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Abstract

The Boltzmann equation for the diffusion of Hawking radiation from microscopic
black holes is solved using the test particle method. Formation of a dense cloud
of interacting particles analogous to the photosphere of the Sun is confirmed. We
find that at least two kinds of photospheres may form: a quark-gluon plasma for
black holes of mass Mgy < 5 x 10'* g and an electron-positron-photon plasma for
Mgy £ 2 x 102 g. The QCD photosphere extends from the black hole horizon
for a distance of 0.2—4.0 fm for 10° g < My < 5 x 10' g, at which point quarks
and gluons with average energy of order Agcp hadronize. The QED photosphere
starts at a distance of approximately 700 black hole radii and dissipates at about
400 fm, where the average energy of the emitted electrons, positrons and photons is
inversely proportional to the black hole temperature. Possible consequences of these
photospheres are discussed.



Résumé

Le spectre de radiation de Hawking des trous noirs microscopiques est calculé
par résolution numérique de I’équation de Boltzmann en utilisant la méthode des
particules tests. Nous confirmons la formation autour du trou noir d’un nuage dense
de particules en intéraction, analogue a la photosphére solaire. Deux types de photo-
sphéres peuvent finalement apparaitre: Un plasma de quarks et gluons pour des trous
noirs de masse Mgy < 5 x 10! g et un plasma d’électrons, positrons et photons pour
les trous noirs de masse Mgy < 2x10*2 g . La premiére photosphére, obtenue dans le
cadre de QCD, s’étend depuis I’horizon du trou noir sur une distance de 0.2—4 fm pour
10° g < Mgy 55 x 10" g. Au dela, il y a hadronisation des quarks et gluons dont
’energie est de I'ordre de Agcp. La photosphére QED nait & une distance d’environ
700 fois le rayon du trou noir et se dissipe autour de 400 fm ou lénergie des électrons,
positrons et photons est inversement proportionnelle & la température du trou noir.
D’éventuelles conséquences de l'existence de telles photospheéres sont discutées.
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Chapter 1

Introduction

One of the beautifully exotic consequences of the Einstein’s general relativity is the
prediction of the existence of black holes. Whenever matter of mass M is concentrated
in a region whose circumference in any direction is smaller than 27(2GM/c?) it gets
trapped inside the Schwarzchild horizon

Th = ?M ' (1.1)

and becomes a black hole. The constant, 2G/c ~ 10~% m/g, is so small that for the
mass of our Sun the radius of the horizon is ry, ~ 3 km.

It had been long believed that nothing can escape from inside the black hole
horizon and hence we can get no direct evidence of black hole existence. However,
in 1974 Stephen Hawking [1] mathematically showed that in a startling interplay
between quantum mechanics and general relativity black holes must radiate energy
as an almost perfect black body with temperature

ket
Ty = —————. .
BH = 81ksGM (12)
The rate of emission from an uncharged, non-rotating black hoie is
E)E?
dN _ o,(E) 1 (1.3)

dEdt 21 exp(E/Tsg) — (~1)*'

for a particle of spin s with energy in the range (E, E+dF), where o,(FE) is absorption
" cross section for the same particle by the black hole.

In the last equation we have used natural units, as we will throughout the thesis,
so that i = 1, ¢ = 1 and kg = 1. The following relations between black hole

1



CHAPTER 1. INTRODUCTION 2

parameters are given in these units [2]. The temperature in GeV of a black hole of
mass M(in g) is

15
Ton = 0.1 6oV () (1.4

the Schwarzchild horizon of a black hole is

1

- ; 15
41(T3 H ( )

Th

= 157 fm (—G-}fx)

Ty

these units are relevant for the microscopic black holes to be studied in this thesis.
The luminosity is

MeV (10 g\?
=106 >[5 1.
L =10"— ( i ) (1.6)

Finally, since a black hole is constantly radiating energy, it will evaporate completely

after a lifetime of
M \®
_ 1nl0
t =10 yr (1015 g) (1.7)

It is easy to see from these formulas that Hawking radiation is extremely weak
and hence undetectable for very massive black holes. For example, for a black hole
of solar-mass size (Mg ~ 10% g, rp, ~ 3 km) — not particularly massive on the
cosmic scale, — the luminosity is mere 10™4 eV/s. So if we want to detect particles
escaping from black holes they must have much smaller masses than Mg. However,
in the present day universe, black holes may be formed only in gravitational collapse
of stars heavier than ~ 3Mg and so a recently formed black hole is not a good source
of detectable Hawking radiation [2]. But the hope should not be abandoned, for it
has been suggested that in the early universe other black hole formation mechanisms
were available, as, for example, the collapse of overdense regions in a universe with
significant density fluctuations [3, 4, 5]. Black holes formed in the early universe are
called primordial and can have mass as low as the Planck mass (2.2 x 10~° g) [2].

The luminosity of microscopic primordial black holes is very high [see Eq. (1.6)],
so that Hawking radiation is the crucial factor in their evolution. In fact, according to
Eq. (1.7), all primordial black holes of mass smaller than ~ 10'5 must have evaporated
entirely before any human ever came to think about them. Those that were initially
slightly more massive, though, would now be in the final stage of their existence,
which is rather violent: in its last second a black hole of initial mass 10'®g would
radiate about 10%J of energy, so that for a brief moment it would be comparable
in luminosity to a small star [6]. Knowing the spectrum of such energy burst would



CHAPTER 1. INTRODUCTION 3

allow us to look for them in the sky. Also, the radiation of primordial black holes that
are extinct by now might have contributed to the extragalactic y-ray background. To
address these issues we need to know the detailed spectrum of black hole emission.

A thorough investigation was done after Hawking radiation was first suggested
(7, 8, 9]. For example, Page in [10] gave numerical calculations of the emission rates
for massless particles. He concluded that 81% of total power emitted by a massive
(M > 10Yg) black hole is in neutrinos, 17% in photons and 2% in gravitons; for
lighter, but still-evaporating black holes (5 x 10Mg « M <« 10'7g), 45% of the power
is in electrons and positrons, 45% in neutrinos, 9% in photons and 1% in gravitons.

For massive particles, the early approach was to assume that any particle species
is emitted according to Eq. (1.3) once the black hole temperature exceeds the relevant
rest mass [8, 11]. As suggested by MacGibbon and Weber in [12], this might not be
true for particles with composite structure. For black hole temperatures of order Agcp
and higher, relativistic quark and gluon jets are emitted which subsequently fragment
into the stable photons, leptons and hadrons. In [12] the final emission spectra were
obtained by convolving the Hawking radiation formula with a Monte Carlo QCD
jet code for jet fragmentation. MacGibbon and Carr in [13] described how the final
stable particles are affected by interactions with the rest of the universe and gave
detailed results of primordial black hole emission contribution to the extragalactic
v-ray and electron, positron and antiproton backgrounds. They also concluded that
the direct explosive emission from an individual hole is not likely to be detected above
the cosmic-ray backgrounds.

Radiation from very high temperature black holes was estimated by Oliensis and
Hill in (14]. The contribution of such black holes to ultrahigh-energy cosmic rays
was found to be insignificant. It was also pointed out that the high energy radiation
emitted by a real black hole is expected to be non-thermal.

From this review we see that the spectrum of primordial black holes may be quite
different from the thermal distributions, for example, if quark-gluon fragmentation is
considered. In this thesis, we explore another possibility of changing the spectrum of
the initially emitted Hawking radiation: interactions between the emitted particles
while they emerge from the vicinity of the black hole.



Chapter 2

Do Black Holes Have
Photospheres?

In January 1997 Andrew Heckler suggested that the observed black hole radiation
spectrum may be quite different from that at the horizon if the emitted particles
start interacting with one another as they propagate away and do so strongly enough
to form a photosphere [15]. This possibility had been previously argued against.
In the first section we examine the arguments that had led to this conclusion and
Heckler’s arguments to the contrary. A brief account of the photosphere as emerges
from his analysis is given in the second one.

2.1 Interactions

Authors prior to Heckler did consider the possibility of interactions. MacGibbon and
Carr in [13] extensively investigated interactions of the particles emitted by primordial
black holes with other particles in the universe. For example, photons from primordial
black holes can be scattered through (1) ionization and photoelectric absorption,
dominant for photon energy E, < 14 keV; (2) Compton scattering off electrons: 14
keV < E, < 65 MeV; (3) pair production off nuclei: 65 MeV < E, < 2 TeV; (4)
pair production off the 3K background photons: E, 2 2 TeV. However, neither these
nor any of the interactions of other emitted particles with the rest of the universe
were concluded to significantly change the spectrum of primordial black holes.
Oliensis and Hill [14] also considered interactions. Even though their paper deals
with ultra high energy radiation, i.e. very hot black holes Tgg >> 100GeV, they argue
that particles emitted from any black hole would be able to interact with one another
if the time between subsequent emissions is small compared to ¢ = r/c, where r is the
range of the interaction and ¢ = 1 is the speed of light (all relevant particles being
relativistic). It is expected that ¢t ~ 1/FE, where E ~ Tgg. It is also estimated that
the time between emissions is dt = 200/87FE ~ 8/E. Therefore, “since dt > 1/E, a
black hole at a given temperature radiates particles infrequently compared to their

4



CHAPTER 2. DO BLACK HOLES HAVE PHOTOSPHERES? 5

average energy and these particles will tend not to interact before fragmenting”.
Another argument for the same conclusion is the finite size of the hole, which might
be thought to prevent particles emitted from opposite sides from interacting with
each other.

The arguments and conclusions of both papers are true, with one exception.
They fail for a particular kind of interaction: bremsstrahlung (and the closely related
process of photon-electron pair production, see diagram on p. 18), which turns out
to be important at least for three reasons.

1. It is not 2 — 2 body scattering (as for example, Compton scattering), but
2 — 3, i.e. 2 new particle takes some energy every time an interaction has taken
place. This can reduce the average particle energy dramatically.

2. At relativistic energies the energy-averaged bremsstrahlung cross section is only
logarithmically dependent on the energy, and so the decrease in particle energy
described above will not affect by much the prebability of interactions.

3. The range of interaction for bremsstrahlung is not 1/E as was estimated in [14],
but 1/m.. Black hole temperatures of interest are Tpy 2 Agep =~ 200 MeV,
so the time between emissions is dt ~ 8/F <« 1/m,, which is the condition
mentioned earlier for the interactions to become important.

So the conclusion that made the present work possible is that interactions of
emitted particles with one another may become very important if bremsstrahlung
and photon-electron (quark-gluon for QCD) pair production are taken into account.
The arguments leading to this conclusion are somewhat elaborated in the next section
and discussed in great detail in Chapter 4.

2.2 Photosphere Hypothesis

It is thus claimed that for a certain black hole temperature there will be enough par-
ticles to produce a dense interacting cloud which will certainly change the emission
spectrum of an individual black hole. This cloud was called a photosphere in analogy
with that of the Sun, where particles emitted from the core scatter and lose energy
on their way out. In this section I will briefly review how Heckler in [15] analyti-
cally justified the existence and analyzed the properties of a photosphere around a
microscopic black hole.

We begin by discussing the simple case of QED only. A black hole of temperature
Tgy greater than the electron mass emits electrons, positrons and photons which will
all be treated as “particles”. Suppose that at the horizon their energy spectrum and
density are thermal (up to grey-body factors) with temperature Tgy. Going-away
from the horizon they scatter via bremsstrahlung (e* + e* — e*e*y) and photon-
electron pair production (et +v — efe*e™) which are both 2 — 3 body interactions
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with cross section which depends only logarithmically on the energy. Total energy-
averaged cross section for both interactions is approximately

o~ 8arlln 2;E-, (2.1)

me

where E is the energy in the center-of-mass frame and r. = a/m, is the classical
electron radius.

Let N(r) be the number of scatterings an average particle has undergone by the
time it reaches radius r. If A is the mean free path, then

ar
rBH A(T) )

N(r)= (2.2)

If N becomes greater than 1 for r = 0o we can say that some kind of photosphere
has formed: on average every particle has interacted before escaping. Calculating
N(o0) naively, neglecting plasma effects and density enhancement due to particle
production, yields:

In : (2.3)

where mq, is vacuum electron mass. The critical temperature, — the black hole
temperature for which A'(oo) ~ 1,— is found to be T ~ 20 TeV.

To improve this estimate we have to take account of the fact that bremsstrahlung
processes occur not in vacuum but in a background plasma of almost radially propa-
gating particles. The thermal mass could be used for this purpose, so that the electron
mass becomes

m: = mﬁc + mf,m(n, T,p), (2.4)

where a simple estimate for the plasma mass myp, of an electron in a plasma with
density n(r) is

m2,, « 4an(r) (2.5)
The average energy E of a particle emitted from a black hole is ~ 5Tg5 and since it
decreases with each scattering, through conservation of energy it is estimated to be
E ~ 5Tpg/(3/2) [15].

Both mean free path and plasma mass depend on density n(r), which increases
each time a new particle is created (but, of course, decreases with radial expansion).
Taking both effects into account, the density of particles can be estimated as
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N(r) .2
w=(3) En, (26)

where n; is the density at the horizon. The improved formula for AV is

n(r) In 2TBH

N(r) = 8a° /m drmz 0 e (2.7)

where the plasma mass of the electron depends on the distance through density.
To find the critical black hole temperature (N7, (o0) = 1), Eq. (2.7) was solved
both numerically and analytically and it was found that

T, ~ 45 GeV. (2.8)

The numerical result for this and two other black hole temperatures is illustrated
by Fig. 2.1 reproduced from [15]. We shall see in Chapter 5 that using our test particle
model of the photosphere we obtained very similar results (cf. Fig. 5.1). Ref. [15]
proceeds by modeling the photosphere formed for Tgg > T. as a thick shell of
plasma and uses a fluid description to find the inner and outer radii of this shell. His
results are:

4r 1 (_@E ) 1/2

o~ 2.
a‘TBH a‘nd redye a2 mo' Tc ( 9)

To =

An observationally relevant quantity is the average particle energy at the edge of
the photosphere:

_ T 1/2
Eedge = My, ( ;H) . (2.10)

We summarize these results for several black hole temperatures in the Table 2.2.
Describing briefly Heckler’s picture of the QED photosphere: for temperatures lower
than 45 GeV, emitted particles free-stream away from the black hole and the observed
spectrum is given by the Hawking formula; for temperatures greater than critical the
particles begin to scatter significantly to form a partially-thermalized photosphere at
a distance ry from the black hole. From there they make their way through plasma
losing significant fraction of their energy in bremsstrahlung and electron-photon pair
production. The edge of the plasma is at r.45., where the average particle energy is
reduced to the order of my, <« T.. At this point electron and positron annihilate and
the photons free stream away to infinity.

Ref. [15] suggests that to see more accurately what is happening in this plasma
shell one would have to solve the Boltzmann equation, which is the subject of this
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Figure 2.1: Numerical results of Ref. [15] for A'(r) - the number of scatterings an
average particle undergoes as it propagates to a distance r from the black hole horizon.

Tgn To Tedge Eege
45 GeV | 8x 10" GeV™! | 9x 10" GeV™! | my, ~ 5 x 10~* GeV
300 GeV | 1.5 x 107 GeV™' | 1 x 10° GeV™! 1.3 x 1073 GeV
1000 GeV | 4.5 x 10° GeV™* | 1.7 x 10° GeV™1 | 2.4 x 1073 GeV

Table 2.1: Photosphere parameters according to ref. [15] for several black hole tem-

peratures.

thesis. As we will see, although his estimate for the critical temperature is very close
to our value and the photosphere hypothesis seems to be correct, the photosphere
parameters found in our model are very different from those given in Table 2.2,
indicating that the fluid description is not valid.



Chapter 3
Test Particle Model

3.1 Boltzmann Equation

As was noted in the previous chapter, we would like to have a more quantitative
picture of particle diffusion outside the Schwarzchild horizon, which would in partic-
ular confirm or refute the photosphere formation hypothesis. That picture could be
provided by a solution to the Boltzmann equation:

(2 +2.9)f(e,p,0) = Clf(e,p, ), (3.)

where f(r,p, t) is the particle distribution function, depending in general on particle
position and momentum, and also on time; C(f) is the collision term: a multidimen-
sional phase space integral over distribution functions, weighted by the probability of
the interactions between the particles.

To simplify the equation we can make certain assumptions about the black holes,
namely:

A. We will consider only spherical, non-rotating black holes. Hence the distribution
function for emitted radiation will be spherically symmetric:

a 7] a
ggf = 5$f = e =0. (3.2)

B. Mass (temperature) of the black hole does not change significantly in the time
interval needed for a particle originating at the horizon to reach the edge of
the photosphere or, in other words, to become a virtually free particle. ' This
implies the time independence of the distribution function:

1For a typical black hole (M=10*'g, T=1000 GeV) this time interval is 7(~ 10~%!) « t(~ 10°
sec), black hole lifetime. We estimate that only for black holes of mass < 107g the lifetime will
become comparable to the particle diffusion time in the photosphere.

9



CHAPTER 3. TEST PARTICLE MODEL 10

8
5/ =0 (3.3)

The Boltzmann equation then reduces to

5 £, Besp) = €17, 2O, (34)

where v, = E/p, is the particle’s radial velocity.

Even in this form, though, it involves phase space integration in the collision
term, has three independent variables and a partial derivative on the left-hand side
which altogether make it a formidable task to solve the equation by direct numerical
evolution of the distribution function. However, there has been suggested a way to
circumvent this problem.

3.2 Test Particle Method

The test particle method of solving the Boltzmann equation was first used in the
problem of heavy ion collisions [16]. The phase space distribution function of nucleons
was represented by a set of point-like test particles. This set was then evolved using
Hamilton’s equations for free propagation between the collisions, and the two-body
differential scattering cross section for the collision probability. It was argued that
with a sufficiently large number of test particles this method provides a valid solution
to the Boltzmann equation. But having more test particles than there are nucleons
would artificially increase the probability of collisions if the naive interaction cross
section was used in the collision term. Therefore an appropriate factor was used to
reduce this probability.

There are two major differences between the heavy nucleus and the black hole
radiation problems. The first one,— spatial homogeneity in the former and explicit
spatial dependence (on r) in the latter, — actually turns to our advantage if we
remember that we assumed the radiation to be in steady state [Eq. (3.3)]. If we
compare the Boltzmann equation for f = f(p,t) (heavy nuclei):

o 1.8) = C(f(0,) (35)

with the one we want to solve [Eq. (3.4)], we see that there is no reason why the
method for solving the one would not work for the other, provided we consider radial
diffusion instead of time evolution.

The second difference is that, for reasons to become apparent later, our cross
section, and hence collision probability, will never in any way depend on the number
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of test particles, but rather on the density of real radiation, which may be calculated
independently of the model. Therefore, there is no need to “scale” cross section and
any statistically reasonable number of test particles may be used.

3.3 Test Particles for Hawking Radiation

Even though the number of test particles will depend only on statistical considera-
tions, their characteristics, i.e. mass, spin, interaction properties will be defined by
the part of black hole radiation to be modeled in each particular case. For example, to
establish existence of QED photosphere we will ignore all the particles emitted for a
particular black hole temperature except electrons, positrons and photons. Then ap-
proximately two thirds of our test particles will be identified as electrons or positrons
and one third as photons, and electromagnetic interactions will be used. For the QCD
photosphere, another cage of the Hawking zoo is going to be looked at. To model
quark and gluon diffusion, test particles will assume their respective properties and - -
the appropriate strong interaction coupling constant will be used in formulas.

I would like, however, to start with a demonstration of how the method works
in the case when it is not the nature of the test particles which is relevant but their
classical propagation trajectory.

3.4 Free Evolution

It is important to realize that test particles are perfectly classical particles following
well defined trajectories. In absence of interactions between the particles themselves
or with external fields, they will move in straight lines. As we can see from Eq. (3.4)
relevant phase space coordinates of a particle are p, and p; and we would like to know
how those change (if at all) with our evolution coordinate r.

Let us look at a free particle starting at the horizon with momentum p = (p", p*)
(we are not interested in p® and can confine the problem to (r,p) plane). At radius
T > r;, momentum will remain the same, but its coordinates will change.

From Fig. 3.1 we see that

¢
p'=psina  and sin9=%.

To write new momentum coordinates in terms of those at the horizon we use some
geometry:

sina sinf

. . . Th .
; sinfl=sinf; sina= —siné.
T T T
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Figure 3.1: Momentum in free radial evolution

And finally we get:

.
pt = -fpﬁ, and p" =/p? - pt2. (3.6)

Note that these formulas are valid for any two r, and r such that » > r, and we
are going to use them when propagating test particles in radius between collisions.

We see that the transverse component dies out as 1/r and as a free particle is
going away from the horizon its momentum becomes increasingly radial.

To solve the Boltzmann equation for radiation streaming free from a black hole
we start at the horizon with a set of N particles. We propagate each of them to a new
radius by changing their momentum coordinates according to the above formulas.
With the new coordinates we can generate distribution functions which will be the
solution to the free Boltzmann equation at the new radius.

3.5 Evolving interacting particles

The picture will be somewhat more complicated when the particles are allowed to
interact. Even though we neglect external fields (black hole is not charged and its
gravitational field is negligible in the region of interest), we do want to take scatterings
into account and that changes the way the test particle method is implemented.

We start again at the Schwartzchild horizon with a set of statistically significant
number of particles. To be specific, let us consider the case of the QED photosphere,
where all black hole radiation is neglected except for electrons, positrons and photons.
The number ratio of fermions to bosons was calculated to be 2:1 which means that
two thirds of test particles at the horizon will assume electron properties and the
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rest, those of the photon. We will refer to these test particles as “test-electrons” and
“test-photons”.

As we are modeling Hawking radiation, test-electron and test-photon energy dis-
tributions must obey Eq. (1.3) with s = 1/2 and s = 1 respectively at the horizon.
To find the energy of each test particle we use a standard Monte Carlo technique
described by MacGibbon and Weber in [12]. If Q is the particle energy and T is black
hole temperature (fixed), a value for X = Q/T is first randomly chosen between 0 and
Xmaz, the maximum value of Q/T in the program (107 in our case). An ensemble
of such X values will be distributed according to

_ I(X)X?
2 = o500 - (-1 &)
if we require that H(X) > Hp,-R where R is a random number between 0 and 1 and
Hpyr > the maximum of H(X) for all X. To calculate the I', factor we use averaged
value for absorption cross section [12]:

27x

T, =

5.7 for fermions
(3.8)

204

T for bosons.

The next step after distributing the energies of the test particles is to assign mo-
menta to all of them. To model isotropic radiation at the horizon we let our test
particles start with momenta pointing in arbitrary directions uniformly distributed
over outward-pointing solid angle of 2r steradians (Fig. 3.2). Since we already know
the energy of each particle E we can just choose the radial component of the mo-
mentum p" = RvE? — m? (where R is again a random number between 0 and 1),

and then calculate the transverse component p* = \/ E2?2 — m2 —p2. Note that p” > 0
(particles are radiated, not absorbed) and p* > 0 (by definition, see Fig. 3.2). This
procedure is equivalent to choosing directions according to the measure d(cos 8), where
8 is defined by tand = p*/p".

At this point we are ready to propagate the test particles away from the horizon.
In the heavy ion problem, where time is the propagation parameter, an average time
between the collisions is used as the propagation step. It is natural to use the mean
free path, or some fraction thereof, as the increment in radius for our model. The
propagation procedure goes as follows: in the beginning all the test particles are
randomly paired. Then for each pair, the bremsstrahlung cross section o, the relative
velocity of the particles in the pair v, and the radial velocity (1/v, factor) are
calculated. Mean free path is

A= [ntr) (Zoeat)] (39)

r
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Figure 3.2: Test particle momenta at the horizon

where average is taken over all pairs. Details of these calculations are presented in
Chapter 4. The particle density n(r) is calculated analytically and therefore does not
depend on the number of the test particles. To find n(r) we first compute what it
would be in the absence of particle production:

2
no(r) = nhr—g, (3.10)

where the subscript 0 means that this density is before particle creation process is
taken into account. The radius of the horizon is r, = 1/(47Tgg) and the density at
the horizon is

=2 [ 2% 1) G

where f(p) is the Hawking distribution. Remembering that since the particles are
being emitted outward, 6 should only be integrated to 7/2, we obtain:
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{ 3T4¢(3) T3y for fermions
Ny =

%T5((3) T3y for bosons,

(3.12)

where ((3) = 1.20206 (Rieman zeta function) and I, is given in Eq. (3.8).

To account for particle creation we use the test particles to find the fraction of new
fermions and bosons created at each step. Let Ny (r) be the number of test-electrons
[test-photons] at radius r. We will define Ry (r) as:

New(r
Ryp(r) = _f\_’ﬁf(%% (3.13)

Finally, using (3.10) through (3.13) we find

o) = <B) Ton

3Ty Ry(r) for fermions
= 3.14
n2(4r)? r2 (3.14)

2Ty Ry(r) for bosons.

Once we have calculated the mean free path, we can propagate all the particles to
the next step. For several reasons we decided to make this step a small fraction of A.
First, A itself, which depends on r, increases significantly over propagation distance
Ar = ). Secondly, at each successive step we start by allowing all the test particles
collide in pairs, whereas in reality, different pairs would interact at different points
between r and r + A.

If Ar is the step in radius we use and f = A/Ar, then only N/f test particles
should be allowed to collide at each step in radius. This factor f should be large
enough so that A(r) does not increase too much before it is recalculated at the next
step; on the other hand it should be small enough so that at least one pair interacts
during the step. Comparing the results for different values of f, we found that for
the QED photosphere they usually stabilized at f > 50, when the initial number of
test particles was large enough to allow using f up to 100.

Kinematically, bremsstrahlung and pair production are modeled by an inelastic
scattering of two test-electrons (one test-electron and one test-photon for pair produc-
tion) in which a new test-photon (test electron pair instead of test photon) is created.
Details of how it is done are discussed in Chapter 4. N/2f pairs are sorted out at
each step as those that have the highest probability to interact and their collisions are
subsequently simulated. Then all the test particles are propagated to the next radius
at 7 + Ar. Between colliding and reaching the new radius, test particle energies do
not change but the coordinates of their momenta do, according to Eq. (3.6).

Let us summarize the algorithm for evolving the set of interacting test particles:
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1. Particles are put randomly in pairs and the mean free path is calculated using
Eq. (3.9).

2. All test particles are propagated as free to the new radius ' = r + A/ f using
(3.6).

3. Pairs are sorted by interaction probability.

4. N/2f most probably interacting pairs are sent to the subroutine where
bremsstrahlung or pair production (whichever is relevant for the specific pair)
is modeled.

5. Back to step 1.

We start this procedure at the black hole horizon where the radiation is emitted
and end it when mean free path starts to diverge so that only a negligible number of
- interactions would follow (see p. 31 for a more precise definition of the photosphere
edge). For the QCD photosphere, however, long before this criterion is satisfied, the
average particle energy drops below Ag¢p, at which point hadronization occurs and
quark-gluon photosphere ceases to exist (see chapter 6).

Now, that we have discussed the test particle method, we can turn to the physics
of interactions which create the photosphere.



Chapter 4

Scatterings in detail

In this chapter we will discuss: why bremsstrahlung and electron-photon pair pro-
duction are the dominant processes for photosphere production (Section 1); why the
effective electron mass is much larger at the beginning of the photosphere than at
the end (Section 2); how the bremsstrahlung cross section and mean free path are
calculated (Section 3 and 4); and, finally, why all the particles in the photosphere
scatter as though they were colliding head-on, and how these collisions are simulated
for test particles (Section 5 and 6).

4.1 Interactions considered and neglected

In the test particle simulation of black hole radiation diffusion, one must decide
which interactions to include in the collision term in the Boltzmann equation (3.4).
Consider, for example, the case of QED, where the particles of interest are electrons,
positrons and photons. Their dominant interactions are [17]:

1) Coulomb
[} L]
[} 7 [}
Ocoul ™~ Tera
2) Compton

JN0>
ol
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3) Bremsstrahlung and Pair Production

7 Obrem = 8ar?In mﬂe
4) Electron-Positron Annihilation
Y v

2

] ] r
£

Oann v

where r, = a/m, is the classical electron radius, w is the energy in the center of mass
system, and f is the velocity of this system (v = (1 — §%)71).

Let us start with annihilation. We argue that as long as photon energy is larger
than the electron mass, the electron-positron annihilation will be in equilibrium with
its inverse process, photon-photon pair production. In particular, emitted and created
electrons and positrons will in the end annihilate only if the average photon energy
falls below m, before the photosphere dissipates for other reasons, which we find does
not happen until the black hole is as hot as 10% GeV.

For production of the photosphere the most important reactions are those which
can significantly change the particle energy spectrum. Bremsstrahlung (and pair
production) is dominant in this sense, because every reaction produces a new particle
which in turn reduces the average particle energy and shifts the spectrum towards
lower energies. The cross sections for these processes depend only logarithmically on
energy, and so are not much affected by this degradation in energy.

Because Compton scattering can neither change average energy nor increase the
thermal mass, we ignore it for the time being, realizing though that a more accurate
model would have to include these interactions.

As for Coulomb scattering, according to Haug [18], it can be considered as a
correction factor to bremsstrahlung cross section, which can be found by calculating
the ratio of probabilities of finding the two initial and final electrons, respectively, at
the same position. This factor is approximately unity for higher energies.

So, in our simulation the only interactions we take into account will be
bremsstrahlung and pair production, and as we will see those are sufficient to produce
a photosphere.

4.2 Thermal Mass

In bremsstrahlung cross section and other formulas involving electron mass, the so
called “thermal” (or effective) mass is used, related to the vacuum mass mq, by
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m, = \/mZ, + m2,(n,T,p). (4.1)

As was noted in Chapter 2, this is a way of including the effect of high density
plasma on the interactions. Plasma mass m,, is a function of density, temperature
and momentum. It needs to be calculated for the kind of plasma that is created
around a microscopic black hole: a nonthermal, largely radially-moving collection of
relativistic particles. However, it is possible to justify the following estimate, which
was derived in the case of thermal equilibrium {19]:

1f1(p) | folp)

2 _ 3 ! b
mpm—47ra/dp(-2—T+T , (4.2)
where fyu)(p) is the distribution function for fermions (bosons). For a collection of
test particles the integral may be approximated by taking the average of 1/p over all
test-electrons and test-photons:

mi, =~ 4na (%ne <pl> +n, <51—->) : | C(43)

Several aspects of the implementation of thermal mass in the test particle model
are noteworthy. First, in Eq. (4.3) n. and n. are real electron and photon densities
calculated analytically [see Eq. (3.14)], whereas p. and p, are kinetic energies of the
test-particles. Secondly, we recalculate electron thermal mass [using Eq. (4.1)] at each
step in radius. If its momentum was held fixed, this would change its total energy
E = \/mf + p?, which we certainly want to be conserved. Hence, we assume that
thermal mass correction is done at the expense of particle kinetic energy in such a
way as to keep its total energy E constant.

We can estimate thermal mass of an electron in the QED photosphere using
n(r) = Tpr(3/2)V") /(x?(47)?r?) for the densities of both photons and electrons, and
3Tsr/(3/2)V") for average particle energy at radius r. Here, N(r) is the number
of scatterings an average particle undergoes between the horizon and radius r. Since
in each scattering one new particle is produced, (3/2)¥() is the factor by which the
total number of particles has increased. In the test-particle model, since the total
number of particles N(r) is known at each step, this increase is calculated directly as
N(r)/N(ry). Then,

~ 2 a 1 (N(r) 2
e = J"‘“ T s (N(rh)) ' (44)

The behavior of thermal mass is shown in Fig. 4.1. The graphs are of effective
mass vs. radius for two typical photospheres: QED photosphere of a 1000 GeV black
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hole and QCD photosphere of a 10 GeV black hole. We see that in the QED plasma
the factor of 1/r? is dominant over any growth in density as the radius increases,
which causes the thermal mass to decrease monotonically. On the other hand, in the
QCD plasma, the particle production factor N(r)/N(r)) is more influential ( due to
dependence of the average particle energy on the coupling constant, in particular)
and just before the hadronization begins to occur ((E) ~ Agcp) thermal mass may
again become very high. The perturbative formulas leading to this should not be
believed however.

10" | b\
\\
N |
10* S 1
- -~ YOT0UT Mpcten TR LS LURY. TS : 10° | __vewmquakmessBMev _ j, -
R T A AT 07 107 0 10'
Distance from the black hole, 1/GeV Distance from the black hole, 1/GeV

Figure 4.1: Thermal Mass in typical QED and QCD photospheres.

4.3 Bremsstrahlung Cross Section

The relativistic differential cross section for bremsstrahlung in the center of mass
frame is 17, 18]

do(w) _8ar? (4 w? 4E}(F -w)] 1
do ~ Ew (E(E—w)+f) (ln[ miw ] _5)’ (4.9)

where i = c = 1, r. = a/m,, E is the initial energy of each electron, and w is the
energy of the emitted photon. It diverges for w — 0, but higher order corrections
essentially impose an infrared cutoff [15].

The form of Eq. (4.5) suggests that lower energy photons are emitted more often,
but considering the fact that they don’t affect electron energy much, it is sensible to
use the energy-averaged total cross section [15, 17]
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_fw [do a2, 2F
a-[E(dw)dw«Jareln——. (4.6)

Me

Total photon-electron pair production cross section shows the same functional depen-
dence in the extreme relativistic limit and we therefore use the same estimate (4.6)
for both interactions. Fig. 4.2 will give an idea of how the cross section changes in a
typical (QED) photosphere.

W P B | s VI PP B

o photosphere ——n

Total Cross Section (GeV?2)
=
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Distance from the black hole, r (GeV™')

Figure 4.2: Total bremsstrahlung cross section ¢ in a typical QED photosphere
(TBH = 1000 GeV).

An improvement on the above treatment would be to use differential
bremsstrahlung cross section and produce low energy photons with higher proba-
bility. However, one should then impose an infrared cutoff on the emitted photon
energy and show that no meaningful physical properties of the photosphere depend
on this cutoff.

4.4 Mean Free Path

The Boltzmann equation for the radial evolution of particle distribution [see Eq. (3.4)]
will be equivalent to the usual time evolution version [see Eq. (3.1)] only when the
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collision term is divided by the radial velocity factor v,. Then the mean free path
becomes

1

T () wraZ)

In our simulation, we do not need to do integrals to calculate the average quantity in
the denominator, since the test particles are already distributed according to f and
(veerovt) can simply be calculated as an average over the interacting pairs of test
particles.

The mean free path can be estimated using Eq. (3.9) with v,y =~ 1 (see next
section), o from Eq. (4.6) and n(r) from Eq. (3.14). We should not forget that m,
in these equation is the electron thermal mass [see Eq. (4.1)]. Combining all of these
equations we get an estimate close to the one used by Heckler to characterize the
photosphere:

A (4.7)

__ 1 m N()/N()
n(r)(vraZ) 82 TpyIn(2E/m.)’

A (4.8)

In Figure 4.3 we compare it to the mean free path calculated by direct evaluation
of Eq. (4.7) in the test particle approach.

We see that the analytic estimate is in good agreement with the numerical result
in the beginning and middle of the photosphere (and indeed we will see in Chapter 5
that Heckler’s value for critical temperature is almost the same as ours), but they differ
drastically in the end. His barely increasing mean free path lets the particles in the
photosphere interact almost indefinitely, or rather until their average energy drops
below m,,, when positrons and electrons annihilate. In contrast, the skyrocketing
mean free path in our model means that when the radius becomes greater than 1/m,
(r ~ 2 x 10% 1/GeV) the particles become virtually free. We use this as the criterion
for the edge of the QED photosphere. To be precise, we consider the particles free
when the mean free path on the next step is 2-3 orders of magnitude higher than
on the previous one. This sudden increase in A happens because the diameter of the
particle distribution around the black hole exceeds the range of the bremsstrahlung
interaction and then only the particles spatially close to each other can interact. At
this point the relative velocity v, in Eq. (4.7) becomes approximately zero, since all
particles are moving almost radially and the relative velocity of two particles that
are spatially close to each other will be very small. However, in the estimate (4.8),
used in ref. [15], this effect is neglected and v, is taken to be unity regardless of the
distance from the black hole. We will discuss the range and relative velocity in the
next section.
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Figure 4.3: Mean free path A in a typical QED photosphere (T4 = 1000 GeV).

4.5 Interaction Distance and Relative Velocity

The distance at which particles can interact via bremsstrahlung and pair production
is an important parameter, since we have to decide which test-particles may interact
with one another and which may not. In the heavy ion collision problem, which was
mentioned in the previous chapter as an example of using the test particle method,
those test particles were allowed to interact which were within a critical distance,
defined by o = wb?. We could use the same criterion: first find the average interpar-
ticle distance b(r) = n(r)""/>. As long as b(r) < b, we would randomly choose pairs
of particles and assume that each pair consists of two nearest neighbors, position of
which can be approximated by being at the same point. Since particle momenta are
almost radial, the relative velocity of each pair is of order 0 and the mean free path
calculated from Eq. (3.9) will increase extremely fast as a function of radius. Thus,
no analog of photosphere can develop in this scenario.

However, the range of bremsstrahlung is somewhat higher than expected.
Bremsstrahlung is conveyed by an exchange of a virtual photon. The range of the
interaction is of order 1/k where k is the momentum of the virtual photon. It was
shown in [20] that at relativistic energies, small momentum transfers, k& ~ m,, con-
tribute the bulk of the total cross section, therefore the distance at which particles
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can interact via bremsstrahlung (and pair production) is of order 1/m,. (in plasma
m, is electron thermal mass).

This argument dramatically changes the value of average relative velocity. To see
that, we should note that we are talking about microscopic black holes whose radii
are of the same order as or smaller than the particle interaction distance. Specifically,
for sufficiently high black hole temperatures, the horizon, r, ~ 1/Tgg, happens to
be lower than interaction range 1/m, ~ 1/mpn,. Moreover, we find that for some
distance outward from the horizon, the plasma mass is decreasing significantly faster
than the radius of the particle distribution is increasing. All this means that for
certain black hole temperatures, all through certain radius away from the black hole
any emitted particle can interact with any other over the entire distribution, which
makes the average relative velocity of random interacting pairs of order 1. Fig. 4.4
shows how the distance of interaction remains higher than the radius of the particle
distribution throughout the most of the photosphere.
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Figure 4.4: Minimum distance of interaction in a typical QED photosphere (Tgy =
1000 GeV).

Therefore, in our model we set v,.; = 1 as long as all the particles are capable of
interacting with one another. However, when r becomes greater than the interaction
range we use the procedure outlined at the beginning of the section and calculate
relative velocity using the standard formula for highly relativistic particles:
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Upe = \J 2 (1 - pl_'p_2) (49)
Pip2

Next we must specify how the particle interactions are modeled. This is the
subject of the next section.

4.6 Collisions

Before going into the details of collisions, we describe how the test particles are
represented in the model. Each original and each newly created particle, be it photon
or electron, is assigned an individual index ¢ and ID number ID(z), designating its
spin. Each test particle has momentum, written in terms of its absolute magnitude
(kinetic energy of the particle), p(i), and two of its coordinates: radial, p.(¢), and
transverse, p,(z), (see Fig. 3.2). Although one of these three numbers is redundant, it
is more convenient to keep it than recalculate it each time it is needed. On the other
hand, azimuthal angle is not kept track of and is chosen at random when necessary.

In the algorithm for propagating test particles outlined in Section 3.5, the pairs
after having been sorted by interaction probability (those with higher transverse mo-
mentum components are more likely to collide) are made to undergo actual collisions.
We assume purely classical (except for creation of a third particle), three dimensional
scattering which in principle should be straightforward, but in fact involves several
subtleties in the context of our model.

First of all, as was shown in the previous section, most of the time the interacting
particles can be at any two points on the radiation surface (surface of current radius
r). Curiously, that means that two particles moving directly away from each other
are as likely to interact as those that move directly towards each other. Secondly, if
the pair consists of an electron and a photon we have to check that there is enough
energy available to create two new electrons via pair production. We know that in
the center of mass system all the available energy is distributed between the three
new particles, so we transform the momenta of the pair to this system. We use the
formulas from [21]. The velocity of center of mass frame is

P1+ P2
cL 2, 4.10
A E,+E,’ (4.10)
the center of mass energy is
Eemn =\ (E1+ B2)* — (p1 + P2)’; (4.11)

the momentum of one of the particles is
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_.(p1-B B8 _p1-BB
pm—v(—ﬁ ﬂEl)ﬂ+(p1 5 ﬁ) (4.12)

and the momentum of the other is —pep.
We must impose energy conservation,

2E., = E| + E; + E, (4.13)

where E}, E; and Ej are the energies of the final particles. These energies are chosen
randomly, but the respective momenta must satisfy momentum conservation, so the
vectorial sum of the new momenta to be generated in the next step of the algorithm
must be zero. The condition on the kinetic energy of each particle is found from
geometrical considerations and turns out to be the triangle inequality:

A AR AR A (4.14)

So far we have only distributed the energy, but have not assigned any momenta.
We take these to have random directions in the CM frame. This assumption actually
does not affect the evolution of the photosphere for radii smaller than the range of
bremsstrahlung interaction. It does affect the sharpness of the outer edge of the
photosphere, but this is already so sudden that using the true angular distributions
of the differential cross section can have only a very small effect on our results.

We need to generate 9 momenta coordinates, but we know that the sum of the
momenta is zero (3 equations) and we know their magnitudes (3 equations). We use
two of the available degrees of freedom to to put all three vectors in z-y plane (set
zy = 0 and 2, = 0, the third vector will have to be in the same plane to satisfy
conservation). Then we use one degree of freedom to put p, along z-axis (y; = 0).
We find the remaining coordinates of all three vectors in this specialized frame.

The next step is to rotate the plane containing the momentum vectors by three
random Euler angles (6, ¢,%). We use matrix transformation (see, for example, [22])

p’ = Ap‘ (4.15)
where the matrix A is given by

—sinycos¢ — cosfsingcosyy —sinysing +cosfcosgcosy cosysind

cosPcosp —cosfsingsiny  cosysing +cosfcos¢gsiny sinysind
A=
sinfsin ¢ —sinfcos ¢ cosé
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Finally, by reversing 3 in Eq. (4.10) we get the three momenta back in the labo-
ratory frame, where the new kinetic energy, and radial and transverse momenta are
assigned to the new particles.

It should be noted, that even though the random choice of final energies (and
directions) is somewhat less realistic than the more laborious procedure of weighting
the possible final state configurations by the differential cross section, we estimate
that it is justifiable, since soft bremsstrahlung photons which are more likely to be
created would have but a small effect on the particle energy spectrum.



Chapter 5
QED Photosphere

In this chapter we will present the results of test particle modeling of black hole
emission, considering only electrons, positrons and photons. This restriction is ap-
propriate for black holes with Tgy < Agcp. We will also treat higher temperatures
in this context for the sake of understanding, deferring study of the effects of quarks
and gluons until the next chapter. For the present, we determine under what con-
ditions a dense, interacting plasma may be formed just considering QED. We will
show the main characteristics of such photospheres for black holes of different masses
and temperatures. Next, the momentum distributions inside of a typical photosphere
will be explored. The last section will discuss the difference between the energy spec-
trum of the radiation at the horizon and at the edge of the photosphere, which is
phenomenologically most relevant aspect of black hole photospheres.

5.1 Photosphere Formation

Armed with the model and algorithm of Chapter 3 and the calculation details of
Chapter 4, we are ready to investigate the existence and properties of the photo-
sphere suggested in Chapter 2. We fix the black hole temperature Ty and al-
low the particles emitted from the Schwarzchild horizon with the Hawking energy
spectrum to propagate outward, interacting via bremsstrahlung and photon-electron
pair production. We confirm the formation of a photosphere for black hole tem-
peratures Tgg ~ 100 GeV and higher. The photosphere first appears at a radius
ro ~ 10° — 103 r, (where r, = 1/47Tgy is the Schwarzchild radius), and is charac-
terized by a region of intense collisions terminating at a distance of ry ~ 107 — 108,
from the black hole. The intensity of collisions is characterized by a very slow increase
or even decrease of the mean free path in the photosphere compared to the interior
and exterior regions (see Fig. 4.3).

The photosphere forms only for black holes above a certain critical temperature
T.. We adopt the same definition of T, as was introduced by Heckler [15]. The idea
is to define a quantity N (r) denoting the number of scatterings an average particle

28
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undergoes between the horizon and some radius r > r;. The criterion for having
a photosphere is taken to be that on average every particle undergoes a collision at
least once between leaving the horizon and escaping to infinity, in other words that

1rlegg/\/'(r) > 1. (5.1)

The critical black hole temperature is then the temperature of a black hole for which
this limit is exactly unity.

Our numerical results for A(r) are shown for several black hole temperatures in
(Fig. 5.1).
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Figure 5.1: The number of scatterings an average particle undergoes between the
horizon and radius r: N(r). The results are obtained from test particle model of
emission; for numerical results by Heckler cf. Fig. 2.1.

The critical temperature we obtain is
T. ~ 50 GeV. (5.2)

It is of the same order of magnitude as that obtained in [15] by solving numerically
Eq. (2.7): 45.2 GeV.
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5.2 Photosphere Parameters

Here we will present the photosphere parameters obtained from simulations for ap-
proximately 30 different black hole temperatures. These parameters include the radii
of the inner and outer surfaces, ro(Tgg) and r;(Tsx) respectively, the total particle
production factor P(Tgy) and the average energy of the particles emerging from the
photosphere -Eedgc(TBH). The latter is relevant because it is the average energy of
particles that may eventually reach a distant observer. We will point out large dis-
crepancies between these results and the fluid model used in [15] (Chapter 2), and
derive empirical formulas for rg, r; and E.q4. from our data.

Inner radius

To define the inner radius, we use the fact that in our model, particles propagate
over discrete distances Ar which are fractions of the mean free path (see p.15). For
Ty < T. the mean free path changes by several orders of magnitude at each step
and we can say that particles are streaming virtually free to infinity. For Tpy 2 T,
this happens for the first several steps, but then the mean free path abruptly levels
off. We define the beginning of the photosphere for at a radius, where two subsequent
mean free paths are of the same order of magnitude, or equivalently, when

Ai+1 Ai Arip Ar;
PV Ait1 (H Ar, Af’i—L) , (5.3)
then ry = ;.

We find that 7 is usually three steps away from the horizon (i = 3). The values
of ro in units of 1/GeV ~ 0.197 fm are plotted in Fig. 5.2 as a function of black hole
temperature. As one can see from the graph, ry decreases with the temperature and
can be very closely fitted by

where x = 0.01800 £ 0.00004. (5.4)

1
To =
&Tpu’

We know that the radius of the Schwarzchild horizon is also inversely proportional to
the black hole temperature 7, = 1/4nTgg, so that

4
ro = %rh ~ 698 . (5.5)

By this criterion, the photosphere starts to develop much closer to the black hole than
was predicted (ro ~ 10%r,) in [15] using a fluid model for the interacting particles.
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Figure 5.2: Radii of inner photosphere surface for different black hole tempera.tures
(black dots). Solid line represents inverse regression over these values, see Eq. (5.4).

Edge Radius

The outer radius of the photosphere, r;, can be defined similarly to the inner, except
that the next mean free path should be much bigger than the previous one,, when

i+l Ai
—_— > — 5.6
Ai > Ai1 (5.6)

then ry = ;.
This radius is easily found in practice because the next step after ry is usually several
orders of magnitude larger, implying that the particles have become virtually free.
For the same reason, r; was not precisely determined and a refined algorithm making
the steps smaller near the edge of the photosphere will be used in future work. The
precision in ¢ is not essential, however, because it is not an observable quantity, and
hence this refinement will have no effect on average particle energy at the edge.

In the present model 4 remains in the same range for all black hole temperatures
shown and the only correlation that can be inferred is that the dispersion of values
decreases with rising temperature (Fig. 5.3). We can interpret these results as disper-
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Figure 5.3: Radii of outer photosphere surface for different black hole temperatures
(black dots). Solid line represents r = 1/mq,, radius where particles can no longer
interact all over the black hole.

sion around a constant value of r ~ 2000 1/GeV, which is close to 1/m,,_. But 1/m, is
the range of bremsstrahlung interaction. We showed (see p. 24) that once the radius
of the particle distribution exceeds this value, particles can no longer interact with
all the others around the black hole and we then have to assume that the interaction
is between nearest neighbors. The relative velocity between interacting particles then
drops sharply from ~ 1 to ~ 0 (since the particles move aimost radially) and with it
the interaction rate I' ~ n(v.o). This marks the end of the photosphere.

The dispersion of values of r; for different- black hole temperatures can be ex-
plained by the discreteness of steps in the model. In fact, the higher the temperature,
the finer are the steps all over the photosphere, since the mean free path is shorter,
and we take Ar to be A/50.

Particle Production

Ancther useful parameter for characterizing the photosphere is total particle produc-
tion factor, given by:
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_ N(ry)
F= N(rs)’ (57)

where N(r) is the number of test particles at radius r. P can be used to quantify the
probability of interactions inside the photosphere, since at each collision N — N + 1.
Figure 5.4 shows P as a function of black hole temperature. We find that it can be
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Figure 5.4: Particle production factor N(r¢)/N(r,) for different black hole tempera-
ture. Solid line is quadratic regression of the results [see Eq. (5.8)].

represented by a quadratic fit (solid line):

P(TBH) ~ bTgy + CT%H, (58)

" where b = 0.026 GeV™! and ¢ = 4.5 x 10~5 GeV~2. The dominant quadratic term
suggests that photospheres become very dense in the last stages of black hole evapo-
ration.

Average Final Energy

From an observational point of view, the reduction in average energy of emitted
particles is one of the most relevant consequences of the photosphere. At the horizon,
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E is approximately 3Ts5. But the photosphere can reduce this number dramatically,
so that a distant observer sees a much softer spectrum. The results are displayed in
Figure 5.5.
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Figure 5.5: E.qge for different black hole temperatures.

We can compute B4 from E; and particle production factor, Eq. (5.8):

£ Ey _ 3w _

%" P = Wpg + T2y

to obtain
Bogge = — (5.9)
edge = b+ cTex )
In the limit of high black hole temperatures (b < cTgy < Tsy > 10* GeV):
2
Eegge ~ 6.7 x 10* GeV (5.10)

Tpy

This is a remarkable result since it predicts that for black holes of temperature
T 2 100 GeV (M < 10'%g) the effective temperature of emitted particles (the
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one that could be observed far away from the hole) is actually the lower the higher
is their temperature. For an individual black hole, which is losing mass and hence
becomes hotter, this means that its effective temperature nevertheless goes down.

Of course, Eq. (5.10) is true only as long as our model is valid, and we assumed
that black hole should not change much on the time scale of particle travel time from
the horizon to the edge of the photosphere. Nevertheless, we expect the qualitative
picture to be the same even for black holes temperatures above this limit of validity.

An overall picture of an individual black hole developing with time in view of the
results of this section is as follows. As far as only QED emission is concerned, a photo-
sphere starts to develop around the black hole when it evaporates to M ~ 5x 102,
At this point its effective temperature instead of going up inverse proportionally to
its mass, levels off and begins to decrease. On the other hand, luminosity must go
up to have energy conservation. Thus, it is not radiating like a black body. The
outer edge of the photosphere remains at a radius of 400fm ~ 1/m,.. However, its
inner radius, rq ~ 700 r, shrinks with the Schwarzchild horizon r,. Eventually, if the
steady state model is valid at these temperatures, the edge will cool to E,dg, = my,,
at which point the positrons and electrons will annihilate and no further cooling will
occur. At this point, however, the black hole will be within 107! second of its total
evaporation. '

To give an idea of how the parameters obtained from test particle method differ
from the estimates in 15| for which a non-perfect fluid model was used, we tabulate
the relevant quantities analogously to table 2.2 to which it should be compared.

Tgy To Tedge (rf ) Eour (Eedgc)

45 GeV 1.23 GeV™! 1.5 x 10° GeV™' | 90.1 GeV
300 GeV 0.19 GeV! 1.9 x 10° GeV™! | 79.5 GeV

1000 GeV | 5.56 x 10~2 GeV™! | 2.2 x 10° GeV™! | 44.2 GeV

Table 5.1: QED photosphere parameters for several black hole temperatures obtained
in test particle simulation.

5.3 Inside the Photosphere

A more detailed picture of the plasma can be gotten from the particle momenta
distributions at different radii. Since no significant interactions start before r =
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10? — 10%ry, particles move increasingly radially until the inner boundary of the
photosphere. Then they start interacting with one another and their momenta become
more thermalized. Close to the end of the photosphere, the mean free path increases
so that particles again increase the radial components over the growing mean free
path. These developments can be seen in the distribution of p,/p = p./,/p? + p? for
several radii inside a photosphere, in Figure 5.6. (When p;/p ~ 0, the particle moves
almost radially outward; if p,/p ~ 1 it would move perpendicularly to the radial

direction.)
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Figure 5.6: Distribution of p,/p for several radii in the photosphere of a 1000 GeV
black hole.
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5.4 Spectra

Finally, we examine the detailed particle energy spectra at the black hole horizon and
at the photosphere edge (Fig. 5.7). The shift towards the lower energies is the most

0.030 HORIZON 250.0 PHOTOSPHERE EDGE
{Hawking Distribution)

Particle energy, GaV Particie energy, GeV

Figure 5.7: Energy spectrum of a 1000 GeV (10'!g) black hole at the Schwarzchild
horizon and near the edge of the photosphere.
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1 10 100 1000 10000
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Figure 5.8: Energy spectrum of a 1000 GeV (10'1g) black hole at the Schwarzchild
horizon and near the edge of the photosphere.
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significant difference between the original distribution at the horizon and those within
the photosphere. The two are shown together in figure 5.8, where it can be seen that
the softening in energy is accompanied by an increase in the number of particles, as
is required by energy conservation.

The QED photosphere by itself serves as a kind of toy model for the real black
holes, which are also emitting quarks and gluons at the temperatures we are consid-
ering. We now turn our attention to the QCD photosphere.



Chapter 6
QCD Photosphere

This chapter will discuss another part of the spectrum of particles emitted by mi-
croscopic black holes. A black hole whose temperature exceeds Agcp ~ 200 MeV,
i.e., a black hole with mass Mgy < 5 x 10'* g, emits quarks and gluons which, as
proposed by MacGibbon and Weber in [12] fragment into hadrons, decaying in their
turn into stable particles. We will model the interactions of the quarks and gluons
before fragmentation takes place. At this stage, as suggested by Heckler in [15], a
quark-gluon photosphere analogous to the electron-photon photosphere in QED may
develop, changing the energy spectrum of the particles. In Section 1 we will see how
the test particle method was applied in the QCD case. Then we will look at the
parameters of the QCD photosphere for different black hole temperatures and see
how the energy spectrum of quarks and gluons changes between the time of emission
from the horizon and the moment of hadronization (Section 2). Section 3 will deal
with the hadronization process, and we will derive the energy distribution of pho-
tons produced in pion decay on the edge of the photosphere and compare it to the
distributions obtained for the same black hole when the photosphere is neglected.

6.1 Test Particle Method in QCD

Our treatment does not attempt to give a detailed model of QCD interactions af-
ter hadronization begins. However, the onset of the photosphere can be established
in terms of free quarks and gluons interacting with each other. We assume that
hadronization occurs at a distance of ~ Aa}m and that no significant softening of the
particle spectrum occurs after this point. Hence, we make the same test particle sim-
ulation as in QED, only with different interaction cross section, masses, and number
densities. Due to the much larger coupling constant and greater number of degrees of
freedom, we expect the photosphere to develop at temperatures Tgg < T952 ~ 50
GeV, and to reach higher density than in the QED case.

To investigate the photosphere in QCD, we recall that the key issue was
the inclusion of 2 — 3 body interactions in the collision term of the Boltzmann

39
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equation (3.4). Like electrons and photons, quarks and gluons can also interact via
bremsstrahlung (g + ¢ — ggqg) and pair production (¢ + ¢ = ¢qq). The relevant

diagrams are
>m< and y .

We estimate that other diagrams, as, for example, for pair production

are less important since they don’t have the almost on-shell quark propagator and
the gluon thermal mass is subdominant.

To simplify matters, we will use the same form of cross section as in QED [see
Eq. (4.6)], changing fine structure constant « into strong coupling constant a, and
electron mass into quark mass:

8a® 2F
o360 ~ m—gfln e (6.1)

By mq we mean the quark thermal mass. Using the same approximations as in
QED (see Section 4.2) we estimate that

mg(r) =~ \Jmﬁqt +4ra, (-;-n,, <pl,,> + 1, <;1;>) , (6.2)

where my, is quark vacuum mass, n, and n, are densities of quarks and gluons, and
averages of (p7!) and (p;’) are taken over the test-quarks and test-gluons.

Because the bremsstrahlung cross section goes like l/mz, of all the quarks we
assume that only the two lightest ones and their antiquarks are relevant and hence
for quark vacuum mass we use the average value mo, = 8 MeV. How quark thermal
mass changes with radius in a typical QCD photosphere was shown on Fig. 4.1. As
a matter of fact, since the thermal mass is significantly greater than vacuum mass
everywhere in the photosphere, for higher black hole temperature we should also
include into consideration heavier quark species (s,c and b, as well as their antiquarks,
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for Tgx 2 5 GeV). This work is now in progress. We estimate, however, that it will .
not significantly change the picture of the QCD photosphere. QOur present results
represent the lower bound on the photosphere parameters.

Unlike in QED, the coupling constant in the two equations above depends strongly
on energy. To leading order in perturbation theory {23]:

127

a,(u) = (6.3)

where in the model we take x to be average particle energy at a given radius, ny = 4
(number of relevant quarks and antiquarks) and Agcp ~ 200 MeV.

We have to remember that when the temperature of the quark-gluon plasma
approaches Agcp, perturbation theory in o, is no longer valid, and in fact at this
point quarks and gluons will form hadrons. This process will be discussed in Section 4.
The radius where this happens naturally defines the photosphere outer edge, because
even though the interactions still take place after hadronizaton, by comparing the
mean free path of the hadrons to the life-time of unstable pions we conclude that
strong interactions quickly shut off.

The density of particles should include QCD degrees of freedom. For quarks: 4
kinds of quarks (u, %, d,d) x 3 colors; for gluons: 8 gluon colors. Eq. (3.14) becomes

_€(3) TBH

nqep(r) = 2( ar)’?

18T 4 R! (T’) for fermions
(6.4)

16Ty Ry(r) for bosons,

where Ry()(r), as defined in Eq. (3.13), account for the creation of new fermions and
bosons. With these changes to the formulas of Chapters 4 and 5 we have modeled
the quark-gluon plasma around black holes and the results are given in the following

sections.

6.2 Parameters of QCD Photosphere

We have found that the QCD photosphere starts to develop for all black hole tem-
peratures higher than

T9CD ~ 175 MeV. (6.5)

This is more than two orders of magnitude lower than the critical temperature for the
QED photosphere. It also agrees with the analytical estimate in [15], TP ~ Agcp.

However, we have to note that the value for critical temperature (6.5) is defined
by N(rs) ~ 1 and not by the limit lim, ,,, /() which simply does not exist (see
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Fig. 6.1). This value is slightly higher than Tgy = Agg, temperature at which a black
hole starts to emit quarks and gluons. Comparing the graphs of M(r) in Fig. 6.1 to
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Figure 6.1: Average number of scatterings A in QCD photosphere as a function of
radius r for several black hole temperatures. Note the differences with the analogous
graph in QED (fig. 5.1).

Fig. 5.1 we can see that while in QED there is a clear dissipation of the photosphere,
in QCD the steady increase in the number of scatterings is apparently checked only
by hadronization.

Next, it is interesting to know the photosphere dimensions, particularly, the radii
of its inner and outer surfaces. For the radius of the inner surface we cannot use the
criterion described in Section 5.2 [see Eq. (5.3)], since it turns out that this surface
is very close to the horizon. The physics in this region is more complicated than our
model is designed to cope with (gravitational effects have to be taken into account)
so we leave this issue open, taking note that significant interactions start close to the
black hole horizon.

The radius of the outer surface, however, is well defined as the radius where
hadronization takes place. Different conditions can be used to set the hadronization
point: on interparticle spacing (b = n"/3 > 1/Aqcp), on the average particle energy
(E ~ Agcp) or on the coupling constant (@, 2 1). All three are roughly equivalent
and the value of ry depends only marginally on which one is actually used. In the
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results shown in Fig. 6.2 the last criterion is used. Empirically, our results are well fit
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Figure 6.2: Radius of the outer surface of QCD photosphere versus logarithm of black
hole temperature. This is the radius, where £ ~ Agcp and quarks and gluons form
hadrons.

by a logarithmic growth in the photosphere radius with the black hole temperature:

r9°? = A+ Bln ( ITé:'V) , (6.6)

where A = 3.25 +0.09 GeV™! ~ 0.65 fm and B = 1.45 + 0.06 GeV~" ~ 0.29 fm.

The parameter which best shows the intensity of interactions in a QCD pho-
tosphere is total particle production factor P(Tgy) = N(ry)/N(rs). As shown in
Fig. 6.3, we find that it increases linearly with black hole temperature:

PUD(Tyy) = (8.62 0.01)%%%. (6.7)

Thus, the big picture of black hole evolution, in the light of the QCD photosphere,
is as follows. A black hole that has reached a temperature greater than Agg ~ Agep
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Figure 6.3: Total particle production in QCD photosphere vs. black hole temperature.

corresponding to a black hole mass of M < 5 x 10* g emits quarks and gluons which
almost immediately begin interacting to form a photosphere very close to the horizon
rh < 0.08 fm. As the black hole temperature continues to rise, photosphere inner
radius shrinks along with the horizon (rq ~ r, o 1/Tgg). Particles emitted from
the horizon with average energy E; ~ 3Tgy get processed in the photosphere and
new particles are created. The higher the black hole temperature, the more particles
are created (see Fig. 6.3). The average particle energy decreases as they propagate
outward, until it reaches E; ~ 300 MeV on the photosphere edge, where hadronization
occurs. The radius of the edge increases logarithmically [see Eq. (6.6)] with the black
hole temperature. ’

The results are summarized in Table 6.1 in the form of the photosphere parameters
for several characteristic black hole temperatures.

As we can see, the average particle energy can decrease by several orders of
magnitude in a QCD photosphere. No less interesting is to know how the detailed
spectrum changes. On Figure 6.4 we compare the energy distributions of the particles
at the horizon and at the photosphere edge of a 1.5 GeV black hole. We see a very
significant shift towards the lower energy end of the spectrum (cf. Fig 5.7) and
an order of magnitude increase in the number of particles, which corresponds to
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Ty To ~ Th Tedge (1‘ f ) E; Ecdge

200 MeV | 0.4 GeV™' |[0.97 GeV~! | 600 MeV | 300 MeV
1GeV | 0.08GeV™! |364GeV]| 3.0GeV | 300 MeV

50 GeV | 0.0016 GeV™' | 9.74 GeV™' | 156 GeV | 300 MeV

Table 6.1: QCD photosphere parameters for several black hole temperatures obtained
from the test particle simulation.
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Figure 6.4: Energy distribution of quarks and gluons at the horizon of a 1.5 GeV
black hole and at the edge of the photosphere

P(1.5 GeV) ~ 13 [see Eq. (6.7)]. However, quarks and gluons, whose distribution is
presented in Fig. 6.4, do not reach a distant observer, but rather produce hadrons,
the decay products of which could be observed far away from the black hole. Let us
turn to the question of how to estimate the spectrum of thése asymptotic particles, in
particular photons, from the quark-gluon distribution at the edge of the photosphere.

6.3 Hadronization and Final Spectrum

Roughly speaking, the QCD interaction is perturbative (a, < 1) when the distance
between the particles is smaller than Aggp. This condition is satisfied in the pho-
tosphere region. At larger distances, however, vacuum fragmentation of quarks and
gluons will become dominant, which is what happens at the photosphere edge. For an
accurate calculation of the spectrum of the photons which emerge after the hadrons
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decay we would have to use the quark and gluon distributions at the edge of the pho-
tosphere and a jet fragmentation code for the final distributions of pions and photons
[12, 24]. However, we can estimate this spectrum (within a factor of order unity [24]),
with some sacrifice in accuracy, as a convolution of the quark-gluon spectrum, avail-
able from our test particle simulation, with the pion fragmentation function [2, 12]
and the Lorentz-transformed spectrum of photons from #° decay [15]:

dN,  (®  dge(E,)dN,
B = Jpy B T (6.8)

where Eq = E, + m2/4E,. The number of photons of energy E., created by a pion
moving with velocity 8 and decaying isotropically in its rest frame is

dgny(Ex) _ 2 2

— - , 6.9
dE, TMaB \[E2 - m2 (69)
where v = (1 — §%)~!/2. The pion spectrum is [12]
dN, © _ dgix(Q, Ex) Nj
E =" /E a@ H =2t (6.10)

where n;, the number of QCD degrees of freedom available at the edge of the pho-
tosphere, equals to (3 quark colors x 4 relevant quarks) plus 8 gluon colors, in total
n; = 20. For the relative number of pions with energy E, produced by each quark or

gluon j we use [2]
dgi~(Q, Bx) _ 15 [Q E\’
dE, .16\ E3 ! Q) - (6.11)

Finally, dN;/dQ is the quark-gluon distribution at the outer edge of the photosphere.
Combining 6.8 through 6.11 we obtain the final convolution double integral:

dN, [ 2 © 20x15 E.\%dN
& = |, B o7 T b0 A(-Z) &

where Ey = E, + m2/4E,,.

We have calculated the integral 6.12 numerically for several black hole temper-
atures. The results for one of them (Tgg = 50 GeV) are presented in Fig. 6.5 and
compared to the results obtained neglecting the photosphere, but taking into account
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direct quark fragmentation at the photosphere horizon and subsequent n° decay (as
in [12]). Also shown are the spectrum of photons emitted directly from the black hole
(neglecting the QED photosphere) and from the QED photosphere, which just starts
to form at this temperature. The actual full spectrum of a 50 GeV black hole is the
addition of the two solid lines.
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Figure 6.5: Photon emission spectrum from T = 50 GeV (M = 2 x 10'2g). Solid lines
are spectra which include photospheres (QCD or QED). Dotted lines are given for
comparison and represent the results for photons from direct quark fragmentation at
the horizon and subsequent 7° decay (QCD), and for direct photon emission neglecting
the QED photosphere (QED).

We notice that the photon spectrum from the QCD photosphere peaks at about
100 GeV. The same occurs also for other black hole temperatures due to the fact
that these photons are produced by the isotropic decays of neutral pions. In fact,
Epeak = 70 MeV ~ m,, /2. The number of these QCD-induced photons is several
orders of magnitude greater than the number produced at the horizon or in the QED
photosphere.

An obvious difference between the decay photon spectra with and without the
QCD photosphere is the slope of the distribution at both high and low energies. It is
much steeper when the photosphere formation is taken into account. Subsequently,
significantly more higher energy photons were predicted from a black hole of a given
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temperature without photosphere. More important still, our results for different fixed
black hole temperatures show that as the black hole becomes hotter, the spectrum at
the extremes flattens if the photosphere effect is ignored, whereas the slope stays the
same otherwise. This is due ta the fact, that this slope is inverse proportional to the
peak energy of the quark gluon distribution before hadronization. The peak energy
of the Hawking distribution is proportional to the black hole temperature, whereas
the peak energy of the distribution at the photosphere edge is constant.

An interesting question for further study is how the photon spectrum varies with
Ty for a wide range of black hole temperatures. This would make it possible to
predict the lifetime-integrated photon spectrum of a black hole with specified initial
mass. That information, together with assumptions about the mass distribution of
primordial black holes, would allow us to estimate their contribution to the diffuse
intergalactic y-ray background. Heckler finds that this contribution is not changed
significantly by the photosphere formation effect, but a more detailed check of his
estimate would be worthwhile. This work is still in progress.

It should also be noted, that although the QED and QCD photospheres were
discussed separately in this thesis, for black hole temperatures Tgg 2 100 GeV, the
photons emitted from the edge of the QCD photosphere may take part in the in-
teractions inside the QED photosphere. This possibility is also a subject of further
study.



Conclusion

Our main results can be summarized as follows. The test-particle method of solving
the Boltzmann equation, previously used for analyzing heavy ion collisions, was ap-
plied to the problem of black hole evaporation. The method was adopted for the case
of steady state diffusion of particles emitted by a microscopic black hole. A code to
simulate the bremsstrahlung and pair production interactions of the test particles was
developed, leading to solutions for the particle distribution functions at any distance
from the black hole horizon.

Simulation of microscopic black hole emission in both QED and QCD energy
ranges corroborates the hypothesis of photosphere formation suggested by Heckler in
[15]. We find that any black hole of mass M < 5 x 10! g develops a dense cloud
of interacting quarks and gluons which extends certain distance from the black hole
horizon. The evolution of such small (r < 0.08 fm) black holes is dominated by
mass loss through Hawking radiation. Part of this radiation is in free quarks and
gluons which are processed in the QCD photosphere until their average energy drops
to the point E ~ Agcp, where they hadronize into stable particles and fast-decaying
pions. Another part consists of electrons, positrons and photons. Once the black hole
mass drops below M ~ 2 x 10'2, these particles interact significantly enough to form
another, less dense cloud at a distance about 700 times the horizon radius. This QED
photosphere extends over a distance of about 400 fm, where it dissipates and emits
much less energetic, but in much larger quantity than originally, electrons, positrons
and photons.

Energy distributions of the particles leaving both photospheres were obtained
and shown to greatly differ from the original nearly-thermal Hawking distributions
by being softened to the much lower average energies of ~ 300 MeV (QCD) and from
100 GeV for a 10'2 g black hole to the estimated 0.5 MeV for a 10° g black hole
(QED). Finally, an estimate for the photon spectrum emitted from both QED and
QCD photospheres of an individual fixed temperature black hole was made, which
provides the basis for a calculation of the lifetime-integrated spectrum of a black hole.
It is possible that such a calculation will somewhat soften previous constraints on the
total density of primordial black holes in the universe.

49



Bibliography

(1] Hawking, S.W. Commun. Math. Phys. 43, 199 (1975).

{2] Halzen, F., Zas, E., MacGibbon, J.H. and Weekes, T.C. Nature (London)
353, 807 (1991).

[3] Carr, B.J. in Observational and Theoretical Aspects of Astrophysics and
Cosmology (eds. Sanz J.L. and Goicoechea L.J.) 1 (World Scientific,-Sin-
gapore, 1985).

[4] Hawking, S.W. Mon. Not. R. astr. Soc. 152, 75 (1971).
(5] Bullock, J.S. and Primack, J.R. Phys. Rev. D 55, 7423 (1997).

[6] Schutz, B.F. A first course in general relativity (Cambridge University
Press, 1990).

(7] Hawking, S.W. Nature 248, 30 (1974).
[8] Carr, B.J. Astr. J. 206, 8 (1976).
(9] Page, D.N. and Hawking, S.W. Astr. J. 206, 1 (1976).
[10] Page, D.N. Phys. Rev. D 13, 198 (1976).
[11] Turner, M.S. Nature 297, 379 (1982).
[12] MacGibbon, J.H. and Weber, B.R. Phys. Rev. D 41, 3052 (1990).
(13] MacGibbon, J.H. and Carr, B.J. Astrophys. J. 371, 447 (1991).
[14] Oliensis, J. and Hill, C.T. Phys. Lett. B 143, 447 (1984).
[15] Heckler, A.F. Phys. Rev. D 55, 480 (1997).
[16] Walke, G.M. McGill University Ph.D. Thesis (1990).
[17] Jauch, J.M. and Rohrlich, F. The Theory of Electrons and Photons
(Springer-Verlag, New York, 1975).

30



BIBLIOGRAPHY 51

[18] Haug, E. Z. Naturforsch. Teil A 30A, 1099 (1975).

(19] Weldon, H.A. Phys. Rev. D 26, 2789 (1982).

[20] Joseph, J. and Rohrlich, F. Rev. Mod. Phys. 30, 354 (1958).

[21] Bertsch, G.F. and Das Gupta, S. Phys. Reports, 160, 191 (1988).

[22] Goldstein, H. Classical Mechanics, Second Edition (Addison-Wesley, 1980).

[23] Halzen, F. and Martin, A.D. Quarks and Leptons (John Wiley and Sons,
1984).

[24] Heckler, A.F. Phys. Rev. Lett. 78, 3430 (1997).



