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Abstract 

The Boltzmann equation for the diffusion of Hawking radiation kom microscopic 
bladr holes is solved using the test particle method. Formation of a dense cloud 
of interacting particles analogous to the photosphere of the Sun is c o n h e d .  We 
find that a t  least two kinds of photospheres may form: a quark-gluon plasma for 
bladc holes of mass MBH ,$ 5 x 1014 g and an electron-positron-photon plasma for 
MBs & 2 x 1012 g. The QCD photosphere extends from the black hole horizon 
for a distance of 0.2-4.0 fm for log g 5 MBH 2 5 x 1014 gt at which point quarks 
and gluons with average energy of order AQcD hadronize. The QED photosphere 
starts at a distance of approxhately 700 black hole radii and dissipates at about 
400 fin, where the average energy of the emitted electrons, positrons and photons is 
inversely proportional to the black hole temperature. Possible consequences of these 
photospheres are discussed. 



Résumé 

Le spectre de radiation de Hawking des trous noirs microscopiques est calculé 
par résolution numérique de l'équation de Boltzmann en utusant la méthode des 
particules tests. Nous confimons la formation autour du trou noir d'un nuage dense 
de particules en intéraction, analogue à la photosphère solaire. Deux types de photo- 
sphères peuvent finalement apparaitre: Un plasma de quarks et gluons pour des trous 
noirs de masse MBH 5 5 x 1014 g et un plasma d'électrons, positronset photons pour 
les trous noirs de masse Msw 2 x IO'* g . La première photosphère, obtenue dans le 
cadre de QCD, s'étend depuis l'horizon du trou noir sur une distance de 0.2-4 fm pour 
IOg g 5 MBH 5 5 x 1014 g. AU delà, ü y a hadronisation des quarks et gluons dont 
I'energie est de l'ordre de AqcD. La photosphère QED mit à une distance d'environ 
700 fois le rayon du trou noir et se dissipe autour de 400 fin ou lénergie des électrons, 
positrons et photons est inversement proportionnelle & la température du trou noir. 
D'éventuelles conséquences de l'existence de teks photosphères sont discutées. 
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Chapter 1 

Introduction 

One of the beautifully exotic consequences of the Einstein's general relativity is the 
prediction of the existence of bladc holes. Whenever matter of mars M is concentrated 
in a region whose circumference in any direction is smder than 2r(2GM/c2) it gets 
trapped inside the Schwarzchild horizon 

and becomes a black hole. The constant, 2G/2 - 10-~* m/g, is so s m d  that foc the 
maas of Our Sun the radius of the horizon is rh,  ci 3 km. 

It had been long believed that nothing can escape from uiside the bladc hole 
horizon and hence we can get no direct evidence of black hole existence. However, 
in 1974 Stephen Hawking [l] mathematicay showed that in a startling interplay 
between quantum mechania and general relativity black holes must radiate energy 
as an ahost perfect black body with temperature 

The rate of emission from an uncharged, non-rotating black hoie is 

for a particle of spin 8 with energy in the range (E, E+dE), where o, (E) is absorption 
cross section for the same particle by the black hole. 

In the last equation we have used naturd units, as 
so that tr = 1, c = 1 and k~ = 1. The following 

we will throughout the thesis, 
relations between black hole 
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parameters are given in these units [2]. The temperature in GeV of a black hole of 
mass M(in g) is 

Tsa =0.1 GeV ('2 - g, 9 

the Schwarzchild horizon of a black hole is 

I 
Th = - GeV 

= 1.57 fin (-) ; 
~ ~ T B H  TBH 

these units are relevant for the rnicroscopic black holes to be studied in this thesis. 
The luminosity is 

Finally, since a black hole is constantly radiating energy, it d l  evaporate completely 
after a Metirne of 

It is easy to see from these formulas that Hawking radiation is extremely weak 
and hence undetectable for very massive black holes. For example, for a black hole 
of solar-mas size (Mo cz 1030 g, ~h~ - 3 km) - not particularly massive on the 
cosmic scale, - the luminosity is mere IO-' eV/s. So if we want to detect particles 
escaping from black holes they m u t  have much smder masses than Ma. However, 
in the present day universe, bladr holes may be formed only in gravitational collapse 
of stars heavier than - 3M0 and so a recently fonned black hole is not a good source 
of detectable Hawking radiation pl. But the hope should not be abandoned, for it 
has been suggested that in the early universe other black hole formation mechanisms 
were available, as, for example, the collapse of overdense regions in a universe with 
significant density fluctuations [3, 4, 51. Black holes formed in the early universe are 
called primordial and can have mass as low as the Planck mass (2.2 x IO-' g) [Z]. 

The iuminosity of rnicroscopic primordial black holes is very high [see Eq. (1.6)], 
so that Kawking radiation is the crucial factor in their evolution. In f&, accorciing to 
Eq. (1.7), al1 primordial bladr holes of mass smaller than - 10'' must have evaporated 
entirely before any human ever came to think about them. Those that were initially 
slightly more massive, though, would now be in the final stage of th& existence, 
which is rather violent: in its last second a black hole of initial mass 1016g would 
radiate about IO*~J of energy, so that for a brief moment it would be comparable 
in luminosity to a smaU star [6]. Knowing the spectrum of such energy burst would 
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allow us to look for them in the sky. Also, the radiation of primordial black holes that 
are extinct by now rnight have contributed to the extragalactic y-ray background. To 
address these issues we need to know the detailed spectrum of black hole emission. 

A thorough investigation was done after Hawking radiation was first suggested 
[7, 8, 91. For example, Page in [IO] gave numerical calculations of the emission rates 
for massless particles. He concluded that 81% of total power emitted by a massive 
(M w W7g) black hole is in neutrinos, 17% in photons and 2% in gravitons; for 
lighter, but stül-evaporating black holes (5 x 1014g < M < 1017g), 45% of the power 
is in electrons and positrons, 45% in neutrinos, 9% in photons and 1% in gravitons. 

For massive particles, the early approach was to assume that any particle species 
is emitted according to Eq. (1.3) once the black hole temperature exceeds the relevant 
rest mass [8, 111. As suggested by MacGibbon and Weber in [12], this might not be 
true for particles with composite structure. For black hole temperatures of order AQcD 
and higher, relativistic quark and gluon jets are emitted which subsequently fragment 
into the stable photons, leptons and hadrons. In [12] the final emission spectra were 
obtained by convolving the Hawking radiation formula with a Monte Car10 QCD 
jet code for jet fragmentation. MacGibbon and Carr in [13] described how the final 
stable particles are affecteci by interactions with the rest of the universe and gave 
detailed results qf primordial black hole emission contribution to the extragalactic 
yray and eïedron, positron and antiproton backgrounds. They also concluded that 
the direct explosive emission from an individual hole is not likely to be detected above 
the cosmic-ray backgrounds. 

Radiation from very high temperature bladr holes was estimated by Oliensis and 
Hiil in [14]. The contribution of such bladc holes to ultrahigh-energy cosmic rays 
was found to be insignificant. It was also pointed out that the high energy radiation 
emitted by a real bladr hole is expected to be non-thermal. 

From this review we see that the spectmm of primordial black holes may be quite 
different fiom the thermal distributions, for example, if quark-gluon fragmentation is 
considered. In this thesis, we explore another possibility of changing the spectrum of 
the initially emitted Hawking radiation: interactions between the emit ted particles 
while they emerge from the vicinity of the black hole. 



Chapter 2 

Do Black Holes Have 
Phot ospheres? 

In January 1997 Andrew Hedder suggested that the observed black hole radiation 
spectnirn may be quite different from that at the horizon if the emitted paxticles 
staxt zntemctzng with one another as they propagate away and do so strongly enough 
to form a photosphere [15]. This possibility had been previously argued against. 
In the first section we examine the arguments that had led to this conclusion and 
Hedder's arguments to the contrary. A brief account of the photosphere as emerges 
fiom his analysis is given in the second one. 

2.1 Interactions 
Authors prior to Heckler did consider the possibility of interactions. MacGibbon and 
C m  in [13] extensively investigated interactions of the particles emitted by primordial 
bladr holes with other pudzcles in the universe. For exampie, photons fiom primordial 
blxk holes can be scattered through (1) ionization and photoelectric absorption, 
dominant for photon energy E, 5 14 keV; (2) Compton scattering on electrons: 14 
keV E, 5 65 MeV; (3) pair production off nuclei: 65 MeV h. E, 5 2 TeV; (4) 
pair production off the 3K background photons: E, 2 2 TeV. However, neither these 
nor any of the interactions of other emitted particles with the rest of the universe 
were concluded to significantly change the spectnim of primordial bladc holes. 

Oliensis and Hill [14] also considered interactions. Even though their paper deals 
with ultra high energy radiation, i.e. very hot bladr holes T' > 100GeV, they argue 
that particles emitted fkom any black hole wodd be able to interact with one another 
if the tirne between subsequent emissions is srnall compared to t = r/c, where r is the 
range of the interaction and c = 1 is the speed of iight (ail relevant particles being 
relativistic). It is expected that t = 1/E, where E - Tm. It is aIso estimated that 
the time between emissions is dt = 2 0 0 / 8 d  - 8 /E .  Therefore, "since dt > 1/E, a 
black hole at a given temperature radiates particles infirequentiy compared to their 



average energy and these particles will tend not to interact before fkagmenting" . 
Another argument for the same conclusion is the finite size of the hole, which might 
be thought to prevent particles emitted fkom opposite sides from interacting with 
each other. 

The arguments and conclusions of both papers are tme, with one exception. 
They fail for a particular kind of interaction: bremsstrahlung (and the closely related 
process of photon-electron pair production, see diagram on p. 18), which t u s  out 
to be important at least for three reasons. 

1. It is not 2 + 2 body scattering (as for example, Compton scattering), but 
2 + 3, Le. a new particle takes some energy every t h e  an interaction has taken 
place. This cm reduce the average particle energy dramaticdly. 

2. At relativistic energies the energy-averaged bremsstrahlung cross section is only 
logaxithrnically dependent on the energy, and so the decrease in particle energy 
described above will not affect by much the probability of interactions. 

3. The range of interaction for bremsstrahlung is not 1/E as was estimated in [14], 
but Ilme. Black hole temperatures of interest are TBH 2 ilqcD =i 200 MeV, 
so the time between emissions is dt = 8/E < l/m,, which is the condition 
mentioned earlier for the interactions to become important. 

So the conclusion that made the present work possible is that interactions of 
emitted particles *th one another may become very important if bremsstrahlung 
and photon-electron (quark-gluon for QCD) pair production are taken into account. 
The arguments leading to this condusion are somewhat elaborated in the next section 
and discussed in great detail in Chapter 4. 

2.2 Photosphere Hypothesis 
It is thus claimed that for a certain black hole temperature there will be enough par- 
ticles to produce a dense interacting cloud which d l  certainly change the emission 
spectrum of an individual black hole. This cloud wag called a photosphere in analogy 
with that of the Sun, where particles emitted fiom the core scatter and lose energy 
on their way out. In this section 1 will briefly review how Hedder in (151 analyti- 
cally justified the existence and analyzed the properties of a photosphere around a 
microscopic bladc hole. 

We begin by discussing the simple case of QED ody. A black hole of temperature 
TBH greater than the electron mass emits electrons, positrons and photons which will 
all be treated as '~articles". Suppose that at the horizon their energy spectnim and 
density are t h e d  (up to grey-body factors) with temperature TBR. Going-away 
fiom the horizon they scatter via bremsstrahiung (e* + e* + efe*$ and photon- 
eiectron pair production (e* + y + e*eie-) which are both 2 + 3 body interactions 
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with cross section which depends only logarithmically on the energy. Total energy- 
averaged cross section for both interactions is approximately 

where E is the energy in the center-of-mass kame and re = aim, is the classical 
electron radius. 

Let N(r) be the number of scatterings an average particle has undergone by the 
time it reaches radius r.  If X is the mean free path, then 

If n/ becomes greater than 1 for r = oo we can say that some kind of photosphere 
has formed: on average e v q  particle has interacted before escaping. Calculating 
N(m) naively, neglecting plasma effects and density enhancement due to particle 
production, yields: 

where mo, is vacuum electron mass. The nitzeal tempemturn, - the black hole 
temperature for which N(oo) - 1,- is found to be Tc - 20 TeV. 

To improve this estimate we have to take account of the fact that bremsstrahlung 
processes occur not in vacuum but in a background plasma of almost radially propa- 
gating particles. The thermal mass could be used for this purpose, so that the electron 
mass becomes 

where a simple estimate for the plasma mass m, of an electron in a plasma with 
density n(r) is 

The average energy of a particle emitted from a black hole is - 5Tm and since it 
decreases with each scattering, through conservation of energy it is estimated to be - 
E 5 ~ = / ( 3 / 2 ) ~  [El. 

Both mean free path and plasma mass depend on density n(r), which increases 
each time a new particle is created (but, of course, decreases with radial expansion). 
Taking both effkcts into account, the density of particles can be estimated as 



where nh is the density at the horizon. The Mproved formula for N is 

n(7) VBH M(r) = 8a3 lBH dr- ln - 
m: ( f  ) 7% (r)  ' 

where the plasma mass of the electron depends on the distance through density. 
To find the critical black hole temperature (N%(OO) = 1), Eq. (2.7) was solved 

both numerically and analytically and it was found that 

- .  

The numerical result for this and two other black hole temperatures is illustrated 
by Fig. 2.1 reproduced from [15]. We shail see in Chapter 5 that using our test particle 
mode1 of the photosphere we obtained very similar results (cf. Fig. 5.1). Ref. [15] 
proceeda by modeling the photosphere fomed for Tss > Tc as a thidc shell of 
plasma and uses a fluid description to find the inner and outer radü of this shell. His 
results are: 

the 
An obsemtionally relevant quantity is the average partide energy at  the edge of 
pho tosphere: 

We summarize these results for several black hole temperatures in the Table 2.2. 
, Describing briefly Hedder's picture of the QED photosphere: for temperatures lower 

than 45 GeV, emitted partides free-Stream away fÎom the black hole and the observed 
spectrum is given by the Hawking formula; for temperatures greater than critical the 
particles begin to scatter signifiant ly to form a partially-thermaüzed photosphere at 
a distance ro fiom the black hole. kom there they make their way through plasma 
losing significant fraetion of their energy in bremsstrahlung and electron-photon pair 
production. The edge of the plasma is at rdge, where the average particle energy is 
reduced to the order of moe < Tc- At this point electron and positron annihilate and 
the photons fiee stream away to infinity. 

Ref. (151 suggests that to see more acmateiy what is happening in this plasma 
shell one would have to solve the Boltzmann equation, which is the subject of this 



Figure 2.1: Numerical results of Ref. [15] for N(r) - the number of scatterings an 
average particle undergoes as it propagates to a distance T from the bladc hole horizon. 

45 GeV 

300 GeV 

1000 GeV 

Table 2.1: Photosphere parameters according to ref. [15] for several bladc hole tem- 
peratures. 

9 x 10' G~V- '  

1 x 10' G~v-' 

1.7x108Gev-' 

thesis. As we will see, although his estimate for the critical temperature is very close 
to our value and the photosphere hypothesis seems to be correct, the photosphere 
parameters found in our mode1 are very different from those given in Table 2.2, 
indicating that the fluid description is not valid. 

mo, ZZ 5 x 104 GeV 

1.3 x 10-3 GeV 

2 . 4 ~ 1 0 - ~ G e V  



Chapter 3 

Test Particle Mode1 

3.1 

As was 
picture 

Boltzmann Equation 
noted in the previous chapter, we would like to have a more quantitative 
~f partide diffusion outside the Schwarzchild horizon, which would in partic- 

ular confirm or refute the photosphere formation hypothesis. That picture could be 
provided by a solution to the Boltzmann equation: + 

where f (r, p, t) is the particle distribution fwiction, depending in general on particle 
position and momentum, and also on time; C( f )  is the collision term: a multidimen- 
sional phase space integral over distribution functions, weighted by the probability of 
the interactions between the particles. 

To simplify the equation we can make certain assumptions about the black holes, 
namely : 

A. We will consider only spherical, non-rotating bladr holes. Hence the distribution 
funct ion for emitted radiation will be sp herically symmetric: 

B. Mass (temperature) of the black hole does not change signiscantly in the time 
interd needed for a particle originating at  the horizon to reach the edge of 
the photosphere or, in other words, to become a vvtually free particle. ' This 
implies the time independence of the distribution hinction: 

'For a typical black hoie (M=lOug, T=1000 GeV) this t h e  i n t d  is r(- IO-") 8: t(- 106 
sec), black hole lifetime- We m a t e  that ody for biack holes of mas 10'g the lifetime wiU 
becorne comparab1e to the particle difhision time in the photosphere. 



CIiLWTER 3. TEST PARTICLE MODEI, 

The Boltzmann equation then reduces to 

where v, = E/pV is the particle's radial velocity. 
Even in this forxn, though, it involves phase space integration in the collision 

term, has thme independent variables and a partial derivative on the left-hand side 
which altogether make it a formidable task to solve the equation by direct numerical 
evolution of the distribution function. However, there has been suggested a way to 
circumvent this problem. 

3.2 Test Particle Method 
The test particle method of solving the Boltzmann equation was f is t  used in the 
problem of heavy ion collisions [16]. The phase space distribution function of nucleons 
was represented by a set of point-like test particles. This set was then evolved using 
Hamilton's equations for free propagation between the collisions, and the two-body 
differential scattering cross section for the collision probability. It was argued that 
with a sufficiently large number of test particles this method provides a Müd solution 
to the Boltzmann equation. But having more test particles than there are nucleons 
would artificially increase the probability of collisions if the naive interaction cross 
section was used in the collision term. Therefore an appropriate factor was used to 
reduce this probability. 

There are two major differences between the heavy nucleus and the bladc hole 
radiation problems. The first one,- spatial homogeneity in the former and explicit 
spatial dependence (on r) in the latter, - actually tums to our advantage if we 
remember that we assumed the radiation to be in steady state [Eq. (3.3)]. If we 
compare the Boltzmann equation for f = f (p, t) (heavy nuclei): 

with the one we want to solve [Eq. (3.4)], we see that there is no reason why the 
method for solving the one would not work for the other, provided we consider radial 
diffusion instead of time evolution. 

The second dinerence is that, for reasons to become apparent later, our cross 
section, and hence collision probability, will never in any way depend on the number 



of test particles, but rather on the density of real radiation, which may be calculated 
independently of the model. Therefore, there is no need to "scale" cross section and 
any statisticdly reasonable number of test particles may be used. 

3.3 Test Particles for Hawking Radiation 
Even though the number of test particles will depend only on statistical considera- 
tions, their characteristics, Le. m a s ,  spin, interaction properties will be defined by 
the part of bladc hole radiation to be modeled in each particular case. For example, to 
establish existence of QED photosphere we will ignore al1 the paxticles emitted for a 
particular black hole temperature except electrons, positrons and photons. Then ap- 
proximately two thirds of our test particles will be identified as electrons or positrons 
and one third as photons, and electromagnetic interactions will be used. For the QCD 
photosphere, another cage of the Hawking zoo is going to be looked at. To model 
quark and gluon diffusion, test particles will assume their respective properties and - 
the appropriate strong interaction coupling constant will be used in formulas. 

I would like, however, to start with a demonstration of how the method works 
in the case when it is not the nature of the test particles which is relevant but their 
classical propagation trajectory. 

3.4 Free Evolution 
It is important to r d e  that test particles are perfectly classicd particles following 
well defined trajectories. In absence of interactions between the particles t hernselves 
or with extemal fields, they will move in straight lines. As we can see kom Eq. (3.4) 
relevant phase space coordinates of a particle are pr and p, and we would like to know 
how those change (if at all) with our evolution coordinate r. 

Let us look at a free particle starting at the horizon with momentum p = (p', pt )  
(we are not interested in po and can confine the problem to (r, p) plane). At radius 
r > t h ,  momentum will remain the same, but its coordinates will change. 

Rom Fig. 3.1 we see that 

P:, = p sin a and sin6 = - 
P' 

To write new momentum coordinates in terms of those at the horizon we use some 
geomet ry : 
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horizon 

Figure 3.1: Momentum in fiee radial evolution 

And finally we get: 

and 

Note that these formulas are valid for any two r h  and r such that r > rh and we 
axe going to use them when propagating test partides in radius between collisions. 

We see that the transverse component dies out as l /r  and as a fiee particle is 
going away from the horizon its rnomentum becomes increasingly radial. 

To solve the Boltzmann equation for radiation streaming free from a bladr hole 
we start at the horizon with a set of N particles. We propagate each of them to a new 
radius by changing their rnomentum coordinates according to the above formulas. 
With the new coordinates we can generate distribution functions which will be the 
solution to the free Boltzmann equation at the new radius. 

3.5 Evolving int eract h g  part icles 
The picture wii l  be somewhat more compiicated when the particles are allowed to 
interact. Even though we neglect external fields (black hole is not charged and its 
gravitational field is negligible in the region of interest), we do want to take scatterings 
into account and that changes the way the test particle method is implemented. 

We start again at the Schwartzchild horizon with a set of statistically signifiant 
number of particles. To be specific, let us consider the case of the QED photosphere, 
where al1 black hole radiation is neglected except for electrons, positrons and photons. 
The nurnber ratio of fermions to bosons was cdcuiated to be 2:1 wkch rneans that 
two thirds of test particles at the horizon w2i  assume electron properties and the 
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rest, those of the photon, We will refer to these test particles as ''test-electrons" and 
"test-photons" . 

As we are modeling Hawking radiation, test-eledron and test-photon energy dis- 
tributions must obey Eq. (1.3) with s = 112 and s = 1 respectively at the horizon. 
To find the energy of each test particle we use a standard Monte Carlo technique 
described by MacGibbon and Weber in [12]. If Q is the particle energy and T is bladc 
hole temperature (fixed), a value for X = Q/T is first randomly chosen between O and 
X-, the maximum d u e  of QIT in the program (10 T in our case). An ensemble 
of such X values will be distributed according to 

if we require that H ( X )  > H-R where R is a random number between O and 1 and 
H,, >_ the maximum of H(X) for-all X. To calculate the r, factor we use averaged 
value for absorption cross section [12]: - for fermions - for bosons. 27n 

The next step after distributing the energies of the test particles is to assign mo- 
menta to all of them. To model isotropic radiation at the horizon we let our test 
particles start  with momenta pointing in arbitrary directions uniformly distributed 
over outward-pointhg solid angle of 2 r  steradiam (Fig. 3.2). Since we already know 
the energy of each particle E we can just choose the radial component of the mo- 
nientum pr = R J-- (where R is again a random number between O and l), 
and then calculate the transverse cornponent pt = Jw. Note that pr 2 O 
(particles are radiated, not absorbed) and pt 2 O (by definition, see Fig. 3.2). This 
procedure is equivalent to choosing directions according to the measure d(cos O), where 
û is dehed by tan 6 = pt/pr . 

At this point we are ready to propagate the test particles away from the horizon. 
Li the heavy ion problem, where tirne is the propagation parameter, an average time 
between the collisions is used as the propagation step. It is natural to use the mean 
free path, or some fraction thereof, as the increment in radius for our model. The 
propagation procedure goes as follows: in the beginning al1 the test particles ate 
randomly paireci. Then for each pair, the bremsstrahlung cross section o, the relative 
velocity of the particles in the pair v,,~ and the radid velocity (l/u, factor) are 
caldated. Mean fiee path is 
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Figure 3.2: Test particle momenta at the horizon 

where average is taken over al1 pairs. Details of these calculations are presented in 
Chapter 4. The particle density n(r) is cdculated analytically and therefore does not 
depend on the number of the test particles. To find n(r) we h t  compute what it 
would be in the absence of particle production: 

where the subscript O means that this density is before particle creation process is 
taken into account. The radius of the honaon is Th = 1/(4.1rTsH) and the density at 
the horizon is 

where f @) is 
being emit ted 

the Hawking distribution. h m b e ~ g  that since the particles are 
outward, 0 should onIy be integrated to r/2, we obtain: 
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where C(3) = 1.20206 (Rieman zeta fuaction) and I', is given in Eq. (3.8). 
To account for partide creation we use the test particles to find the fraction of new 

fermions and bosons created at each step. Let NtIbl(r) be the number of test-electrons 
[test-photons] at radius r. We will define Rt&) as: 

Finally, using (3.10) through (3.13) we find 

((3) TBH 
3rr R,(r) for fermions 

"(') = n2(4rr)2 r2 2rb &(r )  for bosons. 

Once we have calculated the mean fiee path, we can propagate aU the particles to 
the next step. For several reasons we decided to make this step a small &action of A. 
FVst, X itself, which depends on r ,  increases significantly over propagation distance 
AT = A. Secondly, a t  each successive step we start by ailowing al1 the test particles 
collide in pairs, whereas in reality, different pairs would interact at different points 
between r and r  + A. 

If Ar  is the step in radius we use and f = AlAr, then only N/f test partides 
should be allowed to collide a t  eadi  step in radius. This factor f should be large 
enough so that X(r) does not increase too much before it is recalculated at the next 
step; on the other hand it should be smdl enough so that at least one pair interacts 
during the step. Cornparing the results for different values of f ,  we found that for 
the QED photosphere they usuaily stabilized at f 2 50, when the initial number of 
test particles was large enough to dlow using f up to 100. 

Kinematically, bremsstrahlung and pair production are modeled by an inelastic 
scattering of two test-electrons (one test-electron and one test-photon for pair produc- 
tion) in whîch a new test-photon (test electron pair instead of test photon) is created. 
Details of how it is done are discussed in Chapter 4. N/2f pairs are sorted out at  
each step as those that have the highest probability to interact and their collisions are 
subsequently simulated. Then aU the test particles are propagated to the next radius 
at r + At.  Between colliding and reaching the new radius, test particle energies do 
not change but the coordinates of their momenta do, according to Eq. (3.6). 

Let ua summarize the algorithm for evolving the set of interacting test partides: 
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1. Particles are put randomly in pairs and the mean fiee path is calculated using 
Eq. (3.9). 

2. All test particles are propagated as fiee to the new radius T' = r + A/ f using 
(3.6). 

3. Pairs are sorted by interaction probability. 

4. N/2f most probably interacting pairs are sent to the subroutine where 
bremsstrahlung or pair production (whichever is relevant for the specific pair) 
is rnodeled. 

5. Back to step 1. 

We start this procedure at the black hole horizon where the radiation is emitted 
and end it when rnean free path starts to diverge so that only a negligible number of 

- interactions would f o b w  (see p. 31 for a more precise definition of the photosphere 
edge). For the QCD photosphere, however, long before this criterion is satisfied, the 
average particle energy drops below AQcR, at  which point hadronization occurs and 
quark-gluon photosphere ceases to exist (see chapter 6). 

Now, that we have discussed the test partide method, we can turn to the physics 
of interactions which create the photosphere. 



Chapter 4 

Scat t erings in detail 

In this chapter we will discuss: why bremsstrahlung and electron-photon pair pro- 
duction are the dominant processes for photosphere production (Section 1); why the 
effective electron mass is much larger at the beginning of the photosphere than at 
the end (Section 2); how the bremsstrahlung cross section and mean free path are 
calculated (Section 3 and 4); and, ha l ly ,  why all the particles in the photosphere 
scatter as though they were colliding head-on, and how these collisions are sirnulated 
for test partides (Section 5 and 6). 

4.1 Interactions considered and neglected 
In the test particle simulation of black hole radiation dimion, one must decide 
which interactions to include in the collision t e m  in the Boltzmann equation (3.4). 
Consider, for example, the case of QED, where the particles of interest are electrons, 
positrons and photons. Their dominant interactions are [17]: 

1) Coulomb 

2) Compton 



3) Bremsst rahlung and Pair Production 

4) Electron-Positron Annihilation 

where r, = a/m.  is the classical electron radius, w is the energy in the center of mass 
system, and p is the velocity of this system (7 = (1 -Pa)- ') .  

Let us start with annihilation. We argue that as long as photon energy is larger 
than the electron m a s ,  the electron-positron annihilation will be in equilibrium with 
its inverse process, photon-photon pair production. In particular, emitted and created 
electrons and positrons will in the end annihilate only if the average photon energy 
falls bdow me before the photosphere dissipates for other reasons, which we find does 
not happen untii the black hole is as hot as IO* GeV. 

For production of the photosphere the most important reactions are those which 
can significantly change the partide energy spectnun. Bremsstrahlung (and pair 
production) is dominant in this sense, because every reaction produces a new particle 
which in turn reduces the average particle energy and shifts the spectrum towards 
lower energies. The cross sections for these processes depend only logarithmicdy on 
energy, and so are not much affecteci by this degradation in energy. 

Because Compton scattering can neither change average energy nor increase the 
thermal mass, we ignore it for the t h e  being, realiaing though that a more accurate 
mode1 would have to include these interactions. 

As for Coulomb scattering, according to Haug [18], it can be considered as a 
correction factor to bremsstrahlung cross section, which can be found by dculating 
the ratio of probabilities of finding the two initial and final electrons, respectively, at 
the same position. This factor is approximately unîty for higher energies. 

So, in our simulation the only interactions we take into account will be 
bremsstrahlung and pair production, and as we will see those are sufficient to produce 
a photosphere. 

4.2 Thermal Mass 
In bremsstrahlung cross section and other formulas involving dectron m a ,  the so 
called "themaln (or effective) mass is used, related to the vacuum mass me by 



As was noted in Chapter 2, this is a way of including the effect of high density 
plasma on the interactions. Plasma mass m, is a function of density, temperature 
and momentum. It needs to be calculated for the kind of plasma that is created 
around a microscopie black hole: a nonthemal, largely radially-moving collection of 
relativistic particles. However, it is possible to justiQ the following estimate, which 
was derived in the case of thermal equilibrium [19]: 

where ff(~)(p) is the distribution function for fermions (bosons). For a collection of 
test particles the integral may be approximated by taking the average of l /p over al1 
test-electrons and test-photons: 

Several aspects of the implementation of thermal mass in the test particle rnodel 
are noteworthy. First, in Eq. (4.3) ne and % are real electron and photon densities 
calculated analytically [see Eq. (3.14)], whereas p, and p, are kinetic energies of the 
test-particles. Secondly, we redculate electron thermal mass [using Eq. (4.1)] at  each 
step in radius. If its momentum was held fixed, this would change its total energy 

m2 + p? which we certainly want to be conserved. Hence, we assume that ~=\r, 
thermal mass correction is done at the expense of particle kuietic energy in such a 
way as to keep its total energy E constant. 

We can estimate thermal mass of an electron in the QED photosphere using 
n(r) = ~ ~ ~ ( 3 / 2 ) ~ ( ~ ) / ( ~ ~ ( 4 ~ ) * r ' )  for the densities of both photons and electrons, and 
3 ~ ~ ~ / ( 3 / 2 ) ~ ( ' )  for average partide energy at radius r. Here, hl(r) is the number 
of scatterings an average particle undergoes between the horizon and radius r. Since 
in eaeh scattering one new partide is produced, (3/2)N(r) is the factor by which the 
total number of particles has increased. In the test-particle model, since the total 
number of particles N(r)  is known at each step, this increase is caiculated directly as 
N(r) /N(rh)-  Then, 

The behavior of thermal mass is shown in Fig. 4.1. The graphs are of effective 
mass vs. radius for two typical photospheres: QED photosphere of a 1000 GeV black 



CHAPTER 4. SCATTERüVGS IN DETALC 

hole and QCD photosphere of a 10 GeV bladc h oie. We see that in the QED plasma 
the factor of 119 is dominant over any growth in density as the radius inmeases, 
which causes the thermal m a s  to decrease monotonicaiiy. On the other hand, in the 
QCD plasma, the particle production factor N(r)/N(rh) is more influentid ( due to 
dependence of the average particle energy on the coupling constant, in particda) 
and just before the hadronization begins to occur ( (E)  .Y A& thermal mass may 
again become very high. The perturbative formulas leading to this should not be 
believed however. 

Figure 4.1: Thermal Mass in typical QED and QCD photospheres. 

4.3 Bremsstrahlung Cross Section 
The relativistic differential cross section for bremsstrahlung in the center of mass 
h e  is (17, 181 

where L = c = 1, te = cr/m,, E is the initial energy of each electron, and w is the 
energy of the emitted photon. It diverges for w + 0, but higher order corrections 
easentiaiiy impose an ihared cutoff [15]. 

The form of Eq. (4.5) suggesta that lower energy photons are emitted more often, 
but considering the faet that they don't a f k t  electron energy much, it is sensible to 
use the energy-averaged total cross section [15,17] 
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Total photon-electron pair production cross section shows the same fundional depen- 
dence in the extreme relativistic Mt and we therefore use the same estimate (4.6) 
for both interactions. Fig. 4.2 will give an idea of how the cross section changes in a 
typical (QED) photosphere. 

:t- photosphere -- 

Distance from the black hole, r (G~v-') 

Figure 4.2: Total bremsstrahlung cross section a in a typical QED photosphere 
(TB, = 1000 GeV). 

An improvement on the above treatment would be to use dserential 
bremsstrablung cross section and produce low energy photons with higher proba- 
bility. However, one should then impose an infrared cutoff on the emitted photon 
energy and show that no meaningful physical properties of the photosphere depend 
on this cutoff. 

4.4 Mean Free Path 
The Boltzmann equation for the radiai evolution of particle distribution [see Eq. (3.4)] 
will be equivalent to the usual t h e  evolution version [see Eq. (341  o d y  when the 



collision term is divided by the radial velocity 
becomes 

factor s. Then the mean free path 

In our simulation, we do not need to do integrds to calculate the average quantity in 
the denominator, since the test paxticles are already distributed according to f and 
(urelou;') can simply be calculated as an average over the interacting pain of test 
particles. 

The mean free path cm be estimated using Eq. (3.9) with vrel = 1 (see next 
section), a from Eq. (4.6) and n(r) from Eq. (3.14). We should not forget that me 
in these equation is the electron thermal mass [see Eq. (4.1)]. Combining all of these 
equations we get an estimate close to the one used by Hedder to characterize the 
photosphere: 

In Figure 4.3 we compare it to the mean free path calculated by direct evduation 
of Eq. (4.7) in the test particle approach. 

We see that the analytic estimate is in good agreement with the numericd result 
in the beginning and middle of the photosphere (and indeed we will see in Chapter 5 
that Hedder's value for critical temperature is alrnost the same as ours), but they differ 
drastically in the end. His barely increasing mean free path lets the particles in the 
photosphere interact almost indefinitely, or rather until their average energy drops 
below mon, when positrons and electrons annihilate. In contrast, the skyrodceting 
mean free path in our mode1 means that when the radius becomes p a t e r  than l /mo,  
(T - 2 x 103 l/.GeV) the particles become virtually hee. We use this as the criterion 
for the edge of the QED photosphere. To be precise, we consider the particles fiee 
when the mean fiee path on the next step is 2-3 orders of magnitude higher than 
on the previous one. This sudden increase in X happas because the diameter of the 
particle distribution around the black hole exceeds the range of the bremsstrahlung 
interaction and then only the particles spatially close to each other can interact. At 
this point the relative velocity u,,~ in Eq. (4.7) becomes approximately zero, since ail 
particles are moving almost radially and the relative velocity of two particles that 
are spatially close to each other will be very smaii. However, in the estimate (4.8), 
used in ret  [15], this effect is neglected and vrel is taken to be unity regardess of the 
distance from the black hole. We will discuss the range and relative velocity in the 
next section. 
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Figure 4.3: Mean free path X in a typical QED photosphere (TBH = 1000 GeV). 

4.5 Interaction Distance and Relative Velocity 
The distance at which particles can interact via bremsstrahlung and pair production 
is an important parameter, since we have to decide which test-partides may interact 
with one another and which may not. In the heavy ion collision problem, which was 
mentioned in the previous chapter as an example of using the test particle method, 
those test particles were allowed to interact which were within a criticai distance, 
defined by a = ~ b z .  We could use the same criterion: first find the average interpar- 
ticle distance b(r) = ~2( r ) - ' /~ .  As long as b(r) < b,, we would randomly choose pairs 
of particles and assume that each pair consists of wo nearest neighbors, position of 
which can be approximated by being at the same point. Since particle momenta are 
almost radial, the relative velodty of each pair is of order O and the mean kee path 
cdculated fkom Eq. (3.9) will increase extremely fast as a hinetion of radius. Thus, 
no analog of photosphere can develop in this scenario. 

However, the range of bremsstrahlung is somewhat higher than expected. 
Bremsstrahlung is conveyed by an exchange of a virtual photon. The range of the 
interaction is of order l l k  where k is the momentum of the virtual photon. It was 
shown in [20] that at relativistic energies, small momentum traders ,  k 2 me, con- 
tribute the bullc of the total cross section, therefore the distance at which particles 



can interact via bremsstrahlung (and pair production) is of order l/m, (in plasma 
me is electron thermal mass). 

This argument dramatically changes the value of average relative velocity. To see 
that, we shodd note that we are talking about microscopic bladc holes whose radii 
axe of the same order as or smaller than the particle interaction distance. Specifically, 
for sufficiently high black hole temperatures, the horizon, rh - l /TBHi happens to 
be lower than interaction range l/m, - llm,. Moreover, we tind that for some 
distance outward from the horizon, the plasma mass is decreasing significantly faster 
than the radius of the particle distribution is increasing. All this means that for 
certain black hole temperatures, ali through certain radius away from the black hole 
any emitted particle can interact with any other over the entire distribution, which 
makes the average relative velocity of random interacting pairs of order 1. Fig. 4.4 
shows how the distance of interaction remains higher than the radius of the particle 
distribution throughout the most of the photosphere. 

dl - lntemctlon range 

Distance from the black hole, r (1iGeV) 

Figure 4.4: Minimum distance of interaction in a typical QED photosphere (TBH = 
1000 GeV). 

Therefore, in our mode1 we set vrei = 1 as long as ad the particles are capable of 
interacting with one another. However, when T becomes greater than the interaction 
range we use the procedure outlined at the beginning of the section and calculate 
relative velocity using the standard formula for highly relat ivistic part ides: 



Next we must speciSr how the 
subject of the next section. 

particle interactions are modeled. This is the 

4.6 Collisions 
Before going into the details of collisions, we describe how the test particies are 
represented in the model. Each original and each newly created particle, be it photon 
or electron, is assigned an individual index i and ID number ID@), designating its 
spin. Each test particle has rnomentum, written in terms of its absolute magnitude 
(kinetic energy of the particle), p ( i ) ,  and two of its coordinates: radial, p,(i), and 
tragsverse, p&), (see Fig. 3.2). Although one of these three numbers is redundant , it 
is more convenient to keep it than recaiculate it each time it is needed. On the other 
hand, azimuthal angle is not kept track of and is chosen at random when necessary. 

In the aigorithm for propagating test particles outlined in Section 3.5, the pairs 
after having been sorted by interaction probability (those with higher transverse mo- 
mentum components are more likely to collide) are made to undergo actual collisions. 
We assume purely classicd (except for creation of a third particle), three dimensional 
scattering which in piinciple should be straightforward, but in fact involves severd 
subtleties in the context of Our model. 

F h t  of a& as was shown in the previous section, most of the time the interacting 
particles can be at any two points on the radiation surface (surface of current radius 
r). Cunously, that means that two particles moving directly away from each other 
are as Iütely to interact as those that move directly towards each other. Secondly, if 
the pair consists of an electron and a photon we have to check that there is enough 
energy available to create two new electrons via pair production. We know that in 
the center of m m  system all the available energy is distributed between the three 
new particles, so we transform the momenta of the pair to this system. We use the 
formulas from [21]. The wlocity of center of mass frame is 

the center of mass energy is 

Em = ,/(& + a2 - (PI + pd2; 

the rnomentum of one of the partides is 



and the momentum of the other is -p,. 
We must impose energy conservation, 

where E;, E; and Ei are the energies of the final particles. These energies are chosen 
randomly, but the respective momenta must sati* mornentum conservation, so the 
vectorial sum of the new momenta to be generated in the next step of the algorithm 
must be zero. The condition on the kinetic energy of each particle is found f?om 
geometrical considerations and turns out to be the triangle inequality: 

- .  

So far we have only distributed the energy, but have not assigned any momenta. 
We take these to have random directions in the CM frame. This assumption actually 
does not affect the evolution of the photosphere for radii smaller than the range of 
bremsstrahlung interaction. It does d e c t  the sharpness of the outer edge of the 
photosphere, but this is already so sudden that using the true angular distributions 
of the differential cross section can have only a very s m d  effect on our results. 

We need to generate 9 mornenta coordinates, but we know that the sum of the 
momenta is zero (3 equations) and we know their magnitudes (3 equations). We use 
two of the amilable degrees of freedom to to put al1 three vectors in x-y plane (set 
q = O and y = 0, the third vector will have to be in the same plane to sati* 
conservation). Then we use one degree of fieedorn to put pi dong x-axis (yl = 0). 
We find the remaining coordinates of all three vecton in this specialized frame. 

The next step is to rotate the plane containhg the momentum vectors by three 
random Euler angles ( O , # ,  11). We use matrix transformation (see, for example, [22]) 

where the matrix A is given by 

cost(,cos$ - cosOsint#sinJ, cosr l ,s in~+cosBcos$sin~ s in@sid 
A =  ( -sin$cos$-cos8sinqkos$ - s i n ~ s i n ~ + c o s ~ c o s $ c o s ~  cos@sid  

sinesin4 - S ~ ~ B C O S $  COS 8 



Fhally, by reversing /3 in Eq. (4.10) we get the three momenta back in the labo- 
ratory frame, where the new kinetic energy, and radial and transverse momenta are 
wigned to the new particles. 

It should be noted, that even though the random choice of final energies (and 
directions) is somewhat less realistic than the more laborious procedure of weighting 
the possible final state configurations by the differential cross section, we estimate 
that it is justifiable, since soft bremsstrahlung photons which are more Iikely to be 
created would have but a s m d  effect on the particle energy spectrum. 



Chapter 5 

QED Photosphere 

In this chapter we will present the results of test particle modeling of black hole 
emission, considering only electrons, positrons and photons. This restriction is ap- 
propriate for black holes with Tsa < Aoco. We will dso treat higher temperatures 
in this context for the sake of understanding, deferring study of the effects of quarks 
and gluons until the next chapter. For the present, we determine under what con- 
ditions a dense, interacting plasma may be formed just considering QED. We will 
show the main characteristics of such photospheres for black holes of dinerent masses 
and temperatures. Next, the momentum distributions inside of a typicd photosphere 
will be explored. The last section will discuss the ciifference between the energy spec- 
trum of the radiation a t  the horizon and at the edge of the photosphere, which is 
phenornenologically most relevant aspect of biack hole photospheres. 

5.1 Photosphere Formation 

Armed with the mode1 and algorithm of Chapter 3 and the calculation details of 
Chapter 4, we are ready to investigate the existence and properties of the photo- 
sphere suggested in Chapter 2. We fix the Wack hole temperature GH and al- 
low the particles emitted fiom the Schwarzchild horizon with the Hawking energy 
spectmm to propagate outward, interacting via bremsstrahlung and photon-electron 
pair production. We c o n h  the formation of a photosphere for black hole tem- 
peratures T' - 100 GeV and higher. The photosphere fht  appears at a radius 
ro - IO* - 103 rh (where r h  = l / 4 f l B H  is the Schwarzchild radius), and is charac- 
terized by a region of intense collisions tenninating a t  a distance of r f  - 10' - 10' r h  

fkom the bladc hole. The intensity of collisions is characterized by a very slow increase 
or even decrease of the mean fiee path in the photosphere compared to the interior 
and exterior regions (see Fig. 4.3). 

The photosphere forms only for black holes above a certain critical temperature 
Tc- We adopt the same definition of Tc as was introduced by Hedder [15]. The idea 
is to define a quantity N(r) denoting the number of scatterings an average particle 
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undergoes between the horizon and some radius r > r h .  The criterion for having 
a photosphere is taken to be that on average every particle undergoes a collision at 
least once between leaving the horizon and escaping to infinity, in other words that 

lim N(r) 2 1. 
r+ao 

The critical black hole temperature is then the temperature of a black hole for which 
this limit is exactly unity. 

Our numericd results for N(r) are shown for several black hole temperatures in 
(Fig. 5.1). 

Distance ftorn the black hole, r(l/MeV) 

Figure 5.1: The number of scattering an average particle undergoes between the 
horizon and radius r: N ( r ) .  The resuits are obtained from test particle mode1 of 
emission; for numerical results by Hedder & Fig. 2.1. 

The critical temperature we obtain is 

It is of the same order of magnitude as that obtained in [15] by solving numerically 
Eq. (2.7): 45.2 GeV. 
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5.2 Photosphere Parameters 

Here we wi l l  present the photosphere parameters obtained from simulations for ap- 
proximately 30 Uerent  black hole temperatures. These parameters indude the radii 
of the inner and outer surfaces, iO(TBH) and rl(TBH) respectively, the total particle 
production factor P(TBR) and the average energy of the particles emerging fkom the 
photosphere Eedg,(~BH). The latter is relevant because it is the average energy of 
particles that may eventuaily reach a distant observer. We will point out large dis- 
crepancies between these resultç and the fluid model used in [15] (Chapter 2), and 
derive empirical formulas for ro, r j  and Eed9, h m  our data. 

Inner radius 

To define the inner radius, we use the fact that in Our model, particies propagate 
over discrete distances A t  which are fractions of the mean free path (see p.15). For 
TBH < Tc the mean free path changes by several orders of magnitude at each step 
and we can say that particles are streaming virtually free to infinity. For TBH X Tc 
this happens for the first several steps, but then the mean free path abruptly levels 
off. We define the begirining of the photosphere for at a radius, where two subsequent 
mem free paths are of the same order of magnitude, or equivalently, when 

then ro ri. 
We h d  that ro is usually three steps away from the horizon (i = 3). The values 

of ro in units of 1/GeV cz 0.197 fin are plotted in Fig. 5.2 as a function of bladc hole 
temperature. As one can see from the graph, ra decreases with the temperature and 
can be very closely fitted by 

1 
ro = - , where n = 0.01800 f 0.00004. 

KTBH (5.4) 

We know that the radius of the Schwarzchild horizon is also inversely proportionai to 
the bladr hole temperature rh = 1/4?rTBH, so that 

By this criterion, the photosphere starts to develop much closer to the black hole than 
was predicted (ro - 10%~) in [15] using a fluid model for the interacting particles. 



ResuIts 

- Regression: 1 /kTm 

Black hole temperature, GeV 

Figure 5.2: Radü of inner photosphere surface for different black hole temperatures 
(black dots). Solid Iine represents inverse regression over these values, see Eq. (5.4). 

Edge Radius 
The outer radius of the photosphere, q, can be defined similarly to the inner, except 
that the next mean fiee path should be much bigger than the previous one,, when 

then = ïi. 
This radius is easily found in practice because the next step after rf is usuaily severd 
orders of magnitude larger, implying that the particles have become virtually free. 
For the same reason, tf  was not precisely determined and a refined algorithm making 
the s t e p  smaller near the edge of the photosphere wil l  be used in future work. The 
precision in rf is not essential, however, because it is not an obsenmble quantity, and 
hence this refinement will have no &ect on average particle energy at the edge. 

In the present mode1 t f  remains in the same range for ail black hole temperatures 
shown and the only correlation that can be inf'erred is that the dispersion of values 
decream with rising temperature (Fig. 5.3). We cm interpret these results as disper- 



Black hole temperature, GeV 

Figure 5.3: Radii of outer photosphere surface for different bladc hole temperatures 
(black dots). Solid line represents r = l/mo,, radius where particles can no longer 
interact al1 over the black hole, 

sion around a constant value of r - 2000 l/GeV, which is close to l/rno=. But l /me is 
the range of bremsstrahlung interaction. We showed (see p. 24) that once the radius 
of the particle distribution exceeds this value, particles cm no longer interact with 
al1 the others around the black hole and we then have to assume that the interaction 
is between nearest neighbors. The relative velocity between interacting paxticles then 
drops sharply tram - 1 to - O (since the particles move atmost radially) and with it 
the interaction rate î - n(vIep). This marks the end of the photosphere. 

The dispersion of values of r f  for different black hole temperatures can be ex- 
plained by the discreteness of steps in the model. In fact , the higher the temperature, 
the finer are the steps al1 over the photosphere, since the mean fiee path is shorter, 
and we take Ar to be X/50. 

Particle Production 
Another useful parameter for characterizhg the photosphere is total particle produc- 
tion factor, given by: 
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where N ( r )  is the nurnber of test particles at radius r. P can be used to quant* the 
probability of interactions inside the photosphere, since a t  each collision N + N + 1. 
Figure 5.4 shows P as a function of black hole temperature. We fmd that it can be 

Quadratic regression 

0 -  1 . 1 . 1 . 1  1 . 1 .  

O 200 400 600 800 1000 1200 1400 1600 
81ack hole temperature, GeV 

Figure 5.4: Partide production factor N(rl ) /N(rh)  for different black hole tempera- 
ture. Solid line is quadratic regression of the results [see Eq. (5.8)]. 

represented by a quadratic fit (soiid line) : 

where b = 0.026 G~V-' and c = 4.5 x G~v-*. The dominant quadratic term 
suggests that photospheres become very dense in the last stages of black hole evapo- 
ration. 

Average Final Energy 
Rom an observational point of view, the reduction in average energy of emitted 
partides is one of the most relevant consequences of the photosphere. At the horizon, 
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- 
E is approxhately 3TBH. But the photosphere can reduce this number dramatically, 
so that a distant observer sees a much softer spectrum. The results are displayed in 
Figure 5.5. 

O 200 400 600 800 1000 1200 1400 1600 
Black hole temperature, GeV 

Figure 5.5: ËeQe for different bladc hole temperatures. 

We can compute Ëea, from Ëi and particle production factor, Eq. (5.8): 

In the iimit of high black hole temperatures (b  < cTsw + TsH > 10' GeV): 

This is a remarkable result since it predicts that for black holes of temperature 
Tss 2 100 GeV (M < loUg) the effective temperature of emitted particles (the 
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one that could be observed far away from the hole) is actudy the lower the higher 
is their temperature. For an individuai black hole, which is losing m a s  and hence 
becomes ho tter, this means t hat its effective temperature nevert heless goes dom. 

Of course, Eq. (5.10) is true only as long as our mode1 is valid, and we assumed 
that bladr hole shodd not change much on the tirne scale of particle travel t h e  from 
the horizon to the edge of the photosphere. Nevertheless, we expect the quaütative 
picture to be the same even for black holes temperatures above this limit of validity. 

An overall picture of an individual bladc hole developing with time in view of the 
results of this section is as follows. As far as only QED emission is concerned, a photo- 
sphere starts to develop around the bladc hole when it evaporates to iirl = 5 x 1012. 
At this point its effective temperature instead of going up inverse proportionally to 
its mas ,  levels off and begins to decrease. On the other hand, luminosity must go 
up to have energy conservation. Thus, i t  is not radiating like a black body. The 
outer edge of the photosphere remains at a radius of 400 f m  - llm.. However, its 
inner radius, ro - 700 rh ,  shrinks with the Schwmchild horizon sh. Eventually, if the 
&eady state mode1 is valid at  these temperatures, the edge will cool to Ëedge = mo., 
at  which point the positrons and electrons will annihilate and no further cooling will 
occur. At this point, however, the black hole wil1 be within IO-'' second of its total 
evaporation. 

To give an idea of how the parameters obtained fiom test particle method differ 
from the estimates in (151 for which a non-perfect fluid mode1 was used, we tabulate 
the relevant quantities analogously to table 2.2 to which it should be compared. 

TEH 

45 GeV 

300 GeV 

Eaw ( Ë e d p )  

90.1 GeV 

79.5 GeV 

44.2 GeV 1000 GeV 

Table 5.1: QED photosphere parameters for severd black hole temperatures obtained 
in test particle simulation. 

5.3 Inside the Photosphere 

5.56 x 1od2 G~v- '  

A more detailed picture of the plasma can be gotten from the particle momenta 
distributions at different radii. Since no significant interactions start before r = 

2.2 x 103 G~V-'  
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102 - 103 r h ,  particles move increasingly radially until the inner boundary of the 
photosphere. Then they start interacting with one another and their momenta become 
more thermalized. Close to the end of the photosphere, the mean free path increases 
so that particles again inuease the radial cornponents over the growing mean free 
path. These developments can be seen in the distribution of p , /p  = p t / J p m  for 
several radii inside a photosphere, in Figure 5.6. (When p t / p  cz 0, the particle moves 
almost radially outward; if p t / p  2 1 it would move perpendicularly to the radial 
direction.) 

Figure 5.6: Distribution of p t / p  for several radii in the photosphere of a 1000 GeV 
black hole. 
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5.4 Spectra 

Finally, we examine the detailed particle energy spedra at the black hole horizon and 
at the photosphere edge (Fig. 5.7). The shût towards the lower energies is the most 

. . HORIZON 250.0 PHOTOSPHERE EDGE 

200.0 

1W.o 

100.0 

50.0 

0.000 0.0 
0.0 2a00.0 4000.0 6000.0 8000.0 10000.0 0.0 50.0 100.0 150.0 

Figure 5.7: Energy spectrum of a 1000 GeV (lOllg) black hole at the Schwamchild 
horizon and near the edge of the photosphere. 

1 o4 

1 oJ Photosphere edge 

1 10 100 IO00 10000 
Partide energy, GeV 

Figure 5.8: Energy spectnim of a 1000 GeV (lO1lg) black hole at the Sdiwarzchild 
horizon and near the edge of the photosphere. 
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significant dzerence between the original distribution at the horizon and those within 
the photosphere. The two are shown together in figure 5.8, where it can be seen that 
the softening in energy is accompanied by an increase in the number of particles, as 
is required by energy conservation. 

The QED photosphere by itself serves as a kind of toy model for the real black 
holes, which are also emitting quarks and gluons at the temperatures we are consid- 
ering. We now turn our attention to the QCD photosphere. 



Chapter 6 

QCD Photosphere 

This chapter will discuss another part of the spectrum of particles emitted by mi- 
croscopic bladc holes. A black hole whose temperature exceeds AqcD - 200 MeV, 
Le., a black hole with mass MBH 5 5 x 1014 g, emits quarks and gluons which, as 
proposed by MacGibbon and Weber in [12] fragment into hadrons, decaying in their 
turn into stable particles. We will model the interactions of the quarks and gluons 
before fragmentation takes place. At this stage, as suggested by Heckler in [15], a 
quark-gluon photosphere analogous to the electron-photon photosphere in QED may 
develop, dianging the energy spectrum of the particles. In Section 1 we will see how 
the test particle method was applied in the QCD case. Then we will look at the 
parameters of the QCD photosphere for different black hole temperatures and see 
how the energy spectnun of quarks and gluons changes between the time of emiasion 
fiom the horizon and the moment of hadronization (Section 2). Section 3 will deal 
with the hadronization proceas, and we will derive the energy distribution of pho- 
tons produced in pion decay on the edge of the photosphere and compate it to the 
distributions obtained for the same black hole when the photosphere is neglected. 

6.1 Test Particle Method in QCD 
Our treatment does not attempt to give a detailed model of QCD interactions af- 
ter hadronization begins. However, the onset of the photosphere can be established 
in terms of fiee quarks and gluons interacting with each other. We assume that 
hadronization occm at a distance of - A& and that no significant softening of the 
particle spectrum occurs after this point. Hence, we make the same test particle sim- 
ulation as in QED, ody with different interaction cross section, masses, and number 
densities. Due to the much larger coupling constant and greater number of degrees of 
freedom, we expect the photosphere to develop at temperatures Tsa a - 50 
GeV, and to reach higher density than in the QED cane. 

To Uivestigate the photosphere in QCD, we recall that the key issue was 
the inclusion of 2 -t 3 body interactions in the collision term of the Boitzmann 
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equation (3.4). Like electrons and photons, quarks and gluons can &O interact via 
bremsstrahlung (q + q + q q g) and pair production (q + g + q q q). The relevant 
diagrams are 

We estimate that other diagrams, as, for example, for pair production 

are less important since they don't have the almost on-shell quark propagator and 
the gluon thermal mass is subdominant. 

To sirnplify matters, we will use the same form of cross section as in QED [see 
Eq. (4.6)], changing fine structure constant a into strong coupling constant a, and 
electron m a s  into quark mass: 

By m, we mean the qwrk thermal mas.  Using the same approximations as in 
QED (see Section 4.2) we estimate that 

where mo, is quark vacuum mass, nq and n, are densities of quarks and gluons, and 
averages of ( p i ' )  and ($) are taken over the testquarks and test-gluons. 

Because the bremastrahlung cross section goes Iike l/mi, of all the quarks we 
assume that only the two lightest ones and their antiquarks are relevant and hence 
for quark vacuum mass we use the average value mo, = 8 MeV. How quark thermal 
mass changes with radius in a typicd QCD photosphere was shown on Fig. 4.1. As 
a matter of fact, since the thermal mass is significantly greater than vacuum mas 
everywhere in the photosphere, for higher black hole temperature we should &O 

indude into consideration heavier quark species (s,c and b, as well as their antiquarks, 
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for TB* 2 5 GeV). This work is now in progress. We estimate, however, that it wu. 
not significantly change the picture of the QCD photosphere. Our present results 
represent the lower bound on the photosphere parameters. 

Unlike in QED, the coupling constant in the two equations above depends strongly 
on energy. To leading order in perturbation theory (231: 

where in the mode1 we take p to be average partide energy a t  a given radius, nt = 4 
(number of relevant quarks and antiquarks) and AQco - 200 MeV. 

We have to rernember that when the temperature of the quark-gluon plasma 
approaches AOcD, perturbation theory in a, is no longer valid, and in fact at this 
point quarks and gluons will fom hadrons. This process will be discussed in Section 4. 
The radius where this happens naturally defines the photosphere outer edge, because 
even though the interactions still take place after hadronizaton, by compazing the 
mean free path of the hadrons to the Life-time of unstable pions we conclude that 
strong interactions quickly shut off. 

The density of particles should include QCD degrees of freedom. For quarks: 4 
kinds of quarks (u, 8, d ,  2) x 3 colors; for gluons: 8 gluon colors. Eq. (3.14) becomes 

((3) TEH 
18rt Rf( r )  for fermions 

~ Q ~ D ( T )  = T2(4n)2 ,.Z 
16rb &(T)  foi ~ O S O ~ S ,  

where Rf&), as dehed  in Eq. (3.13), account for the creation of new fermions and 
bosons. With these changes to the formulas of Chapters 4 and 5 we have modeled 
the quark-gluon plasma around black holes and the results are given in the following 
sections. 

6.2 Parameters of QCD Photosphere 
We have found that the QCD photosphere starts to develop for al1 black hole tem- 
peratures higher than 

~f~~ i 175 MeV. (6.5) 

This is more than two orders of magnitude lower than the critical temperature for the 
QED photosphere. It also agees with the anaIyticai estimate in [151, T P ~ ~  - AqcD. 

However, we have to note that the value for d t i d  temperature (6.5) is defined 
by N(rf)  = 1 and not by the limit linq,,N(r) which simply does not exkt (see 
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Fig. 6.1). This value is slightly higher than TBH = AOR, temperature at which a black 
hole starts to emit quarks and gluons. Comparing the graphs of N(r j in Fig. 6.1 to 

I 1 '  
I I I  I 

1 o6 1 o4 1 o9 1 O" 
- 

Distance from the black hole, 1/MeV 

Figure 6.1: Average number of scatterings N in QCD photosphere as a function of 
radius r for several black hole ternperatures. Note the differences with the analogous 
graph in QED (fig. 5.2). 

Fig. 5.1 we can see that while in QED there is a clear dissipation of the photosphere, 
in QCD the steady increase in the number of scatterings is apparently checked only 
by hadronization. 

Next, it is interesting to know the photosphere dimensions, particularly, the radii 
of its imer and outer surfaces. For the radius of the imer surface we cannot use the 
criterion described in Section 5.2 [see Eq. (5.3)], since it t m s  out that this surface 
is very close to the horizon. The physics in this region is more compiieated than our 
mode1 is designed to cope with (gravitational effects have to be taken into account) 
so we leave this issue open, taking note that significant interactions &art close to the 
black hole horizon, 

The radius of the outer surface, h~wever, is well defined as the radius where 
hadronization takes place. Different conditions can be used to set the hadronization 
point: on interparticle spacing (b = n-lI3 > l /AqcD),  on the average particle energy 
(E - AQcD) or on the coupling constant (a, 2 1). AU three are roughly equivalent 
and the value of rf depends only marginally on which one is actudy used. In the 



CHAPTER 6. QCD PHOTOSPHERE 43 

results shown in Fig. 6.2 the last criterion is used. Empirically, our results are well fit 

- Logarithmic regression 
/ 

Figure 6.2: Radius of the outer surface of QCD photosphere versus logarithm of bladc 
hole temperature. This is the radius, where Ë - AqcD and quarks and gluons form 
hadrons. 

by a logarithmic growth in the photosphere radius with the black hole temperature: 

TBH ,,acD = A +  B L ~  (-) 1 GeV ' 

where A = 3.25 f 0.09 G~V-' = 0.65 fin and B = 1.45 I0.06 G~V-'  i 0.29 fin. 
The parameter which best shows the intensity of interactions in a QCD pho- 

tosphere is total particle production factor P(TBH) = N(r f ) /N(rh) .  As shown in 
Fig. 6.3, we find that it increases linearly with black hole temperature: 

~ B H  pQcD(T..) = (8.62 f 0.01)-. 
GeV 

Thus, the big picture of black hole evolution, in the light of the QCD photosphere, 
is as foilows. A blads hole that has reached a temperature greater than AQH - AQcD 
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1 I  J 1 i 
1 10 100 

Black hole temperature, GeV 

Figure 6.3: Total particle production in QCD photosphere vs. black hole temperature. 

corresponding to a black hale mass of M 5 5 x 10" g emits quarks and gluons which 
almost immediately begin interacting to form a photosphere very close to the horizon 
ï h  5 0.08 fin. As the black hole temperature continues to rise, photosphere inner 
radius shrinks dong with the horizon (ro - r h  OC l/TgH), Particles emitted from 
the horizon with average energy Ëi - 3TsH get processed ùi the photosphere and 
new particles are created. The higher the black hole temperature, the more particles 
are created (see Fig. 6.3). The average particle energy decreases as they propagate 
outward, until it reaches Ëf - 300 MeV on the photosphere edge, where hadronbation 
occurs. The radius of the edge increases logarithmidly [see Eq. (6.6)] with the black 
hole temperature. 

The results are summarized in Table 6.1 in the form of the photosphere parameters 
for several characteristic black hole temperatures. 

As we can see, the average particle energy can decrease by severai orders of 
magnitude in a QCD photosphere. No less interesting is to know how the detailed 
spectrum changes. On Figure 6.4 we compare the energy distributions of the partides 
at the horizon and at the photosphere edge of a 1.5 GeV black hole. We see a very 
significant shift towards the lower energy end of the spectnim (cf. Fig 5.7) and 
an order of magnitude increase in the number of particles, which corresponds to 
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- 
Ei 

600 MeV 

3.0 GeV 

156 GeV 

TBH 

200 MeV 

1 GeV 

50 GeV 

- 
Edge 

300 MeV 

300 MeV 

300 MeV 

Table 6.1: QCD photosphere paramet ers for several bladc hole temperatures obtained 

- ro r h  

0.4 G~v-' 

0.08 G~V- '  

0.0016 G~v- '  

from the test particle simulation. 

(if) 

0.97 G~V- '  

3.64 G~V-' 

9.74 G~V-' 

m . 0  
- PHOTOSPHERE EDGE 

20.0 

4om.o 

10.0 

2oilo.a 

OA 0.0 
0.0 3.0 6.0 9.0 120 15.0 0.0 0.5 1 .O 

Figure 6.4: Energy distribution of quarks and gluons at the horizon of a 1.5 GeV 
bladc hole and at the edge of the photosphere 

P(1.5 GeV) cz 13 [see Eq. (6.7)]. However, quarks and gluons, whose distribution is 
presented in Fig. 6.4, do not reach a distant observer, but rather produce hadrons, 
the decay products of which could be observed far away from the black hole. Let us 
turn to the question of how to estimate the spectrum of thése asymptotic partides, in 
particular photons, from the quark-gluon distribution at the edge of the photosphere. 

6.3 Hadronizat ion and Final Spect rum 
Roughly speahg, the QCD interaction is perturbative (a, < 1) when the distance 
between the partides is srnalier than A&. This condition is satisfied in the ph* 
tosphere region. At Iarger distances, however, vacuum fragmentation of quarks and 
gluons will becorne dominant, which is what happens at the photosphere edge. For an 
accurate calcdation of the spectmm of the photons which emerge after the hadrons 
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decay we would have to use the quark and gluon distributions at the edge of the pho- 
tosphere and a jet fkagmentation code for the final distributions of pions and photons 
[12, 241. However, we can estimate this spectrum (within a factor of order unity [X I ) ,  
with some sacfice in accuracy, as a convolution of the quark-gluon spectnim, avail- 
able from our test particle simulation, with the pion fragmentation fùnction [2, 121 
and the Lorentz-transformed spectrum of photons fiom ro decay [15]: 

where Eo = E, + rn:/4Ei. The number of photons of energy E, created by a pion 
moving with velocity P and decaying isotropicdIy in its rest frame is 

where 7 = (1 - p2)-II2. The pion spectrum is (121 

where nj, the number of QCD degrees of keedom available at 
tosphere, equals to (3 quark colors x 4 relevant quarks) plue 8 

the edge of the pho- 
gluon colon, in total 

nj = 20. For the relative number of pions with energy Er produced by each quark or 
gluon j we use (21 

Finally, dNj/dQ is the quark-gluon distribution a t  the outer edge of the photosphere. 
Combining 6.8 through 6.11 we obtain the final convolution double integral: 

where Eo = E, + m:/4E,. 
We have caiculated the integral 6.12 numerically for several black hole temper- 

atures. The results for one of them (TB* = 50 GeV) are presented in Fig. 6.5 and 
compared to the results obtained neglecting the photosphere, but taking into account 
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direct quuark fragmentation at the photosphere horizon and subsequent *O decay (as 
in [12]). Also shown are the spectrum of photons emitted directly fiom the black hole 
(neglecting the QED photosphere) and fiom the QED photosphere, which just starts 
to form at this temperature. The actual Ml spectnun of a 50 GeV black hole is the 
addition of the two solid lines. 

Photon enefgy, GeV 

Figure 6.5: Photon emission spectrum fiom T = 50 GeV ( M  = 2 x 10I2g). Solid lines 
are spectra which include photospheres (QCD or QED). Dotted lines are given for 
cornparison and represent the resdts for photons fiom direct quark fragmentation at 
the horizon and subsequent no decay (QCD), and for direct photon emission neglecting 
the QED photosphere (QED). 

We notice that the photon spectrum from the QCD photosphere peaks at about 
100 GeV. The same occurs also for other biack hole temperatures due to the fact 
that these photons are produced by the isotropie decays of neutral pions. In fact, 
Emk = 70 MeV cz m,,,/2. The number of these QCD-induced photons is several 
orders of magnitude greater than the number produced at the horizon or in the QED 
phot osp here. 

An obvious clifference between the decay photon spectra with and without the 
QCD photosphere is the dope of the distribution at both high and low energies. It is 
much steeper when the photosphere fomt ion  is taken into account. Subsequently, 
significantly more higher energy photons were predicted from a black hole of a given 



temperature without photosphere. More important still, our results for dinerent fixed 
black hole temperatures show that as the black hole becomes hotter, the spectrum at 
the extremes flattens if the photosphere effect is ignored, whereas the dope stays the 
same othemise. This is due ta  the fact, that this slope is inverse proportionai to the 
.peak energy of the quark gluon distribution before hadronization. The peak energy 
of the Hawking distribution is proportional to the black hole temperature, whereas 
the peak energy of the distribution at the photosphere edge is constant. 

An interesthg question for further study is how the photon spectnun varies with 
Tsa for a wide range of black hole temperatures. This would make it possible to 
predict the lifetime-integrated photon spectrum of a black hole with specified initial 
mass. That information, together with assumptions about the mas distribution of 
primordial black holes, would allow us to estimate their contribution to the diffuse 
intergalactic y r a y  background. Heckier finds that this contribution is not changed 
significantly by the photosphere formation effect, but a more detailed check of his 
estimate would be worthwhile. This work is still in progress. 

It should also be noted, that although the QED and QCD photospheres were 
discussed separately in this thesis, for black hole temperatwes TBn 2 100 GeV, the 
photons emitted from the edge of the QCD photosphere may take part in the in- 
teractions inside the QED photosphere. This possibility is also a subject of further 
st udy. 



Conclusion 

Our main results can be summarized as follows. The test-particle method of solving 
the Boltzmann equation, previously used for analyzing heavy ion collisions, was a p  
plied to the problem of black hole evaporation. The method was adopted for the case 
of steady state d i h i o n  of particles emitted by a microscopic bladc hole. A code to 
simulate the bremsstrahlung and pair production interactions of the test particles was 
developed, leading to solutions for the particle distribution functions at any distance 
fiom the black hole horizon. 

Simulation of microscopic black hole emission in both QED and QCD energy 
ranges corroborates the hypothesis of photosphere formation suggested by Hedder in 
[15]. We find that any black hole of mass M 5 5 x 10" g develops a dense cloud 
of interacting quarks and gluons which extends certain distance fiom the black hole 
horizon. The evolution of such mal1 (t < 0.08 fm) black holes is dominated by 
mass loss through Hawking radiation. Part of this radiation is in fiee quarks and 
gluons which are processed in the QCD photosphere until their average energy drops 
to the point Ë - AOCD, where they hadronize into stable particles and fast-decaying 
pions. Another part consists of electrons, positrons and photons. Once the black hole 
mass drops below M - 2 x 1012, these particles interact significantly enough to form 
another, l e s  dense cloud at a distance about 700 times the horizon radius. This QED 
photosphere extends over a distance of about 400 fm, where it dissipates and emits 
much less energetic, but in much larger quantity t han originally, electrons, positrons 
and photons. 

Energy distribut ions of the particles leaving both photospheres were O btained 
and shown to greatly diEer fiom the original nearly-thermal Hawking distributions 
by being softened to the much lower average energies of - 300 MeV (QCD) and fiom 
100 GeV for a 1012 g black hole to the estimated 0.5 MeV for a 10' g black hole 
(QED). Finally, an estimate for the photon spectnun emitted from both QED and 
QCD photospheres of an individual fived temperature black hole was made, whidi 
provides the basis for a calculation of the lifetime-integrated spectnun of a black hole. 
It is possible that such a calculation will somewhat soften previous constraints on the 
total density of primordial biack holes in the univene. 
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