varma’s result (cf. [79, Theorem 1] or [80]) is the limiting case of the above
result (3.8.54) on letting all the poles go to +oo.

Proof of Theorem 3.8.4. We modify Turdn’s argument to prove this. Let {zx}}_; be the
zeros of P(z), that is, P(z) := e, [[f=; (z — zx/z — ai), where e, € R One can show that

Bla) — 2 m - Z P (3.8.55)

k=1
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and
P'(z))? - P(z)P" 2 8.
(P'(2))* - P(2)P"(z) = P*(z) (l;l CEEA Z o 2)2) (3.8.56)
Assume that ||P]|i_;,;; = 1 and some a € [—1,1] such that [P(a)| = 1 (for example, without
loss of generality, P(a) = 1). Now we distinguish two cases.
Case 1. If a = %1, for example, a = 1. Then from (3.8.55) we have

oo | PH@)] |
Pl =58 = | - _ak[
n 1 1
E_Zlak[—l (5_;)‘“
s YP =t o
6p

forn > p_2
Case 2. If e € (—1,1), then P'(a) = 0. Without loss of generality, we assume a € [—1,0].
Let I :=[a,a +2p//p? ~4y/n] C [-1,1] for n > 3%{2_4'

(i). If |P'(z)] < @\/ﬁ on I, then P(z) > 2/3 on I, otherwise, by the Mean Value
Theorem we see if there exists & € I such that P(£;) < 2/3. Then

R [P
P {&1—a

=[P'(&)l,

where &; € 1.
(if). We can also assume that |P"(£)] < %;{én for the some £ € (a,a + 2p//p% — 4V/1),

otherwise, we have

a.+TL L
|P'(a+2p/\/p2—4\/r—z)| = )/ "2"ﬁP"(t) dt| >
a

In short, we can assume that P(z) > 2/3 and that there exists some £ € I such that
[P"(€)] < &5#n. Then, under the hypotheses, we have from (3.8.56)

e -pPePhE > (oS~ L\ 4(n_n
(P'() - P)P (5)29(4 ;(lakl_l)z)zQQ %),

and (3.8.49) now follows by a simple calculation. O

2
——V”Gp 4/
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Proofs of theorem 3.8.5 and Corollary 3.8.6. We still denote P(z) by P(z) := e, [[r=1(z —
ZTr/T — ai), where e, € R From (3.8.55) and (3.8.56) and by a slightly longer calculation,

we have

2(1 — z2)(P'(z))? — —d— {(1 — z2)P(z) P’(:L')}

‘PZ(”’)(Z(x )’ Z(z—ak)z)

Hence, under the hypotheses, (3.8.57), we have

(3.8.57)

2(1 - 22)(P'@)? - = {(1 — 22)P()P'(2)} 2 PX(2)Bae)

and the equality holds if and only if all zeros of P(z) are +1. Therefore, integrating both
sides of the above inequality from —1 to 1, (3.8.50) follows.

Next we claim that B,(z) > 0 for z € [—1, 1]. Since the nonreal elements in {ax}?_, are

paired by complex conjugation, we have
B R———
n(z) = E (z —a k)2

z_
Hence, we need only to show that ER(;af-‘IIF >0 for z € [-1,1].
Let ag := ag + 18k, Yk == \/&% +ﬁ%(> 1), then,

al -1 _ (o2 — B2 - 1)22 — 204 (v2 — L)z + 7} — (o — B2) __ C(z)
(@ —ax)? (z — )2 — B2)* + (2Be(z — ax))? " Di(z)’

Note that Dg(z) > 0 for z € [-1, 1} and

Ci(z) = (v — 1)2* +288(1 — 2°) — 206(} — D)z +1E(vE - 1)
> (1 - 1a? =20k (i — Dz +4E(vE - 1)
= (v¢ = 1)(z? = 2z + %) >0, ze[-1,1],
hence we see that B,(z) > 0 for z € [—1, 1].
On the other hand, since Bj(z) > 0 on [—1,1] for {ax}p_, C R\[-1,1], it is strictly a
convex function on {—1, 1], which implies that ||Bg||[_1 1] = max{B;(1),Ba(~1)}. Thus we
conclude that

lagl —1 ~ap+1
Z ‘Jaxl 1 < Bu(z) < ||Ballf—1,1) = max { > Pt Z ” +1 (3.8.58)

k=1
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for {ax}?-; C R\[-1,1], now (3.8.53) follows. 0O

Actually, from (3.8.57) we can obtain an analogue of Erdés’ result (3.8.31) for the rational

system Pr(a1,as,-.- ,an) in L2—norm:

Theorem 3.8.7 Let the nonreal elements in {ar}2., C C\[—1,1] be paired by complex
conjugation, and B,(z) be defined by (3.8.52). Then, for P € Pp(ay,az,--- ,ay,) with all its

zeros in R\(—1, 1), we have
f ' (1-2z%)(P'(z))%dz < L / ' Bn(z)P%(z) dz (3.8.59)
-1 2/

and the equality holds if and only if P(z) = e (1—z)™(1+z)%/ 17— (z—ak), wherem+€=n
, m,l €N and e, € R. In particular, we have

[ 0= @) dz < SB[ P@)dz (3.8.60)

for {ax}i=1 CR\[-1,1], where ||Brll(—1,y 15 given by (3.8.58).

3.9 Problems

Problem 3.10.1. The best constant in Markov-type inequality (3.5.10) is still an open

problem.

Problem 3.10.2. It would be interesting to establish an L, version of the Markov-type
inequality for rational functions with prescribed poles.



Chapter 4

Lagrange-type Interpolation in

Rational Systems

Overview

This chapter considers Lagrange-type interpolation in the rational system P,_;(e1,...,n)
with distinet {ax}?_; C R\[-1,1]. This Lagrange-type interpolation is based on the zeros
of the Chebyshev polynomial of the first kind for the rational system Pp(ai,-..- ,n). The
corresponding Lebesegue constant is estimated, and is shown to be asymptotically of order
Inn when the poles stay outside an interval which contains {—1, 1] in its interior. The mean
convergence of this Lagrange-type interpolation is also established. As an application of
this interpolation, we construct a quadrature formula, it is a positive quadrature formula;
moreover, it is exact for any element in Ron—1(G1,.-.,n). Some well-known results of

classical Lagrange polynomial interpolations are extended.

4.1 Introduction

Interpolation by polynomials is probably the oldest profession in Approximation. Turdn
[77] wrote “Newton, who wanted to draw conclusions from the observed location of comets
at equidistant times as to their location at arbitrary times arrived at problem of determin-

ing a ‘geometric’ curve passing through arbitrarily many given points, solved this problem

37
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by the interpolation polynomial bearing his name. How highly he esteemed his result is
revealed by his letter to Oldenburg of 1676, in which he wrote that this was one of the most
beautiful results he had ever achieved. Newton uses his formula to give the exact value
of f: f(z)dz in terms of the values of f(zx) when f(z) is a polynomial of degree n, and
zr =a+ ((b —a)/n)k,k=0,... ,n. His student Cotes called this quadrature formula ‘pul-
cherrima et utilissima regula’ and calculated its coefficients for n < 10. This work, based on
Newton’s interpolation formula, must have been quite awkward. Application of Lagrange’s
interpolation formula would have simplified it, but that was published only in 1795. Gauss’
quadrature formula was also motivated by astronomy, namely by the investigation of the
orbit of the planet Pallas. How important this formula was for Gauss is shown by the
fact that unlike many other results, this one was not only worked out in his diary but also
published, even prepublished. He used the zeros of n-th Legendre polynomial instead of
equidistant points of observation. His treatment was later greatly simplified by Jacobi.
Thus we see that interpolation and the theory of mechanical quadrature are just two

aspects of the study of functions given by a finite number of observations.”
Interpolation theory up to now serves as an important tool of numerical analysis and
computer science.

Let us briefly describe it. For a given function f{z) on [—1, 1], let
~1<zy<--- <21 <1, (4.1.1)

then the corresponding Lagrange interpolatory polynomial of degree< n — 1 is defined by

La(f,2) := if(xk)lk(z), n=12..., (4.1.2)

k=1
where wn(z) := [[f-;(z — z«), and

wn(z)

~ , k=1,...,yn=12,..., 41.3
@R — 78) (4.13)

lk(z) =

are the fundamental polynomials of Lagrange interpolation.

It’s well-known that L,(f) is not guaranteed to converge to a continuous function f(z)
uniformly on [—1,1]. This result, which can be considered as the starting point of the
divergence theory for Lagrange interpolation, is due to Faber [21].

Faber Theorem For any nodes system {zx}}_, there ezists an f1 € C[—1,1] with

impeol| Ln (f1)ll-1,1 = co. (4.1.4)
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Note that this result does not exclude a pointwise convergence result at least at a single
point. This question was negatively answered by Bernstein (cf. [2] [73, Chapter 4] or [54,
Chapter 2 Vol. IIIJ).

Bernstein Theorem For any nodes system {zx}2_; there ezists a point zo € [~1,1] and
an fa € C[—1,1] such that

h_.n—ln—;»ooILn(f% Zg)| = oo. (4.1.5)

Later, Bernstein showed (cf. [54, Chapter 2, Vol. III] or [73, Chapter 4]) that Lagrange
interpolation diverges everywhere for the function |z| on [—1,1] except z = 0 when the
system of nodes is taken as the “bad” equidistant matrix E := {-1+2(k—-1)/(n —1)}7_;.
Moreover, Grinwald [28] [29] and Marcinkiewicz [46] showed that even if the system of
nodes is taken as the “good” nodes: the zeros of the Chebyshev polynomial of the first kind,
there exists some function f3 € C{-1,1] such that

limyeolLn(fs, ) =00 forallz € [-1,1].
A stronger result was obtained by Erd8s and Vértesi [20] in 1980. That is,
Erdds and Vértesi Theorem For any nodes system, there exist fy € C[~1,1] such that
lim,eo|Ln(fs, T)] = 00  a.e.in[-1,1]. (4.1.6)

Moreover, the divergence set is of second category in [—1,1].

4.2 Lagrange-type Interpolation in P,_i(a1,... ,a,)

Let f be a function defined on [—1,1]. We construct the Lagrange interpolation based on
the zeros {zx}Z_; of Chebyshev polynomial of the first kind T,;(z) with the rational system
Pn(ay,--- ,a,) as follows:

Ln(f,z) ==Y f(ze)lk(z), (4.2.7)

k=1
where Tn(z) is defined by (1.2.8) and {lg(z)}?_, are the Lagrange fundamental functions:
e(z) i= () E=1,..,n. (4.2.8)

T Th(zk)(z — =)’



CHAPTER 4. LAGRANGE-TYPE INTERPOLATION IN RATIONAL SYSTEMS 40

It is easy to check that
Lﬂ(f'l Ik) = f(zk): k= 1: ey Ty

Lemma 4.2.1 Let f be defined on [—1,1] and {ar}F-, C C\[-1,1]. Then
Ln(f) € Pn—l(aly .- 10'11.)-

Proof. Since we may suppose that

To(z) == 222 (4.2.9)

Rn(z)’

where Qn(z) := en(z — 1) --- (€ — 4), Rn(z) := (z — a1) - (z — an), and e, depends on
both n and ax. Then we have

_ BRn(zk)
l(z) = R.(2) ax (), (4.2.10)
where 0u(2)
n\T _
*E) = - P
Therefore, it is easy to see that L,(f) € Pn_1(a1,... ,ar). O

4.2.1 Lebesgue Constant and Uniform Approximation

It is well-known that the Lebesgue constant of classical polynomial interpolation plays an
important role in uniform polynomial approximations (cf. [54] [69] [73]). For given n € N,
we also define the associated Lebesgue function:

La(z) =) |ik(z)

k=1
and the Lebesgue constant:
Ln := | Ln(2)ll(-1,115
where [;(z) is defined by (4.2.8). Clearly, L, depends on {ag}3_;-

Theorem 4.2.2 Let {ax}}_; C R\[-1,1] be distinct and satisfy Assumption (A). Then
Ln~lon. (4.2.11)

Therefore, with respect to the uniform approximation, we have
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Corollary 4.2.3 Let f € C[—1,1] and {ax}i_, C R\[~1,1] be distinct and satisfy Assump-
tion (A). Then

1Ln(f) = flli—1,1) € di(e) mnEE(f), (4.2.12)

where ER(f) is defined by (1.5.33). Furthermore, if f(z) satisfies the Dini-Lipschitz condi-

tion, then
n]-ibnolo La(f,z) = flz)
uniformly on [-1,1].

In order to prove the above results, we first prove several auxiliary results which will be

used later.

Lemma 4.2.4 Let f € C[—1,1], {ar}i_; C R\[—1,1] be distinct and {cx}_, be defined by
(1.2.3). Then

EX(f) < Ea(f) + (IFllicr + Ea(£)) T lexl, (4.2.13)
k=1

where E,(f) ts defined by (1.5.32) .

Proof. Let pp(z) := 1nz™+---+70 (¥n # 0) be the best polynomial approximation of degree
n to f(z) on [—1,1], that is

lpn — fll{—1,1y = En(f)-
Using [1, Problem 7, p. 254], we know that there exist px (k = 1,...,n) such that

Pn(z) Z B
=1 :r:—ak

Tn

n

{_1,1] k=1

Thus,

|
pa(z) — Z .

< f = pall-1y +
k=1 T — G

i1y

Moreover, by the Chebyshev inequality (cf. [54, Corollary 2, Vol. I, p. 56]) we have

N~ Bk
f(z) k‘élz_

[“1’1]

< Balf) + 2220 T I le:

Il < 2 Hipalli-1y < 2°7 (Ifllery + En(f)) -
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Then (4.2.13) follows. O

By the classical Jackson Theorem (cf. [54, Vol. 1]) and Lemma 4.2.4 we can prove the
following corollary in the usual way.

Corollary 4.2.5 Let f € C'[—1,1] and {ax}?_; < R\[-1,1] be distinct. If [Ti—;|ckl =
O(1/n), then

ER(f) = OQ1) ((f, 1/n) +1/n) . (4.2.14)

Lemma 4.2.6 gives an explicit formula for the Lagrange fundamental interpolatory func-

tions.

Lemma 4.2.6 Let {ax}f_; € C\[-1,1]. Then, fork=1,2,...,n,

\/l—a:kT (z) (4.2.15)

Bn(zi)(z — k)’

le(z
where e =1 or —1.

Proof. By Theorem A(d) and (4.2.8) we can deduce Lemma 4.2.6. O.

Lemma 4.2.7 Let {lx(z)}2_, be defined by (4.2.8). If {ar}i=; C C\[—1,1] satisfy Assump-
tion (A), then we have

S (@)™ < dylm,a), m=2,3.., (4.2.16)
k=1

(4.2.16) implies

lik(z)] < /da(2,0), k=1,..,n. (4.2.17)

Proof. We need to prove this only for m = 2. Since T}, can be expressed as (4.2.9), then

we have

R T! T nog
?:1 _ Th(=) Rn(a:) (z)_*_zz_ak,

~ T —Tp Tn(x) Rn(z) ~ Ta(z) =
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and

(@) = Tu(@) T (=) 1
T2(z) * Z e (4.2.18)

>
(c—zk)?
Under the given assumption, it is easy to see that
1 1 1
< < .
(z—ae)? = (lak] —1)> “a? -1

From (3.8.44) we conclude that

Ty (z) = Bp(z)Un(2) + Bn(z)Up(z), (42.19)

and on combining Theorem A(b), (3.8.44), (3.8.45), Lemma 3.4.2 and Theorem 3.3.1 we
have
Tz(z)(l —2%) &

4.2.2
3 E :(:z:—:r; )2_613(04) (4.2.20)
Similarly, we can prove that
T2(z) | 1
n < . 4.2.21
[ | S 4@ (4221)

Furthermore, from Lemma 3.4.2 and Lemma 4.2.6 we conclude that

Zlk( (1+7) T2(z)g 1—z2 _

¥ n?

Therefore, on combining (4.2.19) (4.2.20) and by some simple calculations, we have

lezc(x)
1+ T2(:z:) 1—22+2%2—z2
(1— ) z (z — zx)? :
1+ Tz(z)(l—mz) 1 T (:z:)
S(l—'y) { n? Z(:r:—:z:/c (k x—zk—n)}
< da(a),

and this lemma follows. O

We let {uix}?_q be a Markov system on [a, b] and Iet

E(f):= sup Eq(f),

fEC‘T‘ [—111]
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where E,(f) is the best approximation of f from span{ ug,u;, -, un}. Then we have
Lemma 4.2.8 (cf. [34]) Let {ux}f_o be a Markov system on [a,b]. Then

My = 5‘;1“25“""’“ — zry1] < 32E(f), (4.2.22)

where {z}}_, are the zeros of the corresponding Chebyshev polynomial Ty(z) with respect

to span{ ug, %1, ..oy Un}, To =Gy Tnt1 = b.

Lemma 4.2.9 gives the estimate of the distance between two consecutive zeros of Cheby-
shev polynomials of the first kind with respect to the rational system Pyp(ay,... ,an). This
will be used in the proof of Theorem 4.2.2.

Lemma 4.2.9 (i) Assume {ag}}?_; C R\[-1,1] are distinct and {cx}}_, are defined by
(1.2.3). If[Ii=ilck]| = O(1/n), then the largest distance between two consecutive zeros of
Chebyshev polynomial of the first kind satisfies

M, =0(1/n), (4.2.23)
where Tg 1= 1,Zn41 := —1. Moreover, if {ax}}_, satisfy Assumption (A), then
1
|z ~ Ze+1] 2 ds(0) - (4.2.24)

(ii} Let zx = cosbk, and {ar}i_, C R\[-1,1] be distinct and satisfy assumption (A). Then

1
61~ Ol ~ = (4.2.25)

Proof. By Corollary 4.2.4 we know that if f € C'[—1, 1], then

BE(N =00 ()

S0, it is easy to obtain (4.2.23) by Lemma. 4.2.8.
On the other hand, since

e(ze) — k(=
1= k( ) k( k-!-l) (:rk _ $k+1)
Tk — Tk+1

by Theorem 3.5.1, Lemma 3.4.2 and (4.2.16), (4.2.24) follows.

= |l (Mlzk — Ths1)s
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Now we let ix(6) := lg(cos8), k = 1,...,n. Note that (cf. the proof of Theorem 4.2.2)
assumption (A) implies that [Ti_; |ck| = O(1/n). Thus, by (4.2.23) and the Bernstein-Szegd-
type inequality (3.2.1), it is easy to show (4.2.25) by the same method as the estimates in
(4.2.23) and (4.2.24). O

Proof of Theorem 4.2.2. First we claim that Assumption (A) implies that [Jf—; [ck] =

O(1/n). By the inequality
1—2z e_zz

14z~
in the above inequality, we have

l—|cgl
lex] < e 2T

3 $201

1—- |Ck
1+|ck|

and with £ =
Hence Assumption (A) implies that
1—|ecr| -
Hick{ < 2 Tin Tl < 2R
Let z = cosf,zx = cosf and z; = cos 0 be the nearest point to = and let ¢ = [k — j.
Then by (4.2.25) we have

do(@) S < dr(@)lf — 051 < 10 — 641 < da @)k — 041 < da(e) - (4.2.26)

\/l—-z%

n(zk)lz — zkl’

Since

La(z) =ITa(@)| Y 5

sinf; < 2sin

|cos@ —cosbOx| =2|s

and

)
< <
0= sing/2 ="

so, by Lemma 3.4.2 one can show that
1+7 1 sin 6k

) < < T—~n
La(z) |l($)|+k2#llk(3)l da(e) + 7= “n |cose—cosek|

l1+71 !
< Vdz(a) + 7 ,Yng&:[sin(a—gk)/zl

l+~91 =
dale) +7 'rnds(a)z [-1.1-
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Hence
L, =0(Inn).

On the other hand, by Lemma 3.4.2 we have

14z 1—~v1 0x
L, > L,(1) >
n(1) 2 1+7nz l1—z, 1+'ynzc

/E (cot:z:—l) d:1:=ln3,
0 T T

and (4.2.26) implies 6x ~ £, k =1,... ,n. We now conclude that

k=1

Note that

1 n
- D (cotBe/2 — 1/6;) ~ 1
k=1

and

- Z 1/6; ~ Inn.
n =

But
L,> 1=71 (Z (cot 6x/2 —1/6;) + Z 1/6k)

“1l479n =1

and hence, we can prove that
L, > dio(a) Inn.

Thus, Theorem 4.2.2 follows. O

Lemma 4.2.10 Let the nonreal elements in {ax}f_, C C\[-L1,1] be paired by complez

conjugation. Then

Ly (p,z) = p(2) (4.2.27)
for p € Pp_i{ay;s- .- ,n).
Proof. The proof is similar to that of Lemma 5.2.2, and we omit it. O

Proof of Corollary 4.2.3. Let p(z) be the best approximation for f from P,_;(ay,-.. ,n) on
[—1, 1], then

e — fli-1y < BR(F). (4.2.28)
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Lemma 4.2.10 yields
La(f,z) — f(z) = La(f — p, z) + (p(2) - f(2)), (4.2.29)

hence, it is easy to obtain (4.2.12) in the usual way.
Since Assumption (A) implies that [Jf_; |ck] = O(1/n), Corollary 4.2.5 implies that
lim, 00 Ln(f,z) = f(z) uniformly on [~1,1]. O

4.2.2 [P-Convergence

Theorem 4.2.2 has indicated that the Lagrange-type interpolation does not converge uni-
formly for any continuous function on [—1,1]. However, in this section, we show that its

LP-convergence always holds under the Assumption (A). More precisely, we have

Theorem 4.2.11 Let {ax}}_; C C\[-1,1] satisfy Assumption (A). Then for any 0 <p <

oo, we have

IZa(£) = fllup < c®)EZ(S) (4-2.30)
for f € C[-1,1].
Therefore, with Theorem 2.2.1, we have

Corollary 4.2.12 Let the nonreal elements in {ag}f2, C C\[—1,1] be paired by complez
conjugation, and let {ax}§2, C C\[~1,1] satisfy Assumption (A). Then

ILn(f) = fllep =0, (n — od)

for f € C[-1,1].

Remark. When all ax — o0 (k =1,2...), Theorem 4.2.11 degenerates the case of classical
polynomial interpolation, which was considered by Erdés and Feldheim {19].

First we need to prove a Lemma which generalizes a classical result of Erdés and Feldheim
(cf. {69]).
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Lemma 4.2.13 Let the nonreal elements in {ax}}_;, C C\[-1,1] be paired by complex
conjugation, and let py,...,pr be distinct integers between 1 and n. Then, for an even
number k, we have

1 1
/lvaj#muyngdﬂdz=0- (4.2.31)

Proof. Note that

=l SN A
H:B'—:L‘i—-g

1
i—1 — T Ty

where s
A= :

=L T T

Hence, it follows from Lemma 4.2.6 that

k (=1)A+ /1 — 22 1

1o (z) -~ L, (z) = T (2) il
b1 pk( ) n J];_II Bn(xpj) x_xpj
k (~1)Ptl f1—22 7k 4
kmnk Pj Pi
=& T,(z) (E )
n _7-1;[1 Bn(xp_f) i=1 r — xﬂi

k ko (=1)P+L 1 — 22
= I gy e@T )
=1 J=1,j#i n\=p;

Therefore, to prove Lemma 4.2.13, it is sufficient to prove that
! 1 k—1
/ L@TE @) dz =0, j=1,...,n. (42.32)
—1V1—2z2

First we show that
! 1 T (z)
-1 V1—1z2 (1‘ —am)

if ax € R with the multiplicity = in {ax}?..,. Using the transformation z = (z + 271)/2, we

have
11 Tz 1 1, \E-1 1 dz
/_1 I @—am)p "~ 2 /c+ (5 + 127 (—em —cm' +z+27 )P iz

B 1 Ll | k127 25" ldz
= _2k—1—»°i Z ( j ) c+ n J(z) ((Cm — z)(c;ll —2))p)

pd:z:=0, p=1,...,r (4.2.33)

where CT is the upper half circle.
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Note that k£ — 1 is an odd number, so applying the transformation w = 1/z to convert
the terms f71(2),..-, fn (k=1) (2) to the lower half circle C—, we conclude that

L1 TNz
[-1 VvV1—12(z —an)?
[£]-1 -1
1 E—1 s 2P~ *dz
= 3F1p; ;Z ( j )/cf O e A =

=0

Recall that the function ot
2P

famt ()

((em — 2)(cm' — 2))°
is analytic in the unit disk forp=1,... ,rand 7 =0,..., [g] —~1, and (4.2.33) immediately

follows.

For the case of Sa; # 0 with multiplicity ¢ in {ex}p_,, and v = 1,... ,q, by the same

fashion, we conclude that

1 1 T5-1(z)(az + b)
-1 V1 =22 ((z —ai)(z —@))7

[51-1

-1 k-1 k—1-2§ 22772 (&(2%2 + 1) + bz) .
T ( I ) Jo e (= ez — ez = @)z~ )7 (4.2.39)

dr

=0
since the integrand is analytic in the unit disk.

Note that l;(z) € Pn—1(a1,... ,an), by the partial fraction decomposition combined with
(4.2.33) and (4.2.34), (4.2.32) follows. This finishes the proof of Lemma 4.2.13. O

Proof of Theorem 4.2.11. With Lemma 4.2.7 and Lemma 4.2.13, we can prove this in the
same fashion as in [19] or [53]. Obviously, for any given 0 < p < oo, there exists r € N such
that 2(r — 1) < p < 2r. Then, by the Holder inequality we have

(] Sgitatr) — sz)

([} it st ) ([ L)
<o) ([} SEglEatn) - i as)

- aVi-z2 " ’

2r—

2r p
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We suppose that p, € Pn_1(a1,-.- ,an) is the best approximation to f(z) on [~1,1]. By
Lemma 4.2.10 we have L, (pn,z) = pn, and the Minkowski’s’ inequality yields

I1Ln(f) — fllver < N Ln(f —pu)llv2r + lPn — fllver-
Hence, we need only to prove
IZa(f = pa)llwzr < c(r)ER(S)- (4.2.35)

We denote A(z) := f(z) — pr(z) and

1 1
I = / e |La(A(2)| dz.
n _1 ml ﬂ.( ($)|
Recall that
(@) ., . 11 .
In = Zq-{----—f-r,:ﬁ'mA I(Iil) ---A (I{’) /;1 ﬁl:} (:I:) o l; (:L‘) dx, (4.236)
where 3 denotes multiple sum and 0 < r; < 2r,¢ = 1,...,s. Note that the first term

(single sum) in (4.2.36) is

n

I = 3 A7) [ sl (0) da

k=1

Lemma 4.2.7 yields
In, < c(r)(BE(F)*. (4.2.37)

Also, the second term (double sum) in (4.2.36) is

2r—1 1 1
Iy, : = /———'-Aa:l:z:mA:z:-l-zzr—md
n2 mz=11§12 —lm( (k)k( )) ( (J)J( )) T
2r—1
=" Inyom)- (4.2.38)
m=1
For m = 1, we have
I 1_1_ = - A 2 ld
= A l ) T — In,. 4.2.39
my = [, e 2 A o) A o~ . (6239)

Using the Cauchy’s inequality and recalling Lemma 4.2.13, we conclude that

1 1 n 2 1/2
dz < V7 (/_1 Vi—z2 Lgl A(zk)lk(x)] dﬂ:)
< cEx(f)- (4.2.40)

1 1 n
/_lﬁ ;A(:’?k)lk(x)
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Combining (4.2.38) - (4.2.40) we conclude that
L,y < e(r)(BR(AN (4.2.41)
In the same fashion, we can prove that
Iny(m) S e(r)(EE(FN*, 2<m<or—1. (4.2.42)
From (4.2.41) and (4.2.42) we conclude that
In, < c(r)EF(f). (4.2.43)
Similarly, we can prove that
Li, <c(r)E¥(f), 3<i<2r—1, (4.2.44)

where I, is the i-th term (i—fold sum). For the 2r—th term in I, by Lemma 4.2.13 we
have

2r

v

-~

~ 1 1
Lin=3 Y -2 A@AR)-AE) [ Tk (@)s(@) - ilz) ds

ki #A
_0 (4.2.45)

On combining (4.2.37) and (4.2.43) - (4.2.45), (4.2.35) follows. This completes the proof of
Theorem 4.2.11. O

Next we show that the L2-convergence also holds even if the Assumption (A) is dropped.
That is

Theorem 4.2.14 Let f € C[—1,1], and let the nonreal elements in {ax}}?_, C C\[-1,1] be

paired by complez conjugation. Then
IZa(f,2) = f(2)llv2 < 2VTEZ(S). (4.2.46)
In particular, if 3°22,(1 — |ck|) = oo, then

|La(f,z) — F(2)llv2 =0, n-—+oco, (4.2.47)
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We now let
L L(z)
A= —XZ gz k=1,..,n. 4.2.48
S Y e n (t249)

Next we prove that {Ac}F_; are positive. This extends a classical result for polynomial

interpolation. That is,

Lemma 4.2.15 Let the nonreal elements in {ax}?_, C C\[-1,1] be paired by complez
conjugation. Then
1 1 o
Ap = / e _B(2)dz >0, k=1,..n, (4.2.49)
-1v1—12z2
and

2

n
Ap=m— . 4.2.50
kz=:1 ) 1+ (e1---ca)72 (4.2.50)

Remark. Note that {g(z) € Pn_i(ai,...,az)(k = 1,... ,n) implies that Y ¢_, le(z) # 1,
which differs from the classical Lagrange polynomial interpolation. Hence, we cannot use
the standard method to prove (4.2.50) (cf. [54, Vol. III]). Moreover, (4.2.50) implies that

n
Z A < 7.
k=1
Proof. By (4.2.32), we conclude that
/1—1—(:1:—:c)12(a:)d:z:—0 k=1,..,n (4.2.51)
AVise BT -
Since
H,(lg(z),z) =lk(z), k=1,..,n, (4.2.52)

where Hp(f,z) is the so called Hermite-type interpolation defined by (5.2.6). From (5.2.6)-
(4.2.8) and (4.2.51) we obtain

1 1 1 1
= [ e ks = [ s Halls(a)i) d
1
- / L _2@)dz>0, k=1,..n.
-1vV1—2z2

and then (4.2.49) follows.
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Recall that Lemma 2.2.2 or Theorem D implies that Tp(z) — A¢ € Pr-1(a1,-.- ,az). On
applying Lemma 4.2.10 we have

1 1 n n
[, F=sTn(e) — Ao}z = 3w (Tlae) ~ o) =—o 3 de (4259)

It is easy to show that (cf. [8, Corollary 4.6 (4.13)]),
1
/ -——L—Tn (z) dz = (—1)*mcy - -+ cp, (4.2.54)
1—z2
and on combining (4.2.53) and (4.2.54), (4.2.50) follows. O

Proof of Theorem 4.2.14. Let P(z) be the best approximation of f(z) in Pn—1(a1,--. ;an)-
Then, by (4.2.29) and Lemma 4.2.16 we have

1
[ =t ) — f@)P dz
1 1 2 1 1 \
Sz(/;l man(f_pa-'B)l d$+</;1 mlp(ﬂ:) — f(=)] da:)
1 n
<2 [, 7= 2@ ~plen) h(a) do 4 2x(E)’

<2(EXp) (}: M+ ,,.) < ar (BR())’,
k=1

so, (4.2.46) follows.
Moreover, 3 22,(1 — |ck|) = oo implies that {Pp—;(a1,... ,a,)} is dense in C[~1,1] (cf.
Theorem 2.2.1). Hence we obtain (4.2.47). O

4.3 Quadrature Formula

By using Lagrange-type interpolation (4.2.7) we obtain a guadrature formula:

[ A de~ 0un) Zf(xk e, (4.3.55)

where Ag (K =1,...,n) are defined by (4.2.48). We denote its error by

B0 = | [ A dz - utr)- (4.3.56)
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With respect to this quadrature formula, based on the above results about mean convergence

of Lagrange-type interpolation, it is easy to show that

Theorem 4.3.1 Let f € C[—1,1], and let the nonreal elements in {ax}p_; C C\[-1,1] be
paired by complez conjugation. Then
(a) Qn(f) is a positive quadrature formula, that is \p >0, k=1,..,n.

(b) For any f € Ran—1{ai,... ,an), (4.3.59) is ezact.
(c)
Ep(f) = OMEZ(f)- (43.57)
The quadrature formulas based on the rational interpolation were recently considered
by Van Assche and Vanherwegen [78] and Gautschi {25]. Gautschi (cf. [25], [26]) has

successfully used this idea for the computation of generalized Fermi-Dirac and Bose-Einstein
integrals (also cf. [61] [71]).

Theorem 4.3.2 characterizes the convergence of quadrature formula (4.3.55).

Theorem 4.3.2 Let the nonreal elements in {ax}ge, C C\[-1,1] be paired by complez
conjugation. Then

Jim Qn(f) = 11 —‘/%dx, VfeC[-1,1] < ;(1 —lek]) = 0. (4.3.58)

Proof. By Theorem 2.2.1, we may prove the sufficient condition. On the other hand, since
Qu(f) —>/ f(x) —LE iz, n-oo

for every continuous function, by Steklov’s Theorem (cf. [54, Theorem 4, Vol. III, p. 124])
we know that the system of interpolating nodes is dense on [—1, 1], that is M, — 0, (n — o),
where M, is defined by (4.2.22). Thus, using Borwein’s Theorem (cf. [4, Theorem 1]) we
have E,’f( f) = 0,(n = oo). Therefore, we complete the proof of the necessary condition by
using Theorem 2.2.1 again. 0O

Remark. It’s well-known that all of the weight coefficients {\x}2.; are equal in the classical
case based on the zeros of the classical Chebyshev polynonial of the first kind. That is,
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M = m/n(k = 1,... ,n). But, in general, the weight coefficients Az in (4.2.48) are not
equal. Here we give an example to illustrate this.

Example. Let n = 2, a; = 10 and a2 = 11, then we denote the corresponding Chebyshev
polynomial of the first kind by 7%(z). By some simple calculations, we can show that

A1 = 1.466875541,

and
Ay == 1.674128336.

4.4 Remarks and Problems

1. For the case of {ar}?_; C R\[-1,1] distinct, as we have mentioned before, lx(z) €

spa.n{ L —1-—} implies

z—a1 """ z—an
n
Sh(z) £1, (4.4.59)
k=1

where {lg(z)} are defined by (4.2.8).
Therefore, in order to keep the property Y %_, lx(z) = 1 we must construct Lagrange

interpolation in another rational system Pnp_;(ai,... ,an—1), that is
1 1
span {1, s yeee s ——1——} . (4.4.60)
T—ay T —as T —~an-1

It is easy to see that

Lalfim) == 3 Flan)a(a) (4.4.61)
k=1
satisfies
Cafrze) = flz), k=1...,m,
and

C'n.(f) € Pﬂ.—'l(all sen )a'n—l),
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where

6(z) == ; % 1 (z) (4.4.62)

k— an
is the corresponding Lagrange fundamental function with respect to the rational system
Pn_ila1,-.- ,an-1)

One can check that

L.(l,z) =1, (4.4.63)

and
.cn( . ,a:)s L i=1,...,n—1, (4.4.64)
Tz —ay T —a;
and it follows that
n
> f4(z) =1 (4.4.65)
k=1

We can also prove the following approximation theorem with respect to uniform approxi-

mation:

Theorem 4.4.1 Let f € C[—1,1] and {ax}32, C R\[-1,1] satisfy assumption (A). Then
1£a(£) = Fll-1 < dur(@) InnEZ(f). (4.4.66)

Furthermore, if f(z) satisfies the Dini-Lipschitz condition, then

lim £a(f,2) = ()
uniformly on [—1,1]

The proof is the same as that of Theorem 4.2.2, and we omit it here.

2. On the other hand, by some simple calculations we may get

1 1
L, Tz (@)i(z) do

e

1 1
" Bn(z¢)Bn(z;)(zk — ak)(z; — aj) /—1 V1 —z2

T2(z) dz.
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Hence we conclude that

1
B -—\/1=1__§£k(z)£j(:c) dz 0. (4.4.67)

Therefore, in order to keep the property > %_; £k(z) = 1, the beautiful orthogonality (4.2.31)
is destroyed.

We may also get a similar theorem with respect to mean convergence. We omit the
details here.

3. When {ax}?-; C R\[-1,1] satisfy Assumption (A), we have shown that the correspond-
ing Lebesgue constant for the rational system is asymptotically of order Inn. This is the
same as the case of classical polynomial interpolation based on the zeros of the classical
Chebyshev polynomial of the first kind (cf. [54, Theorem 2, Vol. III, p. 48], [69] or [73]).
But, whether (4.2.11) implies Assumption (A) is still open.

4. We also construct a Lobatto-type quadrature formula for the rational space

P(z)
[Tk=1 |z — axl?’

with the nonreal elements in {ag}p_; € C\[~1,1] paired by complex conjugation. This

Ron-1(@y,--- ,aq) := { P G'Pzn-l}

Lobatto-type quadrature formula is based on the extreme points of the Chebyshev polyno-
mial of the first kind with the rational space Pn(ay,-.. ,a,). Moreover, it is exact for any
element in Ro,—1(ar,--. ,as). For more details, see [50].



Chapter 5

Hermite-type Interpolation in

Rational Systems

Overview

This chapter considers Hermite-type interpolation in rational systems. The correspond-
ing uniform approximation theorem of Hermite-Fejér-type interpolation is established. The
characterization theorem of corresponding Griinwald-type interpolation is also given. Fur-
thermore, we prove that LP-convergence of Griinwald-type interpolation always holds for

every continuous function on [—1,1].

5.1 Introduction

It is known that the Lagrange interpolation can not be guaranteed to converge uniformly to
a continuous function on [—1,1]. On the other hand, Fejér [22] discovered, on considering
a special nodes system and interpolatory process, that we can get positive results. This
interpolatory process now called Hermite-Fejér interpolation is as follows (where y; = 0):

H.(f,z):= i flze)he(z) + Zn:yfcak(x), (5.1.1)
=1 k=1
where

hk(.'.'c) = (1 - 212(:1:;;)(2' - :Ek)) l%(a:), k= 1, ...y, (5.1.2)

58
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and
or(z) == (x —z)li(z), k=1,...,n. (5.1.3)

One can verify that
Hﬂ(fvzk)=f(xk)’ k=1,...,n,

and
'Hrll(fvxk)zy;cs k=11"'1n'

Fejér [22] gave a constructive proof of Weierstrass’ Theorem using the above interpolation.

More precisely, we have

Fejér Theorem Let f € C[-1,1], {zx}f_, be the zeros of the classical n-th Chebyshev
polynomial of the first kind and y, =0(k =1,... ,n) in (5.1.1). Then

Tim [[Ha(f) = fll-1,y =0. (5.1.4)

Fejér’s result was extended by G. Szeg6 [75]. For a systematic investigation of interpolation
for the classical case, readers may consult [73] [74] [75] [55] and [57]. In this chapter, we will

consider Hermite(-Fejér) interpolation in the rational space Rop—1(ay,-.. ,an):
Raon-1(a1,--. ,an) == {Tjﬁ—akli’ Pe 'P2n—1} (5.1.5)
When the nonrea! elements in {ax}}_, are paired by complex conjugation, Raon—1(a1,a2,--- ,an)
is a real rational space. In particular, when {as}%_; are real and distinct, Ron—1(a1, a2, --- ,an)
is simply the real span of
{ 1 1 1 1 }
z—a1 (z—a1)? Tz ~a, (z—an)2 )’

5.2 Hermite-type Interpolation In Re,_i(ay,... ,an)

Let f be a function defined on [-1,1] and {y;}?-; € R We know (cf. [8, Corollary 4.9] or
(62, Theorem 1.1} that the Chebyshev polynomial of the first kind Ty (z) for the rational
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system Pp(ai,... ,an) has exactly n distinct zeros on [—1,1]: 1<z, <--- <z <1l. We
construct the Hermite interpolation based on the zeros {zx}%_.; of Tn(z) as follows.

Ha(f,2) = kfl Flemhe(e) + k}_:l hane (), (5.2.6)
where —
he(z) == (1 — 2(ze)(z — z2)) B(z), k=1,...,n, (5.2.7)
and
p(z) = (z —z)li(z), k=1,...,n, (5.2.8)

where l¢(z) (k = 1,... ,n) are defined by (4.2.8).

One can verify that
Hﬂ(f1 .’Ek) = f(xk)’ k= le.oymn,

and
Hy(f,zx) =%, k=1,...,n

Lemma 5.2.1 Let the nonreal elements in {ar}p_; C C\[-1, 1] be paired by complez con-

jugation. Then
Hn(.f) € Ron-1(a1,-.., @n)- (5.2.9)

Proof. Since {lx(z)} € Pn-1(a1,--- ,as) (cf. Lemma 4.2.1) and T}, € Pn(ai,... ,an), then,
(5.2.9) follows from (5.2.6)-(5.2.8). O

Lemma 5.2.2 gives the fixed elements of the generalized Hermite-type interpolation
Hn(.f ) :E).

Lemma 5.2.2 Let the nonreal elements in {ax}2, C C\[-1, 1] be paired by complez con-
Jugation. Then for any p € Ron—1(ay,-... ,an), we have

Hu(p,z) =p. (5.2.10)
Proof. If Pn(ay, ... ,an) has a pole of order m at the point a; € R, then we first claim that

1 _ 1 _
H, (m,x) = @ —a) r=1...,m (6.2.11)
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Here we just prove this for - = m since the other cases can be proved in the same fashion.

By a simple calculation we conclude that

’ ' =1
t(o) = dhlen) = 3 o
Then by (5.2.6)-(5.2.8) we have
1 _ R3 (z«) ;
Hx ((m Z ai)m"‘”') = (x) g_:l 0-1)’" (1 — 2 (ze) (= — k) gk (2)
1 ¢ m =~ 2 R2 (k)
+ () g (—zk — +jz=:1 P aj) r — a)™ (z — ) gk (z)-
We now denote
ta@) = ¢ f"‘xg (€ Panem).

then

! _ = Rﬁ(xk)
t“(x)—( Tp —a; Z_: k_aj) (zk — ai)™’

Therefore, by the classical Hermite interpolation we have

H, (_I—-x) Rn( {ztn(m (1 ~ 2} (z£) (z — z¢)) qk(:c)+Ztn(xk)<z—zk)qk(x)}

(z—a)™
1 R2(z) _ 1
T Ri(z)(z—a)™  (z-a)™

which is nothing but (5.2.11).

Similarly, we can prove

1 1
H, (———,z) =—Q0, r=1,...,m, 5.2.12
n (z — at.)2r (z - al.)2r ( )

and, If Pp(ai,... ,an) has a pole of order [ in the point a; and Sa; # 0, then, we also have

H, ( 1 — :z:) = 1 —, s=1,...,1, (5.2.13)

((z — aj)(z —a@;))*’ ((z — a;)(z —g;))*

G-a)z-3)°"") " (G-a)e-a)

Hn( LA— )s z___ s=1,...,1 (5.2.14)
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1 _ 1 B
o (((-'E —aj)(z —a@;))** ’x) “z —a))z —g) " s=1...,1 (5.2.15)

and

H, ( z ) i s=1,...,0 (5.2.16)

G-a)c-a)2 ")~ (- -gG) "

Therefore, on combining (5.2.11) - (5.2.16) and using the partial fraction decomposition we

have completed the proof of Lemma 5.2.2. O

We now state our main result. Theorem 5.2.3 asserts that Hermite-Fejér-type interpo-
lation converges uniformly to the continuous function on [—1, 1] under the Assumption (A).

Theorem 5.2.83 Let f € C[-1,1], ¥ = 0(k = 1,...,n), and let {ar}f; C C\[-1,]]
satisfy the Assumption (A). Then

Jim Ho(f,2) = f(2) (5:2.17)
uniformly on [-1,1].

The proof is based on several lemmas given below. Lemma 5.2.4 shows that the cor-
responding Chebyshev polynomials for Pn(a1, a2, ... ,a,) still satisfy a certain differential

equation.

Lemma 5.2.4 Let {ax}?_; € C\[-1,1], and let T, and U, be the Chebyshev polynomials

of the first and second kinds for Pp(a1,as,... ,an), respectively. Then
(1 = z%)T¥(z) — =T (z) — B2(z)Tn(z) = (1 — z%) Bl (z). (5.2.18)

Proof. Let Tp(t) := Tp(cost) and Uy(t) := Un(cost)sint. We then have (cf. [8, Theorem
2.1])
Tp(t) = —Ba(t)Un(t), Ui(t) = Ba(t)Tu(t), teR

where By (t) := Bp(cost). Hence,

zUn(z) — Bn(z)Th(z) ]

— (5.2.19)

Trl;(z) = Bn(z)Un(z), Ui(z) =

So, by (5.2.19) it is easy to check (5.2.18). O
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Remark. When a; — oo, then we have B, (z) = n for z € [—1, 1], consequently, B;,(z) =0
n [—1,1]. Then (5.2.18) degenerates to the case of the classical Chebyshev polynomial of
the first kind.

Lemma 5.2.5 gives an explicit formula for the Hermite fundamental interpolatory func-

tions.

Lemma 5.2.5 Let {ax}p_; C C\[-1,1]. Then, fork=1,2,... ,n,

’ T 2
mn(a) = (1= o2 ~ (1 = ) 2o - 2) (52 (xf;(‘j’_ —). G2

and

(1 — =) Ti=)

pr(z) = B2 (on) (- 25)" (5.2.21)
Proof. From (5.2.18) and (5.2.19) we have
T (zx) _ Bn(zk)Un(zk) + Bn(zk)Up(zk)
Trll(xk) Bﬂ-sxk)Un(zk) (5.2_22)
Ty B (zk)

T 1=22 " Ba(zk)
Also, by L’Hospital rule we can show that
Tll(xk)
he(e) = (1- @ ~2) (o)
Therefore (5.2.20) follows, and (5.2.21) follows immediately from Lemma 4.2.6. &

Lemma 5.2.6 Let {ax}i.; C C\[—1,1] satisfy the Assumption (A). Then

3 (@) =0(1), ze[-L1] (5.2.2)
S (=) = 0Q), sel-1,1], (5.2.24)
k=1

3tz -zl = o EE, s ey, (5.2.25)

k=1
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zn: |z — |l (z) = O(1)'T n@) € [-1,1], (5.2.26)
= v
and
Z dee@ O(1) ITﬁ) ', z € [-1,1]. (5.2.27)

Proof. We prove only (5.2.23) because the others may be proved in exactly the same way.
By (4.2.9) we have

R A e R Vs
= (Ta())? — Tn(2)TH (2) 1
Z‘l -z T2(z) * Z (@ —ax)?
Assumption (A) implies that
1 1 4y?

< < .
(z—ak)* = (lakl —1)2 =~ (1 —7)*
Note that a Schur-type inequality (cf. Theorem 3.3.1)
1Pl—1,11 £ [Bnlii—1,ylt V1 — 22P(@)l|[~1, (5.2.28)

bolds for P € P,_(a1,--. ,an), we then deduce

IUnll—1,13 < | Ball{=1,1-

Thus by a slightly longer calculation, and combining Lemma 3.4.2 and Lemma 5.2.4 as well

as the above results, we have

n Tn(ﬂ?) 2
kz=:1(1 ~ k) (Bn(xk)(x - -'L'k))
_ = a(z) 2
= Z(l ~ 22 + z(z — k) (B A _zk))

k=l

(1 - )T2(z) s ]
Z 1 +2In(@) ,Z:l B2(zr)

Bn(zx)(z — zx))? (z — z¢)

< d(a),

(5.2.29)
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On recalling Lemma 3.4.2 and using the Cauchy’s inequality we have

Z(l Bﬁ(xk)

B?, (k)
2 _
d(a) 2(1_ ")IT (-73)| d(a )T3(,22:) (; (xl—:: )

2 _ -
= d(o )Ts(lzzz:) (;1 z2 + 2 :z:k)

(z — zx)?

T (z)
|z — z|

= (5.2.30)
1/2
ITn(z)! (T2(z)(1 —2?) 2N~ _ L oo
= S Zl (@ —20)? + 22T2(z) g p— nT2(z)
S d(cx) |Tn(x)l .
n
Now (5.2.23) follows from (5.2.29) and (5.2.30). ©
Lemma 5.2.7 Let {ax}32, C C\[—1, 1] satisfy the Assumption (A). Then
n
lim > h(z) -1 =0, (5.2.31)
k=1 (-1,1]
and
n
1 — 721 — 2 —
Jim V1-—z2|1 ;lk(z) =0 (5.2.32)

uniformly on [—1,1].

Remark. By Lemma 5.2.1 we can see that > 7_, hg(z) # 1, Thus we cannot prove (5.2.31)
in the usual way (cf. [69]).

Proof. By the partial fraction decomposition we know that there exist some constant Ay

and some g, € Pp_1{(a1,...,an) such that
Ta(z) = Ag — qn(z)-

Clearly, Ag = im;_,oo Tn(2z). By the definition of T}, and a simple calculation we have (cf.

(6, Theorem 3.5.4])
4=

((c1 lye- cn) .
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Moreover, note that [[T,[[[—1,1) = 1 (cf. [8, Theorem 1.2]), so, if we take p, := gn/Ao, we

have
11 =Pall-ry < A <2 1'[1 el < 29 (5.2.33)
By the Bernstein-type inequality (3.2.2), Lemma 3.4.2 and (5.2.33) one can conclude that
VIZF,@) < Bl a2 (F22) m<dln) (6234
for n > N(v).

From Lemma 5.2.2 we can conclude that Hy(p,) = pn. Thus, by (5.2.23), (5.2.27) and
(5.2.34), we can show that

z“: he(z) — 1

k=1

~n(z) +pa(z) — 1

< Z(l — palze))he(z) — D Ph(ze)or(z)| + EF(1)

k=1 k=1
= o(1) (%+—}_ﬁ) 50, n— oo
Since
VvV1—2z2|1 — i Bz)|=V1—-2z2 (1 - i hk(f!?)) + (i hi(z) — Zn: ll%(l'))
k=1 k=1 k=1 k=1

+V1—2z2

1—z2

S hi(z) — Y lie)
k=1 k=1

1—" he(z)
k=1

= S1(z) + S2(z).
(5.2.31) implies that lim,_, S1(z) = 0 uniformly on [—1,1]. By Lemma 5.2.4 we can show
that

Sa{z) < Z |lzel V1 — "(x) + ‘/__Z |Br, (mk)l(l _ z%) T,%(.’IJ) .

Bz(:L’ Nz — zk| B3(zx) |z — z|

We may see that S2(z) — 0 uniformly on [—1,1] as n — co by using similar techniques to
those of Lemma 5.2.6. Therefore, we have completed the proof of Lemma 5.2.7. O

Proof of Theorem 5.2.3. We can now prove this in the usual way. One can easily show that

Zn: he(z) — 1
k=1

= S3(z) + Su(z). (5.2.35)

[Half,2) = f(@)| < D 1f(2x) — F@iR()] + 1 Fll -1,y
k=1
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Note that
w(f, M) <1+ ANw(f,d8), (A>0, &§>0), (5.2.36)

where w(f,.) is the modulus of continuity of f.
Hence, from (5.2.23) we have

$3(2) € S wlhilo = wele(@)| S w(f,d) 3 (14 E228) etz
k=1

k=1

S w(f,d) (0(1) +1/8) |z - :vkllhk(r)l) -

k=1

Taking 6 = T”f: in the above inequality and using (5.2.25) we can conclude that

S3 (:D) —0 n— o0,
uniformly on [—1,1]. Also, from (5.2.33) we conclude that
S4(z) =40, n— oo,

uniformly on [—1,1]. Therefore we complete the proof of Theorem 5.2.3. O

Remark. Actually, we have also derived estimates of approximation for f(z) by Hn(f,z)
on [-1,1].

5.3 Characterization on Griinwald Interpolation

If we drop the linear term 1 — 24, (zx)(z — =) in he(z), k=1,... ,n (cf. (5.2.7)), then we

obtain an simple positive operator:

Gn(f,z) :=_ f(ze)ii(z), (5.3.37)
k=1

which was first studied by Griinwald for the classical polynomial case in 1940 (cf. [25]),
hence, we here call it the generalized Griinwald interpolation. The studies of Griinwald
interpolation and its applications can be found [42] [43] [49] [51] [64] and the references
therein. It is also a close cousin of Nevai’s G, and F, operators (cf. [57, (4.5.6), (4.10.35)]
(551 [48]).
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Theorem 5.3.1 Let f € C[—1,1] and {ax}32, C C\[-1,1] satisfy Assumption (A). Then
lim Gu(f,2) = £(2) (5.3.38)
uniformly on the closed subset [—a,0], where 0 < o < 1.

Theorem 5.3.2 characterizes the uniform approximation of Griinwald-type interpolation
on the whole interval [—1,1].

Theorem 5.3.2 Let f € C[—1,1] and {ax}32, € C\[~1,1] satisfy Assumption (A). Then
(5.3.29) holds uniformly on whole interval [—1,1] if and only if

f(1) = f(-1)=0. (5.3.39)

Therefore, Griinwald-type interpolation, in general, can not uniformly converge to all
continuous functions on the whole interval [—1,1]. But by Theorem 5.3.2, one can easily
show that mean convergence always holds for every continuous function on {~1,1]. That is,

Corollary 5.3.3 Let f € C[—1,1], {ax}2, C C\[-1,1] satisfy Assumption (A). Then, for
0 <p < o0, we have

. ! 1
lim [ —==51Galf,2) ~ @) do = 0. (5.3.40)

Lemma 5.3.4 gives a sufficient condition for the corresponding Griinwald interpolation
to converge uniformly for the continuous function on [—1, 1].

Lemma 5.3.4 Let {a}32, C C\[~1, 1] satisfy assumption (A). Then, for f(z) = V1 — 22g9(z),
g € C[-1,1], we have
lim [[Gn(f) — f||[~.1,1] = (.

n—oo

Proof. Note that

Gn(f,7) — f(z) = X (f(zx) — F(2)iE(z) + () zn: li(z) - 1)
k=1 =1

= Ss5(z) + Se(z).
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By (5.2.24) (5.2.26) and using the same method in the proof of Theorem 5.2.3 we may
deduce that

Jim [S5(2)| =0, (5:3.41)

uniformly on [—1, 1].
Since

Sa(@) = 9@VI=2 (32 12(s) - 1) :
=1

by (5.2.32) we can show that Sg(z) — 0 uniformly on [—1, 1] as n — co. Therefore, Lemma.
5.3.4 follows. O

Proof of Theorem 5.3.1. We can prove this in exactly the same method as in the proof of

Theorem 5.2.3, so we omit it. O

Proof of Theorem 5.3.2. First we prove the only if part. By Hermite-Fejér interpolation and
Lemma 4.2.6, as well as (5.2.20) (5.2.22), we can show that

(Gal(f,1) — (1)) - (Z(f(xk) - f(l))lﬁ(l))
k=1

I LBL(=R) o vaen) e 1
+ (1) (1 th(l)) + f(1) (Z @ )(1 xk)lk(l)) f(l)kgl B2(z)

k=1 Bn

= —f(1) Z 2(1 ~ z)R(1) - f(1) Z Bz( (5.3.42)

Tk

= —f(1) Z L

1z B2(zx)
Note that (5.3.41) yields
A, > Z(f(zk) FANEQ) =0,
and (5.2.31) implies

Jim (1 - Z hk(1)> =0.

Combining Lemma 3.4.2 and (5.3.41) we have

lim ZB'(zk)(l_x)

n—roo | 1Bn( )
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and
) 1
A 2 B
Hence, by a simple calculation and [8, Theorem 2.3] we have

~_ 1 _ T RQ) _ 1+cx nooq
gl—zk“nm Ra(1) Zl—ck) Zl_ak-

k=1

Since n el n |
1— e 1+ ¢ 14 ek
zl-{-lcklszl—ck Zl—[cl
k=1 k=1 k= k
also, note that Assumption (A) is equivalent to Assumption (C), we may conclude that

n
> L ~ nZ.

k=1 1- Tk

Also, Lemma. 3.4.2 asserts that
Bp(z)~n, —-1<z<L

Therefore, from (5.3.42) and the hypothesis of the uniform convergence we conclude that
f{1) = 0. Similarly, we can prove f(—1) =0.

Next we prove the if part. By using the Bernstein fundamental polynomials (cf. [40]) and
a linear transformation, one can show that

-1
spa.n{(l +z)k(1 - z)”‘k};::l , kE=1,2,...n—-1,n=2,..

is dense in C*[-1,1] := {f € C[-1,1], f(—1) = f(1) = 0}. Therefore, we only need to check
that

lim Gu(re, 2) = ri(a), (5:3.43)

uniformly on [—1,1], where r¢(z) := (1 +z)*(1 —z)™*, k=1,..,m—1,m=2,.... Since
Tk(z) contains the factor v1 — z2, on applying Lemma 5.3.4, we complete the proof of the
if part. O



Chapter 6

Bernstein-type Polynomials in

Rational Systems

Overview

This chapter considers Bernstein-type polynomials for rational systems

{p(z)/ TT=1(1 + tiz), p € Pn} associated with t; > —1,7 = 1,... ,n on the interval [0, 1].
A Popoviciu-type theorem and asymptotic formula are established for these Bernstein-type
polynomials. Some shape preserving properties of these Bernstein-type polynomials are
presented. As an application of these Bernstein-type polynomials, we also consider the ap-
proximation problem in {p(z)/ [Ii=; (1 + t;z), p € Pn} with p(z) having integral coefficients.

6.1 Introduction

The Weierstrass Approximation Theorem states that every continuous function f(z) on
0 € z £ 1 can be uniformly approximated there by polynomials. In 1912, Bernstein gave

an explicit method of constructing the approximation as follows:

Bulhi) =25 (£) o), mete) = (’,’:) (1 — z)" k. (6.1.1)
k=0

For a proof that By (f, z) converges uniformly to continuous function f(z) on [0, 1] as n — oo,
see, for example, Lorentz [40], DeVore and Lorentz [15, Chapters 1 and 10] or Ditzian and

71
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Totik [16]. Moreover, the Bernstein polynomials have some important shape preserving
properties that play an important role in Computer Aided Geometric Design (CAGD) (cf.
Farin [21]).

6.2 The Construction of Bernstein-type Polynomials

In 1979, Videnskii [81} introduced a set of generalized Bernstein polynomials for the rational
system with prescribed poles
Palti,... ta) i= {-——n—p(i)— pe ’Pn} , (6.2.2)
i=1(1 + tiz)
where t; > 0(z =1,... ,n).
They are constructed as follows. For given t; > 0(i = 1,... ,n), let

n

z 1+¢;
== ] 2.
n(2) n ; 1+ tx (6-2.3)

Since ¢y, (z) > 0 on [0,1], wn(z) is strictly increasing. The nodes {¢}?_, are uniquely
determined by the equations

k
on(m) = — k=0,1,... ,n. (6.2.4)

Clearly, {7x}}_, are functions of {t;}%.; and 79 = 0,7, = 1. Note that 1+ t;z = (1 — z) +
(1 + ¢;)z, thus,
n n
Po(z) := [J(1 + tiz) = D agz®(1 —2)"F. (6.2.5)
i=1 k=0

Obviously, {ax}i_¢(> 0) are functions of {¢;}%;, too. Then, for a given function f(z) and
n € Z, the Bernstein-type polynomial for the system (6.2.2) is defined as follows:

Bu(fiz) =3 F(r)pela), (6.2.6)

k=0

where

pe(z) == arz*(1 — )" */P.(z) >0, k=0,1,...,n. (6.2.7)
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One can easily see that (6.2.6) is always defined for ¢; > —1(i = 1,...,n), not only for
the case t; > 0(¢ = 1,...,n), the latter was treated by Videnskii [81]. Also, Ba(f,z) €
Pn(ti,--- ,tn). We encounter a problem of terminology that our Bernstein “polynomial”
here is actually a rational function with prescribed poles —1/¢;,7 = 1,... ,n. For more
information about the system (6.2.2) and related topics, see, for example, [1] [6, Chapter 7
(8] (9] [17] [25] [78] and references therein. It should be mentioned when all ¢; = 0, (6.2.6)

degenerates to classical Bernstein polynomials.

By introducing the index

bk 1
Sy 1= ; T (6.2.8)
and assuming s, — o0, {(n — o), Vindeskii [81] proved that the operator (6.2.6) converges
uniformly for continuous function on [0,1]). More precisely, Videnskii [81] obtained the

following
Theorem K. Let f € C[0,1], and t; >0(z = 1,... ,n). Then

1Br(f) = flip,yy < 2w (f,1/V/3a) - (6.2.9)

where w(f,.) is the modulus of continuity of the function f on [0, 1].

Therefore Videnskii [81] extended Popoviciu’s estimate for classical Bernstein polynomi-
als. He also established an asymptotic formula for these Bernstein polynomials under some
conditions, which extended Voronovskaya's formula for classical Bernstein polynomials (cf.
Theorem 6.4.1). As early as 1960, Videnskii and Shabozov (cf. [81] and references therein)
tried to generalize classical Bernstein polynomials for the system (6.2.2), but they needed
more restricted conditions and they constructed Bernstein-type operators of a somewhat
different type from (6.2.6) (cf. [81] and references therein).

Since Videnskii [81] restricted ¢; > 0(¢ = 1,...,n), he excluded the interesting case
when the poles approach the end point 1. Moreover, we can easily see that the measure
index (6.2.8) is not suitable in the case {; > —1(i = 1,...,n). The restriction t; > —1(i =
1,...,n) is necessary (otherwise, it is impossible for B,(f,z) to uniformly approximate

continuous functions on [0, 1]).



CHAPTER 6. BERNSTEIN-TYPE POLYNOMIALS IN RATIONAL SYSTEMS 74

In this paper, we shall study Bernstein-type polynomials (6.2.6) for the general case
> —1(z=1,...,n). By introducing another index

= > (1+¢t) +Zl+t (6.2.10)

~1<t; <0 t:>0
which, indeed, is exactly (6.2.8) for the case of ¢; > 0(¢ = 1,... ,n), we shall extend Viden-
skii’s results. Moreover, we shall show that (6.2.6) still has some shape preserving properties.
As an application of these Bernstein-type polynomials, we also consider the approximation
problem by {p(z)/ [Ti;(1 + ¢iz), p € Pn} with p(z) having integral coefficients.

6.3 Uniform Approximation

We first state our approximation theorem by Bernstein-type polynomials (6.2.6), which

extends Theorem A.
Theorem 6.3.1. Let f € C[0,1] and t; > ~1(: =1,...,n). Then

1 Br(f) — flip,y) < 2w (f,1/+/5n)- (6.3.11)

Before we prove this, we make some observations.

Note that the distance between two consecutive interpolation nodes is 1/n for classical
Bernstein polynomials, 1/n is exactly the square of the measure index of order of uniform
approximation by classical Bernstein polynomials (cf. Lorentz [40]). Hence, we first estimate
the distance between two consecutive nodes in order to find the measure index concerning
the order of approximation by Bernstein-type polynomials (6.2.6). By the definition (6.2.4),

we have

I;ii 1+t T,HZ 1+¢ 1
n :=11+t,'7‘k 14t n’

It immediately follows that

— Z 1+4¢;
k_ = (1 +t,,Tk (1 4+ tiTe— 1)

But

1+¢;
> 1+1¢),
_]_<Zt‘.<0 (1 +tme)(1 + tiTk—l) - —1§<0( 0
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and
14t 1

A S 1
t‘-LZJ(] (l + tiTk)(l -+ t‘iTk—l) - t,%) 1+ ti

We thus have

Fact 1: Ift; > —-1(i=1,...,n), then

-1
1 -
0<Tk—1‘k_1${ E 1+14)+ E 1+t‘} =’~Sn1. (6.3.12)
i

—1<t; <0 t: >0
This is how we know to introduce the measure index s,.

Due to Fact 1, we further revise a function Qn(z) given in Videnskii [81}:

1 1+1¢; 1
Qn(z) := n { Z 1+t + Z 1 +t,-:z:} ! (6.3.13)

—1<t;<0 t:>0

by a simple calculation, we then have
Fact 2: Ift; > —-1(:=1,...,n), then
sn/m<Qn(z) <1, 0Lz 1. (6.3.14)

We introduce another function

Mn(a) := inf 9”"(3’; =~ Z"(") (6.3.15)

instead of ¢}, (z) as in [81].
Fact 3: Ift; > ~1(i=1,... ,n), then
Qn(z) < An(z), 0<z <1 (6.3.16)
Proof. By a slightly longer calculation, we can show that
2"%%"(”)—%@ >0, 0<y<l, 0<z<I,
Fact 3 follows. ©

We now let

®i(z) := pn(1k) —pn(z), k=0,...,n. (6.3.17)
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Fact 4: Ift; > -1(i =1,... ,n), then

n Zn: % (z)pr(z) < Qn(z), 0<z <1 (6.3.18)
k=0

Proof. Since Y p_qpr(z) =1, it follows, > %—¢ Pi(z) = 0. By a simple calculation we have

pr(z) = n®k(z)pe(z) /(1 ~ z), (6.3.19)
and it follows that
Zn: Sr(z)pr(z) =0. (6.3.20)
k=0

Differentiating (6.3.20), we then have

2 _zl—xz) , . z(l-z)~ 14+

By a slightly longer calculation, we can check that

1 z(l —z)(1 + &)
— >0
1+ (1 + t;z)? -

fort; >0and0<z <1, and

L+¢  z(l —z)(1+t)
1+tz (1 +t;z)? -

for =1 < t; <0 and 0 < £ < 1. Therefore (6.3.18) follows. O

Proof of Theorem 6.3.1. We can now prove this in a usual way based on these facts. Noting
that > 2_,pr(z) =1 and applying Cauchy’s inequality, we have,

|Bn(f,z) - fz)| < i |f(7e) — f(z)[p(z) < w(f,6) {l +67t Zn: |z - Tklpk(z)}
k=0

k=0
n 1/2
< w(f,9) {1 +6 (D (= - Tk)zpk(-'ﬂ)) } , 0<z<1.
=0
We denote that

Das) = 32 (@ — 1) ?e(). (6.322)
=0
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By the definition of A,(z), we can easily check that
n
A2(z)Dn(z) < > i(z)pi(z).-
k=0
Using Facts 2-4, we then have

Da(z) < 33%(2) 3 ®3(z)pe(a) < 2@ 3 8 *
(z) ‘x’,; (z)pe(z) < Q ()?::0 i(z)pe(z) (6.3.23)

<n7'QrMz) <s;f, 0<z <L

We thus complete the proof by taking § = sn 12 g
6.4 Asymptotic Formula
We now let
Pn = max {?‘lggc ti, _max 1—;%} , (6.4.24)
and
W (z) = "(12; z) [ g,;((";))]'. (6.4.25)

Next we shall establish a Voronvskaya-type theorem. Its special case, in which ¢; >
0(¢( =1,...,n), was proved by Videnskii [81]. Moreover, when t; = 0( = 1,... ,n), it is
exactly Voronvskaya’s formula (cf. [15] [40]).

Theorem 6.4.1. Let f € C3[0,1], t; = —~1/2(i = 1,... ,n), and p,, Wn(z) be defined by
(6.4.24) and (6.4.25), respectively. If

. 2.-3/2 _
nh_{%on(pn +1)“s, 0, (6.4.26)
then

nli}mé'o Sn {Bn(.fa z) — f(z) - Wa(z)} =0, (6.4.27)
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holds uniformly on [0,1].

Remark. Here t; > —1/2(: =1,... ,n) is a technical assumption (cf. (6.4.33)), whether it
can be dropped is still open.

Proof. Since

s -1 = [ seae= [ L a0 a

integration by parts twice yields

_ fl(=)
flme) = f(z) = m(@k(z) +

fl(i’?) ! 2
20 (2) [%(z)] Tile) + Re(a),

where

wn(t) Len(t)
Recalling (6.3.20) and (6.3.21), we then have

Rk(:z:)=-;- /:’{ 1 [f'(t)]'}lcbﬁ(t)dt. (6.4.28)

Br(f.z) — f(z) = Wa(z) + )_ Re()pe(z). (6.4.29)
k=0

Therefore, we need only to show that

Sn i Rk(:z:)pk(a:)) —+0, (n— o), (6.4.30)
=0 i
holds uniformly on [0, 1] under the condition of (6.4.26).
By some simple calculations, we can show that
neh(z) > sp, 0<z<1, (6.4.31)
and
lon(2)| < 20n05(7), ot (z) < 6pFP(z), 0<z <1 (6.4.32)

fort; >-1(i=1,...,n).
Moreover, if ¢; > —1/2(i =1,... ,n), we then have

tiz
1+ 4z

0<z<1

—_ b
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Furthermore, by some slightly longer calculations, we can check that
zleli(@)| < 26 (x), T (z) < (e), 0<z <L (6.4.33)

fort; > -1/2(i=1,...,n).
We now denote

An =Y Bh(@)pi(2)-
k=0
Then we twice differentiate (6.3.21) to yield the following identity:
A =3 (ZE=2) (g1 0+ (o1 - o)l +
3(z(1 — 2))2(1 — 2z)li(z) + (1 — 62(1 — z))z(1 ~ z)p, ()]- (6.4.34)

Note that fact |(1 — z)(1 —2z)] < 1 and |1 —6z(1 —z)] < 1 for z € [0,1]. Thus, if
t; > —1/2(i=1,...,n), by (6.4.31) and (6.4.33) we have

31—-z)2 8(1—z) _11
< < — <z<l1. 4.
Z S(@)pr(z) S =5 —+ =5 — <5, 0<z<1 (6.4.35)
By the monotonicity of ®¢(z), we can show that
B2(t) < ®i(z) (6.4.36)

for t between z and 7%. Recalling (6.4.31) — (6.4.33) and by a slightly longer calculation, we

conclude that
1Be(@) < 5 (0/5n)? (17" o1 + 60mll N0, + 186211F 0.0) B3z ~ 7
< 9¢t (n/sn)? (pn + 1)2@E(2)lz — 7, 0<z <1, (6.4.37)

where ¢ == max{|| f'{ljo, 1, [l /Hl0,1» 1 /" lljo,17}-
Hence, using (6.4.35) and (6.4.37), and applying Cauchy’s inequality, we have

1/2
Z |R(2)Ipk(z) < 9cf (n/5n)? (o + 1)? (Dalz))/? Z Bi(z) pk(x))

k=0 =0
< 9V11crn(pn +1)%5752, 0<z<1.

Now (6.4.30) follows, and we have completed the proof. O
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We denote

n®%(z)p(z)
, k=1,...,n, 6.4.38
z(t - 2)eh(@) (6:4.38)
and Ny € Z such that s, > 1 for n > Ny, respectively.
Using the same idea as in the estimate of D,(z), we can obtain that

ae(z) ==

> (z— ) arlz) < X2 f: ®2(z)qr(z) < 11/sn (6.4.39)
k=0 k=0

for n > Nj.
Combining Theorem 6.3.1 and (6.4.39), and using the exactly same method of the proof
as in Theorem 3 in [81], we can show the following approximation result of f’(z) by B.(f,z).

Corollary 6.4.2. Let f € C'[0,1], t; > —1/2(i = 1,... ,n) , and let p, be defined by
(2.14). Then

1BA(f) = f'llp.y < 8{20nw(f,1/v/52) +w(f',1//3n)} (6.4.40)

for n > Ng.
In particular, if pn/\/Sn = 0(n — o), then B (f,z) converges uniformly to f'(z) on [0, 1].

6.5 Shape Preserving Properties

We now extend some basic shape preserving properties of classical Bernstein polynomials
to the Bernstein-type polynomials (6.2.6).

Let Z(g,1)f and So,1)f denote the number of zeros and the number of sign changes of the
function f(z) on [0, 1], respectively, and let Varf denote the total variation of the function
f(z) on [0,1]. We then have

Theorem 6.5.1.Let B,(f,z) be defined by (6.2.6) and t; > —1(i=1,...,1). Then
(1) The polynomial By(f,z) increases on [0,1] if f(z) is increasing on this interval.
(2) One has Z,1)Bn(f) < So,1)f -

(3) VarB,(f) < Varf.
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Proof. Note that
B(f,z) = Y f(m)pk(z)
k=0

and Y 7_opi(z) =0, and it follows that
Bp(f,2) = > (f(m) — F(=z)) pi(=)-
k=0

So, from (6.3.19) we have

B(f,) = 3 (F(m) = £(2)) (on(me) = on(a)) 222 (6.5.41)

k=0

We now suppose that = € [rx,, Tkp+1], where 0 < kg < n — 1. Since f(z) and @,(z) are
increasing on [0, 1], then f(7x) — f(z) > 0 and @, (7k) — @n(z) > 0 for k > ko + 1. Similarly,
f(mx) — f(z) <0 and ©@,(1%) — @n(z) < 0 for & < kg. Therefore we conclude that

(f(7x) — £(2)) (pn(7k) — @n(z)) 20

for £ = 0,1,... ,n. It follows that B} (f,z) > 0 for 0 < z < 1 and we have shown the
conclusion (1).

Recall that ax > 0(k =0,1,... ,n) (cf. (6.2.5)). Thus, by a trivial modification of [15,
p. 309] and applying Descartes rule (cf. Borwein and Erdélyi [6] or Pélya and Szegé [62]),

one can easily show (2).

Since B (f,z) preserves constants and Z(g 1)Br(f) < S(o,1)f, the conclusion (3) now
follows by a nice observation of DeVore and Lorentz (cf. [15, Remark, p. 309]). O

6.6 An Application to Approximation by Rational Systems
with Integer Coefficients

Let P7 denote the set of all polynomials of degree< n with integral coefficients. We further
let

P:(tly"' atn) = {’j%%_) pE 1):} N (6.6.42)
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and

Bi(fen = g inf () ~ a(e)lon- (6.6.43)

As an application of the Bernstein-type polynomials (6.2.6), we treat an approximation
problem by PE(¢y, ... ,tn) for continuous functions on (0, 1].

In this section, we suppose t; > 0(z = 1,... ,n). Clearly, f(0) has to be integer if f €
C[0, 1] can be uniformly approximated by PE(¢y, ... ,t,). Using Bernstein-type polynomials

(6.2.6), we can prove

Theorem 6.6.1. Let f € C[0,1], and let f(0) be an integer. If t;(i = 1,... ,n) are integers

and f(1) is also integer, then, when s, — 00 (n — 00), we have

lim E7(f)p,y =0, (6.6.44)

n—oQ

Proof. We denote that

(Bn(f,z)] = 2k=olf lg:z&c;klpk(z

where the symbol [} denotes the greatest integer function. Therefore, {B,(f, )] € PE(t1,- .. ,tn)-
Recalling the definition of {ax}f_q (cf. (6.2.5)), we have ag = 1 and a; = [J/=; (1 +t:). Since
f(0) and f(1) are integers, we then have from the given assumption

n—1 k(l _ z)n—k

|Ba(f, %) — [Ba(f>2)]| < ’“‘;1(1 o)

<,
n
and, by the usual method (cf. Ferguson [22]), one can easily prove this. O

Corollary 6.6.2. Let f € Cla,b], where 0 < a <b< 1l,andlett; >0 =1,...,n). If
Sn = 0o(n = o). Then

(f)[a ]

Remark. The assumption of f(1) being integer is not necessary if f € C[0,1] can be
uniformly approximated by PE(%1,. .. ,tr)- Indeed, we have

ﬂ—}&

Theorem 6.6.3. Let f € C[0,1], and let f(0) be integer. then, when s, — 00,Yn —> OO

(n — 00), we have

Lim Eg(f)p,y =0, (6.6.45)
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where
n
St
n = .
=ittt
Proof. In this case, we have
Sioizfl—z)n k& oz
— < &k= .
Since 755 is increasing function on [0, 1], we have
Tz LA § i t:
0<]I < =11 (1 — ) ;
stttz E.l+ti = 1+t
Note that
(i) = £12
1-——)=0 & = 00,
i=1 1+4 i=1 1+
so the conclusion follows. O
For the case t; =0(¢ = 1,... ,n), Theorem 6.6.1 states that a continuous function f(z)

is uniformly approximated by classical polynomials with integral coefficients on [0, 1] if f(0)

and f(1) are integers. This was treated by Kantorovic (cf. Ferguson [22] or Lorentz {40]).

6.7 Problems

1. It’s well known that classical Bernstein polynomials preserve convexity. This means, it

is convex if f(z) is convex. But, whether Bernstein-type polynomials (6.2.6) preserve this

property or not is still open.

2. The question of how to establish the necessary and sufficient condition for the uniform

approximation in PE(t,, ... ,t,) is certainly worth studying.
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