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ABSTRACT 

Steady-State Auditory Brainstem Responses (SSABRs) are auditory evoked potentials 

which provide objective, non-invasive, audiometric information. Unfortunately, test time is too 

long to warrant clinical use. Thus, the purpose of this thesis is to reduce test time. We 

determined that the long test time is due to high EEG background noise, idiosyncratic 

physiological artifacts, the use of Artifact Rejection under noisy recording conditions and 

periodograrn based spectral estimation which suffers fiom poor resolution. 

To improve detection, we compared Weighted Tirne Averaging with Artifact Rejection and 

a detector using Autoregressive spectral estimation with the Magnitude Squared Coherence 

(MSC) method (currently the best SSABR detector). Both cornparisons used data recorded 

under quiet and noisy conditions. We found that Weighted Time Averaging performed as well 

as Artifact Rejection meanwhile reducing recording time by 36% for noisy conditions. 

Furthemore, the MSC method had 5% greater ROC Area (on average) compared to the 

Autoregressive based detector. 
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1.0 INTRODUCTION 

This thesis will attempt to improve the signal processing techniques used in the 

detection of Steady State Auditory Brainstem Responses (SSABRs) in order to reduce the 

arnount of recording time needed to detect the SSABR. SSABRs are one type of auditory 

evoked potential in which an acousticd stimulus elicits a neural response that is recorded using 

3 scalp electrodes. SSABRs are important because they provide an indication of the integrity of 

the peripheral and central auditory systems and can be used to assess an individual's auditory 

threshold at a specific audiometric fiequency. 

One major application area for SSABRs is neonatal screening. Approximately 100 in 

100,000 children are bom with a significant hearing loss (defined as a hearing loss in both ears 

averaging greater than 50 dB across 0.5 to 4 kHz) each year and 30 more will develop a hearing 

loss within the first few years of life (Lins et al., 1996). This will compromise the child's 

ability to l e m  and develop hiskier communication skills. For this reason universal screening 

of ail newborn infants is desired (NIH Consensus Statement, 1993). 

These screening tests must be objective (since a newbom c m  not yet cornrnunicate), 

non-invasive (does not require surgery) and fast so that many children c m  be screened. 

Because behavioral audiomeûy is not accurate before six months of age and click evoked 

Auditory Brainstem Response (ABR) testing is not reliable for low frequencies, SSABRs have 

been proposed for hearing screening (Lins et al, 1996). However, the testing procedure must be 

fast and herein lies the problem; SSABR detection with current signal processing techniques 

requires long recording tirnes. 

This chapter will further discuss the motivation behind this thesis, define the problems 

which must be overcome and clearly state the research objectives. An outline of the chapters 

and appendices in this thesis will be given. To conclude. the research contributions of this 

thesis will be briefly discussed. 

1.1 Why are SSABRs Important? 

SSABR measurement is likely to become an important tool for audiology clinics and 

hospitals. This audiometric test is fiequency specific, allowing a particular portion of the 

audiometric range (250 to 8000 Hz) to be tested. In addition, SSABR measurement will 



complement other existing audiometric tests since SSABRs depend on the status of the cochlea 

and the auditory brainstem, meanwhile other tests such as Otoacoustic Emissions depend only 

on the status of the outer hair cells of the cochlea. SSABR testing is also objective and non- 

invasive making this test suitable for screening irifants and school children for hearing loss. 

The test may even be applied to workers at risk for hearing loss. 

1.2 Obstacles in SSABR Testing 

SSABRs typically have a very low Signai-to-Noise Ratio (SNR). Pseudo-real data 

using real EEG background noise and shulated sinusoids (to represent the SSABR; see 

Appendix L) indicate that 40 Hz SSABRs have an S N R  range of -6 dB to -30 dB and 80 Hz 

SSABRs have an SNR range of -15.4 dB to -27.4 dB. These measurements were taken over 1 

second data intervals using a 10 Hz bandwidth for the noise power (Le. 35 to 45 Hz for 40 Hz 

SSABRs and 75 to 85 Hz for 80 Hz SSABRs). In addition, the recording is very susceptible to 

contamination from physiological artifacts which is noise generated by the test subject due to 

movement. To detect the response, techniques based on artifact rejection and time averaging 

are employed, however in the case of a restless subject, artifact rejection requires long 

recording times due to the excessive amount of recorded data which is rejected due to artifact 

contamination. Furthemore, the method of time averaging requires substantial data acquisition 

(i.e. must record for a long time) due to the low SNR. For example. at rnoderate to high 

stimulus intensities the SSABR will be detectable within 10 to 30 seconds for some subjects, 

meanwhile at low stimulus intensities al1 subjects will require recording times on the order of 3 

to 4 minutes (at least). This long recording time hinders the viability of SSABRs for use in 

clinical settings. Thus it is desirable to detect the response as fast as possible with a low 

probability of false detection (Le. detecting noise as a response). 

1.3 SSABR Research Objectives 

The theme of this research is to reduce the arnount of time that it takes to correctly 

identiQ an SSABR in background EEG noise. To facilitate this goal the following sub- 

objectives have been identified: 

1. IdentiQ an alternative method to Artifact Rejection which will eliminate artifact 



contamination while not requiring an excessive amount of recording tirne. 

2. Examine the SSABR signal and noise properties and current SSABR detection algonthms 

to determine techniques which can be used for improved SSABR detection. Design a new 

SSABR detector based on these techniques- 

3. Compare the new detector with Magnitude Squared Coherence (the current benchmark in 

SSABR detection) using Receiver Operator Characteristic (ROC) anaiysis. 

1.4 Thesis Outline 

Chapter 2 will discuss the relevant background information including a bnef 

introduction to auditory physiology. hearing disorciers and current audiometric tests for liearing 

loss. Auditory Brainstem Responses will then be bnetly discussed followed by a more in depth 

analysis of SSABRs. Chapter 3 then examines the noise in SSABR recordings as well as 

current SSABR detection algorithms. Based on this analysis, an SSABR mode1 will be put 

forth and new techniques to improve detection will be proposed: Weighted Time Averaging 

and AR spectral estimation. In addition, modifications to the MSC technique will be proposed. 

Chapter 4 then examines the use of Weighted Time Averaging (WTA) as a possible 

data preprocessing replacement for Artifact Rejection (AFR) and Synchronous Time Averaging 

(STA). To facilitate this examination, four WTA algorithms from the literature will be 

compared on pseudo-real data recorded under noisy and quiet conditions from 5 subjects. The 

following questions will then be answered: Can WTA be successfully applied to SSABRs? If 

so, how much of a performance improvernent can WTA provide over the combination of 

Artifact Rejection and Synchronous Time Averaging? Furthemore, can WTA improve the 

SSABR SNR more than STA with AFR can on data recorded under quiet conditions? 

In Chapter 5 we will investigate the use of AR spectral estimation for SSABR detection. 

To begin, background will be given on pararnetric time senes modeling with emphasis on 

Autoregressive (AR) Modeling. A detection algorithm based on AR parameter estimation will 

then be proposed. ROC analysis will be used to choose the different parameters of the detector 

in order to optimize detection performance. In Chapter 6, the performance of the rnodified 

MSC methods will be investigated and compared to the AR-based SSABR detector. In 

addition, the computational complexity of the different SSABR detectors will be compared. 

Conclusions and recommendations for future work will then be presented in Chapter 7. 



The Appendices also contain relevant information, some of which is referred to many 

times throughout the thesis. Appendix A provides a brief epidemiological study on the 

occurrence of retrocochlear lesions (a funher reason why SSABRs are needed) in different 

subject groups. Appendix B descnbes work in the literature on characterizing the EEG 

probability density function. Appendix C describes the experimental setup and instrumentation 

used to acquire experimental data for this thesis. Appendix D describes the calculations done in 

obtaining the computational complexity of the different WTA rnethods which were investigated 

in this thesis. Appendix E describes ROC theory and the statistical tests used in this thesis for 

ROC cornparison of different detectors. Appendices F and G describe the parameters chosen 

for synchronous time averaging and bandpass filtering. Appendix H bnefly describes the 

sources and magnitudes of different instrumentation noise in our experimental setup. Appendix 

I describes the parameters chosen for the MSC detectors used in this thesis and Appendix .J 

provides more in depth information on the ROC results for the AR-based SSABR detectors. 

Appendix K shows the calculations done to obtain the computational cornplexity for each 

SSABR detector. Appendix L discusses the SNR range for 40 Hz and 80 Hz SSABRs. 

1.5 Research Contributions 

One contribution of this thesis involves the investigation of different Weighted Time 

Averaging (WTA) algorithms (Chapter 4) as possible data preprocessing replacements for the 

combination of Artifact Rejection (AFR) and Synchronous Tine Averaging (STA). Results 

showed that for 40 Hz SSABRs (section 4.3.6) and for 80 Hz SSABRs (section 4.3.7). WTA 

based on the Inverse Variance method performed just as well as the method of STA with AFR 

while yielding a 36% reduction in recording t h e  when testing restless subjects (section 4.3.10). 

The other contributions of the thesis were the modifications of the MSC method (section 6.2) 

and the development of an AR-based SSABR detector (Chapter 5 ) .  ROC analysis (section 6.4) 

showed that AR-based SSABR detection is inferior to the MSC based detectors in al1 test 

conditions. Furthemore, we found that the best detector under both quiet and noisy recording 

condirions, was the modified MSC-WA method with WTA done ivithin ench subaverage. 



2.0 BACKGROUND 

This chapter begins with a brief overview on human auditory physiology foliowed by a 

discussion on the different types of hearing loss and the current audiometric tests used to detect 

them. Auditory Brainstem Responses will then be briefly discussed followed by SSABRs 

which will be exarnined in greater detail. 

2.1 Auditory System Physiology 

The auditory system has a dynarnic range of 20 pPa to 20 Pa and a fiequency range of 

20 Hz to 20 kHz which is remarkable. The auditory system consists of the peripheral auditory 

system (the ear) and the Auditory Central Nervous System (ACNS) which comprises the 

auditory brainstem and the auditory cortex. The ear can be M e r  partitioned into the outer 

ear, the middle ear and the imer ear (see Figure 2.1). The auditory brainstem provides a neural 

pathway between the i ~ e r  ear and the auditory cortex. Each component of the auditory system 

will now be discussed briefly. 

2.1.1 The Outer Ear 

The outer ear consists of the pima (auricle), concha and the external auditory meatus 

(ear canal). The p i ~ a  is made mostly of cartilage and is the most visible part of the ear. The 

concha is the indented portion of the pinna leading to the auditory canal which is cylindrical in 

shape and lined with wax producing glands that protect and lubncate the ear. The ear canal 

leads to the tympanic membrane (ear drum) which is the begiming of the middle ear (Newby et 

al., 1992). 

The function of the pinna and the concha is to direct and concentrate incoming sound 

waves to the auditory canal which then directs the sound to the tympanic membrane. The outer 

ear also aids in sound Iocalization, the perception of sound source elevation and protects the 

middle and inner ear fiom foreign objects. In addition, the concha and ear canal have natural 

resonant frequencies at 5 and 2.5 kHz respectively which lead to an increase in sound pressure 

level by a factor of 10 to 12 dB (Bess et al., 1995). 



2.1.2 The Middle Ear 

The middle ear or tympanurn (see Figure 2.2) consists of the tympanic membrane (ear 

d m ) ,  the eustachian tube and the ossicles (malleus, incus and stapes). The tympanic 

membrane is cone shaped and is made stiffer by radial and circular fibers. Attached to its 

center is the handle of the malleus. The other end of the malleus connects with the incus which 

then connects to the stapes. The footplate of the stapes connects to the oval window on the 

cochlea of the imer ear. The Eustachian tube connects the middle ear with the back of the 

nasal cavity which allows the middle ear to adjust to variations in outside air pressure and drain 

fluid to the nasopharynx. 
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Figure 2.1. Diagram of the Ear (adapted from Schauf et al., 1990). 

The tympanic membrane completely seals the middle ear f?om the outer ear. This sets 

up pressure differences between the outer and middle ear which causes the tympanic membrane 

to vibrate in reaction to incoming sound waves. Tympanic membrane vibraticn causes the 

ossicles to vibrate. The motion of the ossicles then causes the stapes to move in and out thus 

pulling and pushing on the oval window and transferring acoustic energy to the imer ear. 

To further facilitate sound conduction, the middle ear acts as an impedance transformer 

between the fluid (high acoustic impedancel) of the inner ear and the air (low acoustic 

impedance) of the middle ear. The impedance transformation is due to the ratio of the larger 

' Acoustic impednnce indicates the ease of transference of an acoustic wave. 



tympanic membrane area to the much smaller surface area of the stapes. This area ratio 

provides a 22% increase in the transmitted sound wave pressure. However, the ability of the 

middle ear to ampli@ sound pressure varies with fiequency. There is liale arnplification for 

frequencies below 100 Hz or above 2 to 2.5 kHz, however taking the outer and middle ear into 

account there is an arnplification of approximately 20 to 25 dB in the range of 100 Hz to 5 kHz 

(Bess et al., 1995). 

' igue 2.2. Diagram of the middle ear (adapted from Fox, 1996) 

2.1.3 The Inner Ear 

The inner ear (see Figure 2.3) consists of the semicircular canals (labyrinth), the 

vestibule and the cochiea. The vestibule and semicircular canals are used for balance. The 

cochlea is a system of tubes, 3.5 cm in length, coiled circularly about 2 34 times and partitioned 

into three sections: the scala vestibuli, the scala tympani and the scala media. The scala 

vestibuli (tympani) is the top-most (bottom-most) cochlear cornpartment and the scala media is 

the central cochlear cornpartment. This cochlear partitioning is accomplished by the vestibular 

membrane which separates the scala vestibuli and scala media and the basilar membrane which 

separates the scala media and scala tympani (Fox, 1996). Further, the scaia vestibuli and the 

scala tympani share fluid called perilymph and are actually c o ~ e c t e d  at the apical end of the 



cochlea via a small opening called the helicotrema. The scala vestibuli is totally isolated fiorn 

the scala tympani and scala media and contains fluid called endolymph. 

Round window 

Figure 2.3. Diagram of the imer ear (adapted f 

Another membrane, the Tectorial Membrane (TM), is in the scala media and covers the 

Organ of Corti (fundamental to sound transduction) which sits on the Basilar Membrane (BM) 

(see Figure 2.4). In addition, there are two membrane covered bumps (the oval and round 

windows) on the surface of the cochlea closest to the stapes. The oval window is at the basal 

end of the scala vestibuli and the round window is at the basal end of the scala tyrnpani. 

Reissneîs membrane 

Tectonal membrane Tectonal 
Reticular lamina 

hair ceil 

'igure 2.4. Diagram of a cross-section of the cochlea (adapted from Sherwood, 1993). 

As mentioned previously, sound waves are transmitted to the cochlea by the movernent 

of the stapes which applies pressure to the oval window. This displaces the pedymph in the 

scala vestibuli which causes the round window to simultaneously move in the opposite 

direction of the oval window. Outviard motion of the oval window causes the scala vestibuli to 

enlarge and the scala tympani to reduce in size, meanwhile inward motion of the oval window 



causes the scala tympani to enlarge and the scala vestibuli to decrease in size. These size 

changes produce a wavelike displacement (see Figure 2.5) in the scala media which is usually 

simplified by considering just the motion of traveling waves on the BM. 

The BM is organized such that it responds to certain frequencies best at different 

locations along its length. At the basal end of the cochlea (near the stapes), the BM is narrow 

and stiff and responds to high frequency sound waves while at the apex of the cochlea the BM 

is broad and cornpliant and responds to low frequency sound waves (see Figure 2.6). Sound 

waves will diminish on the region of the BM which best responds to the frequency of the sound 

wave. The Organ of Corti in this region then transduces the mechanical vibrations of the BM 

into electrical or neural signals. 

-- - 
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:igue 2.5. Diagram of fluid rnovement in 
the cochlea during Sound Transduction. 
(adapted from Guyton, 1992). 
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Figure 2.6. Diagram of Frequency 
Distribution (in Hz) along the BM. 
(adapted fiom Shenvood, 1993). 

The transduction process of the Organ of Corti is facilitated by specialized sensory hair 

cells which are electrornechanically sensitive. The hair cells are distinguished as either Outer 

Hair Cells (OHCs) or Inner Hair Cells (IHCs). There are about 3500 IHCs and 15000 OHCs 

(Guyton, 1992). The stereocilia of the OHCs are embedded within the TM. The stereocilia of 

the IHCs are not ernbedded in any membrane and thus the IHCs are moved by the fluid between 

themselves and the TM. Ninety-five percent of the afferent fibers which leave the cochlea (i.e. 

travel to the brain) are from the IHCs meanwhile 5% are from the OHCs. This suggests that 

IHCs provide sensory information to the higher ACNS levels, meanwhile the OHCs (which 



receive information fiom higher structures and can change size) are thought to alter the relative 

motion of the TM and BM to change the level of IHC stimulation. 

When there is a traveling wave on the BM, a shearing force is created which causes 

stereocilia on the IHCs to bend which leads to a depolarization (change in electrical potential) 

of these hair cells and the stimulation of an associated sensory neuron. The sensory neurons 

(nerve fibers) are connected to the auditory pathway through the vestibulocochlear (~111'~ 

cranial) nerve. Fibers with a high characteristic frequency are at the penmeter of the nerve and 

originate from the high-frequency base of the cochlea, meanwhile fibers with low charactenstic 

fiequencies are at the nerve core and onginate from the low frequency end of the cochlea (Bess 

et al,, 1995). 

2.1.4 The Auditory Central Newous System 

The Auditory Central Nervous System (ACNS) refers to components of the auditory 

systern fiom the VIII"' cranial nerve to the auditory cortex. The auditory brainstem (see Figure 

2.7) consists of af5erent (ascending) pathways which c a n y  information up the ACNS and 

efferent (descending) pathways which carry information frorn the cortex and lower brainstem 

centers to the auditory periphery. The ACNS is very cornplex and not yet fully understood. 

Most nerve fibers cross over at some point dong the ACNS so that activity of the riglir ear is 

represented more strongly on the left side of the cortex and vice-versa. In addition, the ACNS 

has tonotopic organization (an orderly mapping of fkequency to place) and redundancy (Bess et 

al., 1995). 

The afferent auditory pathway starts with the neural signals produced by the IHCs of the 

cochlea. These neural signals travel in neurons ipsilaterally (on the same side of the brainstem) 

through the cochlear nerve to the ventral and dorsal cochlear nuclei. Most of the neurons then 

cross through the trapezoid body of the pons and project to the contralateral superior olivary 

complex. Some fibers terminate on the trapezoid body. The superior olivary complex gets a 

large amount of ipsilateral and contralateral neural inputs which lets it sense the direction of a 

sound source. From the superior olivary complex, the neurons proceed in a tract called the 

lateral lemniscus which leads to the inferior colliculus. The auditory neurons then proceed to 

nuclei called the medial geniculate bodies in the thalamus where there is no crossing over. 

From here auditory radiations spread to the auditory cortex of the cerebrum. The auditory 



pathway is organized such that neurons in different regions of the BM stimulate neurons in 

corresponding areas of the auditory cortex (Martin, 199 1). 

' lateral lemniscus 

I 
Figure 2.7. Diagrarn of the Auditory Brainstem (adapted frorn Guyton, 1992). 

The descending efferent auditory pathway is more of a mystery. It comprises rnany of 

the sarne structures that are used in the ascending pathway, however, a different set of nerve 

fibers is used. It is believed that the efferent fibers may rnodi@ incoming neurally coded 

sensory information at any of the centers along the ACNS. In addition, there are 2 efferent 

fibers for every 100 afferent nerve fibers. The iast nerve fibers in the descending pathway run 

from the superior olivary cornplex to the cochlea ipsilaterally or contralateraily; they are called 

either the crossed (more abundant; 60 to 80%) or uncrossed olivocochlear bundles. The crossed 

olivocochlear bundles cross over to the ipsilateral cochlea and imervate the OHCs. The 

uncrossed bundle fibers appear to imervate the IHCs (Bess et ai., 1995). 

2.2 Hearing Disorders 

Hearing disorders are either conductive or sensorineural. Conductive hearing losses are 

due to a blockage of sound wave transmission through the ear canal and middle ear. Sorne 

forms of conductive losses are excessive ear wax, a foreign body blocking the passageway or 

diseases affecting the tyrnpanic membrane or the middle ear cavity such as ossicular defects. 



Conductive hearing loss impairs hearing at al1 fiequencies (Glasscock et ai., 1987). 

Sensorineural hearing loss occurs when there is darnage in the neural auditory pathway. The 

conductive mechanism is usually intact, however, the electrical signals which should be 

produced in the cochlea are either not produced or not transrnitted to the auditory cortex. The 

problem may be with the hair ce11 system (a sensory loss) or the auditory brainstem (a neural 

loss). Sensorineural hearing loss may be due to bacterial infection, ototoxic drugs, excessive 

noise exposure or simple aging (presbycusis). Neural losses include acoustic tumors along the 

ACNS (Newby et al., 1992). Further? Sensorineural hearing loss does not always impair the 

hearing of al1 fiequencies. 

2.3 Audiometric Tests for Hearing Loss 

Over the years a battery of audiometric tests has been constructed to detect hearing 

impairment. These tests comprise pure tone audiometry, speech audiometry, acoustic 

immittance measurements, stapedial reflex tests and click-evoked ABRs. The audiometry tests 

are subjective, require participation on the part of the test subject and can test for the general 

integrity of the auditory system as well as aid in localizing the cause of a hearing problem. 

Briefly, pure tone audiometry presents pure tones at different test fiequencies to detect a 

subject's hearing threshold (the lowest sound level that a person c m  correctly hear 50% of the 

time). This threshold information is plotted against frequency to obtain the audiogram. 

Hearing thresholds less than 25 dB HL' are considered normal. Air conducted stimuli are 

normally used, however, to determine if there is a conduction problem bone-conducted stimuli 

can be used. Speech audiometry follows the sarne principles except it uses speech and it can 

not discriminate between a conductive or a sensorineural hearing loss (Bess et al., 1995). 

Acoustic lmmittance measurements are sensitive, objective tests which can identie the 

presence of middle ear fluid, evaluate eiistachian tube and facial nerve function and determine 

the nature of a hearing loss and assist in the diagnosis of the site of auditory lesion (Bess et al.. 

1995). To probe for retrocochlear lesions, the following tests are used: threshold tone decay, 

acoustic reflex threshold, ABR, and acoustic reflex decay. This test battery is 90 to 95% 

accurate in identieing retrocochlear lesions (Bess et al., 1995). These tests are usually 

HL is referenced to a normal hearing person's audiometric threshold across different audiometric frequencies. 



performed on suspicion of an auditory physiology problem. The equipment is specialized and 

is contained in audiology clinics and thus can not be used in the universal screening of neonates 

for hearing loss. However, recent objective, noninvasive tests exist which can be used for 

screening. 

These recent objective, noninvasive audiometric tests are based on Otoacoustic 

Emissions (OAEs) and SSABRs. OAEs, first discovered by Kemp in 1978, are sounds in the 

extemal ear canal which are generated by the OHCs within the cochlea. A strong OPLE 

indicates the healthiness of the OHCs and that the sound conduction properties of the middle 

ear are normal. There are two popular types of OAEs: Transiently Evoked OAEs and 

Distortion Product OAEs . They are evoked in aimost every normal ear and are reduced or 

absent in hearing impaired ears so that a distinction can be made between normal and 

pathological ears. They also require btief examination periods, and have high retest reliability 

(Probst et al., 1992). 

SSABRs are electrophysiological signals which are measurable at the scalp and elicited 

by an acoustic stimulus. SSABRs reflect the integrity of the auditory periphery, the cochlear 

nerve and the auditory brainstem. SSABRs have been used to assess the physiological hearing 

threshold of normal and hearing impaired subjects and these measurernents have matched well 

with behavioral hearing thresholds. Unfortunately, SSABR testing requires longer test times 

than those used in OAE testing, however, SSABRs provide a more thorough inspection of the 

auditory system (SSABRs probe structures beyond the cochlea). This c m  not be ignored 

because the prevalence of retrocochlear based hearing loss is too high to disregard in infants, 

school children and adults (piease refer to Appendix A). Furthemore, OAEs may not detect 

retrocochlear based hearing losses because they only probe as far as the cochlea. This was seen 

in a study by Starr et ai. (1996) on 10 children and young adults. In addition, Dobie et al. 

(1995b) stated that with widespread OAE screening recornmendations, the need for SSABRs 

will increase in order to ver@ OAE test failures. 

2.4 The Auditory Brainstem Response 

The Auditory Brainstem Response (ABR) is the curent standard in audiologie and 

neuroiogic investigations. They are a type of Auditory Evoked Potential (AEP) meaning an 

acoustic stimulus induces a potential along the imer ear and ACNS which is measurable with 



electrodes. Thus, AB& monitor the status of the auditory penphery (inner ear), and the ACNS. 

ABRs can be classified according to the acoustic stimutus used (click, tone pip, tone burst or 

Amplitude Modulated (AM) wave) and the types of response evoked (transient or steady state). 

The conventional click evoked ABR is composed of 5 waves with certain amplitude and 

latency relationships. An abnorrnality in the amplitude or latency of any wave indicates a 

problem with the associated portion of the auditory pathway (Zirnrnerman, 1994). 

Unfortunately ABRs have some shortcomings. The stimulus for click-evoked ABRs 

contains broadband energy which is not good for determining frequency specific hearing 

deficits (Durieux-Smith et al., 1991). In fact, the wideband click stimulus usually produces 

evoked thresholds which reflect the average or best hearing across 1 to 4 kHz, however the 

fi-equency specificity can bs improved if short tones and/or notched noise are used in the 

stimulus (Rance et al., 1995). In addition, physiological thresholds obtained with ABRs are 

elevated above the behavioral thresholds and the ABR is not usefid for assessing hearing below 

2 kHz (Kuwada et al., 1986). Another problem with ABRs is that they have low SNRs which 

usually dictates recording times on the order of minutes (2 or 3) for response detection even 

when using high intensity stimuli (Dobie et al., 1995b). 

2.5 The Steady State Auditory Brainstern Response 

SSABRS' are ABRs in response to an AM stimulus. They result from the synchronous 

discharge of auditory neurons phase-locked to the modulation fi-equency of the AM stimulus 

(Aoyagi et al., 1993b). The SSABR amplitudes indicate the hearing sensitivity of the subject 

and the absence of an SSABR may indicate a hearing loss (Kuwada et al., 1986). SSABRs c m  

be recorded from subjects of al1 ages, even infants within a few days of birth (Rickards et al., 

1994). SSABRs are currently used for assessing hearing threshold (Lins et al., 1995a) however 

they are applicable to screening tests. 

SSABRs have definite advantages over conventional click-evoked ABRs. For instance, 

they are evoked by fiequency-specific stimuli which enables the diagnosis of a frequency 

specific hearing loss. In addition, the responses to several AM signals applied simultaneously 

c m  be evaluated individually which results in a significant decrease in test time. SSABRs c m  

SSABRs are also called Amplitude Modulation or  Envelope Following Responses (AMFRs or EFRs). 



also be recorded at near threshold stimulus intensities to provide auditory threshold 

assessrnents. In addition, SSABRs can follow the shape of a subject's behavioral audiogram 

(Aoyagi et al., 1994b). Specific properties of SSABRs and testing will now be discussed. 

2.5.1 SSABR Stimulus Presentation 

The SSABR stimulus is generated digitally with software, then converted to an analog 

form via a D/A converter and finally transduced into an acoustic waveform by headphones or 

an insert probe phone. The benefit of using an insert probe phone is that the speakers are 

rniniaturized and thus do not require as much current to produce the stimulus as speakers in 

headphones would. This reduces the possibility of electncal coupling (via a magnetic field) 

between the stimulus and response pathways of the instrumentation. The stimulus can also be 

bandpass filtered with filter settings of 0.3 kHz (to prevent electrical artifact at the modulation 

rate in the recording) to 10 Wz (to remove digitization noise) (Lins et al.. 1995a). 

Furthemore, the stimulus may be presented monawally (to one ear only) or binaurally (to both 

ears at once). 

2.5.1.1 Stimulus Properties 

The stimulus is an AM waveform which consists of sinusoidal carrier and modulating 

waveforms (see Figures 2.8 and 2.9) represented by the following formula: 

st(t) = L,(1 + pcos(27rf;,t))-cos(2xfct) 

where: L, is the stimulus intensity 
IL is the modulation index 
f, is the modulation frequency 
f, is the carrier frequency 

The carrier fiequenry is the audiometric test fiequency (Le. the SSABR stimulus assesses the 

cochlea at the carrier fiequency (Lins et al., 1995a)) and it can be any frequency in the range of 

0.25 to 8 kHz, however usually either 0.25, 0.5. 1. 2, 4 or 8 kHz is chosen. The modulating 

frequency is chosen to evoke a robust response and also depends on the test subject and subject 

state. The most comrnonly used modulation fiequencies are in the 30 to 50 Hz and 70 to 100 

Hz ranges. The modulation index is chosen to evoke a strong response and the stimulus 

intensity is chosen according to the test paradigm. 



i g u e  2.8. ~ i a g r &  of SSPLBR stimulus in the time 
domain: (a) modulating waveform, (b) carrier waveform, 
(c) stimulus (arbitrary y axis magnitudes). 

stimulus in the fiequency 
Domain. 

2.5.1.2 The Multiple SSABR Stimulus 

The Multiple SSABR stimulus comprises more than one AM waveform. For instance a 

Multiple SSABR stimulus rnight consist of AM waveforms with fc values at 0.5, 1, 2 and 4 kHz 

with corresponding fm values at 75, 80, 85 and 90 Hz. Each f, value must be distinct so that the 

response to each Ai waveform can be measured. Values for f can be chosen as close as 1.3 

Hz without any effect on SSABR amplitude (John et al., 1997). Lins et al. (1995a) found that 

the SSABR amplitude was not very differeni when presenting each AM waveform by itself or 

al1 at once, however, values for f, must be separated by an octave so that each fc in the 

compound stimulus vibrates a separate part of the BM (Lins et al., 1996). Further, 

physiological thresholds obtained using the Multiple SSABR stimulus are not significantly 

different from those obtained using single SSABR stimuli. More importantly, this stimulus can 

greatly reduce test tirne- 

2.5.2 SSABR Measurement 

SSABR testing is usually carried out in an electromagnetically shieided, sound proof 

room. The shielding protects against electromagnetic contamination in the SSABR recording. 

The sound proof room will aid the subject in hearing the stimulus clearly. During testing, the 

subject needs to be quiet, relaxed and must be still to avoid adding any physiological noise to 

the SSABR recording. Appendix C describes the test setup used for this thesis work. 



The SSABR is measured with the use of skin electrodes which are usually Silver Silver- 

Chloride electrodes because they have low impedance and low electrical noise for low 

fiequencies (Neuron, 1995). Three electrodes are used; two electrodes serve for diEerentia1 

measurement and the other electrode serves as ground. The inter-electrode impedance should be 

low (less than 5 kR) and balanced between al1 three pairs of electrodes. To insure this, the skin 

should be abraded to reduce the electrical impedance of the skin-electrode contact. Different 

electrode placements are possible. Usually one active electrode is placed at the subject's vertex 

(crown of the head) or forehead. The other active electrode is placed on the ipsilateral mastoid 

Cjust behind the ear) and the ground electrode is placed on the contralateral mastoid (Rance et 

al., 1995; Levi et al., 1993). Dr. Picton (personal communication, 1997) indicated that 

SSABRs measured with the electrode at the forehead are 75% as large as those measured with 

the electrode at the vertex, however, the recordings may also be less noisy. 

The electrodes Lead to a differential pre-amplifier which is used to provide large gain 

(around 10,000 VN). After amplification, the signal is passed through a band pass filter with a 

typical low frequency cutoff at 10 to 30 Hz and a high fiequency cutoff at 100 to 300 Hz 

(Aoyagi et al., 1993c; Dobie et ai., 1995b ). The signal is then sent to the computer where A/D 

conversion takes place and the signals are processed. An FFT of a 5 seconds response duration 

is shown in Figure 2.10. The stimulus was at 70 dB SPL with a I kHz carrier frequency, 40 Hz 

modulation frequency and a 0.95 modulation index. 

2.5.3 SSABR Generation 

In order to understand how an SSABR is generated, we must understand why the 

SSABR fiequency is at fm while there is no stimulus component at f,. This can be explained by 

cochlear processing. To begin, Griffith et al. (1991) showed that the AM stimulus stimulates 

the region of the cochlea that is responsive to the f,. In this cochlear region, the stimulus 

undergoes compressive half-wave rectification. The IHC accounts for the compression and the 

ganglion ce11 innervating the IHC accounts for the half-wave rectification. It is the half-wave 

rectification that introduces a stimulus fiequency component at fm (Lins et al., 199%). 
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Figure 2.10. An FFT of an actual40 HZ SSABR (5 second duration). 

SSABR generation is due to sources in the ascending auditory pathway that c m  

generate open electrical fields. Researchers are not precisely sure which structures are the 

generators, however? they do know that there are distinct generators for the 40 and 80 Hz 

SSABRs (regardless of fc). For instance, Kuwada et al. (1986) reported that 40 Hz SSABRs 

have latencies of 3 1 rns suggesting a cortical generator meanwhile 80 Hz SSABRs have 

latencies of around 8 ms suggesting a midbrain generator. Furthemore, Kuwada stated that the 

difference in SSABR amplitude between 40 and 80 Hz SSABRs may be the result of near field 

and far field recording conditions due to the generators of these responses being different 

distances away from the scalp electrodes. Aoyagi et al. (1994a) further speculated that 80 Hz 

SSABRs may be generated by the infenor colliculus and cochlear nucleus and that the 40 Hz 

generator could be the thalamus or midbrain. 

2.5.4 SSABR Properties 

En this section, certain SSABR characteristics will be discussed such as the effect of 

dif3erent stimulus parameters, variability and properties for different subject groups. 

2.5.4.1 Signal Characteristics 

The SSABR is usually recognized as a sinusoid whose frequency matches the $, used in 

the stimulus. However, for supra-threshold stimuli, the SSABR contains energy at the f, and at 

the sidebands for low f, (f, = 0.5 or 1 H z ) ,  at the fm and at other h m o n i c  and distortion 

product frequencies. For near threshold stimuli, the SSABR contains coherent energy only at fm 



(Dobie et al., 1995a, Aoyagi et al. (1993a, 1993b)). Furthemore, Picton et al. (1987) fomd 

that the 2" harmonic was much smaller and Iess consistent than the response at the fm. 

2.5.4.2 Effect of Different Stimulus Parameters on the SSABR 

The effect of fc on SSABR amplitude deprnds on the fm which is used. When the t;. is 

in the 40 Hz range, the SSABR decreases in magnitude with increasing f, (Kuwada et al., 1986; 

Griffiths et al., 1991, Picton et al., 1987). However, when fm is in the range of 70 to 100 Hz. 

the SSAE3R amplitude does not Vary significantly with fc (Lins et al.,, 1995b). 

The effect of fm on SSABR amplitude depends on subject age and state (awake or 

asleep). For awake adults, the largest responses occur for f, in the 40 Hz range (Levi et al.. 

1993; Aoyagi et al., 1993b). Selective attention does not affect 40 Hz SSABRs (i.e. t;, = 40 

Hz) (Dobie et al. (1994b), however, in sleeping adults, the 40 Hz SSABR amplitude is reduced 

by a factor of 2 (Lins et al., 1995a) and SSABR detection becomes more efficient at higher f, 

values, particularly between 80 and 100 Hz (Aoyagi et al., 1993b; Levi et al., 1993). This is 

because SSABRs in the 70 to 100 Hz range are unaffected by sleep and the EEG (the 

background noise) in this Gequency range diminishes during sleep. A cornparison of 40 Hz to 

80 Hz SSABR amplitudes for awake adults is s h o w  in Table 2.1. For infants and children, the 

SSABR is not recordable with f, = 40 Hz. The optimal range for fm is in the 80-90 Hz region 

when the child is asleep (Aoyagi et al., 1993b). This is seen for subjects frorn 4 months to 15 

years of age (Aoyagi et al., 1994~). 

Table 2.1. SSABR Amplitude versus f, for fc = 1 kHz, p = 1 00% 
and Lc = 60 dB SPL (adapted fkom Lins et al., 1995a). 

f;, (Hz) 1 SSABR Amplitude (nV) 1 

The modulation index (p) also affects SSABR amplitude. The amplihide increases as p 

is increased for al1 values o f f  and d l  subject groups (Lins et al.. 1995b: Kuwada et al.. 1986; 

Milford et al., 1989). In the literature, typical values for p are between 50% and 100% (usually 

p is near 100%). However with larger p values, the response has increasing energy at the 2"d 

and harmonies off, for high stimulus intensities (Lins et al., 1995b). 



The SSABR amplitude also increases with L,. Typical values for f, = 500 Hz and f, = 

40 Hz are 300-400 nV for L, = 60 dB nHL and about 100 nV for L,= 30 dB nHL (Dobie et al., 

199%). At higher values of f,, the increase in SSABR amplitude with L, becomes more 

gradua1 (Kuwada et al., 1986). However, Lins et al. (1995b) found that SSABR amplitude 

grows rnuch larger as L, increases above 70 dB SPL (f, = 91 Hz was used). There is also an 

increase in the 2" and ndrd hmonics  with increases in L, (Lins et ai., 1995b; Rickards et al., 

1984). 

SSABR phase increases with f, (Kuwada et al., 1986; Picton et al., 1987), meanwhile 

with decreasing L,. the phase decreases with an average phase-intensity dope of  nd7"/10 dB 

SPL over the range of 20 to 50 dB nHL for f, = 40 Hz (Dobie et al.. 1994a). However, SSABR 

phase increases with f, (Lins et al., 1995b). In addition, the SSABR phase increases as 11 varies 

from O to 25% after which the SSABR phase remains relatively unchanged (Lins et al., 1995b). 

2.5.4.3 Variability and Adaptation 

Kuwada et al. (1986) found a 1525% SSABR amplitude variability while testing 

subjects who sat quietly and read. Meanwhile, GriEths et al. (1991) did a within-subjects test 

and found no significant difference in SSABR amplitude across time for any f,. Further, 

Chambers et al. (1993) found strong correlation between SSABR amplitudes from two 

recording sessions which were 1 week apart for subjects with mild to moderate hearing loss. 

In terms of adaptation, Campbell et al. (1977) noted no adaptation effect on SSABRs 

while using continuous stimulation (over a 4 minute period) and discontinuous stimulation 

(stimulating for a 25 second period and then resting for a period of 1 minute). Meanwliile, Jolm 

et al. (1997) found that some subjects noted that a 35 dB SPL stimulus (f, = 2 kHz) 

occasionally becarne inaudible during testing (the recordings were approximately 10 minutes 

long). Thus it appears that adaptation may occur for longer test periods. 

2.5.4.4 Testing with Hearing Impaired Subjects 

In normal ears, SSABRs can be recorded at low L, (around 20 to 30 dB SPL), 

meanwhile in ears with a hearing loss, the response is only noticeable at higher L, values such 

as 50 dB SPL. In addition, Kuwada et al. (1 986) found that larger SSABRs are obtained at 



frequencies where hearing sensitivity is better and that smaller SSABRs are obtained at 

frequencies where hearing sensitivity is poorer. Another interesting fmding was that SSABR 

thresholds for hearing impaired subjects were closer to the behaviorai thresholds than those for 

normal hearing subjects (Kuwada et al., 1986; Lins et al., 1996). Furthermore the literature 

shows that SSABR thresholds follow the behavioral audiogram of adults and children with a 

hearing loss (Griffiths et al., 1991; Lins et al., 1996; Aoyagi et al., 1993c; Chambers et al.. 

1993; Rance et ai., 1995). The strength of this relationship increases with f,, increasing degree 

of loss and decreasing L, (Kuwada et al., 1986). Kuwada also found that SSABR amplitudes in 

the non-impaired regions of hearing impaired subjects were larger than those of normal 

subjects. In addition at high L,, a subject with a hearing loss may appear normal in terms of 

SSABR amplitudes (Lins et al., 1996). 

2.5.4.5 Testing with Infants 

SSABR testing is more difficult for newborns and young children when they are awake 

because of physiological artifacts caused by body movement (Ayogai et al., 1994b). However, 

Dr. Picton (personal communication, 1997) indicated that there are fewer artifacts when infants 

are sleeping. Furthermore, SSABR testing on infants was found viable as shown by Rickards et 

al. (1994) who obtained positive responses on 90% of the infants tested (L, = 70 dB SPL). 

However, Lins et al. (1996) found that infants had a harder time hearing stimuli with f, = 500 

Hz as there were responses in only 70% of 50 infant ears when L, was 60 dB SPL. Lins also 

found that with L, = 60 dB SPL, infant SSABR amplitudes were on average 45% as large as 

those From an adult subject group, however SSABR phase was very similar. They also found 

that infant SSABR thresholds were on average 10 dB above those of normal adults. 

2.5.4.6 SSABR and Behavioral ThreshoId Levels 

An SSABR threshold is defined as the lowest L, at which an SSABR is detected at 

some false positive level (Dobie et al., 1995a). The literahire has shown good correlation 

between SSPLBR thresholds and behavioral thresholds from pure tone audiometry tests with 

higher correlation at higher f, (Lins et al., 1995b). Further, Griffiths et al. (1 99 1) found a 

difference of 11.6 dB for normals at dl audiometric frequencies tested. In general, for adults 

the SSABR thresholds are larger than behavioral thresholds ranging fiom within 10 to 25 dB 



SL" (Kuwada et al., 1986; Lins et al., 1995b; Aoyagi et al., 1993c; Tucci et al., 1990). There 

is still some debate as to whether sleep affects SSABR thresholds (Aoyagi et al., 1993b; Jerger 

et al., 1986). 

For normal hearing kids (aged 4 to 7), Aoyagi et al. (1994a) found physiological 

thresholds within 20 dB HL of behavioral thresholds. Meanwhile, Dr. Picton (personal 

communication, 1997) stated that infant SSASR thresholds were 20 to 30 dB higher than 

behavioral thresholds. Dobie et al. (29951) also indicated that SSABR thresholds improve 

when test times of up to ten minutes are used. 

2.5.4.7 Recording Time needed for Detection 

SSABR detection time depends on SSABR amplitude and noise intensity. Most ofien, 

researchers record for a constant time length (approx. 240 seconds) in their SSABR tests 

regardless of response SNR (Le. they over record in situations of high SNR). Not much work 

has been done in the literature to characterize the average amount of time needed to detect a 

response. An exception is Lins et al. (1995b) who found that with f, = 91 Hz, f, =l  kHz and 

L, = 60 dB SPL, it takes about 80 seconds on average for a response to become statistically 

significant and if L, is lowered to 30 dB SPL, response detection requires about 3 to 4 minutes. 

When testing at near-threshold intensitys, longer test times are needed to increase 

response detection as shown by Stappells et al. (1986). He found that with L, = 10 dB SL only 

1 out of 10 subjects showed a response afier 1 minute of recording but when the recording time 

was increased to 8 minutes, responses were detected in 8 out of 10 subjects. Test protocol also 

affects test time length. For instance, the test can be done a few times at a certain L, with 

different f,'s for screening purposes or the test may be repeated many times with different L, 

values for the detemination of physiological hearing threshold at a particular frequency. 

9 L  (Sensation Level) is referenced to the test subject's behavioral threshold at the test frequency. 
In threshold testing, one or two measurements can't be taken at high stimulus intensities and then extrapolated 

down to threshoId because a Iinear relationship does not exist behveen stimulus intensity and SSABR amplitude 
(Campbell et al., 1977; Lins et al. 1995b). 



3.0 Investigation into SSABR Detection: 
The Facts and what's been done so far 

To improve SSABR detection, we need to investigate the SSABR signai and noise 

properties and the techniques that have already been used in detecting SSABRs. The SSABR 

signal properties have already been mentioned in section 2.5.4.1. Suffice it to Say, the SSABR 

signal c m  be simply considered to be a sinusoid whose fiequency is the modulating fiequency 

used in the stimulus. With this said, this chapter will examine in more detail the noise in 

SSABR recordings (EEG noise and Artifacts) as well as the SSABR detection algonthms 

which have already been proposed. The chapter will conclude with a section on modeling the 

SSABR and another section with insights on possible improvements for SSABR detection. 

3.1 SSABR Noise: The EEG 

The predorninant source of noise in SSABR recordings is due to the EEG which is the 

electrical activity produced by the brain. The EEG varies over different parts of the scalp and 

changes in a consistent, recognizable fashion when the general status of the subject changes 

(Le. fiom relaxed to alert). The EEG comprises stochastic components which are stationary 

over short time periods and transient components such as wave trains, spikes and sharp waves 

that arise sporadically (Narasimhan et al., 1985). The EEG is usually assurned to be ergodic. 

stationary and gaussian, however, in practice none of these may actually hold (Gasser et al., 

1979). The normal spontaneous EEG for an awake adult with open or closed eyes doesn't have 

significant temporal changes (Durnermuth et al., 1975) and normals do not usually exhibit 

spiky behavior in their EEG. Usually, the waking EEG is less than 300 pV in amplitude and 

becomes considerably smaller during sleep (Linden et al., 1985). 

The EEG fiequency range is from 0.1 to 100 Hz (Niedermeyer, 1982). In general, the 

EEG spectrum consists of flat white noise, pink noise and colored noise (Durnermuth et al., 

1987). An example of an EEG spectrum is s h o w  in Figure 3.1. The low fiequency EEG 

components (less than 20 Hz) contain most of the energy. Clinically, the EEG is split into 5 

fiequency bands: the delta (0.5-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-25 Hz) and 

gamma bands (25 to 90 Hz or higher) (Lopes Da Silva, 1982). These EEG bands may Vary 

fiom person to person which could be due to different anatomical morphologies, subject state 



and subject age (Gevins, 1987). Further, when comparing adults to children, Levi et al., (1993) 

found physiological noise levels higher in infants than adults, however, others found sirnilar 

noise levels for awake and asleep adults and asleep children (Aoyagi et al., 1993; Lins et al., 

1996). The EEG also undergoes maturational changes fiom birth to adolescence. 

"O N 60 80 80 100 
Frequency (Hz) 

:igue 3.1. The EEG in the fiequency domai 
(Note: This data has been bandpass filtered from 10 to 1 00 Hz). 

The EEG in general is nonstationq (Lopes Da Silva, 1982), however, there are 

conflicting reports on the degree of nonstationarity. Hernandez et al. (1995) indicated that EEG 

segments longer than 10 seconds must be regarded as non stationary in most cases, meanwhile, 

Blanco et al. (1995) noted that the amount of time that the EEG remains stationary varies from 

several seconds to several minutes. In practice, to avoid nonstationarity many researchers have 

used 1, 2, 5 or 10 second intervals when analyzing the EEG. The nonstationarities are due to 

sleep cycles, changes in state, task performance, subject movement, and muscular tension. 

Thus to increase the length of time stationarity the subject should remain still (Dobie et al., 

1996). 

The amplitude probability distribution of the EEG is also a disputed topic. There is 

evidence supporting a gaussian probability distribution, however, deviations fiom gaussianity 

are also a common EEG feature (Dumermuth, 1977). What is most likely is that the EEG has a 

different amplitude probability distribution under different circumstances. For instance the 

normal resting EEG tends to be strongly gaussian whereas the EEG fiorn an epileptic brain 

shows virtually no gaussian tendency (Barlow, 1993). Observation tirne also has an impact on 



the gaussianity of the EEG. McGillem et al. (1987) stated that EEG gaussianity holds for 

periods of a few seconds or less. Further, the notion of independence between adjacent EEG 

samples is very important when using statistical tests to determine if the EEG is gaussian. 

Many original studies neglected this constraint, however, Persson (1974) pointed out that a 

small number of methodologically acceptable studies rejected the gaussian hypothesis. 

Briefly, the test results of some researchers will be discussed (for more information 

refer to Appendix B). Elul (1969) conducted tests on an adult in an idle state and in a state 

performing mental arithmetic. Elul found the EEG to be gaussian 66% of the time in the idle 

state and 32% of the tirne in the mental arithmetic state. Later, Elul et al. (1975) conducted 

tests on young children and found the EEG deviated f h m  gaussianity, however, as the age of 

the children increased the data became more gaussian (80% of the time). Conversely, 

Dumermuth (1975) performed tests on twins and sleeping aduits which showed the EEG 

deviated from gaussianity. 

In 1975. McEwen et al. analyzed EEG data using different sampling rates and found 

that for 2 second data segments at least 90% of the data was stationary and gaussian and for 8 

second data segments at least 65% of the data was stationary and gaussian. In 1978, Sugimoto 

performed tests on the EEG of sleeping adults and found that 50% of 2.5 to 5 second EEG 

segments showed both stationarity and normality. Further, Weiss (1989) analyzed 1 second 

segments of EEG frorn a sleeping adult and found 47% of the data was non-gaussian. He also 

tested normal children and found 39% of the EEG data to be non-gaussian. 

Gasser et al. (1986) atso conducted work on EEG noise obtained fiom pre and post- 

stimuIus intervals associated with Visual Evoked Potential (VEP) testing. Two subject groups 

were tested; one group had low EEG noise amplitude and the other had high EEG noise 

amplitude. Results showed that the EEG noise from both groups had a symrnetric distribution 

with rnildly longer-tails than that expected for a normal distribution. For both groups, the 

assumption of normality was rnildly validated (the high noise group had stronger deviations 

fiom normality but not strong enough to totally deviate from normaïity). Thus, Gasser 

concluded that EEG noise is approximately normally distributed. 



3.2 SSABR Noise: Artifacts 

Artifacts can be separated into 3 categories: physiological, instrumental and extemal. 

Artifacts are important because if the artifact's amplitude is sufficiently large and occurs once 

or twice in the EEG recording then it may be prorninent even after time averaging (Regan, 

1989). Physiological artifacts occur when the subject talks, swailows, clenches their teeth, 

blinks their eyes or moves during a recording. To reduce these artifacts, the subject is 

encouraged to relax by sitting in a cornfortable chair with a headrest or by Iying down on a bed. 

The most cornmon artifacts are eye artifacts which do not exceed 50 Hz in frequency but are on 

the order of 100 to 200 pV in the 3 to 4 Hz region (Sauter et al., 1990). There are also ECG 

artifacts which look like spikes and influence the DC to 25 Hz range (Kemp et ai., 1991). 

Further, tongue and sweat artifacts contaminate the potentials near DC (Barlow, 1986). 

Muscle artifacts also corne from the contraction of scalp, neck and facial muscles. 

These artifacts are large and sharp in contrast to the EEG with amplitudes several times greater 

than the spontaneous EEG activity. The muscle artifact shape and duration is variable across 

subjects and depends on the orientation of the muscles with respect to the electrode sites 

(O'Domeii et al., 1974). Johnson (1979) found severd typicai muscle artifacts were well 

approximated by a second order linear systern with a center frequency at 70 Hz and a 

bandwidth of 70 Hz. This was also seen by O'Domeii et al. (1974) who looked at fiontalis and 

masseter muscle contractions. O'Donnell also concluded that EEG recorded from areas not 

directly over a large contracting muscle appeared to reflect the activity of that muscle only 

slightly in the Iower fiequency ranges and only rnoderately in the mid and upper frequency 

ranges of the EEG. Meanwhile, Pfurtscheller et al. (1993, 1994) found that EEG activity in ihe 

40 Hz range is strongly related to the planning of a specific movement. Using finger, hand and 

toe rnovements, they noted that the maxima of the 40 Hz oscillations occurred just before 

rnovement onset and there was a fast decrease in the 40 Hz activity after movement onset. 

Instrument artifacts includes noise from electrodes, amplifiers, bandpass filters and 

digitization. Movement of electrode leads and people walking by the leads result in slow wave 

variations. This can be reduced by using Silver Silver-Chloride electrodes and lowering the 

scalp-electrode resistance (Karnp et al., 1982). The effects of amplifier and electrode noise can 



be approximated by a scalar gaussian white noise process (Bartoli et al., 1983). For an analysis 

of the instrumentation noise for the test setup used in this thesis please refer to Appendix K. 

Extemal artifacts include the power line interference at 60 Hz which cornes from strong 

sources such as power cables, lights and transfomers (Barlow, 1986). This problem c m  be 

accentuated by unequal electrode impedance (Misulis, 1994). To minimize the effect of line 

noise, electrode irnpedances should be balanced and the differential amplifier input irnpedance 

must be made as high as possible. In addition a notch filter can be used to attenuate Iine noise. 

The subject may also be electromagnetically shielded to avoid interference (Kamp et al.. 1982). 

3.3 Current SSABR Detection Algorithms 

SSABR detection algorithms consist of objective algorithms for which there is no need 

for a trained observer to identiQ responses (this is beneficid for screening purposes). A 

criteion is also used to control the false positive rate (the rate of detecting noise as a response) 

(Dobie et al., 1993). The various objective response techniques in the literature are the 

Magnitude Only (MO), Circula T2 Statistic (CT~), Magnitude Squared Coherence (MSC) and 

Phase Coherence (PC) methods and the F test. These methods utilize conventional data 

preprocessing techniques such as artifact rejection (which combats the contamination of the 

recorded data by physiological noise) and synchronous time averaging (which reduces the noise 

power and increases the SNR). Furthemore, the CT', MSC and PC methods involve data 

segmentation to improve the statistical power of the test. The detection methods and data 

preprocessing methods will now be discussed. 

3.3.1 Dealing with Artifacts: Artifact Rejection and other methods 

The traditionai way of dealing with EEG data contaminated with artifacts is to use 

Artifact Rejection (AFR) which excludes very noisy data fiorn M e r  processing. This is 

necessary because for frequent artifact occurrence the noise reduction performance of 

synchronous time averaging will be degraded (Ruchkin, 1988). In AFR, a predefined voltage 

threshold is set and any recorded buffers with data which exceed this threshold are assumed to 

contain artifacts and are discarded. Furthemore, this voltage setting c m  be chosen so that a 

pre-specified amount of recorded data is discarded. One voltage threshold reported in the 



literature is MO pV (Lins et ai., 1996). The use of AFR iri removing artifacts, however. has 

limitations such as the allowance of low-amplitude artifacts into the averaging procedure which 

degrades the response estimate. In addition whole data buffer rejection can significantly 

prolong recording time which increases the possibility of artifact generation (Bezerianos et al., 

1995). All curent SSABR detection algorithms use Artifact Rejection in data preprocessing. 

Other artifact reduction techniques are to get the subject to relax as much as possible or 

to use algorithmic techniques consisting of subtraction, nulling or artifact cancellation so that 

there is no reduction in EEG data (Barlow, 1986). Different elsctrode sites can also be tried to 

reduce the effect of muscle artifacts on the EEG. For instance there is Iittle muscle artifact at 

the vertex and the earlobe has less muscle artifact than the mastoid (Chiappa, 1990). Another 

technique is weighted time averaging which has been found by many researchers to be robust in 

processing artifact contaminated data and results in reduced recording time needed for response 

detection (Gasser et al., 1983; Fan et al., 1991; Genil1 et ai., 1996; Miskiel et al., 1987). 

3.3.2 Synchronous Time Averaging 

Synchronous Time Averaging (STA) is a very cornmon tool used in Evoked Potential 

(EP) recordings to increase SNR. The recorded data is partitioned into data segments called 

sweeps such that the signal is synchronized in each sweep such that it remains constant during 

averaging. Meanwhile, the noise will not be synchronized in each sweep and will become 

small if many sweeps are averaged. STA provides an unbiased signal estimate which improves 

as the number of sweeps contributing to the average increases (Ruchkin, 1988). Unfominately, 

if the signal changes in amplitude over the total number of sweeps recorded then there will be a 

bias problem which will lead to a smaller amplihide in the averaged result (Gasser et al.. 1983). 

STA can be performed with different statistical models assumed for the data, however, 

the standard assumptions required are that the EP is synchronized with stimulus presentation, 

the EP is identical for each stimulus presentation, the EP is statistically independent fiom the 

noise and the noise is stationary with zero mean (Regan, 1989). Given these assurnptions, a 

çtatistical anaiysis of time averaging shows that the expected value of the noise variance (oN2(t)) 

in the final averaged result is (Regan, 1989): 



1 
= -- N ' ~ { [ n l  ( t )  + nz (t)+...+n, ( t ) ]  - [n, ( t )  + n2 (t)+ ...+ n, ( t ) ] }  

where: N is the nurnber of sweeps averaged 
n, is the noise in the i"' sweep 
E is the statisticai expectation operator 

Equation 3.3 indicates how much noise one could expect in the final average. The first 

term is the surn of sarnple noise variances for each sweep. The second term is a sum that 

represents the correlation between noise in two different sweeps taken across al1 sweeps. If the 

noise is uncorrelated fkom sweep to sweep then the second grouped term becomes zero and the 

noise variance in the final average is: 

Thus, there is a factor of N reduction in the noise variance which implies a factor of N increase 

in the SNR. This result is independent of the probability distribution of the noise (Regan, 

1989). Even when some of the aforementioned assumptions are not strictly met, the SNR of the 

average will still usually improve with repetition, however, the most stringent assumption 

which must be met is that of statistical independence between the signal and noise (Childers, 

1977). The above analysis also indicates that the correlation of the noise between sweeps 

should be kept low and thus an appropriate sweep duration should be used. Furthermore, 

narrowband noise has an increased degree of correlation. 

3.3.3 The Magnitude OnIy Method 

In this algorirhm, after preprocessing, an FFT is performed to obtain the amplitude 

spectnim of the averaged result. The response amplitude is then obtained fiom the FFT bin 

which corresponds to the response fkequency. An estimate of the noise amplitude at the 

response bin is then made by averaging across several bins on either side of the response 

fiequency. The signal amplitude is then compared to the noise amplitude and a threshold level 



determines whether a response is present. In the literature, there have been variations in the 

noise estimation process and the threshold level. Batra et al. (1986) used three of four bins on 

either side of the response bin (ignoring the bin closest to the response bin) to obtain their noise 

values. A signal was detected if response amplitude was larger than the mean plus three 

standard deviations of the noise values. Meanwhile, Chambers et al. (1993) decided a response 

was present if the response was larger than the average of the 4 Iargest noise components in the 

entire spectnim. 

3.3.4 The Circular T' Statistic 

Afier preprocessing the recorded data, the averaged result is partitioned into sixteen 

segments. This technique evaluates if the responses are replicable in the sixteen sections (Lins 

et al., 1996). For each segment, an FFT is done and the X and Y (real and imaginary) Fourier 

components at the response fiequency are ploned on a polar plot. This test assumes that the 

real and imaginary variances will be equal (Dobie, 1993). The plotted values wilI form a c1oud 

of points. If the recording contains pure noise then the cloud of points will cluster around the 

origin. If  a signal is added to the noise, then the cloud of points will be displaced from the 

origin. A 95% circular confidence lirnit of the mean (of the 16 X and Y points) is calculated 

and if it does not contain the origin then a response is considered present (Lins et al., 1996). 

3.3-5 The F Test 

This test considers whether the recorded data is considerably different from noise by 

deterrnining if the response power (Pd  is significantly different from the noise power (P,) at 

adjacent fiequencies (Lins et al., 1995a). After preprocessing, the power spectrum of the 

averaged result is calculated. The PR and P, values are then obtained (P, is obtained by 

averaging noise powers from adjacent bins). The F value is then the ratio of PR to P,. A 

response is present if the F value is larger than a threshold level (F,,,icaI). To calculate Fe,,,, we 

assume the noise is Gaussian and thus power estimates are Chi-square distributed (Zurek, 1992) 

and the ratio of two noise powers can be tested as an F statistic. The power at one bin will have 

2 degrees of freedom (df) meanwhile the power obtained by avenging across m bins will have 

2rn df. Thus, F,,,,,, is given by the tabulated F statistic value at (2,2m) df. In the Iiterature, 

John et al. (1997) used 120 neighboring bins (about 5 Hz on either side of the response bin) to 



estimate P,. Meanwhile, Dobie et al. (1996) stated that there are dirninishing returns if more 

than 15 bins are used in the noise power estimate. 

3.3.6 Phase Coherence 

Phase Coherence (PC) involves using only phase information. Some researchers 

consider this beneficial because they think that phase contains signai information especially 

when testing near threshold. PC represents the degree of reproducibility of phase (i-e. Phase 

Variance (PV)) at the response fkequency between groups of averaged data segments. Small 

values of phase variance indicate that the Fourier component at the response kequency is more 

likely to represent a response rather than noise (F~drnan et ai., 1984). 

The recorded sweeps of data are first passed through an AFR algorithm and then 

divided into usually 10 groups of 200 sweeps each. STA is then done on the sweeps in each 

group (Aoyagi et al., 1993~). Each group average is then Fourier transformed and the phase at 

the response frequency for each group is obtained. The degree of phase reproducibility is then 

assessed a Component Synchrony Measure (CSM) based on the phase variance for the n group 

averages which is given by (Fridman et al., 1984): 

where Oi is the phase at the response bin for the i'l' group 

The CSM is then given by: 

C S M = 1  - P V  (3 -6) 

and the phase coherence (PC) value is given by (Jerger et al., 1 986): 

PC = (csM)~" (3 -7) 

Values of CSM vary from O to 1. In the case of a pure signal with no noise CSM is 1. 

If there is noise and no signal then CSM tends to O. A response is considered present if the 

CSM value is larger than a cntical value (CSM,,,) which is determined by theoretical values 

obtained when only noise is present. For the noise only case, the CSM has a mean (CSM) of 

lln and a standard deviation (acsM) of ((n-l)/n3)iR- For n groups of averaged data CSM,, is 

related to CSM and O,, by (Fridman et al., 1984): 

CSM,,, = CSM + 3- a,,, 



Furthemore, in computing the FFT for each group average, an extended cosine bel1 window 

can be used to reduce the arnount of spectral leakage (Aoyagi et al., 1993~). 

3-3.7 Magnitude Squared Coherence 

The Magnitude Squared Coherence technique measures the degree to which two 

stationary time series are related to each other as a function of frequency. Thus, considering an 

input/output system, the MSC can indicate the degree to which the output is related to the input 

as a function of fkequency (Dobie et al., 1991). Only for the special case of a periodic input, as 

in EP testing, the MSC c m  be calculated using only the output data. The MSC value ranges 

between O and 1. If the recorded data consists of a pure signal then the MSC would equal 1. If 

the recorded data consisted of only noise then the MSC woutd tend to O. For a mixture of 

signal and noise the MSC value depends on the SNR @obie, 1993). 

The steps to calculate the MSC involve artifact rejection followed by dividing the 

sweeps into q groups (these groups are called subaverages) and then performing STA on 

sweeps in each subaverage. An FFT is then done on each subaverage STA result to obtain the 

response powers which are then averaged across subaverages to obtain the mean power of the 

subaverages (MP). The subaverage STA results are then time averaged to form a grand 

average. An FFT is done on the grand average and the response power (PM) is then obtained. 

The MSC is then: 

PM 
MSC = - 

MP 

To increase the accuracy of MSC calculation and improve detection, many subaverages should 

be used. For SSABR detection, the optimal number of subaverages is between 8 and 16 (Dobie 

et al., 1993). To determine whether a response is present in a recording, the MSC value is 

compared to a critical value based on no response data. Table 3.1 shows the critical values as a 

function of false positive rate and the number of subaverages. 

MSC values rise with stimulus intensity and longer data collection periods, however, 

MSC values and critical values decline with an increasing number of subaverages. Further, 

MSC performance is unaffected by varying the sweep length (which results in an inverse 

change in the number of sweeps averaged in each subaverage) as Iong as the total test time is 

fixed (Dobie et al., 1995b). 



3.3.7.1 Magnitude Squared Coherence with Weighted Averaging 

Table 3.1. MSC critical values (adapted from Dobie et ai., 1989). 

Weighted Averaging (WA) has been proposed to improve signal estimation when the 

Nurnber of 
subaverages (q) 

4 
8 
16 
32 
64 

noise is nonstationary. In this method, subaverages with high power are considered to have 

more noise thm those with low power and so are given less weight. This is because the signal 

* a indicates the false positive rate; i.e. for 1000 no response trials and a = 0.0 1 
we would expect 1000*0.0 1 = 10 trials to show a significant MSC value. 

Critical Value for Desired a* Level (One-Tailed) 

power is much smaller than the noise power for AEPs and so differences in power between 

subaverages c m  be attributed to noise. When WA is employed in MSC calcdation, each 

0.0 1 
0.792 
0.483 
0.266 
0.139 
0,072 

subaverage is weighted by its own overall power prior to the calcdation of the MSC value 

(Dobie et al., 1993). This technique was found to be slightly better than the regular MSC 

technique on real data from humans but this was not statistically significant (Dobie et al., 

1994b). This method is denoted by MSC-WA. 

0.025 
0.7 14 
0.4 IO 
0219 
0.1 14 
0.058 

3.3.7.2 Magnitude Squared Coherence with Phase Weighting 

0 .O5 
0.632 
0.354 
O. 183 
0.094 
0.047 

Phase weighting was also used to determine SSABR thresholds and was found to 

improve MSC performance (Dobie et al., 1994a). In phase weighting, the MSC values are 

multiplied by weights that are related to the phase error between the actual measured phare 

(fkom the FFT of the grandaverage) and the expected phase at a given stimulus intensity. The 

expected phase is obtained from averaging the slope of phase versus intensity plots across a 

nurnber of test subjects and then using this slope value to predict the expected value at a lower 

stimulus intensity using the measured phase at a higher stimulus intensity where the last 

response was detected. Phase weighting is used when the first non-significant MSC test (i.e. no 

response detected) is seen at a given stimulus intensity. This cm then be repeated for al1 lower 

intensity stimuli. The weight depends on the phase error (Ag) between the expected and 

measured phases in one of two possible ways: 



Linear phase weighting: 

Cosine squared weighting: weight = O for [Ag( > 90" (3.1 la) 

weight = cos'(~8) for lAB[ < 90" (3.1 1b) 

For phase-weighted MSCs, the critical values are lower (based on empirical analysis of over 

7500 no response MSC values). Dobie found both phase weighting methods were better than 

the MSC test (cosine squared weighting was better than linear weighting). The three tests were 

equivalent in terms of test-retest reiiability. However, Dobie cautioned that the phase-intensity 

dope may differ for abnormally hearing subjects and rnay Vary across subjects. 

3.3.8 Relationships between SSABR Detection Algorithms 

Many researchers have tried to determine which objective response detection algorithm 

performs the best. Champlin (1992) and Aoyagi et al. (199%) found that phase spectral 

analysis was more sensitive to the detection of SSABRs than the Magnitude Only method. In 

addition, Dobie and Wilson (1 994b) found that with human 40 Hz SSABR data, PC and MSC 

(with or without WA) performed very similarly in terms of ROC analysis. however, MSC-WA 

may have performed the best although this result was not statistically significant. 

Analytically, the CT' statistic, MSC and PC techniques have al1 been shown to be 

related to one another. In fact, Dobie et al. (1989) showed that PC is analogous to MSC if 

amplitudes are set to unity. This leads to: 

PC = (Msc) '~  (3.12) 

Dobie et al. (1 993) also showed that the MSC technique is an algebraic transform of the CT2 

statistic as seen in the following equation: 

Since they are algebraically related then the two m I in detecting signals 

buried in noise. In addition, Dobie et al. (1996) found MSC and the F test to be equivalent in 

statistical power based on ROC curves constructed frorn sirnulated data consisting of sinusoids 

added to gaussian noise using specified SNRs. 



3.4 The SSABR Model 

In the literature, EP rnodels have assumed that the signal (SSABR in our case) is 

deterministic and the noise (ongoing EEG, non-cerebral noise, instrumental noise, etc.) is 

generally modeled as a stationary random process with zero mean (McGillem et al., 1987). 

Further, the interaction between the signal and noise c m  be rnodeled by either the popular 

addedpower rnodel or the phase aggregation model (Dobie et al.. 1994b). In the addedpoiver 

rnodel the signal and noise are additive and uncorrelated. In the phase aggregarion model, the 

external stimulus is considered to impose order on the initially random noise sources without 

adding energy. Thus overall power will be unchanged but the estimated noise power will 

decrease and the estimated signal power will increase for near-threshold stimulus intensities. 

To choose the rnodel representing the interaction between the SSABR signal and noise 

we can turn to the literature. Cohen et al. (199 1 ) found that EEG noise did not Vary with f, in 

the SSABR stimulus. Furthemore, Champlin ( 1 992) could not find a relation between SSABR 

amplitude and noise amplitude. In addition, Mast et al. (1991) studied the independence of 

Visual Evoked Potentials (VEPs) and background noise and found to a first approximation that 

VEPs and undriven EEG components cornbined linearly. Further, Jervis et al. (1983) tested 

these interaction models for AEPs using tone burst stimuli and electrode sites at the vertex and 

mastoids. Jervis found al1 AEPs studied contained additive energy in at least 1 harrnonic 

component which suggested that the oddedpower model is more plausible. 

Thus, al1 of these findings support the added power model for representing the 

interaction between the SSABR signal and noise. Considering this information and the fact that 

the SSABR has harmonies at higher stimulus intensities, the SSABR model can be represented 

~ ( t )  = s(t) + n(t) (3.14) 
where y(t) is the recorded signal 

n(t) is the background noise 

and the SSABR signal (s(t)) is given by6: 

~ ( t )  = 2 ~ p x s ( 2 n f , . [  + B , )  (3.15) 
i = l  

where Ai is the unknown amplitude of the iZh harmonic 
f ,  is the known fiequency of the ilh harmonic 

The SSABR is thought to Vary over tirne and thus s(t) can be amplitude modulated to reflect this (Dobie et ai., 
I994b), however, this variation effect has not been proven. 



Bi is unknown phase of the ilh hannonic 
w is the nurnber of harrnonics (w = 1,2 or 3) 

The popular background noise model is gaussian, zero mean, white noise despite the fact that 

the spontaneous EEG may be non-gaussian (Husar et al., 1997; Johnson et al., 1979). Further, 

the EEG noise c m  be modeled by a linear pararnetric model (using an AR model with order 

less than 10 (Tseng et al., 1995)) in which the EEG signal is described as the output of a filter 

which shapes input white noise to match the EEG power s p e c t m  (Lopes Da Silva et al.. 

1987). 

3.5 Insights into SSABR Detection 

Since the MSC technique is one of the best SSABR detectors, this algorithm will be 

exarnined in a bit more detail. The MSC method involves a combination of STA and frequency 

averaging. The frequency averaging is used to reduce the statistical uncertainty of the 

periodogram because averaging K periodogram estimates will reduce the variance of the 

spectral estimate by a factor of 1/K (if the noise correlation between the successive segments is 

very small). However, this averaging occurs at the expense of frequency resolution (Challis, 

199 1). Periodograrn based methods also suffer from other disadvantages such as poor spectral 

resolution for the analysis of short time length signals. The poor resolution is due to finite- 

width mainlobes (which is inversely proportional to the data time length) from rectangular 

windowing which sets a lower limit on the resolvability of certain spectral characteristics. For 

weak sinusoids, this windowing means an increased difficulty in detection because of the 

presence of sidelobes fi-om stronger spectral components (Swingler et al., 1988). Furthemore, 

these two problems become troublesome for short data records. 

Thus, in reducing the arnount of time needed for SSABR detection, the MSC method 

will suffer from reduced frequency resolution and also from a reduced arnount of STA within 

each subaverage to reduce the amount of noise. Both of these effects are troublesome due to 

the large arnount of background noise. The noise at the lower fiequencies is especially of 

interest due to its large magnitude relative to the rest of the spectrurn and thus its spectral 

leakage should obscure the SSABR. To combat this effect, narrowband filtering can be used 

(since the signal frequency is known) before performing the FFT on each subaverage. Tang et 

al. (1993) used this technique (not with the MSC method) to reduce the effect of spectral 



leakage on steady-state VEPs (the bandpass filter was 2 Hz wide). Tang noted that this method 

provided more accurate estimates of test sinusoid amplitude in white noise and in human EEG, 

however keep in mind that VEPs have higher SNR than SSABRs. 

Another problem with the MSC method is the use of Artifact Rejection which results in 

a large amount of data rejection (Le. longer recording time) when testing restless subjects. To 

combat this, Weighted Time Averaging can be applied wirhin each subaverage for the MSC 

and MSC-WA detectors. This was also mentioned by Dobie et al. (1995) but never 

investigated; it was simply said that this method would result in increased computational 

overhead. Thus, both filtering and WTA modifications will be made to the MSC and MSC- 

WA methods and investigated later in section 6.2. 

In addition, while fiequency domain averaging is used to reduce the variance of the 

spectral estimates to increase signal detection, the noise floor is not actually reduced; only the 

variability of the noise floor is reduced (by a factor of N for averaging N uncorrelated spectra). 

This then imposes a Iower limit on the level of the signal which c m  be detected. In this case, 

STA is needed to decrease the noise floor (although the variability of the noise floor is not 

reduced in this case). These concepts were discussed in Kulik (1995) and are s h o w  below in 

Figures 3.2 and 3.3. 

Thus another improvement would be to time average as many sweeps as possible. For a 

fixed data length, this is achieved by reducing the sweep lenegth. However, the minimum sweep 

time is limited by the correIation properties of the noise in successive sweeps and the resolution 

(and spectral spreading) of the FFT. The reduced FFT resolution is due to the assumptions 

made about the data being zero outside of the measurement interval. However, due to 

knowledge about the data being measured, one can model the data more realistically (instead of 

truncating it to zero outside of the observation interval). This will result in a better spectral 

estirnate once the parameters of the model have been estimated from the observed data (Kay et 

al., 198 1). This is the premise of pararnetric spectral estimation. Thus, pararnetric spectral 

estimation can be used to overcome the fiequency resolution and spectral leakage problem 

provided that the SNR is adequate. Pararnetric spectral estimation thus appears promising for 

SSABR detection and will be investigated in Chapters 5 and 6 .  
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Figure 3.2. Reduction in Noise Floor Level 
by STA and spectral averaging (adapted 
from Kulik, 1995). 
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Figure 3.3. Reduction in Variance of the 
Noise Floor Level by STA and spectral 
averaging (adapted fiom Kulik, 1 995). 

In addition, current SSABR detection techniques do not take advantage of certain 

SSABR noise properties. In section 3.1, it was seen that the EEG noise may have a gaussian 

probability density function (Le. 1 say 'may have' because of the conflicting reports on EEG 

gaussianity). If this is so then the gaussian nature of the noise can be exploited by using 

Higher-Order Statistics (HOS). HOS is very well known for its ability to suppress gaussian 

noise and thus may be able to irnprove the SSABR SNR. Thus HOS based parmetric spectral 

estimation will also be examined in Chapter 5. 

Finally, another area where an improvement in SSABR signal processing can be made 

is the replacement of Artifact Rejection. As mentioned in section 3 3.1, for particular noisy 

subjects, Artifact Rejection will result in excessive data elimination which will prolong test 

time. A possible solution to this problem is the use of Weighted Time Averaging. This will be 

fürther investigated in Chapter 4. 



4.0 WEIGHTED TIME AVERAGING APPLIED TO SSABRs 

This chapter investigates the use of Weighted Time Averaging (WTA) as a replacement 

for the Artifact Rejection (AFR) and Synchronous Time Averaging (STA) conventional 

preprocessing techniques. This is to overcome the limitations of AFR which are that it is 

susceptible to artifact contamination by low-level artifacts and that it throws away too many 

data buffers when testing restless individuals which can significantly prolong recording time. 

WTA is investigated because it has been found by many researchers to be robust in processing 

artifact contaminated data and it also results in reduced recording tirne. 

WTA has only been appiied once to 40 Hz SSABRs recorded from well behaved 

subjects using the MSC technique (see section 3.3.7.1). The weights were based on the inverse 

variance of the STA result in each subaverage. Each subaverage originally contained a 13 

second data segment which was bandpass filtered fiom 30 to 100 Hz. The weighting provided 

marginal detection improvement (not statistically significant) over the original MSC method 

(Dobie et al., 1995), however, Dobie noted that if noise power fluctuations occurred primarily 

within time intervals shorter than the subaverage time (Le. 13 seconds) then the weighting of 

individual sweeps should improve SNR much more than subaverage weighting would. This 

work then raises many questions. What if WTA was applied to much smaller data segments 

(i.e. the sweeps)? Would this provide any improvement for recordings obtained under quiet 

conditions (Le. well behaved subjects)? Also, what would happen under noisy recording 

conditions (Le. restless subjects)? Fwther, are there any other WTA algorithms which have 

better performance than the inverse variance technique? What happens if different bandpass 

filter settings were used for weight calculation to reflect the local situation in the signal region? 

Lastly, what kind of performance improvement can we expect over the conventional 

combination of AFR and STA? 

To answer these questions, data was recorded from 5 adult subjects under quiet and 

noisy recording conditions. Four WTA algorithms were then adapted from the Iiterature and 

compared on this data using the measures of Root Mean Square Error (RMSE), SNR and 

computational complexity. These results will be shown in sections 4.3.6 (40 Hz SSABR 

results), 4.3.7 (80 Hz SSABR results) and 4.3.8, however, to begin with background 

information on WTA will be given in section 4.1. The four WTA dgorithms will be discussed 



in section 4.2 and evaluated in section 4.3. WTA findings in the literature will then be 

discussed in section 4.4 and conclusions will be made in section 4.5. 

4.1 Weighted Time Averaging: Background 

WTA involves a weighting algorithm that gives high weights to sweeps with low noise 

power (Le. well-behaved, 'quiet' potentials) and low weights to sweeps with high noise power 

(Le. 'noisy', artifact contarninated potentials) in order to minimize the contribution of artifacts 

to the final average. This 'noisiness' can be reflected by changes in the mean square vaiue of 

the noise or the fiequency structure of the noise. In addition, for stationary, well behaved noise. 

WTA should give an averaged result that is close to that obtained with STA. 

The mode1 of WTA assumes that the statistical noise properties are constant during one 

sweep, however, these properties change fiom sweep to sweep while the EP remains constant. 

WTA is analytically represented by (Gasser et al., 1983): 

i N 

WTA is not a biased signal estimator if 

performance of STA siiffers with noisy 

where: z,(t) is the averaged result 
f;(t) is the i'" sweep 
gi the weight for the i"' sweep 
N is the number of recorded sweeps 

result is (Bataillou et al., 199 1): 

Mt> = 

This c m  be contrasted with the case 

the weights surn to 

potentials because 

the surn of the weights (4.2) 

unity (Bataillou et al., 199 1). The 

the noise variance in the 

where: ci2 is the noise variance 

of using STA on well-behaved, 

of the ilh sweep 

quiet potentials 

of the oi2 are very similar which gives (note the change in surnmation index): 

averaged 

(4.3) 

where a11 



Many researchers have found WTA to be more robust to 'noisy' potentials than STA 

and that WTA can aid in reducing the amount of recording time needed to detect a response 

(Gasser et al., 1983; Fan et al., 199 1; Genil1 et al., 1996; Miskiel et ai., 1987; Lutkenhoner et 

al., 1 985). However, while WTA has an advantage over STA for very noisy data, it was found 

to have no improvement in SNR over STA for well-behaved quiet potentials (Lutkenhoner et 

al., 1953). 

4.1.1 Considerations in Weight Calculation 

Care must be taken in weight calculation because blind application of WTA will result 

in the underestimation of signal amplitude. This underestimation depends on the degrees of 

freedom (df) involved in weight estimation, however, this underestimation can be neglected if 

the df are sufficiently increased by appropriate preprocessing methods such as data whitening 

(Lutkenhoner et al.. 1985; Gasser et al.. 1983; Gerull et al., 1996). The advantage of 

increasing the df is having more independent terms which can contribute to the value which is 

being calculated. The need for data whitening can be seen in the amplitude spectnim where 

each discrete fiequency component contributes 2 df (1 df for each of the real and imaginary 

components of 1 FFT term), however, for data with low dominating frequencies (as in the case 

of the EEG) the effective df are small (Lutkenhoner et al., 1985). Whitening will thus flatten 

the spectrum and increase the df. In addition, Lukenhoner stated that the weighting factor 

should be found for a frequency band corresponding to the main frequency range of the signal 

of interest or else a nonstationarity in the desired frequency range may be masked by the 

stationary character of other fiequency bands. The converse may also happen. 

4.2 WTA AIgorithms 

The four WTA algorithms that were investigated were the Minimum Energy technique, 

the Inverse Variance technique, the Gerull technique and a vector nonlinear filtering technique. 

Each of these algorithrns will now be described. 

4.2.1 The Minimum Energy Technique 

The Minimum Energy (ME) technique (Fan et al., 1991) argues that the weights should 

be chosen such that the energy of the average should be rninimized. Fan justified this argument 



by stating that since noise energy is so much larger than signal energy in EPs then a 

minirnization of energy will mostly affect the noise energy. In their formulation7, each sweep 

contains R samples and the it" data sweep is represented by: 

where: is the noisy EP recording (vector of size 1xR) 
ni is zero mean noise (vector of size IxR) 
S is the constant EP (vector of size 1 xR) 

If we record M such sweeps then the data can be represented in rnatrix form by: 

F = N + ë J =  (4-6) 

N=[E:,A; ?..., ~ ~ ] ' ( s i z e i s M x R )  (4.8) 

ë =[1,  1, ..., 11' (size is Mxl)  (4.9) 

The weighting algorithm to minimize the energy in the final averaged waveform will produce a 

vector of weights (Wmi,) which c m  be used to give the averaged result (amin):  

aminT = w m i n T ~  (4.1 O) 
- where: - [w,, w2, .... wMIT (4.1 1) 

This weight vector c m  be determined from the energy minimization of the averaged resuIt with 

respect to the weight vector. This energy is given by: 

Substituting equation 4.10 into equation 4.12 gives: 

E((  w m i n T ~ ) (  w ~ ~ ~ ~ F ) ~ )  

Now substituting equation 4.6 into equation 4.13 and expanding, the only energy term which 

depends on the weights is: 

W ,in w min 

Now taking the derivative of equation 4.14 with respect to the weights subject to the constraint 

-T - e w = 1 leads to: 

Symbols with arrows overhead (i.e. V ) represent vectors and bold-face characters represent matrices. 
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Since we don't have an exact expression for N, we c m  approximate N by F since the noise 

energy is so much larger than the signal energy. This gives: 

In the above formulation, the nurnber of sweeps must be smaller than the number of 

points in a sweep (R) or eise the matrix FF' will be singular and thus not invertible. If the 

number of sweeps needed to reduce the noise is greater than R then Fan recornrnended that the 

recorded sweeps be partitioned into K groups. WTA via the ME method c m  then be performed 

on each group and the resulting weighted averages from each group can be averaged using 

STA. 

4.2.2 The Inverse Variance Technique 

The Inverse Variance (VI) technique has been proposed by a number of researchers 

(Gasser et al., 1983; Dobie et al., 1994; Bataillou et al., 199 1). In this approach, a noisy sweep 

will have a larger variance than a quiet sweep. To minimize the effect of the noisy sweeps to 

the averaged result, each weight can be based on the inverse variance of the corresponding 

sweep normalized by the surn of the inverse variances of al1 of the sweeps s h o w  by: 

Bataillou et al (199 1) stated that a weight vector defined in this manner will maximize the SNR 

on the average and that with these weights, the variance of the averaged signal is: 

4.2.3 The Gerull Technique 

Gerull et al. (1996) modified the V-' technique because they noted that this method 

suffered fiom two problems. Firstly, the sample variance is itself a random variable whose 

variance is inversely proportional to the df (in variance estimation) and secondly if the signal is 

included in weight calculation then there is a risk of biasing which c m  result in a reduction of 



the signal amplitude. To address these problems they increased the df for variance estimation 

and eliminated the signal when calculating weights. They stated that their procedure avoids 

signal underestimation and improves weight calculation. The procedure includes the following 

steps: 

1) Select pairs of sweeps and form two sequences; one sequence is equal to the sweep 

difference and the other equals the sweep sum. 

2) Whiten the sweep difference in each pair (using an adaptive whitening filter) and obtain 

the reciprocal sarnple variance which is used as the weight. 

3) Weight the sweep surn in each sweep pair by the appropriate weight calculated in step 2. 

In this procedure, the pair difference was used to form the variance estimate because the pair 

difference would not contain the signal componentg. Adaptive whitening was used to increase 

the df to improve the variance estimate. Furthemore, correlation between the sweeps in each 

pair was made small by choosing sweeps separated by at Ieast one sweep. The omitted sweeps 

were then used for another independent signal estimation and the results of both estimations 

were averaged to yield the final result. 

4.2.4 Vector Nonlinear Filtering 

This technique, proposed by Bezenanos et al. (199 5), considers each sweep to 

vector with components at time instants 1, 2, . . , ( = [ , f , . . . , f ] ) which is 

represented by a single point in K dimensional vector space R ~ .  Each sweep vector is then 

inputted to a nonlinear filter algorithm wliich cornputes a weight for the sweep based on its 

similarity to the rest of the recorded sweeps. Vectors that differ significantly fiom other vectors 

are recognized as artifacts and given small weights. 

The method, termed Data Dependent Weighted Averaging based on the L2 n o m  

(abbreviated here as VNF: Vector Nonlinear Filtering), assigns each input vector (1) a scalar 

Di that corresponds to the aggregate distance of that vector to the rest of the N recorded vectors. 

Thus the srnaller the Di the more reliable the corresponding x. The Di value is given by: 

' Gerull stated that the noise is assumed normally distributed and uncorrelated which makes the statistical 
properties of the sum and difference of the noise in the pair of sweeps ecpivalent. 



j = i  

The n o m  in equation 4. f 9 is the Euclidean n o m  which is calculated as: 

The particular for which Di is minimum is called the vector rnedian of the set of sweeps. 

The weights (Ci) are then calculated by: 

Inversion of Di insures that vectors close to the vector median take high weights which is 

important for suppressing impulsive noise. The summation of the weighted vectors then gives 

the final averaged result. 

4.3 Evaluation of WTA Algorithms 

The previously described WTA algorithms were compared to STA using pseudo-real 

data consisting of a simulated sinusoid (Le. the SSABR signal) added to recorded EEG (no 

AFR was performed). The pseudo-real data was then segmented and passed as input to the 

WTA algorithms as well as to the STA algorithm. Performance was then determined for each 

averaging method by the measures of RMSE and SNR, and variants thereof versus the number 

of sweeps averaged. The best WTA method was then compared to the combination of AFR and 

STA. This was done for both 40 and 80 Hz simulated SSABRs and quiet and noisy EEG data. 

The section outlines the methods used and the results obtained. 

4.3.1 Data Acquisition: Methods, Setup and Subjects 

Pure EEG noise was recorded fiom 5 male adult subjects aged 23 to 33. The subjects 

had behavioraf hearing thresholds less than 20 dB HL at 1 kHz and did not have any history of 

hearing problerns. Two recordings were made in which a 70 dB SPL pure tone at 1 Wz (would 

not evoke an SSABR) was delivered, using an insert probe phone, to the right ear of each 



subject. Refer to Appendix C for a description of the experimental setup and the 

instrumentation used. 

During the first recording, the subjects were instructed ta rernain very still to obtain a 

quiet EEG recording. This data will be called 'Quiet EEG Data'. During the second recording, 

the subjects were uneasy and made impulsive noise by clenching their teeth, raising their 

eyebrows, coughing, yawning and moving any other facial muscles. This movement was for a 

random duration with a random interval of time between two successive artifact generations 

ranging fiom one or two seconds to five seconds. This data will be called 'Noisy EEG Data'. 

These test cases would be the extreme situations for an EP recording. The Quiet EEG Data 

would represent a totally cornpliant subject and the Noisy EEG Data would represent a very 

uncooperative subject. 

4.3.2 Data Preparation 

A simulated sinusoid, representing the SSABR, was added to the recorded EEG to forrn 

the 'pseudo-real' test data. This was repeated twice; the first time the sinusoidal fiequency was 

at 40 Hz and the second time it was at 80 Hz. In both occasions the sinusoidal amplitude was 

300 nV peak which represents a 40 Hz SSABR of moderate amplitude and a high amplitude 80 

Hz SSABR. This amplitude was used to get meaningful results with a reasonable amount of 

data. The data was then passed through a notch filter to remove line noise which was very 

prominent in the recordings. The line noise was stable at 60 Hz with amplitudes varying from 1 

to 4 pV across subjects. A first order Buttenvorth IIR notch filter, in the non-phase shifi 

configuration (Antoniou, 1993), with a bandstop region of 58 to 62 Hz and a 40 dB notch was 

used to attenuate the line noise. 

The first 0.4 seconds of each recording were discarded to account for startup transients 

in the recording. The next 90 seconds of data were taken and partitioned into 2.4 second data 

blocks which were M e r  partitioned into 0.3 second sweeps (see Appendix F for sweep Iength 

choice). This Iength is sufficiently sensitive to noise artifacts which are short in duration. 

WTA was then performed on the data starting with 2.4 seconds of data and iteratively adding 

2.4 seconds of data which enabled RMSE and SNR results to be obtained every 2.4 seconds. 

For the cases where AFR was used, buffers of data with amplitudes greater than f 40 pV (Lins 



et al., 1995) were thrown out. In the cases where pre-filtering was used, ONLY for weight 

calculation, the filter was a 2"d order, IIR Buttenvorth filter in the non-phase shifi configuration. 

The passband was 35 to 55 Hz for the 40 Hz SSABR and 65 to 95 Hz for the 80 Hz SSABR. 

4.3.3 Test Cases Considered 

The test cases involved WTA and STA performance analysis under the Quiet and Noisy 

EEG Data cases with no AFR. Since STA is usually conducted afier AFR, this combination 

was also examined for the Quiet and Noisy EEG Data cases. Finally the analysis for the WTA 

algonthms was repeated with bandpass filtering applied to the data ONLY for weight 

calculation in the 35 to 55 Hz range for the 40 Hz SSABR and the 65 to 95 Hz range for the 80 

Hz SSABR. Al1 of these test cases considered are listed in Table 4.1. 

TABLE 4.1. Test Cases for WTA Investigation. 

4.3.4 Irnplementation of WTA Algorithms 

Modifications were made only to the ME and Genil1 methods. For the ME method, the 

Test 
Case 

1 
2 
3* 
4 
5 
6* 
7 
8 
9* 
10 
1 1  
12* 

minimum energy weighted averages fiom each 2.4 second block were cornbined using WTA 

* This test case is done for STA only. 
** The pre-filtering case For weight calculation does not apply to STA. 

SSABR 
Amplitude (nV peak) 

300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 

EEG data 
type 

Noisy 
Quiet 
Noisy 
Noisy 
Quiet 
Quiet 
No isy 
Quiet 
Noisy 
Noisy 
Quiet 
Quiet 

based on the V-' technique instead of using STA. This was reasonable because WTA applied to 

sweeps in each 2.4 second block may yield results that are also very variable in variance across 

- 

the blocks; i.e. one block may be cornpletely contaminated with artifacts meanwhile other 

SSABR 
Frequency (Hz) 

40 

blocks can be artifact fiee. Thus using V" weighting should be beneficial in this situation. 

AFR? 

No 

Prefilter data for 
weight calculation onIy** 

No 
No 
No 

Yes; (35 to 55 Hz) 
Yes; (35 to 55 Hz) 

No 
No 
No 
No 

Yes; (65 to 95 Hz) 
Yes; (65 to 95 Hz) 

No 

40 
40 
40 
40 
40 
8 O 
8 O 
80 
8 O 
80 
8 O 

No 
Yes 
No 
No 
Y es 
No 
No 
Y es 
No 
No 
Yes 



The Genil1 method was augmented by normalizing the weights based on al1 of the 

weights calculated; i.e. al1 sweeps were considered at once instead of performing the method 

on two separate groups of sweeps and then averaging the two results at the end. This was done 

for the same reason as that given for the ME method, however in this case the effect would only 

be prominent for a low nurnber of sweeps averaged. Furthermore, the whitening in the method 

was done based on AR parameters determined for each 0.3 second sweep separately. The Yule- 

Walker (autocorrelation) rnethod was used to estimate the AR parmeters using the biased 

autocorrelation fùnction and the MDL AR model order estimator was used based on resuIts 

shown by Simpson et ai., (1995), Tseng et al., (1995), Vaz et al., (1987) and Steinberg et al. 

(1985)'. Before the sweeps could be whitened, the data was upsampled by a factor of two and 

downsarnpled by a factor of five because the original data, which was sampled at 490 Hz and 

lowpass filtered at 100 Hz, had a 'deadband' in the 100 to 245 Hz region which adversely 

affected the whitening of the data between 10 and 1 00 Hz. 

4.3.5 Performance Evaluation: Methods 

For each test case, the RMSE between the WTA result and the simulated sinusoid was 

calculated. In addition, the SNR was calculated for each averaged result by performing the FFT 

and then taking the power at the response fiequency and dividing it by the average of the noise 

power values found within 10 Hz on either side of the response frequency. Before the SNR and 

RMSE values were calculated, the averaged result was bandpass filtered fiom 25 to 55 Hz (for 

the 40 Hz SSABR tests) or 65 to 95 Hz (for the 80 Hz SSABR tests) to allow the arnount of 

noise around the fiequency region of interest to be directly investigated. The SNR and RMSE 

results were then averaged across subjects. In addition, for each subject, the difference between 

the RMSE for each WTA method and STA was computed. These results are referred to as 

DRMSE (see equation 4.22). This was also repeated using SNR values; these results are 

referred to as DSNR (see equation 4.23). Furthermore, the DRMSE and DSNR values were 

averaged across subjects. 

Their work basically showed that the AIC, FPE and CAT model order estimators were similar and gave disperse 
results rneanwhile the MDL order estimator was more consistent. The work by Vaz et al. (1987) also suggested it 
was better to work with shorter time segments and the work by Tseng et ai. ( 1  995) showed that AR modeling was 
better suited than ARMA modeling in describing the EEG under a variety of different recording conditions. 



DRMSE = RMSE, - RMSE, (4-32) 

DSNR = SNRwA - SNRSTA (4-23) 

For comparing the performance between pre-filtering versus no pre-filtenng for weight 

calculation, the RMSE and SNR percentage change were calculated according to: 

where: NPFFWC means No Prefiitenng For Weight Calculation 
PFFWC means Prefiltering For Weight Calculation 

These values were also averaged across the subjects. For RMSE, a positive percentage change 

indicates a decrease in RMSE when using PFFWC which is beneficial; conversely a positive 

percentage change for S N R  means that SNR has increased when using PFFWC. The 

computational overhead for each WTA rnethod will also be compared. The best WTA method 

will then be chosen based on the performance measures and cornputational complexity and will 

be compared to the combination of AFR and STA. 

4.3.6 40 Hz SSABR Results 

The performance results for the Noisy EEG Data case (without PFFWC) are shown in 

Figure 4.1. The RMSE and SNR measures indicate that WTA is considerably better than STA 

with no AFR for EEG data recorded under noisy conditions which is to be expected. Results 

also show that, in terms of RMSE and DRMSE, the ME, V-' and VNF aigorithrns perform 

simiMy and very well with a slight advantage to the ME method over the V-' method. 

Meanwhile the Genil1 and STA methods perform sirnilarly and badly. In terms of SNR and 

DSNR, the ME. V-', and Genil1 techniques ail perform similarly with a slight advantage to the 

ME method over the V-' method. Based on these results either the ME or V" rnethod c m  be 

chosen for 40 Hz SSABRs recorded under noisy conditions. 
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Figure 4.1. Mean WTA results across subjects for Noisy EEG Data (40 Hz SSABR) (a) RMSE 
(b) DRMSE (c) SNR (d) DSNR (STA '-', ME 'oo', Gerull '- -', V-' 'tt', VNF '- -'). 

The above analysis was repeated based on PFFWC between 35 and 55 Hz and using 

these weights with the originally recorded data. The results for this test case are shown in 

Table 4.2 for mean percentage change in RMSE and SNR across subjects. Recail that positive 

values mean that PFFWC is beneficial. Looking at the RMSE percentage change, we see that 

the ME and Gerull methods suffer meanwhile the V" and VNF methods decrease in RMSE a 

bit with a larger decrease (5% on average) for the V-' method. In terms of S N R ,  al1 WTA 

methods decrease in performance with PFFWC with the largest decreases occurring for the ME 

and Gerull methods. The VNF method actually increases a bit in SNR with PFFWC, however 



the increase is not enough to match the SNR of the other WTA methods with NPFFWC. Based 

on these results PFFWC should not be used for WTA for 40 Hz SSABRs recorded under noisy 

conditions- 

Table 4.2. Percentage Change in RMSE and SNR when using PFFWC (35 to 55 Hz) 

The performance results for the Quiet EEG Data case are shown in Figure 4.2. These 

results show that in terms of RMSE and DRMSE. the V-', ME and VNF methods performed 

similarly with STA with a slight advantage to the ME method while the Gerull method 

performed badly. In terms of SNR and DSNR, al1 WTA methods perfomed similarly to STA 

except for the ME method which performed slightly worse. In addition there was a slight 

advantage (early on; i.e. for number of sweeps averaged < 150) for the V-', VNF and Gerull 

methods in terms of SNR (see Figure 4.2d). 
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Figure 4.2. Mean WTA results across subjects for Quiet EEG Data (40 Hz SSABR) (a) RMSE 
(b) DRMSE (c) SNR (d) DSNR (STA '-', ME 'oo', Genil1 '- -', V-' '++', VNF ' - -'). 

PFFWC (35 to 55 Hz) was also applied to the Quiet EEG Data case. The percentage 

change in RMSE and SNR for each WTA method is shown in Table 4.3. PFFWC increased the 

RMSE significantly for the ME method, rnoderately for the Genil1 method and slightly for the 

V" and VNF rnethods. For SNR, there were decreases for each WTA method with the ME 

method being affected the most and the VNF and GeruI1 rnethods the least. Thus PFFWC is 

not suitable for 40 Hz SSABRs recorded under quiet recording conditions. 



Table 4.3. Percentage Change in RMSE and SNR when using PFFWC (35 to 55 Hz) 
for the Quiet EEG Data case (40 Hz SSABR). 

4.3.7 80 Hz SSABR Results 

The performance results for the Noisy EEG Data case with NPFFWC are shown in 

Figure 4.3. From the RMSE and DRMSE results we c m  see that the best methods are the ME 

and V-' methods with the VNF method close behind. STA is far behind once more. however 

the Genil1 method performs better than STA (this was not seen in the 40 Hz SSABR Noisy 

EEG Data case). In terms of SNR and DSNR, the ME and V*' methods perform very similarly 

with the Gerull method performing similarly at first but then dropping off a bit in performance. 

Conversely, the VNF method performs badly at first but then improves towards the end of the 

test. STA does not improve with an increase in the nurnber of averaged sweeps as expected. 

We should also note that the RMSE for this case is lower than it was in the 40 Hz SSABR 

Noisy EEG Data case for al1 WTA methods and that STA performs better in this case than the 

corresponding 40 Hz SSABR case (Le. compare Figures 4.3b and 4.3d with Figures 4 . lb  and 

4.1 d). 

With PFFWC, fiom 65 to 95 Hz, the percentage changes in RMSE (see Table 4.4) 

indicate that the ME method improves at the beginning of the test but then halfway through it 

suffers. The Gerull method also suffers throughout but only very slightly. Conversely. the V-' 

and VNF methods improve throughout the test with the V" method improving by a larger 

amount. In terms of SNR, we see the sarne trends as with RMSE. The ME method improves 

near the beginning but then s a e r s  for the duration of the test, rneanwhile, the Gerull method, 



afier an initial degradation improves slightly for the rest of the test. The VNF and V-' rnethods 

both show improvement. Furthemore, the SNR improvement of the V-' method with PFFWC 

is so large that V-' with PFFWC performs better than al1 other methods with or without pre- 

filtering for the 80 Hz SSABR Noisy EEG Data case. In fact V-' with PFFWC is better than the 

ME method by about 1 dB up to 190 sweeps averaged and then 0.5 dB aflenvards. Thus 

PFFWC is beneficial for the V-' and VNF methods for the 80 Hz SSABR recorded under noisy 

conditions. 
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Figure 4.3. Mean WTA results across subjects for Noisy EEG Data (80 Hz SSABR) (a) RMSE 
(b) DRMSE (c) SNR (d) DSNR (STA '-', ME 'oo', Genil1 '- -', V-' '++', VNF '- -'). 

The performance results for the Quiet EEG Data case are shown in Figure 4.4. The 

RMSE and DRMSE results indicate that ail WTA methods (except for the Genil1 method) 



perform similarly to STA with a very slight disadvantage to the ME method. In terrns of SNR 

and DSNR, al1 WTA methods perform similarly to STA with an advantage to the ME method. 

In fact, early on in the test, the ME method outperforms the other methods by about 0.5 dB. 

Furthemore, cornparing these results to those fiom the 40 Hz Quiet EEG Data case we note a 

reduction in the rneasure of RMSE and an increase in the mesure of SNR. 
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Figure 4.4. Mean WTA results across subjects for Quiet EEG Data (80 Hz SSABR) (a) RMSE 
(b) DRMSE (c) SNR (d) DSNR (STA '-'. ME 'oo" Genil1 '- -', V" '++', VNF ' - -'). 

The results for PFFWC from 65 to 95 Hz are shown in Table 4.5. In terms of RMSE 

percentage change, we see that the ME and Gerull methods both degrade in performance with a 

bigger degradation for the ME method. Pre-filtering also causes the V-' method to perform a 



little bit worse meanwhile the VNF performance is hardly affected. In terms of SNR 

percentage change, we see that the ME method suffers badly at first but then only slightly 

afterwards. The Genil[, V-' and VNF methods suffer slightly in performance with the first 70 

or so averaged sweeps but then the performance is pretty much unchanged. Thus PFFWC 

offers no performance improvement for the 80 Hz SSABR recorded under quiet recording 

conditions. 

Table 4.4. Percentage Change in RMSE and SNR when using PFFWC (65 to 95 Hz) 
for the Noisv EEG Data case (80 Hz SSBAR). 

Num ber of RMSE SNR 
S w e e ~ s  Averaoed ME Gerull 1 V-' V-' 

Table 4.5. Percentage Change in RMSE and SNR when using PFFWC (65 to 95 Hz) 
for the Quiet EEG Data case (80 Hz SSABR). 

Number of RMSE SNR 
Sweeps Averaged 

24 
48 
72 
96 
120 
1 44 
168 
192 
216 
240 
264 
288 

Cierull 
-9.02 
-4.45 
-5.88 
-5.29 
-1.75 
-7.62 
-1 0.56 
-9.59 
-8.56 
-9.16 
-1 1 .O6 
-12.29 

0.33 
-5.41 
-9.45 
-13.97 
-12.36 
-21.72 
-20.32 
-26.21 
-26.58 
-26.51 
-26.60 
-28.24 

ME 1 Genil1 V-' 
-17.52 
-10.05 
-5.22 
-1 -95 
0.75 
1 .O6 
1.26 
0.37 
-0.35 
-0.42 
0.1 6 
0.23 

-50.10 
-26.27 
-1 2.10 
-4.95 
-1 -38 
4.54 
-2.60 
4.68 
-5.1 0 
-6.1 3 
-5.05 
-5.01 

V- ' 
2.23 
-0.41 
-1 -81 
-1 -20 
1.54 
-0.25 
-0.58 
-4.63 
-7.03 
-4.99 
-5.06 
-5.34 

VNF 
-8.03 
4.41 
-2.66 
-1 -25 
-0.47 
-0.08 
-0.28 
-0.50 
-0.67 
-0.36 
-0.16 
0.03 

-6.39 
-3.32 
-6.35 
4.03 
-1 -99 
-2.57 
-1.48 
-1.12 
-0.31 
0.02 
-0.47 

- -0.67 

VNF 
-0.25 
-1 .IO 
-0.56 
0.378 
1 .O3 
1.44 
1 .18 
-0.18 
-1.18 
0.73 
0.86 
1.37 



4.3.8 Computational Complexity of the WTA methods 

In t e m s  of computational complexity, we consider data consisting of N sweeps with K 

sarnple points per sweep. Each WTA method will have to weight each sweep and sum the 

weighted sweeps which requires NK multiplications and NK additions. Since this is common 

to each WTA rnehod it will be ignored. The cornputational complexity for each method is 

shown in Table 4.6. Appendix D provides more detail on the derivation of the computational 

complexity for each algorithm. In the past, the most expensive computation was 

multiplications and fiom this perspective we see that the least expensive algorithm in the V-' 

method. The next most computationally expensive rnethod is the ME method followed by the 

VNF and Gerull methods. 

Gerull K'N/2 + O O 

Table 4.6. Computational Complexity for each WTA method. 

4.3.9 WTA Algorithm Choice 

For the 40 Hz SSABR case, the performance analysis of the WTA methods in both the 

l ( 1 1/7)NK 
VNF 1 2N2K + N 

Noisy and Quiet EEG Data cases showed that the V" method was always near the top (if not at 

Number of 
Square Roots 

WTA 
method 

the top) in terrns of performance. In addition, PFFWC did not improve the performance of any 

Number of 
Additions 

Num ber of 
Multiplications 

This colurnn contains the number of matrix inversions and the size of the matrix inverted in brackets- 

( 1 8/7)KN 
2N'K + N 

WTA algorithm. Furthemore, Table 4.6 indicates that the V" method has the least amount of 

computational overhead. Thus, for the 40 Hz SSABR, the best WTA method to use for SSABR 

preprocessing is the V-' method without PFFWC. 

In terms of the 80 Hz SSABR, the choice is not as clear cut. For the Noisy EEG Data 

case, the V-' method with PFFWC perforrns the best by about 1 dB over the ME method 

cvithout PFFWC. However, in the Quiet EEG Data case, the ME method outperforms the other 

WTA methods in t ems  of SNR by about 0.5 dB early on (in the 30 to 80 sweeps averaged 

Number of 
Divisions 

Number of 
Logs 

range), however after that al1 methods performed very similady. The questions to consider here 

Nurnber of 
Lnversesœ 

2N 

are whether more noisy recordings than quiet recordings will be encountered in practice and 

N' O O 



also does the computationai overhead of the ME method justify the 0.5 dB SNR performance 

improvement? Alternatively, the strategy couid be to have two WTA methods for 80 Hz 

SSABR testing. For testing individuais who are quiet, the ME method could be used and when 

testing particularly noisy individuals such as infants, the V-' method with PFFWC could be 

used. 

4.3.10 Cornparison of The Best WTA methods to STA with AFR 

In this section, the performance of the best WTA method on the raw recorded data (i-e. 

no AFR) will be compared to the performance of STA with AFR. Only the RMSE and SNR 

results will be shown because the DRMSE and DSNR results added no extra information. For 

the 40 Hz SSABR, the V-' method will be used in both the Quiet and Noisy EEG Data cases. 

For the 80 Hz SSABR, the V" method with PFFWC will be used for the Noisy EEG Data case 

and the ME method will be used for the Quiet EEG Data case. 

Firstly, the extra arnount of data needed for each subject to obtain the required 90 

seconds of data for WTA anaiysis is shown in Table 4.7. This holds true for both the 40 and 80 

Hz SSABR test cases. Table 4.7 indicates that for the Noisy EEG Data case, on average an 

extra 32.42 seconds of recording time was needed which represents an extra 36% of recording 

time. Meanwhile, for the Quiet EEG Data case, the subjects were well behaved and generated 

very few artifacts and thus only a very slight bit of extra recording time was needed. 

Table 4.7. Extra recording time (in seconds) when using Artifact Rejection. 
EEG Data Subject Extra Recording Recording Time 

Case 1 1 1 3 1 4 1 5 Time % lncrease 

[ Quiet 1 O O O 0.1 1 0 . 4  1 O. 1 O. 1 1 

The RMSE and SNR results for the 40 Hz SSAE3R Noisy EEG Data case are shown in 

Figure 4.5. The plot shows that STA with AFR outperforms the V-' method, however, as Table 

4.7 indicated, STA with AFR required on average an extra 32.42 seconds (extra 36%) of data. 

Factoring this in, it is clear that the V" method is the better method to use in noisy recording 

conditions for 40 Hz SSABRs. 



The RMSE and SNR results for the 40 Hz SSABR Quiet EEG Data case are shown in 

Figure 4.6. The results show that the V-' method and STA with AFR perform very sirnilarly 

with a slight edge to the V-l method. This result is peculiar since when cornparing V-' and 

STA (with no AFR) for the Quiet EEG Data case, the S N R  results were closer. In this case 

(Figure 4.6b) the difference is attributed to the fact that AFR was used in which case a few 

buffers of data were rejected for a few subjects. This had a cascade effect on the composition 

of the noise for the resulting sweeps which were formed for input to the STA algorithm. 

- - 
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(4 

Figure 4.5. V'l vs. STA with AFR for the 40 Hz SSABR. Mean results across subjects for Noisy 
EEG Data: (a) RMSE (b) S M 1  (V1 '- -', STA with AFR '-'). 

(a) (b) 
Figure 4.6. V-' vs. STA with AFR for the 40 Hz SSABR. Mean results across subjects for Quiet 
EEG Data: (a) RMSE @) SNR (V-' '- -', STA with AFR '-'). 



The RMSE and SNR results for the 80 Hz SSABR Noisy EEG Data case are shown in 

Figure 4.7. The results show that the V-' with PFFWC method outperforms the STA with AFR 

in bodi RMSE and S N R  although this performance improvement diminishes by the end of the 

test. This is already on top of the reduction in recording time. 
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Figure 4.7. V-' with PFFWC vs. STA with AFR for the 80 Hz SSABR. Mean results across 
subjects for Noisy EEG Data: (a) RMSE @) SNR (v-' '- -', STA with AFR '-'). 
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Figure 4.8. ME vs. STA with AFR for the 80 Hz SSABR. Mean results across subjects for Quiet 
EEG Data: (a) RMSE @) SNR (ME '- -', STA with AFR '-'). 



The RMSE and SNR resdts for the 80 Hz SSABR Quiet EEG Data case are shown in 

Figure 4.8. The results show that in terms of RMSE, STA with AFR is only slightly better than 

the ME method, however in t e m s  of SNR, the ME method performs slightly better than STA 

with AFR. Thus for both 80 Hz SSABR cases, the WTA methods perform better than STA 

with AFR in both Noisy and Quiet Recording conditions in addition to a time reduction of 

36%. 

4.4 WTA Results from the Literature 

In the literature there have been both positive and negative findings when applying 

WTA to different types of EPs. The positive findings will be discussed first. Gasser et al. 

(1983) used a form of WTA (which was consmcted to work well when the SNR was good) on 

transient VEPs. The sweeps were 3 13.5 ms long and the data was lowpass filtered with a cutoff 

fiequency of 70 Hz and sarnpled at 408.5 Hz. Testing was done on 42 normal subjects (it is 

assumed they sat quietly during testing) in which 50 noise sweeps were obtained. There was 4 

test cases in which a signal was added to 25, 50, 75 and 100% of the noise sweeps. WTA was 

found to correctly detect the signals when they occurred and to suppress impulsive noise. 

Davila et al. (1994) also successfill~ applied WTA to real ABRs (it is assumed the subjects sat 

quietly during testing) which resulted in an increase in SNR The data was analog bandpass 

filtered from 10 to 3000 Hz, sarnpled at 10 kHz and digitally high-pass filtered with a cutoff 

fiequency of 600 Hz. 

Bataillou et al. (1991) used WT,4 on the ECG where an adaptive scheme was used to 

calculate weights based on the V-' method. In their tests, data was sarnpled at 1 lcHz and 

bandpass filtered fiom 1 to 300 Hz. Results showed that WTA was better than STA when the 

noise level varied across sweeps but for relatively constant noise levels WTA and STA gave 

sirnilar resuits. A study by Bezerianos et al. (1 995) using VNF on VEPs (sarnpled at 5 12 Hz 

and filtered from 1 to 100 Hz) showed that when similarity was detectable, WTA performance 

was good but when sirnilarity wasn't detectable then WTA was restricted to artifact suppression 

only . 

In work by Genil1 et al. (1996), a rectangular signal was added to EEG data recorded 

under quiet and noisy conditions. This synthetic signal had a Iarger amplitude than normal EPs 

to inspect signal underestimation with a manageable nurnber of sweeps. In their work, sweeps 



were 10 ms long and were sampled at 10 kHz (later downsarnpled by a factor of 2). üsing 

quiet data, they saw that weights based on the V-' method underestimated the signal and had a 

much larger RMSE than STA. Using noisy EEG data, the V-' method still gave a larger RMSE 

than that seen with STA. In both cases their proposed method (see section 4.2.3) performed 

better than STA. They stated that significant underestimation was not avoided by increasing 

the df for weight calculation but was avoided when both the signal was removed und there was 

an increase in the df for weight calculation. 

Both positive and negative results were found by Lutkenhoner et al. (1985) for two 

types of EPs. Lutkenhoner fomd that WTA worked well for brainstem AEPs, however, 

whitening was important because the EPs they were interested in detecting had a frequency 

range of 0.25 to 1 kHz rneanwhile the spectrtm was dorninated by EEG frequencies below 40 

Hz. Alternatively for a certain class of cortical AEPs elicited by 500 ms tone bursts, 

Lutkenhoner found that ensembles of sweeps obtained during routine investigations were 

relatively stationary in power in the AEP frequency range (3 to 12 Hz). They stated that 

attempts to get the recordings to become more noisy by deliberate muscle activity had no 

effects and so WTA was not beneficial in this case. 

4.5 Discussion and Conclusions 

To conclude, we shall review the results of the 40 Hz SSABR test case followed by the 

80 Hz SSABR test case. For the 40 Hz SSABR, results showed that WTA outperforms STA 

(without AFR) under noisy recording conditions which is not surprising, however, under quiet 

recording conditions there is no performance improvement. For the Noisy EEG Data case, the 

ME and V" method performed the best in t e m s  of RMSE and SNR. Under quiet recording 

conditions, the V-' method maintained its relative performance levei, however the ME method 

suffered a bit. In both cases, the Genil1 method resulted in signal amplitude overestimation. In 

addition, for both the Noisy and Quiet EEG Data cases, the use of PFFWC (from 35 to 55 Hz) 

did not improve WTA performance but in fact resulted in degradation with the ME method 

suffering the most. Furthemore, the V-' method had the least computational overhead. Based 

on these findings, the best WTA method for 40 Hz SSABRs recorded under noisy and quiet 

conditions is the V" method. 



For the 80 Hz SSABR test cases, WTA outperformed STA (without AFR) in the Noisy 

EEG Data case with the ME method perfonning slightly better than the V-' method. For the 

Quiet EEG Data case, the WTA methods performed similarly to STA (without AFR), however, 

the ME method had slightly better performance with a 0.5 dB advantage in SNR in the 20 to 

100 sweeps averaged range. When PFFWC (eom 65 to 95 Hz) was used, the performance of 

the ME method suffered the most while the Genil1 method was slightly S e c t e d .  The VNF 

method performance was improved for the Noisy EEG Data case but unaffécted for the Quiet 

EEG Data case. However, the V-' method improved significantly for the Noisy EEG Data case 

and was only slightly affected for the Quiet EEG Data case. Consequendy, the best WTA 

method for 80 Hz SSABRs recorded under noisy conditions was the V-' method with PFFWC. 

For recordings under quiet conditions the ME technique was the best WTA method. 

The best WTA methods were then compared to STA with AFR. First of al1 we notice 

that when using AFR, on average an extra 32 seconds (36%) of recording tirne was needed to 

collect 90 seconds of data for the Noisy EEG Data case. For the 40 Hz SSABR Noisy and 

Quiet EEG Data cases, the V-' method was compared to STA with AFR and the result was that 

both methods performed similarly with a slight advantage to STA with AFR for the Noisy EEG 

Data case and a slight advantage to the V" method for the Quiet EEG Data case. In the 80 Hz 

SSABR Noisy EEG Data case, the V-' method with PFFWC (65 to 95 Hz) was compared to 

STA with AFR. The V-' method with PFFWC performed better in terms o f  both RMSE and 

S M  (at some points by a margin of 2 dB). For the 80 Hz SSABR Quiet EEG Data case, the 

ME method was cornpared to STA with AFR. In terms of RMSE, both methods performed 

similarly, however in terms of SNR. the ME method performed better by a margin of 1 to 2 dB 

early on and then 0.5 dB up to 150 sweeps averaged. Thus, in both the 4 0  Hz and 80 Hz 

SSABR cases. the best WTA methods performed just as good (in the 40 Hz case) and better (in 

the 80 Hz case) than STA with AFR. Furthemore, STA with AFR needed 36% more recording 

time, however, this extra recording time depends on how fiequent the subject is noisy and the 

duration of each 'noisiness interval' (i.e. compare subjects 2 and 4 fiom Table 4.7). Thus, the 

amount of tirne reduction obtainable with WTA will be difficult to predict in general but 

nonetheless WTA does have an advantage over STA with AFR. 

WTA does however have a disadvantage compared to STA with AFR because there is a 

need for short duration sweeps in order to make the method sensitive to physiological artifacts 



which have short tirne durations. Thus, the final WTA result is also short in duration. Needless 

to Say, this will have a negative impact in terms of the small number of data samples and the 

resulting decreased frequency resolution for spectral estimation iisïng the periodogram. 

Alternatively, for STA with AFR, the buffer size can be chosen small to eliminate the short 

duration physiological artifacts (using AFR) and STA can then be done across groups of 

sweeps (concatenated end to end). Thus STA with AFR is somewhat more flexible than WTA. 

In terms of nonstationarities in the recorded EEG, the performance of the WTA methods 

in al1 Quiet EEG Data cases (for both 40 and 80 Hz SSMRs) indicate that there are no major 

rneasurable nonstationarities that would negatively influence STA. Converseiy and 

understandably, for the 40 and 80 Hz SSABR Noisy EEG Data cases, WTA was able to 

distinguish between the physiological artifacts and the regular ongoing noise and was able to 

improve on the performance of STA with AFR. 

One may also argue that if subjects are awake while being tested then they should be 

able to control their behaviodstate and thus reduce the amount of nonstationarity in their EEG 

and thus WTA should not be needed. While this maybe true for certain cases, we must aIso 

think of the ability of the different subject groups to control themselves (Le. adults versus 

infants) and different states in w-hich no one has no control over their behavior (i.e. sleep). In 

fact, for sleep, Sugimoto et al. (1978) showed that the degree of nonstationarity increases as 

segment length is increased in every stage of sleep (they found only 50% of 2.5 to 5 second 

sleep segments analyzed were stationary; see Appendix B). Thus WTA should definitely 

provide an advantage when testing individuals who are sleeping or who have no control over 

their behavior. 

Another element of the WTA investigation was the use of different fiequency ranges for 

weight calculation. Weights based on the range of 10 to 100 Hz were compared to weights 

calculated from the 35 to 55 Hz range for the 40 Hz SSABR and the 65 to 95 Hz range for the 

80 Hz SSABR. This was done to see if there were nonstationarities outside of the signal 

frequency region which would adversely af5ect WTA or whether there were nonstationarities in 

the signal frequency region that were masked by the behavior of the rest of the spectnun of the 

recording. The results obtained in both the 40 Hz and 80 Hz SSABR test cases showed that in 

general PFFWC impaired the performance of the WTA methods. This was most likely due to 

the filtered range being too small which impaired the estimation of certain quantities in each 



WTA rnethod (e-g. variance in the V" method). Conversely for the VNF method, the smaller 

bandwidth should be more preferable since this test depended on the simiIarky/difference of the 

recorded sweeps, however, the performance of the VNF method did not really improve with 

PFFWC except for the 80 Hz SSABR test case. 

Furthemore, in terms of SNR, PFFWC hindered the performance of the ME method the 

most, followed by the Genil1 and V*' methods. The ME performance with PFFWC suffered 

more in the 40 Hz SSABR case than the 80 Hz case. This was most likely due to the increased 

correlation between the sweeps due to the filtering (remember that a smaller bandpass was 

used for the 40 Hz SSABR). This increased correlation made the sweeps appear more similar 

which impaired the ability of the ME method to pick out the sweeps with better SNR and 

weight them accordingly. For the Genil1 method the degradation was worse for the Noisy EEG 

Data cases and the 40 Hz versus the 80 Hz SSABR. This degradation was because the filtering 

was done afier a non-ideal whitening of the spectrum. That is, in the ideal case, the spectrum 

would be flat afier whitening and thus taking the variance estimate fkom a subsection of the 

spectrum for each sweep would still give a good idea of the relative variance of each sweep. 

However, for the 'real-life' situation, the spectnirn after whitening is still a bit peaky and thus 

taking a smaller slice of the spectnun and using it for a variance estimate will lead <O a less 

accurate picture of the relative variance of each sweep. To combat this effect in the 80 Hz 

SSABR, a larger bandwidth was taken which resulted in a reduced degradation effect when 

using PFFWC. In addition, the noise is more well behaved in the 80 Hz region. 

In general, the performance of the V" rnethod was also affected just as much as that of 

the Gerull method for the 40 Hz SSABR test cases when using PFFWC, however, for the 80 Hz 

SSABR Noisy EEG Data case there was a great irnprovement in performance. Firstly, the 

degradation seen in performance is due to a smaller number of fiequencies contributing to the 

variance estimate. In addition, there was most likely a 'peaky' spectnim in the 40 Hz region 

used for the variance calculation (the idea here is the sarne as that given for the Gerull method). 

For the performance improvement in the 80 Hz SSABR Noisy EEG Data case, this was due to 

the fact that the noise spectnun was rnost likely more well behaved (i.e. smoother) than the 

noise in the 40 Hz region and the increased filter bandwidth provided a more accurate variance 

estimate (i.e. increased the degrees of fieedom). 



Finally, in al1 tests, the Gerull method overestimated signal amplitude because it had the 

highest RMSE results meanwhile maintainkg SNR values which were comparabIe to those of 

the other WTA methods. The one case where RMSE was not as high was in the Noisy EEG 

Data case for the 80 Hz SSABR. It is known that the 40 Hz range is much noisier than the 80 

Hz range. Thus there is something inherent in the Gerull weight calculation which suffers 

when the noise is increased. One explmation for this is the order of sweep surnrnation and 

weight calculation. In the V-' method, the sweeps are first scaled by the inverse of their 

variance before being sumrned but in the Gerull method surnmation between pairs of sweeps 

occurs before scaling by the inverse variance. However, in Gerull's work this overestimation 

was not seen for the transient signal used in his study. From our test results we can see that this 

overestimation decreases with increasing fiequency (Le. 80 Hz SSABR results versus the 40 Hz 

SSABR results). Thus looking at the fiequency cornponents of Gerull's transient signal we find 

that the majority of signal power occurs for fiequencies above and including 100 Hz. This 

suggests that the overestimation effect diminishes when the noise power in the vicinity of the 

signal becomes smaller (recall that EEG noise follows a l/f shape and thus noise in the 100 Hz 

range is much smaller than noise in the lower O to 40 Hz fiequency range). 



5.0 AR-BASED SSABR DETECTION 

This chapter investigates the use of AR paramehc modeling for SSABR detection. The 

strength of spectral estimation based on AR modeling is increased frequency resolution over 

the periodograrn approach. This increased resolution will allow the use of shorter duration 

sweeps which wiIl in turn allow for a greater amount of sweeps to be synchronously time 

averaged which should provide a greater amount of noise reduction. The amount of STA, 

however, will be limited by the amount of noise correlation between successive sweeps and on 

the limitations of the AR parameter estimators in terms of the minimum number of data 

samples needed for accurate parameter estimation. The increased resolution will also decrease 

the interference of the EEG noise without requiring longer recording durations or repeated 

measurements with short data records. Al1 of these concepts should lead to improved SSABR 

detection. 

This chapter begins with some background on Parametric Spectral Estimation with 

special emphasis on AR based methods. In particular, the Yule-Walker, Burg and Modified 

Covariance Methods will be discussed. Further, the gaussian nature of the EEG noise suggests 

the use of AR parameter estimation based on Higher Order Statistics (HOS) and so this topic 

will also be discussed. The issue of mode1 order selection will then be examined in addition to 

some problems encountered in AR spectral estimation. The remainder of the chapter deals with 

the design of an AR-based SSABR detector for 40 Hz SSABRs. In particular, the AR-SSABR 

detector will be illustrated in block diagram format. Each block will then be discussed in terms 

of the parameters which characterize it. ROC analysis on real SSABR data will then be used to 

estimate values for each parameter. This chapter then concludes with a recap of the AR- 

SSABR detector and the parameters which should be used to yield the highest SSABR 

detection rate possible based on AR modeling. 

5.1 Parametric Spectral Estimation 

Pararnetric Spectral Estimation (PSE) is a modem spectral estimation technique that is 

most often chosen over the classical periodograrn due to its enhanced resolution properties 

(Challis et al. 1991). However, the improved resolution depends on the SNR; usualIy for 

SNRs greater than O dB, PSE has better frequency resolution than the penodogram. In 



addition, PSE does not sufTer fiom the distortion produced by sidelobe leakage that occurs in 

the penodogram approach. Further, PSE yields reasonable spectral estirnates for short data 

records, however, for low enough SNRs, PSE is ofien no better than penodogram processing 

(Kay et al., 198 1). 

The basic premise behind PSE is the choice of an appropnate time series mode1 to 

represent the measured data for which a spectral estimate is desired. The parameters for the 

model are then estimated frorn the measured data and are inputted into the theoreticai power 

spectraI density expression for that model. Usually, the model that results in the fewest number 

of parameters should be chosen since this results in better estimation statistics (Marple, 1987). 

The advantage of modeling is that one can make a more reaiistic assumption about the 

measured data outside of the measurement interval other than to assume that it is zero (Kay et 

al., 198 1). 

The types of pararnetric models are the AutoRegressive Moving Average (ARMA) 

model, the Moving Average (MA) model and the AutoRegressive (AR) model. Each rnodel 

assumes that an input white noise process is passed through a filter and the output is the 

observed data which has been measured. This concept is shown in Figure 5.1. 

wherc: U[z] is the z tnnsform of the input white noise process 
X[z] is the z tnnsfom of the recorded d m  
A(z) is the z tnnsfonn of the AR mode1 
a,L is the variance of the input white noise process 

1 1 

Figure 5.1. Conceptual Basis for Pararnetric Modeling. 

The type of mode1 chosen dictates the form of the filter. The most general model, the 

ARMA model, has the following linear-difference equation (Marple, 1987): 

where x[n] is the measured data 
u[n] is the input white noise process 
aF]  are the AR parameters 
b are the MA parameters 



which results in a filter with a transfer function given by: 

The MA model can be obtained by setting the pararneter p in equation 5.1 to zero resulting in 

the following linear difference equation and filter transfer function: 

Similarly the AR mode1 c m  be obtained by setting the pararneter q in equation 5.1 to zero 

which results in the following linear difference equation and filter transfer fünction: 

The parametric spectral estimate is then calculated using the relation between the input 

and output of a linear system for stochastic signals. For an AR model this is (Marple, 1987): 

1 
Pz (z) = 4," (z)H(z)H * (1 / z* ) = P, (2) - 

A ( z ) A  * (1 / z*) 

where * denotes complex conjugation 

Now using the relation z = exp(j2nfT) and scaling by the sampling interval T,, the AR spectral 

estimate is (Marple, 1987): 

P 

where: A( f) = I + a[k]  exp(- j2@r) 
k= l  

cU2 is the variance of the input white noise process 

The choice of model type depends on the characteristics of the spectrurn of the data 

which is to be modeled. ARMA models are good for rnodeiing spectra with sharp peaks and 



valleys. MA models are good for modeling spectra with valleys but not peaks, meanwhile, AR 

models are good for modeling specka with sharp peaks (Le. sinusoids) but not valleys (Marple, 

1987). Fortunately, al1 3 models are interrelated by the Wold Decomposition Theorem so that 

if the wrong model is chosen then a satisfactory rnodel may still be attained by choosing a high 

enough model order (Kay et al., 198 1). 

AR models have become the most popular parametnc model because AR pararneter 

estimation results in linear equations meanwhile MA and ARMA pararneter estimation methods 

require the solution of nonlinear equations. Thus AR parameter estimation has much less 

computational overhead compared to the ARMA and MA parameter estimation techniques 

(Kay et al., 198 1). More importantly, since AR based spectral estimates are good for modeling 

sinusoids. this parametric spectral estimator will be used for SSABR detection. 

5.2 AR Parameter Estimation 

As previously mentioned, AR models can describe processes with spectral peaks quite 

well and are thus often used to indicate the presence of sinusoidal components in measured 

data. However, AR modeling of sinusoidal specaa work welf only as long as the SNR is 

adequate (Orfandis, 1985). Actually the frequency variance (Le. the 'goodness') of an AR 

spectral estimate for a sinusoidal process is inversely proportional to both the data length and 

the square of the SNR (Kay et al., 1981). In addition, an important distinction between AR 

spectral estimates and the periodograrn is thar peaks in the AR spectral estimate are 

proportional to power squared whereas for the periodograrn they are linearly related to power. 

The high resolution of the AR spectral estirnate is a result of the irnplied extrapolation 

of the Autocorrelation Function (ACF) when computing the spectnim. In fact, the lags for (k[ > 

p (for an AR@) model) are obtained recursively by: 

where r,, is the ACF 

This can be continued to an infinite extrapolation of the ACF rather than windowing it to zero 

and thus AR spectra don? exhibit sidelobes due to windowing (Kay et al., 1981). Further, 

higher order AR models have better resolution potential than lower order models. 



Much of the improved resolution is Iost when noise is added to the AR time series 

because with low SNRs the AR model is less justifiable. This is because the addition of white 

noise results in an ARMA model (Kay, 1980) which contains the same poles as the AR mode1 

but there are now zeros whose location depends on the SNR. For low SNRs the zeros wili 

locate themselves near the signal poles which will resdt in pole-zero cancellation thus yielding 

a smooth AR spectral estimate because the estimated signal poles will be near the onginIo. The 

other problem for sinusoids in noise is that the peak location in the AR spectral estimate 

depends on the sinusoid's phase however this phase dependence ciecreases as the data length 

increases. 

To combat the effect of noise on the AR spectral estirnate there are 4 general 

techniques: (1) use an ARMA model (since it is the true model in this case), (2) filter the data 

to reduce the noise (this moves the estimated AR parameters closer to the true ones and greatly 

improves the AR estirnate (Le. more accurate frequency estimates at lower SNRs as shown by 

Kay (1978, 1984) and Paliwal (1986b))), (3) use a large order AR model (since a large order 

AR model approximates an ARMA mode1 according to the Wold Decomposition Theorem) and 

(4) compensate the parameter estimates for the effect of noise (Kay et al., 198 1). 

The procedure for AR parameter estimation consists of defining the error between the 

modeled data and the actual measured data (Kay, 1987). The rnodeled data (..[n]) is shown in 

Equation 5.10 (this is known as a forward prediction equation). The error (e[n]) between die 

modeled data and the actual data is defined in Equation 5.1 1. Next the error power (PJ is 

obtained (equation 5.12) and is minimized with respect to the AR parameters (a[k]) which leads 

to the Yule-Walker equations (equation 5.13). Solution of equation 5.13 leads to the Yule- 

Walker AR parameter estimate. 

where E is the statistical expectation operator 

'O For a pure AR process the estimated pole positions would be at the correct pole locations and for white noise the 
estirnated poles would locate themselves at the origin. If both processes are present then the estimated poles will 
locate themseIves somewhere in between the true AR poles and the origin causing a spectral smoothing effect. 



The way that the error is defined and the parameters with which the error is minimized with 

respect to Leads to different AR parameter estimation methods. In addition, preprocessing of 

the data (i.e. obtaining the HOS for the data) can lead to a different estimation method. The 

different ARPEs which will be investigated in this thesis are the Yule-Walker (Autocorrelation) 

method, the HOS-based Yule-Walker method using 4th order curnulants, the Burg method and 

the Modified Covariance Method. Each of these methods will now be briefly discussed. 

5.2.1 The Yule-Walker (Autocorrelation) Method 

The Yule-Walker equations (equation 5.13) detail the linear relationship between the 

AR parameters and the ACF. The solution to the YW equations can be had from the Levinson- 

Durbin recursion relation which provides an efficient solution that requires operations on the 

order of p' as opposed to p3 required for Gaussian Elimination. In fact the Levinson-Durbin 

recursion relation c m  be used to generate successively higher order models until the modeling 

error is reduced to a desired value (Kay, 1981). FurSiemore, the biased ACF estimate is used 

in the Levinson-Durbin algorithm to reduce the risk of ill-conditioning (Marple. 1980). 

Unfortunately, for short data records, the Yule-Walker approach produces poor resolution 

spectral estimates. This c m  be attributed to the data window associated with the YW approach 

(Kay et al., 1981). In later sections this ARPE will be called YW2. 

5.2.2 The HOS-based Yule-Walker Method Using Fourth Order Cumulants 

HOS is very useful because it can suppress additive Gaussian noise (white or colored) 

of unknown power spectrurn. This is because for Gaussian data, al1 curnulants of order greater 

than two are theoretically zero (Nikias et al., 1993). In practice, this property does not hold for 

estimated curnulants, however, the estimated cumulant will have an additive noise term that 

decreases to zero as data size increases (Parat, 1994). Thus curnulants can lead to high SNR 

domains which will lead to more accurate parameter estimation. However, the biggest 

drawback to using HOS is larger computational overhead due to the requirement of longer data 



lengths (than correlation based methods) which is needed to reduce the variance associated with 

estimating HOS fYom real data using sarnple-averaging techniques. The variance of the 

estimates is aiso affected by the S N R  of the data (Mendel, 199 1). 

Cumulants can be calculated in terms of higher order moments. An n t  order moment of 

a random process X is given statistically as (Nikias et al., 1993): 

The l n  order cumulant equals the lst order moment which is the mean. The 2nd order cumulant 

is the covariance sequence. The jd order cumulant is given by: 

c3"(rl ,rJ = m &, r2) - mlx { mlX(t l)+m,'(r2)+m~'C('tI -TJ} +2(mJ3 (5.15) 

For a zero mean sequence, the 2" and 3d order curnulants equal the 2nd and 3" order moments 

and the 4th order cumulant simplifies to: 

ci"(ri ,~2,~3) = mdX(~[ 3~2, TJ)-~;(T l )m ix (~3 -~3  - (5.16) 

~;(T&$(T~-T,) - miX(q)m&-T 

In practice these quantities must be estimated in the same fashion as correlations and so 

curnuiants are approximated by replacing the expectations by sarnple averages. Cumulants also 

have the desirable property that the cumulant of two statistically independent random processes 

equals the surn of the cumulants of the individual random processes which is not true for higher 

order moments (Mendel, 199 1). 

Higher order spectra (or polyspectra) can also be taken of the higher order moments and 

curnuiants. The kth order polyspectnim is the k-lh dimensional discrete-time Fourier Transform 

of the kLh order cumulant (or moment). Moment spectra are useful in the analysis of 

deterministic signals whereas cumulant spectra are important in the analysis of stochastic 

signals. However, nonparametric polyspectral methods are subject to high estimation variance 

and low resolution (Mendel, 1991). Thus one can turn to parametric methods for polyspectral 

estimation. For random sinusoidal processes one would want to use the 4th order cumulant 

because if the data contains sinusoids then any 1-D slice of the 4" order cumulant retains al1 the 

pertinent sinusoidal information (Mendel, 199 1) and is zero for a Gaussian process (Le. noise). 

HOS based AR parameter estimation can be obtained by starting fiom equation 5-13 

written in a slightly different format: 



II i=l II  

Multiplying both sides with x3[n] leads to: 

The terms x3[n]x[n + k] and x3[n]x[n + k - 11 are recognized as one dimensional slices" of the 

4Ih order cumulant and thus equation 5.18 is the Yule-Walker method using 4"' order curnulants. 

The Yule-wdker method based on the ACF was prone to poor resolution and so the 

HOS-based Yule-walker method is rnost likely prone to poor resolution as well. However, the 

main advantage here is that gaussian noise will be greatiy attenuated. In addition, as longer 

data lengths are used better parameter estimates should be obtained. This HOS-based method 

can also be augmented by pre-filtenng the data which has  been shown to have a detection 

advantage as long as the signal frequency region is known (Ioup et al., 1993). In later sections 

this ARPE will be called YW4. 

5.2.3 The Burg Method 

The Burg method is a constrained least squares estimation procedure using the sum of 

the fonvard and backward linear prediction error energies and minimizing them subject to the 

constraint that the AR parameters satisfy the Levinson recursion for al1 orders (Marple. 1980). 

The Burg method was very popular in the past due to its computational advantages, however, 

the Burg method introduces biases. For instance, the Burg method suffers fiom large frequency 

estimation errors when it is applied to short sinusoidal signals and spectral line splitting12 for 

high AR mode1 orders, high SNR, or for an odd number of quarter cycles of sinusoidal data 

with an initial phase of 45". 

The aforementioned problems may be solved by increasing the amount of data whiIe 

using the original sampling rate (increasing the sampling rate to increase the data while keeping 

the observation interval unchanged is of no benefit) (Hemng, 1980). Another approach is to 

apply weights to the estimation error. Two popular methods are the Hamrning and optimum 

' ' A one dimensional slice of  an nLh order cumulant is obtained by freezing n-2 of its n-1 indexes. 
" Spectral line splitting means a single spectral line is seen as two or more spectral lines. Spurious peaks often 
accompany spectral line splitting. Spectral line splitting disappears when record length is increased. 



parabolic weights which are appiied to the forward and backward prediction error energies pnor 

to minimization (Paliwal, 1985a). The Hamrning weights are given by (Swingler, 1979): 

where rn is the mode1 order 

The optimum parabolic weight function was achieved by minimizing the average variance of 

the frequency estimation error for a truncated real sinusoid measured over al1 phases in the 

range of O to rr. The optimum parabolic weights are given by (Kaveh et al., 1983): 

6(k + 1)(N - rn - k + 1) 
w,@) = for k = 0, ,.., N-m 

( N - m + l ) ( N - m + S ) ( N - m + 3 )  

Paliwal (1 985a, 1 98Sb, l986a) studied the Hamming and optimum parabolic weights 

and found that the optimum parabolic weighted Burg method results in the best performance in 

terms of least fiequency estimation bias for SNRs in the 25 to 30 dB range, however, the 

weighting methods result in performance degradation for actuai AR signals. The detenoration 

however is least severe when using the optimum parabolic weighted Burg method. Thus, the 

optimum parabolic weighted Burg method will be used in this thesis and will be called Burg in 

Iater sections. 

5.2.4 The Modified Covariance Method 

The Modified Covariance Method (MCM), also called the fonvard-backward Least 

Squares pararneter estimator, is an unconstrained parameter estirnator (the Levinson recursion 

constraint is removed). The foundation of this method stems fiom the fact that the errors fkom 

the forward and backward Iinear prediction estimates have the same statistical information and 

by combining them more error points are generated which results in improved AR pararneter 

estimates. Thus, this method minimizes the energy of the sum of the forward and backward 

errors with respect to the AR parameters. This results in a performance improvement over the 

Burg method. In particular, researchers note that the MCM method has less frequency bias, 

reduced variance for frequency estimates and no spectral line splittïng. 

With the MCM method, if the mode1 order is a small fraction of the number of data 

samples then the bias of the frequency estimates can be high. However, if the order is increased 

to half the number of data samples then a performance increase is obtained beyond which a 



nurnber of spurious spectral peaks occur. This has been attributed to the il1 conditioning of the 

linear prediction equations when highly correlated signals like sinusoids are present in the data 

(SVD c m  be used to alleviate this problem (Kurnaresan, 1982a)). In later sections this ARPE 

will be called MCM. 

5.3 Relations between different ARPEs 

The Burg and MCM methods work directly on the measured data to obtain better AR 

spectra than the YW2 method (Kay et al., 1981). In fact the MCM method has been noted as 

the best ARPE for estimating the spectra of data containing sinusoidal cornponents when the 

SNR is fairly high. However, for long data records the YW2 method yields reasonable spectral 

estimates whereas for short data records, the YW2 method produces poor-resolution spectral 

estimates relative to the other ARPEs (Marple, 1987). In addition, the arnount of phase 

dependence varies for different ARPEs with the MCM method being affected the least (Kay et 

al., 198 1). 

5.4 Model Order Selection 

The best rnodel order for the AR model is not known a priori and thus several model 

orders are usually tried and the best one chosen according to some error critenon. Choosing the 

correct model order is very important because if the process is truly an AR process of order p 

then using an order less than p will result in a smoothed spectral estimate meanwhile using too 

high a model order may result in spurious peaks. However, higher model crders provide 

increased resolution (Kay, 1988) and are needed for the detection of weak signals in noise 

(Swingler et al., 1988). The problem of mode1 order selection becomes even more diffcult in 

the presence of noise because an AR process in white noise has a theoretically infinite model 

order and so any choice of model order will introduce bias errors. 

Most Model Order Estimators (MOEs) have a term which decreases with mode1 order 

and a term which increases with mode1 order (to penalize for increased parameter estimation). 

The MOE algorithm will thus produce a plot with a minimum which should occur at order p for 

an AR@) process". For data fiom a pure AR process, MOEs usually produce acceptable 

l3 An AR(p) mode1 denotes an AR model of order p. 
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results if the data record length is not extrernely short but it has also been observed that for 

noise compted data, the model order chosen is usually not sufficient to resolve spectral details 

(Kay, 1988). There are many MOEs available but few guidelines on their use, however a good 

nile of thumb is that the model order shouldn't be lower than twice the nurnber of spectral 

peaks and should be within the range of N/3 to N/2 for good spectral resolution with few 

spurious spectral peaks (Kay, 1988). The MOEs investigated in this thesis will now be 

discussed. 

5.4.1 The Akaike Information Criterion 

The Akaike Information Criterion (AIC) is a very popular MOE. When the data is 

assurned to have a Gaussian distribution the AIC is given by: 

where p, is the estimation error 
N is the number of data points 

The AIC is based on the maximum likelihood estimate of the probability density function (pdf) 

of the signal and conceptually tnes to measure the distance between an assurned pdf and the 

true pdf. This criterion has been developed under asyrnptotic conditions (i.e. many data 

samples). The N C  is popular although it has been noted as being an inconsistent estirnator 

with a 15% probability cf model order overestimation (Kay, 1988). Conversely, the AIC MOE 

may even underestimate the rnodel order if the SNR is high (Marple, 1987). Further, 

Burshstein et al. (1985) found the M C  chooses low model orders for small data segments and 

high sampling fiequencies and large rnodel orders for large data segments. In addition, 

Schlindwein et al. (1 990) found that for true AR processes when more sarnples were used (Le. 

64 sarnples were increased to 128 and 256) the AIC MOE tended to choose the correct rnodel 

order. 

5.4.2 The Modified Akaike Information Criterion 

Other MOEs have been proposed to improve the AIC in order to fix the overestimation 

problem. One reformulation is the modified Akaike Information Critenon (BK) which is 

calculated by (Priestly, 198 1 ): 

BIC(k) = N + k -log,, N + k (5 -22) 



The basic difference between the BIC and AIC methods is the penalty (2"d) term. Generaily the 

minimization of the BIC function Ieads to lower model orders than the minimization of the AIC 

function. The BIC MOE is also a consistent estimator in that as the nurnber of data samples is 

increased the BIC MOE tends to yield the correct model order (Holm, 1988). 

5.4.3 The Pseudo-SNR Based Method 

The Pseudo-SM based MOE is not found in the literature and it was proposed by the 

author of this thesis (for an explmation of why it is narned Pseudo-SNR please refer to section 

5.7.2). The basic idea is that the model order yielding the model with the highest Pseudo-SNR 

at the SSABR fkequency is chosen as the correct model order. The calcuiation of the Pseudo- 

SNR is outlined in section 5.7.3. In later sections, this method will be referred to as SNRp. 

5.5 Some problems with AR Parameter Estimation 

The idea of increasing the mode1 order to increase accuracy in parameter estimation is 

only tnie for noiseless and moderately noisy data. For higher model orders in noisier 

situations, there can be considerable perturbation for pararneter estimation. This will cause 

extraneous poles to fa11 close to the unit circle which results in spurious spikes in the spectral 

estimate. Silverstein (1 99 1) stated that this numerical instability problem occurs because of the 

large spread in the eigenvalues of the autocorrelation matrix in equation 5-13. Some 

eigenvalues (due to noise) are small enough to cause arithrnetic instabilities in the matrix 

inversion process. Thus AR pararneter fluctuation is due to the large relative fluctuations of the 

smaller noise eigenvalues in the autocorrelation matrix. 

5.6 Detection based on AR Spectral Estimation versus the Periodogram 

In terms of detection using AR rnodeling versus the penodograrn. there have been two 

conflicting reports in the literature. Dyson et al. (1981) cornpared the periodograrn (with 

Hanning windowing and overlapped averaging) versus the Burg technique and found that the 

Burg method showed promise in reducing the observation tirne needed for sinusoidal detection 

for a usefül SNR range for long observation tirnes. The Burg technique used the Akaike Final 

Prediction Error method (very similar to the MC MOE) for selecting the model order. The AR 

method consisted of segrnenting the data into K non-overlapping unweighted records, obtaining 



spectral estimates for each record and then averaging the spectral results. The simulations 

consisted of multiple tones with SNRs of -12 to 15 dB relative to a 1 Hz bandwidth. They 

found that the Burg method outperformed the periodogram technique d o m  to an SNR of -9 dB. 

However, Hung et al. (1981) looked at the detection of cornplex sinusoids in additive noise 

using the Burg and periodogram methods and found the periodogram method consistently gave 

higher detection rates and more accurate frequency estimates than the B u g  method. 

5.7 AR-Based SSABR Detector Design 

The block structure of the AR based SSABR detector is shown in Figure 5.2. The 

detector consists of a preprocessing block to improve the SSABR SNR and to robustify the 

detector against any recorded artifacts. The next step is to mode1 the data with an AR mode1 

which is then used to obtain a spectral estimate. A detection statistic then operates on the 

spectral estimate to determine if there is a response. If an SSABR is detected then data 

collection is terrninated. Tf an SSABR is not detected then more data can be collected unless a 

maximum recording time limit has been met in which case no SSABR is detected. Each block 

of the detector wiil now be discussed. 

5.7-1 Data Preprocessing 

To improve the accuracy of the ARPEs, the SSABR SNR must be increased. Thus, the 

ongoing EEG background noise must be reduced. In addition, the preprocessed data must be 

free of any artifacts which may be recorded. The analysis in Chapter 4 indicated that WTA can 

perforrn these two operations under both quiet and noisy recording conditions. Furthemore, 

the inverse variance technique maintained the performance of STA with AFR under both quiet 

and noisy recording conditions meanwhile requiring a significantly srnaller amount of 

recording time under noisy recording conditions. Thus, the inverse variance technique will be 

used to combat physiological noise and improve SNR. Further, a small sweep time should be 

used to increase the number of sweeps averaged which will result in greater noise reduction 

(this will allow the V-' method to be sensitive to short duration artifacts). A good starting point 

for the sweep time is 0.3 seconds (used in Chapter 4 and recomrnended in Appendix F). No 

spectral averaging is incorporated into the detector due to the observation made in section 3.5 

that spectral averaging places a lower limit on the smallest sinusoid that is detectable. In 



addition, for weight calculation, a notch filter must be used to remove the line noise (which was 

quite large in our recordings; 1 to 4 pV). As in Chapter 4, a first order Buttexworth IIR notch 

filter, in the non-phase shifi configuration (Antoniou, 1993), with a bandstop region of 58 to 62 

Hz and a 40 dB notch was used. In addition, the first 0.4 seconds of recorded data are 

discarded due to filter startup transients and response latency. 

Display: Dispiay: 

Not Detected 

Figure 5.2. Block Diagram of the AR-Based SSABR Detector. 
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For further SNR enhancement, as noted in Sectioil 5.2, bandpass filtering can be 

applied. This technique has already been used by Kay (1 978, 1979, l984), Paliwal(1986b) and 

Tang et al. (1993) to improve ARPE accuracy. In bandpass filtering, a small bandpass is 

desired for noise reduction, however it c m  not be too small because when noise is narrow 

bandpass filtered it will resemble a sinusoid whose fiequency is at the center fiequency of the 

passband and whose phase and amplitude Vary slowly (Haykin, 1994). The bandpass filter used 

was an FIR filter with a filter order of 100. The F R  window design method was used with a 

Kaiser window (p = 4). The filtering method used was equivalent to taking the convolution of 

the filter impulse response and the recorded data and truncating a few data points at the 

beginning and end of the convolution result. This was beneficial for reducing the startup and 

ending transients. Please see Appendix G for an expianation on the parameters chosen and the 

bandpass filtering method. A reasonable starting point chosen for the passband of the bandpass 
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filter was 35 to 45 Hz for the 40 Hz SSABR. For other SSABRs, the bandpass filter bandwidth 

can be changed to coincide with the signal frequency region. 

5.7.2 Detection Statistic 

The detection statistic was based on a pseudo-SNR type measurernent fkom the AR 

spectral estirnate. The term pseudo is used because peaks in the AR spectrai estimate are 

related to power squared, whereas in the periodogram the peaks are linearly related to power 

(Kay et al.. 198 1). Further pseudo-signal and pseudo-noise powers are obtained by averaging 

these peak values so it is not strictly proper to say that the averaged values are signal and noise 

powers, nonetheless. these values will indicate the relative signal and noise power. 

The pseudo-signal power can be estimated fiom the bins in the signal region and the 

pseudo-noise power cm be estimated using a technique commonly employed in radar 

processing called the split window technique (see Figure 5.3). The split window is comprised 

of two windows which are placed on either side of the signal region. The bins within the split 

window provide the pseudo noise power values which are averaged to obtain the pseudo-noise 

power estimate (Rohling, 1983). The ratio o f  the pseudo-signai power to the pseudo-noise 

power is then used to give an indication of whether 

This is represented by the following equations: 

where: S q  
NP 
SP 
N" 
Ns 

or not a signal is in the SSABR recording. 

is the pseudo-SNR 
is the pseudo-Noise power 
is the pseudo-Signal power 
is the nurnber of bins in the noise band 
is the number of bins in the signai band 

In the remainder of chapter 5,  a noise band of B Hz denotes a split window of size Q Hz such 

that Q + Signal Band (in Hz) = B Hz and the noise band is centered on the signal frequency. In 

addition, each bin in the spectral estimate is 0.25 Hz wide. 



l- 
frequency 

SpIit Window for Noise Band 

Figure 5.3. Signal and Noise Bands for Pseudo-SNI2 estimation for the Detection Statistic. 

5.7.3 Detector Parameters: Questions 

This section will raise a nurnber of questions regarding the criteria used in the AR-based 

SSABR detector. First off which AR parameter estimator should be used? What should the 

sweep time be for weighted time averaging and is this compatible for AR pararneter estimation 

(Le. adequate arnount of samples) meanwhile keeping in mind the WTA results from Chapter 4. 

Which MOE will result in the best detection performance? How large should the maximum 

model order estimated be? Can a constant model order be used instead of estimating a nurnber 

of different AR models and then using an MOE? How large should the bandpass for the 

bandpass filter be? F i d l y ,  how large should the signal and noise bands be for the detection 

statistic? 

5.7.4 Detector Parameters: Answers 

In this section choices for each cnteria mentioned in the previous section are made 

based on expenmental data. To make these choices, real SSABR data was analyzed using ROC 

analysis (see Appendix E) to determine which pararneter values resulted in the best detection 

performance. Statistical performance was quantified by the area under the ROC curve (RA) 

and the detection rate (also called Hit Rate(HR)) at a false alarm rate of 5% along with its 95% 

confidence interval. To obtain the experimental data, 3 male adult subjects aged 24 to 33 were 

tested. For each subject, two tests were performed to obtain one recording which contained 

signal plus noise (Le. tnie positive data) and another recording which contained only noise (Le. 

true negative data). Test #I,  which provided tnie positive data, used a 70 dB SPL stimulus 

consisting of an AM waveform mith f; = IkHz, f, = 40 Hz and p = 0.95. Test #2, which 

provided m e  negative data, used a 70 dB SPL stimulus consisting of a pure tone at 1 kHz 

which would not evoke an SSABR yet provided recording conditions similar to that of test #l. 



For both recordings, the subject sat still in a sound proof booth and the stimulus was presented 

to the right ear. The duration of the recordings was 219.2 seconds. Please see Appendix C for 

a more thorough description of testing methods and instrumentation. 

The following were the nominal parameters used in generating the ROC statistics (Le. 

these parameters were used unless otherwise specified). The recorded data was partitioned into 

4.8 second data segments (which resulted in 40 data trials per recording) and detection was 

performed on each segment. This resulted in 120 true positive and true negative data trials (40 

trials per subject x 3 subjects). The time length of 4.8 seconds was chosen to keep in line with 

the goal of SSABR detection in a short amount of time. W'TA was used with the sweep length 

set to 0.3 seconds which was srnail enough to provide many sweeps for averaging but was large 

enough to prevent noise in successive sweeps fiom being correlated (see Appendix F). 

Bandpass filtering (see Appendix G) was used with a passband £iom 35 to 45 Hz and an 

attenuation of 60 dB in the stopbands. For AR spectral estimation, the Maximum Mode1 Order 

(MMO) was 20. For the SNRp MOE the number of signai bins was 3 and the noise bandwidth 

was 10 Hz centered at 40 Hz. For the Burg ARPE, optimum parabolic weighting was used. 

The ROC results shown in each table are in the following format. For each table entry, 

the first line is the ROC Area (RA) followed by the Standard Error (SE) in RA estimation in 

brackets. The second line is the detection rate at a false alarm rate of 5% (HR(0.05)) followed 

in brackets by the lower and upper bounds for the 95% confidence interval. Al1 table entries 

are percentages fiom O to 100%. 

The first criteria looked at was which MOE to use for each ARPE method using 

different signal bandwidths for the detection statistic. The ROC results for each ARPE are 

shown in Tables 5.1 to 5.4. From Table 5.1, we see that for the YW2 ARPE, in absolute terms, 

the AIC method had the highest RA although considering the SE there is an overlap in the 

performance of al1 MOEs. In tenns of HR(O.O5), the AIC and BIC MOEs are much better than 

the SNRp MOE. The M C  rnethod also is slightly better than the BIC method. Thus the AIC 

MOE is chosen for the YW2 ARPE. For the YW4 ARPE, Table 5.2 indicates that the ROC 

results between al1 MOEs are very similar. The MOE is thus chosen arbitrarily to be the M C  

method. 



Table 5.1. ROC resdts for different MOEs and signal bin number for the YW2 ARPE. - - 

Nurnber of Signal Bins 
MOE 1 1 3 1 7 1 21 

-- -- 

Table 5.2. ROC results for different MOEs and simal bin number for the YW4 M E .  

SNRp 

- -  

Number of Signal Bins 
1 I 3 I 7 l 11 I 21 

20 (13.5,28.5) 
69.06 (3.3 96) 

Table 5.3. ROC results for different MOEs and signal bin nurnber for the Burg ARPE. 

SNRp 

Nurnber of Signal Bins 1 MOE 1 3 1 7 1 11 1 21 

20 (13.5,28.5) 
70.09 (3 -3 58) 

' SNRp 57.08 (3.689) 7 1.49 (3.302) 71.9 (3.284) 7 1.41 (3.3 1) 7 1.6 1 (3.296) 
9.2 (4.9, 16.2) 23.3 (16.3, 32.7) 19.2 (12.8, 27.6) 19.2 (12.8, 27.6) 20 (13.5, 28.5) 

8.3 (4.3, 15.1) 
69.49 (3.3 8) 

-- - -- -- 

Table 5.4. ROC results for different MOEs and signal bin number for the MCM M E .  

24.2 (17,33) 
70.3 (3 -35) 

- -- - -- -- 

Number of Signal Bins 
1 I 3 I 7 I II I 21 

23.3 (16.3,32.1) 1 24.2 (17.3, 32.7) 
70.27 (3.35 1) 70.52 (3.34 1) 

8.3 (4.3, 15.1) 
67.44 (3.452) 

For the Burg ARPE, the .MC and BIC methods outperform the SNRp MOE. En 

addition, the AIC MOE has a slightly larger EtA but considerably larger HR(O.05) than the B K  

method. Thus the AIC method is chosen for the Burg ARPE. For the MCM method, the AIC 

and BIC MOEs outperform the SNRp method. The difEerence between the AIC and BIC 

methods is small with a slight advantage to the AIC niethod. The AIC method is thus chosen 

12.5 (7.4,20.1) 
67.35 (3.455) 

SNRp 

5.8 (2.6, 12.1) 
67.3 1 (3.457) 

15.8 (10.1, 23.9) 
57.91 (3.677) 

4.2 (1.6, 9.9) 
66.94 (3 -469) 

20 (13.5,28.5) 
7 1.35 (3.307) 

35 (26.7,44.3) 
69.9 1 (3.364) 

27.5 (20,36.5) 
70.0 (3.36) 

23.3 (16.3.32.1) 
69.64 (3.375) 



arbitrarily over the BIC method. Furthermore, for ail ARPEs, the SNRp MOE was repeated 

with 7 and 11 signal bins, however, ROC performance was still inferior to that seen for the AIC 

and BIC methods. 

Table 5.5 shows the ROC results for each ARPE across different number of signal bins 

when the M C  is the MOE. From the table we c m  see that the MCM and Burg ARPEs had the 

best performance in terms of both RA and HR(0.05%) and the YW4 ARPE had the worst 

performance. Furthermore we see that the best nurnber of signai bins to use could be either 7 or 

11 for the Burg and MCM methods. In the future only the results for these nurnber of signal 

bins will be shown. In addition, the increased performance for these larger signal bands (7 bins 

is 1-75 Hz wide and 11 bins is 2.75 Hz wide) indicates that there is some frequency estimation 

error on the part of the ARPEs due to observation noise and a small number of data samples. 

The next parameter looked at was the Maximum Mode1 Order (MMO) used by the 

ARPEs. The MMOs examined were 10, 20, 30, 40, 60, 80 and 100. The results for the Burg 

and MCM ARPEs are shown in Table 5.6 and 5.7 respectively. For the Burg ARPE there is no 

increase in ROC performance for MMOs of 40 or more. The ROC results for MMOs of 10 to 

30 are sirnilar however the MM0 of 20 has a slight advantage in RA and a larger advantage for 

HR(0.05%). The MM0 of 20 is thus chosen for the Burg AlWE. 

For the MCM AEZPE, sirnilar performance is seen for the MMOs of 10 to 40 using 

either 7 or 11 bins for the signal band in the detection statistic. However, Table 5.7 indicates a 

sIight advantage in RA for an MM0 of 20 but a siight advantage in HR(O.05) for an M M 0  of 

30. These differences are very small and considering computational overhead the choice of 

MM0 is between 10 and 20. The MM0 of 20 was chosen arbitrarily. In addition, for both the 

Table 5.5. ROC results for the AIC MOE for al1 ARPEs and different number of signal bins. 

ARPE 
Number of Signal Bins 

1 1 3 1 7 1 I I  1 2 1 



Burg and MCM ARPEs we can see that performance decreases as MM0 increases past 40. 

This is understandable because with an increase in mode1 order there are more spurious peaks 

in the AR spectral estimate which will degrade detection performance. 

Table 5.6. ROC results for the Burg Table 5.7. ROC results for the MCM 
ARPE for different MMOs and number ARPE for different MMOs and number of 
of signal bins. signal bins. 

1 Number of Signal Bins Number of Sional Bins 

The next criterion which was investigated was the passband for the bandpass filter. 

! 

The 

different bandwidths which were used were 35 to 45 Hz, 57 to 43 Hz, 38 to 42 Hz and 39 to 4 1 

Hz. The noise bandwidths for the detection statistic for these different bandpass filter 

bandwidths were 10 Hz, 6 Hz, 4 Hz and 4 Hz. These noise bandwidths w-ere chosen because 

they coincide with the bandpass filter passbands. The results are shown in Tables 5.8 and 5.9 

for the Burg and MCM AWEs respectively. Note that the M C  MOE was used and the MM0 

was 20. Results show considerable overlap in performance for the B u g  ARPE across al1 

bandpass filter bandwidths. However, the results do show a slight advantage in using the 37 to 

43 Hz bandpass filter for the Burg ARPE. For the MCM ARPE, in terms of RA, the 37 to 43 

Hz bandpass filter is preferable. In tems of HR(0.05) for 7 signal bins, the 35 to 45 Hz and 37 

to 43 Hz bandpass filters have very similar performance and for 11 signal bins the 37 to 43 Hz 

and 38 to 42 Hz bandpass filters are very close in performance. Arbitrarily, the 37 to 43 Hz 

bandpass filter is chosen for the MCM ARPE. Thus for future analysis, the bandpass filter will 

have a passband from 37 to 43 Hz for a11 ARPEs. 



Table 5.8. ROC results for different BPF 
bandwidths and number of signal bins for 

Number of Signal Bins 

8 1-87 (2.74) 

Table 5.9. ROC results for différent 
BPF bandwidths and number of signal 

Number of Signal Bins 

8 1.53 (2.763) 

The sweep time length was then varied to observe the effect on ROC performance. This 

was done to see the effect of the increased number of data sarnples on the B u g  and MCM 

AWEs as well as the AIC MOE. The performance of both the ARPEs and the AIC MOE 

should get better with an increase in the number of data samples. However, this increase in 

data sarnples cornes at the expense of a decrease in SNR because with longer duration sweeps, 

there is a reduced number of sweeps being averaged (recall data segments of fixed tirne lengths 

of 4.8 seconds are being analyzed). The bandpass filter had a passband from 37 to 43 Hz. the 

MM0 was 20 and the MOE was the M C  method. The results are shown in Table 5.10. The 

results for the YW2 ARPE are also shown because the performance of the YW2 method 

approaches that of the Burg and MCM ARPEs with an increase in the sweep time length. This 

effect has also been observed in the literature. For the YW2 rnethod the best EU results were 

for sweep lengths of 0.4 and 0.6 seconds with 7, 11 or 21 signal bins for the detection statistic. 

In terms of HR(O.O5), the performance was better for 0.6 second sweep lengths. 

For the Burg ARPE, the best performance occurred for sweep lengths of 0.3 and 0.4 

seconds and 7 or ! 1 signal bins. For the MCM ARPE, the highest ROC performance occurred 

for 7 and 1 1 signal bins for a 0.3 second sweep length and for 21 signal bins for a 0.6 second 

sweep length. This analysis was repeated with MMOs of 30 and 40 however, there was 

essentially a performance degradation. In conclusion, the ROC results for the Burg and MCM 

ARPEs for sweep Lengths other than 0.3 seconds show no significant detection improvement 

and thus there is no advantage to using sweep length times larger than 0.3 seconds for the Burg 

and MCM ARPEs. Furthemore, the sweep length time of 0.3 seconds is convenient 

considering the sweep length chosen for the Weighted Time Averaging analysis of Chapter 4. 



Table 5.10. ROC results for the YW2, Burg and MCM ARPEs for different sweeps 
lengths and number of signal bins. 

1 1 Number of Signal Buis 1 

38.3 (30,47.7) 37.5 (29,46.8) 35.8 (27.5,45.1) 40 (313,493) 
0.8 Burg 78.29 (2.965) 78.85 (2.932) 78.97 (2.925) 77.7 (2.999) 

SL* 
0.3 

The last question to be answered was whether there was any advantage in ROC 

performance when using a constant model order to estimate the AR parameters. This is in 

contrat to estimating AR models fiom order 1 to 20 and then using the AIC MOE to choose 

which AR model to use. This was done for al1 ARPEs with special emphasis on the YW4 

ARPE since it is not strictly valid to use the AIC MOE to determine model order in this case 

(personal communication with Prof. Hatzinakos, 1998). The bandpass filter passband was from 

37 to 43 Hz. The model order was varied fiorn 2 to 30 in multiples of 2 and the sweep time 

length was either 0.3, 0.4, 0.6 or 0.8 seconds. The results in Table 5.11 highlight the important 

findings. 

The ROC results for the YW4 ARPE are not listed because the performance was found 

to still be poor, however RA increased to the order of 77%. This was obtained with a 0.3 

second sweep length and an AR order of 24. increasing the sweep length to 0.4 seconds 

ARPE 
YW2 

0.8 

w 

. 
* SL stands for Sweep Length and the units are seconds. 

MCM 

3 
7 1.78 (3 -289) 

25.8 (18.5, 34.8) 

76.56 (3.06 1)  
34.2 (25.9,43.4) 

7 
75.4 1 (3.12 1) 

32.5 (24.4,41.7) 

77 (3 .O3 8) 
39.2 (30.5,48.5) 

11 
76.68 (3.055) 

26.7 (19.2,35.6) 

2 1 
76.78 (3.049) 

25 (17.8, 33.8) 

77.92 (2.986) 
42.5 (33.7, 5 1.9) 

80.02 (2.86 1) 
42.5 (33.7, 5 1.8) 



resulted in very sirnilar performance but increasing the sweep length to 0.6 or 0.8 seconds lead 

to worse performance. 

ier. Table 5.1 1. ROC results for bandpass filtering fiom 37 to 43 Hz with constant model or( 

* SL stands for sweep length with units of seconds. 
' A R 0  stands for AR model order 

The results show that with constant model orders in the range of 14 to 18, the ROC 

performance of the Burg and MCM methods can be maintained when the sweep length is 0.3 

seconds (for longer sweep lengths there is similar performance). Thus, a constant model order 

of 14 can be used for both methods to reduce computational overhead. The same ROC 

performance holds for the YW2 method for mode1 orders of 14 to 20 when the sweep length is 

0.6 seconds meanwhile there is a slight advantage for a sweep length of 0.4 seconds. These 

findings are important because using constant model orders results in reduced computational 

overhead. 

ARPE ARO' SL* 
Number of Signal bins 

3 1 7 1 11  I 7 1 



5.7.5 The AR-Based SSABR Detector (Putting it al1 Together) 

This section recapitulates the findings of section 5.7. The parameters which lead to 

maximum detection for the AR-based SSABR Detector are a sweep length time of 0.3 seconds 

and a passband of 37 to 43 Hz for the bandpass filter. For the detection statistic, 1 1 bins can be 

used for the signal band (7 bins resulted in sirnilar yet sliglitly smaller ROC values). Further, 

the noise bandwidth is 6 Hz centered on 40 Hz. The Burg and MCM ARPES showed the best 

performance for a 0.3 second sweep length and thus either ARPE may be used. Furthemore. 

AR models can be generated up to an MM0 of 20 and the AIC MOE c m  be used to choose the 

final AR model. Alternatively, a constant model order of 14 c m  be used. To decrease the 

amount of computational overhead, a constant model order of 14 will be used. These 

parameters are surnmarized in Figure 5.4. 

Finally some cornrnents on the HOS-based Yule-Walker (YW4) ARPE are warranted. 

Results showed that the YW4 method resulted in the poorest detection performance out of a11 of 

the ARPEs. This may have occurred for a number of reasons. Firstly, the number of data 

sarnples (in the WTA result) may not have been sufficient to reduce the estimation variance of 

the 4'" order cumulant. Increasing the sweep Iength would address this (we varied the sarnples 

fiom 147 (a 0.3 second sweep) to 392 (a 0.8 second sweep)) but this didn't irnprove detection 

performance. However, we rnust also remember that the increased sweep length resulted in a 

reduction in SNR due to a reduction in the number of sweeps averaged (Le. for 0.3 second 

sweeps there are 16 sweeps averaged but for 0.8 second sweeps there are oniy 6 sweeps 

averaged). Secondly, an MOE for HOS-based AR parameter estimation has not really been 

devised yet and this makes choosing the correct model order more dificult. Finally the noise in 

the SSABR recordings may not have been tnily gaussian. This is seen in the contrasting reports 

on the gaussianity of the EEG (see section 3.1). 
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6.0 SSABR DETECTOR COMPARISON 

In this chapter, the MSC, MSC-WA and AR-SSABR detectors will be compared on reai 

40 Hz SSABR data taken from human subjects under quiet and noisy recording conditions. 

Quiet recording conditions will most likely be the nom in clinical practice, however, data was 

also obtained under noisy recording conditions in order to determine the relative robustness of 

the different SSABR detectors. In addition, the stimulus intensity was varied to determine 

detector performance under different SSABR SNR conditions. 

To begin with, the testing methods used and test cases performed will be considered in 

section 6.1. In section 6.2, the performance of the MSC and MSC-WA detectors will be 

examined using ROC analysis with particular emphasis on modifications made (WTA within 

each subaverage and filtering on each subaverage result) which should irnprove detector 

performance. Based on this analysis, choices will be made concerning which modifications for 

the MSC and MSC-WA detectors will be used in the comparison with the AR-SSABR detector. 

Section 6.3 will outline the implementation of each detector studied in the ROC comparison. In 

section 6.4, the detectors will be compared using ROC anaiysis. Ail of the ROC analysis in this 

chapter will be based on test trials of varying lengths to see how the performance of each 

detector varies with test tirne. In section, 6.5, the detectors will be compared in terms of 

computational complexity. To wrap up, section 6.6 will discuss the results obtained and make 

conclusions. 

6.1 Data Acquisition: Methods, Subjects and Test Cases 

The test group was 8 normal hearing adult male subjects with no history of auditory 

problems and hearing levels better than 20 dB HL at 1 kHz. For a description of the test setup 

and testing methods, please see Appendix C. In total, 8 different tests were conducted, 

however, there were only two test types: one test was done under quiet recording conditions 

(Quiet EEG test) and the other test was performed under noisy recording conditions (Noisy 

EEG test). In the Quiet EEG test, the subjects were instructed to remain very still to avoid 

adding any artifacts to the recording. In the Noisy EEG test, the subjects were instructed to 

introduce physiological noise of random time duration every two to five seconds. 



Table 6.1 shows the different stimulus parameters and test types which were performed 

on each subject. Tests #1, 3, 5 and 7 were response tests (Le. the stimulus would evoke an 

SSABR) to provide true positive data for ROC analysis. Tests #2, 4, 6 and 8 were no response 

tests to provide tnie negative data for ROC anaiysis. In these test cases, the stimulus was just a 

pure tone at 1 kHz which would not evoke an SSABR but would provide recording conditions 

similar to those for the 'response tests'. Noisy EEG tests were done onIy at the higher stimulus 

intensity because performing the test at the lower stimulus intensity would require much more 

data collectionlJ. The stimulus intensity was also varied to determine the performance of each 

detector under different SS ABR SNR conditions. The tests were performed with a 70 dB SPL 

stimulus (these are the Supra-threshold tests) and a 50 dB SPL stimulus (these are the Mid- 

threshold tests). In ail test cases, the stimulus was applied to the subject's nght ear and each 

recording was continuous and 2 19.2 seconds in duration. Adaptation should not play a role for 

îhis test duration (see section 2.5.4.3). In addition, the test subjects were given breaks of 

approximately 2 to 4 minutes between tests. 

6.2 MSC Algorithm Modification 

Table 6.1. Test type and Stimulus Parameters used for ROC halys is .  

This section will examine tcvo modifications for the MSC and MSC-WA d 

Test 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

ete ctors: 

Test 
Type 

Quiet EEG 
Quiet EEG 
Quiet EEG 
Quiet EEG 
Quiet EEG 
Quiet EEG 
Noisy EEG 
Noisy EEG 

filtering on each subaverage result and WTA within each subaverage. In section 6.2.1, the 

basis for these modifications and their implementation will be outlined. In section 6-22 .  these 

modified MSC and MSC-WA methods will be compared to the unrnodified MSC and MSC- 

WA methods under the test conditions described in section 6.1 using ROC analysis. 

fc 

(Hz) 
1 O00 
1 O00 
1 O00 
1 O00 
1 O00 
1 O00 
1 O00 
1 O00 

l4 Both the lower stimulus intensity and the large arnount of physiological noise would make for very low SSABR 
SNR; thus longer data lengths would be needed for reasonable ROC analysis. 

fm 

(Hz) 
40 
O 
40 
O 
40 
O 
40 
O 

P 

0.95 
O 

0.95 
O 

0.95 
O 

0.95 
O 

Lc 
(dB SPL) 

70 
70 
50 
50 
50 
50 
70 
70 



6.2.1 Proposed Modifications 

As described previously in section 3.5, there are two modifications to the MSC methods 

which should be beneficial for SSABR detection for short data segments. Firstly, Dobie et al., 

(1995) used V-' WTA on the MSC method in which each subaverage result was weighted with 

its inverse variance pnor to MSC calculation. Dobie had noted that this resulted in slightly, 

however not statistically. irnproved detection over the MSC method. However, this weighting 

was applied after using STA wiihin each subaverage. Thus any nonstationarities in the 

recording which were much shorter than 13 seconds in duration (the length of data used to 

create a subaverage) would probably go unnoticed in the weighting algorithm. Thus one 

improvement would be to use WTA wirhin each subaverage instead of STA. Dobie also noted 

this but never investigated it. From the analysis of Chapter 4, the V-' method would be a 

suitable WTA rnethod, however, we should expect no real advantage under quiet recording 

conditions. The red advantage should corne for data recorded under noisy recording 

conditions. Thus both the MSC and MSC-WA methods will be augmented by using V" WTA 

on sweeps wiihin each subaverage. The sweep length in al1 subaverages is 0.3 seconds. 

The other modification has to do with the limitations of the periodogram. Specifically, 

when trying to detect SSABRs in a short period of time then either each MSC subaverage will 

be short in duration or the nurnber of averages within each subaverage will be small. To 

compound rnatters, the EEG has a huge arnount of energy below 25 Hz. Thus for a short 

subaverage duration or for a small number of averages per subaverage, the EEG noise power 

will still be large and there will most likely be some spectral spreading fiom this noise in each 

subaverage FFT that will affect the calculation of the MSC value. To improve this situation, 

filtering can be done to each subaverage result before the FFT is done. The filter which was 

used was an FIR filter with a Kaiser window (f3 = 4). The filter order was 100 and the passband 

was fiom 35 to 45 Hz. A special filtering method was used (see Appendix G). Both the MSC 

and MSC-WA detectors will be augmented with this filtering technique. 

6.2.2 Modified MSC methods: ROC Analysis 

This section will discuss the ROC performance of the unrnodified MSC and MSC-WA 

methods and the modified MSC and MSC-WA methods. In irnplementing the MSC detectors, 



the literature states that the optimal nurnber of subaverages for SSABR detection is between 8 

and 16 and that the number of segments averaged per subaverage doesn't really affect detection 

performance as long as the sarne time length of data is used in calculating each subaverage" 

(Dobie et al., 1993). However, in Dobie's study, approximately 204 seconds were used to 

calculate the MSC value and in our study we are using much shorter time lengths (4.8 seconds 

at the least). To determine whether a different number of subaverages or different number of 

sweeps averaged for each subaverage are optimai for this shorter time length, ROC analysis 

wzs performed on 3 subjects (see Appendix 1). The findings were that there was a slight 

performance enhancement when using 16 subaverages with no averaging in each subaverage 

(i.e. just 1 sweep in each subaverage) for a data length of 4.8 seconds. In addition, a sweep 

length of 0.3 seconds was used. 

The ROC results for the MSC method are shown in Tables 6.2, 6.3 and 6.4 for the 

Supra-threshold Quiet, Mid-threshold Quiet and Supra-threshold Noisy EEG tests respectively. 

The ROC results for the MSC-WA method are shown in Tables 6.5, 6.6 and 6.7 for the Supra- 

threshoid Quiet, Mid-threshold Quiet and Supra-threshold Noisy EEG tests respectively. For 

the Quiet EEG tests, Artifact Rejection (AFR) was used to reject any buffers (0.1 second 

duration) with data which had amplitudes exceeding + 40 pV. To show the advantages of 

WTA and to increase the number of test cases for ROC analysis, AFR was not used for the 

Noisy EEG test. 

For both the Quiet and Noisy EEG Supra-threshold tests, the data lengths for ROC 

analysis wïil be 4.8, 9.6 and 19.2 seconds. For the Mid-threshold test, the data lengths will be 

14.4, 19.2 and 28.8 seconds (Le. longer data lengths because of srnaller SNR). In addition, the 

ROC entries in each table are of the following format. The first line of each table entry is the 

ROC Area (RA) followed by the Standard Error (SE) in the estimation of the RA. The second 

line will be the Hit Rate at a False Alarrn Rate of 5% denoted as HR(0.05) and the lower and 

upper 95% contidence bounds for this proportion follows in brackets. 

The ROC results for the MSC detector will be discussed first. As Tables 6.2 and 6.3 

l5 For instance if you have 100 sweeps per subaverage it doesn't matter whether you group 10 sweeps together 
(end to end) and average (10 averages per subaverage; each subaverage result has a length of 1 O sweeps) or group 
20 sweeps together and average (5 averages per subaverage; each subaverage result h a  a length of 20 sweeps) 
because both methods lead to similar detection performance. 



indicate, the modification of filtering a d o r  WTA does not result in an increase in detector 

performance for the Supra- and Mid-threshold Quiet EEG tests. In fact, the ROC results of the 

unmodified MSC and MSC-WA methods are slightly larger than the modified MSC and 

MSC-WA ernploying bodi filtering and WTA. However, these differences are only statistically 

significant for the smallest time duration in each case (4.8 seconds for the Supra-threshold 

Quiet EEG test @ < 3.0%, M = 1 . 1 5 % )  and 14.4 seconds for the Mid-threshold Quiet EEG 

test (p < 4.5%, ARA=l.85%))- 

Table 6.2. ROC results for the MSC Detector with and without modifications for the 
EEG test. S upra-threshold Quie 

Filtering ? 

Table 6.3. ROC results for the MSC Detector with and without modifications for the 

WTA ? Data Duration (seconds) 
4.8 

For the Noisy EEG test case we first note how poorly MSC performs without Artifact 

Rejection or WTA. Furthemore, we note the improvement of the MSC detector with WTA in 

each subaverage compared to the conventional MSC method (statisticdly significant for data 

duration = 9.6 and 19.2 seconds with p < 0.2% and p < 0.06% respectively). Furthemore, 

filtering does not improve detection at all. Thus considering the results for the Noisy and Quiet 

9 -6 1 19.2 

Mid-threshold Quiet EEG test. 
Filterin= ? 

No 

No 

Yes 

Y es 

WTA ? 

No 

Yes 

No 

Yes 
, 

Data Duration (seconds) 
14.4 

86.69(1.734) 
56.3(49.5,62.8) 

86.3(1.758) 
56.3(49.5, 62.8) 

85.15( 1.827) 
49.1(42.4, 55.8) 

84.84( 1.844) 
54.5(47.7,61.I) 

19.2 
89.05(1.868) 

66.3(58.3, 73.4) 
89.13(1.86 1) 

63.1(55.1, 70.5) 
88.22(1.935) 

6 1.3(53.2,68.7) 
87.89(1.96 1) 

, 63.1(55.1.70.5) , 

28.8 
93.63(1.707) 
76.8(67.7, 84) 
92.81(1.815) 
76.8(67.7, 84) 
93.53(1.72 1 )  

77.7(68.9, 84.5) 
92.73( 1.823) 

74.1(64.8.81.7) , 



EEG tests, the MSC detector should be used with WTA on sweeps within each subaverage to 

improve detection. Ln Iater sections this detector will be cdled MSCwA- 

Table 6.4. ROC results for the MSC Detector with and without modifications for the 
Supra-threshold Noisy EEG test. 

For the MSC-WA detector, we can make the sarne observations that were made for the 

MSC detector. For both Quiet EEG tests, the use of WTA and filtering do not really aid in 

detector performance. In fact the filtering modification results in a consistent degradation 

compared to the MSC-WA method which is statistically significant for data duration = 4.8 

seconds @ < 2.2%, ARA = 4.65%) for the Supra-threshold Quiet EEG test and data duration = 

28.8 seconds (p < 1.2%, ARA = 4.5%) for the Mid-threshold Quiet EEG test. 

Table 6.5. ROC results for the MSC-WA Detector with and without modifications for 
the Supra-threshold Quiet EEG test. 

Filtering ? 

For the Noisy EEG test, once again, the use of WTA within each subaverage results in a 

statistically significant irnprovement in detection performance over the MSC-WA method for 

data duration = 9.6 seconds (p < 1.3%, ARA= 4.35%) and for data duration = 19.2 seconds 

(p < 2.5%, hRA= 5.88%). Thus, filtering should not be used but WTA within each subaverage 

should definitely be used. In later sections, this detector will be called MSC-WA,. 

WTA ? 

No 

No 

Yes 

Yes 

Data Duration (seconds) 
4.8 1 9.6 1 19.2 

86.53(1.459) 
5 1.9(46.3, 57.4) 

86.53(1.459) 
5 1.9(46.3, 57.4) 

8 1.88(1.675) 
4 1.9(36.5,47.5) 

8 I .88(1.675) 
4 1.9(36.5, 47.5) 

No 

Yes 

No 

Yes 

9 1.48(1.65) 
7 1.9(64.2, 78.5) 

92.66( 1.532) 
77.5(70.1, 83.5) 

90.35(I ,755) 
6 1.3(53.2,68-7) 

90.9(1.705) 
56.9(48.8,64.6) 

97.52( 1 26 )  
97.5(90.5,99.6) 

97.89(1.16) 
98.8(92.3, 99.9) 

96.12(1.576) 
92.5(83.9, 96.9) 

96.44(1.5 1) 
9 1.X82.3.96.11 



Table 6.6. ROC results for the MSC-WA Detector with and without modifications for 
the Mid-threshold Quiet EEG test. 

' Filtering ? 

No 

Yes 

Table 6.7- ROC results for the MSC-WA Detector with and without modifications for 

WTA ? 

Yes 

Yes  

Data Duration (seconds) 
14.4 1 19.2 1 28.8 

No 

48.7(42, 55.4) 
84.98(1.83) 

Yes 

the Supra-threshold Noisy EEG test. 

In conclusion we see that filtering did not improve detection performance for the MSC 

or MSC-WA detectors. Perhaps the filter bandwidth was not small enough (it was 10 Hz 

rneanwhile the fiequency resolution was 3.3 Hz). In retrospect a smaller bandwidth may have 

been used such as 38 to 42 Hz to further reduce noise contamination. The average of response 

power (16 subaverages) in the MSC calculabon should aid in distinguishing signal fiom noise. 

The only disadvantage is that a smaller filter bandwidth would result in longer transients in the 

filter output which would h m  signal detection. This effect remains to be deterrnined. On the 

other hand, the modification of WTA ivithin each subaverage greatly improved detection 

performance for the Noisy EEG test case for data durations of 9.6 and 19.2 seconds for the 

MSC and MSC-WA methods. In the other test cases, we saw comparable detection 

performance between the WTA modified and unrnodified MSC and MSC-WA methods. 

Therefore, the WTA modified MSC and MSC-WA detectors (termed MSC, and MSC- 

WAwA respectively) will be used for future ROC analysis. 

56.7(50, 63.2) 
84.2 l(1.88) 

Filtering ? 

Yes 

58.8(50.7, 66.4) 
87.57(1.986) 

5 1.3(44.6, 58) 

74.1(64.8, 8 1.7) 
92.32( 1.875) 

60.6(52.6,68.L) 
86.2(2.089) 

WTA ? 

Yes 

72.3(63, 80.1) 
9 l.Ij(2.0 12) 

57.5(49.5,65.1) 68.8(59.2, 77) 

Data Duration (seconds) 

25.6(21,30.8) 
69.62(2.064) 

88.82(2.258) 
67(57.4, 75.4) 

82.9 1 ( 1 -95) 
52.2(45.5, 58.9) 

4.8 

84.87(2,182) 
56.3(48.2,64) 

35.6(28.3,43.6) 
75.67(2.69) 

9.6 

43.8(32.9, 55.2) 
84(3.174) 

19.2 



6.3 Implernentation ofSSABR Detectors 

The detectors considered in this cornparison are the MSC,, MSC-WAwA, the AR- 

Based SSABR Detector and a detector based on the periodogram. Al1 detectors had a 

preprocessing block which removed the line noise which was prominent in o u  recordings 

(fairly stable at 60 Hz with amplitudes fiom 1 to 4 pV across subjects). For this purpose, a first 

order Buttenvorth IIR notch filter, in the non-phase shifi configuration (Antoniou, 1993,  with a 

bandstop region of 58 to 62 Hz and a 40 dB notch was used. 

In implementing the MSC detectors, as outlined in section 6.2.2, both the MSCwA and 

MSC-WA,, detectors had 16 subaverages, 0.3 second sweeps and WTA (V-' method) was 

done across sweeps within each subaverage. In addition, Artifact Rejection was used for both 

the MSC, and MSC-WA, detectors for the Quiet EEG tests. The Artifact Rejection 

algorithm rejected buffers of data (0.1 seconds in duration) which had amplitudes exceeding 

k40 pV (Lins et al.. 1996). AFR was not done for the Noisy EEG test because of a lack of data 

to perform a good statistical ROC ana,Iysis; hinhermore an equal comparison (using the sarne 

amount of data) with the AR-based detectors was desired. 

To implement the AR-based SSABR detectors we tum to Chapter 5 for the detector 

criteria. Basically Chapter 5 indicated that either the Burg or MCM ARPE can be used. We 

decided that both ARPEs would be used which resulted in two AR-based SSABR detectors: 

the SSABR-Burg and SSABR-MCM detectors which both used a constant mode1 order of 14. 

In addition, the sweep length was 0.3 seconds, V-' WTA was used on the recorded sweeps and 

the sweeps were filtered by an FIR filter (see Appendix G) designed with a Kaiser window (P = 

4, filter order = 100) with a passband fiom 37 to 43 Hz. For the detection statistic, the signal 

band contained 11 bins (1 bin = 0.25 Hz) and the noise band was fiom 37 to 43 Hz (not 

including the signal band centered at 40 Hz). In addition, unlike the MSC detectors, the data 

was not passed through an AFR aigorithm because of the use of WTA preprocessing. Please 

note that ROC results were also obtained using 7 bins for the signal band and the AIC MOE 

with an M M 0  of 20 (instead of using a constant mode1 order of 14). These ROC results were 

quite similar (slightly less in value) to the ones s h o w  in this section for the AR-based SSABR 

detectors and are s h o w  in Appendix J. 



A detector based on the periodogram was also implemented to see if AR modeling was 

indeed giving any performance advantage. The periodogram based detector was exactly like 

the AR-based detectors in that the V" WTA rnethod was used with 0.3 second sweeps and thz 

same filter was used. In addition, the sarne detection statistic was used with the signal band 

containing 7 bins (1 bin = 0.5 Hz) and the noise band occupying the 37 to 43 Hz region 

(excluding the signd band). These parameters were chosen for SSABR detection in the sarne 

marner used in Chapter 5 for the AR-based SSABR detectors. This detector will be called 

SSABR-PER. 

6.4 SSABR Detector Cornparison: ROC Analysis 

ROC analysis (see Appendix E) was used for a cornparison of the detection capabilities 

of the SSABR detectors. The performance of the different detectors was compared across 

different stimulus conditions (Supra-threshold and Mid-threshold), recording conditions (quiet 

and noisy) and different data time durations. The test results for the Supra-threshold Quiet 

EEG test case, Mid-threshold Quiet EEG test case and the Supra-threshold Noisy EEG test case 

are shown in Tables 6.8,6.9 and 6.10 respectively. 

The Supra-threshold Quiet EEG test results indicate that the MSC, and MSC-WA, 

rnethods are the best detectors across the different data lengths in terms of RA and HR(O.05) 

except for the data duration of 19.2 seconds where the SSABR-Burg method is similar in 

performance. There was no statistical difference between the MSCwA and the MSC-WA,, 

methods for al1 data durations for RA. The results for HR(0.05) are dso  very similar. For the 

AR based methods, the SSABR-Burg method was better than the SSABR-MCM method for al1 

data durations for RA (p < O.%, p c 0.02%, p < 0.4%, for data durations of 4.8, 9.6 and 19.2 

seconds respectively). There is d so  a large discrepancy in HR(O.05) between these detectors. 

Furthermore, the performance advantage of the SSABR-Burg rnethod over the SSABR-MCM 

method increased with data duration. 

Comparing the SSABR-PER detector with the SSABR-Burg detector, the results are 

very sirnilar and there is no statistical difference for RA across al1 data durations. However, the 

SSABR-Burg method does seem to have a larger HR(0.05) than the SSABR-PER detector 

across a11 data durations. Finatly comparing the SSABR-Burg method to the MSC-WA,, 

method, we see that the MSC-WA, rnethod is statistically significantly better in RA for data 



durations of 4.8 and 9.6 seconds but not 19.2 seconds @ < 0.1%, p < 2.5%, p < 3 1%, for data 

durations of 4.8, 9.6, 19.2 seconds respectively). We also see a better HR(0.05) for the MSC- 

WAwA method than we do for the SSABR-Burg method. Thus either the MSC, or MSC- 

WAmA detection methods should be used in this test situation. 

Table 6.8. ROC results for each SSABR Detector versus data duration for the 
Su~ra-threshold Ouiet EEG test. 

L . 
f SSABR Data Duration (seconds) 1 
1 Detecror 1- 4.8 1 9.6 1 1 

The Mid-threshoId Quiet EEG test results indicate very similar resuits to those seen in 

the Supra-threshold Quiet EEG test. Once again both MSC detectors have similar detection 

performance however the MSCwA method seems to be performing slightly better in ierms of 

RA and HlX(0.05) although the performance increase for RA is not statistically significant for 

any data durations @ < 6%, p < 7.5%, p < 54%, for data durations of 14.4, 19.2 and 28.8 

seconds ïespectively). In addition, the SSABR-Burg method performs statistically significantly 

better than the SSABR-MCM method in terrns of RA for al1 data durations (p < l%, p < 0.7%, 

p < 0.1 % for data durations of 14.4, 19.2, 28.8 seconds respectively). Also in terms of 

HR(0.05), we see an advantage for the SSABR-Burg method over the SSABR-MCM method. 

Comparing the SSABR-PER and SSABR-Burg detectors, we see similar RA 

performance, however, the SSABR-PER detector has a much better KR(O.05) than the S SABR- 

Burg detector for data lengths of 14.4 and 28.8 seconds. Finally cornparhg the MSCwA and 

SSABR-Burg methods, the MSC, method performs better for al1 data durations but none of 

the results were statistically significant. In terms of HR(0.05), the MSCwA method has better 

performance than the SSABR-Burg method for al1 data durations. Thus either the MSCwA or 

MSC-WA,, detection methods should be used in this test situation. 



Table 6.9. ROC results for each SSABR Detector versus data duration for the 
Mid-threshold Quiet EEG test. - 

SSABR Data Duration (seconds) 
Detector 14.4 19.2 1 28.8 

3 1.7(25.8,38.3) 50.6(42.7, 58.6) 55.4(45.7, 64.6) 
SSABR-MCM 79.3 8(2.12) 82.3(2.346) 84.3 S(2.649) 

20.5(15.6, 26.5) 28.8(22, 36.5) 38.4(29.5,48.1) 
SSABR-PER 8 1.47(2.022) 84.69(2.19 1 ) 89.S8(2.18 1) 

42.4(35.9,49.2) 53.1(45,1, 61) 70.5(6 1.1, 78.6) 
I 

The Supra-threshold Noisy EEG test provides some interesting results. First of dl ,  no 

statistical testing on R4 could be done for the 4.8 second data duration because RA < 70% and 

the method of Appendix E is not applicable in this case. Begiming with the MSCwA and 

MSC-WA, rnethods (recall no AFR was used), we see that the latter detector has statistically 

better RA for the 9.6 and 19.2 second data durations @ < 1% in both cases) This is also 

reflected in the HR(O.05) values. For the AR-based SSABR detectors, the difference in RA is 

not statisticaily significant for data durations of 9.6 seconds @ < 30%) and 19.2 seconds (p < 

14%), although, in terms of HR(O.O5), the SSABR-Burg method has a slight advantage over the 

SSABR-MCM method. 

Table 6. IO. ROC results for each SSABR Detector versus data duration for the 
Supra-threshold Noisy EEG test. 

SSABR 
Detector 

Comparing the SSABR-PER and SSABR-Bug detectors, we see slightly better RA 

values for the SSABR-PER detector although these were not statistically significant for data 

- - -  

Data Duration (seconds) -l 

4.8 9.6 1 19.2 



durations of 9.6 seconds @ < 81%) and 19.2 seconds @ < 65.3%). We &O see a much better 

HR(0.05) value for the SSABR-PER detector for the 19.2 second data duration. Finally 

comparing the MSC-WA,, and SSABR-Burg detectors, we see statistically significant better 

RA values for the MSC-WA,, for the 9.6 second @ < 5%) and 19.2 second @ < 1.2%) data 

durations. This trend is also seen with the HR(O.05) values. Thus for Noisy EEG recordings, 

the MSC-WA, rnethod, results in the best detection performance. 

6.5 ComputationaI Complexity for the SSABR Detectors 

The computational complexity of the different detectors is s h o w  in Table 6.1 1. An 

explanation of these calculations is given in Appendix K. To put al1 detectors on an equal scale 

it is assumed that the data, upon which detection is performed, is N points long which can be 

segmented according to N = 16nM where 16n is the nurnber of sweeps in the data and M is the 

number of points per sweep. For the MSC based detectors, the computational complexity is 

done for 16 subaverages. 

The results indicate that both AR-based detectors have the same computational 

overhead and the SSABR-PER detector has rnuch less computational overhead than the AR- 

based detectors. The highest complexity arnong the MSC methods belongs to the MSC-WA,, 

method which makes sense because al1 other MSC detectors are a subset of this detector. 

Comparing the AR-based detectors with the MSC-WA,, method is difficult but if we use the 

parameters fiom Our ROC analysis (M = 149, n = 1 , 2  or 4) then fkom Appendix K we see that 

the SSABR-PER method has the least amount of computational overhead followed by the 

SSABR-Burg method followed by the MSC-WA,,, method. 

Table 6.1 1. ComputationaI Comple 
SSABR 1 Number of 
Detector 
MSCWTA 

Multiplications 
16(4nM+M) + 

1 7Mlog,M 

SSABR-Burg 
SSABR-MCM 
SSABR-PER 

rity for each SSABR Detector. 

48nM+M2 
48nM+M2 

48nM+Mloo,M 

Number of 
Additions 

1 6(5nM+M+n) 
+ 17Mlog,M 

16(5nM+4M+n) + 
1 7Mlog,M 

64nM+M2+ 16n 
64nM+M2+ 1 6n 

64nM+Mlo~,M+ 16n 

Number of  
Divisions 

6411 

64(n+ 1 ) 

6411 
64n 
64n 

Number of 
log opentions 

O 

O 

1 
1 
1 



6.6 Discussion and ConcIusions 

In this chapter we have investigated various SSABR detectors via ROC analysis on real 

40 Hz SSABR data recorded &om 8 normal hearing adult subjects. The detectors investigated 

were the MSC and MSC-WA detectors as well as the modified MSC detectors: MSCwA and 

MSC-WA,; two AR-based detectors: SSABR-Burg and SSABR-MCM and a periodogram 

based method: SSABR-PER. Firstly, the MSC and MSC-WA methods were modified to 

include filtering (35 to 45 Hz) on each subaverage result and WTA (V" method) on sweeps 

within each subaverage. ROC analysis showed that under quiet recording conditions, neither 

modification resulted in any detection improvement with the filtering method actually slightly 

degrading performance. However, under noisy recording conditions, the WTA modification 

significantly improved detection performance. Furthemore, the MSC-WA,, method 

performed better than al1 of the other MSC methods (taking al1 test cases into consideration). 

Thus, for further analysis the WTA versions of the MSC and MSC-WA methods were used 

(MSC,,, MSC-WAwJ. 

ROC cornparison between the SSABR-Burg and SSABR-MCM methods showed that 

the SSABR-Burg method always resulted in statistically significant better detection (using the 

RA and HR(0.05) measures) except for the Noisy recording case. However, as the SSABR 

SNR decreases the detection advantage of the SSABR-Burg rnethod over the SSABR-MCM 

method diminishes. Furthemore, the SSABR-Burg and SSABR-PER detectors were compared 

and detection performance was sunilar across al1 data durations and recording situations (in 

some cases the SSABR-PER detector was much better in texms of KR(0.05)). Thus AR 

modeling did not really provide an advantage over the periodograrn. This was most likely due 

to the small SSABR SNR after data preprocessing. 

The last cornparison made was the ROC performance between the MSC-WA,, and 

SSABR-Burg method. Under the Mid-threshold quiet test, both methods were similar with a 

slight performance advantage going to the MSC-WA,, method. Under the Supra-threshold 

quiet test, the MSC-WA,, method was statistically significantly better for the 4.8 and 9.6 

second data duration. Meanwhile, under the noisy recording condition, for the 9.6 and 19.2 

second data durations, the MSC-WA,, method resulted in better ROC performance. In fact, 

the most robust detector to noise was the MSC-WA,, method. 



It is also interesting to compare the performance of the detectors for the different 

stimulus levels and the different recording conditions (quiet versus noisy). Using the results of 

the MSC-WA,, detector we see sirnilar detection for the Supra-threshold Quiet EEG test for a 

4.8 second data duration and the Mid-threshold Quiet EEG test for a 14.4 second data duration. 

Further as the data duration is doubled for both recording conditions, we see sirnilar increases 

in ROC Area. Thus, for the 50 dB SPL stimulus it takes about 3 times as much recording time 

(14.4/4.8 = 3) to get sirnilar detection. We can also thus estirnate that it will take approximately 

60 seconds with the 50 dB SPL stimulus to get the high ROC areas and HR(0.05) values seen 

for the 70 dB SPL stimulus case using approximateiy 20 seconds. 

Finally, the detectors were compared based on dgorithmic compiexity. Both AR-based 

methods had the sarne complexity which was more than that of the SSABR-PER detector 

which had the least amount of computational overhead. Furthemore, of al1 the MSC based 

detectors, the original MSC rnethod without any modifications had the least computational 

overhead and the MSC-WA,, method had the most computational overhead which was larger 

than that of the AR-based detectors. Thus while the MSC-WA,, method is a little excessive 

in terms of computational overhead, it provides the best SSAEiR detection performance under 

al1 types of recording situations investigated in this work. 



7.0 CONCLUSIONS AND FUTURE WORK 

In section 7.1, the major contributions of this thesis will be summarized. Section 7.2 

will discuss plans for future work which include other signal processing techniques which inay 

be applied, changes to recording methodology and the analysis of different subject groups. 

7.1 Summary of Research Contributions 

In an attempt to improve SSABR detection in tems of reducing test time the following 

two objectives were found to be important: 1) identiQ an alternative method to Artifact 

Rejection which will make the detector robust against physiological artifacts while not 

requiring an excessive amount of recording time and 2) improve on the shortcomings of the 

periodograrn based SSABR detectors and exploit any noise properties to achieve enhanced 

detection. To accomplish these objectives the following observations were originally made: 

1) Weighted Tirne Averaging (WTA) is more robust to the influence of physiological 

artifacts than the combination of Artifact Rejection (AFR) and S ynchronous Time 

Averaging (STA) and does not require an excessive mount of data elimlnation. 

2) Autoregressive Modeling (AR) modeling can result in much better spectral 

estimates than periodograrn based methods due to more realistic modeling 

assumptions about the data outside of the measurement interval. Further AR 

modehg  based on Higher Order Statistics (HOS) can be used to attenuate 

gaussian noise (some researchers found the EEG noise to be gaussian). 

Thus both methods were investigated to examine whether any performance advantages could be 

obtained over conventional SSABR signal processing rnethods. 

For Weighted Time Averaging, four methods were investigated: the Minimum Energy 

(ME) Technique, the Inverse Variance (V-') Technique, the Genil1 method and a Vector 

Nonlinear Filtering (VNF) method. These methods were studied using EEG noise recorded 

under both quiet and noisy conditions and simulated sinusoids (to simulate 40 and 80 Hz 

SSABRs). Using the rneasures of Root Mean Square Error, SNR and computational 

complexity the following observations were made: 

1) WTA performs just as well as STA with AFR under quiet recording conditions for 



both 40 and 80 Hz SSABRs. In addition, there was a slight advantage for the ME 

method in the 80 Hz SSABR case. 

2) WTA performs just as well as STA with AFR under noisy recording conditions for 

both the 40 and 80 Hz SSABRs. In addition, there was a slight advantage for the 

V" method with PFFWC for the 80 Hz SSABR case. 

3) Pre-filtenng for weight calculation, in general, provided no performance 

improvement for the WTA rnethods (except for the V-' method in the Noisy 80 Hz 

SSABR case). 

4) For the 40 Hz SSABR recorded under noisy and quiet conditions, the V-' method 

gave the best performance out of al1 the WTA methods. 

5 )  For the 80 Hz SSABR recorded under noisy conditions, the V-' method with pre- 

filtering for weight calculation gave the best performance meanwhile for quiet 

recording conditions, the ME method gave the best performance. 

6) WTA resulted in a 36% savings in recording time compared to Artifact Rejection 

when applied to data obtained under noisy recording conditions. 

7) The V" WTA method has the least arnount of computational overhead among the 

different WTA algorithms. 

T ' u s  WTA, especially the V-' method, is very beneficial as an SSABR preprocessing algorithm 

which will improve the SSABR SNR and robustify the detector fiom physiological artifacts 

rneanwhile not throwing out an excessive amount of data. 

The second part of this research consisted of designing an SSABR detector based on A R  

spectral estimation and comparing it to the current benchmarks in SSABR detection: the MSC 

and MSC-WA methods. For the design of the AR-based detectors, values for the different 

design parameters were estimated based on ROC analysis of real 40 Hz SSABRs. Basically, 

four different AR parameter estirnators were investigated: the Yule-Walker (Autocorrelation) 

method, the Burg Method, the MCM method and the HOS-based Yule-Walker method using 4"' 

order cumulants. The HOS rnethod was used because HOS c m  attenuate Gaussian noise; 

M e r  there are reports of the EEG noise being nearly Gaussian. For preprocessing, the V-' 

WTA method and pre-filtering with a 37 to 43 Hz bandpass filter was used. Investigation into 

the design of the AR-based SSABR detector resulted in the following observations: 



1) The HOS-based AR pararneter estimator always resulted in the worst detection 

performance. This could be due to an inadequate number of data samples, the lack 

of a mode1 order estimation algorithm for HOS AR parameter estimation or the 

EEG may simply be non-Gaussian. 

2) Based on a 0.3 second sweep length the Burg and MCM AR parameter estimators 

gave the best detection performance. It was dso  found that either the AIC model 

order estirnator (with a maximum model order of 20) could be used for AR mode1 

selection or a constant model order of 14 can be used. Both techniques lead to 

very similar detection performance. For our work a constant model order of 14 

was used- 

For the ROC analysis, modifications were made to the MSC and MSC-WA detectors to 

improve performance. WTA was used within each subaverage (already proposed by Dobie, 

1995a) andor filtering was used on each subaverage result. Using ROC analysis for quiet 

recording conditions, the WTA modification did not really change detection performance and 

the filtering modification degraded perfomance slightly. For the noisy recording conditions, 

filtering stilI degraded performance, however, the WTA modification resulted in an 

improvement in detection. Thus the MSC and MSC-W-4 methods were used with the WTA 

modification in the ROC analysis with the other SSABR detectors. These modified MSC 

methods were called the MSC,, and MSC-WA,,methods. 

ROC anaiysis M e r  showed that the MSC, and the MSC-WA,, detectors had 

similar detection performance for al1 test conditions except for the noisy EEG test in which the 

MSC-WA,, method was statistically significantly better. For the AR-based detectors, the 

SSABR-Burg detector was statistically significantly better than the SSABR-MCM method in 

al1 test conditions except for the noisy EEG test. In addition, the SSABR-PER detector 

performed just as well as the SSABR-Burg detector for al1 test cases and data durations. This 

indicates that AR spectral estimation didn't really provide an advantage for SSABR detection. 

This was most likely due to inadequate SSABR SNR afier data preprocessing. Finally, 

comparing the SSABR-Burg detector to the MSC-WA,, detector, we note that the MSC- 

WA,, detector had larger values of RA and HR(0.05) for practica1ly al1 test conditions 

(stimulus level, recording type and data dwation). Thus the MSC-WA,, method is the best 

SSABR detector for data recorded under both quiet and noisy recording conditions. 



7.2 Future Work and Directions 

Future work c m  be done on three separate fronts: 1) repeat this anaiysis on neonates, 

2) use alternate recording methods and 3) use altemate signal processing methods. Repeat 

analysis on neonates may be helpful to determine if the noise associated with their SSABRs has 

a different pdf which may warrant specialized signal processing techniques such as HOS or 

Locally Optimum Detection (discussed in section 7.2.2). The latter two methods will be 

discussed in more detail. 

7.2.1 Alternate Recording Methods 

Alternate recording methods comprise two different techniques. Firstly, different scalp 

electrode locations rnay be used where the noise properties are different. For instance, although 

McEwen et al. (1975) found similar gaussianity and stationarity test results for the EEG 

recorded from different scalp locations, they stated that the occipital EEG was more 

consistently gaussian and stationary than EEG data obtained fkom the fiontal area. Thus one 

test could be to compare the detection performance of HOS-based detectors on data recorded 

from the frontal area versus the occipital area. 

Another recording method would be to perform multi-channel SSABR recordings. This 

would involve recording the SSABR frorn different scalp sites simultaneously. The advantage 

here would be that more data c m  be obtained in such a way that the signal will be highly 

correlated between different scalp sites and the noise would not. The electrode sites c m  be 

determined by recording data with an array of electrodes and determining the MSC between 

each pair of electrodes for EEG noise and SSABRs to determine which electrode pairs have 

high signal correlation and low noise correlation. This idea was given by Challis et al. ( 199 1). 

7.2.2 Alternate Signal Processing Methods 

There are nurnerous extensions to AR modeling in the detection of sinusoids. A few of 

those techniques which may show promise for SSABR detection are discussed here. The first 

technique consists of modeling the Autocorrelation Function (ACF) of the measured data with 

an AR mode1 instead of the measured data itself. This method was found by Gerhardt et al. 

(1986) to result in better AR parameter estimates in the case of additive white Gaussian noise. 

Their method included discarding the zeroth lag of the ACF which theoreticaily would contain 



ail of the noise power in the case of white noise. However, with this method o d y  estimated 

ACF lags are available which will introduce estimation error. A possible modification to this 

method is to mode1 a different segment of the ACF where there is greater SNR. This segment 

is deterrnined according to the decorrelation time of the noise (Satorious et al., 1978). 

The idea of modeling the ACF was taken one step hrther by a number of researchers 

who performed Successive Correlations (SC) on the ACF. With this method, the estimated 

ACF has its 0"' lag removed (Le. white noise removai) and the last 20% of its lags thrown out 

because they have increased estimation variance. This sequence now has its ACF computed. 

This process is then repeated rnany times. McGinn et al. (1983) noted that SC results in 

reduced estimation bias because it is a pole-preserving, SNR improving method. The SNR 

improvement is signal dependent with long correlation-length signals (with respect to the 

sarnpling rate) showing the most improved performance. For sinusoids, McGinn et al. (1989) 

found that correlating up to 4 times proved beneficial. Further, using simulations, Castanie et 

al. (1987) found that SC was able to extract sinusoids from noise with the SNR as low as - 20 

dB. The SNR improvement of SC depends on the initial SNR, the data lenm& and the noise 

spectral peaks, however, the limitations of this method include the increasingly correlated 

nature of the noise and the smaller number of data points for each successive correlation. 

Further, when the algorithm fails it still gives a sine function. 

Another rnethod, discussed by Swingler et al. (1988), is the hybrid Fourier-Burg 

technique in which the Burg method is used to estimate the AR parameters of the data series of 

interest. The AR pararneters are then used to extend the data sequence in the fonvard and 

reverse directions (Swingler recommended extrapolating N points in both the forward and 

reverse directions for an N point data series). The Fourier transform is then applied. Swingler 

noted that this method had greater frequency resolution compared to the Fourier technique and 

reduced sensitivity to mode1 order and less kequency estimation variance compared to the Burg 

method. Swingler further noted that this method provided enhanced tonal detection in some 

cases. 

Another idea is to use a different detection statistic. Polydoros et al. (1986) used ad hoc 

fimctions based on AR pararneters estimated from the rneasured data or the ACF of the 

measured data. Polydoros created 5 AR detection statistics (no claim of optimality was made) 

which were constant false alarm rate detectors. They were generally not equivalent with each 



other or with an AR spectral peak detector. With Monte Carlo simulations, Polydoros noted 

that using AR parameter estimation on the ACF of the measured data resulted in better 

detection performance (in ternis of the lowest SNR value needed to achieve a certain detection 

rate) than using the FFT on the time samples directly. 

In terms of improving the accuracy of the AR pararneter estimators used in our work 

two options are available. First, to alleviate the numerical instability caused by obsenration 

noise (discussed in section 5.5) in the AR parameter estimation method, Kurnaresan et al. 

(1982b) proposed the use of Singular Value Decornposition (SVD) which is more robust to 

noise provided the SNR is adequate. In SVD, the principal 2M eigenvectors (where M is the 

number of sinusoids) are found. The eigenvalues for these eigenvectors are retained and the 

remaining eigenvalues (which are srnaller noise eigenvalues) are set to zero. The problem with 

SVD in the case of SSABRs is that the signal eigenvalues are not much different than the noise 

eigenvalues because of the low SNR. This problem is further exasperated by narrow bandpass 

filtering the data. The solution here would be to look at the eigenvectors themselves to 

determine which ones have a significant arnount of power in the signal kequency region 

however in low SNR cases these signal eigenvectors are also compted by noise (Hu et al.? 

1997). 

The second option deals with HOS-based AR pararneter estimation. A possible 

enhancement was given by Tichavsky et al. (1995) who recornrnended that the 4"' order 

cumulant estimate be based on lags such that s, is distant from T? and r, is fa fiom r, because 

the variance of the sarnple estimates is largest when r,=r2 and r,=r,. Furthemore, Tichavsky 

stated that the 4"' order cumulant slice C,,'N)(O,O,~,r) (which was used in the YW4 ARPE in our 

work) has the 2"* largest variance arnong d l  slices and should be avoided. 

Another modification for AR modeling was proposed by Tang et al. (1993) and applied 

to steady state VEPs (basically a sinusoïdal signal). Before AR spectral estimation, 

narrowband pre-filtering (with a passband of 2 Hz) around the sinusoid was used to increase the 

accuracy of the AR pararneter estimates. Tang then estimated AR parameters using forward 

and backward prediction filters for many short data segments and averaged al1 of the results 

together to obtain the final AR model. Tang noted that this rnehod provided substantially more 

accurate estimates of sinusoid amplitude in white noise and in human EEG. For real VEPs, 



Tang noted a reduction in background noise by a factor of 5-6 dB over that obtained with the 

FFT alone. However, we must bear in mind that steady state VEPs have higher SNRs than 

SSA8Rs. 

Finally, another technique which rnay be used is the concept of Locally Optimum 

Detection which is useful in detecting weak signals in non-Gaussian noise (On  et al.. 1990; 

Kuehls et ai., 1989). In this rnethod, a nonlinearity is used whose fùnctional description 

depends on the probability distribution of the noise. The data is then passed through the 

nonlinearity to reduce the amount of noise power after which conventional signal processing 

techniques rnay be applied. Using simulated data, Orr and Kuehls showed some very drarnatic 

improvements in spectral estimation when using Locally Optimum Detection instead of FFT 

processing on a non-Gaussian noise corrupted sinusoid. In applying this theory to our signal 

detection problem, we know that the EEG noise has a nearly gaussian pdf but that it has thicker 

tails (Gasser, 1986). Based on this, two pdfs which may be used to characterize the EEG are 

the generalized Gaussian distribution (Tesei et al., 1996) and the Cauchy distribution (Kassarn, 

1988). However, for this method to be successful either the EEG noise pdf must be similar 

across test subjects or we must be able to adaptively estimate the noise pdf for each test subject 

during testing (which will be difficult). 



APPENDIX A: OCCURRENCE OF RETROCOCHLEAR LESIONS 

An epidemiology study was done to determine the number of individuals with a 

retrocochlear based hearing disorder. The different subject groups which were investigated 

were neonates, infants, school children, and adults. Unfortunately, the literature did not give 

clear cut information on the number of cochlear versus retrocochlear cases of hearing loss. 

A.l Studies done on Neonates, Infants and School Children 

A study by Hayes (1 992), was done during the period of January 1985 to May 199 1 on 

1281 infants in a neonatal intensive care unit with click-evoked ABRs (air and bone 

conduction). 1162/1281 (90%) infants were normal and the others had losses as shown in 

Table A. 1. 

Tieri et ai. (1988), during the period of 1979 to 1986, examined 280 cases of unilateral 

sensorineurai hearing loss in children aged 8 rnonths to 12 years (21 1 children were 6 or older). 

They performed topodiagnosis on 29 cases by using the Metz test, the reflex decay test and 

ABRs and found that 27 cases had a cochiear hearing loss and that 2 cases had a retrocochlear 

hearing loss. niey further noted that unilateral hearing loss in children is rare. Furthermore, 

Dr. Hyde (personal communication, 1996) said that approximately 25 out o f  1 O00 infants with 

hezïng loss have a retrocochiear based hearing loss and have normal otoacoustic emissions. 

Parving (1983) Iooked at children aged 2 to 12 years old (median age was 8 years) bom 

between January 1, 1970 and December 3 1, 1979 in Copenhagen, Denmark. The prevaience of 

permanent hearing loss in this region was noted at 1.4%. In this study 117 chiIdren were 

identified with a heaing loss; 106 (91%) of which had a sensorineural hearing loss. To 

evaluate the site of iesion in these sensorineurd cases, impedance audiometry and cochlear 

microphonic testing was used. Results showed that 32 (30%) children had cochlear lesions, 21 

(20%) had retrocochlear Iesions and 52 (50%) had no distinction between cochlear or 

retrocochlear hearing involvement due to a Iack of data. 

Table A.[ Degree and type of hearing Ioss in Hayes' study. 
Type of Loss 

miid 
moderate 

severe 

sensorineural 
16 
1 
3 

conductive 
50 
34 
4 

brainstem pathway 
O 
3 
4 



Another study conducted by Arlsen et al. (1 991) during 1973-1990 in Italy looked at 

787 cases of children with sensorineural hearing loss. The smdy is not meant to be 

epidemiological, however, the rate of CNS involvement in these hearing loss cases was 3 1.9% 

(251/787). This however does not indicate how rnany cases involved o d y  a retrocochlear 

based hearing Ioss. 

A.2 Studies of Hearing Loss in Adult Populations 

Sulkowski et al., (1982) looked at industrial workers during the period of 1976 to 1980 

in Poland. The study looked at 697 cases with suspected occupational aetiology. Results 

showed that 210 (30%) of the cases had a cochlear noise induced hearing loss with 73 (34.8%) 

of those cases involving a retrocochlear impairment. Another study by Rizzo et al., (1991) 

looked at presbycusis (hearing loss due to aging) in 18 adult males. Rizzo used ABRs for site 

of lesion testing and found cochlear hearing loss in 9 males and retrocochlear in the other 9. 

A.3 Cases of Sensorineural Hearing Loss With Retrocochlear Lesions 

Wu et al. (1 995) looked at 495 cases of sensorineural hearing loss investigated on 

suspicion of an acoustic pathway lesion. The subjects were 5 to 88 years old. Using MRI, 17% 

of cases had lesions affecting the retrocochlear auditory pathway. Another study (Hendrix et 

al., 1990), during the period of August 1985 to July 1988, looked at 225 consecutive cases of 

asyrnrnetric sensorineural hearing Loss. The average age of the subjects was 50.4 years (4 

subjects were under the age of 20). With the use of ABR, CT and MRI tests, it was found that 

194 cases (86%) had a cochlear site of lesion and 3 1 cases (14%) had retrocochlear lesions. 

A.4 Conclusion and Recommendations 

This appendix demonstrates that the prevalence of retrocochlear based hearing disorders 

in various subject groups is too large to ignore, however, the results of section A.3 may be 

inflated since the people in the study were referred to the researchers on the belief that their 

hearing loss was due to a retrocochlear lesion. Nonetheless, the data presented in this appendix 

substantiates the need for a more thorough audiometric test, one which also examines the 

retrocochlear components of the auditory system, such as the SSABR. 



APPENDIX B: EEG AMPLITUDE PROBABILITY DISTRIBUTION 

This appendix discusses the results of attempts in the literature to characterize the EEG 

amplitude probability distribution. In 1969, Elul measured the probability distribution of scalp 

EEG for one adult during an idle state and while perfoming mental arithrnetic. The recorded 

EEG was filtered fkom 0.3 to 70 Hz and sarnpled at 200 Hz. The test used to check for 

gaussianity was the Chi-Square goodness of fit test. The EEG data segments were separated 

into 2 second segments to avoid nonstationarity. Based on a large sample, Elul found that in 

the idle state, the EEG had a gaussian distribution 66% of the time meanwhile during mental 

task perforrnance the EEG was gaussian 32% of the time. From this data, Elul postulated that 

the gross EEG is gaussian when the generators are desynchronized but when the relation 

between the individual neurons is intensified, as in sleep or certain behavioral situations, then 

the EEG probabiIity distribution is modified. Later, Elul et al. (1975) perfomed a study on 

children using the sarne test setup, recording procedures and analysis method as in his 1969 

study. For young normal children, Elul saw a non-gaussian EEG distribution, however, with 

older children Elul noticed the EEG became more gaussian in nature (80% of trials were 

gaussian). However, the sampling rate value weakened the independence of data samples and 

this implies that the probability of the EEG being gaussian is greater than Elul found it to be 

(Siegel, 198 1). 

Some studies from Dumermuth in the late sixties and early seventies found that 

deviations fiom gaussianity occurred in a majority of twins in the waking state. Using the 

measures of skewness and kurtosis, Dumermuth also saw this effect in sleep EEG when 

analyzing 40 second segments with the EEG lowpass filtered at 40 Hz and sarnpled at 102.4 Hz 

(Dumermuth et al., 1975). McEwen et al. (1975) also conducted tests using the Kolmogorov- 

Srnimov (KS) test on 30 subjects in which two 64 second trials were recorded before and 

during anesthesia. The EEG was bandpass filtered from 0.54 Hz to 30 Hz and different 

sampling rates of 64, 128 and 256 Hz were used to see the effect of sarnple dependence on the 

statistical tests. They concludrd that it was best to use a sampIing rate as Iittle above the 

Nyquist rate as possible. They also noted that the percentage of gaussian and wide sense 

stationary (WSS) EEG segments had a strong dependence on segment length. The results were 

also strongly similar between the different EEG channels used. However, they noted that the 

occipital EEG activity appeared to be more consistently gaussian and stationary than the frontal 



EEG activity. For 2 second segments, at least 90% of segments fiom al1 test derivations were 

stationary and gaussian and for 8 second segments this percentage dropped to about 65%. 

Persson (1 974) commented on previous statistical tests for the gaussianity of EEG data. 

He stated that for small sample sizes the KS test is more powerful than the Chi-Square test, 

however, for these tests the data must be stationary and there must be mutual independence 

between sarnples. Persson also showed that for the KS test, the sampling rate had to be 4 Hz in 

order to get independent sarnples. Further Persson showed that with sarnpling rates greater than 

8 Hz there were many rejections for the EEG being gaussian because the samples were 

dependent. Due to the EEG autocorrelation shape, Persson recornrnended that a sampling rate 

less than 20 Hz (and sometimes much lower) was needed but this leads to weaker statistical 

tests because of smaller sample sizes. 

Sugirnoto et al. (1978) did a statistical analysis of the EEG of 2 sleeping adults. They 

used 5 second data segments and performed stationarity and normality tests based on non- 

pararnetnc statistics (run test and slide test) and the parametric Fisher's K statistics (based on 

;d and 4"' order moments). EEG data was bandpass filtered fiom 2 to 50 Hz and sampled at 

100 and 500 Hz. The significance level for the statistical tests was 5%. They found that as 

segment length increased, the nonstationarity also increased in each stage of sleep. They also 

saw that 50% of 2.5 to 5 second segment lengths showed both stationarity and normality. They 

concluded that a decreased length of data implies an increased degree of stationarity and 

normality for the EEG in sleep. 

In 1993, Galbraith conducted expenments to verifi Elu17s 1969 findings. The study 

used skewness and kurtosis to determine the gaussianity of the EEG. The data was bandpass 

filtered fiom 0.3 to 20 Hz and sampled at 200 Hz. They used a frontal-occipital bipolar 

derivation for EEG recording. They examined 40 digitized sweeps, 3.2 seconds in duration, 

and concluded that no difference in EEG probability distribution between idle states and stares 

of mental arithrnetic could be found. Meanwhile, Gasser (1986) used skewness and kurtosis on 

every 4" data s a q l e  recorded to assess the normality of EEG noise. The data was lowpass 

filtered at 70 Hz and sarnpled at 408.5 Hz. The data was fiom pre- and post-stimulus intervals 

of length 313.5 ms in visual evoked potentiai studies. Skewness indicated a symrnetric 

distribution with thick tails. Kurtosis also reveaied slight deviations from normality. 



APPENDIX C:  EXPERIMENTAL SETUP AND INSTRUMENTATION 

A diagram of the expenmental setup is shown in Figure C.1. The LabView software 

package is used for stimulus generation and data acquisition. The stimulus is then converted to 

anaiog f o m  by a Tahiti DIA converter and sent to a probe phone where the electrical stimulus 

is transduced to an acoustical stimulus. The subject, who is seated in an electromagnetically. 

shielded sound proof room, listens to this stimulus and hislher response is measured by skin 

electrodes. The response is then arnplified, bandpass filtered and digitized by an IVD 

converter. The data is then post-processed using the Matlab software package. 

Corn puter 
1 
1 

I 

1 
I 
I ------------------- Tahiti Sound Card I ------------------------- 

generates stimulus I 
l PRU Stimulus j DIA Converter -> o u t ~ u t  - a 
a Amplifier I L 

1 Band Pass Filter 1- 

Insert Ear i Il 
PRU: Patient Room Unit, 

custom built hardware 
I 
1 

t ElecVicalty Shielded. 
Sound Proof Room 

The computer used was a 486, 100 MHz, IBM clone. Test recordings of four minutes in 

duration were performed with a sarnpling rate of 22,050 Hz which required 20 Megs of hard 

disk space. The A/D and D/A converters are contained in a Tahiti sound card which is made by 

Turtle Beach systems. This 16 bit sound card has 2 output channels and 2 input channels. The 

A/D and D/A rates can be either i 1.025, 22.050 or 44,100 kHz. The data buffer size is aIso 

programmable with a maximum size of 16,384 data points when 2 data channels are being 

used. For our experiments, the A ,  and D/A rates were both 22,050 Hz and the buffer size was 

2205 points. Therefore each buffer contained 0.1 seconds of data. In postprocessing, the 

recorded data was dovmsampled so that the new sampling fkequency was 490 Hz and the new 



buffer size was 49 points. The buf5er size allowed for an integer number of response cycles in 

each buffer to avoid spectral leakage (Kulik, 1995). 

For the sound card, the total harmonic distortion is less than 0.005%, the 

intermodulation distortion is 0.01% and the fiequency response is from DC to 19 kHz. The 

maximum voltage that the card c m  tolerate is 0.6 Volts RMS. Thus the minimum signal that 

can be resolved with this sound card is 2.6 nVpp (where ,, stanas for peak to peak) which is 

adequate for SSABR measurement. The value is 2.6 nVpp because the maximum sinusoidal 

amplitude that the sound card c m  receive is: 

SM = 0.6-(2)"'-2 1.697 V, (C- 1) 

and so the minimum resolvable sinusoidal amplitude is: 

SM, = 1.697/(216) = 25.9 pV,, (c-2) 

and due to the gain of the differential amplifier (G = 10,000 VN): 

Sm = 25.9 pV,J 10,000 = 2.6 nV,, (C.3) 

The stimulus and response arnplifiers are custom built hardware. The stimulus 

amplifier has a variable gain fiom -95.5 to 3 1.5 dB and the response amplifier is a differential 

amplifier with a constant gain of 80 dB (10,000 V N ) .  For the differential amplifier, the CMRR 

is 105 dB, the cornmon mode impedance is 200 GR, the input impedance is typically 60 MR 

(the minimum specified value is 20 MR) and the input noise is 0.6 yV,. The bandpass filter 

was a Krohn-Hite (mode1 3700) filter. The filter rolloff was 24 dB/octave. The usual bandpass 

filter settings were fiom 10 to 100 Hz. 

The acoustic probe phone used for stimulus delivery fits directly into the ear canal. A 

diagram of the acoustic probe is shown in Figure C.2. The acoustic probe was designed by 

Pou1 Madsen Medical Devices onginally for Distortion Product OAE measurement. however, 

for our work oniy one speaker was used for AM wave presentation. The probe phone speakers 

were Knowles EF 1933 and the microphone (which was not used) was Knowles EM4068. The 

microphone and speakers both had a flat transfer function up to approximately 4 kHz. 

To calibrate the acoustic stimulus used in testing, a Zwislocki coupler was used which 

simulates an average hurnan ear. The stimulus was delivered to the Zwislocki coupler and 

rneasured with a microphone (at the other end of the coupler) which was situated in such a way 

that it resembles the eardrurn. A Bruel and Kjaer microphone power supply (Type 2804) was 



used in conjunction with a Bruel and Kjaer (Type 223 1) Modular Precision Sound Level meter 

(BZ 7 1 10) to measure the stimulus intensity delivered to the microphone. The measurements 

were taken with a Bruel and Kjaer octave band filter (Type 1625) to obtain more precise 

measurements of the stimulus intensity. The stimulus amplifiers on the PRU were then 

adjusted to get the correct stimulus intensity. The electrical stimulus (coming out of the Tahiti 

board) also had to be varied in amplitude to reduce the arnount of acoustic distortion in the 

stimulus. 

:igure C.2. Diagram of the acoustic probe used for stimulus delivery 
(adapted fiom Kulik, 1995). 

The electrodes used were MtabTM, SiIver Silver-Chloride resting ECG electrodes which 

have a low impedance for DC and low fiequency potentials and exhibit less electrical noise 

than other electrodes (lieuman, 1995). The bottleneck in EP recording is the impedance at the 

skin-electrode junction which must be Iow ( l e s  than 5 ka). To achieve this, the skin was 

abraded and an electrode paste (Omni Prep) was also used to prepare the skin (adequate skin 

preparation can result in a skin-electrode impedance of I k a ) .  To get an indication that the 

resulting skin-electrode impedance was acceptable, the DC offset between each pair of 

electrodes was measured. A low value (around 10 mV) which was approximately the sarne 

across al1 electrode pairs was acceptable (personal cornmunication with Prof. bladsen, 1997). 

The active recording electrodes were placed on the subject's forehead and ipsilateral mastoid 

and the reference electrode was placed on the contralateral mastoid. 



APPENDIX D: WTA ALGORITHM COMPUTATIONAL COMPLEXITY 

For each WTA method, there will be N sweeps each containing K points. Each 

subtraction will be considered as 1 multiplication and 1 addition. For the V-' method, the 

variance calculation will require N divisions and NK additions for the calculation of the mean 

and then 2NK additions, 2NK multiplications and N divisions for variance calculation. To 

compute the weights we need N additions and 2N divisions. Thus in total approximately 2NK 

multiplications, 3NK additions and 4N divisions are needed. 

For the ME method, to compute the matrix F F ~  requires KN' multiplications and KN' 

additions. Then there is the rnah-ix inversion of F F ~  which is NxN in size. Multiplication of 

(FFT)-' by e requires N' multiplications and N' additions. The denominator requires N additions 

and N multiplications. The final step in the weight calculation involves N divisions. Thus in 

total there are approximately KN2 + N multiplications, KN2 + N additions, N divisions and the 

inversion of an NxN matrix. 

For the Gerull method, there are NK additions and NW2 multipIications to get the pair 

sums and pair differences. Whitening occurs NI2 times. Whitening involves the Yule-Walker 

method which requires K' additions and K' multiplications (Marple, 1987). The filtering 

involved in whitening has roughly (K-3p)p additions and (K-2p)p multiplications where p is the 

order of the whitening filter. The model order selection method involves p additions, p 

multiplications, 2p log operations and p divisions. Thus whitening involves NK2/2 + (N/2)(K- 

2p)p + Np12 multiplications, NK12 + N/2(K-2p)p -t Np12 additions, pN log operations and 

Np12 divisions. Assuming that p is W7 gives approximately NK212 + KN114 multiplications, 

NK'Q + KN/14 additions, NW7 log operations and NW14 divisions. There are then N/2 

variance estimates which results in NK multiplications, 3NW2 additions and 2N divisions. To 

finally calculate the weights based on the inverse of these variance estimates there is NI2 

additions and N divisions. Thus in total there is approximately K'N/~ + (1 lI7)NK 

multiplications, K2N/2 + (18/7)KN additions, NU7 log operations and N(3 + W14) divisions. 

For the VNF method, to calculate the N Di requires 2N(N-1)K multiplications, 2N(N- 

l)K additions and N(N-1) square roots. The weight calculation fiom the Di requires N 

multiplications, 2N divisions and N additions. Thus in total there are approximately ~ N ' K  + N 

multiplications, 2NZK + N additions, 2N divisions and N' square roots. 



APPENDIX E: RECEIVER OPERATOR CHARACTERISTIC (ROC) ANALYSIS 

ROC analysis measures a detection algonthm's detection accuracy and can be used for 

performance comparison of diverse detection systerns. This comparison is made in terms of 

cornparing the probability of correctly identifiing data which contains a signal and data which 

contains only noise versus the probability of misidentiQing noise as a signal and a signal as 

noise. This discrimination is not done perfectly because values calculated based on noise only 

data and signal plus noise data may overlap (Swets, 1988). This concept is seen in Figure E. 1 

which shows the probability distribution functions (pdfs) of the energy Ievel measured at a 

certain signal fiequency (i-e. FFT bin) given observed data consisting of pure noise and data 

consisting of signai plus noise. The overlap of the pdfs gives rise to faIse detection outcomes. 

P PDF of 
(signal + noise) 

level 

L 

Figure E. 1. PDFs of the energy level at a certain signal fiequency given data consisting 
of pure noise (top curve) or signal plus noise (bottorn curve) (adapted fkom Kulik, 1995). 

ROC curves are generated by considering the possible detector outputs (signal detected 

or no signal detected) and the actuai observed data (pure noise or signal plus noise). Pooling 

these events together results in the two-by-two contingency table shown in Table E. 1. The two 

correct detection outcomes are hits (detecting a signai when a signal is present) and correct 

rejections (not detecting a signal when only noise is present). The two incorrect detection 

outcomes are misses (not detecting a signal when a signai is present) and false-alanns 

(detecting a signal when only noise is present). If the proportions of these outcomes are 

considered, then only two proportions (one from each row in Table E. 1) are needed to quanti@ 



detection algorithm performance16. Conventionally, the proportions of Hits (Hit Rate(HR)) and 

False Alarms (False Alarm Rate (FAR)) are used (Metz, 1986) to quantiq detector 

performance. 

Table E. 1. Possible Detection Outcornes (adapted fiom Swets, 1988). 

The detector output itself is based on a decision critenon which is chosen depending on 

the pnor probabilities of signals occuning and only pure noise occurring. If the signal has a 

high probability of occurring, and is easily discernible fiom noise, then the decision critenon 

can be lenient which will give a hi& HR. Conversely, a strict decision criterion is needed 

when the signal is not as likely to occur or the accompanying noise is very dismptive. This is 

to maintain a low FAR. Varying this decision criterion results in various pairs of HRs and 

FARs which are then plotted to obtain the ROC curve (see Figure E.2). On the ROC curve, 

movement from the lower left corner to the upper nght corner represents a change from a strict 

decision threshold to a more lenient one which results in increases in both the HR and FAR. 

The major diagonal represents a detector which can not discern noise fiom signal in which case 

the curve is characterized by equal HRs and FPJis for each value of the decision criterion. 

To generate the ROC curve. values of HR and FAR are derived h m  data consisting of 

tme negative cases (pure noise data) and true positive cases (data containing a signal plus noise) 

using the following equations : 

Signal Present 
(s) 

Signal not present 
(ns) 

4.. FAR = - 
N N  

where: Np is the nurnber of true positive test cases 

Signal 
Detected 
(D) 
Hit 

P(D1s) + P(ND1s) = 1 ; P(D1ns) + P(ND(ns) = 1 

P(Dls) 
False Alarm 

P(Dlns) 

I O  Whenever a signal is present, the detection aigorithm can decIare that a signal is detected or a signal is not 
detected and so the proportion of misses is the complement of the proportion of hits. Thus, the proportions in 
each row of Table E. f add to one. 

Signal not 
Detected 
W) 
Miss 

PO\IDls) 
Correct Rejection 

P(NDlns) 



NN is the number of tnie negative test cases 
NH is the number of Hits 
N, is the number of False Marms 

O 2  O 4 0 6  0 8  
False A I a n  Rate 

f 

Figure E.2. Examples of different ROC curves 2dapted from Swets, 1988). 

For ROC data collection, care rnust be taken to avoid wrongly labeling the test cases as 

true positive data or tnie negative data. In addition, classiQing the data as either positive or 

negative should be made independent of the detection algorithm. Finally, the data should fairly 

reflect the population of cases to which the detector will be applied to in practice. 

E. 1 ROC Performance indices 

One very popular ROC performance index is the area under the ROC curve (Swets, 

1988). ROC Area (M) surnmarizes detector performance across al1 decision criterion values. 

An ROC curve which is higher up and to the Ieft indicates a higher discrimination capacity 

(because of larger HRs at each FAR value) which translates to a larger RA ( M e g  1986). RAS 

Vary fiom 50% (random performance) to 100% (perfect detection). Another performance index 

is the HR(FAR) which is the HR at a particular FAR (usually the FAR is 1 or 5%). In this case 

it is highly desirable to have a detector with a high HR at the FAR of interest. In addition, this 

measure is valuable because ROC curves may cross and have the s m e  RA yet be different 

curves with different HRs at d l  FARs except one point (Metz, 1989). 



E.2 Statisticai Analysis of ROC curves 

The ROC performance indices are sound but require qualification because the test data 

that they are based on is of unsure quality". Thus, when comparing the performance of two or 

more detectors, a statisticd analysis on a sufficiently large data set must be done to ensure that 

measured differences are real and not due to sampling effects. Suggested data set sizes range 

fiom 50 (Hanley et al., 1983) to 100 (Metz, 1986). Larger data sets will reduce the variance of 

the ROC curve estimate (which is inversely proportional to data set size) and demonstrate more 

subtle differences in detection algorithm performance (Metz, 1978). The statistical analysis 

then consists of obtaining an empiricai ROC curve, deciding on a parametric or nonparametric 

analysis technique, computing the performance index, estimating the ROC performance index 

variability due to case sampling and determining the statistical significance of the difference 

between performance indices of different detectors (Swets, 1988). 

In practice, the parametric and non-parametric statistical analysis techniques result in 

very similar performance (Centor et al., 1985; Hajian-Tilaki et al., 1997) so choosing between 

them is a matter of convenience. For this thesis work the non-parametrïc method was chosen. 

Non-parametric ROC analysis involves estimating the RA by connecting successive ROC cuve 

points with straight lines and using the eapezoidal rule. This approach is mathematically 

related to the Wilcoxon statistical test1' and so the statistical properties of the Wilcoxon test are 

used to predict the statistical properties of the RA (Hanley et al., 1982). The rest of the section 

will descnbe the statistical tests employed in our ROC study. 

The Standard Error (SE) for RA estimation (SE(RA)) was obtained with the Wilcoxon 

method which depends on two distribution specific quantities (Q, and Q2) when the HR is 

greater than the FAR. The quantity Q, is the probability ihat two tnie positive data cases are 

given higher detector output values than a randomly chosen true negative data case. The 

quantity Q, is the probability that a randomly chosen true positive data case will be given a 

higher detector output value than two randomly chosen true negative data cases. The SE(RA) 

is then given by: 

- 

" There are a limited nurnber of  test cases and there is variability in reproducing ROC plots with different data 
sets. 
l8 This is true for ROC curves created from continuous data or fiom rating data. 



RA(~  - RA) + (Np - l ) ( a  - fiZ) + (NN - J-)(Q' - u') 
(E.3) 

NPNN 

The quantities Q, and Q, are complex functions of the underlying distributions for the 

detector outputs for the true positive and true negative data cases, however, equation E.3 is 

heavily determined by RA and only slightly influenced by the underlying distributions (Hanley 

et ai., 1982). Hanley M e r  noted that for RAS larger than 0.7, the negative exponential model 

yielded the most conservative SES as well as convenient closed form expressions for QI and Q,: 

2 RA' 
Q 2 =    RA (E-5) 

Therefore, the exponential model is used to give a conservative estimate of SE(RA). 

For RA cornparison, if the estimates of RA are roughly norrnally distributed, then one 

can determine the statistical significance of the difference RA, - RA, (for two detectors #1 and 

#2) by using a table of standard normal deviates (z) to find the probability that (Metz, 1989): 

This probability or p-level19 is an estimate of the degree to which the observed RA difference is 

true (the higher the p level is the less we can believe that the observed relation is tnie). A p- 

levei of 5% is 'border-line' statistically significant meanwhile p levels of 1% are statistically 

significant and p levels of 0.5 or 0.1 % are highly statistically significant (Glantz, 1987). 

The calculation of the denominator of equation E.6 depends on whether each ROC 

curve is estimated from different data cases (unpaired test) or fiom the same data cases (paired 

test). In our ROC study, each detector operates on the sarne data set so the paired test applies. 

In the paired test, ROC curve estimates (fiom different detectors) will tend to Vary above and 

below their means together because they are applied to the sarne data cases. Thus, EL4, - RAI 

will Vary less than it would in the unpaired test case. The SE is then given by: 

SE(RALRA2)= JsE'(RA,)+sE'(RA,)-~~SE(RA,)SE(RA,) (E- 7) 
where r is the correlation between RA, and RA2 

l 9  In the vast majority of research undertakings, two-taiied tests are calIed for (Vida, 1993). 
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Now the denominator of E.6 is reduced (due to the correlation between RA, and RA,) so that 

the statistical significance of the RA difference is increased which wiI1 increase the statistical 

power of a detector cornparison study (Metz, 1989). 

To calculate the correlation (r) between RA, and RA,, two intermediate correlations 

must be calculated: the correlation (r,) between detector output values for true negative data 

cases and the correlation (r,) between detector output values for true positive data cases. The 

correlation c m  be calculated by the Pearson product-moment correlation methodIO, which for 

two time series x and y is given by (Glantz, 1987): 

The two correlation values, r, and r,, can then be converted to the correlation between RA, and 

RAZ via a table provided by Haniey et al. ( 1983). 

In terms of the other ROC performance index (HRVAR)), an equation can be used to 

obtain the 95% confidence bounds of the proportion HIC(FAR). The Matlab code for these 

upper and lower bounds is shown in Figure E.3 (Diarnond, 1989). The FAR used in our ROC 

studies for the HIC(FAR) ROC performance index is 5% (Le. (HR(0.05)). 

C = 1.96; A = 0.025; 
if (X = 0); U = 1 - exp(1og 1 O(A)/N); L = O; 
elseif (X = N); U = 1 ; L = exp(1og l O(A)/N); 
else; R = X+A- 1/2; L = (R+C*C/2-C*sqr(Rf ( 1 -R/N)+C*C/4))/0\I+C*C); 

R = X-A+ 1 /2; U = (R+C*C/2+C*sqr(R*( 1 -R/N)+C*C/4))/(N+C*C); 
end; 

%where U is the Upper 95% confidence bound 
?40 L is the Lower 95% confidence bound 
YO X is the numerator of the proportion 
940 N is the denominator of the proportion 

Figure E.3. Matlab Code to get upper and lower 95% confidence levels for a proportion 
(adapted fiom Diarnond (1 989)). 

- - 

'O The Pearson product-moment correlation function determines to which extent two variables are linearly related 
to one another. 



APPENDIX F: S W E P  LENGTH FOR SYNCHRONOUS T m  AVERAGING 

In order to determine the appropriate length of each sweep used in synchronous time 

averaging, the Autocorrelation Function (ACF) was estimated for groups of data 4.8 seconds in 

duration. This was done after notch filtering the data using a first order Buttenvorth IIR notch 

filter, in the non-phase shift configuration (Antoniou. 1993), with a bandstop region of 58 to 62 

Hz and a 40 dB notch. The time lag for which the noise was effectively not correlated was 

determined using a threshold level whereby the autocorrelation value at the zerot"ag was 

reduced by a factor of 10 dB. This was done on pure noise data recorded from 3 young males 

(24 to 33 years of age) who had no history of hearing impairment. For each subject, the data 

segments were taken 15 seconds apart. Figure F. I shows an example of the noise ACF. Table 

F. 1 contains the lag values at which negligible noise correlation was observed. The means and 

standard deviations of these lag values across subjects indicates that a sweep length of 0.3 

seconds is sufficient for reducing the correlation between successive sweeps. 

TABLE F. 1. ACF Lag values at which the EEG noise is uncorrelated. 

ACF of EEG Recording 

I 

- 

- 1 I 
O O 2 0 4 O 6 0 8 1 

nme [seconds) 

Figure F. 1. Exarnple of the ACF of the 

Data Segment Location 
(seconds) 
0.4 to 5.2 

c EEG 
noise. 

Lag value at which noise is uncorrelated (seconds) 
Subject 1 
0.2265 

Subject 2 
O. 195 

Subject 3 
O. 1653 



APPENDIX G: BANDPASS FILTER PARAMETERS 

In order to design the bandpass filter, estimates of typical SSABR spectrums d e r  WTA 

were determined to yield the specifications for the filter's fiequency domain characteristics. 

The no response data (used to avoid any biasing at the response fiequency) was recorded fiom 

three healthy 24 to 25 year old male subjects under quiet recording conditions. Since the line 

noise was so large (2-4 pV; very stable at 60 Hz), a first order Buttenvorth IIR notch filter, in 

the non-phase shift configuration (Antoniou, 1993), with a bandstop region of 58 to 62 Hz and 

a 40 dB notch was used. WTA (inverse variance technique) was then performed on 4.8 second 

data blocks using 0.3 second sweeps. An FFT was done on this averaged data. To get a more 

accurate estimate groups of FFTs were averaged. Representative results fiom one subject are 

shown in Figure G. 1 (no FFT averaging) and Figure G.2 (averaging two FFTs). 

'igure G. 1. Spectral Estimate based on 1 FF 3gure G.2. Spectral Estimate based on 
spectral average of 2 FFTs. 

To reduce the transients at the beginning and the end of the filter output and to allow for 

an arbitrary choice of filter length? an FIR filtenng technique based fiom Chen et al. (1 996) was 

used. It was equivalent to taking the convolution of the data sequence and the filter impulse 

response and then tnincating the convolution result at both ends. The filter output was taken 

fiom (q+l)/2 to [(p-tq- 1) - (q+ l)/2] where p is the length of the data sequence and q is the 

length of the filter impulse response. 

The next step was choosing the filter passband. A passband of 10 Hz was chosen (for 

the 40 Hz SSABR the passband was 35 to 45 Hz) because this was narrow enough to remove as 



much noise as possible but not so narrow that the noise would end up looking Iike a signal (as 

explained in section 5.7.1). The next step was to choose appropriate attenuation values for the 

filter and this was determined from data recorded fiom the 3 subjects (see Figures G.1 and G.2 

for examples). The data showed that the filter needs to have an attenuation of at least 20 dB on 

the low frequency side (Le. near 10 Hz) to make the energy in the 10 Hz region sirnilar to the 

energy near the 40 Hz region. In order to get better AR spectral estimates and to reduce the 

biasing effects of nearby fiequencies the filter attenuation was chosen to be at least 40 dB on 

either side of the passband. 

The final step was designing the filter to meet these specifications. The Window FIR 

filter design method was chosen with a Kaiser window which provides a better tradeoff 

between mainlobe width and sidelobe amplitude (Oppenheim et al., 1989). A filter order of 

100 and a p value of 4 met the design critena specified above. The fiequency response of the 

filter is shown in Figure G.3. The filter was also judged in terrns of its rise time and percentage 

overshoot to a sinusoidal input with a fiequency of 40 Hz and a peak amplitude of 300 nV. The 

rise time was defined as the time that the output took to reach 90% of its peak input value and 

the percentage overshoot was the peak of the output minus the peak of the input al1 divided by 

the peak of the input (Williams, 1988). The filter sinusoidal response is shown in Figure G.4. 

The rise time was 57 rnilliseconds and there was no overshoot. 

Frequency (Hz) 

:igure G.3. FIR Filter Frequency Response. 

- r 10' FiHer Input and Oulput 

u Figure G.4. FIR Filter Sinusoidal Response. 
Erne (seconds) 



APPENDDC H: INSTRUMENTATION NOISE 

The first type of instrumentation noise considered will be that seen in the stimulus. This 

noise is due to D/A conversion, stimulus amplifier noise and acoustic probe noise. To remove 

the digitization noise, the stimulus can be lowpass filtered at 10 kJ3z (this was provided by the 

fiequency characteristics of the speaker in the probe phone). To determine stimulus quality, a 

syringe (0.3 cm length cavity) was used as an artificial ear. A recording was made of the 

stimulus by using the microphone in the probe phone. An FFT of the recording was then made 

and distortion was seen at the harmonics of the AM wave and at f, f af, where a is an integer. 

These distortion peaks were Iess than 40 dB below the stimulus levels which is an acceptable 

limit (personal communication with Prof. Madsen, 1997). Also the arnount of distortion was 

larger for the 70 dB SPL stimulus (Figure H. 1) than the 50 dB SPL stimulus (Figure H.2). 

Figure H. 1. Exarnple of acoustic distortion 
in the 70 dB SPL SSABR stimulus. 

Figure H.2. Exarnple of acoustic distortion 
in the 50 dB SPL SSABR stimulus. 

The other instrumentation noise is fiom the equipment in the response path of the 

expenmental setup. This noise will be added to the recording and is due to response amplifier 

noise, bandpass filter noise, electromagnetic noise and quantization noise. Bartoli et al. (1983) 

indicated that this noise could be considered as white noise with an RMS value of 

approximately 10 pV. For oirr recording equipment, an analytical examination of the 

quantization noise will be shown. Expenmental measurernents will also be shown to determine 

the total amount of instrumentation noise and to venfy that no artificial SSABR was being 

generated by the instrumentation. 



The quantization noise can be considered as uncorrelated, additive noise and is related 

to the nurnber of bits (Nb) in the A/D converter and the maximum signal amplitude (V,, ) that 

the A/D converter can tolerate. With our equipment V,, is 0.849 V,, and the quantization enor 

range is given by (Johns et al., 1994): 

-1/2-v,, c v, 5 1/2-v,, 

where: Vu, = V,dzNb 

If the input signal being quantized varies rapidly such that the quantization error is a uniforrnly 

distrïbuted random variable then the RMS quantization noise voltage is given by: 

Vp(mq = Vus/( 12) ln (H-3) 

= (0.849/2'~)/(12)'~ (3-4) 

Thus, if the minimum SSABR amplitude we are trying to measure is 20 nV and the amplifier 

gain is 10,000 VN then the SNR between the SSABR and the quantization noise is: 

SNR = 20-Iog,,(SSAB~,,/V,,,$ = 34.6 dB (H- 6 )  

Thus quantization noise does not pose much of a problem for SSABR recording. 

The instrumentation noise was also analyzed by shorting the electrodes together and 

performing three recordings. Four 5 second segments, which were 20 seconds apart, were 

taken from each recording (after applying a 40 dB notch filter in the 58 to 62 Hz region) and 

M e r  segmented into 1 second segments. The mean noise voltage and the variance of the 

noise voltages across the 1 second segments fiom the three recordings were calculated (see 

Table H. 1). Results show the mean noise voltage is approxirnately 4 pV in the 10 to 100 Hz 

frequency range. This noise is much lower than the EEG noise. Thus, the EEG noise is the 

major boaleneck in the system. In addition, this noise resembled white noise and no 

contamination at the SSABR frequency (40 Hz) was seen. 

Table H. 1. Mean and Variance of Recording Inshumentation Noise Voltage for 1 second segments. 
Variance of Noise Voltage 

(1x10-7 volts) 
2.36 

Recording 

1 

Mean Noise Voltage 
(1x10~ volts) 

3-85 



APPENDIX 1: MSC ALGORITHM PARAMETERS 

This appendix discusses whether a different nurnber of subaverages or a different 

number of sweeps synchronously time averaged in each subaverage should be used for the 

MSC method. This is a concern because our test cases are shorter in time duration (a minimum 

of 4.8 seconds) than those used in Dobie's study (tirne duration = 200 seconds; Dobie et ai., 

1993). To this end, SSABR data was recorded fiorn 3 adult subjects. The data was 

preprocessed using a notch filter (1" order Buttenvorth IIR notch filter in the non-phase shift 

configuration with a bandstop region fiom 58 to 62 Hz and a 40 dB notch) to remove line noise. 

The data was then passed through an Artifact Rejection Algorithm in which buffers that 

contained data exceeding k40 pV in amplitude were thrown out. For ROC analysis. the true 

positive data was obtained with an SSABR stimulus which had f, = 1 IcHz, f, = 40 Hz, p = 0.95 

and L, = 70 dB SPL. For the true negative data, a 1 kHz, 70 dB SPL tone2' was presented to the 

subject. In both cases the sound was applied to the subject's right ear (see Appendix C for the 

test setup). Recordings were 219.2 seconds long and were later partitioned into 4.8 second 

segments to yield 40 data trials per recording. This resulted in 120 data trials for ROC analysis 

(40 trials per subject x 3 subjects). The sweeps were 0.3 seconds long. 

The nurnber of subaverages (q) was either 8 or 16 and the number of sweeps 

synchronously time averaged per subaverage (naps) was either 1, 2, or 6 for q = 8 whereas it 

was either 1 or 3 for q = 16. The cornparison was done using ROC analysis (see Appendix E). 

The results are s h o w  in Table 1.1. To understand the table, the 1" row for the MSC detector 

indicates that ROC Area is 83.4% with an SE of  2.632% and the HI2 at a FAR of 5% is 39.3% 

with 95% confidence bounds of 30.5% and 48.5%. 

Table I. 1. ROC results for MSC and MSC-WA detectors with varying subaverages (q) and 

'' This won't evoke SSABRs but provides recording conditions sirniiar to those used when obtaining SSABRs, 
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nurnber of sweeps synchronously time averaged per subaverage. 

q 

MSC-WA Detector 
ROC Area (SE) 
82.07 (2.726) 
83.23 (2.645) 
83.74 (2.607) 

MSC Detector 

8 
8 
8 

naps HR(0.05) 
45.8 (36.8,55.1) 

45 (36, 54.3) 
45 (36, 54.3) 

ROC Area (SE) 
Frequency 

Resolution (Hz) HR(O .OS) 
6 
2 
1 

39.2 (30.5,48.5) 
39.2 (30.5,48.5) 
39.2 (30.5,48.5) 

10 
3.33 
1.67 

83.4 (2.632) 
83.4 (2.632) 
83.4 (2.632) 



For the MSC detector, results show that al1 parameter choices lead to close ROC 

performance, however, there is a slight ROC Area increase (not statistically significant) when 

there are 16 subaverages and 1 sweep within each subaverage (so there is actuaily no averaging 

occurring in each subaverage for data durations of 4.8 seconds). In addition, th is  choice of 

parameten leads to the highest HR(0.05). Thus, 16 subaverages and 1 segment (length of 3 

sweeps) per subaverage were chosen for the MSC pararneters. 

For the MSC-WA detector, the highest ROC Area also occurred for the detector with IB 

subaverages and 1 sweep within each subaverage, however, this was only borderline 

statistically significant when compared to the other ROC Areas @ values ranged from 2.5% to 

10.5%). Furthemore, this choice of parameters lead to the highest value for HR(0.05). Thus. 

16 subaverages and 1 segment (length of 3 sweeps) per subaverage were chosen for the MSC- 

WA parameters. 



APPENDIX J: ROC RESULTS FOR THE AR-BASED SSABR DETECTORS 

This appendix shows the ROC results for the various formats of the AR-based detectors. 

The results of the Supra-threshold (70 dB SPL) Quiet EEG test is in Table J. 1. The results of 

the Mid-threshold (50 dB SPL) Quiet EEG test is in Table J.2 and the results of the Supra- 

threshold (70 dB SPL) Noisy EEG test is in Table J.3. The column MOE Type indicates 

whether a constant mode1 order of 14 was used (Le. the entry will be CO) or whether the AIC 

MOE was used with an MM0 of 20 (Le. the entq  will be AIC) for obtaining the AR 

parameters for the Burg and MCM ARPEs. The number of bins in the signal band is either 7 or 

11 and will be indicated for each row of each table. Furtherrnore the table entries read as 

folïows: the first line of each ce11 is the ROC Area followed by the Standard Error of the ROC 

Area estimate in brackets. The second line of each ce11 is the HR(0.05) followed by the 95% 

Lower and upper confidence bounds in brackets. Al1 table entries are percentages from O to 

100%. 

Table J. 1. ROC resuits for each AR-SSABR Detector versus data duration for the 
Supra-threshol 
ARPE 1 MOE 

1 

MCM 1 CO 

i Quiet EEC 
Number of 
Signa1 Bins 

7 

i test. 
1 

, Data Duration (seconds) 
4.8 1 9.6 19.2 



Table 5.3. ROC results for each AR-SSABR Detector versus data duration for the 

Table 5.2. ROC resuits for each AR-SSABR Detector versus data duration for the 
Mid-threshold Quiet EEG test. 
ARPE 

Burg 

Burg 

Burg 

Burg 

MCM 

MCM 

MCM 

MCM 

Supra-threshold Noisy EEG test. 

MOE 
Type 
CO 

AIC 

CO 

AIC 

CO 

AIC 

CO 

AIC 

ARPE 

Burg 

Burg 

Burg 

MCM 

MCM 

Numberof 
Signal bins 

7 

7 

I I  

I I  

7 

7 

I I  

1 I 

MOE 
type 

AIC 

CO 

AIC 

CO 

MCM 

MCM 

Burg 1 CO 

AtC 

Data Duration (seconds) 

Numberof 
Signal bins 

7 

1 1  

I I  

7 

14.4 
79.3 I(2.123) 

27.7(22, 34.1 ) 
78.46(2.16) 

41.5(35.1,48.3) 
8 1.78(2.007) 

3 1.7(25.8, 38.3) 
8 1.85(2.004) 

42.4(35.9,49.2) 
79.24(2.127) 

2 1.4( 16.4,27.5) 
78.49(2.159) 
33(27,39.7) 
79.38(2.12) 

? O S (  15-6, 26.5) 
79.35(2.123) 

23.7( 18.4,29.9) 

7 

7 

CO 

AIC 

Data Durarion (seconds) 

20.6( 16.4, 25.6) 
65.45(2.149) 

20.3(16.1, 25.2) 
68 X(2.094) 

23.4(19,28.5) 
67.89(2.102) 

20(15.9,24.9) 
67.68(2.106) 

19.7( 15.6, 24.6) 
68.49(2.059) 

18. I(14.2, 22.9) 
68.32(2.093) 

2 1.3 ( 1 7, 26.2) 

I I  

1 1  

19.2 
82.95(2.3 06) 
40(32.5,48) 
82.12(2.357) 

4 1.9(34.2,49.9) 
85.0 I(2.172) 

50.6(42.7, 58.6) 
84.69(2.194) 

46.3(38.4, 54.3) 
80.78(2.434) 

25.1(2 1.5, 35.9) 
80.23(2.465) 

33.8(26.6,4 1 -7) 
S2.3(2.346) 

28.8(22, 36.5) 
8 1.95(2.366) 

27.5(20.9, 35.2) 

4.8 
66.22(2.135) 

2 1.9(17.6, 26.9) 
67.39(2.1 12) 

28.8 
87.4 l(2.39 1) 

66.7(57.4, 75.4) 
85.68(2.543) 

60.7(5 1, 69.7) 
88.2 I(2.3 17) 

55.4(45.7, 64.6) 
86.9 l(2.43 7) 

50.9(4 1.4.60.4) 
83.92(2.685) 

36.6(27.9,46.3) 
8 1.76(2.844) 

29.5(2 1.4, 38.9) 
84.38(2.649) 

38.4(29.5,48.1) 
82.7 l(2776) 

28.6(20.7, 38) 

33.1(26,41) 
72.66(2.8 14) 
33.1(26,41) 
72.8(2.809) 

28.1(2 1.5, 35.9) 
72.5(2.82) 

20(14.3, 27.2) 
7 1.03(2.874) 

17-5(1~.1, 24.5) 
7 1.6 l(2.853) 

25.6(19.2, 33.2) 
7 1.03(2.874) 

16.9(11.6, 23.8) 

9.6 
72.68Q.S 13) 

50(38.7.6 1.3) 
82.7(3 2 9 )  

33.8(23 -8,453) 
83.45(3.224) 
45(34,56.5) 
83.39(3 .229) 

37.5(27.2, 49.1) 
79.05(3.58 1) 

28.8(22, 36.5) 
70.1 S(2.903) 

40(29.4, 5 1.6) 
8 1 .02(3.43) 

33.8(23,8,45.3) 
8 1 -3 5(3.403) 

30(20.6,4 1.4) 

19.2 
S 1.79(3 -3 67) 

45(34, 56.5) 
80.39(3.48) 



APPENDUC K: SSABR DETECTOR COMPUTATIONAL COMPLEXITY 

This appendix shows the derivation of the cornputational complexity for each SSABR 

Detector. To put al1 detectors on an equal scale it is assurned that the data, upon which 

detection is perforrned, is N points long which can be segmented according to N = 16nM where 

16n is the nurnber of sweeps in the data and M is the nurnber of points per sweep. Furthemore, 

each subtraction operation will be considered as 1 addition and 1 multiplication. 

Starting with the SSABR-Burg, SSABR-MCM and SSABR-PER detectors we see that 

each of these detectors begin with the V-' WTA method. From Appendix D we see that the 

variance calculation requires 16n divisions and (16n)M additions for the calculation of the 

mean and then 2(16n)M additions, 2(16n)M multiplications and 16n divisions for variance 

calculation. To compute the weights we need (16n) additions and Z(l6n) divisions. To 

compute the weighted average requires weighting each sweep and surnrning the weighted 

sweeps which results in (16n)M multiplications and (16n)M additions. Thus in total 

approximately 64nM + 16n additions, 48nM multiplications and 64n divisions are needed for 

the V" method. On top of this both AR detectors require M' additions and M' multiplications 

for spectral estimation meanwhile the periodograrn based detector requires Mlog2M additions 

and MIog,M multiplications (Marple, 1987). For al1 3 of these detectors, the detection statistic 

requires 24 additions, 1 multiplication, 3 divisions and 1 log operation. Thus, in total, the 

SSAI3R-Burg and SSABR-MCM methods require approximately 64nM + M' + 16n additions, 

48nM + M' multiplications, 64n divisions and 1 log operation. The SSABR-PER detector 

requires approximately 64nM + Mlog,M + 16n additions, 18nM + Mlog,M muItiplications, 64n 

divisions and 1 log operation. 

For the MSC family of detectors the complexity calculation is done for 16 subaverages. 

Starting with the original MSC detector, the STA in each subaverage results in nM additions 

and nM multiplications (for the weight which is always l/n) and 1 division to obtain the 

constant weight (sarne for al1 subaverages). Further there is the averaging of the 16 

subaverages which results in 16M additions, 16M multiplications and 1 division. In addition. 

there are 17 FFT operations each requiring Mlog,M multiplications and Mlog,M additions. 

There is then the averaging of the subaverage response powers (16 additions, 16 multiplications 

and 1 division) and the calculation of the MSC value which is 1 division. Thus in total there 

are approximately 16(nM+M) + 17MIog,M additions, 16(nM+M) + 1 7Mlog,M multiplications 



and 4 divisions for the MSC detector. To perfom the MSC-WA algorithm requires al1 of the 

complexity just mentioned plus that needed to get the variance of each subaverage result and to 

weight each subaverage. Using the anaiysis for the VI WTA method in Appendix D, this v*' 
subaverage weighting results in approximately 64M additions, 48M multiplications and 64 

divisions. Thus in total for the MSC-WA algorithm we need 16(nM+5M) + 17MlogZM 

additions, 16(nM+4M) + 1 7MlogzM multiplications and 68 divisions. 

Finally incorporating the V" WTA method wirhin a subaverage requires 4nM + n 

additions, 3nM multiplications and 4n divisions. Generalizing this to 16 subaverages results in 

64nM + 16n additions, 48nM multiplications and 64n divisions. Thus these values are added 

ont0 both the MSC and MSC-WA methods to get the computational cornplexity for the 

MSCwA and MSC-WA,, methods. Thus for the MSC,,, method we have l6(5nM+M+n) 

+ 17Mlog,M additions, 16(4nM+M) + 17MIog,M multiplications and 64n divisions. For the 

MSC-WA,, method we have 16(5nM+4M+n) + 1 7Mlog2M additions. 16(4nM+jM) + 

1 7Mlog2M multiplications and 64(n+l) divisions. 

To help determine the relative complexity of the SSABR-PER, SSABR-Burg, MSCwA 

and MSC-WA,, methods, nurnbers fiom our analysis o u  used. Using M = 147, n = 1, 2 , 4  or 

6 (recall N = 16n.M) we get the results shown in Table K. 1. We see the SSABR-PER method 

and MSC-WA,, methods have the least and rnost computational overhead respectively. 

Table K. 1. E 
Detector 

xample of SSABR- 
n 1 Multiplications 

Burg, MSC and MSC-WA,, Cornplexity. 
Additions 1 Divisions 1 Log O~erations 1 



APPENDIX L: SSABR S N R  

The range of SSABR SNR values that c m  be expected in practice is estimated using 

real EEG background noise and simuiated sinusoids. The EEG data was obtained from five 

male aduits (23 to 33 years of age), using the experirnental setup described in Appendix C. A 

sound (70 dB SPL tone at 1 kHz) was presented to the subjects which would not evoke an 

SSABR but would provide recording conditions sùnilar to those used when evoking SSABRs. 

The data was then preprocessed by passing it through a 40 dB notch filter ( lSt  order Buttenvorth 

filter in the non-phase shift configuration) with the notch in the 58 to 62 Hz range. This was 

done because the line noise was very prominent in the recordings (1 to 4 pV in amplitude; very 

steady at 60 Hz). Furthemore, to obtain the SSABR SNR in the fiequency vicinity of the 40 

Hz and 80 Hz SSABRs, the data was bandpass filtered fiom 35 to 45 Hz (for the 40 Hz 

SSABR) and fiom 75 to 85 Hz (for the 80 Hz SSABR). In both cases the filter was a 2nd order 

Butterworth filter in the non-phase shift configuration. 

To derive the SSABR SNRs, signal power and noise power were calculated for 1 

second data durations. This was done across data segments which were 5 seconds in duration 

(this segment would thus yield 5 values for SSABR SNR). This was also repeated on three 

other 5 second duration data segments. Further, al1 5 second data durations were separated by 

20 seconds. Thus in total, this analysis on each subject yielded 20 SSABR SNR values. 

Further for the 40 Hz SSABR the two SSABR amplitude values used were 800 nVpeak and 50 

nVpeak (in the time domain). For the 80 Hz SSABR, the two SSABR amplitude values used 

were 200 nVpeak and 50 nVpeak. These values were chosen to represent the range of SSAE3Rs 

which would be encountered in practice. Tbe results are shown in Table L. 1. 

Table L.1 Range of SSABR SNRs rneasured over 1 second intemals. - 

1 40 Hz SSABR 1 80 Hz SSABR 1 

Note: Al1 table entries are in dB. 

Subject 
I 
2 
3 

50 nVpeak 
-32.2 f 1.6 
-27.6 +_ 1.4 
-26.8 I 1.5 

800 nVpeak 
-8.1 f 1.6 
-3.6 k 1.4 
-2.8 & 1.5 

50 nVpeak 
-29.9 + 1 .6 
-27.2 + 1.1 
-24.9 f 2.3 

200 nVpeak 
-17.9f 1.6 
-15.2 + 1.1 
-12.9 + 2.3 
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