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A bstract 

Traditional methods to test integrated circuits (ICs) require enormous arnount of memoq, 

which make them increasingly expensive and unattractive. This thesis addresses this 

issue for scan-based designs by proposing a method to cornpress and decompress input 

test patterns. By storing the test pattems in a compressed format, the arnount of memory 

required to test ICs can be reduced to manageable levels. The thesis describes the 

compression and decompression scheme in details. The proposed method relies on the 

insertion of 3 decompression unit on the chip. During test applicatim. the patterns are 

decompressed by the decompression unit as they are applied. Hence. decompression is 

done on-the-fly in hardware and does not slow down test application. 

The design of the decompression unit is treated in depth and a design is proposed that 

minimires the amount of extra hardware required. In fact, the design of the 

decompression unit uses flip-flops already on the chip: it is implemented without 

inserting any additional flip-flops. 

The proposed scheme is applied in two different contexts: ( 1) in (extemal) deterministic- 

stored testing. to reduce the memory requirements imposed on the test equipment: and (2) 

in built-in self test, to design a test pattern generator capable of generating dererministic 

pattems with modest area and memory requirernents. 

Experirnental results are provided for the largest ISCAS'89 benchmarks. AI1 of these 

results point to show that the proposed technique greatly reduces the amount of test data 

while requiring little area overhead. Compression factors of more than 20 are reported for 

some circuits. 
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Résumé 

Les méthodes de génération de vecteurs de test pré-déterminés requièrent des quantités 

impressionnantes de memoire, ce qui les rendent de plus en plus impopulaires. Cette 

thèse propose une nouvelle méthode de génération de vecteurs pré-déterrnints et vise tout 

particulièrement les circuits numériques avec une ou plusieurs chaînes de balayage. La 

technique compresse les vecteurs avant de les stocker, ce qui minimise la quantité de 

mémoire requise. Ils sont, par la suite. générés à l'aide d'une unité de décompression 

incorporée sur la puce. 

La technique utilisée pour compresser et décompresser les vecteurs de test est décrite en 

détailles, de même que toute la théorie de base nécessaire à sa réalisation. De plus. la 

conception de l'unité de d6compression est traitée en profondeur. Il est démontré que 

cette unité peut être réalisée avec quelques portes logiques, sans nécessiter aucune 

bascule. 

La méthode proposée dans cette thèse peut être appliquée dans deux cas différents: ( 1)  

pour réduire de façon significative la quantité de mémoire qui doit être stockée par les 

équipements de test; et (2) pour la conception d'une unité de génération de vecteurs de 

test autonome qui peut emettre des vecteurs pré-déterminés sans nécessiter des quantités 

énormes de mémoire et de silicone. Cette dernière application est particulièrement 

importante pour les circuits avec fonction de venfication autonome et intégrée. 

De nombreuses expérience ont étk faite avec les circuits ISCAS89. Les résultats tendent à 

démontrer que la nouvelle méthode proposée dans cette thèse peut émettre des vecteurs 

pré-déterminés sans infliger des quantites excessives de données, et sans utiliser trop de 

silicone. 
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Chapter 1 Introduction 

Since their inception, digital integrated circuits (ICs) have undergone a tremendous rise in 

complexity and use. In the past twenty years, the number of transistors that can be fabn- 

cated on one chip has gone from a few dozens (small-scaie integration or SSI), to few mil- 

lions (very-large-scale integration or VLSI). During the sarne period of time. the 

functionality-to-price ratio has continuously increased which lead to a rapid and steady 

growth of the IC industry. 

The level of quality of digital integrated circuits has a direct impact on the reliabilit! 

and qudity of electronic products. A large nurnber of consumer goods, like cornputers. 

cellular phones, and digital radios comprise one or more digital ICs. If the ICs fail to oper- 

ate normally, these goods cease to function and have to be replaced or repaired. Digital ICs 

are also part of embedded systems used as controllers in various transportation vehicles. 

like cars and planes. For these applications, failures of one or more ICs may be catastroph- 

ic and lead to fatal accidents. 

Despite meticulous care, digital ICs can fail to operate properly. Some will fail be- 

cause they were not designed properly. These chips are said to contain design or functional 

errors. Others will fail because of fabrication defects. These defects occur because the fab- 

rication process of digital chips is not perfect and a fraction of them contain "imperfec- 

tions" that may impact their behavior. Finally, chips, like al1 other physical device, will 

eventually fail due to their lirnited lifespan. 
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In order to guarantee high levels of quality and reliability of goods containing ICs, the 

ICs have to be tested for potential failures. There are many types of test depending on the 

type of errors or defects that are targeted. Functional tests check for hnctiond errors. Pro- 

duction or manufacturing tests check for manufacturing defects. Maintenance tests check 

for wear-out in the field. 

The general topic of this ihesis is production testing. The goal of production testing is 

to identify badly manufactured circuits among the total number of chips produced. A per- 

fect test procedure separates badly manufactured chips from good ones in a cost effective 

manner. However, ideal procedures do not exist and a fraction of ICs shipped to users con- 

tain manufacturing defects. This fraction is called the defect ievel and is often used to as- 

sess the quality of a test. Requirements for defect levels are usually rneasured in defective 

parts per million (dppm). 

Currently, testing is predorninantly achieved by applying deterministic-stored patterns 

by means of an extemai tester (Fig. 1.1). The test stimuli and expected responses are 

stored in the rnernory unit of the tester. During testing. the test stimuli are applied to the 

chip under test and the responses are collected and compared with the expected ones. If 

the responses of a chip are as expected, it is tested as "good" and shipped to users. Other- 

wise. it is discarded or subsequent expenments are conducted to identify why it failed (di- 

agnosis). 

However, several factors render this approach very unattractive for high density cir- 

cuits. The memory requirements associated with the input test pattems are huge and may 

be beyond the capacity of test equipmentl. The number of inputloutput (YO) pins that cm 

be driven by a tester is often limited by cost considerations. The corresponding limited 

channel capacity between the tester and the chip under test rnay impose long test applica- 

tion time. Last but not least, the computing resources required to generate the test (i. e.. 

1. In 1990, IBM testers for ASICs had only 64Mbytes of buffer memory ( 1  11. 
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Figure 1.1 : Deterministic-stored pattern testing with extemal tester 

calculating what patterns to apply ) are prohibitive. 

Consequently. testing has become one of the most costly steps in the fabrication of an 

integrated circuit. Severai surveys of the ASIC and IC industries have revealed that testing 

is in fact the rnost expensive step [l]. Furthemore, in some companies like Intel. the test 

equipment represents the largest capital investment of the whole Company [17]. 

In order to reduce test costs, various design-for-tesrabilig (DFT) methodologies have 

been proposed. DFT methodologies are design rules and design techniques aimed at facil- 

itating production testing. They are based on the premise that by considering testing at the 

design level, it is possible to produce circuits that are easier to test once manufactured. 

One of the first DFT' methodology that was proposed, and perhaps the most popular. is 

the scan design methodology. Scan methodology gives a rnechanism to control and ob- 

serve the state of a sequential circuit during testing. The problem of testing a sequential 

circuit is reduced to the problem of testing a combinational circuit, which trernendously 

simplifies the problem. Consequently, scan design methodology is extensively used to en- 

hance the testability of sequential circuits. This thesis focuses exclusively on circuits with 

one or more scan chahs. These circuits will be referred to as scan-based designs through- 

out the thesis. 
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Another key DFT methodology that is often used in conjunction with scan is built-in 

seZf test. Built-in self test adds test pattern generation and test response analysis as extra 

functions to be performed by the circuit. Hence, a circuit with built-in self test capabilities 

has extra functionality to test itself, i. e., apply its own test stimuli and venQ that it func- 

tioned correctly. 

Despite the use of D R  techniques like scan, the amount of test data required to 

achieve high test quality is still enormous. Table 1.1 shows the characteristics of a CMOS 

chip used as exarnples in [ I l ,  281. In order to achieve high test quality, 27K deterministic 

patterns have to be stored and applied. Each input pattem consists of 16K bits. Hence. 

54Mbytes of memory are required to store the input patterns. A board with ten chips with 

similar characteristics would require more than 0.5 Gbytes of test data. 

Number of gaies 
Number of IfOs 

Table 1.1: Characteristics of circuit used in example 

300K 
512 

Number of deterministic pat- 
terns 

Memory requirements of one 
input pattern 

Memory requirements of 
deterrninistic-stored testing 

Worse yet, the volume of test data tends to grow more than linearly with circuit size 

[l l .  281. The volume of test data is proportional to the product of the number of determin- 

istic patterns and the size of each pattern. Whereas the former grows less than linearly 

with circuit size, the latter tend to grow linearly. The product of the two parameters. there- 

fore, grows more than linearly with circuit size. According to this observation, a chip with 

similar characteristic as the one used in Table 1.1 but composed of 600K gates would re- 

quire more than l08Mbytes of storage for the deterministic patterns. The rapid growth of 

test data with circuit size also implies that even if deterministic-stored pattem testing is 

feasible for the present generation of ICs, it may not be feasible for the next generations. 

27K 

16K bits 

54Mbytes 
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Reduction of memory requirements of inputs patterns may have a major impact of the 

cost of testing. Storing and rnanaging these pattems is very costly because memory is one 

of the most expensive and heavily used resource during testing. Furthermore, the capacity 

of channels between components is often limited, which delays transfers of test data. By 

reducing the volume of test data, d l  of these costs and limitations could be reduced. For 

exarnple, less expensive test equipment could be used. and the test procedure could be fas- 

ten. 

Random pattem testing (with Signature Analysis) is 3 popular approach to reduce 

memory requirements. With this approach, a chip is exercised with random (or pseudo- 

random) rather than stored-deterministic pattems. Since there exists many methods to gen- 

erate random pattems with minuscule memory usage compared to deterministic pattems. 

the overall technique has the potential to reduce test data volumes. Furthermore. methods 

to generate random patterns can be impiemented with reasonable silicon area. They are 

therefore very attractive for built-in self test applications for which the test pattern genera- 

tor is to be incorporated on the chip. 

However, even if randomiy generated stimuli are applied, the memory requirernenrs 

may still be significant for a high quality test. These requirements arise because determin- 

istic pattems have to be used to complement the random patterns to increase the test qual- 

ity to acceptable levels. The required memory may represent 70% or more of the total 

memory requirements of deterministic-stored pattems [ I l .  281. For the example of Table 

1.1, 7096 of the deterministic data translates to 38Mbytes of memory. A board composed 

of ten chips with similar characteristics would require 380Mbytes of test data. Clearly, us- 

ing random pattems is not enough to reduce the memory requirements ro acceptable lev- 

eis. 

The same observations can be drawn from circuits with BIST. One of the objectives of 

any BIST scheme is to incorporate in the circuit a test pattern generator that can achieve 

high test quality at modest costs. The costs of a BIST generator include the additional sili- 
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Overview of Thesis 

con required to implement the generator and the memory requirements to store the test da- 

ta. In most cases, the memory requirements are too large for practical implementations. A 

BIST generator for the circuit of Table 1.1 would need at least 38Mbytes of memory, just 

to store the detemiinistic test pattems. 

1.1 Overview of Thesis 
This thesis proposes a new scheme to reduce the arnount of test data for scan-based de- 

signs, while maintaining high test quality and low cost. The reduction in data volume is 

accomplished by cornpressing the deterministic pattems prior to storing thern in rnemory. 

Later, during test application, the pattems are re-generated by decornpressing them using a 

special on-chip decompression unit. The thesis demonstrates how to implement the de- 

compression unit with minimal silicon overhead. Most of the hardware required to imple- 

ment the unit is re-used from modules usually incorporated on a wide range of designs. 

The scheme can be applied for circuits with BIST, for which the patterns are generated 

on the chip or for circuits without BIST, for which the pattems are generated by an exter- 

na i  tester. In both cases, the test costs are greatly lowered by reducing the test data vol- 

umes. Extensive experiments with the largest ISCAS'89 circuits have been performed. 

The results of these experiments demonstrate that the proposed scheme greatly reduces the 

amount of test data while maintaining low costs and high test quality. 

The thesis is structured as follows; the next Chapter reviews basic methods and con- 

cepts to test digital circuits at the logic level. Then, Chapter 3 introduces scan-based de- 

signs and gives further motivations for this work. Chapter 4 presents the mathematical 

- - - 
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Overview of Thesis 

background and mechanism used to cornpress and decornpress deterministic patterns. 

These concepts are used in Chapter 5 in the implementation of the scheme for scan-based 

designs with and without BIST features. Experimental results using the scheme are gath- 

ered in Chapter 6 .  Finally, Chapter 7 concludes. Note that the appendix contains some ad- 

ditional material pertaining to the thesis. 
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Chapter 2 Basics of Logic Testing 

2.1 Introduction 
An n-input. m-output digital circuit is a network of components that accepts n binary sig- 

nais as inputs and produces »t binary signals as outputs. A digital circuit is descnbed at 

various levels of abstraction depending on the type of primitive components recognized. 

At the switch level, it is described using only on-off switches. At the logic level. the circuit 

is represented with logic gates and flip-flops. At the behavioral Ievel. the circuit is de- 

scnbed using more complex components. like registers, ALUs, and memory units. 

There are two main ciasses of digital circuits. Those that do not have interna1 memory 

are called combinational circuits. At any time, their outputs depend only on the values on 

the primary inputs. Sequential circuits, in contrast, have interna1 memory or an intemal 

state. Their outputs depends both on the present input and their current state. 

Sequential circuits can be synchronous or asynchronous depending when state transi- 

tions occur. In synchronous circuits, state transitions are synchronized with a special glo- 

bal timing signal called a dock. Transitions in an asynchronous circuit are not 

synchronized with a global signal. 

This chapter reviews some testing techniques for combinationd and synchronous se- 

quential circuits. 
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Introduction 

2.1.1 Huffman Mode! of Sequential Circuits 

Sequential circuits can be partitioned into two main parts (Huffman model [20, 251): a 

combinationd part, and a memory part. The combinational part has two main inputs and 

two main outputs. Its inputs are the primary inputs of the circuit and the current state of 

the machine. while its outputs are the primary outputs of the circuit and the next state of 

the machine. The memory part stores a finite amount of infornation which is referred to as 

the state of the circuit. The state of the circuit changes only in synchronizaiion with a 

clock signal. As the dock signal changes (nsing-edge), the next state becomes the new 

current state. 

Fig. 2.1 shows the structure of a sequentiai circuit. It is composed of a combinational 

part (C) and a memory unit (R). Since the memory part is implemented with a parallel reg- 

ister, it is often referred to as the state register. 

Inputs -7 1-. outputs 

- 
State Iines - Next-state lines CLK 

Figure 2.1 : Huffman model of sequential circuits 

2.1.2 Testing 

Digital circuits cm fail to operate properly either because they were net properly designed 

or because they developed physicai defects due to fabrication errors or use. The number of 
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Introduction 

design errors can be minimized by using CAD tools to simulate and verim the design. The 

occurrence of physical defects can be reduced but cannot be entirely elirninated by irn- 

proving the fabrication process. improving the operating conditions of the circuit and us- 

ing only reliable components. 

Since the occurrence of physical defects cannot be completeiy eliminated, it is very 

important to test digital circuits to minirnize the number of defective ICs on the market. A 

good measure of the quality of a test is the defect level (11. The defect level is defined as 

the ratio of the number of defective ICs over the total number of ICs shipped. Obviously, 

the better the quality of a test, the lower the defect level for a given product manufactured 

to a given yield. 

The testing process consists of three main steps: (1)  test generation, (2) application of 

test. and (3) evaluation of the results. Test generation produces a test sequence that will 

determine, if applied, whether the circuit is prcixxly functioning. This step is usually done 

prior to manufacturing the circuit. The test sequence is then applied to the circuit during 

test application. Finally, the response is evaluated against the expected response of the cir- 

cuit. 

A digital integrated circuit is tested more than once over its lifetime to insure that it is 

working property. During production of a digital system, a digital IC is tested at each lev- 

el, i.e., (1) irnmediately after fabrication as part of the wafer; (2) after it is eut from the wa- 

fer and installed in plastic or ceramic package; and (3) after it is mounted over a printed 

circuit board. 

The costs of finding bad parts tend to increase by an order of magnitude when going to 

a upper level [8]. Hence, if it costs $1 to detect a bad chip at the wafer level, the costs at 

the packaging and PCB levels can be expected to be $10, and $100, respectively. 
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2.2 Fault Models and Tests 
There are many sources of physical failures for digital integrated circuits. During fabrica- 

tion, some parts can be missing, defective or fabricated by rnistake. The interconnections 

between parts c m  also pose problems. Some interconnections may be missing or be 

wrongly inserted. During use, abnormal conditions, like excessive heat, inadequate volt- 

age and current supplies, can affect the operation of a circuit and cause failures. Even if al1 

operating conditions are normal, integrated circuits, like al1 physical devices, will eventu- 

ally fail due to their limited lifespan. 

Physical failures are classified according to several properties. For example. one can 

distinguish between permanent and intermittent failures depending whether they affect the 

operation of the circuit permanently or not. Latent defects are defects that are not visible 

right after fabrication but have the potential to become active later on. 

Digital systems are analyzed and tested at different levels to account for potential fail- 

ures. Testing carried out at the electrical level is called parnntetric testing because it  mea- 

sures voltage waveforms, propagation delays. currents, and the other parameters of the 

circuit. Logic testing, on the other hand, camies out testing at the logic levels and is only 

concemed about the logic behavior of the circuit. This thesis is prirnarily concemed with 

logic testing. 

In order to perform logic testing, a fault mode1 has to be used to relate the impact of 

physical failures on the behavior of the circuit. Many different models have been pro- 

posed, including the single stuck-ut fault [l, 15.351, multiple stuck-at fault [42], stcick-on. 

stuck-open [49], bridging fault [45, 15, 351, transition fault [LI, and path delay 130, 461 

fault modets. 

Chapter 2: Basics of Logic Testing I I  



Fault Models and Tests 

2.2.1 Single Stuck-at and Other Fault Models 

The single-stuck-at fault (SSF) model is by far the most popular fault model. It assumes 

that a faulty circuits has a single line stuck at O or 1. A line L is said to be stuck-at v if it 

has value v irrespective of the correct logicai output of the gate driving the line. 

The SSF model has several properties that are worth mentioning. A circuit with n lines 

can have 2n distinct single stuck faults. Hence, the maximum number of different fault to 

consider is a linear function of the number of lines in the circuit. The SSF mode1 is inde- 

pendent of technology and can be used for CMOS, TTL, or ECL logic. More imponantly. 

even though single stuck-at fault do not represent directly the behavior of most physicai 

failures, good tests for them detect most physical failures. 

The multiple sruck-at fault model assumes that a faulty circuits has one or more lines 

stuck-at. Hence, each line in the circuit has three modes of behavior. It can be stuck-at 0, 

stuck-at I or it can have its fault free behavior. Therefore. a circuit with n lines has 3" - 1 

possible stuck-at fault combinations. This number is very large, even for moderately sized 

circuits. which makes this fault model difficult to use. The multiple stuck-at fault model is 

rarely used in practise because it has been shown that tests that target single stuck-at faults 

detect most multiple stuck-at faults [2]. 

Stuck-on and stuck-open faults closely model defects that affect CMOS transistors. 

Due to such defects, some transistors rnay be permanently conducting (stuck-on) or per- 

manently cut-off (stuck-open). As opposed to the stuck-at fault model, these fault models 

are technology dependent since they are based on CMOS technology. Furthermore, faulty 

circuits that have stuck-open faulu may have memory due to capacitance of lines and thus 

may require a sequence of test patterns to detect one fault. 

A circuit with bridge faulis hâs two or more of its lines wrongly connected together. 

As a result. the signal conesponding to the group of Iines may have an unpredictable logic 

-- - - - 

Chapter 2: Basics of Logic Testing 12 



- -- -- - - - 

Fault Models and Tests 

value when the individual lines have conflicting assignments. The delay fnult model con- 

siders unacceptable delays along paths from input to output. This fault model is used to 

verify that a design meets its performance specifications. 

The transition fault model also considers delays in a circuit. A faulty circuit has either 

a slow-to-rise or a slow-to-fdl fault along a path from input to output. A slow-to-rise fault 

occurs when an output is slow to nse from O to 1 while a slow-to-fa11 fault occurs then an 

output is slow to fa11 from 1 to O. Detection of a transition fault involves two pattems. One 

pattem to set the initial value on the path to the output. and one pattem to create the transi- 

tion. Note that the timing between patterns is very important. 

2.2.2 Testing for Faults 

In order to determine whether a circuit contains a fault f or not. some patterns have to be 

appiied. For combinational circuits, only one pattern is required if such pattern exists. For 

sequential circuits, however, a sequence of one or more patterns is necessary, if such a se- 

quence exists. The remaining parts of this section concentrates on combinational circuits 

for simplicity. 

A test vector V covers or detects a fault F if and only if applying V to the circuit pro- 

duces a different output whether the fault is present or absent from the circuit. Determin- 

ing the test vector that cover a fault is a process called test generation and is discussed in 

Section 2.3. 

Faults are classified according to their detectability and distinguishability. A fault is 

undetectable or redundant if and only if there does not exist any vector that covers it. In 

contrast. detectable faults can be detected by at least one vector. A group of faults are in- 

distinguishable, or equivalent, if they affect the extemal behavior of a circuit in the exact 

same way. 
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A complete test set is a set of test vectors that cover al1 the faults in the circuit. A com- 

plete test set is minimum if it is the complete test set with the fewest number of vectors. 

2.3 Test Generation and Fault Simulation 
Given a circuit and a set of detectable faults F, test generation is the process of finding a 

sequence of test patterns that coven al1 faults in F. Despite the fact that it is an NP-Corn- 

plete problem, several algorithms have been proposed tu automate this process and are re- 

ferred to as automatic test pattern generation (ATPG) algorithms. These algorithms are 

divided in two important classes: those that target combinational circuits and those that 

target sequential circuits. ATPG algorithms that target combinational circuits include the 

D algorithms [40]. PODEM [17], FAN [16], and SOCRATES [43]. Those that target se- 

quential circuits include EBT [3 l]. BACK [14], and FASTEST [27]. 

For a circuit with n inputs, the search space of combinational circuits is of order 2" for 

each fault. For sequential circuits, the additional dimension of tirne makes the search 

space even bigger. Even if the number of patterns required to detect the fault is known or 

limited time unrolling is used, the search space is still enormous. As a result. sequential 

test generation is rarely used for large circuits when detection of ail faults is important. 

Many practical methods for combinational circuits take the following approach. A 

fault f stuck-at v is selected for which a test pattern T is required. The fault is excited by 

forcing the line to be at value v-bar. Then, a path is traced from the fault site to one of the 

primary outputs. For each gate dong the path. the signals at the gate input are assigned 

such that rhe error signal can propagate. Findly, d l  of these signals are justified working 

backward in the circuit, until the primary inputs are reached. 

Fig. 2.2 shows an exarnple in which line B is stuck-at 0. The fault is excited by the 

assignment 8=1. Then, a path is traced to propagate the fault effect the output. The path is 
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sensitized by assigning non-controiiing values to each gate dong the path. Hence, C=l, 

D=0, h=l.  After that, the signals are justified until the primary inputs are reached. The 

only unjustified signal is h. To justiQ the assignment h=l, the input A must be equal to 1. 

Combining input assignments for propagation and justification the test vector. 

ABCD= 1 1 10 is generated. 

B stuck-at O 

- 

Figure 2.2: Test generation using path sensitization 

During sensitization and justification, different kinds of signal assignments are made. 

Some are necessary, that is, they must be forced for a test to exists. Others are arbitraq-, 

that is, alternative signal assignments could have been made. 

During justification, it is possible to encounter contradictory requirements. To resoive 

such confiicts. it is necessary to go back to a previous arbitrary assignment and make an 

alternative decision. This process is called backtracking. If there are no arbitrary assign- 

ments, or there are no more alternative decisions to make, the fault is not testable. 

In general, a test pattem generated by ATPG algorithms does not specify al1 the prima- 

ry inputs. Some inputs are unspecified and may be either O or 1. For example, the pattern 

ABCD=11XO detects the fault A stuck-at 0. In this pattem, C can be either O or 1. Hence. 

both patterns ABCD=1100 and ABCD=I 1 10 detect A stuck-at 0. 
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Given a circuit, a fault list, and a set V of test pattems. fuult simulation is the process 

of detemiining which faults are covered by the pattems in V. Fault simulation is often used 

to calculate the fault coverage of a set of pattems, i. e., the fraction of faults detected over 

the total number of potential faults in the circuit. Fault simulation is also used to identify 

undetected faults. 

There exists many different methods to fault simulate a circuit. These methods are 

classified into four main categories: fault injection, deductive methods, concurrent meth- 

ods. and critical path tracing methods. 

Fault injection methods proceeds as follows. First, the fault free machine is simulated 

for a given pattern. Then, for each fault in the circuit, the fault effect is propagated foward 

in the circuit. The fault is detected if the fault effect reaches one of the primary outputs. 

Orhenvise, it is not detected by the pattern. Once detected, a fault rnay be removed from 

the fault list and marked as detected to speed up fault simulation of the next patterns. This 

process is called faub dropping. 

Fault injection comprises parallel fault simulation method [1] in which a computer 

word of w bits is associated with each line in the circuit. Each bit of the memory word cor- 

responds to one faulty circuit. By using bit-wise computer instructions, r v  faulty circuits 

can be simulated in parallel. 

Deductive fault simulation [7] maintains for each line in the circuit, the list of faults 

that propagate to the line. The algorithm first simulates the fault free circuit and then uses 

recursive rules to generate the list of detectable faults. The faults detected by a pattern are 

the faults contained in the list of detectable faults at the outputs of the circuit. 

Concurrent fault simulation [l] maintains a list of faulty gates for each gate. The list 

contains the effect of each fault on the gate if it differs from the fault free state. 

Critical path tracing [l] methods speed up fault simulation by considenng only criti- 
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cal paths in the circuit. Once the fault free simulation is perfonned, critical paths are 

"traced" using the following mles recursively: 

(1) The outputs are cnticai 

(2) If the output of a gate is cntical and only one input j has the controlling value, then 

signal j is critical. 

(3) If the output of a gate is critical and al1 inputs have non-controlling value then al1 

inputs of the gate are cntical. 

(4) Othenvise, no input is cntical. 

2.4 Test Pattern Generation 
During test application, a number of pattems are applied to a circuit. There exist many dif- 

ferent schemes to generate the input pattems. The ideal scheme covers al1 faults in the cir- 

cuit by applying a small number of pattems. requires little memory to store test 

information and does not impose signifiant area overhead. Most schemes propose some 

kind of trade-off between the above parameten. The solutions include exhaustive, deter- 

ministic, pseudo-random and hybrid methods. Hybrid or mixed-mode methods combine 

two or more methods. 

2.4.1 Exhaustive 

Exhalistive testing methods [IO] apply al1 possible input combinations to test a circuit. For 

a combinational circuit with n inputs, al1 2" possible input combinations are applied one 

by one. Since al1 input combinations are applied, al1 detectable faults are covered. Hence, 

exhaustive techniques obtain very high fault coverage. However, the number of pattems 

-. . . - 
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applied is an exponential function of the number of inputs. In most cases, the number of 

pattems is so high that it is impossible to apply them in a reasonable time. For example, a 

circuit with one hundred inputs would require 2''' patterns! 

Exhaustive pattems can be generated by a simple counter without requiring any extra 

memory. Hence, exhaustive techniques achieve very high fault coverage and do not re- 

quire a complex structure to generate the pattems, but they take very long test application 

time. 

2.4.2 Deterministic 

In detenninistic testing [4, 111, the test pattems are pre-calculated off-line and stored in 

memory. They are calculated either rnanually or with the use of automatic test generation 

software. For combinational circuits most faults in the circuit can be targeted. Conse- 

quently, deterministic methods have potential for very high (or complete) coverage for 

combinational circuits. 

During testing, the pattems are read one by one from the memory unit and applied to 

the circuit under test. The number of test patterns is relatively small and thus, the test ap- 

plication time is short. However, even if the number of test pattems is small. the memory 

required to store them may be very huge. Consequently, deterministic testing has to poten- 

tial to achieve very high fault coverage (or complete fault coverage) with a relatively 

small number of pattems. However, the memory requirements may be very huge. 

In pseudo-random testing [l. 81, a random generator is used to generate the pattems. Very 

simple pattern generatoa that do not require much area can be implemented in hardware. 

Populas generators include Iinear feedback sh@ register [18] and linear celluhr automam 
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Pseudo-random pattern generators require minuscule amounts of memory to generate 

test patterns. However, since the generated patterns are random, the fault coverage may be 

a problem. Applying random pattems will cover most of the faults. These faults are called 

easy-to-test. However, a number of faults will not be covered even after a large number of 

random patterns are applied. These faults are called hard-to-test or random partern resis- 

tant due to their "resistance" to random patterns. Most circuits have a large number of 

hard-to-test faults. For these circuits, it is impossible to achieve complete fault coverage in 

an acceptable number of pattems. Thus, pseudo-random techniques do not require memo- 

ry to generate patterns but cannot achieve complete fault coverage in an acceptable nurn- 

ber of test pattems. 

2.4.4 Mixed-mode (Hybrid) 

Mixed-mode or hybrid techniques [21-23,28,48,52-531 combine the advantages of deter- 

rninistic and pseudo-random pattems to offer many trade-offs in tems of memory require- 

ments and test application time. Using this technique, a circuit is tested using a mixture of 

random and deterministic pattems. The random pattems are used to cover the easy-to-test 

faults while the deterministic patterns cover the remaining hard-to-test faults. 

Mixed-mode techniques achieve complete fault coverage by storing deterministic pat- 

terns to supplement random pattems. In addition, mixed-mode techniques use schemes to 

compress the deterministic pattems because for most circuits, the arnount of memory re- 

quired to store the pattems explicitly is too large [21-23, 28.48, 52-53]. Compression of 

the deterministic pattems is the topic of this thesis and an effective method for scan-based 

designs will be proposed in Chapter 5. 

- .  .- -- 
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2.5 Test Response Analysis 
The naive approach of verQing the response of the circuit under test against the fauit-free 

response also leads to important memory usage. Using this approach. the response of the 
3'; 

circuit is compared with the expected fault-free response for each pattem applied to the 

circuit. The fault-free response is either generated concurrently with the test or stored in 

rnemory. In both cases. this creates substantial memory requirements. 

Several techniques have been proposed to facilitate response analysis by compacting 

the whole response of the circuit during testing into a single memory word called a signa- 

ture. At the end of testing, the signature of the circuit is compared to the fault-free signa- 

ture. There is no need to make a cornparison for each pattern and no need to store the 

expected responses. 

Since the complete response of the circuit is reduced into a single word. some infor- 

mation is loss which may iead to aliasing [8]. Aliasing occurs when a faulty response is 

compacted into the fault free signature. When this occurs, the defective chip that produced 

the faulty sequence is tested as being good which impacts negatively the quality of the test 

procedure. The probability of aliasing is a key parameter when comparing different com- 

pac tors. 

The most popular compaction technique is Signature Analysis [8], where a multiple in- 

put shift register (MISR) is used to compact the response into a signature. The analysis of 

MISR is beyond the scope of this thesis. However, as a rule of thumb, the aliasing proba- 

bility of a k-bit MISR is approxirnately 2-k. For a 32-bit MISR, the probability of aliasing 

is only 0.0000000002. 

Other compaction techniques include one's counting, transition counting, and one's 

coniplemenr addition. In one's counting [8], the signature is calculated by counting the 

number of one's in the circuit response. In transition counting [8, 191, the number of O-to- 
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1 and 1-to-O transitions is counted. Compaction schemes based on one's complement addi- 

tion [38] calculate the signature by successively adding the circuit's response using one's 

complement arithmetic. By using a k-bit adder, these schemes obtain a probability of alias- 

ing approximately equal to 2*k. 

The fault-free signature is obtained by simulating the test patterns on a digital simula- 

tor. At the end of the simulation, the state of the signature register is recorded and is used 

as the faul-free signature. During the simulation, if a high impedance or an unknown value 

reaches the signature register, it will corrupt its current state and the fault-free signature 

will be unknown. Thus, compaction techniques can only by applied if the response of the 

circuit is strickly binary for every test input. For scan-based designs. this restriction means 

that al1 the memory elements in the scan chains must have known values during testing. 

Most designs do not abide by that restriction and signature analysis cannot be applied. 

However, some designs, those with built-in selft test, respect that restriction and signature 

analysis can be used to determine if the circuit is faulty or not. 

2.6 Design for Testability 
Testabiliy is the set of characteristics that allows a circuit to be tested in a time and cost 

effective manner [20, 331. Testability is difficult to quantify. However, the propenies of 

easy-to-test designs are easily enumerated: (1) a test procedure detects a large portion of 

the potential faults in the circuit. (This proportion is called the fadr coverage. Detection of 

al1 faulrs, or compleie fault coverage is often a requirement of a test.) (2) test generation 

and application times are short, and (3) volume of test data is small. 

If testability is not taken into account at the design stage, testing a digital circuit is 

likely to be a very costly and time consuming problem. Several factors would contribute 

to make testing a difficult problem. For complex designs, the pinllogic ratio is low which 
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makes it extremely difficult to control and observe lines in the circuits. Also, the time re- 

quired to generate tests is very long and many faults have to be abandoned by ATPG. 

Hence, complete fault coverage is difficult to obtain. Finally, the volume of test data is 

very huge and may cause memory problems during application of test sequence. 

Design for testabiky are design-level techniques aimed at making a circuit easier to 

test [20,33]. These techniques enhance testability mainly by improving the controllability 

and observability of lines in the design. To do so, most DFT techniques add additional 

built-in hardware which is measured in terms of area overhead, i. e., extra gates, flip-flops 

and pins. This hardware can be on the critical path of the circuit, which would impact the 

performance of the circuit. Thus, it is desirable to minimize the hardware overhead and 

performance degradation that may be imposed by DFT. 

DFT techniques are divided into two main categories: ad hoc and strrtctrcred. 

2.6.1 Ad Hoc 

Ad hoc techniques are lists of "do and don't" aimed at designers to avoid potential prob- 

lems. Most of these niles attempt to enhance the controllability and observability of lines 

in the circuit. Examples of such rules are listed below: 

Redundancy. Avoid redundancy that introduces undetectable faults. 

Partition. Partition large hard-to-test sub-circuits into smaller, more easily tested ones. 

Feedback. Allow feedback paths to be opened and closed dunng testing. 

Test point. Add test points [44] to increase controllability and observability of selected lines 

(bottlenecks) in the circuit. A test point is either an additional fan-out to d o w  a line to be 

observed or additional circuitry to control the value of a line. 
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2.6.2 Structured (Scan and Built-In Self Test) 

Ad hoc techniques lack generality and unity and tend to require many extra input and out- 

put pins. More systematic and stnictured approaches can be incorporated in the design 

process to guarantee ease of testability. One such approach is the scan design methodology 

which is discussed in Chapter 3. During testing, the state register of the circuit are config- 

ured into a shift register or scan register. The state is specified by shifting some data into 

the scan chah. Sirnilarly, the state of the circuit is observed by shifting out the content of 

the state register. 

Another key DFT methodology is built-in selftest (BIST). Built-in self test methodol- 

ogy adds test pattern generation, test response compaction and test session control as key 

functions to be performed by the circuit. Hence, during testing, the circuit generates and 

applies its own test patterns and evaluate its responses [4,5,8]. In short. the circuit tests it- 

self. 

There are many reasons that motivate the use of built-in self test. In particular, built-in 

self test offers solutions to the following problems. 

First, BIST reduces the needs for expensive test equipment. External testers are corn- 

posed of very complex and high performance sub-systems, like processors and memory 

units that costs tremendous amount of money. Despite their high costs, because the tech- 

nology progresses very quickly, testen tend to become out-dated very quickly and do not 

offer the capacity required to test state-of-the-an components. By having the system or 

chip test itself, the test hardware follows the Pace of the technology. 

Typically, BIST schemes have better access to the circuit under test than extemal 

testers. For instance, in order to test a chip, external testers have to pass through the prima- 

ry inputs and outputs of the chip, which can be a bottieneck in some cases. By incorporat- 

ing test functionality on the chip, the bottlenecks may be eliminated. 

- - - - - - - -- - - - 
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BIST offers a very attractive method to test proprietary (embedded) modules. Some 

companies, like ASIC vendors, sell libraries of components, including processor cores, 

controllen, and so on. Reveding information to allow customers to test the library compo- 

nents might allow them to reverse-engineer the actuai designs. BIST ailows for the com- 

ponents to be tested, while it frees the library vendor to nlease proprîetary information. 

More importantly, built-in self test offers a hierarchical solution to testing. It is applied 

at al1 levels of a design, and self-test functions are invoked at different levels. For instance, 

BIST c m  be applied at the system, board, or IC levels. Furthemore, a system self-test 

procedure may involve board self-test routines, which, in tums, involve the ICs self-test. 

At the sysrem level, self test is usually performed in software, while at the IC level it is 

performed in hardware. On an IC, self test is performed by three main units. The test par- 

rem generator produces test patterns. The test response analyzer compacts the responses 

into a signature for later evaluation. Finally, the test sessions are controlled by a test co~l-  

troller unit. On an IC, these units are usually irnplemented in hardware to shonen test ap- 

plication time. 

Fig. 2.3 shows the general architecture of built-in self test of an IC. 

Test Pattern Generator 0 
Circuit Under Test t 

1 Test Response Analysis 1 

Figure 2.3: Built-In Self Test 
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Chapter 3 Scan Design Methodology 

3.1 Introduction 
Scan design methodology is the first structured design-for-test technique that was pro- 

posed. The first description of scan-based designs dates back to the 60's [SI]. Since then. 

tremendous research has been conducted to develop the technique and make it one of the 

most mature. Scan design methodology is also one of the most popular DFT methods and 

is extensively used in the design of modem digital circuits. The rnost "publicized" version 

of scan is the Level Sensitive Scan Design (LSSD) technique developed by IBM [51]. 

Other scan related methods like boundary scan [IEEEjANSI standard 1149.149901 are in- 

creasingly used by the ASIC and IC industries. 

This Chapter introduces scan-based designs and the topoiogy considered in this thesis. 

In particular, emphasis is put on multiple scan designs with Signature Analysis. 

3.2 Full Scan Designs 
The essence of scan design is to make the state of a sequential circuit completely control- 

lable and observable. In order to do so, the parallel state register of the circuit is replaced 

by a parallel and shift register. During normal operations the register behaves as a parallel 

load register, while during testing, it behaves as a shift register. Implementing the state 
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register irnplies adding extra gates to allow the flip-flops to be configured into a shift reg- 

ister dunng testing. The resulting configuration is cailed a scan chnin. 

Fig 3.1 shows the modified Huffman model in which the state register is replaced by a 

parallel-and-shift register. Three new pins are added: scan-in, scan-out and scan-enable. 

Scan-enable determines whether R is operating as a paralle1 register or a shift register. 

When operating as a parailel register, R loads data from the next state Iines. When operat- 

ing as a shift register, R shifts data serially, taking scan-in as input and scan-out as output. 

Using the extra pins. the state of the circuit is specified and observed by a test procedure. 

CLK ' 1 ' Scan-in 
I 

Scanenable 

Figure 3.1: Sequential circuit with a scan chain 

3.2.1 Modes of Operations 

The resulting circuit has two modes of operations: Normal and Testing. 

Normal mode. In n o n a l  mode, the circuit is operating its normal function. The Stace regis- 

ter behaves as a paralle1 register that stores the current state and loads at each cycle the 

next state. 
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Test mode. In test mode, the state register is configured into a shift register. inputs scan-in 

and scanqut are used to shift data into and out of the register. 

Test Pattern 

In order to apply one test pattem to a scan-based design, a number of events have to take 

place. First, the state of the circuit and its inputs must be forced to the specified values. 

Then, the state of the circuit and its outputs have to be observed. Controlling and observ- 

ing the state of the circuit is dme by shifring data sefially into the circuit. 

The application of one pattem consists of four distinct events [20, 331: 

(1) Shift data into the scan chah/ receive data from the scangut pin. For a circuit with 

a scan chain composed of n flip-flops, n clock cycles are required by this step. 

(2) Force values on the primary inputs 

(3) Measure values on the pnmary outputs 

(4) Apply a clock transition 

The time required to apply one test pattem is dominated by the first step, which re- 

quires n docks for a scan chain composed of n flip-flops. Because the number of flip-Rops 

in a circuit is much greater than the number of inputs and outputs, the data applied to the 

circuit is cornposed pnncipally of the sequence loaded into the scan chah and the expect- 

ed sequence to be loaded out from the scan chain. Since each pattem involves loading the 

scan chain, this method of applying patterns to a circuit is often labeled test-per-scan. 

3.2.3 Test Generation 

One of the most important benefits of scan is that test generation is reduced from sequen- 
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tial to combinational. This represents a major reduction in computational complexity as 

the dimension of generation time is eliminated from the problem. Furthermore, test gener- 

ation for scan designs is reduced to test generation for combinational circuit since the state 

lines cm be controlled and observed. Each state line can be seen as a pseudo-input of the 

circuit and each next state line as a pseudo-output. 

Tests for scan designs have the potential to achieve very high fault coverage as most 

faults can be targeted by test generation using combinational ATPG. Methods based on se- 

quential test pattern generation tend to achieve lower fault coverage because many faults 

have to be abandoned due to the computational complexity of sequential ATPG. 

3.2.4 Trade-offs of Scan Designs 

As was seen, scan design methodology trades area, performance and test application time 

to enhance fault coverage and reduce test generation time. In effect, multiplexers. addi- 

tional prirnary inputs/outputs pins have to be inserted to implement the scan, which may 

represent more than 15% of addition hardware [33]. Test vectors have to be shifted serially 

in and out of the scan chain, which tends to give long test application tirne. In order to im- 

plement the scan chain, multiplexers have to be inserted in front of each flip-ffop. Some of 

these rnultiplexen are likely to be in the critical path of the circuit and will therefore influ- 

ence the performance of the circuit. Furthermore, it is very difficult to test the circuit at op- 

erational speed due to the slow loading and unloading of patterns. Finally, scan design 

methodology imposes many rules to designers which makes the design effort more labori- 

ous. 

Despite these drawbacks, scan is often the only method to achieve complete fault cov- 

erage of sequential circuits. Other methods which rely on sequential test pattern genera- 

tions rarely obrain complete fault coverage, as a large number of faults are dropped 

because of the large search space. 
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StilI, some methods have been proposed to reduce the penalty of scan while keeping 

most of the advantages. The partial-scan method uses a subset of the flip-flops in the cir- 

cuit to build the scan chain. Dunng testing, the circuit behaves as a sequential circuit and a 

sequence of scan-patterns may have to be applied to cover a fault. However, by carefully 

choosing the flip-flops in the scan chain, it is possible to attain high fault coverage. The 

multiple scan method uses more than one scan path to shorten the test application time. It 

is considered next. 

3.3 Multiple Scan Chains 
One of the disadvantages of scan design methodology is the long time it takes to load data 

in and out of the scan chain. Large designs have thousands of flip-flops. Loading them se- 

rially. for each test vector would impose unacceptable delays. One method to reduce test 

application time is to break the scan chain into many parallel scan chains. Instead of hav- 

ing one state register, a circuit has n parallel-shift state registers. The corresponding scan 

chains have their own scan-in and scanqut line but are controlled by the same 

scaii-enable line and the same clock signal. 

Test patterns for a circuit with n scan chains are loaded n-bits at a time. Therefore. the 

test application time is reduced by a factor of n compared to a sirnilar single scan design. 

For example, a circuit with a single scan chain with 1600 flip-flops would require 1600 

clocks per pattern, whereas. a circuit with 16 scan chains, each composed of 100 flip-flops 

require 100 clocks per pattern. 

Most scan-based designs have multiple scan chains to insure that the test application 

time is reasonable. 
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3.4 Boundary Scan 
Scan design principles cm be applied to any signals, not only to the state lines. In particu- 

lar, they can be applied to the input and output ports to form a boundary scan chain 1321. 

This technique is particularly useful to test interconnections between ICs on a pnnted cir- 

cuit board (PCB) and to access each IC with very few lines. 

Design with boundary scan attach a special scan ceIl to each input/output port and link 

them serially in a scan c h a h  On a printed circuit board with boundary scan, the scan 

chains of each IC are linked together (Fig. 3.2). By setting special control signals, the pins 

of each ICs are observed and controlled by shifting data in andor out of the boundary 

scan. Also. access to the interna1 scan chains can be gained to test each IC individually. 

lnterconnect 

:Q::/:p: <$: 
Test Data In (TDI) Test Data 01 

Test Clock (TCK) 

Test Mode Select (TMS) 

~t (TDO) 

- - - - 

Figure 3.2: Boundary Scan 

A standard implementation of boundary scan has been adopted by many circuit manu- 

facturer~ (IEEEIANSI standard 1149.1-1990). The standard specifies not onIy the design 

of the scan ce11 but also the boundary test protocol. An IC with boundaiy scan contains a 

test access port (TAP) controller and provides four extra pins: TCK(test clock). TMS(test 

mode seIect), TDI(test data in), and TDO(test data out). 
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The TAP controller handles the test protocol and should support the following modes: 

(1) Externai: In this mode, the interconnects between ICs on a board are tested. 

(2) Intemal: This mode ailows for the modules on the chip to be tested. (This mode is 

not a strict requirement bit is usually irnplemented) 

(3) Bypass: In this mode, the boundary scan of the IC is bypassed. 

ary 

the 

(4) Sample: The values on the prirnary inputs and outputs are sampled into the bound- 

scan. 

(5) Built-in self test: If the chip has built-in self test capabilities, this mode instructs 

chip to test itself. 

3.5 Test Pattern Generation for Scan 
There are many approaches to generate patterns for scan-based designs. As was seen in 

Chapter 7, these methods are classified as random, deterministic, exhaustive. and hybrid. 

3 .S. 1 Classical Approaches 

As was seen in chapter 1, the most prevalent method for scan-based design is determinis- 

tic-stored pattern testing. Using this method, the test patterns that achieve complete fault 

coverage are stored in memory and are applied successively by reading the content of the 

memory. However, the large amount of memory required makes this approach highly un- 

attractive. For each pattem, the sequence to be shifted in the scan chah has to be stored as 

well as the expected response to br shifted out. 

This section reviews two major techniques that were proposed to reduce the amount of 
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test data. Both techniques are based on mixed-mode test generation: applying random pat- 

terns to cover the majonty of faults and applying deterministic pattems to cover the re- 

maining faults. The techniques are weighted random pattern testing and reseeding of 

multiple-polynornial Zinear feedback shzfi register. 

3.5.2 Weighted Random Pattern Testing 

Often, hard-to-test faults are difficult to cover because they require test pattems with a 

large proportion of Os or 1s. Such pattems are rarely generated by a random generator for 

which the probability of generating a binary 1 is 0.5. For example. a 20-input AND gate 

requires al1 its input to be high to detect the output stuck-at 0. If the inputs of the AND 

gates are randomly generated, this input pattem will occur with probability T ' O .  

Weighred randorn pattem testing [Il.  501 uses a speciai circuit. to bias the bit proba- 

bility of a random generator to increase the likelihood of generating pattems that will cov- 

er hard-to-test faults. Essentially, deterministic patterns are encoded as weight 

information. i. e., the proportion of Is in the generated sequence. This weight information 

is organized in weight sets. Each weigth set contains weight data for each input of the cir- 

cuit, including the pseudo-inputs. 

Fig. 3.3 shows an example of a circuit that produces sequences with weights 0.5.0.25, 

0.125,0.0625,0.75,0.875 and 0.9378. Each line in the circuit is labeled with the weight of 

the corresponding signal. The circuit uses the well-know property of AND gates, i.  e., the 

weight at the output of an AND gate is the product of the weight at its inputs. A multiplex- 

er is used to select which biased sequence to use. The XOR gate at the output is a pro- 

grammable inverter. An inverter generates a sequence with weight 1-it- if its input 

sequence has weight W. 

The circuit uses three lines to select the weight of the sequence to be generated. In 
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Randorn generator 

Figure 3.3 : Weighted sequence generator 

most practical implementations. four bits are used. In [I  11, it was shown that weighted 

random testing greatly reduces the amount of memory required to store deterministic pat- 

terns. However, weighted randorn testing has several drawbacks 

( 1 ) For a circuit with n scan chains, a pattern generator with 4n flip-flops is required to 

generate the different weighted sequences. Hence, vely large generators are required. For 

applications were the generator is to be placed on the chip (for instance. built-in self test). 

the overhead is enomous and preclusive. 

(2) Each weight set is composed of four bits for each input or pseudo-input. Large de- 

signs contain thousands of inputs and pseudo-inputs and need hundreds of weight sets. 

Consequently, even though weighted random pattern testing reduces the test data volumes, 

it may still impose excessive memory requirements. 

(3) The number of patterns required to obtain complete fault coverage is an order of 

magnitude greater than for detenninistic testing [21]. This lengthens the test appIication 

time dramatically which may make it costly for production testing. 
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3.5.3 Reseeding of Multiple-Polynomial S hift Register 

In general, test pattern generation algorithms targeting a set of faults produce test cubes' 

with very few specified bits. Deteninistic cubes targeting hard-to-test faults, for instance, 

often have Iess than 30% of their bits specified. Furthermore, the nurnber of specified bits 

in test cubes varies significantly. Some test cubes will have 30% of their bits specified 

while others will have fewer than 5% bits specified. 

Fig. 3.4 shows typical distributions of the number of specified bits in deterministic test 

cubes [52].  In the first graph, the number of positions in each cube is 436, while tne num- 

ber of specified positions varies from 4 to 67. Thus, not more than 15% of the positions are 

specified in the test cubes. Similady, in the second graph, the number of positions in each 

cube is 2522. The number of specified positions varies from 5 to 137. In all test cubes, less 

than 5 8  of the bits are specified. 

1. In this thesis. cubes are "seen" as sequences of Os, 1 s and xfdon't cares). A po- 
sition thût is either O or 1 is said to be specified.while a position thrit is x is said to 
be unspecified. For example. the sequence (O. 1. x) is a cube with two specified po- 
sitions. See chapter 4 for mon information on cubes. 
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Very few methods have been proposed to cornpress and decornpress test cubes by ex- 

ploiting the fact that, often, they have very few specified positions. 1281 proposed a very 

attractive approach which encodes detemiinistic pattems as seeds of a linear feedback 

shfi register or LFSR. Each deterministic pattems is generated by the LFSR in two main 

steps. First, the LFSR is initialized with the corresponding seed. Then, it is clocked for a 

fixed number of cycles to fil1 the scan chains. 

It is rnuch more economicd to store LFSR seeds rather than the corresponding deter- 

ministic pattems: an LFSR seed requires much less memory than a detenninistic pattern. 

Furthemore, the seeds are calculated by solving systems of linear equations (modulo 2). 

which is a computationally simple operation. Hence, the conversion between seeds and 

deterministic patterns is perforrned rapidly and cheapiy. 

The approach assumes that there is an LFSR on the chip to generate the deterministic 

patterns. For some circuits, the LFSR has to be insened at the expense of many flip-flops. 

For other circuits, like those with built-in self test, an LFSR is already on the chip to gen- 

erate random pattems (see Section 3.6.1). The LFSR can be re-used to generate detemiin- 

istic patterns. In essence, the LFSR is used as a rnixed-mode generator of patterns. It is 

cycled in autonomous mode to generate pseudo-random pattems to cover the easy-to-test 

faults. Then, it is re-loaded with pre-computed seeds to generate deterministic pattems tar- 

geting the remaining hard-to-test faults. 

The technique was improved in [21] and [22] by encoding groups of cubes rather than 

each cube separately. The techniques exploit the fact that the LFSR sequences are inde- 

pendent of the length of the test cubes. Thus, it is possible to encode a group of test cubes 

rather than one cube at a time. By using clever concatenation techniques, the group of 

cubes are encoded more efficiently than if they were encoded separately [22]. As a result. 

the compression effectiveness was significantly enhanced. On the average, a test cube 

with s specified positions is encoded with an s-bit word which yields high compression ra- 

tios. 
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The decompression structure is a programmable LFSR, called a multiple-polynomial 

LFSR (MP-LFSR) with 16 possible feedback configurations. Through special control 

lines, its feedback network is prograrnmed to implement one out of the 16 possible config- 

urations. Fig. 3.5 shows the general architecture of MP-LFSR reseeding as proposed in 

[21-23, 481. The MP-LFSR is used to generate the deterministic patterns. Each group of 

test cubes is encoded into a seed and a polynomial identifier. In order to generate a group 

of deterministic patterns, the LFSR is loaded with a seed and the feedback interconnec- 

tions are prograrnrned with the polynomial identifier. Then, the LFSR is cycled to generate 

each of the cubes in the group. This technique can also be used to implement a rnixed- 

Decoding Programmable CUT 
Logic 

T Analyzer 

ID Seeds 

Figure 3.5: Decompression scheme based on Multiple Polynomial LFSRs 

mode generator [23, 481. Using this technique, the MP-LFSR generates pseudo-random 

pattems to cover the easy-to-test faults in the circuit. The same MP-LFSR then generates 

the deterministic pattems. 

MP-LFSR reseeding has the potential to greatly reduce the amount of test data re- 

quired to test scan-based designs, but may require significant area overhead. It was shown 

that a test cube with s specified bits is encoded with approxirnateiy s bits. For the disuibu- 

- 
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tions shown in Fig. 3.4, this would corresponds to a reduction of a factor greater than six 

since test cubes have fewer than 15% of their positions specified. However, the technique 

assumes that a MP-LFSR is implemented on the chip. In order to implement the MP-LF- 

SR, many flip-flops and XOR gaies may be necessary. 

3.6 Scan and Built-In Self Test 
Several suategies have been proposed to implement built-in self test for scan-based cir- 

cuits. These strategies are qualified as lest-per-scan or test-per-dock [4]. For test-per-scan 

techniques, the test pattern generator re-loads the scan chains serially for each pattern. 

Hence. only one pattern for each scan reload is applied. Ln contrast. test-per-dock tech- 

niques allow for one pattem to be applied at each clock cycle. The test pattem generator 

does not reload the scan chains for each pattern. The focus here is on test-per-scan ap- 

proaches. 

BIST schemes incorporate a test pattem generator and a test response analyzer. Let us 

consider the implementation of a test pattem generator for BIST. 

3.6.1 Test Pattern Generators for BIST 

One objective of any BIST scheme is to incorporate a test pattem generator according to 

the following requirements. A test pattern generator should generate patterns that cover al1 

faults and require: (1) low area overhead; (2) acceptable test application time; and (3) ac- 

ceptable memory requirements. 

Several generators have been proposed for BIST. 
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ROM-based generators 

The simplest generator of test pattems is composed of a ROM unit and a counter [3]. The 

ROM stores a set of deterministic patterns that covers al1 faults in the circuit, i. e., the 

ROM stores a complete test set for the circuit. The counter is used during test application 

to step through all the valid ROM adàresses. For each address supplied by the counter, the 

ROM drives on its output a new pattern that is applied to the circuit under test. 

Even though this type of generator achieves complete fault coverage in an acceptable 

number of patterns, it is not feasible for most scan-based circuits because of the huge 

memory requirements associated with deterministic patterns. Even for smdl circuits. the 

size of the ROM may be prohibitive. As an example. the circuit used as example in Chap- 

ter 1 would require a SZMbyte- ROM to store the test patterns. 

Exhaustive Generators 

Exhaustive pattern generaiors generate al1 possible patterns that can be applied to a circuit. 

For a circuit with n inputs, al1 Zn possible pattems are applied. A simple binary counter or 

Gray-code generator are examples of exhaustive generators. 

This type of generator guarantees detection of al1 testable faults. Furthemore, it can be 

implemented with moderate area overhead. However, the number of pattems that have to 

be generated is prohibitive. 

Pseudo-Random Generators 

Linear sequential circuits are often used to generate binary sequences. By imposing some 

constraints. the generated sequences, although deterministic and repeatable, pass some im- 

portant randomness properties [Ml. Hence, these circuits are often used to generate pseu- 

do-random patterns. 
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The most popular pseudo-random generator is the linear feedback shifr regitter [18]. 

The general theory of LFSR will be covered in Chapter 4. Other pseudo-random genera- 

tors comprise cellular automata circuits 1241, and more complex structures, like GLFRSs 

[36] and segmented LFSRs 1261. 

Pseudo-random generators, in general, do not require excessive area overhead. and in- 

tegrate well with scan. However, since the pattems are random, it is often difficult to 

achieve complete fault coverage. In fact, most circuits have random-pattern resistant 

faults, i. e., faults that have low probability of being covered by random pattems. For these 

circuits, it is impossible to achieve complete fault coverage with a pseudo-random genera- 

tor unless some circuit modifications are imposed [44]. 

Hybrid Approaches 

Hybrid or mixed-mode generators combine two types of pattems to achieve complete fault 

coverage in an acceptable number of pattems while requiring acceptable memory require- 

ments. The most popular type of mixed-mode generators use pseudo-random and deter- 

ministic pattems. The pseudo-random pattems cover most of the faults in the circuit. The 

deterministic pattems cover the remaining undetected faults. 

MP-LFSRs are example of a rnixed-mode generator. When clocked autonomously, 

they generate pseudo-random sequences that are used to cover most faults with very little 

memory (only the initial seed). Then. the remaining faults are covered with deterministic 

pattems. The deterministic pattems are generated by loading the MP-LFSR with pre-cal- 

culated seeds and clocking it autonomously to apply one pattern. Weighted random pattern 

generators are also examples of mixed-mode generators. Sequences with weight 0.5 are 

used to cover the easy-to-test faults. Then, the generator uses weight information to bias 

the generated sequences to generate detenninistic pattems to cover the hard-to-test faults. 

Yet, mixed-mode generators tend to require excessive area overhead. Generators for 

- -  - -  
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weighted random patterns required four flip-flops for each scan input and bias circuitry. 

The overhead in this case tends to be unreasonable. Similarly, generators based on MP- 

LFSRs tend to require a large number of flip-flops and XOR gates. 

3.7 Motivation 
High test quality levels dictate 

coverage with moderate costs. 

of Thesis 
the use of pattem generators that achieve complete fault 

These requirements are valid for circuits with BIST, for 

which the test pattem generator is onthip and those without BIST, for which an external 

tester generates the pattems. 

The requirements are not met by pseudo-random pattem generator (used in autono- 

mous mode only). As was seen, linear feedback shift registers, cellular automata, and oth- 

er linear circuits, cannot achieve complete fault coverage in an acceptable number of 

pattems without imposing numerous circuit modifications because of random-pattern-re- 

sistant faults, 

On the other hand, mixed-mode generators are very prornising since they achieve 

complete fault coverage with moderate memory volumes and test application times. Two 

types of mixed-mode generators were proposed: weighted pattem generator and MP-LF- 

SRs. Weighted pattem testing greatly reduces rnemory volumes but the memory require- 

ments still tend to be enormous. Furthemore. the area overhead to implement the scheme 

rnakes it impossible to use for BIST applications where the generator is implemented on 

chip. Reseeding of MP-LFSR is an attractive method to cornpress deterministic test cubes. 

However, the MP-LFSR required to generate pattems tends to be large. Consequently, im- 

plementations of the MP-LFSR may impose significant area overhead. Funhermore, the 

technique was investigates only for circuits with a single scan chains. NO results or feasi- 

bility study have been reported for circuits with multiple scan chains. 
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This thesis proposes a new technique to generate deterministic pattems while requir- 

ing little area and littie memory requirements. The technique is based on the reseeding of 

an LFSR but uses variable-length seeds to compress deterministic pattems. Each deter- 

ministic pattem is encoded into a seed whose length is ailowed to be smaller than the 

Iength of the LFSR and is ailowed to Vary from pattem to pattern. It will be shown that 

variable-length reseeding, even though it encodes each deterministic pattem separately, 

achieves encoding results equal or better than schemes based on concatenation [52].  

The decompression hardware can be implemented with minimal area overhead by 

sharing flip-Rops with the scan or other modules. The circuit under test is already corn- 

posed of many flip-flops. By re-using these flip-fiops. it is possible to implement the de- 

cornpressor without adding any new flip-Rops. The sharing of flip-flops with the scan 

chain is not possible for techniques that rely on concatenation. This is because the content 

of the MP-LFSR has to be preserved during the applications of each test pattern in a test 

group. If scan flip-Rops were used, the content of the MP-LFSR would be overwritten 

while the response of the circuit is loaded into the scan chain. 

The proposed scheme can be used for extemal testing in which the seeds are stored in 

the memory of the test equipment. The device under test have on-chip decornpressor 

which decompresses the deterministic patterns as they are vansmitted to the chip. Hence, 

the scheme reduces the amount of test data to store in the tester. The arnount of data tram- 

mitted to the device under test is also reduced since decompression occurs on the chip. 

The proposed scheme can aiso be used to design and implement a mixed-mode generator 

for built-in self test. Test pattem generation is one of the objective of any BIST scheme. 

For BIST, memory is often the most expensive resource and the capacity between modules 

may be limited. By using the technique introduced in the thesis, it is possible to design a 

rnîxed-mode generator that achieves complete fault coverage with acceptable memory re- 

quirements. 

The scheme targets scan-based designs with Signature Anaiysis as shown in Fig. 3.6. 
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It c m  be applied to circuits with many scan chahs. It is not restricted to designs with a 

single scan chah. 

Figure 3.6: Multiple scan design with Signature Analysis 
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Chapter 4 Encoding Test Cubes as 
Variable-Length Seeds of a 
Linear Feedback Shift Register 

4.1 Introduction 
Linear digital circuits form an important class of circuits. They are extensively used to 

compress and decornpress information, to generate codes, especially error-correcting 

codes. to encode information in cryptography applications, and to implement self-check- 

ing circuitry [la]. Linear circuits are composed of only two components: (1) D flip-flops. 

and (2) Modulo-2 adders, i. e., XOR gates. These components c m  al1 be implemented in 

hardware with modest area requirements. 

A Iinear circuit, whether combinational or sequential has interesting properties. If the 

circuit is combinational and implernents a functionf(oo, a ,, ..., nk., ), the function f can al- 

ways be expressed as hoao+h lal+...+hk.lak*l (mod 2), where the hi's are binary constants. 

If the circuit is sequential with binary vector V(0) = (ao, a i ,  ..., ak.,) representing the ini- 

tial state of the circuit, then, the state of the circuit after the ilh cycle can be obtained from 

the following formula: 

where Mkk is the cornpanion matrix of the circuit. 

- 
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An important sub-class of linear circuits are linear feedback shifr registers. This struc- 

ture is very often used to generate test patterns for scan-based circuits because its imple- 

mentation requires moderate area costs, its shifting properties integrate well with scan 

chahs and the sequence of Os and 1s it produces pass several randomness tests. 

This chapter demonstrates that LFSRs can be used as a mechanism to compress and 

decornpress deterministic test cubes. The main focus is to introduce the concept of vari- 

able-length reseeding which is a novel technique used in Chapter 5 to generate determinis- 

tic patterns to test scan-based designs. 

4.2 Basic Theory of LFSRs 
A shifr register is a series of B ip-Rops with one input and one output. The flip-flops are ar- 

ranged such that, at each cycle, the content of each flip-flop is shifted to the next one. 

while the value of the input is loaded into the first flip-flop. The output is connected to the 

last flip-flop and constantly monitors its value. Fig. 4.l(a) shows an example of a 5-bit 

shift register. 

A linear feedback shift register, or LFSR, is a shift register with a special linear func- 

tion of the state flip-Rops connected to its primary input. This special linear circuit is 

called the feedback nenvork of the LFSR. If the initial States of the fiip-Bops are denoted 

by ao, a l ,  .... at .~,  the feedback function of the LFSR can aiways be expressed as hono + 

h p l  + ... + hk-,ak-, (mod 2), where the hi's are binary constants. 

There are three important definitions related to LFSRs that will be used extensively in 

this thesis. The length of the LFSR is the number of flip-flops it is composed of. A feed- 

back or a feedback tap is a connection from the output of an LFSR flip-dop to the feed- 

back network. Finally, the number of feedback is the number of such connections. 

-- 
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(b) Linear feedback shift register 

Figure 4.1 : Shift Register and LFSRs 

+ Output - Input 

The output of the LFSR at successive time steps forms a periodic sequence of Os and 

(a) Shift Register 

t 

1s. The period P of a k-stage LFSR is always smaller than or equal to ?LI. Sequences 

wit h period ~ = 2 "  1 are called maximum-length sequences, or ni-sequeiwes. These se- 

quences pass several randornness tests; thus. they are often called pseudo-random se- 

quences. The following lists some of these randornness properties: 

Property 1. The number of Os and 1s is airnost the same. In fact, the number of 1s differs 

from the number of Os by one. 

Pmperty II. One half of the runs have length 1, one fourth have length 2. one eighth have 

length 3, and so on. 

Property In. (Autocorrelation property) Any shifted version of the sequence agrees in 2"" - 
1 positions and differs in 2"-'. 

4.2.1 Linear Recurrence 

The sequence produced by a k-bit LFSR is denoted symbolically by ao, a l ,  a?, and so on. 
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where the first k-bits (ao, a l ,  ..., uk-,) are the initial values of the LFSR flip-flops. The set 

of initial values A = (ao. ai, ..., ak.l) is called the seed of the LFSR. 

The feedback function defines a recurrence relation between the output bits. For an 

LFSR with k stages, the recurrence relation can be expressed as 

a i + t  = a O + h l a i + I  +h2ai+Z+. . .  + h t - l a i + t - ,  (mod2) 

where the hi's are binary constants. 

4.2.2 Characteristic Polynomial 

Let X be the delay operator. Then. the recurrence relation defined by the LFSR can be ex- 

pressed as 

or. ( 1  + i = h i X 1 + > r ) o ,  = O (mod 2) 
r = l  

k -  l 
where 1 + hi$ + 2 is the characteristic polynornial of the LFSR. It cm be seen that 

i =  t 

the degree of the characteristic polynomial is equal to the length of the LFSR. Further- 

more, the number of tems in the polynomial is equal to the number of feedbacks in the 

LFSR minus 1. 

In fact. the characteristic polynornial completely defines the structure and the proper- 

ties of the LFSR. By imposing constraints on the characteristic polynomial of an LFSR, i t  

is possible to guarantee certain properties about the generated sequence. Primitive polyno- 

ntiats over GF(2) are of particular interests here [18]. 
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Theorern 4.1: A polynomial h(X) is primitive if and only if the sequence produced by an 

LFSR with characteristic polynomial h(X) has maximum length. 1181 

Theorem 4.2: A polynomial of degree k is primitive if and only if i f  is irreducible (mod 

3k- i 
2 )  and it divides the polynomial + 1 (mod 2). [18] 

Theorem 4.3: There is at least one primitive polynomial for every degree. In fact, the 

number of primitive polynomial of degree k is equal tu ~ ( 2 ~ 4  )/k where E() is the Euler 

finction. Table 4.1 gives the number of primitive polynomials for degrees 1. 2.4. 8, 16 and 

24. [ la]  

1 Degree 1 Number of primitive polynomials 1 

Table 4.1 : Number of primitive polynomials (over GF(2)) 

4.2.3 Relation between Seed and Generated Sequence 

Fig. 4.2 shows a 3-bit LFSR with characteristic polynorniai x~+x'+I and with initial seed 

A= (ao, a , ,  aZ). The m-sequence produced by the LFSR has a period equal to 7. and hence, 

only the fint seven bits generated by the LFSR are kept. The figure lists al1 the combina- 

tions of initial seeds and enurnerates the corresponding sequences. 

As can be seen, there is a one-to-one relationship between the initial seed of the LFSR 

and the generated sequence. Given the seed, the sequence is cornpletely specified, and vice 

versa. 

Since an LFSR is a linear circuit, the relationship between the seed of the LFSR and 
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the generated sequence cm be expressed mathematically as follows 

where is the dot product, M is the companion matrix of the LFSR. Equations (5)  fol- 

lows directly from equation (1) .  The dot product is used to select the sequence of the first 

flip-Rops which generated the LFSR sequence. 

k -  1 

The companion rnatnx of an LFSR with characteristic polynomial i + 1 k , . ~ '  + X' is 
1 = 1  

Equation 5 is linear. and hence, the relationship between the seed and the genenred se- 

quence is one-to-one and linear. 

LFSR Seed Sequence 
0000000 
O 1  11001 
t 1 lOOlO 
~001011 
101 1100 
l lO0lOI 
0101 110 
00101 1 1  

Figure 4.2: Linear, one-to-one relationship between seed and LFSR sequence 
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4.3 LFSR-Coded Cubes 
The one-to-one linear relation between the seed of an LFSR and its generated sequence 

can be used to compress and decompress information. For example, each 7-bit sequence in 

Fig. 4.2 can be compressed into a 3-bit seed. Later, these sequences are decompressed or 

recovered with two main LFSR operations. First, the LFSR is initialized with the appro- 

priate seed. Then, it is clocked for seven cycles. 

The number of LFSR sequences is much smaller than the total number of possible se- 

quences which limits the applications of this method to certain particular situations. In 

Fig. 4.2, the number of LFSR sequences is equal to z3. or 8, whereas the total nurnber of 

possible 7-bit sequences is 2', or 128. Clearly, it can be seen that a large fraction of 7-bit 

sequences cannot be encoded this way. 

However, the compression capabilities of LFSRs c m  be used to compress the deter- 

ministic test cubes generated by automatic test pattern generation algorithms. The result- 

ing cubes often have large proportions of unspecified positions, positions that can be either 

O or 1,  which makes it possible to encode them as seeds of an LFSR. 

Before the mechanism used to encode cubes is described, let us review the definitions 

and concepts related to cubes. Formally, a cube is a sequence of Os. Is, and don? cares 

which are denoted by the symbol x. The sequences (1, 1, x, x), (1, 1.0). (x, O. x, 1) and (0, 

x, O, 0) are al1 examples of cubes. The positions, or bits, in a cube may be specified or un- 

specifzed. A specified position is either a O or a 1, whereas an unspecified position is a 

don? care. Hence, the cube (O, x, x, 1, x) has two specified and three unspecified positions. 

Funhermore, a cube C = (co, cl. ..., covers a binary sequence B = (bo, b, ,  ..., bL-,) if 

and oniy if, for ail position i in the sequence, or Ci=x- For exarnple, the cube (1 ,x,x) 

covers the binary sequences (1,0,0), (1.0,1), (1,1,0), and (1,1,1) but does not cover the se- 

quence (O, 1,O). 

- -- . - 
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A cube C is compressed into an LFSR-seed A = (ao, al ,  ..., akJ by imposing that the 

sequence generated by the LFSR is covered by the cube C. This is equivalent to imposing 

that, for each specified position ci in C, an equality of the form of equation 5, i. e., 

(mod 2) 

This set of equations is linear. Therefore, to obtain the seed, a system of linear equa- 

tions has to be solved. If the system is consisfent, at least one seed can be obtained. How- 

ever, if the system is inconsisrent, no solution exists and the cube cannot be compressed. 

Section 4.3.3 will discuss how to guarantee (with arbitrary large probability) that a seed 

can be obtained. 

4.3.1 Example 

Let us consider the example of Fig. 4.3 in which a 3-bit LFSR generates 7-bit sequences. 

The characteristic polynornial of the LFSR is equal to x3+x'+1 and is primitive. In the 

example, a sequence covered by the cube C = (x,x, 1 ,x,O, 1,x) is to be generated by the LF- 

SR. The first column shows the LFSR sequence as a function of the seed A = (ao. QI. (19. 

The second colurnn lists the positions of the cube C. Combining the first two columns cre- 

ates a system of linear equations (modulo 2). Solving the system yields a seed, which is 

shown in the third column. If the LFSR is Ioaded with the seed A = (0,1, l), then the gener- 

ated sequence is (0,1,1,1 ,O, 1 ,O) which is covered by C. Hence, the 7-bit cube C can be en- 

coded as a three-bit seed. 
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LFSR Sequence Cube C 

Seed -ri- a2 = 

Generated 
Pattern 

Figure 4.3: Example of LFSR-coded cube 

4.3.2 Solving System of Linear Equations (modulo 2) 

Gaussian Elimination with maximum pivot is an effective algorithm to solve systems of 

linear equations modulo 2 [6, 341. The algorithm begins by forming an augmented matrix 

M corresponding to the system of equations. Then. it puts the rnatrix in row echelon form. 

Finally, it uses backward substitution to obtain one solution. 

A binary matrix M is in row echelon form if and only if it satisfies the following crite- 

na: (1) each non-trivial row has a leading 1. A leading entry is the first non-zero entry in a 

row: and (2) al1 elements below a leading 1 but in the sarne column are Os. 

There are well known algorithms to put a mavix in row echelon form [6]. These algo- 

rithms use two types of elementary operations to transform the matrix without affecting 

the final solution. The first operation consists of swapping two rows of the matrix. The 

second operation consists of adding one row to another. Because al1 coefficients are binary 

(mod 21, adding rows can be done using bit-wise XOR instructions. 

Fig. 4.4 surnmarizes the algorithm used to reduce a matrix in row-echelon form. In to- 
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tal, the algorithm required 0(n2)  bit-wise XOR operations, where n is the number of equa- 

tions. 

Once M is in row-echelon form, the solution can be read directly. For each row, the 

leading variable is assigned the value on the right-hand side. 

Fig. 4.4 shows the complete procedure to calculate the seed for the example of Fig. 

4.3. Combining the m-sequençe of the LFSR with cube C creates a system of linear equa- 

tions. This system is then represented mathematically with an augmented matrix M. The 

matrjx is then put in reduced echelon form, from which two different solutions are ob- 

tained. Finally, one solution is chosen to encode cube C. 

LFSR Sequenc Cube C - 
X 
X 
1 
X 
O 
1 
X - 

Echelon Matrix 
1 1 1 1 t 1  1 

System of linear equations 

Augmented Matrix 
I 00111 

Figure 4.4: Solving systems of linear equations (rnodulo 2) 

Solutions 
Seed 

-- - - - 
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4.3.3 Probability of Existence of a Solution 

Systems of linear equations (mod 2) have either one, many or no solutions. 

While encoding a cube into an LFSR seed, the probability that the system of equations 

has at least one solution depends on many factors [22]. The number of flip-flops in the 

LFSR determines the number of variables. The number of specified bits in C detennines 

the number of equations. The length of the cube, the position of the specified bits in it, and 

the characteristic polynomial have an impact on the dependence between the equations in 

the system. 

If the characteristic polynornial h ( X )  is primitive and has five or more terms. and the 

period of the LFSR is much larger than the length of the cube, the probability of solving 

the resulting system of equations. PSQI, is mainly a function of the difference between k. 

the degree of h ( X )  and s the number of specified bits in C [21-231. 

The probability PmI. was estimated for a number of cases [?LI. The results are summa- 

rized in Table 4.2. 

length of the LFSR. and S. 

k - s  

-2 
O 
I 
3 - 
4 
8 
16 
20 

the number of specified positions in the cube. 

PsOl 
0.06 
0.22 
0.6 1 
0.78 
0.88 
0.97 
0.998 

> 0.9999 
> 0.999999 

By using the results of Table 4.2, the Iength of the LFSR is chosen to make the proba- 

bility of encoding as high as required. In fact, by selecting the length of the LFSR to be 20 

Table 4.2: Theoretical values of PsoI as a function of k, the 
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units larger than the number of specified positions in the cube, the probability of encoding 

is greater than 0.999999. Also, from Table 4.2, probabilities of encoding for specific cases 

can be obtained. For instance, there is a 61% probability to encode a cube containing 32 

specified bits with a LFSR of length 32. 

4.4 Encoding Sets of Cubes 
An LFSR can be used as a mean to cornpress a set of test cubes into seeds. Later. the test 

cubes are re-generated by loading the content of the LFSR with the pre-calculated seeds. 

This approach of generating pattems is called reseeding [28] since the seed of the LFSR is 

changed to pnerate deterministic pattems. However, reseeding should not be confused 

with the approach of [41] in which the seed of the LFSR is changed randomly to improve 

the randomness of the LFSR sequence. 

In order to measure the efficiency of the encoding, a rneasure called encoding efficien- 

cy is used [22]. This measure is defined as the ratio of the average number of specified bits 

in the test cubes over the average number of bits to store the seeds. The encoding efficien- 

cy is expected to be between O and 1. The higher the efficiency, the fewer bits have to be 

stored. 

There are three main mechanisms to encode a set of deterrninistic test cubes: (1) en- 

coding each test cube separately; (2) encoding groups of test cubes; and (3) encoding each 

test cube as a variable-length seeds. The latter is the novel technique proposed in this the- 

sis. 

Given a set of test cubes, one can encode them separately 1281. The length of the LFSR 

has to be selected such that al1 test cubes can be encoded. Since the probability is inversely 

proportional to the number of specified bits in a test cube, the length of the LFSR is usual- 

ly adjusted such that the test cubes with the most number of specified bits c m  be encoded 
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into a seed. Hence, the length of the LFSR is determined directly by the maximum number 

of specified bits found in a cube. 

With this approach. the deterministic test cubes are compressed as seeds of a pre-de- 

termined LFSR. The encoding efficiency is sirnply equal to savg 1 k, where saVg is the aver- 

age number of specified bits in a test cube and k is the length of the LFSR. 

This approach has one important drawback that arises when the cubes in the set have 

high variation in the number of specified bits. For these cases, cubes with few specified 

bits will not be encoded efficiently [52] and tend to lower the average number of specified 

positions in the test cubes. As a consequence, saVg is often much lower than the length of 

the LFSR required. Therefore, the encoding efficiency of this scheme tends to be loa: 

Another approach to cornpress a set of cubes is to exploit the fact that the length of the 

generated sequence is independent of the length of the cubes. The idea is to concntenate 

the cubes in groups [21-23.481. Each group rather than each cube is encoded. 

The cubes are concatenated such that the total number of specified bits in each group is 

approxirnately equal. Hence, the compression obtained tend not to depend on the variabil- 

ity of the nurnber of specified bits. However, the length of the decompression LFSR used 

to generate the cubes has to be adjusted such that the test group with the highest total num- 

ber of specified bits can be encoded. Therefore, the length of the LFSR required by con- 

catenation techniques tends to be larger. 

The encoding efficiency of methods based on concatenation is equal to sgavg / k, where 

sBa, ,  is the average number of specified bits in a test group, and k is the length of the LF- 

SR. By using clever test set processing techniques [22], it is possible to make sgurg close 

to k. Hence, the encoding efficiency of these methods is very close to 1. 

However, concatenation imposes an important requirement: the content of the LFSR 

cannot be overwntten while it generates the cubes within one group. This additional re- 
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quirement prohibits sharing of hardware structure already on the chip. In particular, it is 

impossible to implement the LFSR by re-using flip-flops already on the chip (see Chapter 

5). In general, schemes based on concatenation tend to require many flip-flops, which may 

impose significant area overhead. 

Another method to encode a set of cubes is to use variable-length seeds. The next sec- 

tion is devoted to this technique. 

4.5 V'able-Length Seeds 
One very efficient method to generate a set of deierrninistic test cubes would be to adjus~ 

the length of the LFSR such that each cube is encoded with as few bits as possible. How- 

ever, this approach would be difficult to implement since the number of specified bits v u -  

ies greatly from pattern to pattern. 

Yet. the same effect is achieved by using seeds of varying lengths. The leizgtk of a seed 

is equal to n if and only if it can be expressed as (O, 0, ..., 0, 1, ük.,,+l, ak.,,+~. .... ak-1). Sirn- 

ilarly. a seed has a length shoner or equal to n if it can be expressed as (O, 0, ..., O. ak.,i. crk 

,,+1 ...., ak.]). For example, the seed A = (0,O. 1,0, 1) has length 3, while seed A = (O. 0.0, 

1 ) has length 1. 

From the above definition, a seed is divided into two parts. The first part consists of the 

first ( I r  - n) bits which are O by definition. The second part is non-trivial and is composed 

of the seed variables a$. 

If the content of the LFSR is assumed to be initially reset, only the second pan of the 

seed has CO be memonzed. The other part of the seed does not have to be stored since it is 

known to be O. For instance, a seed of length n (or shoner) is stored as (ak.,,,, nx.,,,~ .-.., nk- 

!) independently of the length of the LFSR. 

-- - 
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The overall method is cailed variable-length reseeding since the lengths of the seeds 

are adjusted to encode the test cubes. 

4.5.1 Example 

Let us te-consider the exarnple of Fig. 4.3. The seed was calculated to be (O. 1, 1) which is 

a seed of length 2. Assuming that the LFSR is reset prior to loading the seed. only the last 

two bits (1, 1) have to be remembered. Thus. the 7-bit sequence (x. x. 1, x, O, 1, x) can be 

compressed into a 2-bit seed. 

4.5.2 Expected Length of a Seed 

One very important parameter of variable-length reseeding is 14, the expected length of the 

seeds. On the average, a cube with s specified bits can be encoded with a seed of length I r .  

Hence, with the knowledge of the expected length of the seeds. it is possible to estimate 

the encoding efficiency as the ratio s 1 u. 

The following discussion develops a probabilistic model, based on [2 l ]  and [ E l .  that 

will establish P(n, s), the probability that a test cube with s specified bits can be com- 

pressed with a seed of length n or shorter. From rhis probabilistic model. the expected val- 

ue of the length of the seed is obtained and is used to calculate the encoding efficiency of 

variable-length reseeding. 

Fig. 4.5 illustrates the procedure to calculate the seed associated with the test vector 

(x. x, O, 1 .  x, x, O) obtained frorn a 3-bit LFSR with the polynomid .il3 + X' + 1 ifthe last 

bit of the seed is assumed O. The sequence of the LFSR in terms of the initial seed vari- 

ables is equated to the test pattern, which yields a system of 3 equations because there are 

3 specified bits in the test vector. The system of equations is consistent. Consequently, a 

seed of the form (0, a l .  a2) exists for the test vector. 
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~ ~ I c s I c ~ I  ~ 3 1  ~ 2 1  C I  1 C O ]  
X X O  l X X 0  

m-sequence Pattern System of equaffons 

- -- -- 

Figure 4.5: Example of procedure to calculate seeds with some positions assumed O. 

From the exarnple of Fig. 4.5, two observations can be formulated about the m-se- 

quence of the LFSR if some seed variables assume the value of O. First. there are some po- 

sitions in the m-sequence that are always O no matter what the value of the seed variables 

n ,  and a, are. Secondly, the m-sequence contains al1 the linear combinations of the vari- 

ables a ,  and a, and every distinct linear combination appears more than once. 

These two observations can be generalized to the case of a k-bit LFSR (associated with 

a primitive polynornial) loaded with a seed of the form (0, 0, ..., O, ak .,,, ng,i+l. .... ). 

where n is the number of variables not assumed 0. For this general case, the number of 

constant Os in the m-sequence is 2k-n - 1 and each distinct linear combination appears I " ~  

times in the m-sequence. 

In order to derive P(n, s), let us consider the process of forming the equations to calcu- 

late the seed for a test vector with s specified bits. At every step, a new equation is formed 

and the probability that the system of equations remains consistent is calculated. The pro- 

cess starts with an empty set of equations and stops after the s equations are formed. 

This process can be described by a graph G in which the vertices represent consistent 

systems of equations and the edges represent transitions that preserve the consistency of 

the system as a new equation is fomed. In G, the vertex X,,d denotes a consistent system 
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of I equations with rank d. Every edge is labeled with a weight representing the probability 

of the corresponding transition. The weights are functions of the rank d of the system. 

Fig. 4.6 shows the graph G. The process of forming the equations starts at the vertex 

Xoqo. As new equations are created, the state of the system changes and if it remains con- 

sistent, it is represented by one vertex of the graph. Two transitions that maintain the con- 

sistency of the system are possible since the next equation added may or rnay not increase 

the rank of the system. a(d) is the probability that the next equation does not increase the 

rank but preserves the consistency. P(d) is the probability that the next equation increase 

the rank. For the latter, the consistency of the system is guaranteed to be preserved. 

Figure 4.6: Graph G. 

To derive the transition probabilities a(d) and P(d), let us consider the state XrSd which 

relates to a consistent system of t equations with rank d. The system of equations compris- 

es t linear combinations of the rn-sequence of the LFSR. Since the rank is d, there are - - 
1 different linear combinations that are dependent on those contained in the system of 

equations. These linear combinations all appear 2"n times in the rn-sequence. If the con- 

stant 0's are included, the total number of positions in the m-sequence that are linearly de- 
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pendent on the ? linear combinations contained in the system of equations is (2d - 1)2"." + 
2k-tt - 1. Since t of these positions are already included in the system of equations, the pro- 

portion of dependent positions in the m-sequence but not in the system of equations is 

k - n  ( z d -  1)2 + 2 k - n - ~  - 1  = z ~ - ~  for 2'» I 

The probability that the next equation formed increases the rank of the system is 

d-tr 
1 - 2 . For such case, the consistency of the system is preserved. Hence. 

d - n  
P ( d )  = 1 - 2  

If the next equations added does not increase the rank of the system. the consistency of 

the system is no longer guaranteed and depends on the constant part of the new equation. 

Assuming that the specified bits in the test cube are random. the probability that the sys- 

tem remains consistent is 1/2. This implies that 

It is important to note that since some positions in the m-sequence contain constant 0's 

or sirnilar linear combinations, al1 States with 1 2 O, d 2 O have to be considered even 

if t > 7' - 1. For instance, the state X2,0 represents a consistent system of two equations 

having rank O, Le., the set of equations ( O = 0, O = O } . 

The probability that a seed of the form (0,0, ..., O, akmn, ..., ak.i) exists is equal 

to the probability that the corresponding system of s equations is consistent. It is equiva- 

lent to the probability of reaching the vertices X,, ,, XSwz. ..., X,,, as they represent a11 

the possible consistent systems of s equations. For each path, the transition probabilities 

are multiplied together and the final result is the sum of these products. For instance. the 

probability that a test vector with 2 specified bits c m  be encoded with a seed of length 2 or 
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shorter is obtained with 

P(n. s )  relates to seeds of length n or shorter, not directly to the actual lengrhs of the 

seeds. Let N be a discrete random variable that represents the actual length of the seed cor- 

responding to a given test vector with s specified bits. The probability that N = n, denoted 

by P[N = n]. can be expressed as 

P I N  = r i ]  = P ( n , s )  - P ( n - 1 , s )  

and the expected value of N,  denoted by u, can be calculated with 

For the cases where n and s are larger than 14, P[N = n] is mainly a function of 11-s and 

the expected value for N, obtained from equation (13). is approximately 

E ( N )  = s  (14) 

From the above derivation, the encoding efficiency is expected to be very close to 1. 

The above results can be formdized in a theorem: 

Theorem 4.4: Let C be a cube of length L with s specified bits, h(X) be a primitive pub- 

r~antial of degree k, and assume L is equal to zk-l. Then, the expected length of the seed 

encoding C is equal to S. 

Proof: Frum the above discussion. 

Theorem 4.4 is restrkted to cubes whose length L is equal to 2k1, the period of the m- 

sequence. This assumption is not very redistic: in most cases, the period of the m-se- 

- - - - - - - 
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quence is much larger than the length of the cube. Theorem 4.4 also applies to cases where 

L is shorter than the penod of the LFSR if the linear dependencies are somehow evenly 

distributed in the m-sequence [39]. 

Linear dependencies in LFSR sequences have been considered in several papers [9, 

131. However, the distribution of linear dependencies in the m-sequence of LFSR has only 

been considered in [39] where it was shown that linear dependencies in the m-sequence of 

primitive polynomiais with five or more terms tend to be un i fody  distributed. Extensive 

Monte Carlo experiments reported in [52] indicate that irreducibie polynornials with five 

or more terms tend to generate sequences in which linear dependencies are uniformiy dis- 

tributed. 

4.6 LFSRs to Generate Parallel Sequences 
LFSRs can be used to generate n parallel sequences, which are related to one another by a 

simple phase shift or delay [8, 26, 361. By carefully selecting the time shifts between each 

sequences, it is possible to obtain a set of sequences that are virtually unrelated. To gener- 

ate parallel sequences, it is necessary to get access to the value of many Bip-flops within 

the LFSR. In the following, it is assumed that the output of each flip-Rop can be utilized. 

There are two main approaches to generate parallel sequences from an LFSR [8]. The 

first approach adds a phase shifter function to generate each of the n sequences. The sec- 

ond approach breaks the LFSR into n segments. Each segment generates one of the se- 

quences. 

4.6.1 Usage of Phase Shifters 

Fig. 4.7 shows the first method to generate n pardlel sequences [8]. In essence, the se- 
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quences are generated by constnicting n different linear function of the LFSR state. Each 

linear function produces a sequence, exactly like the one produced by the LFSR, except 

for a time shift. The resulting network is called a phase shifer and consists of a tree of 

LFSR 

Phase Shifters 

- 
Sequence 4 

1 1 
Sequence 3 Sequence 2 

Sequence 1 

Figure 4.7: LFSR with phase shifters 

XOR gates. 

4.6.2 Segmentation of LFSR 

A k-bit LFSR can be broken into n interconnected segments, each of length (k 1 n)  [8,26]. 

Each segment is itself an LFSR and is used to generate one sequence. The segments are 

linked together by adding to their feedback networks taps taken from other LFSRs. For 

example, Fig. 4.8 shows a 15-bit LFSR broken into 3 segments. 

The sequences produced by the n segments are shifted version of the sequence pro- 

duced by an equivalent k-bit LFSR [8]. Therefore, usage of phase shifters and segmenta- 

tion produce equivalent hardware structures. 

As an exarnple, let us denve the equivalent characteristic polynomial of the segmented 

LFSR of Fig. 4.8. In order to denve the polynomial, the recurrence relation created by the 
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Sequence 1 

Sequence 2 

Sequence 3 

- - -- - - 

Figure 4.8: Segmented LFSR 

feedback network has to be known. Let a, be the ith bit generated by the j Ih segment and 

let X be the delay operator. The recurrence relations can be expressed as 

Altematively. the relations can be formulated in matrix form. i. e., 

(mod 2) 

The characteristic polynomid of a segmented LFSR is the determinant of the coeffi- 

cient matrix. In (16), the determinant of the coefficient matrix is XI' + x ' ~  + XI' + X" + 

x'O + x9 + x6 + + x3 + 1. Therefore, the segrnented LFSR of Fig. 4.8 is equivdent to 

a 15-bit LFSR with characteristic polynomid X" + xI3 + XI' + X I I  + XI' + x9 + x6 + 

X' + x3 + 1 and a phase shifter. 
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Chapter 5 Decompression Scheme and Its 
Implementation 

5.1 Introduction 
As was seen in Chapter 1, deterministic stored-pattern testing is increasingly unattrac tive 

for scan-based designs because of its huge memory requirements [ I l ,  281. Each de t edn-  

istic pattern has to specify the sequence to be shifted into the scan chains, the values to 

force at the inputs, the expected response of the circuit and the expected sequence to be 

shifted out of the scan. For medium to large sized designs, the resulting memory require- 

ments are prohibitive. 

However, in most cases, applying deterministic patterns is the only method to obtain 

complete fault coverage without imposing numerous circuit modifications [11, 781. Even 

after millions of random pattems are applied and many test points are added, most circuits 

will still feature a multitude of undetected faults. For applications where complete fault 

coverage is a must, a method to generate deterministic pattems without imposing huge 

memory requirements is of practical importance. 

This Chapter proposes a new method to generate deterministic patterns for scan-based 

designs with Signature Andysis or other compaction scheme. For these circuits, the mem- 

ory require to store deterministic patterns is dominated iargely by the input sequence(s) to 

be shifted into the scan chains. 
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In the proposed scheme, deterministic pattems are compressed as variable-length 

seeds of an LFSR and are stored in a memoy unit. Each digital integrated circuit hsc its 

own LFSR that is used to decompress and shift the input patterns into the scan chahs. 

For circuits with built-in self test, the LFSR used to decompress the deterministic pat- 

terns can be combined with the test pattern generator already incorporated with the circuit. 

The resulting module is a mixed-mode generator capable of generating random and deter- 

ministic patterns with little memory requirements. 

Section 5.2 described the decompression architecture. Sections 5.3 and 5.4 demon- 

strate how to implement the decompression LFSR in hardware or in software. 

5.2 Decompression Scheme 
The decompression scheme can be implemented in hardware as part of a built-in test strat- 

egy using rnixed-mode test vectors. The overall architecture consists of a test controller, a 

number of ICs with on-chip decompression hardware, and a memory unit (Fig. 5.1). To 

apply one deterministic pattems, the test controller fetches the compressed test data from 

memory and transfers it through channels to the ICs. The on-chip test hardware decom- 

presses the data it receives and applies the generated test vector to the circuit under test. 

The architecture is very general and can be implemented in many ways. The test con- 

troller can be off-chip or can be implemented by an embedded core. The decompression 

LFSR can be implemented in hardware or emulated by an embedded core. Similarly, the 

memory unit can be on the chip, on separate ICs, or part of some extemal test equipment. 

5.2.1 Test Data Format 

Deterministic pattems are encoded as variable-Iength seeds of an LFSR. 

Chapter 5: Decompression Scheme and Its ImpIementation 68 



Decompression Scheme 

Figure 5.1 : Decompression scheme 

Variable-length Seeds 
Memory b 

The encoding efficiency of the scheme depends on the format used to store the test da- 

ta. Since the seeds have variable-lengths, some additional information must be stored to 

specify the current length of the seed. In the proposed test data format (Fig. 5.3). it  is as- 

sumed that the seeds are first soned in increasing order of length. The format consists of 

two fields. The size bit indicates when to increase the size allocated to store the seed. 

When the size bit is 1, the size of the seed field allocated for the next encoding is increased 

by d bits. The seedfield contains the seed and some extra Os appended. These extra zeroes 

are included such that the length of a seed field can always be expressed as b + i*d where 

b is the size of the shortest seed. 

A set of p patterns c m  be encoded with p + n,,! + v bits, where n,,l is the total num- 

ber of bits in the seeds, and v is the total number of extra zeroes appended. 

I 
D 

D A 
D 1 

D 

. * * - - * * * * - - -  

~ C S  with 
Decompression 
LFSR 

The compression index is the ratio of the memory required to store the patterns explic- 

itly over the volume of compressed data. For a circuit with SBscan flip-flops, the compres- 

sion index can be expressed as p*S'/ @ + n,,l + v).  For the cases when nto,l is 

significantly greater than p and v, the compression index cm be expressed as p*Sg l n,,, 
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Extra zeroes 
C 

0 

Size Seed I I I 

Figure 5.2: Test data format 

ELIL 

For example, if the test cubes of a circuit with 1000 Rip-flops can be encoded into 

seeds of average length 50, then the compression index would be approximately 10. 

~ e d + d J  

5.2.2 Test Controller 

m- I 

1 
I 

a1 i 
m i  I 
m i '  

The test controller controls the decompression and application of deterministic patterns. 

This involves reading the test data from the memory unit and transfemng it to the on-chip 

decompression LFSR. In order to read the seeds from mernory and load the on-chip LFSR. 

the test controller has to maintain the current length of the seed. As the controller reads the 

data. if the size bit is 1, it increases the current length for the next seed by d bits. The func- 

tionality to maintain the length is implemented with a counter which increments by d bits. 

5.3 Hardware Implementation 
The decompression hardware reqiiired to generate detemiinistic patterns is an LFSR that 

can be re-initidized serially. However, the LFSR required for deterministic pattern gener- 

ation tend to require many flip-fiops [22, 52, 531. For some circuits, the number of flip- 
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flops may be almost 20% of the number of flip-Aops in the design. Fortunately, the LFSR 

c m  be implemented without requiring any additional flip-flops by using flip-flops already 

on the chip, like scan flip-fiops [52,53]. Furthemore, some circuits have built-in self test 

capabilities based on the STUMPS architecture. These circuits aiready contain an LFSR 

for pseudo-random pattern generation. This LFSR can also be utilized to implement the 

decornpressor 152,531. 

Scan flip-Bops cm be used to implement the decompression LFSR because the LFSR 

is re-loaded for each deterministic pattern. Consequently, the content of the LFSR can be 

overwritten after each pattern is applied to the circuit under test. As was noted in Chapter 

3, this property is not featured by schemes based on concatenation, for which the content 

of the LFSR has to be preserved for a number of pattems. 

The next subsections propose various hardware implementation of the decompression 

hardware. The implementations assume that there is one extemai pseudo-random pattern 

generator (PEWG) on the chip, implemented as a type 1 LFSR. This LFSR would be used 

in BIST applications to generate pseudo-random pattems. For circuits without BIST capa- 

bilities, the LFSR wouid have to be inserted. 

5.3.1 Implementation for circuits with a single scan chain 

Fig. 5.3 shows the decompression hardware for a single scan c h a h  The scheme requires 

only one extra feedback (controlled by means of an AND gate) from the scan chain, and a 

multiplexer to allow the seed to be shifted in. Durhg testing, there are two modes of oper- 

ations: random and deterministic. In the random mode, the extra feedback from the scan 

chain is disabled and the (BIST) LFSR is used to generate random pattems. In the deter- 

ministic mode, the extra feedback from the scan is enabled and two conuol signals are 

used to Ioad the seed and perform decompression: signal Reset clears the decompression 

LFSR, while signal Shifi controls the multiplexer to ailow the seeds to be shifted in. The 
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seeds are Ioaded by first resetting the decompression LFSR and then shifting the seed vari- 

ables serially through a muitiplexer into the LFSR. Once loaded, the seeds are decorn- 

pressed by exercising the decompression LFSR. 

Shift Reset 
CUT u::: 

l 
* I 1 

, 
t I v 

b . 
I 

Scan , 
t 

1 

# 

4 

1 1 Decompression 

- 

Figure 5.3: Decornpression hardware for circuits with a single scan chain. 

5.3.2 Decompression hardware for circuits with multiple 
scan chains 

One possible implementation of the decompression hardware for circuit with multiple 

scan chains is shown in Fig. 5.4. This implementation is the same as the one for circuits 

with a single scan chah except that a phase shifter (XOR tree) is used to generate more 

than one bit every clock cycle. The LFSR used for decompression is implemented by us- 

ing the flip-flops of the PRPG and some scan flip-flops. 

However, the scan Aip-flops are taken from only one scan chain. The number of flip- 

Bops in one scan chain may not be enough to extend the LFSR. Hence, this implementa- 

tion may not be adequate for al1 cases. 

- - --- 
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Figure 5.4: Decompressor implemented as an LFSR with phase shifter 

Fig. 5.5 shows a more general design of the decompressor for circuits with multiple scan 

chains. 

The decompressor is implemented by adding extra feedbacks from the scan chains and 

some multiplexers. The feedbacks (shown with dotted lines in the figure) are used to com- 

bine the PRPG with scan flip-flops to implement the decompressor. These feedbacks are 

fed to additional XOR gates between the flip-flops of the PRPG and are controlled by 

means of an AND gate. 

As shown in the figure, a feedback from a scan chain is fed to more than one site in the 

PRPG, If the scan chains are numbered from O to 2r-1, the feedback from scan number i is 

connected to positions (i+2') mod 2r, v = 0, 1,2, ..., r-1, of the PRPG. 

The same feedback connection from a scan chah is connected to the input of the next 

scan chain (through a multiplexer). By adding these connections between the scan chains 

and placing a multiplexer in front of the PRPG, a serial path through the decompressor is 

created. This senal path is used to load the variable-length seeds. 

Notice that the connection between two scan chains can be conrrolled using an extra 
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Figure 5.5: Decompression hardware for circuits with multiple scan chahs. 

AND gate to facilitate reset of part of the seed. Indeed, as the first s bits of the seed are 

shifted, the signal Reset can force the value shifted into a scan chah to be O and some 

parts of the decornpressor can be reset. Thus, by using this approach, it is possible to load 

variable-length seeds without having to reset the flip-flops pnor to loading each seed. 
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As in the single scan c h i n  case, the generator has two modes of operation: random 

and deterministic. In the random mode, the PRPG operates independently and generates 

pseudo-random patterns. In the detednistic mode, however, the extra feedbacks are en- 

abled to implement the decornpressor. By controlling the shifr signal, the vanable-length 

seeds are loaded one by one and decompressed. The seeds are loaded by shifting the seed 

variables serially. Once the seed is loaded, decompression is performed in parallel through 

the XOR network. The signal Resei is controlled to reset parts of the seed. 

5.4 Software Implementation 
Circuits based on data-path architectures constitute an increasingly large portion of inte- 

erated chips manufactured by the rnicroelectronics industry. The proliferation of embed- 
Li 

ded cores and high-performance cornputing systems. such as digital signal processing 

(DSP) circuits, micro-controllers, and micro-processors. rnakes it possible to use the func- 

tionality of these circuits to perform built-in self test rather than adding test hardware 

which can introduce area overhead and performance degradation. Recently. a new BIST 

scheme was proposed that utilizes the DSP core to test random logic [37, 381. The result- 

ing test sessions are controlled by software and use the data-path building blocks. such as 

adders, multipliers, and K U ,  to generate the test patterns and compact the test responses. 

5.4.1 Framework 

A typical BIST scheme used to test random logic is s h o w  in Fig. 5.6 (1371). 

The scheme uses the STUMPS architecture with the embedded processor serving as 

pattern generator and signature andyzer. The circuit under test (CUT) features many scan 

chains that are accessed through a scan buffer (register B) and are govemed by two in- 

structions: SCAN.SHIFT and SCAN.LOAD. Instruction SCAN.SHIFT loads the scan 

- 
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Figure 5.6: CPU core emulating decornpressor to test random logic 

chains for one cycle and uses register B as input and output of the shift operation. Instnic- 

tion SCAN.LOAD applies the scan pattern to the circuit under test and loads the response 

into the scan. 

This section demonstrates that the same core cm also be used to decompress and apply 

deterministic pattems. The proposed scheme is a prograrn (or microcode) that reads data 

from extemal rnemory to the local register file and decompresses the data to the scan 

chains of the circuit under test. Since there is no hardware overhead associated with the 

scheme, concatenation or variable-length reseeding could equally be used. The proposed 

scheme uses reseeding based on the concatenation of pattems. 

5.4.2 Scheme 

One objective of the software scheme is to minirnize the number of instructions needed to 

decompress the data since it bas an impact on the test application tirne. One way to mini- 

mize the number of instructions is to exploit die fact that ALUs perform bit wise opera- 

tions. By using a set of registers (see below), an ALU of width n c m  execute n LFSR 

segments in parallel, one segment per bit. 
. - . . . . - .. -- - - . . - . 
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Emulating LFSR-segments in parallel allows us to use one LFSR per scan chain. 

However, having one LFSR-segment per scan is not sufficient to encode detemiinistic pat- 

terns since the number of specified bits in each scan chah would be limited. In order to 

encode deterministic patterns, the segments should be linearly interconnected. Such sûuc- 

tures were considered previously in [8,26]. 

Fig. 5.7 shows an example of linearly interconnected LFSR-segments fomiing a de- 

cornpressor of width 3 and length 5. The LFSR-segments are interconnected by adding to 

iheir feedback networks taps from other segments. Fig. 5.7 shows the simplest type of 

connections where each segment is connected to a single neighboring segment and al1 the 

taps are taken at the same position. A segment X is said to be connected to segment Y 

when a tap from segment X is used in the feedback network of segment Y. 

Inter-segment taps 

Figure 5.7: Linearly-interconnected LFSR-segments. 

Without loss of generality, we assume that the width of the data path, n, is a power of 

two and is equal to the number of scan chains in the circuit under test. The scheme as pre- 

sented uses repeated 1's complement addition 1381 to ptrfom signature calculations. 
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The setup for a decompressor of length L consists of a circular buffer that stores the con- 

tent of the decornpressor and pointer H (Head) used to select the first element of the buffer. 

The circular buffer is organized such that memory word M[(H+i)  mod LI, i= O, 1, ..., L-I 

stores the ith bit of each LFSR (Fig. 5.8). 

It is assumed that al1 LFSR-segments implement the same feedback polynomial. This 

insures that the LFSR-segments cm be executed in pardel by the processor. Furthemore, 

it is assumed that the segments are linked together by an XOR interconnection network as 

follows: Assuming the LFSRs are numbered from O to Z r - 1 ,  the network connects the ifh 

LFSR to LFSRs number (i+2") mod 2; for v = 0, 1, 2,  ..., r-1. In addition, the inter-seg- 

ment taps are taken at the same horizontal position. This insures that each inter-segment 

connection can be implemented with a combination of one rotate (ROT) and one XOR in- 

struction. 

The use of a circular buffer allows for very efficient LFSR shift opentions. A shift op- 

eration does not invoive shifting the content of the memory words: it only involves incre- 

menting pointer H modulo L. As H is incremented, the previously referred memory 

location can be used to store the new element created by the XOR feedback network. Fig. 

5.8 shows the complete framework. 

Consequently, one cycle of a two dimensional decompressor, including signature cal- 

culation, consists of four main steps: (1) the word M[H] is shifted to the scan chain; (2) the 

response in register B is added (1's complement) to a reserved memory location (S); (3) 

XOR and ROT operations are used to calculate the new element generated by the XOR 

network of the decompressor; and (4) Pointer H is incremented modulo L. 
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Figure 5.8: Emulation of two dimensional decornpressor. 

5.4.3 Pseudo-Codes 

A pseudo-code irnplementation of one cycle of the decornpressor is shown below. 

/ /  1. Shi f t  word MLRI to ucaa chsin 
/ /  toad ragister B with new element 
B <- MfHl; 

/ /  Shift .cm chaine 
S W .  SHIFT; 

/ /  2. Signature cilculatioas 
// M d  (Ir complaxnant) reiponse to location S 
MLSI <- MCSI + 8; 
i r  (OVERFLOW) 

MCSI <- MfS] + 1; 
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/ /  3. implamentation of XOR natwork 
/ /  For: each faadback at position f 
MtK1 <- M[Hl XOR M[(H+f) mad LI ; 

/ /  Pot aach inter-LFSR tap at horizontal position T, 
/ /  and relative vertical porition v 
M[Hl <- M[H] XOR { M[(B+T) iauod t] ROT v ) 

/ /  4. Sncramant pointer H 
H <- (B+l)  mod L; 

Loading the seed into the generator merely consists of copying data from one place in 

memory to another. 

- -  
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Chapter 6 Experimental Results 

6.1 Introduction 
Extensive expenments were conducted to evaluate the merits and trade-offs of variable- 

length reseeding. The objectives of these experiments were to measure the main parame- 

ters of the scheme when applied to "reai" circuits and to identify various vade-offs that 

can be obtained as a function of test application time, area overhead, test dura. and CPU 

tinie. The relationships between these parameters and the number of scan chains were also 

of particuiar interest. 

The expenments were c d e d  out on the largest ISCAS'89 circuits. The ISCAS'89 

benchmarks are a set of 31 digital sequential circuits that were distributed at the Interna- 

tional Symposium on Circuits and Systems in 1989 [12]. The circuits are freely available 

and are used extensively by the research comrnunity to evaluate testing schernes. Conse- 

quently, results of experiments conducted on ISCAS circuits are often used as reference 

points. 

A mixed-mode test generation scheme was assumed where random and deterministic 

patterns are used to target al1 the testable faults in the circuit. The random patterns target 

the easy-to-test faults. The deterministic patterns cover the remaining hard-to-test faults. 

The single stuck-at fault model was used for dl the experiments. However, transition fault 

model, multiple stuck-at fault, and other fault models could have been used. The proposed 
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scheme is applicable to ail fault models as long as the deterministic patterns can be gener- 

ated. 

6.2 Hardware Implementation 

6.2.1 Methodology 

The experiment for each circuit consisted of the following steps: 

( 1 )  Insertion of n scan chains, each of approximately the same length. Circuit with 

1.4. 8, 16 and 32 scan chains were considered. 

(2) Fault simulation of 10K random patterns to remove the easy-to-test faults. 

(3) Generation of deterministic test cubes using ATPG software with dynarnic 

compaction routine. 

(4) Design of the decornpressor (LFSR). The decornpressor was implemenred as 

shown in Fig. 5.3 for circuits with a single scan chains; and as shown in Fig. 5.5 for cir- 

cuits with multiple scan chains. For the implernentation, it was assumed that a 32-bit 

PRPG (LFSR-type 1) was on the chip and could be used. The experiments were repeated 

for five different PRPGs (PO = x ~ ~ +  X ~ ~ + X '  '+ x3+1; P l  = x ~ ~ +  X ~ ~ + X " +  

X'~+X'~+X'"  xX+xS+l; P2 = xî2+x31+x2% x20+x14+ xl'+x8+ x2+1; P3 = 

~ 3 2 + ~ 3 ' +  ~ 2 3 + ~ 1 6 +  ~*4+xll+ xg+x*+l; p4 = x32+~28+ x * 5 + ~ 2 2 +  ~ 2 0  +x15+ 

X' 3+ ~ 2 +  1 ; P5 = x~~ + 1) to show that the results hold for a wide range of PRPG. 

For each circuit, the length of the LFSR (used for decompression) was selecred such 

that the test cube with the largest number of specified bits could be encoded with probabil- 

ity 0.999999. From the results of Chapter 4, the length of the LFSR was selected to be 
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S,,+20, where Sm, is the maximum number of specified bits in a test cube. 

(5) Compression of the deterministic patterns as seed of the LFSR. As illustrated 

in Fig. 5.2, the deterministic patterns were encoded as variable-length seeds of the decom- 

pressor. The increment d was chosen to minimite the number of extra Os. 

(6) Computation of the parameters. 

6.2.2 Results 

Table 6.1 shows the results after ATPG was performed to generate deterministic pattems 

targeting hard-to-test faults. The table lists the number of deterministic test cubes (NP). 

the number of scan flip-fiops (NSFF), the maximum and average number of specified bits 

in a test cube (Sm, and Sa,& the memory requirements to store the deterministic patterns 

and the CPU time (on a SunSparc 20) necessary to generate the pattems. 

- .  

Table 6.1 : Statistics after deterministic pattems were generated by ATPG 

Circuit NP NSFF Smax Savg Memory Req. (bits) [ CPU (sec) ' 

Table 6.2 shows the parameters of the decompressor in each case. The table lists the 

number of scan chahs (NS), the length of the longest scan chah (LS), the number of scan 

flip-flops re-used to implement the decornpressor (SFF), and the number of XOR gates re- 

quired to construct the feedback network and inter-LFSR taps (NXOR). 

The nurnber of XOR gates required depends on the PRPG that was used in the imple- 

mentation of the decompressor. The table shows the number of XOR gates (NXOR) that 

would have been required if PRPG Pl ,  P2, P3, P4 or P5 was used instead of PRPG PO. 
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The results for P l ,  PZ, P3, and P4 were the same. Hence. they were condensed in one col- 

umn. 

As can be seen, the number of scan Aip-flops reused is substantiai. In some cases, it is 

almost equal to 500. The column SFF can also be seen as the number of extra flip-flops 

that would need to be added if scan flip-flops could not be shared. Scheme based on con- 

catenation is an example of a scheme that cannot share flip-fiops with the scan 

Thus, these scheme would require many fiip-flops. 

Circuit 

s9234 

SFF 

7 
96 
96 
96 
96 
192 
192 
192 
192 
192 
256 
256 
256 
256 
256 
480 
480 
480 
480 
480 
224 
224 
224 
224 
224 

NXOR 
PO 
O 

20 
24 
64 
64 
O 
12 
32 
48 
96 
O 
12 
32 
64 
128 

O 
36 
32 
64 
160 

O 
32 
32 
32 
64 

NXOR 
Pl-P4 
O 

20 
24 
48 
64 
O 
12 
24 
32 
64 
O 
12 
24 
64 
96 
O 
36 
32 
64 
160 

O 
32 
24 
32 
64 

NXOR 
P5 
7 

20 
24 
64 
96 
O 
8 
24 
64 
128 
O 
12 
32 
64 
160 
O 
36 
36 
64 
160 
O 
24 
32 
64 
96 

Table 6.2: Characteristics of Decornpressor for each circuit 
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Table 6.3 shows the final results after encoding each cube into a variable-length seed. 

The table iists the number of scan chahs (NS), the volume of the compressed test data 

(TD), and the compression ratio (CR). The volume of compressed data was calculated us- 

ing the encoding format of Section 5.  The compression ratio was calculated by dividing 

the memory requirements of Table 6.1 with those of Table 6.3. 

Circuit 

s9234 

Table 6.3: Characteristics of Cornpressed Data 

NS 

1 

The compression ratio may depend on the PRPG used in the implernentaiion. The 

compression ratio obtained with PRPG PO is compared with the average compression ratio 

CR 
PS 
4.7 

4 
8 
16 
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obtained with polynomials Pl, P2, P3, and P4; and with the compression ratio obtained 

with P5. As can be seen, the compression ratio is sensibly the same for each case. 

6.2.3 Discussion of Results 

Several conclusions can be drawn from Tables 6.1-6.3. Clearly, no additional flip-flops are 

required to implement the decompression hardware as they are re-used from the scan 

chain. The volume of compressed data is modest. It is many times smaller than the volume 

of decompressed data. Also, there is an important trade-off between the number of scan 

chains. the test application tirne and the amount of test data: circuits with more scan chains 

require a shorter application time but need more XOR gates to implement the decompres- 

sor and a Iittle more storage. 

In a11 cases, the compression ratio is very impressive. For example, a compression ra- 

tio nearly equal to 8 was achieved for ~38417. The volume of test data without using any 

compression technique was 129 792 bits. By using the proposed technique, the volume of 

test data was reduced to 16 797 bits (for circuit with one scan chain). This is less data than 

what is required to reload the scan chah eleven times. 

If the same compression results obtained with s38417 are applied to the example used 

in Chapter 1, the memory required to store the test data would be reduced from S4Mbytes 

to 6.8Mbytes, which would allow less expensive test equipment to test the chip. Further- 

more, a board with ten similar chips would require 68Mbytes, instead of 0.5Gbytes. 

The most intensive step in terms of CPU usage is test generation. However, it can be 

seen from Table 6.1 that this step c m  be done in reasonable tirne on a workstation. Test 

generation requires at most 10 minutes for the largest circuit (~38584). Since caiculating 

the seeds is not a computationally intensive task, the CPU times for this step were not re- 

ported. For dl the circuits, the required time to calculate the seeds was at least an order of 

magnitude less than to generate the patterns. As an example, 3.4 seconds were required to 
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calculate the seeds for circuit s 13207. 

6.3 Software Implementation 

6.3.1 Methodology 

The experimental steps for the software implementation were almost the same as for the 

hardware implernentation: 

( 1 )  Insertion of n scan chains, each of approximately the same length. The experi- 

ments were conducted assuming a data path of width 8, 16 or 32. Furthermore, the number 

of scan chains was assumed to be equal to the width of the data path. Hence. circuits with 

8. 16 and 32 scan chains were considered. 

(2) Fault simulation of 10K random patterns to rernove the easy-to-test faults. 

(3) Generation of deterministic test cubes using ATPG software with dynamic 

compaction routine. 

(4) Design of the decompressor (LFSR). The software decompressor was designed 

as descnbed in section 5.4. Groups of eight patterns were encoded as fixed-Iength seeds of 

the decompressor using the concatenation method that was described in section 4.4. 

Thus, for the software implernentation, the pattems were encoded using the concatena- 

tion technique (see section 4.4). Concatenation was used for the software implementation 

since the encoding eficiency is very high (as high as for variable-length reseeding) and its 

major drawback (the necessity to used larger LFSR structures) does not have much impact 

if the LFSR structure is implemented in software. 

For a data path width n, the length of the decompressor was chosen such that the sire 
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of the decompressor, Le., n*L, is a constant for a given circuit and is greater than Sg- 

+20, where S,,, is the maximum number of specified bits in a group of eight test Max 

cube. 

( 5 )  Compression of the deterministic patterns as seed of the LFSR. 

(6) Computation of the parameters. 

6.3.2 Results 

Table 6.1 shows the characteristics of the decompression structure. The table enurnerates. 

for each circuit, the width of the data path, the polynornial of a11 the LFSR-segments. the 

tap positions where the connections between segments are taken, and the list of rotate in- 

structions. 

Circuit / Width 
Polynomial 

(Powers of X) 

22,5, O 
11,S, O 
36, 7, 3, O 

l8,7, O 
9, 1,O 

132.26, O 
66, 13, O 
33, 13, O 

208,48,31, 18, 11, O 
104,48,31, 18, 11, O 
52,48,3 1, 18, 11, O 

649,590 
32,9,5, O 
16,9,5, O 

Tap Position list of Rotates 

Table 6.4: Characteristics of software decompressor 

Table 6.1 shows the final results. For each circuit, the table lists the number of test groups. 
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the size of each seed, the storage needed to store the seeds (TD), and the compression ratio 

(CR). The test data volume is cahlated by multiplying the number of test groups by the 

size of each seed. The table reports the data once for each circuit since the results are inde- 

pendent of the width of the data path. 

Circuit Size Seed 1 TD (bits) CR 
-7 

- 
7 - 4 5'76 5.6 

s13207 22 288 7 488 16.4 
s 15850 7 1056 7 392 4.6 
s38317 10 1664 16 640 7.8 
~38584 7 512 3 584 21.3 

Table 6.5: Final results for software decompressor 

6.3.3 Discussion of Results 

The degree of the polynomial is equal to the nurnber of memory words need to implemrnt 

the decompressor. As seen in Table 6.1, for a data path width of 32. a11 the decornpressors 

can be realized with no more than 52 rnemory words. Hence, the software decompressor 

can be implemented with relatively few registers. 

The number of tems in the polynomial and the number of rotates give a good approx- 

imation of the number of XOR and ROT instructions (per cycle) required to run the de- 

cornpressor. If the instructions required to handle the circular buffer, performing signature 

analysis and transfemng data to the scan registers are added to the XOR and ROT instruc- 

tions, the total number of instruction is less than 30. Hence, it is possibIe to implement the 

software decompressor in less than 30 machine instructions per cycle. 
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Chapter 7 Conclusions 

A novel method has been presented to reduce the amount of test data required to test scan- 

based designs. The method can be used to design a test procedures that targets al1 faults 

but maintains low costs, i. e., low extra area overhead, short test application time, and 

small amount c~f  test data. 

The method reduces the amount of test data by cornpressing deterministic patterns pri- 

or to storing them in memory. During test application, the deterministic patterns are vans- 

ferred to the chip under test, where they are generated by a decompression unit. Several 

methods have been presented to design the decompression unit by sharing flip-flops with 

the scan chah and other structures already on the chip to rninimize the area overhead of 

the scheme. 

The technique targets scan-based designs with Signature Analysis or other type of re- 

sponse compaction. It can be applied to extemal testing to reduce the memory require- 

ments imposed on the extemai test equipment, or to built-in seIf test. to the design of an 

hybrid test pattern generator capable of generating deterministic pattems with modest 

memory and silicon requirements. 

The overall scheme relies on mature ATPG algorithm to generate test cubes for hard- 

to-test faults with a large proportion of unspecified positions. Dynamic compaction aigo- 

rithms can be used during ATPG to rninimize the number of deterministic patterns to gen- 
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erate. These algorithms target more than one fault with a single pattern. 

Whereas al1 the experiments were conducted with the single-stuck-at fault model, the 

scheme can be used with any fault model, as long as the deterministic patterns can be gen- 

erated by ATPG. In essence, the only restrictions of the schemes are: 

(1) The deterministic pattems have to be generated by ATPG. 

(2) It must be possible to re-order the patterns without affecting the fault coverage. Re- 

ordering of the patterns is essential to allow for the seeds to be sorted in increasing order 

of length. This restriction is met for full-scan and some partial-scan circuits. 

(3) The response of the circuit must be strictly binary (Os and 1s) so that it can be com- 

pacted into a signature. If the response is not strictly binas? then it cannot be compacted 

which would minimize the reduction of test data volume ... 

Finally, several avenues exist for future extensions of the scheme: 

( 1)  Software-based decompression. As the density of packaged chips keeps increasing. 

it is believed that most of them will contain at least one embedded CPU. In the thesis, i t  

was shown how an embedded core cm emulate a wide range of decompression structures 

with vinually no hardware overhead. However, since embedded cores comprise a fully 

functional CPU unit, other types of decompression structures could be investigated. 

(2) Application to partial-scan designs. Full scan-methods tend to require significant 

amount of silicon w hich may be prohibitive. Consequently, alternatives that are based on 

partial-scan are widely used in the industry. Recall that circuits with partial scan may re- 

quire a sequence of test patterns to cover a single fault. As presented in the thesis, the pro- 

posed scheme cannot encode sequences of patterns and preserve their order. However. 

extensions could be investigated to apply the technique to partial-scan designs. 
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Obtaining Primitive Polynomials over GF(2) using Maple 
There exists numerous tables in books from which primitive polynomials over GF(2) cm 

be obtained. However, it is sometimes necessary to use primitive polynomials with some 

specific characteristics. For instance, a primitive polynomial of degree 52 with seven 

tems may be required for an experiment. 

Maple is a powerful symbolic math software that allows users to perform a11 son of 

symbolic math operations. Using Maple's built-in functions. it  is possible to generate 

primitive polynomials with user-sprcific features. 

Maple offers many functions that are of particular interests to produce primitive 

polynomials over GF(2). The most important of these functions is Primitive() mod 2: 

Primitive() mod 2. This function returns m e  if the polynomial is primitive in GF(2). 

Otherwise, it returns false. 

Ex: Primitive(xY+x+l) rnod 2; retums tme. 
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Appendix 

By using the above function, a small routine to generate primitive polynomials with user- 

specified characteristics can be written. 

The functions basically produces hundreds and hundreds of randomly generated 

polynomials according to the user-specified parameters and uses function Primitive() to 

filter out the non-primitive polynomials. 

The routine accepts three arguments: the degree of polynomial, the number of terms, and 

the number of random polynomials to try. Here is a description of the routine: 

# This program gonerates NP random polynomials of degree D mod 2 and 
# returns the onse that were founa t o  be primitive mod 2 

# tm --> ~umber of tandom polye to  try 
# D --> Deqree of poïy 
# NT --> Number of te- 

F := proc ( D, NT, NP) 
Rnd := rand(1.. (0-1))  : 

for  dununy fron I by 1 to NP do 
# Make sure that poly ha6 a te= of dsgzee D and O 
Q := xAD+l :  

# duiriiny2 i a  the numbsr of feedbacke that have to be added 
ctumniy~ := m-2: 

# add feedbacke 
while (duamny2 > 0 )  do 

temp :- Rnd(): 
i f  (coaf f (q, x, tmp)  = O ) then 

q := q 4 xAtaxnp: 
dunrmyî :- dlll1ll11y2 - 1: 

fi: 
od: 

# Check i f  poly i r  prfmitive 
i f  (Primitive(q) raod 2 )  thon 

print (q, 8~rirriitiva' ) : 
fi: 

od: 

- - 
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returnt 'done' ) : 
end : 

Let's consider a simple Maple session in which a primitive polynomial of degree 52 with 

seven terms is generated: 

bA4 Pfaple V Releaee 3 (McGill ~aivaruity) . 1 / 1 - .  Copyright (c) 1981-1994 by Waterloo Maple Software and the 
\ MAPLE / Univerriky of Waterloo. Al1 rights reserved. Mapie aad Maple V 

<- - > are registered tradauarks of Waterloo Maple Software. 
1 Type ? for help. 

> F(52,7,100); 
52 17 26 29 6 22 

x + 1 + x + x + x + x + x , Primitive 

Generating Test Cubes with Dynamic Compaction Algorithm 

The objective of test cube generation is to detect undetected faults with a minimum num- 

ber of test pattems. Performing independent test generation on each fault and then at- 

tempting to rnerge the cubes is not effective since it does not consider "merging" when 

creating the pattems. 

Dynamic compaction algorithms consider merging conditions while creating pattems. 

It proceeds as follows. A fault is selected and test generation is performed. While enforc- 

in8 al1 conditions set by the original fault, test generation is attempted on other faults. If 

successful, then a pattern that targets more than one fault is generated. 

The following algorithm. re-copied from [53], was used to perform the experiments 

reponed in Chapter 6. 

- - 
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Select a t q e t  fauIt from the current fault list and create a test pattern that detects the fault. Extend the 

fault dciectability of the pattern by attempting to sensitize ail faulu in the fanout-free network of gares in 

the fault detection path to any gate in the fault detection path. If a fault is sensitirable to any gate in the 

fault detection path. it will be highly likely to be detected. Reconvergent fault effecu can sornetimes 

result in the fault not king detected. 

Add the stimulus of this pattern to the test cube and set the internal states of the circuit that result from 

the stimulus. 

Randomly select a fault candidate for merging that lies ouuide the fanout fiee network of the target fault 

and any other fault that has been considered for the current test cube. Avoiding faults that shnre the same 

fanout free network is desirable since the detectability of many of these faults is already fixed. The fault 

candidate must also be consistent with the current state of the fault site and must have an unblocked path 

to an observe point considering the current interna1 states of the circuit. 

Perform test generation for the fault candidate with the pattern extension described in step 1. If the test 

generation is successful. add the stimulus of this pattern to the test cube and set the internal states of the 

circuit that result from the stimulus. 

Repeat steps 3-4 until al1 possible fault candidates are used or until the number of unsuccessful attempts 

exceed a selected limit (default limit is 200). 

- - -- - 
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