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Abstract 

This thesis deals with the design of an Aaificial Neural Network (ANN) based 

relay for transmission hue protection. A novel feedforward neural network that indicotes 

whether a fault is within or outside the protection zone (fault indication) of a transmission 

line is presented. This method has been extended to locate the distance of the fault (fauit 

location). The proposed scheme utiiizes the frequency cornponents of the voltages and 

currents to make a decision, 

The fxst part of the work employed frequency cornponents of one cycle of post- 

fault data as the inputs to the ANN. The results obtained were promising, thus forming the 

basis to improve the speed of the retaying decision. This is achieved by using the 

frequency components of half cycle of pre-fault and haif-cycle post-fault data as the 

inputs to the ANN. 

The neural network employed is small in size, fast and robust. Data obtained from 

the Electromagnetic Transients Program (EMTP) for single-line-to-ground faults and 

three-phase faults have k e n  used for testing and the results are found to be accurate. The 

performance of the trained neural network is good and the proposed ANN has the 

potential for implementation in a digital relay for transmission line protection. The results 

of the proposed ANN methodology are found to be accurate under the conditions of 

different fault location, fault inception angie and fault resistance. 
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Chapter 1 

Introduction 

1.1 Protective Relaying of Power Systems 

Electric energy is one of the most fùndamental requirements of the modem 

industrial society. The power system is made up of intercomected equipment, broadIy 

classified into three main groups naniely, the power equipment, protection equipment and 

the control equipment. The power equipment generates, transfomis and distributes the 

electric power to the loads. The control equipment maintains the power systern at its 

normal voltage and fiequency, and maintains optimum economy and security in the 

interconnected network The protection equipment protects the power system. 

The power system is subject to constant dimirbances created by random load 

changes natural causes, and equipment or operator error. Faults may result frorn 

hsulation, electncai, mechanical or thermal fdure [Il. The major types and causes of 

failures are Iisted in Table 1.1 - 

Protective relays are installeci in different parts of the power system The protective 

relay detects abnormal power system conditions, and initiates corrective action as quickly 



as possible to restore the power system to its normal state. The purpose of protective 

relays is to ensure normal operation of the power system- Protective relay systems must 

perform correctiy under adverse system and environmentai conditions. 

Table 1.1 : Major types and causes of failure in power systems [ 11 

Type Causes 

Insulation Design defects, aging insulaiion, improper manufacture, improper 

installation, contamination 

Electrical Lightning surges, switchùig surges, ove~oltages 

Thermal Coolant failure, overcurrent, overvoltage, increase in the surrounding 

temperatures 

Mechanical Snow or ice, earthquake, overcurrent forces 

Protective relays m u t  meet these genera! requirements: correct diagnosis of 

trouble, quickness of respome and minimum disturbance to the power system [2]. For a 

well-designed and efficient protective system, the following design critena are necessary 

[3,41- 

Reliability 

It is the measure of the degree of ceaainty that the relay wili perform correctly. System 

reliability consists of two main elements: dependability and security. Dependability 

ensures the correct operation in response to system trouble, while security signifies the 

ability of the relay to avoid malsperation fiom all system dishirbances [2]. 



Speed 

Speed is required to obtain r n ï n h ~ ~ l l  fault clearing time, thus protecting the equipment A 

hi& speed, instantaneous relay is preferred- High speed indicates that the time taken to 

locate the fadt should not exceed certain pre-defined tïme Limit (usually 3 cycles at 60 

Hz), and instantaneous indicates that there is no delay in the operation of the relay. 

Selectivity 

Selectivity is the interxelated pe~ormance of the relay with other protective devices. 

Complete selectivity is obtained when a minimum amount of equiprnent is removed fiom 

service for the isolation of a fauit. 

Econornics 

The concem is to obtain the maximum protection at minimum cost. Relays having a 

clearly defined zone of protection provide better selectivity, but generally cost more. A 

compromise is made between the high performance and the cost, and consequently both 

Low speed and high speed relays are used to protect the power systems. 

+ Sirnplicity 

A protective relay system shodd be kept as simple and shaighâorward as possible, while 

still accomplishing its intended goals. A simple design is needed for easy implementation 

and maintenance, 

Transmission lines are the connechg lulks between the generating stations and 

the dimibution systems, and lead to other power system networks over interco~ections. 

Transmission h e s  physicdy integrate the output of generating plants and requirements 



of customers by providuig pathways for the flow of electrk power. Transmission Iine 

protection forms an important topic of research, as they are the v i d  elements of the 

network, and are subjected to a majority of fauits occurring in the power system. The 

range of the possible fault current, the effect of Ioad, the direction of the fault as seen 

fkorn the relay, the impact of system configuration, al1 have to be considered in the design 

of transmission Iine protection schemes. 

The focus of the research presented in this thesis is on transmission line 

protection. Distance reIays are normalIy used to protect high voltage transmission lines. 

Conventional distance relays measure the impedance of the transmission lines fiom the 

relay location to the point of fauit. Under ideal conditions, impedance is directly 

proportional to fauit distance. If the fault is located within the relay's protection zone, the 

relay generates a trip signai. Over the years, distance relays for transmission Iine 

protection have undergone changes tiom electromechanicd relays to static relays and to 

digital relays [5-71. Digital relays also provide communication capability 171. High-speed 

processing and communication capabilities of modem rnicroprocessors are leading to 

research work using adaptive relaying and Artificial Neural Networks (ANN) for 

improved protection CS- 121. 

When a fault occurs on the transmission line, it is very important to £ïnd the fault 

location and make necessary repairs, in order to prevent the fadt  from spreading and thus 

restoring the power system to its nomiai state. Hence, accurate f a d t  location is essentiai. 

Different types of fadt Iocators are avaiiable [l3, 141. Recently, ANN based f a d t  locators 

have been proposed [15, 161. 



1.2 Aim of the Thesis 

Fast and accurate Location of fauIts in an electrical power ~ s s i o n  h e  is vital 

for the secure and economic operation of power systems. This is more so in view of the 

fact that due to an increase in transmission requirements and environmental pressures, 

utilities are being forced to rnaxhize the transmission capabilities of the existing 

transmission Iines. This effectively meam that in order to maintain system sec* and 

stability, there is a demand for rniniminng damage by restoring the fadted line as quickiy 

as possible. 

Power system engineers are always investigating innovative and challenging ways 

to enhance the performance of the power system and related protective devices. Recently, 

there has been considerable interest in the application of ANN to power system protection 

[8-12, 15, 161. The response of a trained AM\I to the inputs is extremely fast However, to 

the author's best knowledge, the time required for making a trip decision of an ANN 

based algorithm is found to be at least one cycle of the power system fiequency. Also, the 

time taken to train the network is found to be quite long, in terms of hous  and even days 

[8, 10, 11, 153. This drawback is present both in the case of distance protection and fault 

location schemes. Aiso, the work reported considers only the single-1-to-ground fadt 

case. 

This work explores the application of an ANN based methodology for 

transmission line relaying. A novel feedforward neural network, which iadicates whether 

a fault is within or outside the protection zone of a transmission line, is presented. The 

neural network scheme is extended to locate the distance or" the fault location- It is 



proposed to design an ANN based a1gorÏth.m to perform the functions of distance 

protection and fault location. The proposed scheme utiiizes the fiequency spectrum of the 

voltages and currents to make a trip decision. The emphasis of this work is to: 

m h h ï z e  the fime reqyired for reaching the decision 

provide an accurate reIaying decision 

Single-line-to-ground fadt and three-phase fault cases are considered- The performance 

of the trained neural network is evaIuated by testing the ANN based algonthm with data 

obtained fkom the simulation of a ~ s s i o n  line model, using Electromagnetic 

Transients Program (EMTP). The obtained results are compared with a simulated Fourier- 

based algorithm in terms of speed and accuracy. The r d t s  are found to be accurate in 

the presence of different fault conditions, such as fadt location, fadt resistance and fault 

inception angle. The decision of the ANN output is obtained in about haIf-cycle afier the 

fault inception. 

1.3 Organuation of the Thesis 

Chapter 2 of this thesis focuses on the zones of protection, principle of operation 

of distance relays, equations goveming the three-phase distance relays for the various 

fault types, the effect of fadt resistance, the different types of relays and opzration of fault 

Iocators used in transmission line protection. 

Chapter 3 discusses the cornputer relay architecture. The transmission iine model 

used in the simulation is described. The procedure used to obtain the data of the 



transmission Iine mode1 using E m  is expiained The simulation resdts obtained using 

a Fourier-based algorithm are presented. 

A brief discussion on ANN is presented in Chapter 4. Applications of ANN for 

distance protection and fault location in a ~ s s i o n  h e  are discwed. The proposed 

ANN based methodology for transmission h e  reIaying is described in this chapter, 

The structure and design of the ANN based relaying for transmission line 

protection is presented in Chapter 5. The concept of using the fiequency components of 

voltage and curent as inpuis for the ANN is explained. The work is divided ùito two 

main parts; in the first part, the ANN based rnethodology uses the post-fadt information 

and in the second part, both pre-fault and post-fadt information are used. The ANN based 

relaying is considered for single-line-to-ground faults and three-phase fauits. 

Chapter 6 is devoted to the simulation results of the ANN based relay. The 

proposed ANN based methodology for transmission line relaying shows promise and has 

potential for irnplementation in a digital relay. The proposed scheme for transmission line 

relaying is also compared with the Fourier-based algorithm. Some of the advantages of 

the proposed scheme for ANN based transmission line protection are highlighted. A 

possible on-line configuration of the proposed scheme is presented. 

In Chapter 7, the summary of the thesis highlighting the contribution of the 

research and suggestions for future work are outlined. 



Chapter 2 

Transmission Line Protection 

2.1 Introduction 

Transmission lines form a major component of the power system. Transmission 

line protection is a chailenging area in power system protection. The extent of exposure in 

miles of transmission lines to weather conditions, different system configurations, and the 

compromises to be made between dependability and security make transmission line 

protection challenging. A complete transmission line protection scheme wouid include 

distance protection (fault indication) and fault location. A relay used in distance 

protection indicates whether a fault is inside or outside the protection zone, whereas a 

fadt locator indicates the exact location of the fault. 

The following chapter discusses the zones of protection in a transmission line. The 

need for the distance relay and the basic principle of distance protection of transmission 

lines is explained. A fault occumïng in a transmission Iine can be analyzed by its sequence 

network. The equations goveming these sequence networks are presented. The effect of 

fault resistance on a trammission h e  is also discussed. The improvement in the types of 



relay is described. When a faut occurs in a transmission he, it is necessary to determine 

the location of the fault in order to isolate the fault section fiom the power system. Fauit 

location in a transmission line is brïefïy discussed- 

2.2 Zones of Protection 

The common panmeters that reflect the presence of a fadt are the voltages and 

cments at the terminals of the protected apparatus- Every fadt  in the neighbourhood of a 

relay will disturb its input voltages and currents. However, the relay should disregard 

those voltage and current conditions produced by faults that are not within the 

responsibility of the relay. This responsibility for protecting a portion of the power system 

is defmed by a term known as zone of protection. Zone of protection is a region defmed 

by an imaginary boundary line on the power system one-Iine diagram. A fault in a 

protective zone initiates the operation of the relay, and the fadt is cailed intemal. A fault 

outside the protective zone does not initiate operation of the relay, and therefore it is 

called an extemal or through fault [17, 181. The zone of protection should meet the 

following requirernents [3] : 

There must be at least one zone of protection for a i l  the power system elements. 

The zones of protection must aiways overlap to ensure that no portion of the power 

system is left without protection. 

The region of overlap must be such that the likelihood of a fadt occuring inside the 

region of overlap is minimized. This overlapping of adjacent zones is iilustrated in Fig. 

2.1. Each element of the power system is defined by a protection zone and these zones 



overlap- In Fig- 2-1 the zones of protection, for the bus connected to the transmission Iirie 

(kW} are designated as bris protective zone and the h e  protective zone respectively. The 

circuit breakers, represented by the numbers 1, 2 and 3 are located between the two 

adjacent elements. A bus is an integral part of the power system, with incoming and 

outgoing lines terminated on it with appropriate circuit breakers. Usually, the line 

protective zone is set between 85% and 90% of the line length. Zn this case, the bus 

protective zone covers for the fadt o c c ~ g  near terminai A of the transmission h e -  A 

fault F in the protective zone causes the tripping of circuit breakers 1 and 3. EventuaUy, 

circuit breaker 2 will trip d e r  certain deiay, as it is located within the line protective 

zone- This ensures correct removd of the fault element. 

Figure 2.1 : OverIapping of protective zones around circuit breaker. 

2.3 Distance Protection of Transmission Lines 

As mentioned in chapter 1, the function of protective relaying is to promptly 

remove fiom service any element that staas to operate in an abnormd condition. The 

relays prevent fiirther damage to equipment, reduce stress on other equipment, and 

remove the fauited equipment fiom the power system as quickiy as possible, so that the 



integrity and stabàlity of the remaining system is maintained niere are several protective 

techniques used for transmission Iine protection [SI such as: 

Overcurrent relaying - These relays respond to the change in the curent magnitude. 

DBerentïal relaying - These relays respond to the phase angle between two ac inputs. 

These relays are suitable for a s m d  extent of protection. 

Directional relaying - These relays respond to the magnitude of the aigebraic sum of 

two or more inputs and are usually used in double-end-feed lines- 

Distance relaying - These relays respond to the distance to a fault. 

Arnong these, distance relays are commody used to protect high voltage 

transmission Lne circuits- The impedance of the transmission line is fairly constant and 

these relays respond to the distance to a fault on the transmksion line. The major 

advantage of distance relays lies in the fact that they have a fixed reach, Le., the relay's 

zone of protection is a function of only the protected Iine impedance, which is a fixed 

constant, and it is reiatively independent of the current and voltage magnitudes. Distance 

relays also have the ability to operate for fadt currents near or less than maximum load 

current. They have a greater instantaneous trip coverage compared to an overcurrent relay. 

2.3.1 Basic Principle of Distance Protection 

In the single-phase system represented by Fig. 2.2, a short circuit at location F is 

considered. The distance relay under consideration is located at line terminal A. AB 

represents the transrm*ssion line and S denotes the sending end. 2, represents the 

equivalent impedance of the txadonner, % and &, represent the relays. The voltage 



and current at the relay location are related by equations (2-1) and (3.2). Equation (2.3) 

relates the primary and semndary impedance, 

2, = EdI, 

&=yZ 

2,s = z,, * (ni/n3 

where E is the voitage, 1 is the c m n t ,  Z is the impedance, subscrïpt p and s denote the 

p a a r y  and secondary quanti& respectively- 

Figure 2.2: Voltage, current and impedance as seen by the relay 

In equation (2.3) ni and n, represent the current transformer and voltage transformer tlnns 

ratio. The ratio E/i is known as the apparent Unpedance seen by the relay. This impedance 

is represented by the point 2, when plotted in the complex R-X plane, as shown in Fig. 

2.3. The R-X diagram is commonly used to analyze the relay response [Il, 

Most of the relays for distance protection of transmission line use the mho 

charactenstics. Ifthe load current is of constant magnitude, and the sending end voltage at 



the relay location is constant, then the corresponding voltage phasor and hence the 

impedance will be a circle in the R-X plane. The point Z in Fig. 2.3 corresponds to the 

fault at a certain portion of the transmission luie. As the location of the fault is moved 

dong the transmission lùie, the point Z moves dong the straight line AB in Fig. 2.3. The 

h e  AB makes an angle 8 wîth the R-axis, where 8 is the impedance angle of the 

transmission Luet For an overhzad transmission he, 8 lies between 70" and 88", 

depending upon the system voltage [23. Whenever the ratio of the system voltage and 

current falls within the circle, the relay operates. Knowing the inaccuracies and fault 

resistance that can be aliowed, a more accurate zone shape can be defmed so as to occupy 

a minimum area of the complex R-X plane. 

Reactance x T B 

Figure 2.3: Typicai R - X diagram to iIlustrate the relay characteristics 

(0 = Impedance angle, AB = Length of the transmission h e )  



The distance rday is energized by voltage and cunent supplied by voItage and 

current transfomers respectively- The purpose of the current and voltage transfomers is 

to reduce voltages and currents to Ievels manageable by the reiays and to physicaily 

isolate the relays fiom hi& voltage [4, 17J- According to the principle of operation 

explained eariier, the relay detects the fault condition and issues a trip signai to the circuit 

breaker. The cîrcuit breaker disconnects the fauited transmission ihe, so as to avoid 

M e r  damage to the system. 

2.3.2 Distance Relay Characteristics 

There are four types of distance relays based on the shape of their operating 

characteristics namely, impedance relays, admittance or mho relays, reactance relays and 

quacirilateral relays- As mentioned earlier, the R-X diagram is commonly used to 

represent the characteristics of the relay. 

Figure 2.4(a): Impedance relay characteristics 



An impedance relay compares the system current and voltage Ï n  amplitude. and 

the calibration of this relay is in tenns of the ratio of the two, thus indicating impedance. 

Fig. 2.4(a) Uustrates the impedance relay charactenstics. The characteristics plot as a 

circle with suitable radius, caIied the setting 2. The center of the ciIcIe coincides with the 

ongin of the R-X diagram- 

A mho relay takes into account, the phase angle between the voltage and the 

curent, producing a more cornplex response characteristics. The mho relay 

characteristics, shown in Fig. 2.4(b) are also described as a circle, but the periphery passes 

through the origin in the R-X dîagram. In Fig. 2.4(b), the line OA has magnitude 2, called 

the setting at the impedance angle 8. 

Figure 2.4(b): Mho relay characteristics 

A reactance relay iliustrated in Fig. 2.4(c), is non-directional, and hence not 

preferred. The reactance relay has a straigbt-luie characteristic, parallel to the R-axis and 

offset by the setting X, dong the axis represented by the reactance. The reactance relay 

characteristics have a tripping region beiow the setting X. 



Figure 2.4(c): Reactance relay charactenstics 

Figure 2.4(d) represents the quacirilateral relay characteristics. The quadriiateral 

relay characteristics are made use of in soGd state or computer relays. In computer relays, 

the charactenstics of a quacirilaterai reiay are defined in the software of the relay. such 

that the effect of fault resistance and overreach c m  be accommodated 1171. If the 

impedance of the faulted transmission Iine f d s  inside the quadrîlaterai characteristic, the 

relay indicates a trip output. 

I R 

Figure 2.4(d): Quacidateral relay charac teris tics 

2.4 Three Phase Distance Relay 

There are basically ten types of faults on a three phase power system, for which a 

reiay should operate (phases are referred to as a. 6, c and ground is referred to as g): 



Phase-to-gcound (a-g, b-g, c-g) 

Phase-to-phase (a-6, b-c, c-a) 

Two-phase-to-ground (a-6-g, 6-c-g, c-a-g) 

Three-phase (a-6-c) 

SingIe-iine-to-ground fault is the most common type of fad t  and a three-phase 

fault is the most severe one compared to the other types of faults CI]. The equations that 

govem the reIatiomhïp between the vdtages and currents at the reIay location are 

different for each of the ten distinct types of fadts. Regardless of the type of fault 

involved, the voltage and the current used to energize the appropriate relay unit are such 

that the relay will measure the positive-sequence irnpedance to the fadt [3, 41. The 

computation of the fauit current and voltage is greatiy simplified by the use of the 

sequence networks. When a fault occurs, an unbalance is created in the system. The three 

unbalanced phasors of a three-phase system can be resolved into three baianced system of 

phasors, namely the positive sequence, negative sequence and the zero sequence 

components. The sequence networks represent the equivdent circuit of the sequence 

impedances and shows all the paths for the flow of the sequence currents. 

Figure 2.5: Single-line diagram of the transmission iine mode1 

(AB = Length of the transmission line, F = fault) 



The behaviour of these sequence networks to the various types of fauits is 

explained below. The one-he diagram of the -ssion Luie modeI, shown in Fig. 2.5 

is used to determine the appropnate voltage and current inputs to be used for the distance 

relays for the different faults. AB represents the transmission line, with a fauit F at certain 

portion of it. 

Figure 2.6: Sequence network connection for phase a-grotmd fault 

For a fault between phase a and ground of the transmission line considered, the 

sequence networks will be intercomected as in Fig. 2.6. The positive sequence, negative 

sequence and zero sequence components of voltage at the relay location are represented 

by equations (2-4), (2.5) and (2.6) respectivety 121. 

Etf= El - Z l f 4  

&f=Ez-&I2 



Eoc = Eo - Zor 10 (2-6) 

where El, Eo, Il, 12, and Io are the positive sequence, negative sequence and the zero 

sequence components of voltage and current respectively- The voltage at the fault point 

c m  be set equd to zero and is given by equation (2.8). 

E&= EIf+T_Z+EOf (2-7) 

Le., Ed== Ea - Ztf Ia - (&- ZidIo = O (2-8) 

Ia = (II f I2 + b)/3 (2-9) 

where E, is the total vottage at phase a, 1, is the current at phase a and Ed is the voltage at 

the point of fault. Frorn equation (2-8), 

The factor m in equation (2.11) is kuown as the compensation factor, and this 

compensates the phase current for the mutual coupling between the fauited phase and the 

other two Uflfauited phases. 

where I; is the compensated phase o curent- Thus, for phase a to ground fault, the fault 

impedance is as ïiIustrated by equation (2.14). 



This indicates that the distance relay meannes the positive sequence impedance to the 

fault, when energized with the phase a voltage and the compensated phase a curent, 

For the case of a fadt between phases 6 and c of a three-phase transmission line, 

the positive sequence and the negative sequence voltages at the fadt are equal, and are 

represented as ELf= bf and E p  EL - Z& 

Thus the fauit ïmpedance is given by 

The phase b and c voltage quanhties, at the relay location are given by equations (2.1 6) 

and (2.17). 

E , = E , + ~ ~ E , + ~ E ,  (2.16) 

E , = E , + ~ E ,  +a2& (2- 17) 

where a = 1 L 120°. Hence, 

Equation (2.20) indicates that when a fadt occurs between phases b and c, the distance 

relay will m a u r e  the positive sequence impedance. Similady, for the fadts between 

phase a-b and c-a faults, the corresponding relay will measure the positive sequence 

impedance to the fault. 



For fadts o c c d g  between phase-to-phase-to-ground, the perfomiance equations 

for the sequence networks are exactiy simiIar to equations (2.15) to (220) of the phase-to- 

phase fa&. 

The sequence network for a three-phase fault is indicated in Fig. 2.7 121. A three- 

phase fault causes maximum abnormal short-circuit current and hence is the most 

dangerous fault [17]. For a three-phase fault, the sequence quantities are represented by 

eguations (221) and (222)- The respective phase voItages are given by equations (2Z), 

(2.24) and (225) .  

- - --  - 
Figure 2.7: Sequence network connection for a three-phase fadt 

where CY = 1L120°. Hence for a three-phase faulî, faut impedance ZIf is represented as in 

equation (2-26). 



The fault impedance for the different types of fadt is illustrated in Table 2-1, with the 

nomenclature as explained above, For the faults at other phases, the corresponding phase 

voltages/cun:ents are used to calculate the fadt impedance. 

Table 2.1 : Summary of the fault Mpedance for different types of fauit 

2.5 Effect of Fault Resistance 

' Type of fadt 
Single-line-to-ground 
(at phase a) 

Phase-phase 
(between phase b and c) 

I 

Phase-phase-to-ground 
(between phase b - c and 

Three-phase 

Al1 the above equations have been derived asniming that the fault is a metallic 

shoa circuit. If the fault involves an arc or a path through the ground, non-linear - 

impedances are introduced which tend to introduce hannonics into the current or voltage 

[2]. As a result, an error is introduced in the fault distance estimate, and hence may Lead to 

an unreliable operation of the d i m c e  relay. To accommodate the fault resistance, the trip 

Fault impedance 

E, 

r,+ 20 - 2 1  

21 
10 

Eb - EC 
Ib - Ic 

Eb - EC 
I 6  - I c  

5 



zone of the distance relay is selected such that the region surmunding the apparent 

impedance is included inside the zone [2,5, 18l, 

III the single-line diagram of Fig. 2.8, Ri represents the fault resistance. The 

contribution to the fault fiom the remote end is 1, and hence the fault current is given by: 

If= I + 1, (2-27) 

The voltage at the relay location is given by equation (2.89). 

E=ZiI+Rf(I+Ir)  (2-28) 

Zr is the impedance when the fault resistance is zero. The apparent impedance 2, seen by 

the relay is: 

Figure 2.8: Fadt path resistance 

The voltage &op in the faut fiom the remote source magnifies the fadt resistance 

a s  seen at the local bus and shifts the apparent impedance to the right in the R-X plane. 

The total voltage drop in the fadt wiU not be in phase with the local fault current and the 

fault resistance thus becomes more reactive- This Ieads to possible overreach and 

underreach enors- In an overreach error condition, the fadt will be outside the zone, but 

is seen by the rday as behg uiside the zone. Underreach error condition occurs when the 



fadt occurs inside the protection zone, but the relay is not able to identify i t  This type of 

condition creates senous problem when heavy load flow and heavy fault resistance are 

encomtered. 

2.6 Types of Relay 

Distance relays are commoniy used for transmission fine protection, due to their 

insensitivity to variations in fadt  curent and their vimiat immunity Eom operating on 

normal load current. Over the years, distance relays have undergone changes leading to 

improved relay performance. The earliest relays used for transmission h e  protection 

were the electromechanicai relays. They were later replaced by the solid-state relays. With 

the advent of the digital technology, the solid state relays gave way to the relays based on 

the cornputer'relaying algonthms. The recect trend is to use Artificid Neural Network 

(ANN) based relays. 

2.6.1 Electromechanical and Solid-state Relays 

These relays utilize the actuatïng forces produceci by electromagnetic interaction 

between a combination of the input signais and the stored energy in the springs. In an 

electromechanical relay, the measmement is denved fiom a balance of magnetic or 

mechanical forces withh the relay by the operation of the electricd contacts. The most 

common electromechanicai relays are the magnetic attraction, magnetic induction, D' 

Arsonval and the thermal UIUlts, 



In general, electromechanical relays respond to one or more of the conventional 

torque producing input quantities: (a) voltage, (b) cment, (c) product of voitage, current, 

and the angle between them, and (d) a physicai or design force such as a control m g .  

When the current or voltage applied to the magnetic attraction unit exceeds the pick up 

value, the operating coil wïIi provide a force to overcome the restm.int, causing the 

contacts to change position. The magnetic induction mits operate by torque derived fiom 

the interaction of fluxes produced by an electromagnet with those fiom induced currents 

in the plane of a rotaiable aluminium disc. In the D'Arsonval unit, a moving cofi is 

energized by direct current, which reacts with the air gap flux to create rotational torque. 

In a thermal unit, as the temperature changes, the different coefficients of thermal 

expansion of the birnetallic strips cause the fiee end of the coil to move. A contact 

attached to the fiee end wiIl then operate based on the temperature change [l]. The 

advantages of an electrornechanicai relay are the shplicity involved and low cost. 

The solid-state relays use combinations of solid-state components which are 

designed using dc voltage signals to perform the logic hctions. In soiid-state relays, 

fauIt sensing and data processing logic circuits use power system inputs to determine if 

any intolerable system conditions exist within the relay's zone of protection- ln this case, 

the measurement of electrical quantities is perfomed by the static network. The output 

signal operates a tripping device when the threshold condition is exceeded. Compared to 

the electromechanical relays, the performance of the solid-state relays is superior, it has 

reduced size and is faster in operation. It has a longer He and offers high resistance to 

shock and vibration (51. Due to the absence of mechanical inertia, a high resetting value 



can be obtained. Some of the disadvantages associated wiih the solid-state relay are the 

low short-time overload capacity and voltage withstand capability. 

2.6.2 Digital Relays 

A digitai relay has the remarkabb capability of sampling voltages and currents at 

very high speed, retaining fadt information and performing self-checking functions. A 

major requirement of a digital reIay is to estimate precisely and quickly the electrïcal 

distance to the fault. Some of the featuces provided by digital relays are good 

communication capability, automatic self-testing, fault locating, metering and load- 

encroachment logic [7]. ~ a n y  algorithms for digital distance protection have been 

proposed [6, 19,201 with the aim of improving the speed of the relaying decision. Among 

them, the most common ones are the Fourier algorithm, Kalman filtenng algorithm and 

the Walsh algorithm. The performance of these algorithms depends upon the accuracy of 

estimahg the fundamental fiequency components of voltages and cments fiom a few 

samples. Most of the eisting algonthms in use for digital relaying are based on the 

waveform itself, i-e., the voltage or the current. The fundamental frequency voltage and 

current phasors are used for the impedance relaying. A distance relay filter must Save the 

fundamental frequency components and reject the noise signals. The relay response to the 

noise signals depends on the iiltering process. 

UsualIy, any non-fÙndamenta1 fiequency signal constitutes an error [6, 211. The 

relay voltage and current are full of harmonies and dc offset. The digital relays are 

capable of filtering this noise by suitable algorithms without producing secondary 



transients. The filtering extracts the fimdamental ikequency components and the 

magnitude and angle of the impedance is caiculated. Based on these fundamentai 

fiequency values, a tripping or no-tripph decision is made. 

In addition to the Fourier, Walsh and Harr filters, it is found that a sine-cosine 

filter exhibits good response when dc offset is present in the cunent signal and the voltage 

is contaminated with high fiequency damped oscillations [19]. Algonthms based on a 

variable sampling fiequency will be able to extract the fimdamentd frequency 

components of the fault signals correctly, and at the same the,  the burden of computation 

is greatly reduced (201- 

The disadvantage of the rnicroprocessor relays is that they cannot adapt 

dynamically to the system operating conditions. If presented with a noisy signal, there is a 

possibility of an incorrect operation. A digital distance reiay based on Fourier algorithm 

was simulated, the results of whkh will be presented in chapter 3 of the thesis. 

2.6.3 Recent Trends 

Recently there has been considerable interest in ANN based protection relays [8- 

12, 15, 161. ANNs have the capability of leaming and self-organization [22]. ANNs are 

being used for problem solving applications in fields related to power engineering. An 

inherent advantage of using ANN based algorithm for proteetive relaying is the 

possibility of shorter trip decisions and robmtness to changing system conditions. 

The motivation of using ANN based aIgorithms for transmission line relaying 

stem nom the fact that ANNs possess excellent noise immunity, robustness, fa& 



tolerance and generaluation capability. ANN applications in transmission line relaying 

are related to improvements in distance relaying. Conventional dgorithms try to 

determine the fault area corresponding to the relay by the estimation of impedance or 

distance using current and voltage rneamrements, Algorithms based on ANN make use of 

the pattern recognition capability- A detail review of some of the applications of ANN for 

transmission line relaying wiil be presented in chapter 4- 

2.7 Transmission Line Fault Locator 

When a fault occurs on the transmission line, it is very important to find the 

location of the fault, in order to clear the fault- Locating faults on transmission Iines with 

high accuracy acceIerates the maintenance operation and saves tirne and effort. The 

degree of accuracy required in clearing the fadts is ever increasing. The fault location is 

determined by the measurement of the impedance between the relaying location and the 

fault. 

Considerable work has been done in developing digital techniques for Locating 

faults on transmission Iines. Fault location techniques that use fundamental fiequency 

voltages and currents have been proposed [13, 141. However, the effect of fault resistance 

is not taken into account. Also, the algonthms fail to estimate the fault location during the 

changes in the system configuration such as different fault resistance and loading 

condition. ANN based protection schemes have showed encouraging results. To improve 

the accuracy of fault Iocators, ANN based fadt locators are recently proposed in [15, 161. 



Applications of ANN for fault location in h e  will be presented more in 

d e t d  in chapter 4. 

2.8 Summary 

This chapter has explained the general operathg principle o f  distance protection 

of transmission lines. An o v e ~ e w  of the three-phase distance relays and the performance 

equations governing the sequence networks have been provided. Due to the presence of 

the faut resi-ce, the impedance measured by a distance relay is different from the 

actud impedance, leading to overreach or underreach conditions. The fadt resistance has 

to be accounted for while designing an algorîthm for transmission line protection. 

Distance relays for transmission line protection have evolved fiom electrornechanicai 

relays to solid-state relays followed by microprocessor based (digital) relays. The recent 

trend in the area of transmission line protection is ANN based-relay. Relays based on 

ANN algorithm show promising results. A review of the ANN applications for 

transmission line relaying and the motivation for investigating an ANN based relay in this 

research will be discussed in chapter 4. 



Chapter 3 

Digital Distance Relays for Protection of 

Transmission Lines 

3.1 Introduction 

The availability of high speed, low coa microprocessors has led to the 

development of digital protective relays for transmission line protection. A digital relay, by 

its very nature, makes a mûanirement of power systern quantities of interest (Le., voltages 

and currents) and then makes a relaying decision based on these rneasurements. This is in 

con- to conventional relays, where the operating characteristic is inherent in the relay 

design. Digital relays provide large setting ranges, high-speed operation, programmability 

and are low in cost. Digital relays also provide communication capability- Due to these 

advantages, digital relays find wide application in electric power utilities. 

In this chapter, the block diagram of a typical cornputer relay architecture wiU be 

described. As long as there is no fauk, the voltage and current waveforms are purely 

sinusoidal. When there is a fa& the post-fauit voltage and current waveforms are 



distorted. Many a lgo r i t h  are proposed to extract the nindamental Eequency component 

of voltage and current waveforms. A fuii cycIe Fourier algorithm used in the digital relay is 

presented in thk chapter. The transmission line mode1 used in the simulation will be 

described in detail, foUowed by the EMTP procedure used to obtain the data for 

simulation- The simulation resdts obtained for the transmission liae mode1 considered, 

using Fourier algorithm wÏll be presented. 

3.2 Computer Relay Architecture 

The basic tasks of a computer relay is accepting the inputs, processuig the inputs. 

giving an output representing a system quantity and making a decision The inputs to the 

relay are voltages and currents. To obtain a digital representation of these quantities, the 

analog signds are sampled using suitable data acquisition systems- 

Fig. 3.1 represents a configuration for a digital relay [2]. The current and voltage 

signals obtained from current and voltage transformer must be scaied dom. The current 

and voltage signds are processed by the surge filters to suppress or  remove the surge 

present in them. Surges are usudy created by faults and switching operations on the 

power system. The high fiequency transients are removed by the anti-aliasing filters that 

have a low cut-off frequency. The Anaiog to Digital Converter (ADC) converts the analog 

signais to digital form The sample-and-hold circuit is used to obtain sirnultaneous 

sampling of d signals. The sampling clock provides pulses at the sarnphg fiequency. The 

core of the digitai relay is the algorithm used- The processor executes the relay programs, 

maintains the various tuniag £bctions and communîcates with the peripheral mvironment- 



The relaying algorithm processes the sampled data to produce a digital output. This output 

will be used to give trip signals to circuit breakers, which wiil isolate the faulted 

transmission line. 

CurrentNo ltage 

Surge FiIters 
Control 

T 
Fiiters 

Processor P 
Figure 3.1 : Block diagram of a cornputer relay 



3.3 Fourier Algorithm 

A fadt  in a transmission line increases current magnitude and decreases voltage 

magnitude and changes the phase shift between them, The fauit aIso causes transients or 

noise, such as dc offset and hmonics ,  Transients may lead to relay maifiinction, where 

the relay is assumed to be fed only with sinusoida1 quantities. Thus, any event or fault 

generated noise needs to be removed or fiItered fkom the reIaying voltages or currents and 

then fed to the relay. 

Full-cycle Fourier algorithm is one of the commonly used algorithms for filtering 

out the transients present in the post fault voltage and current wavefoms [19, 201. This 

algorithm uses consecutive sampled values of voltage and current and evaluates the 

fundamental fiequency cornponent of the voltage and current These components are then 

used to determine the apparent impedance. Apparent impedance is the loop impedance 

using the voltages and currents that the relay- receives [LI. A digital relay based on full- 

cycle Fourier algorithm was simulated as an initial part of the work. Full-cycle Fourier 

algorithm is chosen for this study because of its good fkequency response 1211- 

In the simplest fom, a Fourier algorithm extracts the fiuidamental phasor fiom 

sarnples of a periodic signal taken at equal intervals over a full period of the signal. Taken 

over a full period, the Fourier calcdation rejects harmonies of the fundamental fkequency. 

Any periodic waveform c m  be represented by a fundamentai and series of harmonic 

fiequencies (1, 171. The n~ harmonic component of the signal is represented by the 

Fourier series, given by equation (3.1)- 



where 

2 T,P 
6, = y  1 f ( t )  sin(not)dt 

andfi) = the original funciion 

T, = the penod of the wavefonn 

n = the order of the hannonic 

Tne sum of the product of the fiuiction and the sine of the fkequency that is to be 

extracted, taken over the penod of the hindamentai, produces a total that contains only the 

desired fkequency. This is the fbdarnental premise of Fourier analysis. The comparable 

digital process involves the multiplication of individual samples by stored values £iom a 

reference sinewave as represented by equations (3.4) and (3 -6) and summing the products 

over a fui1 cycle. 

K = number of samples 

N = samples per cycle 



Only the fimdamentd nequency is required for line protection ushg the impedance 

concept. Frequency response of the fid-cycle Fourier algorithm is presented in Fig. 3.2, 

which shows îhat the M-cycle Fourier dgoritfim Eilters out the dc offset and the non- 

fundamental fiequency components. upto haIf the samplllig rate. The mû-aliasing filter 

needs to fÏiter out harmonies above N/2. The fkequency response of the Fourier algorithm 

is surnmarited in Table 3.1. For a pure sinusoidal waveform, only the ftadamentd 

fkequency component is present, as seen from Table 3.1. 

Frewenw (W 

Figure 3.2: Frequency response of fiill cyde Fourier aigorithm 



Table 3. 1: Frequency components of Fourier algorithm 11 7] 

DC Fundamental 2nd 3rd 4th 5th 6th 7th 8th Hamionics 

Description of the Transmission Line Mode1 

A 345 kV, 160 mile transmission Line was simulated using Electromagnetic 

Trançients Program (EMTP), for varÏous fault cases [XI- The purpose of *h*s simuiation 

is to obtain the data needed for the design of the full-cycle Fourier algonthm. The single- 

line diagram of the trammission line model is shown in Fig. 3.3 [24]. A generator is 

connected through a step-up transformer to a 345 kV transmission Iine. A distance relay R 

is assumed to be at this substation. The transmission line is 160 mites long and is 

connected to a 400 MVA generating station at the sending end and an equivalent of a 

large intercomected system at the receiving end. AB represenîs the ?ransrnission Iine, uid 

F is the fault point. It is customary to set zone 1 of protection between 85% and 90% of 

the Iine length 121. The zone of protection is selected to be 90% of the line. The detaiIs of 

the transmission iine parameters are given in appendix A- 

Figure 3.3: Single line diagram of the transmission Line model 

(Voltage at substation A = 1.02 pu, Voltage at subsîation B = 0.97 p.u) 

(AB = length of transmission line, R = relay, F = fault) 



Four types of tàults namely, single-line-to-ground fadt (between phase a - 

ground), phase-to-phase f d t  (between phases a - b), two-phase-to-ground fault (between 

phases a - 6 - ground) and three phase fault (between phases a - 6 - c) are simulated using 

the EMïP program The sampling rate is chosen to be 16 sampledcycle. For a sampling 

rate of 16 samples per fÙU-cycle window of the input signal, the samphg instants will be 

for every 360°/16 = î2.5". For each cycle, there will be 32 niultiplications and the number 

of additions/subtractions will be 32- 

The location of the fault point is sefected at 40%, 60%, 80% and 95% of the 

trammission line. The data for various fault types is generated for a fault resistance & of O 

Q and 10 R in the fault path. The instant of fault occurrence <p is chosen to be at an angle 

of O* and 90°. The fault switch is suddenly ciosed when the voltage waveform just crosses 

the time axis scale, to represent the fault occumng at O* and the fauIt switch is closed 

when the voltage waveform has reached its peak to represent the fauft occumng at  90" 

case. Five cycles of data are obtained. with 2 cycles of pre-fault condition and 3 cycles of 

post-fault condition. 

3.5 General Procedure for EMTP Simulation 

EMTP software is used to simulate the transmission h e  mode1 shown in Fig. 3.3, 

to obtain the voltages and currents- EMTP is a cornputer program for simulating 

electromagnetic, e1ectromechanica.i and control qstern transients on multiphase electric 

power systems. The EMTP was developed in the late 1960's by Dr. Hermann Dommel, as 

a digital cornputer counterpart to the analog Transient Network Anafyzer ( T ' A )  [23]. 



Distributed parameter model of the hi& voltage t ~ s s i o n  Iine is considered for this 

sniciy. This EMTP code is wriîten in F O R M  Ianguage, with every node represented 

by a name and the component values indicated between these rrode names. EMTP 

provides provision to change the t h e  step accordingiy, so as to obtain the desïred 

sarnpling rate. To simulate the condition of faults occuning at different lengths of 

transmission line, the corresponding impedance is selected and the desued fadt resistance 

is inserted at that point For the simulation of fadts occuning at a particular angle, the 

angle is converted to the corresponding time and the fault switch is closed at that instant 

of tirne, 

The voltage data of a faulted phase, as attained b the transmission line model, 

for an a phase to ground fault at 80% of the transmission line fiom the re1ay location, 

with fault resistaace of O R and the fault inception angle <p at O" is shown in Fig. 3.4. As 

seen fkom Fig. 3.4, the post-fault voltage has decreased in magnitude and is highly 

distorted. The post-fault current has increased in magnitude and contains a dc-offset. The 

voltage and current waveforrns obtained fiom the EMTP are exported to an Excel file and 

later converted into a text me. This text file contains the voltage and curent data at the 

required sampling rate. 

For obtaining the data to design the ANN based algorithm, many cases of fault are 

simulated and the details will be presented in chapter 5. 



Xme in sec 

Figure 3 -4: Voltage and current of the fadted phase 

(Phase a to ground fàult at 80% of the he, &= O fi, q = 0°) 



3.6 Simulation Results 

A digital relay based on fuii-cycle Fourier algorithm is simulated. The aim is to 

extract the fiindamental fkequency components fkom the fault signds and then to evaluate 

the impedance. Few typical fault cases were considered, and the response of the Fourier 

algorithm for the faults was obtained using MATLAB p]. 

The performance of this aigorithm for the single-line-to-ground fault at phase a at 

40%, 60%, 80% and 95% of the trari3mission line and with fault resistance RF of O R and 

fault hception angle <p of O", is plotted in the impedance trajectory, as s h o w  in Fig. 3.5. 

In Fig. 3.5, AC represents 90% of the line, which is taken as the zone of protection, and 

PF represents the pre-fault loading condition. The line AC is drawn at an angIe of 7S0, 

which is taken as the standard impedance angle, to the x-axis represented by the resistance 

[2]. Since the sampling rate is taken as 16 samples/cycle, the first 16 points are 

concentrated at a point (represented by PF in Fig. 3.5) corresponding to the pre-fault 

impedance. The trajectory moves f?om the point corresponding to the pre-fauit loading to 

a point inside the relay operating charactenstics. îhe  time taken to reach this point is 

around 24 points, which corresponds to about 1% cycles. As seen fiom Fig. 3.5, for the 

case of fault o c c ~ g  at 95% of the Iine, the trajectory never reaches a point inside the 

circle. A trip signal is issued for f d t s  o c c ~ g  at 40%, 60% and 80% of the 

transmission line, whereas for the case of fault occurring at 95% of the transmission line, 

no trip signal is given. 



Figure 3 -5: Distance relay trajectory for phase a to ground fault, Rr = O R 

Padt at 40%, 60%, 80% and 95% of the transmission line, = 0") 

AC + 90% of the line, PF + Pre-fault loading condition 
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Figure 3.6 represents the impedance trajectory for the single-ike-to-ground fadt 

at phase a with fauit resistance RF of 1 O Q and cp of 0"- LÏne AC in Fi& 3 -6 represents 

90% of the line and line AD represents 80% of the h e .  As seen in Fig. 3.6, for the case of 

fault occurring at 95% of the iine, the trajectory has moved inside the circle, which should 

not have been the case. As discussed in chapter 2, the effect of fault resistance present at 

the fault location is generaiiy to reduce the effective reach of the measuring element. 

Eence for the fadt occming at 95% of the he, which is outside the zone of protection, 

the Fourier algorithm faiis to i d e n e  it correctiy. Also, though the trajectory reaches the 

zone of protection descnbed by the circle, it fails to reach the exact operating iine AC. In 

order to accommodate the effect of fauit resistance, the trip zone is shaped in the f o m  of 

a circle so that for fauits occucring within the zone of protection, the ùnpedance trajectory 

falls inside the circle. 

In case the zone of protection is selected to be 80% of the Iine fkom the relay 

location, then for the case of fault occurring at 95%, the Fourier algorithm will be able to 

identify it cleariy as fault occurring outside the trip zone, as seen from Fig. 3.6. The 

smaller circle in Fig. 3.6 is for the case when the zone of protection is considered as 80% 

of the line. The resuits have been verined for fadts occurring at different lengths of the 

transmission line. Thus, for the Fourier algorithm to work accurately, the zone of 

protection will be lirnited Error compensation techniques are available to overcome the 

possible overreach condition and thus provide accurate relayhg D6J. 

Figure 3.7 represents the impedance tmjectory for the single-line-to-ground fault 

at phase a with fauit resistance Rf of O R and fault inception angle of 90". For this case, 



the Fourier algorithm identifies the faults correctlyY The response is similar to the one 

obtained in Fig. 3.5. 

Resistanœ in ohms 

Figure 3 -6: Distance relay trajectory for phase a to ground Eid~ & = 10 R 

(Fault at 40%,600?, 80% and 95% ofthe transmission he ,  cp = 0°) 

AC + 90% of the iine, AD + 80% of the he, PF -, Re-faut loading condition 



Resistance in ohms 

Figure 3 -7: Distance relay trajectory for phase a to ground fadt, Rr = O C2 

(Fault at 4û?? 60%, 8OaA and 95% of the transmission he, cp = 90') 

AC -+ 90% of the he, PF + Pre-fault loading condition 



The distance rday tmjectory for the three phase fa& (u-b-c) at 40%, 60%. 80% 

and 95% fkom the relay end of the transmission h e  is as shown in Fig. 3.8. The fadt 

resistance Rf is O R and fadt inception angIe cp is O". As in the case of phase a - ground 

fa* the Fourier algorithm accurately classifies the fauits occumOg withh the trip region 

(fa& at 40%, 60%, 80% of the he) and outside it (fadt at 95% of the line). . 

The response of the Fourier algorithm for the three phase fault (a-6-c) at 40%, 

60%, 80% and 95% of the transmission line and with RF of IO C2 and <p at O" is shown in 

Fig. 3.9. Since a fault resistance of 10 Q is included in the fault path, an overreach 

condition a s  expiained in chapter 2 is encountered and the Fourier algorithm fails to 

identiQ the fadt case at 95% of the line to be outside the trip region. The circle with 

diarneter AD represents the case of 80% zone of protection. As explained above, the 

Fourier algolithm identifies dl the fault cases accurately for a smder zone of protection. 

For the case when the fault occurs at Rf of O i2 and cp of 90°, the distance reiay 

trajectory is as shown in Fig. 3.10. As seen fkom the figure, a trip decision is given after 

around 24-25 points corresponding to about 1% cycles for faults occurring at 40%, 60% 

and 80% of the line. For the fault occlllring at 95% of the Line, no trip signai is given. 

Similar results are obtained for the phase-to-phase fault and two-phase-to-ground 

fadts. Since the performance equations of the sequence networks for two-phase-to- 

ground fadt are similar to that for phase-to-phase fault, the Ïmpedance trajectories for 

these two cases resemble each oîher. 



Resistance in ohms 

Figure 3.8: Distance relay trajectory for phase a - b - c fat&, &= O R 

(Fault at 40%, 60%, 80% and 95% of the transmission &ne, <p = 0") 

AC + 90% of the h e ,  PF + Pre-fault loading condition 



Resistance in ohms 

Figure 3.9: Distance relay trajectory for phase a - 6 - c fàult, & = 10 R 

(Fault at 40%, 60%. 80% and 95% of the transmission line, cp = 0') 

AC + 90% of the Iine, AD -+ 80% of the iine, PF + Pre-fault Ioading condition 



Resistance in ohms 

Figure 3.10: Distance relay trajectory for phase o - b - c fault, &= O R 

(Fadt at 40%. 60%, 80% and 95% ofthe transmission he, q = 90°) 

AC -+ 90% ofthe line, PF -+ Pre-fauk Loading condition 



The simulation r e d t s  indicate that the Fourier algonthm is quite accurate when 

the fault resistance is zero, Ih the presence of a fadt resistance, rhe Fourier algorithm will 

be able to classify the fauits c1ea.y into triplno trip region when the zone of protection is 

liinited to a smdler portion of the he. A smder zone of protection compromises in 

speed. The reIiabiIity and the speed of the Fourier aigonthm depends on the efficiency 

and accuracy of extracthg the power fiegriency components. This aigorithm does not 

have the ability to adapt dynitIIllcally to the system operating conditions. Many other 

algorithrns are available which can give a fastr trip decision [6, 19.201. 

3.7 Summary 

This chapter has descnbed typical digital distance relays for transmission line 

protection. EMTP was used to sirnulate the transmission line model used in this study. A 

digital re1ay based on Fourier dgorithm was simuiated. This aigorithm used the 

consecutive sampled values of voltage and current and evaluated the fundamental 

frequency components. These components were then used to determine the apparent 

impedance. The digital relay based on Fourier algorithm is found to be accurate for 

shorter zones of protection. The results obtained using Fourier algorithm will be 

compared with that obtained h g  the proposed ANN based aigorithm in chapter 6. 



Chapter 4 

Artificial Neural Network for Transmission Line 

Relaying 

4.1 Introduction 

The potentiais of Artificial Neural Networks (ANNs) have attracted researchers t O 

solve problems related to various fields such as control systems, robotics, and recently in 

power systems engineering. ANNs are powerful in pattern recognition and classification, 

and possess generalization capabilities. The application of ANN to power systerns becme 

weli established in the late eighties and have been tried as well as implemented in the areas 

of power system monitoring, control and protection. This chapter presents the basic 

concepts of A N N s  and their application to transmission b e  protection A review of the 

existing iiterature on ANN approach to distance protection and fadt location in a 

transmission iine indicates that the results are encouraging. The proposed ANN based 

algorithm for transmission h e  relaying will be presented in this chapter. 



4.2 Artificial Neural Networks 

A neural network is a massively parallel distributed processor that has a naturd 

propensity for storing experiential kno~vledge and making it available for use at a Iater 

stage [22]. It is an information processing system that extracts information fiom the input 

and produces an output corresponding to the extracted information. ANNs are inspired by 

the biological brain in hopes of achieving human-like performance in solving certain 

dinicult problems. An ANN consists of a large number of processing URits andogous to 

neurons, joined to each other by some form of linkage analogous to the synapses from the 

biological counterpart. The presence of hi& degree of comectivity between neurons 

gives neural networks an enormous pardel structure with sienificant fault tolerance. 

Artificial neural networks provide the method of mapping a set of input and output 

variables by Ieaming the weights associated with the interconnections of the neurons and 

the thresholds whkh activate the neuron [22]. 

A neuron is an information processing unit that is fundamental to the operation of 

a n e d  network ï h e  inputs to a neuron include its bias b and the sum of its weighted 

inputs. The output of a neuron depends on the neuron's inputs and on its transfer function. 

A single neuron with x, inputs is shown in Fig. 4.1. Each input is weighted with a weight 

W. The sum of the weighted inputs and the bias f o m  the input to the transfer function cp. 

Ln mathematical terms, the output y of a neuron k is described by equation (4.1). 

Y k  = W (uk + bk) (4-1) 



where 

X I ,  x,, ...,....... xp are the input signds, 

u, is the linear combiner output, bk is the b i s ,  iy is the activation h c t i o n  and y, is the 

output signal of the neurone 

Figure 4- 1 : General Neuron Mode1 

Activation 
function 

Output 
Yk 

The activation hc t ion  defines the output of a neuron in terms of the activity level at 

its input. The commoniy used activation or transfer fiinciions are: 

1. Hard limit transfer function 

2. Linear transfer fuaction 

3. Sigmoid transfer function 

A 

* W -  
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The hard iimit transfer function depicted in Fig, 4,2(a) limits the output of the neuron ta 

either O or 1. The hard limit transfer function is mathematicdy represented as: 

where v = uk + bk 

O v 

Figure 4.2(a): Hard limit transfer hc t ion  

The linear transfer function represented by Fig- 42(b) takes linear values between O and 

1. The lïnear transfer fiction can be mathematicaily expressed as: 

-0.5 O 0.5 v 

Figure 43(b): Linear .h.ansfer fiuiction 



The sigmoid M e r  h c t i o n  is differentiable. The sigrnoid fimction can be either Iog- 

sigmoid or tan-sigmoid- The log-sigmoid hc t ion  assumes a continuous range of vaiues 

fiom O to 1, while a tan-sigmoid fiuiction assumes a continuous range of vaiues fiom -1 to 

+l. The log-sigmoid and tan-sigmoid tramfer hc t ion  are mathematicdy represented as: 

W(V) = log sig(v) = 
1 

I + e-m 

The log-sigmoid transfer function is shown in Fig. 4.2(c). The dope parameter n c m  be 

varied to obtain different shapes of the log-sigmoid tramfer function. A proper decision 

has to be made while selecting the transfer functions for the neural network structure. If 

the output of the ANN is to be Limited between O and 1, log-sigrnoidal transfer hc t ion  

should be chosen and if the ANN output is a continuos range of values between +l and -1, 

tan-sigmoidai tramfer h c t i o n  shodd be selected. 

Figure 4.2(c): Log-sigmoid transfer h c t i o n  



4.2.2 Network Architecture 

The most important class of neural networks is the feedfoward neuraI networks- In 

a feedforward neural network, the input signal propagates through the network in a 

forward direction, on a layer-by-layer basis. A layered neural network is a network of 

neurons organized in the form of Iayers. In its simplest form, a single-Iayer feedforward 

network consists of an input layer of source nodes that projects onto an output layer of 

neurons- Figure 43  iIIustrates the structure of a simple two layer network. 

Input layer Output layer 

Inputs output 

Figure 4.3: Feedforward network with two layers 

Multilayer feedfonvard neural networks (FFNN) are widely used in power system 

applications 18-12, 15, 161. Mdtiiayer feedfonvard neural networks have one or more 

hidden layers, whose computation nodes are correspondingly calIed hidden neurons or 

hidden units. Figure 4.4 shows a three layer fidly comected feedfonvard neural network 

in which each node represents a single neuron. Neurons in a given layer receive inputs 

fiom neurons in the layer immediately below it and send theu outputs to neurons in the 

layer immediately above it. The bct ion of hidden neurons is to intervene between the 



extemal input and the network output, By adding one or more hidden layers, the network 

is able to extract higher order statistics, for the network acquires a global perspective 

despite its local connectivity by viaue of the extra synaptic connections and the extra 

dimension of neural interactions, 

input layer Hidden layer Output layer 

Figure 4.4: Structure of a three layer feedforward network 

4.2.3 Backpropagation Algorithm 

The most popular method of training a layered perceptron neural network is 

tbrough error backpropagation [8-12, 15, 161. niese networks leam fkom examples by 

constmcting an input-output mapping for the problem at hand. Backpropagation is an 
* 

example of supervised leaming where, in order to leam, the network requires a set of 

examples consisting of the input values and target output values. These target output 

values are then used as a basis for correction of weights and biases. The sigmoid transfer 



function is commody used in backpropagation networks [8-12]+ The backpropagation 

algorithm consists of several forward and backward passes through the different layers of 

the network: 

Forward pass: In this, the input vector is applied to the nodes of the network and its 

effect propagates through the network layers in the forward direction until it reaches 

the output layer- Finally, a set of outputs is produced as the actuai response of the 

network Durhg this pas, there is no change in the weight and the bias. 

Backward pas: During this pas ,  the weights are alI adjusted in accordance with the 

error correction d e .  An error is the difference between the target and actual response. 

The target is known as it is specined before training the ANN and the actual response 

is obtained through the forward pass. The error signai is propagated backward through 

the network. The weights and biases are adjusted so as to make the actual response of 

the network closer ta the desired response. 

4.2.4 Training Issues in Applying Backpropagatioo Algorithm 

Traioed backpropagation networks tend to give reasonable answers when 

presented with inputs that they have never seen [22, 271. But, backpropagation aigorithm 

depends upon a number of training issues, some of which are training fimctions, 

initialization, stoppbg criteria, number of hidden neurons used and so on. To make use of 

the MATLAB neural network toolbox, a program is simulated that includes the input 

data, the correspondhg target outputs and the associated training hct ions .  The training 

process is a means by which the network adapts itseif to the desired output and thus 



organizes the information within itself. The neutal network toolbox of MATLAB 

provides provision to change the training parameters on which the backpropagation 

algorithm depends, so that a good neural network can be designed P7]. 

4.2.4.1 Training Functions 

The MATLAB neural network toolbox is used for training and testing the 

network. Some of the trainhg fimctions avdable in the MATL,AB neural network 

toolbox, for the design of the network are rrainbpx, n-ainbpm and trainlm [27& 

Truinbpx 

Simple backpropagation (train&) is very slow because it requires smail leaming rates for 

stable leaming. Truinbpx uses techniques cailed momentun and an adaptive l e d g  rate 

to increase the speed and reliability of backpropagation. Tranibpx is much better than 

trainbp in ternis of speed as well as reliability. Backpropagation as implemented in 

trainbpx is based on gradient descent, Ïn  which the parameters such as  weights and biases, 

are moved in the opposite direction to the error gradient. After each step, the gradient 

resdts in smaiIer errors until an error minimum is reached- 

Train bpm 

The fiuiction trai~bprn is similar to trainbpx, but has more training parameters. It is used 

so that the network would not get shick in a shailow minimum. It acts Iike a low pass - 
filter and allows the network to ignore smali features in the error surface, 



Traifllm 

The hc t ion  tmiinlm gives better performance since it uses an approximation ofNewton's 

method cded Levenberg-Marquardt. This opthkation technique is more powerfiil than 

gradient descent, but requires more mernory. 

4.2.4.2 Initialization 

Every multilayer féedforward network is associated with a set of weights and 

biases. Weights and biases should be initialized to smali, random values, usudy between 

B . 5  [22, 271. A good choice of initial values for the weights and biases will Iead to a 

successfùl network design. The wrong choice of initiakation values can lead to a 

condition called premature saturation, where the instantaneous sum of squared errors 

remains almost constant for some penod of time during the leaming process. There is a 

choice for initialking the weights and biases using one of these three firnctions available in 

the neural network tooIbox: 

(a) nwlog + This h c t i o n  uses the Nguyen-Widrow random generator for Iogsig 

neurons. 

(b) nwtan + This fùnction uses the Nguyen-Wdrow random generator for timsi'g 

neurons. 

(c) rands + This function is used in the generation of symmetric random numbers. 



4.2.4.3 Stopping Criteria 

The backpropagation algorithm is considered to have converged when the absolute 

rate of change in the average squared error per epoch is sutnciently smd. Each epoch or 

training iteration represents the presentation of the set of training vectors to a network and 

the caicuiation of new weights and biases. The error goal to be achkved is pre-defùied in 

the code for designhg the n e 4  network In a weII designed network, with increashg 

epochs, the error starts decreasing- 

4*2.4.4 Hidden Neurons 

Networks are quite sensitive to the number of neurons in theû hidden layers. If too 

few neurons are selected, the network will not be able to leam al1 ofthe patterns correctly. 

Too many neurons will result in the network tending to memorize the pattems instead of 

leaming to detect the global features of the pattern. 

4.3 Applications of ANN to Transmission Line Protection 

ANN based algorithms have given encouraging results in the area of transmission 

line protection [&12, 15, 161. Most of the reported literature using ANN are ahed at 

improvernents in the following areas of transmission line protection. 

Distance Relaying 

FauIt Classification 

Fault Location 

Fault Direction 



The present area of work focuses on distance relaying and fault location. A review of the 

earlier work using AM\I in these areas is presented in the following sections. 

4.3.1 ANN Approach to Distance Protection 

Distance relays are widely applied to protect transmission hes .  ANNs, being a 

relatively new branch of arîifïcial intelligence with promishg results, are being adopted in 

the relays for distance protection of transmission Lines. 

ANN based distance relay is found to keep the reach accuracy, even with the 

changes in the network configuration 181. The overreach trend of the half-cycle Discrete 

Fourier Transform @FT) is canceled out by the proposed scheme. The study concenîrated 

on phase a to earth faults with backpropagation dgoahm used for the training. The 

magnitudes of the voltage and current phasors corresponciing to the post-fault fundamental 

frequency formed the inputs. The learning process converged in about 80,000 cycles and 

took 2 hours of computing tirne. The aigorithm is found to be reliable and about 95% of 

the test cases estirnated the expected answer for the ANN distance relay. 

A N N  can dso remove dcsffset from the cormpted voltage and current signais and 

provide a quick operating decision [IO, 1 11. The proposed ANN based algorithm is trained 

with the input patterns of distorted signals wÎthin a quarter cycIe data window and with the 

target patterns of real or imaginary values of power frequency cornponents of the signals. 

Four arîifïcial neural networks having the same structure with different weights are used in 

the distance relaying algorithm. Two of them are for the real and imaginary values of the 

current phasors and the other two for voltage phasors respectiveiy. Each input pattern 



consists of eight samples of a quarter cycle of the power fÏequency. The first hidden Iayer 

has 20 units and the second has 4 units. The error backpropagation method is used to train 

the algorithm. Each curent neural network required about 200 hours of training time and 

about 6 hours for each voltage network. The impedance locus is found to have good 

convergence characteristics for various settings. 

An ANN based distance relay shows good performance in detecting a single-he- 

to-ground fault with nonlinear arcing resistance dong the whole trammission Iine [12]. A 

mathematical nonlinex arc resistance mode1 is used in the study- A three layered neurai 

network with back-propagation leaming algorithm is used, with 5 units in the hidden 

layer. The input signals to the network are the measured impedance of the faulted 

transmission line, the apparent impedance angle of the transmission line and the system 

equivalent reactance. The ANN relay adapted to source impedance changes and 

responded CO rrectly. 

A neural network fault area estixnator that detemiines the fault area directly is 

found to give reiiable results indicating whether a fadt is inside or outside the protection 

area [9]. A feed-forward multiiayer perceptron using backpropagation method is used, 

with 3-phase voltages and currents as the input The time needed to aain the network is 

about 12 hours. A cornparison of conventional algorithms and the ANN based approach 

using different fadt data showed that the ANN classification is faster and has better 

classification qualifies compared to the conventionai algorithms. The obtained resdts 

indicate that noise and harmonies do not impair the classincation quality, but the 



classification is not perfiectly clear for fadt location at the bomdary of the zone of 

protection for the transmission line- 

In the preliminary case study of the application of ANN in transmission Line 

protection, single-phase-to-ground fa& are examined [28]. The input of the ANN of the 

Multilayer Perceptron (MLP) type consists of the criterion signals positive sequence 

irnpedance components (R, X) seen from the relaying point and the zero-sequence curent 

amplitude calculated by a measurement processor- The ANN decided whether the input 

data indicates an intemal fault or not, after 10 ms fkom fadt inception- 

An adaptive digital distance relay that maintains the reach accuracy of the 

transmission line is proposed [291. An ided trip region is selected for a given fixed 

system conditions. Four feedfonvard neural networks are designed for trip region 

identification, The measured values of resistance and irnpedance as seen by the reIay 

forms the inputs. The output accurately identifies whether the fault is inside or outside the 

protection zone. However, when there is a change in the power flow or source capacities, 

the relay operating region has to be updated. 

4.3.2 ANN Approach to Fault Location 

Accurate estimates of the fadt location are desirable for inspection, maintenance 

and repair of the actual fault. Locating faults on transmission lines with high accuracy 

accelerates the maintenance operation and saves t h e  and effort Fault location dso 

enables fast restoration of the transmission to service. 



A feedforward neural network that estimates the fauit Iocation in a senes 

compensated line, has provided encouraging results [Ig. The network consists of three 

layers, the input layer with 10 inputs and the hidden layer with 9 neurons. ïhe  aigorithm 

is found to provide accurate results, haIf cycle afier fauit incepbon. The initiai data 

window after the fault contains pre-fault data only. It is justified that in practice, a 

transient fadt detector would çbrt the data window after fadt inception with the 

tmjectorÏes not crosshg the operating zone for the faults outside the zone. 

A fault locator proposed in [16j using backpropagation algorithm and leaming 

vector quantization has been able to locate faults with reasonable accuracy. The fault 

locator consists of two networks, a main network and an auxiliary network. The output of 

the main network indicates the fauit location in per unit (pu) of the length of the h e .  The 

output of the auxiliary networks representing the tirne reference points of the input wave 

forms the inputs to the main network. The auxiliary network consists of 400 input nodes, 

1 8 nodes in the hidden layer and 1 8 output nodes. The resuits indicate that ANNs could 

be used as a pattern recognition tool to estimate the fault location. 

A fault locator for senes compensated lines has been investigated [30] and the 

results dernonstrates the feasibility of the proposed approach. This scheme employed 8 

samples of instantaneous voltage and current as the inputs. The feedforward neural 

network has 16 input neurons in the input Iayer, 12 neurons in the hidden layer and 2 

output neurons indicating the fault and its location. Fault points are identified through 

directly anaiyzhg the type of fault [3 11. Post-fadt voltage and curent are used as inputs, 

and bolh supe~sed  and non-supervised methods of training are adopted. It is found that 



when a fauIt occurs at any node of the power system, the curent pattern of the 

transmission line comected to that fa& are simiIar, The fault at that node is determined 

by referring to its voltage pattern- 

An accurate fadt locator based on the integrated approach of fuzzy Iogic and 

neural networks has been proposed in [32]. The neurai network is used in the input-output 

rnapping to extract the d e s  and .to lei1111 the membership functions. This IeamUig is 

employed in the £üzzi£ïcation of the network The input to the ANN is the fi-equency 

components of the voltages and currents, The test results shows bigh accuracy and 

robustness under a vast majority of different system and fadt conditions. 

4.4 Proposed ANN-based Algorithm fort Transmission Line 

Relaying 

An overview of the eariier work demonstrates the use of ANN based dgorithms in 

the area of distance protection and fadt Location. The main aim of the work reported was 

to improve the relaying aigorithms used in transmission Iine protection. In some cases, it 

was found that the time taken to give a trip decision corresponds to half cycle of the 

power system fiequency [15]. The reported work in the application of ANN for 

tlannnission iine relaying concentrated either on distance protection or on ftult location, 

but not on both. The work has been reported only for the case of single-line-to-ground 

faults. Other f d t  cases are not considered- Some of the othet drawbacks are that the 

network structure is big in size and the training t h e  is too long. In case of a big network 



structure, the hardware implementation will be more complicated. Longer nalningg times 

will become an obstacle when the network has to be re-trained for certain critical 

conditions such as reversai of load aow, 

Taking into account the above concems, a novel feedforward neural network for 

distance protection of transmission lines is proposed. The technique has been extended to 

locate the distance of the faut location The aim of the work is to develop an ANN based 

algorithm for the distance protection and fadt Location in transmission lines that is 

reliable, fast, accurate and small in size. The ANN based aigorithm is designed for single- 

line-to-ground fauit and three-phase fault cases. The single-line-to-gro und fault is chosen 

as it is the most common type of fault The three-phase fault is found to be the most 

severe type of fault. Four neural networks, one each for single-Iine-to-ground fault 

indication (to indicate whether the fault is inside or outside the protection zone), single- 

line-to-ground fault location (for exact location of the faul t), three-phase faul t indication 

and three-phase fault location are designed. 

In the proposed scheme, the frequency spectnim of voltages and currents is 

utilized to make a decision. ïhe data is obîahed from the Electromagnetic Transients 

Program (EMTP) simulation. The main work is undertaken in two parts. in the first part, 

one-cycle of post-fault information is used as the input to the ANN based methodoiogy 

for transmission line relaying. To improve the speed of the relaying decision, half-cycle 

pre-fault and ha-cycle post-fault information of the voltage and cment signais are used 

in the proposed ANN based relay. This forms the second part of the work. The specific 



design details of the neural network and the simulation resdts of the proposed ANN 

based relay wilI be presented in Chapters 5 and 6 respectively. 

4.5 Summary 

This chapter has reviewed the applications of ANN in the area of distance 

protection of transmission lines and fault Iocation. In most of the cases, muitiiayer 

feedforward network is used. ANN based aigorithms have given encouraging resdts in 

the area of transmission line protection, but have some limitations in the design and in the 

application aspects. Some of the drawbacks of the proposed ANN based relays are 

highlighted. The motivation for undertaking the present research work has been 

described. 



Chapter 5 

Design of a Novel ArtXicial Neural Network Based 

Relay for Transmission Line Protection 

5.1 Introduction 

This thesis has discussed the principle of transmission line protection and the 

algorithms used for the protective relaying of uansrnission lines in digital relays. The 

application of Artificial Neurd Network (ANN) based dgonthms has also been successfÙI 

in the areas of distance protection and fault location Most of these applications in 

transmission Iine protection use voltage and current sarnples as inputs. A new approach for 

transmission line protection using the fiequency spectmm of the voltage and current 

signals and training an ANN is investigated in this thesis. 

An ANN based methodology for transmission Iine relaying is presented in this 

chapter. Two neural networks are designed: one to indicate whether the fault is inside or 

outside the protection zone (fault indication) and another neural network to precisely 

indicate the location of the fault (fadt location) fiom the relay location. The reasons for 

selecting t h  frequency components of the voltage and current as the inputs to  the ANN, 



and the simuiation procedure to obtain these fiequency components are explained. The 

ANN algorithm for singe-iine-to-ground fadts and three-phase fadts are discussed- The 

simuiation results based on the proposed rnethod will be presented in chapter 6. 

5.2 Choice of the Inputs to the ANN-based ReIay 

A number of neural network structures have been suggested in the Iiterature and 

each structure is specifically suited for sol* a panicuIar type of problem. Most of the 

transmission Line relaying methods based on neural networks use nultilayered perceptron 

In this research, a feedfonvard neural network for transmission line protection is designed. 

Any design process for a feedforward ANN based transmission line relaying consists of the 

following steps [3 31. 

(i) Preparins suitable training data 

(ii) Proper selection of the ANN structure 

(iii) Training of the A.NN 

(iv) Evahating the trained network 



Training of the ANN m 

- - - - - - - * - * -  

l~vaiuation of the trained 1 

Preparation of suitable 
training data 

1 
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Terminate the process 

Figure 5.1 : Design process for a typical ANN structure 

v 

The design process is iterative as Uustrated in Fig. 5.1 - The first step of the design 

process is to select suitable and meaningfbl data for training. It is important to give 

meaningful training patterns, which contain ail the necessary information to generalize the 

4 t * 
SeIection of suitable 

ANN structure 



problem. Special care must be taken to uiclude boundary patterns. It is possible that a 

particular ANN structure with the given training data may not train properly, Le., the 

training process takes too long The structure andlor parameters must be changed and the 

network retrained. Also, a eained network might not perform satisfactorily because of 

inadequate training data, o r  due to the structure of the network In that case, the structure 

of  the network should be re-designed and the process should be repeated. Structurai 

differences arise on account of  the number and type of  inputs, number and type of outputs 

and complexïty of  the application, which would govern the number of  layers and the 

number of neurons in different layers. These parameters of the network are decided by 

experiment ation, which involves training and testing a number of network conf13~ations. 

The process is terminated when a suitable network with satisfactory performance is 

established. The process of the neural network training must be quite efficient and 

straighgomard 133, 341. 

Many of the algorithms on transmission line protection are based on the 

instantaneous values of the current and voltage waveform [12, 281. These algorithrns use a 

pre-processor to obtain resistance and reactance, which are given as inputs to the ANN. 

Another approach is to use the magnitude of the voltages and currents 181. Inputs with 

consecutive samples of voltage and current data, is yet another approach to design the 

ANN Cg]. As mentioned in chapter 4, though these algorithms are found to be reliable and 

accurate, one of the drawbacks is that the training tirnes are quite long. 

Pnor to using the fkequency components as the inputs to the ANN, three cases of 

possible inputs to the neural network are considered, namely: 



1. 1nStantaneou.s values of voltages and currents without removing the noise 

2. Magnitude of voltages and currents 

3. Instantaneous values of voitages and currents after filtering the noise 

Using instantaneous values of voltages and currents as the inputs proved to be a wong 

decision, as it leads to Iong hours of training times. The instantaneous values of voltage 

and current contain lot of harmonies, as is observed In Fig. 3.4. The ANN is not able to 

extract any meanin@ information fkom these patterns. Similady, providuig the 

magnitude (RMS value over one cycle) of the voltage and current components as the 

inputs to  the ANN results in the same setback. The magnitudes of the voltage and current 

are represented by points which are very close to each other and hence the ANN is not 

able to leam when provided with these type of inputs. Considering the third case, the 

instantaneous values of the voltage and current after filtering away the noise resernble a 

sinusoidal wave; no matter at what point the fault has occurred. There is no significant 

variation in these patterns, except an increase in voltage with increasïng distance of fault 

location. This can be clearly seen fkom Fig. 5.2 which illustrates the filtered phase a 

voltage for a single-Iine-to-ground fauit occurring at 20%, 50%, 90% and 95% of the line 

fiom subsîation A- The ANN takes a long training t h e .  Even d e r  long training times, 

there is every possibility that the ANN algorithm wouid fail, as it might lead to 

memorization of the patterns rather than learning [27,33]. 



Figure 5 -2: Fitered post-fault voltage at phase a for the single-line-to-ground fault 

occuning at 20%, 50%, 90% and 95% of the line. 

(cp = 90°, &= 10 R) 



As a first step in any pattern classification technique, feature extraction is used to 

reduce the dimension of the raw data and extract usefùl information in a concise form 1321. 

For the i W N  considered here, this process leads to a considerable reduction in size of the 

network, thereby signiscantly irnproving the performance and speed of the trauiuig process 

[XI. The technique adopted here for feature extraction is the one based on time domain 

frequency decomposition of voltage and current wavefoms using Fast Fourier Transform 

(FFT). A one-cycle window is employed for th-s purpose. The work presented here has 

two main parts based on the input data of the one-cycle window. In the first part of the 

work on the proposed ANN based aigorithm, thÏs one cycle window consists of purely the 

post-fault voltage and current signals. It is found that inputs given in this way resdts in 

shorter training tirnes. The trip decision is obtained &er a cycle but the results obtained 

are encouraging. This prompted the author to investigate the possibility of reducing the 

response tirne. To achieve this, in the second part o f  the work, half-cycle pre-fault and 

half-cycle post-fault information of the voltage and current signals are used as the inputs. 

5.2.1 Simulation Procedure to Obtain Frequency Components 

The sample power system mode1 as shown in Fig. 5.3 is simulated using EMTP to 

obtain the voltage and current data 1231- The data is generated for the following fault 

locations, instant of fault occurrence (fauit inception angle) and fault resistance. 

Distance of fault (5, 10, 15, 20, 25, 30, 35,40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 87, 

89, 90, 91, 93, 95% ofthe line length) 



Fault regstance (RF = 0, 10 Cl for single-line-to-ground faui~  RF = 10, 50 R for three- 

phase fa&) 

Fault inception angle (O0, 90°, 180°, 270°) 

A total of 184 cases are simdated for single-line-to-ground fauit and for three-phase fa* 

to train and test the ANN based on one-cycle post-fault information. For the ANN based 

algorithm using ha-cycle pre-fauit and post-fault information, a total of 344 fault cases 

are sirnulated- DiBerent fault inception angles are selected, as in a practical situation, a 

fault can occw at m y  point of tirne- 

Figure 5.3: Single line diagram of the power system model 

(Voltage at substation A = 1-03 p-u, Voltage at substation B = 0.97 p.u) 

(Lena& ofthe line = 160 miles, Rating of the line = 345 kV) 

In the simulations presented here, the fiequency cornponents of one cycle post- 

fault voltage and current signais are obtained using FFT. Since a sampling rate of 960 Hi 

has been used, the fiequency components up to the eighth harmonic (480 Hz) are used. 

The frequency components are normalized with respect to the 60 Hz component. The 

normalized values of the fiequency components are used as inputs by the ANN algorithm, 

to give the appropriate relaying decision. The fiequency spectnim of the input current and 

voltage meet the sampling theorem whïch states that the sampling fiequency shouid be at 

teast twice the highest fi-equency in the spectrum. The highest fiequency is thus 480 Hz in 



the presented work In the hardware implementation of this concept, a low pass Glter with 

a cut off fiequency lower than 480 Hz must be included. 

5.2.2 Frequency S pectrum Using Pos t-fault Information 

The fiequency spectnim of the phase a voltage and current for a single-line-to- 

ground fault occurring at 20% and 75% of the Line &om substation A (Fig, 5.3) are shown 

in Fig. 5.4 and Fig. 5.5 respectively. The fkequency spectrum is obtained using one-cycle 

of post-fault voltage and current signals. The Total Karmonic Distortion (THD) indicates 

that there is an mique relationship between the ~equency spectnun of the voltage and 

current and the fa& location- The THD is a measure of closeness between a waveform 

and its fundamental component [36]. The THD in the voltage waveform is defined as 

THD, = \ n=I * 100% 

with v representing the voItage,f, representing the dc componenff2 the second harmonic 

and so on. Similady, the THD in the curent waveform is defhed as 

with i representing the current. The THD for some of the fault cases is indicated. in Table 

5.1. The THD in voltage and curent is found to decrease with increase in the fault 

location fkom the generating end, as seen fiom Table 5.1. 
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Figure 5.4: Frequency spectnun of phase a voltage and cument for single-line-to-ground 
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fault at 20% of the Iine 
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Figure 5.5: Frequency spectnim of phase a voltage and m e n t  for single-he-to-ground 
- 

fault at 75% of the line 



Table 5.1 : THD for single-line-to-ground faults using one-cycle of post-fadt data 

The study indicates that the fiequency components of voltages and nirrents 

provide good information for the neural network to learn about the fauit conditions, The 

ANN design is based on mapping the data of fiequency spectnim to the relay decision for 

fault location, 

Similar conclusions are drawn for the frequency spectmm of the voltages and 

currents for three-phase faults. Fig. 5.6(a) and Fig 5.6@) respectively illustrates the 

fiequency spectmm of the voltage and current of ali the three phases, for a three-phase 

fault occuming at 20% of the transmission h e .  The frequency spectrum of the voltages 

and currents for a three-phase fadt occurring at 60% of the line fkom substation A is 

shown in Fig. 5.7(a) and Fig. 5.7@) respectiveiy. Though a three-phase fault is 

symmetricai, the nequency speanim reveals that the harrnonic components for the 

voltages and currents in the three phases are quite different. For a three-phase fauit, the 

frequency components of voltage and current in aiI the three phases should be used as the 

inputs to the neural network 

Fadt location (%) 
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Figure 5.6(a): Frequency spectnim of phase voltages for a three-phase fiuit 

at 20% of the line 

(One-cycle of post-fadt, cp = 0°, & = 10 R) 



Phase b 

v r I I I r 

O 60 1 20 180 240 300 360 420 480 
Frequency (Hz) 

Figure 5.6@): Frequency spectmm of phase currents for a three-phase fault 

at 20% of the Iine 

(One-cycle of post-fa* p = 0°, & = 10 R) 
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Figure 5.7(a): Frequency spectrum of phase voltages for a three-phase fault 

at 60% oftbe h e  

(One-cycle of post-fa& <p = 0°, & = 10 S2) 
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Figure 5.7@): Frequency spectmm of phase currents for a three-phase fault 

at 60% of the h e  

(One-cycle ofpost-fault, <p = 0°, &= 10 a) 



The THD for the phase a voltage and phase a current for some of the fadt  cases is 

represented in Table 5.2. The THD in the voltage and current is found to decrease ~ 5 t h  

increasing fadt location fiom the substation A- 

Table 5-2: THD for three-phase fa* using one-cycle of post-fault data 

An obvious question arises a s  regards to the exact selection of one-cycle of post- 

fault data. Many aigorithms are avaiiable which can indicate an abnormal behaviour when 

a fault occurs. These algonthms indicate the possible occurrence of a fault. At the 

occurrence of a fault, the voltage decreases and the cwent increases (Fig. 3.4). A simple 

algorithm can be implemented using a sliding window to obtain the FFT of the signal. 

The initial values of the fiequency components will have a low value. The fiequency 

components will have a larger value when one cycle of post-fadt data is selected. A 

threshold can be selected, so that the values above this threshold contain the fiequency 

components correspondhg to one-cycle of post-fault data It is assuxned that such an 

algorithm wili be used prior to the ANN algorithm. At the instant of a possible fadt  

occurrence, the aigorithm selects one-cycle of the data that represents the data peaaining 

to pure fault. 

Fadt location (%) 
5 

20 

T m  (%) 
56.5090 
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5.2.3 Frequency Spectrum Using Pre-fault and Post-fault 

Information 

Using only post-faut gequency components of the voltage and current signals the 

trip decision c m  be obtained ody  &er a cycle. To improve the speed of the protective 

relay, a one-cycle window consisting of half-cycle pre-fadt and half-cycle post-fàult 

information is used as the inputs. At thÏs stage it should be  mentioned that a suitable Iogic 

should be developed that dl exactIy use half-cycles of pre-fault and post-fault information 

as the inputs to the ANN- This work is carrîed out under the assumption that such a 

suitable logic is available- 

When there is no fault, onfy the fundamental fiequency component is present and 

the selection logic should reject those cases. At the inception of the fault, the voltage and 

current signais are dktorted. The FFT of the initial samples of voltage and current have 

srnall magnitudes. A threshold should be selected, such that when the FFT of voltage and 

current signais reaches the half-cycle condition, those values are taken as the inputs to the 

ANN. This could be one of the possible methods to design the Iogic for selecting the 

fiequency components of half-cycle pre-fault and half-cycle post-fault data to be used as 

inputs to the neural network. 

Fig. 5.8 and Fig. 5.9 represent the fiequency spectmm of the phase a voltage and 

current for a single-line-to-ground fault occurring at 20% and 85% of the transmission line 

from substation A of Fig. 5-3- Table 5.3 represents the THD for some of the fault cases. 

The THD indicates a unique relationship between the fiequency components and the faub 

location. The THD decreases with increashg fault location fiom substation A. 
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Figure 5.8: Frequency spectrum of phase a voltage and current for single-line-to-ground 

fkult at 20% of the line 

@alf-cycle of pre-fault and post-fault, q~ = 0°, Rf = 10 R) 
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Figure 5.9: Frequency specaum of phase a voltage and current for single-lime-to-ground 

fault at 85% of the line 

@&if-cycle ofpre-fault and post-fa& <p = O*, &= 10 a) 



Table 5.3: THD for single-line-to-ground fauits using half-cycle of pre-faut 

and post-fauit data 

The nequency spectnim of  the voltage and current for a three-phase fadt 

occurring at 20% of the h e  are Uustrated in Fig. 5.10(a) and Fig. 5.1 O@) respectively. 

Fig. S. lO(a) and Ag. 5.10(b) are obtained with a fault resistance & of 10 R and the fault 

inception angle cp being OO. Fig. 5.1 1(a) and Fig. 5.1 1 @) represent the fiequency spectnim 

of voltages and cwents for a three-phase fault occurring at a fault distance of 90% of the 

line, with &of 10 Q and <p of O". 

The THD for phase a voitage and cunent for some of the fadt cases is indicated in 

Table 5.4. As seen nom Table 5.4, the THD in the voltage and current is found to 

decrease with increasing fauit location, from substation A. 
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53,0572 
40-4 1 75 
35-8 135 
24,8446 



Phase a - 

- 

O 60 1 20 180 240 300 360 420 480 
F~esue n w  (Hz) 

L 1 1 l r l 1 L 1 
Phase b - 

Phase c - 

- 

Figure 5.10(a): Frequency spectrum of phase voltages for a three-phase fault 

at 20% of the h e  

(EM-cycle of pre-fault and post-fàiut, cp = 0°, &= 10 R) 
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Figure 5.1 O@): Frequency spectm of phase currents for a t hree-phase fault 

at 20% of the iine 

(Ha-cycle of pre-fauit and post-fauit, cp = 0°, & = 10 R) 
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Figure 5.1 l(a): Frequency spectnim of phase voltages for three-phase fault 

at 90% of the line 

(Half-cycle of pre-fault and post-fault, cp = 0°, & = 10 l2) 
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Figure 5.1 1Q): Frequency spectrum of phase currents for three-phase fauh 

at 90% of the line 

@al£-cycle of pre-fauit and post-fault, cp = O", &= 10 n) 



Table 5.4: THD for three-phase fadts using haif-cycle of pre-fault 

and post-fault data 

5.3 Artificial Neural Network Design 

Fault location (%) 
5 

20 
30 
65 
90 

The block diagram of the proposed scheme for transmission line relaying is shown 

in Fig. 5.12. The required sampled values of voltage and current, representing the faults 

are obtained. In a power system environment, the data acquisition system provides 

sampled values of voltage and current signal fiom the power system This data is fed to the 

FFT filter to obtain the nequency components of voltage and curent signals. The ANN 

uses the fiequency components as the inputs, for fadt indication (distance protection) and 

fault location. It is assumed that signais are fikered to sati* the sampling theorem 

A feedforward neural network is used in the work The proposed ANN is trained 

using the backpropagation algorithm, which is an iterative gradient descent approach that 

rninimizes the mean square error between the actual output of the neural network and the 

target output. The MATLAB Neural Network Toolbox is used for training the networks 

[27]. The fùnction 'trcrinllm' explained in chapter 4 is used, which converges in lesser time 

as well as in few epochs compared to the training fùnction 'aainbpx' of the neural 

THD,, (%) 
52.5295 
44.2288 
42.1474 
35,561 1 
3 1,9178 

THDi (%) 
58,4573 
51,2110 
46,7250 
3 2.6927 
24,4897 



network toolbox. Though the training fllnction 'trainlm' requires signincant memory, 

with today's techmIogy this is unlikely to be a drawback. 

Data Acquisition + 
Selection logic + 

1 1 Fault Indication 1 / Fault Location ] 1 

outputs 

Figure 5.12: B Lock diagram of the proposed scheme 

For each fault case considered, two neural networks are designed, one to indicate 

the fault and the other for the precise location of fault [35]. The generai design structure is 

quite simila- for the cases considered. Any neural network should have inputs and 

corresponding target output for training purposes. As indicated earlier, the fkequency 

components of the voltage and curent are the inputs tu the ANN. The error goal is kept 

below 0.001% for al1 the cases. The leaming rate is the same for ail cases considered. For 

fadt indication purpose, the output is either 0.9 or 0.1 indicating respectively whether the 

fault is inside the zone of protection or outside it In practice, there wiil be d l  

fluctuations in the ANN output and hence the values 0.9 and 0.1 are chosen as threshold 



values. For faut  location purpose, the output indicates the per unit (p. u) distance of the 

h e  length, A detded explanation o f  the network inputs and outputs for the individuai 

cases are explained in the following sections. 

The neural network has to be trained for aIi possible conditions so as to generdize 

properly. Among the 184 cases of varying fault Location, f ad t  resistance and instant of 

fault occurrence, 130 cases are used to train the network and the rest of the cases are used 

for testing. This is for the case when only post-fadt Eequency components are used as 

inputs. It is found that for the case when the fiequency components of half-cycle pre-fault 

and half-cycle post-fault voltage and current data are used as the inputs, few cases are 

needed to train the network The detds of this wilI be presented in chapter 6. 

5.3.1 ANN ReIay for Single-line-to-ground Faults 

For the case of single-he-to-ground fault, it is found that only the volîage of the 

faulted phase and ail three phase current idormation are abk to classify faults [37J. All 

the harmonic components are normalized to the fûndamental and the fundamentai is not 

included as an input. During training process contradicting targets will be given as output 

to the fundamental component if it had been included. For example, for the case of fault 

indication, the h d a m e n t d  component having unity value, would have a target output as 

0.9 for faults o c c h g  inside the trip region and the same bdamental component would 

have a target output of 0.1 for faults occurring outside the trip region. 

The number of inputs for the single-line-to-ground fault is thus 32, name1y: 

v,(f,), v,(fd, v&), . . . . . . . .- . . . . . . . . . . . . . . . va(fs) 



component, the second harmonic and so on. 

For the fault indication case, the target outputs are 0-9 or 0.1 depending on 

wheîher the fadt is inside the protection zone or outside it The target output is selected as 

the per unit distance for the case of fadt  location- The relay should send a trip signal for 

faults located within the protection zone. 

The number of hidden Iayers and the neurons are seIected by extensive 

experimentation, The process of choosing the optimal structure of the network is iterative 

and the approach adopted in the worlc is as follows. A single hidden Iayer is chosen first- 

The number of neurons is graduaily increased. Each time, the network is trained and then 

tested with the 54 patterns not seen before- If the network is able to identi& the test 

patterns accurately, the structure is taken as the optimum one, otherwise hvo hidden 

layers are selected and the process is repeated- This process of trial and error can be 

terrned as ' f i e  tuning' of  the neural network. It is suggested in [27] that adding more 

layers gives the network more degrees of fkeedom to learn, thus resultùig in a greater 

potential at solving the problem. The MATLAB Neural Network Toolbox can support 

o d y  two hidden layers. 

For the ANN methodology to indicate the fauits, using one-cycle of post-fault 

information, 3 neurons in the first hidden Iayer and 2 neurons in the second hidden layer 



are selected. For fauit location purposes, the slst hidden layer has 4 neurons and the 

second hidden layer has 2 neurons- Ali the hidden neurons have log-sigrnoidal transfer 

function to limit the output between O and 1. 

ANN based relay for single-line-to-ground fault indication using half-cycle pre- 

fa& and post-fault data has 4 neurons in the first hidden layer and 2 neurons in the 

second hidden layer- The network for fault location has 5 neurons in the first hidden layer 

and 3 neurons in the second hidden Iayer- The details of the inputs, number of netsrons in 

the hidden layers and the output for the proposed A .  using one-cycle post-fault 

information and half-cycle pre-fault and post-fault Somat ion  are summarized in Table 

5.5 and Table 5.6 respectively. 

Table 5-5: Structure of the ANN using one-cycle of post-fault data 

Output 

1 

I 

1 

1 

Type 

Single-line-to- 
ground fault 
indication 

S ingle-line-to- 
ground fault 

location 
- 

Three-ph%e fault 
indication 

Three-phase fault 
location 

Inputs 

33 

32 

- 

48 

48 

Nurnber of neurons in hidden 
Iay ers 

Layer 1 
3 

4 

- 

3 

5 

Layer 2 
2 

2 

2 

3 



Table 5.6: Structure of the ANN using half-cycle pre-fadt and post-fadt data 

5.3.2 ANN Relay for Three-phase Faults 

Al1 the three-phase currents as well as the voltages are chosen as the inputs to train 

the algorithm for a three-phase fault. Thus for the case of a three-phase fault 48 inputs i-e. 

each sensing point having 8 fiequency components are selected for the ANN algorithm to 

ident* and locate the fault. The main ciifference in the network structure for the case of a 

three-fault and the single-ihe-to-ground faults is in the number of inputs. The inputs to the 

ANN algorithm for three-phase fault indication and fault location are as follows: 

v,(fr), v,(f*), va(&), - -. - - - * - - * - - - - - - -  - - . - - - va(&) 

vb(fl), vb(fZ), vb(f3), . - - - - - - - - - - - -. . - -. - -. - - - vb(fs) 

&(fi), v,(f2), v&), -. - . . . *. . - * - . -. . . . - - -  * - -  - vc(f*) 

i,(fI), ia(f2), ia(&), - -  - - - -  --. - - -  -.- .. - - - -  - - -  .-- i&) 

Type 

Single-line-to- 
ground fault 
indication 

Single-line-to- 
ground fault 

Iocation 
Three-phase fault 

indication 

Inputs 

32 

32 

48 

Three-phase fault 
location 

Number of neurons in hidden 
layers 

Output 

Layer 1 

f 

Layer 2 
4 

5 

3 

48 

2 

3 

4 5 

I 

1 

I 

3 I 



i b(fi), i&)> i&), - - - - - - - - - - - - - - - - - - - - - - - - - - - il,(&) 

L(f& L(Q, L@i), .-- .------------------ &(fi) 

6 ,  6, f3, -----.---- fi indicate the fiequency components, with fL representing the dc 

component, fi the second harmonic and so on- 

Regarding the outputs for fault indication and fault location, it remains the same as 

in the case of the aigorithm for single-line-to-ground fauIt, The simulation resuits obtained 

will be presented in chapter 6- 

Table 5.5 nimmanZes the network architecture for the fault cases using one-cycle 

post-fault data. The number of neurons used for three-phase fault indication are simïiar to 

that of the single-Iine-to-ground fadt indication For three-phase fault location purposes, 5 

neurons in the first hidden layer and 3 neurons in the second hidden Iayer are chosen. 

When hdf-cycle of pre-fault and post-fault data is used, the network architecture slightly 

changes, as indicated in Table 5.6. In this case3 the neural network used for three-phase 

fault indication has 3 neurons each in the hidden Iayers. For fault location purposes, 5 

neurons are present in the first hidden layer and 4 neurons in the second hidden layer. 



5.4 Summary 

The frequency comp&ents of voltages and currents are f o n d  to be distinct for 

different faults. The fiequency components can be used as pattern recognition by the 

AlW. Neural netv~orks have been designed to map the relationship between frequency 

cornponents and the information associated with the fault, The simulation procedure used 

to obtain these fiequency components is explained. The main difference in the ANLU 

based fault indication and fadt location aigorithm is the target outputs- In the former case, 

the target outputs are either 0.9 or 0.1 depending upon whether the fault is inside or 

outside the protection zone, whereas in the Iatter case, the target output is the per unit 

distance. The two ANN based algorithrns have been designed for single-line-to-ground 

fault and three-phase faults. 

In the initial part of the work, the fiequency components of voltages and currents 

corresponding to one-cycle of post-fault are used as the inputs to the ANN based 

algorithms. Even though the FFT is taken over one complete cycle after the inception of 

fault, the voltage and curent signals are found to have different patterns at different fault 

inception angles. ANN is basically a pattern recognizer and hence it is necessary to 

include the cases of different fault inception angles in the training/testing set. To obtain a 

better response in terms of speed, it is proposed to use half-cycle pre-fault and half-cycle 

post-fault data as the inputs for the ANN based aigorithm. The same ANN can be used 

for indicating (or locating) faults under diffierent fault conditions, such as change in the 

fault location, fault resistance and the fault inception angle. The simulation results for the 

two cases are presented in chapter 6. 



Chapter 6 

Simulation Results 

6.1 Introduction 

Motivated by the fact that ArtScid Neural Networks (ANN) can be used as an 

alternative computational concept to the conventionai approach in transmission line 

relaying, a nove1 feedfonvard network for fault indication as well as for fault location 

purposes has been proposed- The proposed neural network is trained by a set of 

input/output patterns using backpropagation learning algorithm. Chapter 5 presented the 

structure of the proposed ANN. 

This chapter presents the simulation renilts using the proposed ANN algorithm. 

The study is divided into bvo main parts. The first part presents the results of the ANN- 

based algorithm using post-fault information ody. The second part of the work deals \hith 

the ANN-based aigorithm using both pre-fault and post-fault information. The proposed 

neural network is designed using the MATLAB Neural Network Toolbox. A typical 

leaniing process of the network in converging tu the specified error goal is shown in Fig. 



6.1. As seen fiom Fig. 6.1, the network is able to Ieam quickly. In Fig. 6.1, every epoch is 

an iteration in which the input is mapped to the output and the error is calculated. With 

increasing epochs, the error decreases and when the specified error goal is reached. the 

~\.eights and biases of that epoch are stored The traïned ANN stores these weights and 

biases- The simulations are done on a 'DEC ALphaT WorkStation- 

w 

Figure 6.1 : Learning process of the neural network 



The simulation 1:esuIts obtained for fault indication and fauit location for a single- 

line-to-ground fault and a tfuee-phase fauit are presented in this chapter- A cornparison of 

the proposed ANN-based algorithm with a few existing ANN-based algorithms and aIso 

with the Fourier algorithm is provided- AU these simulations are done off-line- A possibIe 

on-llne implementation using the proposed algorithm is suggested- 

6.2 ANN-based Algorithm Using Post-fault Information 

MI weights and biases of the neural network are initiaDy set to random values. 

The input vaiues and the desired output values are specified to the network. Then the 

nettvork is used to calcuiate the achral output by the backpropagation method- In the 

training process, the ANN based algorithm does not explicitly use the voltage and current 

information as the basis OF the decision making- It Iearns fiom expenence gained during 

the training and recognizes the hidden relationship that exists in the patterns obsewed 

during the learning phase. In the fint part of the research, one-cycle of post-fault data is 

considered D5]. In practice, a transient fault detector would start the one-cycle data 

window afier the fault inception [15]. The training patterns are chosen randomly. The 

training process is repeated until the sum square of error (SSE) between the actual output 

and the desired output reaches the specified ermr goal of 0.001%. 

For the case of the algorithm using one-cycIe of post-fault information as the 

inputs, the network is trained with 130 patterns and tested with 54 patterns that the 

network has not seen earlier. But these 54 test patterns have the same fault distance, fault 



resistance and angle of fault occurrence as that of the training patterns. The objective is to 

obtain a network that is able to give correct resuits for the patterns not seen before. In 

practical situations, there is every possibiiity that the network will experÏence diflerent 

conditions. Hence, in the next part of the research, which uses half-cycle pre-fault and 

half-cycle post-fauit information, additional testing patterns that are dBerent from the 

training patterns are presented to the neisvork. 

6.2.1 Single-Iine-to-ground Fault Indication 

There are 32 inputs to the neural nehvork for the purpose of fault indication in a 

single-Iine-to-ground fauit condition. The details of the ANN structure are given in Table 

5.5. A hvo hidden Iayer network kvas found to be accurate in performance. There are 3 

neurons in the first Iayer and in the second iayer, 2 neurons are selected. The hidden Iayer 

units have the log-sigrnoidal transfer function- The output is talcen as 0.9 if the fault is 

within the trip zone, else it is taken as O. I - 

Tt is found that for the case when the fault resistance is O R and the distance of 

fault is near the sending end of the power system, the DC component has the maximum 

value. As discussed in Chapter 5, al1 the harmonic components are normalized to the 

firndamental and hence cases where the DC component has the maximum value are not 

considered in the training as well as in the testing set These cases are found in the single- 

Iine-to-ground fault cases- 

The training time for this neural network is 180 seconds and the network reached 



the error goal in 24 epochs. The training process is represented in Fig, 6-1- 54 fauk 

patterns that are different fkom the training set are used for testing- The network is able to 

identie 96% of the tested cases correctly [XI.  The incorrect answers are mostly confined 

to the boundary region. The results obtained are showm in Fig. 63 .  The output of  0-9 

given by the neural network indicates that the fault has occurred within the protection 

zone, and 0.1 represents fault occurrïng outside zone 1. The ANN correctly identifies the 

faults occurring in the triplno trip region in the presence of a fauit resistance of 10 R The 

ANN does not suffer from the overreach condition that occurs in the Fourier algorithm 

based reiay. 
I r 1 E 1 

Zone 

Figure 6.2. Response of ANN algorithm for fault indication using one-cycle post-fault 

information 



Table 6.1 provides a cornparison of the proposed feedforward network with a few 

feedforward networks a d a b l e  in the Iiterature. As seen fiom Table 6.1, the proposed 

structure has a smalIer size compared to the other neural networks. However, the number 

of inputs required for the proposed network is 32, compared to 5-8 inputs required by the 

other networks. The number of training patterns needed for the proposed network to leam 

is comparatively reduced. Aiso the training time of the proposed network is found to be 

signifÏcantly less. For on-Line implementation, the run-time is an important measure. 

From Table 6.1, it c m  be seen that the proposed method features a slower run-time 

compared to two other methods. The limitation of the proposed method is the slow m- 

t h e ,  which is beyond the scope of the thesis to be investigated. 

The response of the network for dBerent loading conditions is not considered in 

the present study. But including the training patterns for different loading conditions is 

not expected to affect the overall performance of the neural network. 

Table 6.1: Cornparison of different neural networks for single-line-to-ground fautt 

indication using one-cycle of post-fault information 

I L 

1 Inputs 1 Frequency 1 Magnitude 1 Measured 1 Red and 1 
Neural Network 

Structure 

I 1 components ( of voltage 1 apparent 1 imaginary values 1 

Proposed 
3 2-3-2-1 

1 1 1 1 documented 1 1 

No. of training pattern 
Training tirne (minutes) 

Ref. [83 
6-6-2- 1 

of voltage 
and current 

130 
3 

Ref. Cl21 
5-6- 1 

Ref. 11 11 
8-2041 

and current 

1 144 
120 

impedance 

5 12 
Not 

of voltage and 
current 

Not documented 
> 12000 



6.2.2 Single-line-to-ground Fault Location 

The number of inputs for performing the task of fault Location remains the same as 

in the earlier case. The oniy difference is in the output The output in this case is taken as 

the per unit (p. u.) distance of the transmission Line. Even for the case of Locating the 

points of single-line-to-ground fadt, it  is fomd that a nehvork wïvith 2 hidden layers gives 

good performance. The first hidden layer has 4 log-sigrnoidal neurons and the second 

layer has 2 log-siPoidai neurons, as indicated in Table 5.5. 

The network reaches the error goal in 10 minutes and this convergence is achieved 

in 196 epochs. When tested with 54 cases not seen earlier. it is able to correctly locate the 

fault for about 92% of the testing data. It is to be  noted that although the ANN locates the 

fault accurately, there are srnail fluctuations in the ANN output and in practice this cannot 

be avoided. The error in locating the exact fault can be expressed as a percentage of the 

length of the transmission line and is given by equation (6.1). The maximum error in 

Iocating the exact fault is found to be less than + 25%. 

acfual (ocarion - desr'red location 
% Error = *1 00 

Iength of the fine 
(6-1) 

The proposed network employs only 32 inputs and is found to be an accurate fault locator. 

The protection zone is chosen to be 90% of the line, and the results given by the ANN 

algorithm have been found to be reliable. The results are found to be accurate even at the 

boundary location The resdts for some of the tested cases are shown in Fig. 6.3. 



1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Case Numkr 

Figure 6.3 : Response of the ANN algorithm for single-line-to-ground fault location using 

one-cycle of post-fault information 

6.2.3 Three-p hase FauIt Indication 

For three-phase fadt indication, a neurd network with 3 neurons in the first hidden 

layer and 2 neurons in the second hidden layer was found to give a reliable tripho trip 

decision. The structure of the network is similar to the one used for identifj6ng faults in a 

single-Iine-to-ground fault case, except for the increased number of inputs. The structure 

of  the neural network for three-phase fault indication is 48-3-24 The selection of  the 

hidden layers is done by trial and error expenmentation with difEerent configurations. The 

network reaches the error goal in 184 epochs and 180 seconds of training tirne. 

The network tests correctly for 98% of the cases, which is not seen by the ANN 

before. The results are sirnilar to those shown in Fig. 6.2, and are found to be accurate for 



different fault conditions- 

The basic structure of the neural network remains the same for both fault 

indication and fault location purposes. Since the network has to perfiorm dïffierent task of 

either giving a tripho trip decision or point of faut, the optimum neural network has been 

selected for the two different ANNs. 

6.2.4 Three-phase Fault Location 

The difference in the case of the _4NN for three-phase fadt location aigorithm is 

the number of hidden neurons- The est hidden Iayer has 5 neurons and the second hidden 

layer has 3 neurons. The output of the neuron is the per unit distance of the fault fkom the 

relay location. The network reaches the error goal in 2 1 8 epochs and the training time is 

15 minutes. The test results for few test cases are shown in Fig. 6.4. The resdts show that 

the ANN output accurately iocates the fault The percentage of correct answers is 89% 

(maximum error beùig +2.5%). The ANN output is termed incorrect if the maximum error 

is greater than eS%. For the incorrect answers, the maximum output is found to be Less 

than 15%. The correct percentage of the tested cases is slightiy Less compared to that for 

the single-line-to-ground fault location case. 
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Figure 6.4: Response of the ANN dgorithm for three-phase fault location using one-cycle 

of post-fault information 

Table 6.2 presents a surnmary of the convergence time, number of epochs used and 

accuracy of the designed neural networks. There is every possibility that the four ANNs 

indicated in Table 6.2 Mght not test accurately when tested with data, which are entirely 

dEerent from the training patterns. But the ANNs based on the one-cycle post-fault 

information have demonstrated the ability to train in a short time, and give the decision of 

tripfno trip and locate the fault in about a cycle after the fault inception. The research 

results at this stage form the basis for the next phase of the ANN design. 



Table 6.2 Stmcture and performance of the ANN using one-cycle of post-fault data 

Type of fault ' Number of 
training 
cases 

Number of 
neurons 

Number 
oftesting 

Training 
time 

(minutes) 

Number 
of 

~urnber  
of 

epochs 

-- 

Accuracy 
of  Test 

cases 1 inputs 
Layer 

1 
3 

Layer 

Line-to- 
ground fault 
indication 
Line-to- 
ground fault 
location 
T hree-phase 
faul t 
indication 
Three-phase L fau~t location 



6.3 ANN-based Algorithm Using Pre-fault and Post-fault 

Information 

Using only post-fadt information of voltage and current fiequency components as 

the inputs to the neural network provided good results, but the decision is obtained after 

one-cycle of fault uiception. In order to improve the speed of the relaying decision, haif- 

cycle pre-fault and ha-cycle post-fault information of voltage and current frequency 

components are taken as the inputs to the ANN. This method can provide a relaying 

decision in about half-cycie after fault occurrence. As observed fiom the fiequency 

spectnims of voltage and current signals, half-cycle pre-fault and post-fault data contain 

suEcient information regarding the fault. 

In addition to the 184 fault cases used earlier in the training and testing of the 

ANN based on one-cycle post-fault information, another 160 fault cases are simulated for 

testing the network. These 160 test patterns are simulated for faults with different fault 

location. fault inception angle and fault resistance compared to that of the training 

patterns. Also, for the case when half-cycle pre-fauit and post-fault information are used, 

the DC component is found to be less than the fundamental component and hence ail the 

344 fault cases generated are used either in the training set or the testing set. Out of these 

344 test cases, about 100 cases are used in the training set for fault indication purposes 

and the rest are used in testùig the ANN. For fault location purposes, more fault cases are 

needed in the training set and the details are explained in the sections to follow. 

Table 6.3 represents the combinations of different system conditions for which the 



113 

fault data are generated, to be used in the ANN algorithm for fault kdication and f d t  

location purposes. For exampie, a single-he-ground fauIt is simulated with a fault 

resistance of 5 R, with fault location at 80% of the line &om the substation A (Fig. 5.3) 

and the fault inception angle of 0"- Similarly, fadts for other combinations are simulated, 

Table 6-3: Combinations for which fault data is simuIated 

5 (Line-to-ground) 
25 (Three-phase fault) 

Fauk resistance 
R, (n) 
O, 10 

Location of fauit (%) 

81,83 

Fauit inception 
angle 

10 

O (Line-to-ground) 
50 (Three-phase fauit) 

6.3.1 Single-Line-to-ground Fault Indication 

1 

5, 10, 15,20,25,30,35,40, 
45, 50, 55,60,65,70,75, 80, 

85, 87,89,90,91,93,95 
5, 10, 15,20,25,30,35,40, 

45, 50, 55,60,65,70,75,80, 
85, 87,89,90,91,93,95 

Fine tuning procedure is adopted to design the neural network. Only 100 cases are 

found to be sufficient to train the proposed network for single-line-to-ground fault 

indication. These 100 cases included the patterns for faults occurring at different fault 

location, with a fault resistance of O R and/or IO Q, and the fault inception angle <p of 0°, 

90°, 180" andor 270°. The testing is first done ody with the 84 test cases having the 

same fault distance, fault resistance and the faut angle as that of the training patterns. The 



fine tuning rnethod, as expfained in chapter 5, results in a two hidden layer network wïth 4 

neurons in the fmt hidden layer and 2 neurons in the second hidden layer to give the best 

result. The convergence to the error goal is obtained in 5 minutes and in 146 epochs. 

In order to make the ANN more generdized in nature the AMJ aigorithm is 

presented with 160 fault data that has entirely different pattems from the training data, as 

explained in the previous section. The neural network never saw these patterns, and its 

task is to cias* new pattems based solely on the previous expenence i-e., using the 

information learned during the training. The ANN is found to test accurately 97% of the 

diEerent fault pattems. The correct testing ùidicates that the ANN has generalized and not 

just memorized the pattems. The trip decision in this case is obtained in just half-a-cycle 

after the fault inception. This is clearly an advantage over the same algorithm when one- 

cycle of post-fault information is considered. The response of the ANN algorithrn for the 

single-line-to-ground fauit indication purposes is shown in Fig. 6.5. 

1 - ~ r f  p Zorw No Tnp Zone 
1 

0.8 - 

Figure 6.5: Response of the algorithm for single-line-to-ground fault indication using 

ha1 f-cycle pre- fauit and post-fault information 



The ANN does not suffer Eom the reach accuracy that was present in the Fourier 

algorithm. The Fourier algorithm was not abIe to classify the fault occurring at 95% of the 

line and with a fault resistance of 10 Q as being outside the protection zone (Fig. 3.6), 

whereas the ANN based algorithm has successfuliy recognized it (Fig. 6.5). While training 

the neural network, 85 of the 100 cases represented the faults lying inside the trip region 

and the remaining 15 cases represented the faults Lying outside the trip region- Even 

though the training patterns are not symmetncally distributed between the trip and no trip 

region, the network is able to leam aü the cases weii. The first zone of protection can be 

safely set to 90% of the transmission line. 

6.3.2 Single-line-to-ground Fault Location 

With thefine tuning procedure, the network structure of 32-5-3-1 is found to be 

accurate for the single-line-to-ground fault location case. In this case, 125 training cases 

are found to be suficient for the network to l e m  the patterns. These 125 training patterns 

included the cases for faults occumng at different fault location, with a fault resistance of O 

R and/or 10 Cl, and the fault inception angle <p of 0°, 45", 90°, 180° andior 270°. To 

converge to the error goal, 242 epochs are needed for the chosen network structure and 

this is achieved in 37 minutes of real time. The algonthm locates 92% of the faults 

accurately when presented with the 84 test patterns that are similar to the testing patterns. 

When tested with different test data, the neural network identifies 84% of the cases 

accurately. When presented with test data of faults occunïng at a dinerent fadt resistance 



of 5 Q, the network is able to accircately identify the location of the faulf as illustrated in 

Fig. 6.6. The decision of the ANN algorithm is obtained in haif a cycle after fault 

inception. 

Figure 6.7 illustrates the response of the network in the presence of different fault 

distances not used earlier- The resuits show that the ANN aIgorithm accurately iocates the 

fauits. The results are shown for faufts o c c ~ g  at 8 1 % and 83 % of the transmission tine, 

with the fadt resistance of O CL 

Figure 6.6: Response of the ANN algorithm for single-Iine-to-ground fadt location in the 

presence of a 5 Q fadt resistance 

(Distance of fault = 80%, 85%, 90% and 95%, <p = 0°, 90°, 180° and 270') 



Case Nurnber 

Figure 6.7: Response of the ANN algorithm for single-Iine-to-ground fault location 

(Distance of fault = 81% and 83%, <p =Oo, 90°, 180" and 270°, Rf= O Cl) 

The network is tested with cases of fauits occurring at the fault inception angle cp 

of 28", 40" and 9S0, not seen by the ANN before. These test patterns are entirely different 

50m the training patterns. Figure 6.8 illustrates the resdts for few cases, for fa& with cp 

of 95". As seen nom Fig. 6.8, the network is able to ident@ the fauits accurately. The 

same is found to be true for the fauit angIe of 28" and 40"- 



Figure 6.8: Response of the ANN algorithm for single-line-to-ground fadt 

location in the presence of fault inception angle of 95" 

During training of the neural network for fault location, patterns with fault 

inception angle of 0°, 45", 90°, 180" and 270" are presented. The ANN output in this case 

is the per-unit distance of fault and since the distances are chosen to be about 1% apart in 

few cases, more training pattems representing al1 possible cases of fadt should be 

included to train the network properly. For the case of fault indication, patterns with fadt 

inception angle of O*, 90°, 180° and 270" are sunicient The network output in this case 

has to be either 0.1 or 0.9 and the distinction between these fauit patterns is easily 

obtained by the ANN aigorithm. 

The research is undertaken for ody one loading condition. A neural network 

should be trained for ai i  possible conditions to be able to generalue properly. To obtain a 

more accurate fauit locator, it is important to include more trainllig patterns representing 



aiI possible cases of fadt. Since the leaming rate of the network is fast, including more 

training patterns will not pose difEc* in re-training of the netwok 

6.3.3 Three-phase Fault Indication 

For the three-phase fadt indication., 100 cases are considered for trainhg and 84 

cases forfine îuning the network The 100 training cases represent the faults o c c h g  at 

varîous fault Locations, with fault resistance of 10 R and 50 R and the fauk inception 

angles at 0°, 90°. 180° and 270°. A network structure of 48-3-3-1 is able to classify the 

fadts in the region of tripho trip for the case of three-phase fa& using hdf-cycle pre- 

fault and post-fauit information. The network converged to the enor goal in about 42 

epochs and 3 minutes. 

As in the case of single-he-to-ground fadt indication, 160 fault pattems that have 

different fadt resistance, fauit distance and fault angles are tested. The response of the 

ANN output for few cases is illmtrated in Fig. 6.9. The network is able to identiq 97% of 

the 160 test cases presented to it. The incorrect answers are mostly in the boundary 

region. It is to be noted that the testing patterns are dinerent nom the training patterns. 

Ah, as indicated earlier, there are small fluctuations in the ANN output For practical 

applications, srnail threshold Ievels have to be built onto the ANN aigorithm in order to 

minimize the degree of uncertahty [8, 321. In this application, for most of the cases, the 

output is either 0.9 or 0.1 depending on the fadt cases and the deviation from this value is 

observed oniy in few cases. In such a case, if the output f d s  in the interval 0-0.499, it is 



Trip Zone No Trip Zone 

Figure 6.9: Response of t&e ANN algorithm for thce-phase fadt indication using 

half-cycle pre-fauit and pst-faut data 

Sirnilar to the case with single-line-to-ground fault indication, the neural network 

for three-phase fault indication is found to maintain the reach accuracy . Further, though 

the testing patterns using different fauit distances are spaced by ody about 2% apart, the 

network is able to classify it properly. 



6.3.4 Three-phase FauIt Location 

For this case, 170 aaining patterns are needed for the network to Iearn the 

patterns. The training patterns represent the fa& occurring at different fault locations, 

with the fault inception angle of O", 45". 90°, 1 80° and 270a, the fault resistance being 10 

R and 50 R. Fine tuning the network with 54 test patterns that are similar to the trauiing 

patterns, a network structure of 4 8 - 5 4  1 is found to be accurate. The network trains in 76 

epochs and the training time is 24 minutes. 

Sirnilar to the case of the single-line-to-ground fault, the response of  the ANN 

algorithm for three-phase fault is accurate for fauits occurring in the presence of different 

fault distances, fault resistance and different fadt inception angles. 160 patterns are tested 

and the network is accurate for 85% of the cases. It is to be mentioned that m e r  work 

cm be carried out to improve the percentage of correct testing. 

Figure 6.10 illustrates the response of the ANN for three-phase fault location in 

the presence of a fault resistance of 25 i2. As seen nom Fig. 6.10, the faults have been 

located accurately. It is to be noted that the ANN algorithm is tested for cases not seen by 

the ANN at any point of time, and these test cases are quite different fkom the training 

cases, as the fadt resistance is entirely dinerent. The AW based algorithm is found to be 

an accurate fault locator in the presence of different fault distances, as indicated in Fig. 

6.1 1. Taking into account that in some cases, the distances are spaced just by 1% apart, 

the ANN-based algorithm has been able to identi@ the faults accurately for the cases not 

seen before. Hence the neural network can be considered as accurate. 
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Figure 6- 10: Response of the ANN aigorithm for three-phase fadt location in the presence 

of a 25 i2 fault resistance 

(Distance of fault = 80%, 85%, 90% and 95%, q =O0, 90°, 180" and 270") 
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Figure 6.1 1 : Response of the ANN algorithm for three-phase fadt Location at different 

fadt distances (8 1 % and 83%) , Rf = O R 



The behaviour of the ANN based algorithm for three-phzse fault location, in the 

presence of Merent fault angles is found to be similar to the single-Lhe-to-ground fauit 

location case. The ANN output for some of the test cases when the fadt inception angle is 

95" are shown in Fig- 6- 12. As seen fiom the resuits, the ANN based aigorithm has 

Iocated the faults accurately, even though the test patterns are different fiom the training 

patterns. Hence generalization of the aigorithm has been achieved. The maximum error in 

locating the exact fa& is fess than t 25% even for the testing patterns not seen by the 

network before. The percentage of correct testing is 85%. Similar to the testing for rp of 

95", the network is found to locate the faults accurateiy in the presence of different fault 

inception angle of 28" and 40". 

Figure 6.12: Response of the algorithm for three-phase fault location in the presence of 

fauit inception angle of 95" 



6.4 Performance Analysis of the ANN for Transmission Line 

The optimum structure chosen for the ANN based algorithm (using ha-cycle pre- 

fault and half-cycle post-fault data) for transmission Lùie relaying in case of single-he-to- 

ground fauk and three-phase faults is shown in Table 6.4. For the cases of single-line-to- 

ground fadt indication and three-phase fault indication, the percentage of correct testing 

is found to be 97% and 96% respectively- For fault indication, it is found that only 100 

cases are sufficient for training and the network is able to identie the faults Iying in the 

tripho trip region for cases that are different fiom the training patte& and not seen by 

the network before. 

For fault location purposes, the percentage of correct testing is 84% in case of 

single-line-to-gound faults and 85% in case of three-phase fadt. The response of the 

neural network for different loading conditions is not considered in the present work. The 

ANN should be trained with a wide range of data to obtain an accurate fault locator. 

The proposed neural network is srnall in size, robust and accurate. The leamhg 

time is less in cornparison with that of [8, 1 1,121. The maximum training the,  in the case 

of single-line-to-ground fault location is 37 minutes. For on-line implementation, a 

shorter training t h e  is definitely an advantage. The trip decision is obtained in about 

half-cycle after the fault inception- The neural network tests accurately for faults 

occumbg at different location, fault inception angle and fault resistance. 





6.4.1 Comparative Analysis 

With the proposed scheme, the trip decision is obtained in about haE-cycle after 

fault inception, in cornparison with the trip decision obtained d e r  one-cycle in [9] and 

[15]. Also, the proposed method has a s m d  network six and is able to iearn the patterns 

in a short interval, 

This research has shown that an ANN-based method for transmission line reIaylng 

has the potential to provide more accurate results compared to the Fourier algorithm. The 

reach accuracy of the Fourier algorithm based distance relay is affected by the different 

fault conditions- This problem has been overcome in the proposed ANN method for the 

distance protection of transmission lines. The tirne taken for the trip decision in case of 

full-cycle Fourier aigorithm is found to be approhately 1% cycle &er the fault 

inception. The ANN based algorithm arrives at a decision in half-cycle d e r  the fauit 

inception. 

It is seen that the ANN method based on one-cycle of post-fault information and 

on half-cycle of pre-fault and post-fault information are both reliable. The main dBerence 

in these algonthms is the time taken to give a decision. In the former case, the trip 

decision is obtained d e r  one cycle of fault inception, whereas in the latter, the decision is 

obtained in just half a cycle after the fault inception. Both aigorithms are found to be 

reliable in al1 the cases considered, i-e., single-line-to-ground fault indication, single-line- 

to-ground fadt location, three-phase fault indication as well as three-phase fault location. 

The ANN method using haif-cycle pre-fault and post-fault uifonnation needs lesser 



number of training sets compared to the one using ody  post-fauit information. From 

Table 6 2  and 6-4, it is seen that the nimiber of neurons are ody slightly different and 

hence the training tirne and nimiber of epochs needed are different for the algorithms 

based on post-faut information only and based on using both pre-fault and post-fault 

information. But this ciifference is due to the design process adopted in mod*ing the 

structure so as to obtain a good network 

This study has shown that an ANN based algonthm using haif-cycle pre-faut and 

haE-cycle post-fault idonnation gives a better performance in terms of speed as well as 

accuracy compared to the one based on the post-fault information only. The renilts 

presented in Table 6.4 are for the test cases that are different fiom the traînÏng cases and 

are not seen by the ANN before- 

6.4.2 Advantages of the Proposed ANN Scheme 

Some of the advantages of the proposed ANN based algorithm are: 

The trip decision is obtained in half-cycle after fault inception 

The results obtained are reliable and accurate 

The neural network employed is small in size 

The proposed neural network has fast leaming capability 

Fadt indication and fauit Location are achieved simuLtaneousLy 

The proposed algorithm is able to give an accurate decision in the presence of fault 

resistance and thus not M e r  fiom the reach accuracy 



The peifomauce of the ANN is not afEected by the chauges in the fadt conditions 

such as Heren t  fadt resistance, fault inception angIe and fault location 

These advantages are mie both in the case of single-line-to-ground faut case as weii as in 

the three-phase fault case- 

6.4.3 Limitations of the Proposed ANN Scheme 

The design process is basicaily a trial and error method [33,38]- This is one area 

in which research work is yet to be undertaken for a proper method to be adopted for 

designing the neural network The shidy did not consider the different Ioading conditions 

of the power system. This may be one of the reasons why the proposed n e d  network 

gave incorrect answers for some of the test cases. A possible approach to overcome this 

problem is to include more data to train the network. 

6.5 Proposed Scheme for On-line Implementation 

The performance of the trained neural network shows promise and has the 

potential for implementation in a digital relay for transmission line protection. The work 

was done off-line, using data generated by EMTP [23]. Figure 6.13 shows the complete 

block diagram for a possibie on-line implementation of the ANN based relay. One end of 

the transmission iine is connected to the generatuig station through a high voltage bus and 

the other end is connected to the remote power system. The voltage and current signais 

are taken fiom the transmission iine by the voltage traflsformers and the current 



transfomers respectively and passed on to the anti-aliasing filters that have a low cut-off 

frequency. The anti-aliasing mer shouid behave as a low pass filter with a cut-off 

fiequency lower than 480 H z  The data at the required sampting rate is obtained and 

passed on to the Fast Fourier TfaflSform (FFT) filter. The fiequency components of the 

voltage and current signais are obtallied for consecutive samples, tiIl the selection logic 

identifies that there is sutlicient information regarding the fadî, the selection logic 

chooses patterns containhg half-cycle pre-fauit and half-cycle post-fault information. 

The resuIts of this research are based on the assumption that the fiequency 

components of half-cycle pre-fault and half-cycle post-fault voltage and current signais 

are avaiIable. However, in the real environment it is very dificult to exactly know the 

point of fault occurrence. But different methods can be investigated and inciuded as a pre- 

processor for the proposed ANN based relay. 

A one-cycle sliding window of voltage and current signals can be used. This wili 

determine the frequency components of voltage and current signals using the FFT 

algorithm during each sampIing interval. Before the occurrence of the fault, only the 

firndamental fiequency component will be significant After the fauit occurs, the non- 

fundamental fiequency components will aiso become non-negiigible. As the data window 

moves, the fiequency components wiil contain sunicient information concerning the fault. 

The ANN trained using a Gxed type of data window will not give accurate redts 

when provided with fiequency components information obtained fiom a different type of 

data window. If the time of fault occurrence is known, the data window that is specific to 



the ANN can be used- AIso, a sfiding window of one cycle can stiU be used- In this case, 

the fiequency components should be continuously stored. Once the possibility of a fadt is 

known, the fkequency components can be retrieved and given to the ANN. 

Many ANN based fault classification algorithms are already avdable [9, 32, 391. 

The purpose of the fadt  classification aigorithm is to utilize the respective fault data in 

the proper ANN based algorithm for the fault indication and fault location. For the single- 

line-to-ground fa& case, the present study considered the fault occurring at phase a of the 

trammission Iine, and hence the inputs used are the fkequency components of the voltage 

at phase a and the curent at al1 the three phases. For single-he-to-ground fauk occurring 

at other phases, the correspondhg phase voltage is to be selected to obtain the off-line 

weights and biases. In the on-line imptementation, the fadt classification aigonthm would 

indicate the phase in which the fault has occurred in a single-line-to-ground fault. 

The weights and biases obtained in the off-line process for fault indication and 

fault location purposes are stored in the microprocessor for the on-line application. The 

procedure to obtain off-Iine weights and biases involves three main tasks: 

1. EMTP simulation + To obtain the fadt data 

*. 

11- FFT computation + To obtain the fiequency components of voltage and current 

signais 

... 
111. Training of the ANN + To map the input-output pairs and thus obtain the weights 

and biases. 
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Figure 6.13: Block diagram for the on-line implementation using the proposed scheme 



In the off-line training, the neural network leanis and generalizes the different fauit 

patterns. This Ieaniing is basicaiiy stored in the form of weights and biases that represents 

the mapping between the input-output patterns. In the on-line process, the neural network 

recognizes any faut pattern by comparing the inputs with tkis mapphg and thus provides a 

corresponding output- 

In the off-Iine training, the hidden Iayers have neurons with Log-sigmoidai transfer 

hct ion.  The logsig transfer h c t i o n  is so chosen, as it limits the output to a continuous 

value between O and 1. The output needed for the proposed scheme is also within O and 1. 

For the on-line scheme, this Iogsig t rader  h c t i o n  is implemented in the hardwaree 

For fault indication, the trip decision is obtained as either 0.9 or 0.1 and this is 

relayed to the circuit breaker. For fault location purposes, the exact location of fault is 

conveyed to the power system operator, so that the necessary maintenance can be 

undertaken. The decision in both the fault indication and fault location cases is arrived in 

about haif a cycle d e r  the fault incep tion. 

Many transmission line fault locaton indicate the location of the fault using the 

post-fault processing features of the digitai relay. Using the ANNs proposed in this 

research, the location of the fadt can be known as soon as the circuit breakers open the 

faulted fine based on the trip signal received fiom the relay. 



6.6 Summary 

The concept of utiliring the fkequency components of the voltage and current 

signds as inputs to the neural network has resuited in a neural network that is smdl in size, 

robust and accurate. The time taken to give a trip decision is around half a cycle &er the 

fault inception In comparkon with the neural networks available in this area, the proposed 

neural network has the advantages of being d in size, accurate, faster learning rate as 

weU as accurate relaying decision- 

This chapter has presented in detaii the simulation results obtained for the 

proposed ANN scheme for transmission h e  relaying. The aigorithm based on the post- 

fault information is found to be accurate both in the case of fault indication and fault 

location purposes. The neural network employed is srnail in size and reliable. The trip 

decision is obtained after one-cycle of fault inception. 

In order to improve the speed of the relay, half-cycle pre-fault and haif-cycle post- 

fault uIfomation of the voltage and current frequency components are used as the inputs 

for the algorithm. In al1 the four cases considered, Le., single-line-to-ground fault 

indication, single-he-to-ground fault location, three-phase fault indication and three-phase 

fault location, the results are found to be accurate and reliable. The trip decision is given in 

about haIfa cycle d e r  the inception of the fault. 

In the cases considered, the basic structure of the neural network is similar, Le., 

each of them have two hidden layers. The number of epochs needed to converge to the 

error goal is quite Iess. One of the advantages of the proposed aigorithm is that the 



network Ieams fast, thus significantiy reducing the training time. 

For fault indication purposes, the network is able to iden* ai1 the fault cases and 

generalize weU. The proposed neuraI network fault locator shows good performance with 

changes in fault resistance as well as in fadt distance. In the presence of a fault resistance, 

it is seen that the neural network is able to identify the cases correctiy, thus maïntaùillig the 

reach accuracy of the relay. 

A comparative midy indicates that the neural network based on half-cycle pre-fault 

and post-fault information, shows better performance in cornparison with the neuraI 

network based ody  on the post-fault information A scheme is proposed for the on-Iine 

implementaiion of the proposed aigorithrn- 



Chapter 7 

Conclusions 

7.1 Contributions of the Research 

The rapid progress in electncal power technology has made it possible to constmct 

economic and reliable power systems capable of sati-g the continuing growth in the 

demand for electricai energy. Power system protection plays a significant part and progress 

in the field of power system protection is a vital prerequisite for the efficient operation and 

continuing development of power supply systems as a whole. Fast and accurate location of 

faults in an electncal transmission fine has become increasingly important, as transmission 

Iines are a vital link between the generating system and the distnbuting system. 

A protective relay responds to abnormai conditions in an electrïcal power system 

and controls the circuit breaker so as to isolate the faulty section of the system, wiîh 

minimum interruption to service. Wah artificial intelligence becoming popular in the area 

of power systems, protective relays are experiencing improvements related to shorter 

decision tirne, as well as in being accurate. The research demonstrates the use of an 



Amncial Neural Network (ANN) as a pattern recognizer for trammission h e  protective 

relaying. 

An A N i  relay for the transmission Line protection has been proposed and 

simulated in the present research work. The feedforward neural network employed 

indicates whether a fault is within or outside the protection zone and aiso identifies the 

exact location of the fa& Data obtained from the EMTP is used to train and test the 

neural oetwork Fadts at various locations In the transmission line, with different fa& 

inception angle and fault resistance are simulated. 

The proposed ANN relay utilizes the fiequency components of voltage and current 

signals as the inputs. The fiequency components are obtained by passing one cycle of 

fault data through a Fast Fourier Transform (FFT) filter, In the eariier part of the research, 

this one-cycle of data consisted of pure post-fault infoxmation. The results of the ANN of 

this case are found to be accurate. The next part of the research concentrated on 

improving the speed of the relaying decision. To achieve this objective, the one cycIe of 

fadt data consisted of haif-cycle of pre-fault and half-cycle of post-fault information. 

The sampling frequency is 960 Hz and the fiequency components up to the eighth 

harmonic are found to be sufficient. A unique relationship is found between the fault and 

the fiequency components of the voltage and curent. The Total Harmonic Distortion 

w) in voltage and current decreases with increase in the fault location, fkom the 

generating end. The design of the ANN for transmission Line protection can be essentially 

treated as a pattern recognition problem. The ANN identifies the patterns of the associated 



voltage and current eequency components and gives a relaying decision. The proposed 

ANN uses the backpropagation algonthm, 

Four neural networks are designed for the following cases: single-line-to-ground 

fault indication, single-lïne-to-ground fault location, three-phase fault indication and 

three-phase fault location. The single-iîne-to-ground fault at phase a is considered and the 

fkequency components of voltage at phase a and fiequency components of currents in d l  

the three phases f o m  the 32 inpots to the ANN. For the case of thxe-phase fauif the 

frequency components of aU the phase voltages and currents are used, thus forming 48 

inputs to the ANN. The output of the ANN for fault indication case is either 0-9 or 0-1 

depending upon whether the fault is inside the protection zone or outside the protection 

zone. For fault location purposes, the ANN gives an output that indicates the per unit 

distance of the transmission h e ,  

The neurai network structure is fond to be small in size. The existing ANNs in 

the concemed area of shidy are found to have long training times. Utilization of the 

fiequency components of the voltages and currents resulted in the proposed neural 

network with fast learning capability. Shorter Ieaming time is an advantage for the on-line 

implementation schemes. 

The performance of the proposed ANN has shown promising results. The decision 

to gïve a tripho trip signal as well as the exact Iocation of fault is obtained 

simultaneously in about half a cycle of the fiindamental fiequency, after the fault 

inception. The results of the ANN output are found to be accurate under diffierent fault 

conditions. In the presence of fauit resistance, the network is able to maintain the reach 



accuracy of the relay, which is set at 90% of the transmission he. Thus, with the use of 

the ANN reIay, it is possible to extend the first zone reach of the relays, enhancing system 

sec-. The main advantage of the ANN relay in cornparison with the conventional relay 

is the ability to maintain this reach accuracy. For the case of fault location, the maxÏmum 

error is found to be within t 2.5%. In practice, the exact location of fault wiil significantiy 

reduce the span of the line length that wodd have to be inspected- 

The exïsting work is mostly concentrated on the single-he-to-ground fault case- 

The present research has been carried out for both the single-Iine-to-ground fault case as 

well as the three-phase fault case. The r d t s  are fomd to be accurate in both the cases. 

7.2 Suggestions for Future Work 

The work reporteci in this thesis can be extended in the following areas: 

nie design process for selecting the optimum neural network is through triai and error 

procedure. The rnethodology for the training sequence and selection of the optimal 

training conditions are issues of concem while designing the neural network. Fuaher 

work can be carried out in this area to select the ANN based on certain fixed 

guidelines, 

- - Different ANN algonthms iike Self Orgaruzlng Maps, Radial Basis Network and 

Learning Vector Quantkation can be studied for suitability of application to 

transmission iine protection. These algorithms are self-Ieaming and have the potential 

to be cornpetitive with conventional backpropagation algorithm. Radial Basis 

Networks lead to smaiier ANNs. 



The research work is c e e d  out only for one loading condition. The power system is 

prone to different loading conditions and hence to obtain a more accurate ANN relay 

for transmission line protection, more patterns that are representaiive of the various 

fauits should be used in the training set 

The results obtained by the proposed ANN scheme shows promise and has the 

potential for the on-he implementation in a digital relay. Further investigation can be 

carried out to improve the nm-time o f  the proposed method. 
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Transmission Line Parameters 

A 345 kV, 160 mile transmission Iine is simulated using EMTE' [23]. Figure A1 

represents the sample power system used m the simulation AB represents the transmission 

line and F represents the fault. It is assumed that the relay R is located at substation A On 

a 345 kV base, the voltage at the sending end of the h e  represented by A is 1.02 p.u and 

the voltage at the receiving end of the Line represented by B is 0.97 pu. The simulations 

are carried out for a loading condition of 520 M\K and 245 MVAR at the receiving end. 

Figure A 1 : Single line diagram of the sampie power system 

The line parameters of the transmission Iine are represented in Table A 1 [24]. Ro, 

La and Co represent the zero sequence components of resistance, inductance and 

capacitance respectively. Ri, Li and Ci represent the respective positive sequence 

components of resistance, inductance and capacitance. The negative sequence parameters 

(k, Lz and C3 are the same as the positive sequence parameters. 



Table A.1: Line parameters of the line 

The system fiequency is 60 Hz 

Ratings of the generator G: 400 MVA, 15 kV, wye grounded 

Raîings of the transformer T: 400 MVA, 15 kW345 kV, wye grounded-wye grounded 




