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Although there is an enormous literature on statistical methods for diagnostic test 

data, there are no frequentist solutions that directly address the problem of estimating 
parameters in the presence of three or less correlated tests. To our knowledge there is 
also no literature discussing a Bayesian solution to this problem, even for identifiable 
cases. This thesis has addressed this gap in the literature. Therefore, the models 
developed in Chapters 4 and 5 appear for the first time, as does the analysis of the 
Strongyloides data set in Chapter 6. 

Of special note is the intended audience for which this thesis was written. In 
keeping with the spirit of a multi-disciplinary Department of Epidemiology and Bio- 
statistics, we have included sufficient background material on Bayesian analysis so 
that the thesis could be read by a practicing epidemiologist. Conversely, we have also 
provided introductory definitions of terms relating to the diagnostic testing situation, 
so that the interested statistician with no epidemiology background should have no 
trouble, 



The differential diagnosis of a disease is often based on the information obtained from 
multiple diagnostic tests or multiple applications of the same test. The usual assump 
tion in such situations is that the test results are statistically independent within each 
subject conditional on knowing the true disease status. This assumption greatly sim- 
plifies the statistical analysis of such data. In practice, however this assumption may 
be violated, as for example when there is a certain subject-related characteristic that 
may increase or decrease the probability of detection in two or more tests. The clas- 
sical or frequentist solutions that account for the correlation between tests require 
a minimum of four different tests to obtain an identifiable solution. However, it is 
not always possible to have results from four different tests, particularly when tests 
are expensive, time consuming or invasive. Our objective in this thesis is to draw 
simultaneous inferences about the prevalence and test parameters while adjusting for 
the possibility of conditional dependence between tests, particularly in the situation 
when we have three or fewer tests, leading to a non-identifiable problem. We do so by 
way of a Bayesian approach, which utilizes available information about the prevalence 
and test parameters summarized in the form of prior distributions. The first of the 
two methods we propose models the dependence as a direct effect between each pair of 
tests. The second method uses a random effects model and simulates the dependence 
between tests via their sensitivity and specificity which are modeled as functions of 

a latent, su bject-specific 'disease intensity'. Both models are based on dichotomous 
tests and the parameters are estimated using a Gibbs Sampler. It was found that 
ignoring the conditional dependence between tests could lead to misleading estimates 
of the sensitivities and specificities of the tests and of disease prevalence. Therefore, 
the met hods presented here may improve inferences from surveys which are designed 
to provide estimates of the prevalence of disease in a particular population, when 
correlations among the diagnostic tests used may be present. 



Le diagnostic d'une maladie est souvent base sur l'information obtenue de plusieurs 
tests ou plusieurs applications d'un mtme test. Dans un tel cas on assume gdneralement 
que les r6sultats de tests sont statistiquements independants pour chaque sujet a 
condition de connakre le vdritable Btat de la maladie. Cette supposition simplifie 
grandernent I 'analyse stat istique de teiles donn4es. En pratique, toutefois, cet te sup- 

position peut &re violke lorsqu'il y a, par exemple, une certaine caractkistique reliie 
au sujet qui peut augmenter ou diminuer la probabilitk de dhtection dans le cas de 
deux tests ou plus. Les solutions clmsiques ou frhquentistes qui tiennent compte de 
la corrdation entre ces tests requihrent un minimum de quatre tests diffkrents pour 
obtenir une solution identifiable. Cependant, il n'est pas toujours possible d'obtenir 
les resultats de quatre tests differents, surtout lorsque ces tests sont onkreux, longs, 
ou stressants. Notre objectif dam cette thkse est de tirer des conclusions simultan4es 
au sujet de la prevalence de la maladie dtudiC et des paramktres des tests en tenant 
compte de la dependance conditionnelle possible entre les tests, particuli&rement dans 
la situation ou nous avons un problkme non-identifih. Nous procddons selon l'approche 
bayesienne, laquelle utilise 17information disponible au sujet de la prkvalence et des 
paramktres de tests r6sum6se sous la forme de distributions a pn'on'. La premiere des 
deux methodes que nous proposons moddise la ddpendance comme un effet direct 
entre chaque paire de tests. La seconde utilise un modkle B effet "random effects" et 
simule la ddpendance entre les tests de par leur sensibilitk et leur spdcifitk lesquelles 
sont modklis6es comrne des fonctions de la latence ou la sCerit6 de la maladie de chaque 
sujet. Les deux modeles sont basks sur des tests dichotomiques et les paramktres sont 
estimb en utilisant un ichantilloneur de Gibbs. Ne pas prendre, en consideration 

la dkpendance conditionnelle entre les tests peut mener B des estimations erronees 
de la sensibilitk et spicifit6 des tests ainsi que de la prhvalence de la maladie. Par 
consgquent, les mkthodes pr6sentdes ici peuvent donner une meiileure inference a par- 
tir de donn6es de sondage consus pour estimer de la pr6valence d'une maladie dans 

une population donnhe, lorsque des corr6lations peuvent 6tre prbentes. 
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Historically, medical diagnoses have been made on the basis of subjective knowledge 

gathered from the medical history and observed symptoms of the patient. In recent 

decades this has been augmented by the more methodical process of obtaining objec- 

tive information from diagnostic tests. Thus, in the framework of medical decision 

making, diagnostic tests have come to occupy an important role and consequently 

their appropriate analysis is a very active area of biostatistical research today. 

In this thesis we take up the specific problem of modeling the conditional depen- 

dence between multiple diagnostic tests, especially in the absence of a gold standard 

or reference test. Two or more diagnostic tests may be conditionally dependent when 

their results are related due to a factor other than the disease status. Such a depen- 

dence could occur, for instance, between tests which are based on the same underlying 

principle or between results from the same test at two different points in time. Several 

authors have demonstrated that it is important to account for this dependence while 

analyzing the results from diagnostic tests, in order to obtain unbiased estimates of 

the prevalence of disease and test parameters (Fryback, 1978; Vacek, 1985; Brenner, 

1996; Torrance-Rynard and Walter, 1997). While there has been much recent work 

in this area, the problem of how to analyze diagnostic test data when the tests are 

correlated and when there is no perfect (gold standard) test remains to be solved, 



especially when the number of tests available is less than 5, as is usually the case in 

practice. This problem is especially difficult since, as we will see, it is non-identifiable, 

i.e. there is not sufficient information available to obtain a unique estimate of all the 

parameters involved. Nevertheless, the frequency at which it occurs (often unrecog- 

nized) motivated a serious look at  the problem in this thesis. 

This introductory chapter covers the basic concepts behind diagnostic tests, the 

parameters used to evaluate their performance, the utility of multiple testing and the 

conditional dependence between tests. We also provide the objectives of the thesis 

and an outline of the forthcoming chapters. 

1.1 Diagnostic Tests: Definition and performance param- 

eters 

Diagnostic tests are routinely used in public health, community medicine and clinical 

medical practice to help gain more information about a patient's or a group of pa- 

tients' condition, and to separate subjects into classes with different probabilities of 

disease. -4 test is typically determined by: 

1. A separator variable, which is a measurable property of the subject, associated 

with the disease of interest, and 

2. A positivity criterion, which is a particular value of the separator variable 

that divides subjects into different disease categories. 

In order to diagnose the presence of hypertension, for example, a possible separator 

variable is the average diastolic blood pressure over three successive readings. A 

diastolic blood pressure of 90mm of Hg could be used as the positivity criterion so 

that patients with an average diastolic blood pressure greater than this value would 



be diagnosed as hypertensive. It is common to dichotomize a continuous separator 

variable, using a single positivity criterion, such that there axe only two possible test 

results - positive or negative. Throughout this thesis, we will be dealing only with 

dichotomous tests. Apart from simplifying the exposition of the problem, the use of 

dichotomous tests is motivated by the fact that in reality most medical decisions are 

dichotomous: to operate or not to operate, to prescribe a drug or not to prescribe a 

drug, etc (Weinstein et al., 1980). Our methods, however, could straightforwardly be 

extended to the case where the test results are multi-categorical, or even continuous. 

Diagnostic tests can be of varied formats - questionnaires, biochemical tests, ge- 

netic tests, radiographic tests, and so on. Whatever their format, tests are seldom 

perfect. That is, they do not always correctly diagnose the subject's true disease 

status. This is usually because it is not possible to find a separator variable which 

clearly demarcates subjects into diseased and non-diseased categories. For instance, 

we could hypothesize that the separator variable follows a different distribution for 

the diseased and non-diseased subjects as illustrated in Fig 1.1. Subjects who fall 

Figure 1 .l: Grey zone where subjects are likely to be misclassified. 



in the 'grey zone', where the two distributions overlap, may be misclassified because 

both diseased and non-diseased subjects can have test results that lie in this range. 

R/lisclassificatioa can also occur due to random or systematic measurement error. 

Random errors can occur even when we have a technically perfect test. In the case 

of a stool examination, for instance, a subject is diagnosed as positive if the disease- 

causing parasite is detected in the stool. An error might occur because the subject's 

diet makes it difficult to detect the parasite, because the technician analyzing the 

stool makes an error, or because the instrument used to detect the parasite is de- 

ficient. Sometimes, however, the test itself is invalid. For example, when the level 

of serum glucose, a separator variable for myocardial infarction, is measured using a 

miscalibrated instrument that adds on 5 units to every measurement, subjects who 

fall below the positivity criterion of 100 mg/100ml may be systematically misclassified 

as positive. 

Despite their imperfection, many tests are routinely used in clinical diagnosis, 

screening and epidemiological studies. The correct interpretation of test results is 

dependent on knowledge of the population under study and the parameters which 

characterize test performance. The parameters of primary interest in the diagnostic 

setup are the prevalence of the disease in the population, and test properties such as 

sensitivity and specificity of the test, which are defined as follows: 

The prevalence is the proportion of truly diseased subjects in the population of 

interest. Throughout this thesis it will be denoted by 7r = P(D = I), where D = 1 

denotes positive disease status. The probability of being non-diseased, D = 0, is then 

given by P(D = 0) = 1 - P(D = 1) = 1 - 7r. 

The sensitivity is the probability that a subject who is truly diseased will be 

correctly diagnosed by the test as being positive. In other words, it is the conditional 

probability of testing positive given that the disease is present. In probabilistic terms 



this can be written as S = P(T = llD = I), where T = 1 indicates that the result of 

the test is positive. 

The specificity of the disease is the probability that a subject who is not diseased 

will test negative or the conditional probability of testing negative given that the 

disease is absent. This is denoted by C = P(T = OID = 0), where T = 0 indicates 

that the result of the test is negative. 

Ideally we would like both the sensitivity and specificity of a test to be as  high as 

possible. Theoretically a perfect test would have S = C = 1. In practice however, 

even the most accurate test available does not have S = C = 1. The best test is 

usually called the gold standard test, even though it may not be 100% accurate. 

Detecting diseased subjects is clearly of importance, but it is also of interest to reduce 

the number of false positives especially when a positive test is followed by a costly 

or risky intervention. However, if either the sensitivity or specificity is increased, 

usually by altering the positivity criterion, the other is almost always automatically 

decreased. The following example illustrates the estimation of the prevalence and test 

parameters in the situation when the test results can be compared to those from a 

'perfect' gold standard test. 

Example 1.1: Shapiro et al., 1974 obtained the data presented in Table 1.1 from 

a study on screening for breast cancer. The extreme right column contains the results 

of a screening test which consisted of a physical examination and mammography. The 

last row contains the 'gold standard' results which were obtained when these women 

were followed for a year subsequent to  the screening and some of them were diagnosed 

with breast cancer. We can see, from the cross-classification in Table 1.1, that there 

are subjects who were incorrectly classified as negative by the screening test and a 

large number of subjects who were falsely classified as positive by the screening test, 

when in fact they never went on to develop the disease. The population prevalence 

and test parameters for the screening test can be estimated, by assuming the gold 



Breast Cancer 

Table 1.1: Cross-classification of results from screening test and the 'true' diagnosis at the end of 
one year of follow-up. 

Screening test 

standard to represent the truth, as follows: 

Prevalence = 

- - 

Positive 

Negative 

Total 

Semi tivi ty = 

- - 

Specificity = 

- - 

132 

45 

177 

No. of subjects who were truly diseased 
Total no. of subjects 

1 w e  

983 

63650 

64633 

No. of truly diseased subjects who tested positive 

1115 

63695 

64810 

No. of subjects who were truly diseased 

No. of truly non-diseased subjects who tested negative 
No. of subjects who were truly non-diseased 

It is important to note at this point, that it would not have been possible to 

obtain these estimates in the absence of a gold standard test. What could we infer, 

for instance, when the gold standard was known not to be the truth or when we have 

two or more non-gold standard tests whose results are in conflict? Further, what if 

these tests are correlated and do not provide independent information? In this thesis 



we will deal simultaneously with all these problems. 

The prevalence, sensitivity and specificity are parameters of greater interest to 

public health practitioners and policy makers. Two other related parameters, which 

are more meaningful to the clinician in interpreting test results for a single patient, 

are the positive predictive value and the negative predictive value, which are defined 

as follows: 

The positive predictive value is the probability that a subject who has tested 

positive actually has the disease, and is denoted by P V +  = PiD = 1IT = 1). In 

other words, the PV+, is the conditional probability of being truly diseased given 

that the subject tested positive. In some instances we use the notation PVP for the 

predictive value positive. 

The negative predictive value is the probability that a subject who has tested 

negative is in fact disease-free and is denoted by PV-  = P(D = OIT = 0). Hence the 

PV- is the conditional probability of being truly non-diseased given that the subject 

tested negative. In some instances we use the notation PVN for the predictive value 

negative. 

The positive and negative predictive values of a test can be shown to be functions 

of the prevalence, sensitivity and specificity as follows: 



Similarly, 

P(D = O)P(T = OID = 0) 
PV- = P ( D  = OIT = 0) = 

P(D = l)P(T = OID = 1) + P(D = O)P(T = O(D = 0) 

Hence, when interpreting the result of a test For a single individual, it is important 

to know the prevalence of the disease and the sensitivity and specificity of the test, 

in the population to which the individual belongs. 

Example 1.1 continued: Using the breast cancer data in Table 1.1 we have: 

132 
PV+ = - = 11.8%, and 

1115 

It is interesting to note that this test has been designed such that it has a fairly high 

sensitivity of 74.6%. This is probably because breast cancer is a fatal disease and it 

is important that as few cases as possible go undetected. This, however, comes at 

the cost of a poor positive predictive value. A subject in this population who has a 

positive result on the screening test has only an 11.8% chance of actually developing 

breast cancer. 

1.2 Multiple diagnostic tests 

The differential diagnosis of disease is rarely based on the results of a single test. In 

order to improve the accuracy of the diagnosis, physicians often order more than one 



diagnostic test or more than one application of the same diagnostic test. The gold 

standard procedure may in fact be a set of two or more tests which together provide 

more accurate information. 

Example 1.2: In order to estimate the prevalence of Strongyloides infection 

among a group of refugees, Joseph et al., 1995 used two commonly available tests 

with complementary characteristics - a stool examination and a serological test. The 

stool examination has a very poor sensitivity of 24%, and a high specificity of 95% 

The serology test, on the other hand, has a relatively higher sensitivity of 81% but 

a lower specificity of 72%. Though neither test is a gold standard, their combined 

results help to improve the accuracy of diagnosis. We will return to this example 

later in the thesis. 

When multiple tests are used, the performance of two or more tests may be related 

due to a variable other than the disease status. This could happen, for instance, when 

two tests are based on the same biological phenomenon, when two questionnaires 

contain overlapping items, or when the two tests are in fact replications of the same 

test at two different times. Such a similarity between a pair of tests may be measured 

using their covariance within each disease class. We denote the covariance between 

two tests, TI and T2, among the diseased and non-diseased subjects as cooplo and 

covn 1 2 ,  respectively. In probabilistic terms this would be expressed as: 

where E ( X )  represents the expectation of the random variable X. In the event when 

two tests are conditionally independent, a. e. independent within a disease class, the 

covariance between them in that disease class is 0. The concept of conditional depen- 

dence between tests is dealt with in greater detail in the next subsection. Throughout 

the thesis we use the terms conditional dependence and correlation interchangeably. 



The parameter t9 which indexes the probability distribution Fe is said to be identifiable 

if Fe, # Fe, when # 02. More simply, a problem is said to be identifiable when 

it has a unique solution, a .  e. when the number of degrees of freedom of the observed 

data is equal to or greater than the number of unknown parameters to be estimated. 

Figure 1.2 is a diagrammatic representation of all the parameters involved in the 

diagnostic testing problem in the general situation when we have p tests - 7r denotes 

Figure 1.2: Parameters involved in the multiple diagnostic tests problem. 

the population prevalence, S, and Cj denote the sensitivity and specificity of the jth 

test, j = 1,. . . , p ,  and cowpkl and covnki, k ,  I = 1,. . . , p ,  k # I ,  denote the covariance 

between the tests k and 1 among the positively and negatively diseased subjects, 

respectively. The methods developed in this thesis are in the context of a community 

situation where two or more tests are applied to each of N (> 1) subjects. 

The total number of parameters involved in the diagnostic testing problem illus- 

trated in Figure 1.2 is (2 x p) + (2 x PC2) + 1. The number of degrees of freedom 

available, which is determined by the number of possible cross-classifications of test 



results, is 2 P  - 1. Assuming that none of the p tests is a gold standard, then, in order 

for the problem to be identifiable, it is required that, 

(2 x p )  + (2 x PC2) + 15 2P - 1, 

* p > 5 ,  

2.e. results from a minimum of 5 tests should be available. However, results from 

five tests may not always be available, especially when the tests have to be applied 

to several subjects and when they are expensive, invasive or time-consuming. In 

this thesis we develop methods which can be used even when the problem is non- 

identifiable. 

1.2.2 Conditional independence 

From elementary probability theory we know that when two events are independent, 

the probability that they occur jointly is given by the product of their individual 

probabilities. Mathematically, if A and B are independent events, P ( A  n B) = 

P ( A ) P ( B ) .  This definition can be extended to the situation when the events of 

interest are conditional on another event. For instance, we may be interested in the 

results of two diagnostic tests conditional on the disease status, i .  e. P(T, = t 1 D = d )  

and P(T2 = t o J D  = d). If the two tests are conditionally independent, given D = d 

it means that 

This means that among the subjects for whom D = d the results of Tl have no 

bearing on the results of Tg. This need not necessarily hold if the disease status 

changes, i + e .  the two tests may be independent among the diseased but not among 

the non-diseased subjects, or vice-versa. 

When analyzing the results from multiple tests their joint distribution is often 

needed. For example, suppose that a subject must test positive on all p tests used 



in a study in order to qualify for the intervention. To estimate the total cost of 

this intervention in a certain population, we would need to know the probability of 

obtaining a positive result on all tests. From the law of total probability, this is given 

by 

To calculate the probability in equation ( 1 4 ,  we need the joint distribution of the 

p tests conditional on the disease status. This information is seldom available and 

in order to circumvent the need for it, it is common to assume the tests to be con- 

ditionally independent. In this case, equation (1.1) can be written in terms of the 

sensitivity and specificity of each test, as  follows 

However, the conditional independence assumption is not always realistic, since test 

results may be correlated within each disease class. When the conditional indepen- 

dence assumption is invalid, it could result in biased estimates of the parameters of 

interest a s  the following example illustrates. 

Example 1.3: This example is modified from one used in the book Clinical Deci- 

sion Making by Weinstein et al., 1980 (page 155). At a certain hospital, reno-vascular 

disease among hypertensive patients is diagnosed using two tests - an intravenous pyel- 

ogram (IVP) and a renogram (RG). The sensitivity and specificity of the two tests 

are listed in Table 1.2. 



Table 1.2: Sensitivity and specificity of tests used to diagnose renevascular disease. 

Patients testing positive on both tests are subjected to a costly and invasive sur- 

gical intervention. Hence it is of importance to assess the probability of a positive 

result. In the absence of any information about their joint distribution, the proba- 

bility of obtaining a positive result on both tests may be estimated using equation 

(1.2), assuming they are conditionally independent. Using the information that the 

prevalence of renovascular disease among hypertensive patients is lo%, we have 

P ( I V P  = 1, RG = 1) 

= s P ( I V P  = 1, RG = l lD = 1) + (1 - *)P(RG = 1, I V P  = llD = 0) 

= n P ( I V P =  l lD = l )P (RG= l lD= 1) 

+ (1 - * ) P ( I V P  = l lD = O)P(RG = llD = 0) 

= ~SIVPSRG + (1 - a ) ( l  - G v p ) ( l -  CRC) 

= (0.1)(0.85)(0.78) + (1 - 0.1)(1 - 0.9)(1 - 0.89) 

= 0.0762. 

In the case of I V P  and RG, however, the information on their joint distribution 

happens to be available and is presented in Table 1.3. So the probability of obtaining 

a positive result on both tests would in fact be 



Test result IVP = 1 IVP = 0 IVP = 1 IVP = 0 
,i 

Table 1.3: Cross-classification of results from the intravenous pyelogram test and the renogram test. 

This means that the cost of the study intervention will be almost twice as great as 

the conditional independence assumption would suggest. 

We will return to this issue later in the thesis in Chapters 4 and 5, where we show 

how assuming tests are conditionally independent when it is not the case, could lead 

to biased estimates of the prevalence and test parameters. 

1.3 Objectives of the thesis 

Commonly used methods for the analysis of results from multiple diagnostic tests 

assume that these tests are conditionally independent as this simplifies the process. 

As mentioned in the previous section, this may not always be the case. A more 

realistic model would take into account the dependence between tests within each 

disease class. Such a model, however, is non-identifiable when we have four or fewer 

tests, as seen in Section 1.2.1. Hence, classical frequentist solutions to this problem 

require that a minimum of four tests be used in order to solve the problem directly 

(See Chapter 3). But results from four tests may not always be possible in practice. 

With this in mind, the main objective of this thesis is stated as follows: 

To develop methodology for Bayesian inference about the prevalence and all test 

parameters in the situation where multiple tests or replications of tests are used, 

while adjusting for the conditional dependence between them, particularly when the 



problem is non-identifiable. More specifically, we will: 

1. Develop a fixed effects model for conditionally dependent diagnostic tests. 

2. Develop a random effects model for conditionally dependent diagnostic tests. 

3. Demonstrate how these models may work in practice by both simulations and 

application to real data. This step is especially important given the non- 

identifiable nature of the problem. 

While the main focus of this thesis involves the development of statistical methodol- 

ogy, we have tried to present the material here in a manner such that it can be read 

by biostatisticians and epidemiologists alike. In particular, this chapter has reviewed 

the basic notions of diagnostic tests, while the next chapter will provide the necessary 

statistical background. 

1.4 Organization of the thesis 

The outline of the thesis is as follows: 

Chapter 2 provides background material on the statistical concepts which form 

the foundation of the work developed here. We introduce the concept of Bayes' 

rule and some Bayesian computational techniques, namely the Sampling Importance- 

Resampling (SIR) algorithm and the Gibbs sampler, which will be used later in the 

thesis. 

Chapter 3 presents a brief review of the literature on methods used to analyze 

results from diagnostic tests. These include the Bayes conditional independence 

method and more recent methods using latent class analysis. The problem of non- 

identifiablility and the advantage of the Bayesian approach in providing a solution 



for such problems is discussed. We then describe some frequentist methods that have 

been developed to model the conditional dependence between diagnostic tests when 

five or more tests are available. Finally we present a summary of some Bayesian 

methods that have been used in the analysis of diagnostic test data. 

In Chapter 4 we describe how conditional dependence between tests affects test 

results and how it may be measured using the covariance between pairs of tests. We 

then formulate a fixed effects model using the covariance to model the dependence 

between tests, and describe a Bayesian approach for its solution. In Chapter 5 we use 

random effects to model the conditional dependence between tests and once again 

propose a Bayesian approach to draw inferences for the parameters of this model. 

Here, the test sensitivities and specificities are taken to be functions of a subject- 

specific 'intensity' which is a latent or unobserved variable. The dependence between 

test results is induced by this additional variable without explicit reference to the 

covariance. 

In Chapter 6, the methods of Chapters 4 and 5 are applied to the results from 

two diagnostic tests conducted in a group of Cambodian refugees to determine the 

prevalence of Strongyloides infection. Finally, we end with a summary chapter on our 

conclusions and suggestions for future research. 



In this chapter we provide a brief discussion of Bayesian analysis which is fundamental 

to the methods developed in this thesis. This is followed by a section describing some 

computational tools for Bayesian inference with examples illustrating their usage. 

2.1 Bayesian analysis 

Over the last three decades, Bayesian statistical analysis has come to represent an 

important alternative to the classical or frequentist school of thought. A primary 

motivation for the use of Bayesian techniques is that they facilitate a common-sense 

interpretation of stat istical conclusions. Further, these methods are flexible and can 

be used to model very complex problems, where recent computational advances have 

made Bayesian inference feasible (see section 2.2). 

Frequentist statistics considers unknown parameters as fixed, and examines the 

behavior of data-based statistics as the data are imagined to change over the sample 

space. For example, a frequentist 95% confidence interval around a parameter is 

interpreted as 'a random interval (the randomness coming from its endpoints varying 

across different data sets other than that observed) which would capture the true 

parameter 95% of the time in repeated applications across different experiments'. 



Thus, inferences are indirect a t  best, since the interval at hand is based on a single 

realization of the experiment and it is not known whether it falls among the 95% of 

intervals which correctly capture the true parameter. 

The Bayesian approach, on the other hand, treats unknown parameters as random 

and involves drawing inferences conditional on the observed data and quantifying the 

uncertainty in the inference using probability. A Bayesian 95% probability interval is 

literally an interval where the parameter of interest has a 95% probability of being 

located. This direct interpretation, as we will see below, comes at the cost of requiring 

the specification of a prior distribution over all unknown parameters, which means 

that its probability statements are interpreted subjectively. A detailed comparison of 

the two schools of thought can be found in Berger, 1985. See Gelman et al., 1995 for 

an introduction to data analysis from a Bayesian point of view. 

2.1. l Bayes ' Theorem 

Bayes' rule, which is pivotal to the use of Bayesian methods, can be summarized 

as follows: Let us consider the general situation where we are interested in drawing 

inferences about 8, which is a parameter characterizing the distribution of the ob- 

servable variable Y. In the Bayesian framework, B is treated as a random variable 

having a distribution fe (0). This distribution, which is termed the prior distribu- 

tion, represents the information available on 0 prior to observing Y = y. Statistical 

conclusions about B are then expressed in terms of the probability of 0 conditional on 

the observed values of y, felv(Bly), which is called the posterior distribution. 

The basic idea behind Bayesian thinking is to pool together the information from 

the prior distribution fe(B) and the likelihood function fyls(Y = y 10) of the observed 

value of Y = y, to obtain the posterior distribution feIv (BIY = y) using the following 



relation which is called Bayes' theorem of conditional probability: 

In the case when t? is continuous, f (y) = $'- f (9)  f (yl6)dd.  Thus the primary task in 

developing a Bayesian solution to any specific problem is to select a suitable model 

f (0, y) and to find f (0) which accurately summarizes the available information about 

B. .An equivalent form of equation (2.1) omits the factor f ( y) , which does not depend 

on 0 and can hence be considered a normalizing constant. We then have 

For the sake of brevity we will often use this unnormalzzed form of the posterior 

density in this thesis. 

2.1.2 Prior distributions 

The use of prior distributions has been controversial, and is the leading issue in the 

debate between the frequentist and Bayesian schools of statistical thought. On the 

one hand, in theory it is very attractive to summarize all past information into a prior 

distribution, and update it with the information in the current data set to arrive a t  a 

posterior density which summarizes all that is known about the set of parameters un- 

der investigation. The great problem, of course, is that in practice the choice of prior 

distributions is virtually never unique and different choices of prior distributions will 

lead to different posterior densities and possibly different conclusions. Spiegelhalter 

et al., 1994, suggest providing posterior densities across the range of reasonable prior 

densities in the context of reporting results from clinical trials. This common sense 

approach can be applied to areas other than clinical trials as well, offering a partial 

solution to the problem. 

In noo-identifiable problems, however, one has the choice of either carrying out 

a Bayesian analysis, or changing the problem to  an identifiable one, and solving 



the simpler problem via a frequentist approach. As we will see, the main problem 

addressed in this thesis is non-identifiable. In particular, we will address the problem 

of estimating the test properties and population prevalence from two tests in the 

presence of conditional dependence between the tests. Therefore, only the Bayesian 

approach offers a direct solution to this problem. Nevertheless, it is particularly 

important to select prior densities carefully in non-identifiable problems since their 

effects can be 'everlasting'. From the central limit theorem, Bayesian and frequentist 

approaches offer numerically similar inferences as the sample size increases across a 

wide class of problems. This is because the information iu the prior density becomes 

overwhelmed by that in the data as the sample size increases. However, this does 

not happen in the case of non-identifiable problems, where final inferences greatly 

depend on the choice of prior density, even with large sample sizes. 

Elicitation of prior distributions 

As discussed above, one of the most important steps in any Bayesian analysis is the 

process of determining the distribution that accurately summarizes the information 

available prior to the experiment. This information is typically gathered from previous 

studies or from subjective, expert opinion. Since prior elicitation tends to be elictee- 

and application-specific, it is difficult to automate this process. Several methods that 

have been suggested to streamline the process are reviewed in Chalooer, 1996 and 

Wolfson, 1995. 

One simple method is to divide the range of the parameter of interest, 8,  into 

intervals and assign relative probabilities to each of these intervals in a manner that 

reflects the experimenter's beliefs. While this method might seem natural when 9 

is discrete, it quickly becomes complicated as the range of 0 increases or when it is 

continuous. Alternatively, we could assume that the prior distribution comes From 

a family of well known parametric distributions f (Olq), where q is fixed so that the 



resulting distribution matches our prior beliefs as closely as possible. For example, if 

T )  were two dimensional, as in the case of the Normal distribution, then specification 

of two moments (such as  the mean and the variance) or two quantiles (such as the 

5th and 95th percentiles) would suffice to determine q.  Sometimes a prior belonging 

to a particular distributional family may simplify the computation of the posterior 

distribution. In particular, when the likelihood of the observed data belongs to the 

exponential family of distributions, it is possible to select a conjugate prior which 

would result in a posterior distribution which belongs to the same family as the prior. 

Example 2.1 Suppose that XI,. . . , ,Y, are independent and identically distributed 

as Binomial (N, p). The likelihood of the data can be written as 

A reasonable choice of a prior density for p is the Beta(a, /3) prior density such that 

This prior distribution is defined over the entire range of possible values of p and 

has the further advantage of taking on several shapes over this range. Using Bayed 

theorem we obtain the posterior density of p as follows 

The above equation is proportional to a Beta density with parameters a' = x:=, X, + 
a and @' = - x?='=, Xi + p. Since this is the oniy function proportional to equation 

(2.3) which integrates to 1, the posterior density of p is indeed Beto(a', $) and the 

Beta is the conjugate family for the Binomial likelihood. See Berger, 1985 and Carlin 

and Louis, 1996 for more examples of conjugate families. 



Given that all the parameters in the diagnostic testing problem are continuous, 

for the methods developed in this thesis we have selected priors of standard distribu- 

tional forms, utilizing conjugate distributions wherever feasible. While this method 

facilitates the conversion of prior information into parameters, a drawback is that in 

attempting to force the available information into the form of a standard distribution, 

one may end up with a prior distribution that may not exactly match the available 

information. Also, there may be more than one distribution, belonging to different 

families, which conform to the prior beliefs of the experimenter but result in very 

different posterior densities. In such a case it may ~ o t  always be clear which prior 

should be used, so that reporting results across a range of reasonable prior densities 

is again indicated. 

When there is no prior information available on 6 or when we want to draw infer- 

ences based on the data alone, we could use a non-infomatiwe or dzffwe prior, i.e. 

one where the data dominates any information in the prior. Several methods which 

have been proposed for the construction of such priors are discussed in (Carlin and 

Louis, 1996). One of the most common methods, which we shall employ later in the 

thesis, is to use a uniform distribution over the range of 9. 

2.2 Bayesian computational techniques 

Until recently, Bayesian analysis was not frequently used in practice, because it often 

involved the integration of complex functions for which there is no analytical solu- 

tion. Sophisticated numerical analysis techniques used to solve such problems require 

lengthy calculations. Over the last decade, however, Bayesian analysis has gained 

increasing importance in applied statistical analysis because of the availability of nu- 

merical Monte Carlo methods for sampling from the distribution of interest without 

actually having to  first derive the exact posterior density. The availability of fast corn- 



puters which can execute these methods within a reasonable time frame has resulted 

in an explosion of applied Bayesian research. In this section we discuss two such 

methods which are used later in the thesis - the Sampling Importance Resampling 

(SIR) algorithm and the Gibbs sampler. 

2.2.1 The Sampling-Import ace-Resampling (SIR) algorithm 

The SIR algorithm, which was discussed by Rubin, 1988, is particularly useful when 

it is difficult to obtain the analytical form of the distribution of interest, g(x), or even 

to simulate a sample from it, but where there exists a distribution, h(x), which is 

absolutely continuous with respect to g(z) and is easier to sample from. The SIR 

consists of the following steps: 

1. Draw a sample of size n, (xI , xc, . . . , I,) from the 'proposal' distribution h(x). 

2. Assign weights wl , wg, . . . , w, to each corresponding xi such that w(xJ = a, i = l ,  ..., n. 

3. Finally, draw a new random sample of size m, I;, xi, . . . , x k  with replacement 

from the discrete distribution over X I ,  28, . . . , 2. with probabilities propor- 

tional to w,,  wa,  . . . , w,. 

The resulting sample x;, x i ,  . . . , x& is approximately an independent sample from 

g(x). For a quick proof of this, see Smith and Gelfand, 1992. Clearly, increasing n and 

m increases the accuracy of the estimates. Theoretically, any distribution, including 

a uniform density over the range of x, can be used as the 'proposal' distribution h(x) .  

However, the more closely h ( x )  resembles g(x), the smaller the value of n required to 

obtain a good approximation of g ( x ) ,  that is, the closer I;, x',, . . . , x h  will resemble 

a random sample from g(x). 



Example 2.2: In a hypothetical community study it was of interest to estimate 

the prevalence n, of the disease X. For the purpose of illustration we assume the 

exact sensitivity and specificity of the test are known to be S = 0.95 and C = 0.85. 

Of the 1000 subjects tested for disease X, 270 tested positive. The probability of 

obtaining a positive test is given by: 

The likelihood function can now be written as: 

A review of earlier studies, say, suggested that the prior distribution of s in the 

population was Beta(lO,90). Therefore the posterior distribution of 7r is given by 

This function can of course be integrated, numerically or otherwise, to obtain the 

posterior density or a close approximation. Nevertheless, we will use the SIR algo- 

rithm for illustrative purposes. The function in equation (2.4) is not of the form of 

any common distribution, but a SIR algorithm can be used to obtain a sample from 

it. We select the Uniform(0,l) as the proposal distribution, which means h ( ~ )  = 1. 

This is not necessarily the best choice, but is adequate for the purpose of this example 

and guarantees absolute continuity with respect to g(r1data). We then proceed as 

follows: 

1. Draw rn values T I ,  . . . , T, &om Uni form(0,l) 



2. Assign a weight w(i) to each a, such that 

3. Sample n values T ; ,  . . . , a: from r,, . . . , a, with weights proportional to 

W19 . + . ,  'Idm- 

It was found that the posterior median and 95% posterior probability interval of n 

were 0.1404 and (0.11 l8,O. l662), respectively. The proposal distribution h(n) and 

prior and posterior distributions for r are illustrated in Figure 2.1, where rn and 

n were taken to be 1000 and 2000, respectively. The plot for the posterior density 

was obtained by smoothing the histogram of the posterior sample using the ksmooth 

function in S-plus. 

2.2.2 The Gibbs sampler 

The Gibbs sampler, see for example, Geman and Geman, 1984, comes from the class 

of Markov Chain Monte Carlo (MCMC) procedures. These methods are based on 

Monte Carlo integration using Markov chains and have been used to simplify a wide 

class of high-dimensional integration problems, especially in Bayesian analysis. The 

Gibbs sampler is the most commonly used of the MCMC techniques, and is the 

fundamental tool for the inferential methods developed in this thesis. 

Consider the following situation: We are interested in the marginal posterior dis- 

tributions of n 2 2 variables X1, X2, . . . , X,,. However, it is their so-called 'full con- 

ditional distributions' of the form f ( X i  lXI, . . . , Xi- 1 , Xi+! , . . . , X,,) , i = 1, . . . , n 

that are known or are easier to sample from. This form is usually easily available, up 

to a normalizing constant, for each Xi, i = 1, . . . , n by multiplying its prior density 



Figure 2.1: Proposal and prior distributions overlaid by posterior distribution obtained using a SIR. 

with the likelihood function as in equation (2.2) and cousidering all variables except 

as constants. 

The Gibbs sampler can be used to break down a multivariate problem into a series 

of smaller dimensional problems. I t  works by simulating a sample from each of the 

marginal posterior distributions using the following steps: 

(1) (1) 1. Assign starting values to all variables such that X l  = x1 , XI = x, , . . . , X,, = 

2. Draw a single value 2(,2) for XI from the full conditional distribution f (XI IXz = 



(1) x2 , . . . , X, = x(,')), Le . ,  the distribution of XI conditional on the remaining 

variables Xo, . . . , X,. 

3. Repeat Step 2 for all n variables. For example, draw 2y) for Xi from the 
(2) (2) - (1) distribution f(XilXl = x, , . . ., Xi-l = X ( ~ - , ] , X ~ + ~  - x(,+, I, . . . , Xn = xkl)) 

.4 single iteration is completed when a value has been drawn for each of the n 

variables. This procedure is repeated, say, N times where N is typically several thou- 

sand. The sample (xi; , . . . , xiN), i = 1, . . . , n thus obtained is a possibly correlated 

random sample from the marginal distribution of Xi, and can be used to obtain pos- 

terior inferences about the unknown parameters. For a description of the Markov 

chain concepts related to the Gibbs sampler see Roberts, 1996. 

Example 2.3: To illustrate the Gibbs sampler we use the example from the 

classic paper on data augmentation by Tanner and Wong, 1987. Based on a genetic 

linkage model, 197 animals are considered to be distributed into 4 categories following 

a rnultinomial distribution such that y = (yl, y2+ ys , y4) = (125,18,20,34), with 
' I-8 8) where 0 5 0 5 1. The variable y corresponding probabilities ( 4  + 3 ,  , , , , , , 

1 6 is transformed by splitting the first cell into two cells with probabilities 5 and a. 
The transformed variable x = (xi, xe, X J ,  xl, xs), is such that X I  + = yl = 125, 

XJ = y e  = 18, xd = y~ = 20 and x5 = yd = 34. We can think of re as having a 

Binomial distribution such that, xg -  in(&, 125). The likelihood function of the 

observed data is 

f (910) a (2 + 0)n (1 - 9 ) a + v V 4 ,  

which can be rewritten in terms of the x as 

f (XI@ a et*+x5 (1 - 0)' s+x4 

If the prior distribution of 8 is taken to be Uni f orm(0, I), the posterior distribution 



of 0 would be equal to the normalized likelihood, and could be expressed as 

Thus, we know the distribution of x2 conditional on 0 and the distribution of 0 

conditional on xp, but not the marginal distribution of either variable. We can use 

the Gibbs sampler to obtain random samples from the marginal distributions of XI 

and 8 as follows: 

1. Start with an arbitrary initial value 0 = 0(') 

3. Draw 8(*) from ~ e t a ( x F )  + 34,38) 

Repeat steps two and three until a sufficiently large sample from the full conditional 

distribution of 8 is obtained. The posterior median and 95% posterior probability 

interval of 9 were found to be 0.6273 and (0.5241,0.7221), respectively. The prior and 

posterior distributions for the parameter 0 are seen in Figure 2.2. Here x2 is considered 

as 'latent' or unobserved data. We will use a similar technique for deriving marginal 

posterior densities of latent parameters in Chapters 4 and 5. 

2.2.3 Diagnostics for the Gibbs sampler 

As with many other statistical methods, once a technique has been selected and 

the parameters of interest have been estimated, it is important to ensure that the 

technique has operated as expected. For an MCMC chain this means assessing when 

the procedure has 'converged' and when it can be safely terminated. In other words, 

here we want to be sure that the samples obtained come from the true stationary 
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Figure 2.2: Prior distribution overlaid by posterior distribution obtained using a Gibbs sampler 

distribution, 2 .  e. the true joint posterior distribution, and that a sufficiently large 

sample is collected for an accurate approximation of the joint and marginal posterior 

densities. This is difficult because what is produced by the algorithm at convergence 

is not a single number or even a distribution, but a sample from a distribution. 

Furthermore, the algorithm is complex, and, of course, we usually do not have the 

true posterior densities against which to compare our approximations. Theoretically, 

an accurately modeled problem will eventually converge after an infinite number 

of iterations (Gelfand and Smith, 1990). However, given the complexity of most 

MCMC problems, each iteration is expensive in terms of computer time and it is 

desired to minimize the required number of iterations. Although several methods 



have been proposed, 'MCMC convergence diagnostics' remains an area which is still 

being actively researched. A comparative review of some commonly used methods is 

presented in the paper by Cowles and Carlin, 1996. 

In this section we summarize two such methods which we employed to assess the 

performance of the methods developed in this thesis. Both these methods are avail- 

able as  part of a software package called CODA (developed by the MRC Biostatistics 

unit at  the University of Cambridge). In addition to these two methods, the auto- 

correlation within each chain and the cross-correlation between different parameters 

can be utilized to evaluate convergence. 

Method I: Raftery and Lewis 

Raftery and Lewis, 1992, have proposed a method which will detect slow convergence 

to the stationary distribution as well as provide a way of bounding the precision 

of the variance of the posterior quantiles. This method determines (a) the number 

of burn-in iterations, M, to be discarded in the initial part of the chain before it 

converges, (b) the number of further iterations, N, to be run in order to obtain the 

desired precision and (c) the thinning interval, k, which is the number of iterations 

to be discarded between two successive, retained, independent iterations to obtain a 

sequence of independent random iterates. While considerations (a) and (c) are not 

absolutely mandatory for the operation of a Gibbs sampler algorithm, they help use 

the computer memory more efficiently. The first step involves running a pilot chain of 

length Nmr, which is the minimum number of iterations that would be required for 

the desired accuracy if the samples were independent. The value of Nm*n is determined 

as a function of the quantile q, that is of interest to be estimated with precision r ,  

with s being the probability of attaining the specified accuracy, such that 



where a(.) is the cumulative distribution function for the standard normal distribu- 

tion. The results from the pilot run are entered into CODA to obtain estimates of 

M, N and k. A large value of M indicates slow convergence and a large value of N 

which is greater than Nmin or equivalently a value of k greater than 1 suggests strong 

autocorrelations within the chain. In addition we can also calculate the dependency 

factor 

which measures the increase in the number of iterations due to the dependence in 

the sequence. Values of I much greater than 1 suggest a high level of dependence 

in the model and values greater than 5 suggest that the implementation (often the 

parameterization) of the problem may need to be changed. The diagnostics of Raftery 

and Lewis, 1992, while helpful, do not guarantee that convergence has occurred by 

M iterations, or that N iterations will necessarily have the desired accuracy. This 

is because the method assumes that a function of the quantiles of interest follow a 

Markov chain, and uses the ergodic theorem to derive a 'sample size' for the accurate 

estimation of each marginal posterior density, and uses the BIC criterion (see Kass and 

Raftery, 1995) to determine the required burn-in. Both of these are approximations, 

so that this method should be used with caution. 

Method 11: Gelman and Rubia 

The method developed by Gelman and Rubin, 1992 addresses the problem of undiitg- 

nosed slow convergence (Gelman and Meng, 1996). This could happen, for instance, 

when successive observations in a chain are highly correlated or when the model is 

overparametrized. This in turn may prevent proper 'mixing' of the chain, giving a 

false impression of convergence. Such a probiem may not be visible by viewing a 

single trace plot which is the plot of the successive observations vs iteration numbers. 

The method consists of two parts as follows: 



1. Observe the trace plots of multiple, say m = 5, parallel sequences of length n 

starting at pre-determined points which are well dispersed over the range of the 

target distribution. By ensuring that the starting points are well dispersed it 

will be possible to detect if the MCMC eventually identifies the correct mode(s) 

of the stationary distribution each time. All n trace plots are then overlaid to 

see if the individual sequences can be distinguished after eliminating the burn-in 

iterations. 

2. The second step involves the calculation of a quantitative measure which checks 

if the empirical distribution of simulations obtained separately from each chain 

is approximately the same as the empirical distribution obtained when the se- 

quences are mixed together. This is done by comparing the within-sequence and 

between-sequence variance for each parameter . For each parameter of interest, 

say $J, the parallel chains are labeled I),,, i = 1 , .  . . , m, j = 1,. . . , n and the two 

quantities of interest are calculated as 

7 1 I 
B =  -C(IJ... - IJ . . )~,  where =-Ellij, (I.. =Lxqi. . 

m - 1 i=l j = l  m i=1 

1 ..- I 
M / = -  s:, where s: = - C(+ij - & ) 2  , 

i=1 ?I - 1 ,=I 

The two variance components are used to construct the ratio of an overestimate 

and an underestimate of the posterior variance as follows 

As n + a, or in other words when convergence is reached in all sequences, fi 
will be equal to or very close to 1. 

When the overlaid sequences axe distinguishable or R is very different from 1 (say 

i 1.2) the model may require reformulation. There has been an enormous amount 

of research into the properties of MCMC algorithms since the popularizing paper of 



Gelfand and Smith, 1990. See the recent book by Gilks et al., 1996, and the references 

therein for a path into this literature. 

Summary 

In this chapter we have seen the basic concepts behind the use of Bayesian analysis 

as they will be applied in Chapters 4 and 5 of this thesis. An important step in any 

Bayesian analysis is collecting accurate prior information and then determining the 

distribution which most closely matches our prior beliefs. This step is of particular 

importance when we have a non-identifiable problem since in these problems, even 

with a very large sample size, the influence of the informative prior distributions can 

remain great. Also important to any Bayesian analysis is the process of determining 

the posterior distributions of the parameten of interest. This hitherto complicated 

process has now been si~nplified by computational techniques such as the SIR and 

the Gibbs sampler. 

In the next chapter we review some of the methods which have been developed for 

the analysis of diagnostic tests, particularly those which provided the background for 

the methods developed in this thesis. 



A REVIEW OF THE LITERATURE 

Over the last four decades a great deal of research has been done to develop sta- 

tistical methods for the analysis of diagnostic test data. The result is a choice of 

several models using a variety of statistical techniques including Bayesian methods, 

generalized linear models and latent class analysis. This chapter is a brief review 

of this literature. Some of the techniques presented here provide the motivation for 

the methodologies developed in the remaining chapters of the thesis while others are 

mainly of historical interest. 

3.1 The Bayesian independence model 

The Bayesian independence model, introduced by Ledley and Lusted, 1959, was 

among the earliest formal methods for the analysis of diagnostic tests. Since then 

it has enjoyed great popularity in computer-aided medical diagnosis algorithms and 

other areas of statistical pattern recognition. Though this method has no direct re- 

lation to those developed in this thesis, we discuss it here since it involves Bayes' 

theorem and purports to analyze simultaneously results from multiple, independent 

tests. 

The outline of the method is as follows: Let d l ,  . . . , d ,  denote q mutually exclusive 

and exhaustive, well-defined disease conditions. The tests T I ,  . . . , Tp are p tests used 



3: A REVIEW OF THE LITERGTURE 35 

to diagnose a patient's disease condition, such that the jth test takes on l j  distinct 

values, 172,. . . '1,. For example, if Tl is 'chest pain', with I f  = 3 it could take values 

1,2 and 3 indicating none, radiating and non-radiating pain. Each new patient is 

thus a realization of the random variable (D, T) where D is the true disease status 

and T = ( T I ,  . . . , Tp) is the vector of test results. The diagnostic problem now is to 

observe T = t and infer from it the value of D. This means observing 

and estimating the probability P(D = dk It), k = 1, . . . , q. The desired probability 

can be calculated using Bayes' theorem as follows 

It is assumed that valid estimates of the prevalence of each disease condition 

P(D = dk), k = 1,. . . ,q, and the test performance parameters P(T, = t j lD = 

d r ) ,  j = I , .  . . , k = 1,. . . , q  are available from studies conducted earlier. .4 

fundamental feature of the algorithm is that it hypothesizes that results from the p 

tests are conditionally independent. This implies 

which simplifies the calculation of the joint probability of the p tests. In practice, it 

means that if the true disease state is known, then the test results are independent 

of each other, i .e. ,  knowing the result of Test j provides no information about Test 

jf, j # j', if the disease state is known. Equation (3.1) can now be rewritten as 
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The early literature on this method demonstrated much confusion about the use of 

the conditional independence assumption which was understood by many researchers 

to be a necessary condition for use of this method (Feinstein, 1977). Since condi- 

tional independence between diagnostic tests is seldom exactly achieved in practice, 

the method was criticized for being unrealistic. This gave way to much of the lit- 

erature assessing the effects of the assumption of conditional independence on the 

parameter estimates of interest. Several authors have shown that the assumption can 

be relaxed, in that in many practical situations it does not materially affect the esti- 

mated probabilities of disease (Lincoin and Parker, 1967, Russek et al., 1983, Hilden, 

1984). 

In the light of the methods developed later in this thesis, it is of interest to note 

that though this method makes use of Bayes' theorem, it is not Bayesian in its in- 

ferential approach. In fact, there is not even the use of an interval to give an idea of 

the variability in the estimated probabilities. Point estimates are used for the prior 

information on disease prevalence P(D = d r )  and test parameters P(T,. = t, ID = d k ) ,  

which are assumed exactly correct. .4s will be explained in Section 3.2.5, i t  is diffi- 

cult to know these values exactly and a fully Bayesian approach would assign a prior 

distribution over the range of possible values for the prevalence and test properties 

which accounts for the uncertainty about the values of these parameters. 

Early methods, such as this one, sought to identify symptoms associated with the 

presence or absence of disease, in order to develop an algorithm for predicting the 

probability of disease following an individual test result. Such an algorithm is usually 

developed by comparing test results with the true disease status or gold standard test 

results. Later methods, such as those described in the following sections, attempted to 

model data more realistically for situations where no gold standard test was available. 

The latter methods focussed more on the estimation of population level quantities 

such as disease prevalence. 
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3.2 Latent class analysis 

Often we are interested in measuring a variable which cannot be observed directly. 

Consider, for example, 'religious commitment'. Such an unobservable or latent vari- 

able can be estimated using one or more observable indicators, for example 'frequency 

of church visits', 'perceived importance of religious beliefs', and so on (McCutcheon, 

1990). Latent Structure Analysis, which was first introduced by Lazarsfeld in 1950, 

has been widely used by social scientists to model such problems and particularly to 

study the relations between the observed indicator variables (Lazarsf~ld and Henry, 

1968). 

In recent years these methods have found application in modeling the results from 

diagnostic tests to estimate the prevalence and test parameters. In the diagnostic test 

situation, the observed variables would be the results from the diagnostic tests and 

the latent variable would be the true disease status, which in the absence of a gold 

standard test is unobservable. Latent Class (LC) problems are a subset of Latent 

Structure problems where the latent variable is discrete, taking a finite number of 

distinct values. For ease of exposition and notation, and, keeping in mind the context 

of this thesis, the discussion here is focussed on situations where both the observed 

and latent variables are dichotomous. The results are easily extended to address 

problems with more than two latent classes. 

The basic premise of latent class analysis is that the relations between two or more 

observed variables are explained entirely by the latent variable. This can be stated in 

statistical terms as: two or more observed variables are independent conditional on 

the latent variable. In the case of the diagnostic testing problem, this would amount 

to saying: the results of two or more tests are independent within groups of the 

diseased and non-diseased subjects, or 



Note that we do not expect independence to hold between groups, i . e .  we do not 

expect that 

as it would imply poor performance of the diagnostic tests. 

Following the notation described in Chapter 1, the probability of observing the 

vector (t , . . . , t , )  of test results can now be expressed as: 

Equation (3.2) follows from the fact that there are two mutually exclusive, latent 

disease classes, D = 0 and D = 1, and, conditional on the disease status the results 

of the p tests are independent. Hereafter we refer to the model with two latent classes 

denoting diseased and non-diseased as the 2LC or 'two latent class' model. In the 

next section we discuss how to set up the likelihood function for this model using 

these equations. 

3.2.1 Observed and completelikelihoods 

For ease of illustration let us consider the situation when we have p = 2 tests. Again, 

the results can easily be extended to the situation where results from more than two 

tests are available. The cross-classification of the observed results from two tests 

Tl and Tm can be summarized as in Table 3.1. Following the basic assumption of 
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Table 3.1: Cross-classification of observed results from two dichotomous tests. 

latent class analysis, the two tests are considered to be independent conditional on 

the disease status. Thus from equation (3.2) we see that the probability of observing 

(TI = 1. Tp = 1) is 

Similarly the probabilities of observing the other three cells are 

Using the above equations, the likelihood function of the observed data, Lo, can 

now be written as 

A helpful 'trick' to solving this problem is to imagine what would happen if we 

knew the number of truly diseased subjects in each of the four cells (TI = 1, T2 = l), 
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Diseased 1 Not Diseased 1 

Table 3.2: 'Complete' data from two dichotomous tests. 

(TI = 1,T2 = 0), (Tl = O,Tz = 1) and (TI = 0,T2 = 0). If this were true, estimating 

the prevalence and test parameters would be straightforward as (in Example 1.1) 

when results from a gold standard test are available. This unobservable or latent 

data will be denoted by yl l ,  ylo, yol and yao. We hypothesize that if the latent data 

were available, then the latent data along with the observed data would constitute 

the 'complete' data set as presented in Table 3.2. 

The likelihood function of the 'complete' data is then given by 

The 'complete' and observed likelihoods are related by 

Equation (3.5) shows that the probability density associated with the conceptual 

'complete' data may not be unique. In most cases, given Lo, the choice of the LC 

is guided by convenience. In the Following sections we will show how the 'complete' 



Number of tests p 1 2 3 4  5 
n 

11 Numberofdf I Z P - l I 1 1 3 1 7 ( 1 5 1 3 1 ( 1  

Table 3,3: Number of unknown parameten and available degrees of freedom as a function of the 
number of tests. 

data likelihood can be used to obtain estimates of parameters when data are latent 

or missing. 

3.2.2 Iden tifiability conditions for the frequentist model 

The number of diagnostic tests used determines the number of cross-classifications 

into which the observed results are grouped and hence the number of degrees of free- 

dom. In the general situation when we have results from p conditionally independent 

diagnostic tests we have p sensitivities, p specificities and the prevalence that we are 

interested in estimating, i . e .  we have a total of 2 p  + 1 parameters to estimate. Since 

each test can take two possible values, T,  = 0 or 1, j = 1, . . . , p, there are 2 P  possible 

cross-classifications of test results and hence 2p - 1 degrees of freedom, since the total 

sample size is fixed. Table 3.3 summarizes the number of unknown parameters and 

the number of degrees of freedom available as a function of the number of tests. Rom 

this table we can see that in the case when there are less than three conditionally 

independent tests the problem is non-identifiable and therefore a frequentist approach 

to the solution of such a problem will require applying certain constraints as  will be 

discussed in Section 3.2.4. For a complete description of identifiability conditions in 

the general case when the latent and manifest variables have more than two exclusive 

classes see Goodman, 1974. 
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Stool Examination 

11 Total 1 40 1 122 ( 162 11 
Table 3.4: Results of tests for Strongyloides infection among a group of Cambodian refugees. 

- .. 

11 Examination Cl 1 0.95 1 0.89-0.99 11 
Stool 

- - 

Table 3.5: Test parameters of stool examination and serology test. 

3.2.3 The Strongyloides infection problem 

Parameter 

SI 

In this section we outline a diagnostic test problem which could be modeled using 

latent class analysis. Following this we describe two methods - a frequentist and a 

Bayesian method - to estimate the parameters in the latent class model. We apply 

both methods to the problem described here. 

Joseph et al., 1995 were interested in studying the prevalence of Strongyloides 

infection among a group of Cambodian refugees arriving in Montrdd, Canada. They 

had available to them results from two impedect tests - a serology test and a stool 

examination - as illustrated in Table 3.4. Assuming the two tests to be conditionally 

independent, we see from Table 3.3 that this problem is non-identifiable. Consultation 

with the literature showed that there was no gold standard test available with which to 

compare these two tests and hence there was great uncertainty about the performance 

Median 

0.24 

95% CI 
d 

0.07-0.47 
I 



parameters of the tests, even though they were commonly prescribed. For instance, 

the specificity of the serology test was found to range anywhere from 35% to loo%! 
The prior median and 95% CI of the test parameters are summarized in Table 3.5. 

While the stool examination had a very poor sensitivity it had an extremely high 

specificity. The serology test on the other hand had a higher sensitivity but a poorer 

specificity than the stool examination. The study's main objective was to see if any 

interventions were required in this population when they immigrated to Canada. 

3.2.4 A fiequentist solution for the 2LC model 

Frequentist methods for parameter estimation require that a problem be identifiable 

in order to obtain a meaningful solution. Therefore, when the degrees of freedom 

are less than the number of unknown parameters, constraints must be added to the 

model by assuming some of the parameters to be known constants. For example, 

when we have two tests we need to fix the values of any two parameters in order to 

ensure that there are as many unknown parameters (5 - 2 = 3) to estimate as there 

are degrees of freedom (3) available. Different combinations of parameters may be 

held fixed depending on the context of the problem, as discussed in great detail in 

the review by Walter and Irwig, 1988. The remaining parameters are then estimated 

conditional on the values of the constrained parameters. 

Estimates of parameters in the latent class model are commonly obtained by the 

method of maximum likelihood. The EM algorithm, described in the next section, is 

an iterative method which can be used to obtain maximum likelihood estimates for 

this type of problem. 
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The EM algorithm 

The EM algorithm, popularized by the paper of Dempster et al., 1977, was developed 

to obtain mavirnum likelihood estimates in a situation when we have missing or 

incomplete data. This method can also be applied to great advantage in situations 

when the data are 'missing' by virtue of their being unobservable or latent, as in the 

case of the diagnostic testing problem. Detailed descriptions of the algorithm and its 

properties are given by Dempster et al., 1977 and WU, 1983. L~uis,  1982 presents a 

method of estimating the covariance matrix of the parameter estimates from an EM 

algorithm. 

Let n denote the observed data and y denote the complete data, with likelihood 

functions g(nl$) and f (ylq5), respectively. For a given n, the purpose of the EM 

algorithm is to determine the value of 4 which maximizes g(nl4) by making use of 

the complete data density f (yl#). Each iteration of the EM algorithm consists of two 

steps - the 'expectation' or E-step and the 'maximization' or M-step. The algorithm 

typically proceeds as follows: 

1. Given that the estimate of # in the ith step is 4('), the Estep consists of corn- 

puting the expectation of the complete data likelihood conditional on @), with 

respect to the conditional density of y given n as follows: 

When the probability density of the complete data comes from the exponential 

family of distributions, this step reduces to calculating the expectation of the 

sufficient statistics for each parameter conditional on the observed incomplete 

data and 9('). 

2. In the M-step the new estimate of 4, &'+'), is obtained by maximizing the 

expectation computed in the Estep. 



3: A REVIEW OF THE LITERATURE 45 

The E and hl steps are repeated until some pre-determined convergence criterion 

such as - t$(i)l < c is met, for some small c. The main advantage of the EM 

algorithm is its simplicity. It does not rely on the calculation and inversion of the 

information matrix. Another feature of the EM algorithm is that the likelihood func- 

tion never decreases a t  successive iterations. The convergence of the EM algorithm is 

linearly related to the amount of missing information in the data. While convergence 

is reached quickly in problems where the likelihood functions has a single mode, there 

is a danger that the algorithm could get stuck at local maxima or saddle points. This 

can happen when there is more than one mode, for example when we have a large 

sample size resulting in individual points being associated with a large weight. 

The EM Algorithm Applied to the Diagnostic Testing Problem 

We now illustrate the application of the EM algorithm to the two-test diagnostic prob- 

lem. As noted earlier this non-identifiabie problem can be solved using a frequentist 

approach by constraining some two parameters to be fixed. For the Strongyloides 

data problem let us arbitrarily hold the two specificities constant. We then have 

with Cl and Cg held constant. The likelihood function in equation (3.4) can be 

rewritten as 
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Let ND = YII + Yio + 901 + goo, y ~ .  = yll + ylo and y.1 = yll + yo,. Therefore ND 
represents the total number of truly diseased subjects, yl. represents the number of 

subjects who obtain a positive result on the first test and y.1 represents the number 

of subjects who obtain a positive result on the second test. equation (3.6) can now 

be rewritten as 

where N = rill + nlo + nol + no& The factorization theorem for the exponential family 

of distributions states that a necessary and sufficient condition for a statistic, say t (x) , 
to be sufficient for the distribution of a variable x, is that there exist non-negative 

functions, ae(.) and P ( . )  such that the density of x, f (x(B), satisfies 

By the factorization theorem, it is easy to see that No,  yl. and y.1 are the suffi- 

cient statistics for #. The steps of the EM algorithm for the diagnostic problem can 

therefore be summarized as follows: 

1. Since the multinomid likelihood comes from the family of exponential distri- 

butions, the Estep involves the computation of the expectations of the three 

sufficient statistics conditional on the observed data and the current estimate 

of 4. Therefore, 



3: A REVIEW OF THE LITERATURE 47 

The expectations in equations (3.8)' (3.9) and (3.10) can be obtained using the 

expectations of yl1, ylo, 3/01, yoo, which are as follows. From equation (3.6) we 

can deduce that 

2. For a member of the exponential family of distributions, maximizing Q(#I$(')) 
is equivalent to solving E(t(x)lqj) = t. In the M-step the parameter estimates 

t$('+l) are found to be 
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Table 3.6: Estimates of R, S1 and S2 obtained using a frequentist solution to the 2LC model at two 
different points on the (C1, C2) plane. 

The E and M steps are repeated till some convergence criterion such as 

is met. The EM algorithm converges fairly quickly for this problem (within about 

50 iterations) but this may not always be the case. Two sets of point estimates of 

the prevalence and sensitivities obtained by constraining the two specificities to be 

at their medians, and to be at the lower endpoint of their 95% CI, are given in Table 

3.6. A sensitivity analysis, that is results from repeated runs of the above algorithm 

for different values of GI and C2, could be used to get an idea of the range of the 

prevalence and sensitivities. The prevalence estimate almost doubles in value as the 

specificities change across their range of plausible values. 

As mentioned earlier, the major advantage of using this method is the ease of 

implementation of the EM algorithm. Unlike a Bayesian method there is no need to 

determine prior distributions for the parameters, although one does have to exactly 

specify CI and Cs, or two other parameters in order to draw inferences. This ease 

comes at the cost, however, of having to determine which parameters must be con- 

strained and what values the constrained parameters must take. From the results in 

Table 3.6 we can see that by altering the values of the specificities the estimate of the 



prevalence changed drastically. This is particularly worrisome because there is much 

uncertainty about the values of the specificities as discussed earlier, and with this 

method we are not able to simultaneously account for the variability of the different 

parameters. A sensitivity analysis, while giving an idea of the point estimates at 

several points in the ( G I ,  Ce) plane, still does not provide the complete picture. 

3.2.5 A Bayesian solution for the 2LC model 

As seen in the previous section, when we have a non-identifiable model the classical 

frequentist method cannot be used to obtain estimates of all unknown parameters 

without constraining some of them to be fixed constants. This is a rather unrealistic 

requirement since none of the parameters are truly known and hence the division 

into constrained and unconstrained parameters is often quite arbitrary. Further, the 

uncertainty in the value of the constrained parameters is not accounted for while 

estimating the variability of the unconstrained parameters, for example in terms of 

their confidence intervals. 

The Bayesian approach to a non-identifiable problem 

Under non-identifiability, a Bayesian approach can be used to obtain closed form, in- 

terpretable point and interval estimates for each of the unknown parameters (Neath 

and Samaniego, 1997). The basic idea behind the Bayesian approach is to use the 

available information about each parameter summarized in the form of a prior distri- 

bution, and thus eliminate the need for constraining them. By doing so the uncer- 

tainty in our knowledge of the parameter is accounted for. Prior distribution functions 

can be determined in consultation with the available literature and expert opinion. 

This approach is numerically equivalent to the frequentist approach when a degener- 

ate prior distribution is used over the constrained parameters, which concentrates all 

the probability mass at a single point. The problem of formulating a suitable prior 
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distribution or deriving the posterior density are not worsened by virtue of the non- 

identifiability of a problem, at least in this case since all parameters have an easily 

understood 'natural' interpretation. 

Roughly speaking, in order to obtain a useful solution using this approach, fairly 

strong priors would be needed on at least as many parameters as  would be constrained 

when using the frequent ist approach. Since in this situation the prior distribution 

tends to have a strong influence on the posterior, it is important to interpret the 

results of such an analysis carefully. Neath and Samaniego, 1997 determine conditions 

to identify the subset of prior densities that would ensure the posterior estimate is 

an improvement over the prior guess. They considered the non-identifiable problem 

involving results from a single dichotomous test, although by treating only point 

estimates they did not consider interval estimation. 

A Bayesian approach to the diagnostic testing problem 

In this section we describe a Bayesian solution to the 2LC problem which was pre- 

sented in the paper by Joseph et al., 1995. For the Bayesian approach the observed 

data and the parameters to be estimated would be 

respectively. Let yl l ,  ylo, yol and yo0 be defined as in Table 3.2 

As explained in Chapter 2, the joint posterior distribution is proportional to the 

product of the likelihood function and the prior distributions. Denoting the prior 

density corresponding to a parameter 8 as p(BI.), and assuming all parameters in 9 
to be independent of each other, the joint posterior distribution can be written as 
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A convenient choice of prior distribution for all the parameters of interest would 

be from the Beta(a, /3) family of distributions, since this family is constrained to 

the range 0 - 1, which matches the range of all parameters in 4. Further, the Beta 

distribution is conjugate to a Binomial likelihood function (see Section 2.1.2) ? thus 

simplifying the derivation of the full conditional distributions of the Gibbs sampler 

that will be employed below. A random variable, X, has a Beta(&, P )  distribution if 

its probability density function is of the form 

xa-yl -x)B-l, 0 5 1  5 1 0 , p  > 0, 
f (X = 2) - 

otherwise. 

Another advantage of the Beta distribution is that several density shapes can be 

obtained by varying a and P.  For example, a non-informative or uniform prior is 

obtained by setting a = P = 1, a symmetric prior by setting o! = /3 = m(> I), a 

right-skewed prior can be obtained by setting a > /3, etc. 

The joint posterior distribution can now be rewritten as 
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The latent data are not observed, preventing direct use of the posterior distribution. 

Therefore, samples from the marginal posterior distributions of the prevalence and 

test parameters are drawn using the Gibbs sampler described in Section 2.2.2. The 

basic idea behind this method is that if the latent data are known, then the marginal 

full conditional distributions of the prevalence and test parameters are known. Con- 

versely, conditional on the exact values of the prevalence, test parameters and the 

observed test results, we can derive the full conditional distributions of yll, ylo, yol 

and yoo. By alternating between these two steps a sample from the marginal posterior 

distributions of each parameter is obtained. 

From equation 3.12 it is easy to see that the full-conditional distributions, namely 

the distributions of each parameter conditional on the others are as  follows 

SI l ~ l l ,  Y1o,Yo1, Yo01 a s * ,  Ps, 

- Beta(% + Yll + Y10, Psi + yo1 + yo,,), 
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n ( Parameter [ Median 1 95% PI I a 1 P 11 
Stool 

Examinat ion 

Table 3.7: Prior distribution parameters corresponding to sensitivities and specificities of the stool 
examination and serology test. 

Serology 

Test 

In the case of the Strongyloides data, since no information was available about 

SI 

ct 

the prevalence of this disease in the population under study, a Beta(1,I)  diffuse prior 

Sa 

Ce 

distribution was used for the prevalence. The parameters of the Beta prior for the 

0.24 

0.95 

sensitivities and specificities of the two tests were obtained by equating the center of 

0.81 

0.72 

the range ( i . e .  the 95% probability interval) to the mean of the Beta distribution, 

0.07-0.47 

0.89-0.99 

which is given by -& and, one quarter of the range to the standard deviation of 

the Beta distribution, which is given by ,/*. These parameters are pre- 

sented in Table 3.7. The estimated posterior medians and 95% posterior probability 

0.63-0.92 

0.31-0.96 

intervals for the prevalence and test parameters are summarized in Table 3.8. Here 

4.44 

71.25 

13.31 

3.75 

21.96 

4.1 

5.49 

1.76 
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11 Stool I SI 1 0.31 1 0.22-0.44 1) 
I Prevalence 

1 Test I Cp 1 0.67 10.36-0.95 (1 

Median 

0.76 

Examinat ion 

Serology 

Table 3.8: Posterior Medians and 95% posterior probability i n t e d s  of the prevalence and test 
parameters obtained using a Bayesian solution to the 2LC model. 

95% PI 

0.52-91 

and elsewhere PI denotes 'probability interval'. Figure 3.1 illustrates the prior and 

posterior density function for the prevalence. 

CI 

se 

The advantage of this method over the frequentist method is that it avoids the un- 

realistic constraining of unknown parameters and takes into account their variability. 

In the words of Neath and Samaniego "To the classical statistician the estimation of 

a non-identifiable problem is, purely and simply, an ill-posed problem . . . (for which) 

the only alternative is to . . . solve a related problem which is identifiable. . . . Bayesian 

methods can provide point estimates of a non-identifiable parameter that are unam- 

biguous and unique (relative to a given prior)." The Gibbs sampler is fairly simple to 

implement and was found to converge quickly. One drawback of this method is that, 

like the frequentist approach described earlier, it assumes tests to  be independent of 

each other conditional on the latent disease status. This assumption rarely holds in 

practice as the two tests could in fact be the same test conducted a t  two different 

points in time, or the two tests could be based on the same underlying phenomenon. 

That is, there may be a variable besides the disease status which causes the test 

results to be related. The reasons for this are described in greater detail in Section 

5.1. In the next section we present some of the methods developed to date to model 

this dependence between tests. 

0.96 

0.89 

0.91-0.99 

0.80-0.95 
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Figure 3.1: Prior distribution of the prevalence overlaid by the posterior distribution obtained using 
the Gibbs sampler. 

3.3 Modeling the conditional dependence between diag- 

nostic tests 

The possible inadequacy of the assumption of conditional independence between mul- 

tiple testslraters has been recognized by several researchers aad consequently many 

methods have been suggested to model the data more realistically. While earlier 

methods tried to describe the agreement between tests using measures such as the 

kappa statistic (Fleiss, 1971, Landis and Koch, 1977), later methods sought to model 

this agreement and correct for its influence on estimates of the test parameters and 
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prevalence. In this section we discuss some of the methods that were developed for 

the situation when there was no gold standard among the testlrater results. 

3.3.1 Increasing the number of latent classes 

When the conditional independence model is inappropriate for the observed data, the 

proportion of subjects for whom all tests give identical results are underestimated. 

One way to account for this is to increase the number of latent classes in the la- 

tent variable uuder study such that there is an exclusive latent class corresponding 

to the unequivocally diseased and another corresponding to the unequivocally non- 

diseased subjects for whom all test results are in agreement. This method has been 

described by several authors including Hagenaars, 1988, Espeland and Handelman, 

1989, Uebersax and Grove, 1990 and Formann, 1994. 

To illustrate the application of this method we use the example from the paper 

by Espeland and Handelman, 1989, where they analyzed the results from five diag- 

nosticians on 3,869 radiographic images of dental caries. The images were classified 

by each diagnostician as sound (0) or carious (1). The authors begin by fitting the 

classic two-latent class model (Section 3.2.1) reformulated as a log-linear model. Let 

rnd,,t, d, p, q, r, s, t = 0 , l  denote the frequency for the cross-classifications by the five 

dentists in the latent class D = d. Then, the equivalent of equation 3.2 in log-linear 

form is 

where uo (.) references the latent variable and UI (., .), . . . , us (., .) reference individual 

diagnosticians. This model can be solved using the EM-algorithm by assuming the 

mdVt to be known at one step and computing the maximum likelihood estimates 

of the u j ( . ) ' ~  in the next step. The value of the likelihood ratio chi-square statistic 
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corresponding to the model in equation (3.14) was GZ = 129.84, df = 20, indicating 

that the data did not fit the model adequately. 

The authors hypothesize that some images are unequivocally classified as sound 

or carious by all the dentists but this unqualified agreement is underestimated by 

the 2LC model. More generally, a look at the residuals from the 2LC model, i.e. 

the difference in the observed and estimated values of the cell means, will suggest 

which cross-classifications have been under- or overestimated. The problem a t  hand 

can be modeled by adding two more latent classes D = 2 and 3 corresponding to 

unequivocally sound and unequivocally carious teeth. Thus all subjects in class D = 2 

will receive a 'sound' diagnosis and all subjects in class D = 3 will receive a 'carious' 

diagnosis from all five dentists. The log-linear model for these two additional cells 

has the following parameterization 

The value of the G2 statistic for the new model was found to be 53.08, df = 18, 

indicating a marked improvement in the fit of the model to the data. 

The prevalence and test parameters can be estimated using the estimated cell 

means as follows: 

Sensitivity of Dentist 1 

and 

Specificity of Dentist 1 
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The sensitivities and specificities of the other dentists can be calculated similarly. 

Lu, 1968 suggests the further addition of a latent class corresponding to 'undiag- 

nosable' cases for whom there is no right or wrong result and for whom diagnosticians 

are providing no more than a random guess. Thus each one of the z5 possible cross- 

classifications is equally probable for subjects who lie in this latent class, which we 

shall denote as D = 4. A log-linear model for this fifth latent class would be of the 

form 

This model only marginally improves the likelihood chi-square ratio statistic to G2 = 

50.57, df = 17. 

Addition of latent classes, however, accentuates the problem of non-identifiability. 

This model is identifiable only when (2P - 1) 2 (2p+  1 + m) , where m is the number of 

latent classes added to the 2LC model. Therefore, in order to have sufficient degrees 

of freedom to estimate all parameters when a single latent class is added, a minimum 

of four tests would be required. The other problem with this method is that it is 

not clear how many additional latent classes need to be added to improve the fit 

of the model. In the dental caries example, Espeland and Handelman found that 

the addition of two latent classes was not sufficient to explain the relations in the 

data and they had to extend their model in other ways as will be described in the 

next section. Clearly, with the addition of a sufficient number of latent classes, the 

problem will become saturated resulting in G2 = 0 but this may not necessarily yield 

a meaningful model. Finally, it is not clear whether each additional latent class will 

be substantively meaningful. For instance in the case when some subjects are deemed 

'undiagnosable' it is unclear how the prevalence is to be estimated. 
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3.3.2 Addition of interaction terms 

In this section we describe yet another extension of the 2LC model used in the paper 

by Espeland and Handelman, 1989. When the addition of latent classes did not 

sufficiently improve the fit of the model, the authors added interaction terms between 

pairs of dentists who showed a tendency to agree with each other. Such a pair of 

dentists (or tests) among whom there is agreement can be identified by collapsing the 

2' cross-classifications into marginal tables for each pair of dentists and looking at 

the residuals obtained from the four-class latent model of the previous section. From 

such a table, the authors found a significant agreement between the raters 3 and 4 

and hence modified the earlier model to include an interaction term as follows 

This model reduces the likelihood ratio chi-square statistic to G2 = 25.57, df = 16 

suggesting a significant improvement in the fit as compared to the earlier model. 

The prevalence and test parameters can be estimated from the estimated 'complete' 

cross-classificat ion table as described in equation (3.16). 

3.3.3 Marginal models 

In a recent paper, Yang and Becker, 1997 used latent class marginal models to adjust 

for the correlation between diagnostic tests. In this model the sensitivities and speci- 

ficities are simple functions of the model parameters, unlike the methods described 

in the previous sections. The authors describe the particular situation when results 
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from four dichotomous tests are available and only associations between pairs of tests 

are considered. Three and four-factor associations are constrained to be absent. For 

a general description of marginal models see Becker, 1994. 

Let the four tests be denoted by T, = t, where j = 1,2,3,4 and t = 0 , l  and 

disease status be denoted by D = d ,  d = 0 , l .  The marginal model for an observed 

24 contingency table involves four univariate logits, six log-odds ratios for bivariate 

associations, four tri-variate associations and one four-factor association. The model 

is formally expressed as follows: 

1. The univariate logits corresponding to TI are 

2. The log-odds ratios for the association between Tf and T2 are 

The univariate logits for the other tests a?, (12, (12 and the log-odds ratios 

$2 Ts, $7 T4, $7 Ts, $2 T4, $2 T4 for the other bivariate associations follow 

similarly. At this point we note that if all univariate and bivariate associations 

were present there would be 2 x4+2 x 6  = 20 parameters to estimate which would 

exceed the degrees freedom available, namely, 24 - 1 = 15. Hence constraints 

must be applied on at least 5 of the parameters. In their paper, Yang and Becker, 

1997 consider only one bivariate association $FT4 to be non-zero so that the 

number of unknown parameters is 10 and hence the model is identifiable. 

3. Constraints are placed on all three-factor associations, 
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ln(Toood n l l ~ d  " 001 d " l l l d  
- T J T J T ~ ~ D - T J T ~ T ~ I D  ) - In(-Tl Ta T4 ID-Tl TJ T4 (D ) = O7 = O1 
K ~ l ~ d  m l ~ ~ d  " Olld " lOld 

ln(KOOOd nllod 001 d I' l l l d  
- Ti TJ 7'4 1D-l"~ 7'3 T4 ID ) - 1n(-TgT~T41D-TgTrTcID) = O' 
nolad 7 r 1 ~ ~ d  "o l ld  I' l o l d  

and, the single four factor-association 

to ensure that they are absent. 

Maximum likelihood estimates of the parameters in the marginal latent class model 

can be obtained using the EM algorithm. One of the benefits of modeling the rnargi~lal 

distributions is that the sensitivity and specificity can be expressed as functions of the 

parameters for the univariate marginal logits. For example, to obtain the sensitivity 

of test Tl we proceed as follows: 

Similarly for the specificity: 
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TtlD C1 
"roo exp(cuF) = = - 
' h o  1 -GI' 

The sensitivities and specificities for the remaining tests are obtained similarly. 

The main drawback to this method is that of non-identifiability in the absence of 

a sufficient number of tests. In fact, while the degrees of freedom available from p 

tests remains the same, 2.e. 2 P  - 1 (see Table 3.3), the number of parameters to be 

estimated increases to 2 x (PCI +PC2 + . . . P C n )  + 1 = 2(2P - 1) + 1. SO the number of 

parameters to be estimated always exceeds the degrees of freedom available, meaning 

that constraints would always have to be placed on a subset of the parameters to 

obtain an identifiable model. The authors cite the parameterization of the model in 

terms of test parameters as the model's main advantage. However, when weighed 

against the complexity of the model it is questionable whether it is worth the effort. 

3.3.4 A random effects model 

Random effects models are often used to model similarity within groups, as for exarn- 

ple, the similarity among serial observations on the same unit in a repeated measures 

analysis, or the similarity within clusters in a two-stage sampling design. This is 

done by ... (see Kutner et al., 1996 for an introduction to random effects models) Qu 

et al., 1996, use such an approach to model the correlation between multiple tests 

via their sensitivities and specificities. The similarity between the test results is hy- 

pothesized to arise due to a latent, subject-specific characteristic which is different 

from the disease status. Some examples of such subject-specific variables which affect 

test performance are given in Chapter 5 where we propose a Bayesian solution to the 

random effects model. 
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The sensitivities and specificities are taken to be probit functions of an unobserved, 

continuous variable, say I, which is assumed to have a N(0,l)  distribution. Probit 

functions are convenient because they take values between 0 and 1. Let tjk = 0 , l  

denote the test result of the kth subject, k = 1,. . . , N, on the jth test, j = 1,. . . , p ,  

and tk  = ( t lL ,  , t Z k ,  . . . , tpb)  denote the vector of test results for the kth subject on 

each test. The probability that the kth subject has a positive test result on the jth 

test is given by 

where 3 represents the cumulative distribution function of the N(0, l )  distribution 

and (ajd, bjd), j = 1,.  . . , p ,  d = 0 , l  are real constants. 

The disease status D and the latent variable I are assumed to be independent of 

each other. The sensitivity of the jth test is then given by 

= / ( d )  (using a t a r L  (,*) anticlockwise rotation) 
-00 

Similarly, the specificity of the jth test is given by 

a30 = @(-- ) using the result @(-XI = 1 - @(x) 
1 +yo 

The results of different tests are taken to be independent of each other conditional 

on the disease status D and the variable I. This means that within each disease class 

the tests are independent of each other conditional on the variable I. Qu et  d., 1996 
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call this model the 2LCR model which is short for the 'Two Latent Class Random 

Effects Model'. The likelihood function of the observed data is given by 

The estimates of the parameters ?rd and (a jd,  bjd)  , j = 1,. . . , p, d = 0 , l  are obtained 

using the EM algorithm. 

Apart from providing an  elegant way to model the dependence between two or more 

tests simultaneously, this met hod is also more substantively meaningful. Similarity 

between test results often arises due to a factor, such as severity of disease, which 

is independent of disease status. A more severe case of the disease is likely to be 

detected by all tests as  positive resulting in an agreement between them. The model 

is also flexible and the bjd parameters can be set so that the dependence is between 

a subset of tests, of the same or varying strength between different pairs of tests. 

Once again, the drawback of this model is that a frequentist approach to its solution 

requires a minimum number of tests. Corresponding to each sensitivity and specificity 

there is a pair of (ajd, bjd)'s to be estimated. Hence the total number of parameters 

is given by 

2 x ( 2 x p ) + l = ( 4 x p ) + l  

This means that in order for the problem to be identifiable we require 

A special case of the model, which the authors term the 2LCR1 model, occurs when 

the variance components are all equal, i.e. bjd = bd, j = 1,. . . , p ,  d = 0,l. This 



means we have only two bjd values now, one among the diseased subjects and one 

among the non-diseased subjects. This would mean that the effect of the variable I 

on the performance of each test is the same. In this situation we need 

resulting in a less stringent constraint of a minimum of four tests. 

3.4 Other Bayesian methods for the analysis ofdiagnostic 

tests 

Several researchers have found Bayesian analysis advantageous for developing method- 

ology for the analysis of diagnostic tests. We briefly mention some of this work in 

this section. Gastwirth et al., 1991, used Bayesian inference to obtain large-sample 

maximum likelihood estimates of the accuracy of screening tests used to detect HIV 

antibodies in donated blood. More recently, Neath and Samaniego, 1997 looked at 

the problem of estimating the prevalence of HIV based on results from a single test. 

Their model is set up to estimate the proportion of truly diseased subjects among 

those who test positive by applying a Dirzchlet (al, an, as) prior distribution over the 

pair of probabilities (pl, n) of true-positive and false-positive results, as follows 

If X - Binomial(n, p, +n) denotes the number of subjects who tested positive, then 

the posterior distribution of ( p l , p 2 )  is given by 

d + k - 1  P ~ + Z - k - 1  as+n-x-l 

f@l,p21X = 4  = 
C;=o =Ck PI Pl P3 

r(al +an+as 
*Cl r(ol)r(s2)r(o)s) 

The authors use this example to provide a template for assessing the efficacy of 

Bayesian updating in non-identifiable problems. They conclude that Bayesian analy- 
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sis is worthwhile in the vast majority of cases because the posterior estimate of (pl, f i )  

is usually closer to the true value than the prior estimate. 

4Iatchar et al., 1990, proposed a Bayesian approach to address the problem of eval- 

uating test performance when some patient's remain undiagnosed by a gold standard 

test. Estimating test parameters by ignoring these subjects could lead to work-up 

or verification bias, as discussed by Begg, 1987. The authors used a joint prior dis- 

tribution over the sensitivity and specificity and employed a Monte Carlo Markov 

Chain method to sample from the posterior distributions of the prevalence and test 

parameters. It was found that taking into account the undiagnosed subjects markedly 

affects the estimates of the prevalence and test parameters. 

Peng and Hall, 1996, propose a Bayesian solution to regression models of ordered 

ordinal response data from radiological tests. While most methods for the analysis 

of diagnostic tests postulate that test scores from diseased and non-diseased subjects 

as  following a binormal distribution, as depicted in Figure 1.1, in practice test scores 

are usually ordinal. The approach suggested by Peng and Hall, 1996, overcomes 

this problem by imputing the unobserved continuous observations from the latent 

binormal distributions using data augmentation. They postulate that if there are 

J possible outcomes on a test which are determined by the latent cut-off values 

O1,. . . , OJ-l  and I possible covariate levels, then the probability of a subject at the 

ith covariate level lying in any one of the first j ordered categories of the test is given 

where Xi is the covariate vector corresponding to the iih level. Given the cut-off 

values, the unobserved test results are imputed using the constraint 5 t i j  5 0,. 

The papers by Gatsonis, 1995 and Ishwaran and Gatsonis, 1997 extend this method 

to the case when we have correlated ordinal data from multiple measurements on 

each subject. 
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Joseph and Gyorkos, 1996, propose a Bayesian method for calculating point and 

interval estimates of likelihood ratios in the absence of a gold standard diagnostic 

test. They observed that their results were numerically similar to those obtained 

by the standard frequentist approach in the presence of a gold standard test, but 

typically provide larger interval estimates reflecting the inherent uncertainty when a 

gold standard is not present. This method was an improvement over earlier frequentist 

methods which required that the data under study be normally distributed. 

3.5 Summary 

In this chapter we have discussed various methods for the analysis of diagnostic tests, 

focusing mostly on those that have provided the background for the methods devel- 

oped in this thesis. The 2LC model, while providing an elegant way to analyze results, 

from independent diagnostic tests, cannot be solved directly using a frequentist a p  

proach when we have less than 3 tests, i .e.  when we have a non-identifiable problem. 

Another drawback of the 2LC model is its assumption of conditional independence 

between the tests which may not always be satisfied. Similar comments, however, 

apply to the 2LCR model when there are less than four or five tests. Bayesian a p  

proaches can be used in such situations to provide estimates of the disease prevalence 

and test parameters without imposing any unrealistic constraints, as Joseph et al., 

1995 showed for the 2LC model. 

Although there is an enormous literature on statistical methods for diagnostic test 

data, there are no frequentist solutions that directly address the problem of estimating 

parameters in the presence of three or less correlated tests. To our knowledge there 

is no literature discussing a Bayesian solution to this problem, even for identifiable 

cases. In the next chapter we describe the first of the two methods proposed in this 

thesis for modeling the conditional dependence between two imperfect tests. 



In the preceding chapters we have seen that the assumption of conditional indepen- 

dence between diagnostic tests is often made to simplify the statistical analysis of 

test results, even though it may be of questionable validity. We have also seen that 

frequentist approaches which address this problem would require a minimum of four 

tests to estimate all parameters without imposing unrealistic constraints on the pa- 

rameter values. In this chapter we present the first approach developed in this thesis 

for modeling the conditional dependence between tests. We begin with a look at the 

effect of correlation on test results and how this can be modeled. The next section 

describes the implementation of a Bayesian fixed effects model to estimate the preva- 

lence and diagnostic test parameters of two tests, while adjusting for the correlation 

between them. This is followed by a simulated example to illustrate the method. We 

will apply this method to real data in Chapter 6. 

4.1 Modeling the correlation between a pair of tests 

To demonstrate the effect on test results when tests are correlated, we use an example 

involving two hypothetical tests TI and T2. In the extreme situation when these tests 

are perfectly positively correlated i . e .  when they have a correlation of +l, their 

combined results would appear as in Table 4.1. Since two perfectly correlated tests 



Table 4.1: Results from two testa with a correlation of +l. 

would give the same result for every subject, the two cells where the test results are 

in conflict have a frequency of Nlo = Nol = 0. In this case the second test adds no 

information once the results of the first test are known. 

Of course, it would be unlikely to encounter such an extreme correlation in practice. 

Nevertheless, this example serves to illustrate that when two tests are positively 

correlated, there is a greater tendency for their results to agree. The frequencies of 

the (Ti = ll T2 = 1) and (TI = 1, Tz = 0) cells are increased, and the frequencies 

of the (TI = 1, T2 = 0) and (Tl = 0, T2 = 1) cells are decreased compared to the 

case of conditionally independent tests. Therefore, while modeling this situation, an 

increased probability must be assigned to the diagonal cells at the expense of the 

off-diagonal cells 

The conditional dependence between two tests can be measured using the covari- 

ance or correlation between the two tests within each disease class. This 'conditional 

covariance' can be expressed in terms of the sensitivities and specificities of the two 

tests involved. Let and Te be two tests such that: 

1 if the test is positive, 

0 otherwise, 

and 

Tg={ 
1 if the test is positive, 

0 otherwise. 

Using the notation first presented in Chapter 1, the covariance between the tests 



among the diseased subjects, denoted here by cmp, can be derived as follows (Vacek, 

1985): 

Similarly among the non-diseased subjects 

covn = cou(Tl,T21D = 0) = E(TlT21D = 0) - E(TIID = 0)E(T21D = O), 

= P(Tl = 0, Tp = OID = 0) - CICP 

Equation (4.1) can be re-written as 

P(Tl = l ,Te = 1(D = 1) = Sl Sz + COUP, 

= S1s2, when covp = 0. (4.2) 

Therefore, the probability of observing (TI = 1, T2 = 1) when two tests are correlated, 

is increased by a factor of coup as compared to the case when the tests are conditionally 

independent. Similarly, 

so that the probability of o b s e ~ n g  (TI = 1, Tz = 0) when two tests are correlated 

is covp less than in the case when the tests are conditionally independent. The 



probabilities of observing the remaining combinations of test results are 

P(T1 =0,T2 = 1ID = 1 )  = (1 - S1)S2 - C O V ~ ,  

p(T1 =0,T2 =OID = 1 )  = ( 1  - S l ) ( l  - S2) + C O V ~ ,  

P(T1 = 1,  TL = 1ID = 0)  = ( 1  - C 1 ) ( l  - Cs) + covn, 

P(T1 = 1 ,  Tr = O(D = 0) = (1 - C1)Cg - cwn, 

P(T, =0,T2 = llD = O )  = C l ( l  -Cg) -COVTZ, 

P(Tl = 0, Ta = OID = 0) = CICs + covn. 

In the remainder of the thesis, we take covp and covn to be positive as this is the case 

that arises most frequently in practice. Analogous results to those presented above 

can be derived for negative correlations. 

From the above equations we see that a constant covariance between a pair of tests 

causes the probability of each combination of test results to be altered by a fixed value. 

This suggests that the dependence between a pair of tests could be modeled as a fixed 

effect due to their covariance on their combined results. As discussed in the previous 

chapter, in order to obtain an identifiable solution using this model we require that 

there be at least as many degrees of freedom as the number of unknown parameters. 

number of unknown parameters 5 number of degrees of freedom, 

* (2 x p)  + (2 x + 1 5 ZP - 1, 
= + p 1 5 .  

Hence a minimum of 5 tests would be required to obtain a solution for this model 

using a frequentist approach. 

To address the problem of non-identifiability when we have less than 5 tests, we 

propose to extend the Bayesian approach used by Joseph et al., 1995, in the case 

when tests are conditionally independent. A problem with using the covariance to 

model conditional dependence is that, since it is defined only for pairs of tests it is 



not possible to model the simultaneous dependence between three or more tests. The 

Bayesian method developed in the following section pertains to the situation when 

there are only two tests, although it could be extended to situations when there are 

more than two tests and there is a dependence between different pairs of tests. For 

a discussion of the effect of conditional dependence between pairs of tests, in the 

situation when there are three or four tests, on the estimates of the prevalence and 

test parameters see Torrance-Rynard and Walter, 1997. 

4.2 A Bayesian fixed effects model 

As outlined in Figure 1.2, the parameters of interest in the general situation, when 

the conditional dependence between tests is taken into account, are the prevalence, 

sensitivities and specificities of the tests and the covariances between them. As in 

the case of the method developed by Joseph et al., 1995, discussed in the previous 

chapter, by assigning suitable prior distributions to these parameters, we can do away 

with the need for 5 tests and still be able to obtain a solution for all unknown param- 

eters simultaneously. The parameters of the prior distributions can be determined in 

consultation with the literature, be based on expert opinion, or some combination of 

these sources. This is an important step, since under non-identifiability, the influence 

of the prior distributions is considerable even as the sample size increases. 

4.2.1 Notation 

Let us assume we have results from two dichotomous tests TI and T2. We will use 

the same notation for the prevalence, sensitivities, specificities and covariance as  

introduced in the first chapter. The number of subjects who fall into the cross- 

classification (TI = i, T2 = j )  is denoted by Nii , i, j = 0 , l  and the total number of 

subjects in the study is denoted by N. The true number of diseased subjects for each 



Table 4.2: Cross-classification of observed and latent data from two tests. 

combination of test results will be denoted by &, , , j = 0 1 The Kj1s are latent 

values which are not observed. The observed and latent data can be summarized as 

in Table 4.2. 

4.2.2 The model 

Using equations (4.2), (4.3) and (4.4), we can write the likelihood function of the 

observed and latent data in the spirit of equation (3.4) as 

L ( r (S1  Sg + C O V ~ ) ) ~ " ( I ( S ~  (1 - Se) - cmp))"' 

x ( ~ ( ( 1  - Sf )Se - cmp))YO1 ( ~ ( ( 1 -  Sl ) (1 - Sm) + coup)) 

x ((1 - T )  ((1 - CI)(l - Cs) + coun)) N ~ l - Y 1 l  

x ((1 - n) ((1 - Cl )Cr - covn)) N~o-Y1o 

x ((1 - n)(CI (1 - Ca) - catn))Nol-Yor ((1 - r ) (CIC2  + ~ w n ) ) ~ ~ ~ - ~ ~ ~ .  

(4.5) 

As described earlier in Chapter 2, perhaps the most important practical aspect of 

developing a Bayesian solution for a non-identifiable problem is the proper elicitation 

of prior distributions for the model parameters. As explained there, we will use prior 

distributions that are members of standard distributional families, whose parameters 

are fixed such that they reflect the experimenter's beliefs prior to observing any 

data. The forms of the prior densities that we used for each parameter of interest 



C1 C2 + covn c2 1 
Total 1 - Cl CI 1 U 

Table 4.3: Probabilities of obtaining each possible combination of test results among the non-diseased 
subjects. 

are described below. The choice of these functions is not unique and they may be 

replaced by other suitable densities. 

1. The prevalence is assumed to follow a beta prior distribution with parameters 

a, and P,, i. e. T - Beta(a,, P,). The Beta distribution is chosen since it is 

defined over the entire range of possible values, (0, I), of the prevalence. It is 

a versatile distribution and can be set to be diffuse, symmetric or skewed by a 

suitable choice of parameter values. Further, since the Beta prior distribution 

is conjugate to the Binomial likelihood (see Section 2.1.2, we will see that it 

simplifies the calculation of the full conditional density for r when using the 

Gibbs sampler. 

2. The sensitivities and specificities are also assumed to have Beta prior densities 

such that Sj N Beta(aq , P S I )  , j = 1,2 and Cj - Beta(ac,, Pc,) , j = 1,2. 

Again, the range of these distributions match those for Sj and Cj. 

3. The feasible range of the covariance is determined by the sensitivities among 

the diseased subjects and the specificities among the non-diseased subjects. 

This can be verified from Table 4.3, which depicts the situation among the 

non-diseased subjects. Clearly, 

Cl Cr + covn 5 min(Cl, C2), 



where mzn(a, b) is the minimum of a and b. Similarly, 

Cp - (C1C2 +cwn) 5 1 - C1 

* c o m  2 Cl +Cp - CJCe - 1 

= (CJ - 1)(1 - c8). (4*6) 

However, as mentioned in the previous section, we me only interested in the 

situation when the two tests are positively correlated, requiring that the lower 

bound of covn is 0. Since the expression in equation (4.6) is always uegative, 

the lower hound of cmm was fixed at 0. Therefore the upper and lower bounds 

for covn are given by 

o 5 covn 5 min(Cl,Cz) - CIC2. (47)  

Analogously, the bounds for covp are 

0 5 covp 5 rnin(S1, Sz) - SI Ss. 

The generalized Beta distribution is suitable for the covariance parameters, 

since it can be defined over a range determined by their lower and upper bounds. 

A variable is said to have a generalized Beta(&, 13) distribution when its density 

function is of the following form (Johnson et al., 1994): 

This distribution has the same properties as the Beta distribution in that it is 

flexible and can take on various shapes by an appropriate selection of (a, P) .  The 

notation for the prior distribution parameters of the covariances is as follows: 



4.2.3 The Gibbs sampler algorithm 

When the likelihood function in equation (4.5) is combined with the above prior 

distributions, we obtain the following expression for the joint posterior distribution 

of the parameters: 

Due to the complexity of this expression, it is not possible to obtain the marginal 

distribution for the parameters analytically. Since we are interested in the marginal 

posterior densities of ali parameters, we can use a Gibbs sampler algorithm as outlined 

in the following three steps: 

1. Arbitrary starting values are chosen for each parameter as follows: 



At each iteration of the Gibbs sampler, a single value is sampled in turn from the 

full conditional distribution of each parameter. The full conditional distribution 

is obtained by selecting the terms containing the parameter of interest, from the 

product of the likelihood and the prior densities, and normalizing this function. 

For our problem, the full conditional distributions are given below. Note that 

while in theory we are conditioning on all parameters except the one whose 

distribution is being derived, in practice some parameters do not appear in all 

equations because of simplifications that arise. 

The full conditional distribution of the prevalence, n, given the other variables 

and latent data is 

Therefore, at each iteration of the Gibbs sampler a single value of r is sampled 

from the Beta distribution in equation (4.9). The full conditional distributions 

for the other variables, namely the sensitivities, specificities and the covariance 

parameters were not of any standard form, so a SIR algorithm (see Chapter 2) 

was used to sample from these distributions. The full conditional distributions 

of the sensitivities are given (up to a constant of integration) by 



The full conditional distributions of the specificities are similarly given by 

p(Cj ICJ-~, cmn, Y.1, YIO, Yo1 3 YOO) 

a ( ( I  - n) ( ( l  - C l ) ( l  - Co) + cmn)) N ~ l - Y ~ l  

x ((1 - *) ((1 - C1 )C2 - C O V ~ ) )  N1o - Y ~ o  

x ( ( 1  - 7r)(Cl (1 - C2) - ~ m n ) ) ~ o ' - ~ o '  

x ( ( 1  - 7r)(C1CO + C O Z ~ ~ ) ) ~ ~ ~ - ~ ~ ~  

x cJ?c~-l - cj )b  -I, where j=1,2. 

The full conditional distributions for the covariances are given by 

where 1, = 0 and y = min(Sl, So) - S1 Ssl and, 



4: FIXED EFFECTS MODEL 

where 1, = 0 and un = min(C1 , C2) - Cl C2. 

The latent variables X j  have Binomial full conditional distributions as follows: 

where p l l  = sr + C ~ P )  

*(Sl SL + c a p )  + (1 - *) ((1 - Cl )(I - C2) + covn) ' 

where pol = ~((1 - s1 IS2 - CWP) 
r((1- S1)S2 - covp) + (1 - s)(C1 (1 - C2) - covn) ' 

3. Step 2 is repeated a large number of times to obtain a sufficiently large sample 

from the full conditional distribution of each parameter. The resulting samples 

are approximate random samples from the marginal posterior density of each 

parameter, as discussed in Chapter 2. 

In the following section we illustrate the application of this Gibbs sampler algorithm 

to a problem involving simulated data. 



Table 4.4: 'True' prevalence and test parameters. 

cmn 

4.3 A simulated example 

0.05 1 

In order to illustrate the performance of the Bayesian fixed effects method developed 

in the previous section, we simulated a hypothetical problem involving the results of 

two tests, neither of which was a gold standard. The parameters of the two tests were 

set up such that they had complementary characteristics i .e .  the sensitivity of one 

test was very poor but it had a high specificity, while the other test had a reasonably 

high sensitivity but a worse specificity than the first test. Thus, it may be expected 

that the combined result of the two tests will provide more accurate results than 

either test alone. 

4.3.1 Simulating the 'observed ' data 

The true values of the prevalence and test parameters were set to be as in Table 

4.4. The tests were designed to be conditionally dependent both among the diseased 

and non-diseased subjects. The range of the covariance among the diseased and non- 

diseased subjects is, of course, limited by the values of the sensitivities and specificities 



Test 1 

Positive I Negative ' 

I Negative 1 5 1 62 1 67 1) 

Total 11 
Test2 

Table 4.5: Simulated cross-classification of results from two correlated tests. 

t t 

Positive 

Total 

as defined in equations (4.7) and (4.8), so that 

0 5 coup 5 rnin(Sl, S2) - Sf Se 

= min(0.5,O.B) - (0.5)(0.8) = 0.1, 

and, 0 5 covp 5 rnin(CI, Cp) - Cl CP , 

= min(O.9,0.70) - (0.9)(0.70) = 0.07. 

133 73 

- - 78 

For this example we set covp = 0.07 and covn = 0.05, which lie within these admissible 

ranges. 

60 

The test results were generated by calculating the expected frequency of each cross- 

classification based on the equations (4.2), (4.3) and (4.4), using the values in Table 

4.4. The 'observed' data would then appear as in Table 4.5. The S-plus program 

used to obtain these results is listed in the Appendix. If the tests were conditionally 

independent, 2 .  e. the covariance between them was 0 in each disease category, we 

would observe the test results presented in Table 4.6. Note that the frequency of the 

Noo and NII cells is less than in the correlated case, while the margins remain fixed. 

122 200 



Test 1 

IITest2I Positive 1 60 1 73 1 133 (1 
" Positive / Negative Total ) /  

11 1 Total 1 78 1 122 ( 200 (1  
Negative 

t , 

Table 4.6: Simulated cross-classification of results from two independent tests. 

4.3.2 Determining the parameters of the prior distributions 

18 

The prior means and 95% prior probability intervals of the test parameters, or in 

other words, the marginal prior information was set to be as in Table 4.7. Here and 

elsewhere, the abbreviation PI stands for probability interval. The corresponding 

Beta distribution parameters for the sensitivities and specificities were obtained by 

first determining the ratio of ct : P by solving the equation 5 = Mean, and then 

finding the Beta distribution whose 95% probability interval matches that given in 

Table 4.7. For the two covariance parameters we used the same procedure, replacing 

the expression for the mean by & x ( l  -u )  + U, where 1 and u are the lower and upper 

bounds of the covariances given in Table 4.7, and then finding the Generalized Beta 

distribution whose 95% probability interval matches these values. 

4.3.3 Results 

49 

We tried to see if we could recapture the true prevalence when using a non-informative 

prior distribution over the prevalence along with the informative priors for the test 

parameters described above. This situation could arise, for instance, when two com- 

mon tests are used to assess the prevalence of a disease in a population in which 

the disease distribution is unknown. The C++ program used to carry out the Gibbs 

sampler is listed in Appendix 8.1.2. This program takes about 2 minutes to complete 

67 
I 

n 



1 Parameter I Mean 1 95% PI I a I /3 I 

Table 4.7: Prior means and 95% prior probability intentah of the test parameters and corresponding 
Beta distribution parameters for the two hypothetical tests. 

20,000 iterations of the Gibbs sampler on a Pentium class computer. The posterior 

medians and 95% posterior probability intervals of the prevalence and test parameters 

thus obtained are listed in Table 4.8. The corresponding results using the Bayesian 

conditional independence model are presented in Table 4.9. 

Figure 4.1 is a plot of the non-informative prior and the two posterior distribu- 

tions which would be obtained when using the Bayesian fixed effects model and the 

Bayesian conditional independence model. We find that the prevalence would be un- 

derestimated if the correlation between the two tests was ignored. Figure 4.2 is a plot 

of the prior and the two posterior distributions for the sensitivity of the first test, 

obtained when using the Bayesian fixed effects model and the Bayesian conditional 

independence model respectively. Ignoring the correlation would result in an overes- 

timate of the sensitivity. This is to be expected, since obtaining the results in Table 

4.5 when using two independent tests would require higher values of the sensitivities 

and specificities For both tests. The same effect was observed on the remaining test 

parameters. 

The CODA software package was used to obtain diagnostic statistics for the Gibbs 

sampler. The value of Gelman and Rubin's R statistic for each parameter was found 



1 Variable I Median I 95% PI (I 

11 pvpl / 0.9291 1 0.8435 - 0.9794 11 

Table 4.8: Posterior medians and 95% posterior probability intervals of the prevalence and test 
parameters obtained using the fixed effects model. 

-- -- 11 Variable ( Median 1 95% PI 

(1 pvpl 1 0.8892 1 0.8128 - 0.9427 

Table 4.9: Posterior medians and 95% posterior probabiity intervals of the prevalence and test 
parameters obtained using the conditional independence model. 
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Figure 4.1: Prior distribution of R overlaid by posterior distributions obtained using the fixed effects 
and conditional independence models. 

to be close to one as shown in Table 4.10. Figure 4.3 shows the overlaid trace plots 

for the prevalence obtained from five different runs of the Gibbs sampler for the 

fixed effects model are indistinguishable after about 100 iterations, corroborating the 

evidence from the R statistic that the sequences have converged. Only the first 500 

iterations are included here for clarity. Similar plots were obtained for the remaining 

parameters. 

Raftery and Lewis' method was used to determine the minimum number of itera- 

tions required to estimate the 0.025 quantile with 95% probability with an accuracy 

of +/- 0.005. The results are presented in Table 4.11. The value of the Nm,, statistic 



Iterations used for diagnostic = 2450:4899 

Thinning interval = 1 

Sample size per chain = 1899 

Variable . 
prev 

-- - .. 

Table 4.10: Gelman and Rubin 50% and 97.5% shrink factors. 

covn 

COVP 

Point est. of R 

1.01 

-- - 

97.5% quantile 

1.02 

1 .oo 
1.00 

1 *OO 

1 .OO 



Figure 4.2: Prior distribution of Sl overlaid by posterior distributions obtained using the fixed effects 
and conditional independence models. 

was fairly high for some of the parameters resulting in a dependency factor greater 

than 1. This suggests a high correlation between successive iterations long after the 

sequence has converged. This is not surprising since in our non-identifiable prob- 

lem the values of certain parameters are largely determined by the values of other 

parameters, and vice versa, thereby producing autocorrelations. This can be best 

seen by looking at the full conditional distributions of Section 4.2.3. While a high 

degree of autocorrelation suggests that the chain moves slowly through the range of 

the parameter, the accuracy of the parameter estimates becomes sufficiently high if 

a large enough number of iterations are run. Nevertheless, careful attention to Gibh  



0 100 200 300 400 500 

Iteration Number 

Figure 4.3: Overlaid trace plots of the prevalence from 5 different chains of the Gibbs sampler. 

sampler diagnostics is required whenever this method is used. 

4.4 Summary 

In this chapter we have demonstrated that a Bayesian approach can be used to obtain 

a solution for the non-identifiable problem that arises when we have two conditionally 

dependent tests in the absence of a gold-standard. This fuced effects model further 

has the advantage that cross-classification probabilities are modeled in terms of test 

parameters and the covariance, allowing for a simple interpretation of the effect of 

conditional dependence on test results. The most challenging aspect of using this 



11 Sample size per chain = 4899 

1 

Quantile = 0.025 

Accuracy = +/- 0.005 

Probability = 0.95 

Iterations used = 101:4999 

Thinning interval = 1 

Total Lower bound 

(N) (Nmin) 

Dependence factor 

(1) 

Variable Thin Burn-in 

prev 

sens 1 

spec1 

16 

covp 1 2 L 
Table 4.1 1: Raftery and Lewis convergence diagnostic. 



method is to determine prior distributions which accurately represent the available 

information on the prevalence and the test parameters. This method is easy to 

implement using computational techniques such as a Gibbs sampler and a SIR. While 

our simulation showed the method to work well, we chose prior densities for four of 

the parameters which, while relatively wide, were centered on the 'true' values. Other 

prior distributions, of course, may not work as well, and in practice we will never be 

certain that our prior distribution 'covers' the true parameter values. In this sense, 

the methodology developed here may be viewed as a 'mapping' from a given set 

of prior distributions to the concsponding set of posterior distributions. Therefore, 

the posterior density can always be interpreted as a coherent updating of the prior 

distribution upon seeing the data, but any extrapolation to the 'truth' involves a 

leap of faith. A possible drawback of this method is its limitation to modeling the 

dependence between pairs of tests only. The next chapter presents a method free of 

this restriction. 



In this chapter, we present an approach to modeling the conditional dependence be- 

tween multiple tests using random effects. The sensitivities and specificities of the 

tests are modeled as functions of a latent, subject-specific random variable. Apply- 

ing the same latent value within each patient across all tests induces a dependence 

between the tests, without explicit reference to a covariance parameter. The chapter 

commences with some examples of such subject-specific variables. This is followed 

by the description of a Bayesian random effects approach to modeling this situation. 

The next section is devoted to a simulated example used to illustrate this method, 

and the last section summarizes our findings. The model is applied to real data in 

Chapter 6, where we compare the results to a fixed effects model. 

5.1 Background 

In the classical diagnostic testing model, the sensitivity and specificity of a test are 

usually assumed to remain constant over all individuals to whom the test is applied. 

In practice however, test performance often varies between subjects for a variety of 

reasons. The source of this variation could be due to random or systematic errors of 

the kind discussed in Section 1.1. However, apart from factors related to the test or its 

laboratory analysis, there is often one or more covariates inherent to the subject that 



accounts for this disparity. Three typical situations where this occurs are described 

below: 

Fecal Occult Blood Test: This test, which is commonly used to screen for col- 

orectal cancer, diagnoses a patient as positive when it detects traces of blood 

in the patient's stool. This is because malignant polyps are known to bleed 

intermittently, causing traces of blood to be present in the stool. As a corollary, 

a fecal occult blood test cannot detect polyps that do not bleed. Therefore, 

the bleeding biology of cohrectal caucer ulti~nately determines the upper limit 

of screening efficacy when using this test. In subjects who have 'small' polyps, 

however, the test has a very poor sensitivity since smaller polyps do not bleed 

at all in certain subjects, for a reason not yet determined by medical research 

(Ransohoff and Lang, 1997). 

Stool Examination: In a stool examination for an infectious or parasitic disease, 

a positive test means that the parasite of interest was directly observed under 

a microscope to be in the subject's stool specimen. The sensitivity of such a 

test is thus dependent on the ease of detecting the parasite in the stool. In 

a severely diseased case there is a larger concentration of parasites, making it 

easier to detect, and resulting in a more sensitive test. By the same token, the 

test has high specificity among subjects who are disease free since the absence 

of the parasite increases the likelihood of a negative test. Nevertheless a false 

positive test usually occurs when a different parasite is wrongly identified as 

the one of interest, so that subjects carrying other parasites have decreased 

specificity. 

3. Diagnosis of group A streptococcal infection: A common problem faced by doc- 

tors in primary care is treating a sore throat. If the sore throat is diagnosed 

to be due to streptococcal infection the patient should be given antibiotics, but 

not if it is diagnosed to be due to a viral infection. While it is possible to find 



this information using laboratory tests which take over 24 hours, the physician 

may want to prescribe the course of treatment immediately. To address this 

problem several predictor variables for streptococcal infection have been iden- 

tified such as fever, no cough, and tonsillar swelling. However, the validity of 

these markers varies with age. An accurate scoring system therefore assigns a 

point for the presence of each of these symptoms/signs but modifies the score 

based on age (eg., 1 extra point for 3-14 year olds, 0 for 15-44 year olds, and -1 

for age 2 45 years, McIsaac et al., 1998). 

In the first example, the 'covariate' which determines whether or not the polyp bleeds 

is unknown and hence cannot be measured. The second example illustrates the type 

of covariate that most typically affects test performance. Subjects whose stool sample 

has a larger concentration of parasites, i .e .  those with a more severe case of infection, 

are more likely to be detected. This is because the observed value of the separator 

variable has a much greater likelihood of satisfying the positivity criterion. The 

covariate of interest could be termed 'severity of illness', but it cannot be easily 

quantified, and is usually unknown at the time that the test must be interpreted. 

Finally, in the third example, the covariate is clearly defined and can also be measured. 

The general situation, encompassing all three of the above cases, can be conceptu- 

alized as one where the performance of a subject on a test is a function of a continuous 

random variable, which we will term the 'intensity'. This 'intensity' can be thought 

of as a summary measure of the severity of illness / ease of detection dong with any 

other covariates which affect a subject's performame on a test. The sensitivity and 

specificity of a test for each subject are functions of this underlying intensity, of the 

form f (I), where f is a continuous, monotonically increasing function taking values 

between 0 and 1. The higher the intensity of a subject, the greater the value of the 

sensitivity and the specificity of every test for that subject. 



In the situation when we have two correlated tests, illustrated in Section 4.1, 

subjects who have a higher 'intensity' will tend to be correctly detected by both tests 

and will therefore fall into the (TI = 1, T2 = 1) or (TI = 0, T2 = 0) cells where 

the tests are in agreement. Conversely, subjects who fall into the (TI = 1, T2 = 0) 

or (TI = 0, T2 = 1) cells, where test results are not consistent, tend to have a lower 

intensity. Thus a dependence is induced between tests via the test parameters without 

explicitly using a parameter for the covariance. The range of values, as well as the 

'meaning' of the intensity may be different among the diseased and non-diseased 

subjects. in Example 2 above, it m y  be that 'intensity' indeed nleltsures severity of 

disease among diseased subjects, but among non-diseased subjects higher intensity 

may correspond to an absence of other parasites that could lead to a false-positive 

diagnosis. 

A possible approach to represent the above situation is by way of a random effects 

model since I is usually latent. While it is unknown what distribution the values 

of I take, in the Bayesian random effects model described below I is taken to be a 

random variable following a N (p ,  02) distribution. Without loss of generality we will 

use a N ( 0 , l )  distribution. Densities other than the Normal could be used, although 

we do not investigate them here. 

5.2 A Bayesian random effects model 

In this section we propose a Bayesian solution to the 'Two Latent Class Random 

Effects (2LCR) Model' discussed in the paper by Qu et al., 1996 which was described 

earlier in Section 3.3.4. The main advantage of this model over the earlier approach, 

is that it provides a solution even in the situation when we have a non-identifiable 

model, i .e .  when the number of tests is less than 4 or 5. By placing a prior distribution 

over all unknown parameters, it is possible to obtain a joint posterior distribution over 



these same parameters, even though the problem is non-identifiable. 

5.2.1 Notation 

We consider the general scenario with p tests and N subjects. The test result for 

the kth subject on the j th  test is denoted by tjk = 1 or 0 for a positive or a negative 

result, respectively. The vector of results for the kth subject on each of the p tests is 

denoted by tk = ( t  . . . , t p k )  The true disease status of the kth subject is denoted 

by D = dk dl. = I), 1. The 'intensity' of the kth subject is denoted by ik. 

5.2.2 The model 

As defined earlier, the probability that the kth subject has a positive result on the j th 

test is given by 

where @ represents the cumuiative distribution function of the N(0,l) distribution 

and (ajd, bjd) ,  j = 1 , .  . . , p ,  d = 0 , l  are real, unknown parameters. It follows that 

the probability that the kth subject has a negative result on the jth test is given by 

The disease status D and the latent variable I are assumed to be independent of 

each other. The mean sensitivity of the j th  test over all subjects is then given by 

integrating the expression for the sensitivity of the kth subject with respect to I, as 

follows: 



= [? Q(z)d@(z) (using a tanw1(*) anticlockwise rotation) 

Similarly, the specificity of the jth test is given by 

ajo = @(-- ) using the result 0(-x) = 1 - @(I). 
I + $  

The sensitivity and specificity of each individual subject can be thought of as being 

shifted from the mean by an amount determined by the magnitude of the subject's 

'intensity' it. 

The results of different tests are taken to be independent of each other conditional 

on the disease status D and the latent variable I. This means that within each 

disease class the  test results are independent of each other conditional on the variable 

I. Therefore the  likelihood for the kth subject given ik is 

where @ is the vector of parameters to be estimated, so that $ = (r, (ajd, bjd)  j = 

1 ,  . . . , p, d = 0, l ) .  The 'complete' likelihood for the kth subject, given the latent data 

ik and 4, is given by 



Clearly, the case when bjd = 0, j = 1,. . . , p, d = 0 , l  corresponds to the Bayesian con- 

ditional independence model. It follows that the likelihood function of the observed 

and latent data for all subjects is given by 

Let p(0)  denote the prior distribution of a parameter 0. The expression for the joint 

posterior distribution of II, is obtained by multiplying the likelihood above by the 

prior distribution for each parameter as follows: 

As explained in Chapter 2, the elicitation of the parameters for the prior distributions 

is perhaps the most important step in implementing this method. These parameters 

are obtained in consultation with results from earlier studies and expert opinion. 

We provide an example of this in Chapter 6. When the prior information can be 

expressed using the prior densities given below, the expressions for the full conditional 

distribution of each parameter, which will be used in the Gibbs sampler algorithm, 

are simplified. 



1. -4 Beta(&, , ,Ox) prior distribution can be used for the prevalence, T ,  since it is 

conjugate to the binomial distribution. This distribution can take on a variety 

of shapes over the range (0 , l )  by appropriate adjustment of the parameters 

(an, Pn) .  

2. A bivaxiate normal prior distribution, Nz( ( ;: ) ~ J D  1, over the 

parameter pairs (ajd, bjd)  can be used. The vector (1:; ) denotes the bivariate 

mean and C J D  is the 2 x 2 covariance matrix. 

This prior distribution also facilitates sampling from the full conditional distri- 

bution using a method developed by Albert and Chib, 1993, which is described 

in the Appendix. 

5.2.3 Implementing the Gibbs sampler 

Assuming the joint prior distribution is the product of the individual densities dis- 

cussed above, the product of the likelihood function in equation (5.2) and the joint 

prior distribution is: 

where d@(ajd, bjd)  is the bivariate normal density 



with 5 = ( z  ) and .% = (11; ) . 
As in the case of the fixed effects model, we use a Gibbs sampler algorithm to sample 

from the full conditional distributions of the parameters in @ as follows: 

1. Assign random starting values to each of the parameters and latent variables. 

Possible starting values are, for example, 

(1) d r = d ,  , k = l ,  ..., N ,  

such that d(:) = 0 or 1, 

ik = iy, k = 1, . . . , N ,  

such that if) - N(0,l) r 

When running a Gibbs sampler, however, it is usual to run it several times with 

different starting values that are overdispersed with respect to the range of the 

expected posterior densities, in order to verify convergence. 

2. Draw a single value from the full conditional distribution of each parameter, i .e .  

the distribution of each parameter conditional on the most recently updated 

values of the other parameters. This distribution is obtained by isolating from 

the product of the likelihood and the prior, the product of the terms which 

contain the parameter of interest, and normalizing it, whenever possible. If 

normalization is difficult, a SIR or other algorithm may be used as needed. 



(a) For the prevalence, the full conditional distribution is given by 

Thus at each iteration r is set equal to a random value drawn from 

(b) The full conditional distribution for each dk is given by 

where 

P 
and Q = r n @(ajl + bj l  ik)'lk (1 - 8(aj1 + b j l  ik)) ( 1 - t J k )  

j=1 

P 

+(1 - *) n #(ajo + bj&)'l-t~k'(l - #(ajo + bjoik))''k a 

j = l  

Thus, at every iteration we draw a value for each dk,  k = 1.. . . , N from a 

Bernoulli(pk), k = 1. . . . , N distribution. 

(c) The full conditional distribution for each ( a j l ,  b j l )  is given by 



Similarly, the full conditional distribution for each (ajo, bjo) is given by 

The full conditional distributions for the (ajd, bid) pairs are not of a stan- 

dard distributional form but they can be sampled from using approximate 

methods like a SIR algorithm (described in section 2.4.1). Albert and 

Chib, 1993 have developed a method which is of particular interest in 

these situations which is described the Appendix. We used this method 

here. Metropolis sampling (Hastings, 1970) could also be used. 

(d) The full conditional distribution of the intensity, of the kth subject, ik, k = 

1,. . . , N, is given by 

Since equation (5.8) is not reducible to the form of any standard density 

function the ik values are sampled a t  each iteration using a SIR algorithm. 

3. Step two is repeated many times to obtain a sufficiently large sample from 

the full conditional distribution of each parameter. The resulting samples are 

approximate random samples from the marginal posterior densities of each pa- 

rameter. 

The next section applies this method to a simulated data set. 



5.3 A simulated example 

5.3.1 Simulating the 'observed ' data 

As in the case of the fixed effects model, we used simulated results from two hypo- 

t het ical, non-gold standard tests to examine whether adjusting for the conditional 

dependence between the two tests, by way of the random effects model, affects the in- 

ference about the prevalence and test parameters. The 'true' values of the prevalence 

and test parameters dong with the corresponding values of the (aja, bid) parameters 

for the sensitivities and specificities are listed in Table 5.1. Even though there is no 

explicit parameter for the covariance, the value of the (ajd,  b jd)  pairs was determined 

such that the tests are conditionally dependent, as will be explained later in this 

section. It must be noted that the parameters S1, S2, Cl and C2 do not have their 

usual meanings, since the test properties are different for each subject depending on 

ik. Therefore, the values in Table 5.1 represent mean values averaged over a11 possible 

ik - N(0,l) .  AS was explained in Chapter 4, the range of values for the covariances is 

determined by equation (4.7). As in the previous chapter we set the two covariances 

to be covp = 0.07 and covn = 0.05. 

The probability of falling into each possible cross-classification (TI = i, T2 = 

j )  i, j = 0,1 for each of the N = 200 subjects is calculated using equation (5.1). 

The overall 'observed' cross-classification is obtained by summing the probabilities 

for each classification over all subjects. For example, the number of subjects in the 

cell (TI = 1, T2 = 1) is given by 

Number of subjects in cross-classification (TI = 1, Tz = I) ,  



Table 5.1: " h e '  prevalence and test parameters with corresponding (ajd, b j d )  values. 

Parameter 

7r 

I Test 1 I 

True  due 

0.73 

I Negative 1 5 1 62 1 67 

a j d  I bid 

Test2 I Positive 

I I I Total 1 80 1 120 I 2 0 0  

Table 5.2: Simulated cross-classification of results from two correlated tests. 

Positive 

75 

where the I = ik values for each subject are drawn randomly from a N ( 0 , l )  distribu- 

tion for each subject. The program for implementing this algorithm is listed in the 

Appendix. It is of interest to note that the data set in Table 4.1 which was simulated 

using a fixed effects model can also be observed under the random effects model. 

5.3.2 Determining the parameters of the prior distributions 

Negative 

58 

Once again we assumed that there was no prior information available about the 

prevalence and used a Beta(1,l) prior distribution for it. The prior means and 95% 

prior probability intervals for the test parameters was set to be as in Table 5.3. 

Total 

133 



(1 Parameter I Mean 1 95% PI (1 

Table 5.3: Prior means and 95% prior probability intervals of the test parameten of the two hypo- 
thetical tests. 

Determining the (aJo,  bJD) ,  J = 1,2, D = 0 , l  values is a difficult exercise. Here 

we use the 2LCRl model which is a particular case of the PLCR model when 

bjd = bd, j = 1,2 ,  d = 0, l .  This means that a change in the value of ik will 

cause the sensitivities and specificities of all tests for the kth subject to change by 

the same amount on the probit scale. We use the 2LCRl model in part because the 

available information about the mean values of the test parameters is not sufficient 

to uniquely determine the (aJD,  bJD),  J = 1,2, D = 0 ,1  parameters in the 2LCR 

model using the method described below. This problem does not arise when we have 

more than two tests. However, the restriction of the 2LCR1 model does not sub- 

stantially affect the estimates of the sensitivities and specificities since the effect of 

the bjd parameters on their mean values is small, as will be shown later in this sec- 

tion. Further, this model has the advantage of being easier to interpret since it has 

fewer parameters. One method to elicit the means of the prior distributions of the 

(ajl , b j l ) ,  j = 1,2 parameters in the 2LCRl model fmm knowledge about the mean 

values of the sensitivities in the population, is by solving the following 3 equations 

for (all 9 Ql , b, 1: 



The first two equations relate the information about the mean sensitivities in Table 

5.3 to the expression for the mean sensitivity of each test in terms of the (ajd,  bjd)'s. 

The last equation relates the mean covariance to the expression for the covariance in 

terms of the sensi t ivities. 

These equations can be solved using a bisection algorithm as follows: 

1. Transform the equations (5.9) and (5.10) such that ~ J I  = W1(sJ)dl + b:, J = 

1,2. 

2. Substitute the expressions for a ~ l ,  J = 1 , 2  in terms of bl in equation (5.11) to 

obtain: 

jm fi Q ( Q - ' ( s ~ ) ~  + bl i r )d@(ik)  - 514 = covp 
-00 J=1 

-s1sz - covp = 0 

solution for b,  must satisfy f ( b l )  = 0. We start by fixing the lower ( I )  and 

upper (u) bounds between which the solution must lie. The idea is that if bl 

is truly bounded by I and u then / ( l )  f (u) < 0 since f ( b l )  = 0. A reasonable 

starting value for bl is x = ( I  + u)/2.  If f ( x ) / ( l )  < 0 then the two are of 

opposite signs and the solution must lie between 1 and x, so the upper bound 

is changed to u = x. If on the other hand, f (x) f ( 1 )  > 0 then f takes the same 

sign at both 1 and u and therefore the lower bound is altered to 1 = x. 



4. Step 3 is repeated till f (x) is smaller than a predetermined value c. 

The parameters for the prior distributions of the specificities can be calculated 

similarly. It must be noted that while eliciting the prior distributions for these pa- 

rameters we have considered what is known about their mean values, which axe in 

fact averaged over the individual-specific properties in the population under study. 

The degree to which the properties vary over the population is controlled mostly by 

the bd values. 

The solution to the equations (5.9), (5.10) and (5.11) is (all = 0, a21 = 1.362, bl = 

1.273). To determine the approximate prior standard deviations of all, a21 and bl 

we used contour plots of Sl on the (all, bl ) plane and Sz on the (a21, bl) plane, 

respectively, which were constructed using the following steps: 

1. We first generated sequences of points lying between (mean-1, mean+l) for each 

of the three parameters. Then, a 3-D grid of (all, q l ,  bl) values was created 

using all possible combinations of values from the three sequences. 

2. At each point on this 3-D grid we calculated the values of Sl = 

S2 = @(-$a+) and coup = @(all + br&) @(a21 + bl ik)d@(&) - SlS2. 

3. We then plotted Sl values on a 2-D plot of bl vs. all, S2 vdues on a 2-D plot 

of bl vs. a21 and coup values on both the (all, 61) and (a2l, b l )  planes. 

From Figure 5.1, which is the contour plot of Sl on the (all, bl) plane, we can see 

that as S  ranges from 0.4 to 0.6 (its 95% prior probability interval), all ranges 

approximately from -0.270369 to 0.270369. The standard deviation of all was taken 

to be a quarter of this range namely sd(all) = 0.270369-(-0.2703691 
4 = 0.1351845. The 

range of bl is less obvious, since the same value of bl could correspond to the entire 

range of values of Sl. Therefore we set the standard deviation to a relatively large 



Figure 5.1: Contour plot of S1 on the (all, bl) plane. 

value. We can deduce from this that the value of Sl is mainly determined by al l ,  

while the value of bl has a greater bearing on the value of the covariance between the 

tests. Intuitively, this could have been expected since the covariance enters into the 

model via the 'intensity' ir, which is multiplied by bl. 

The standard deviations of the remaining parameters were deduced similarly. The 

values of the means and standard deviations of the prior distributions of the (aid, bjd)  

parameter pairs are summarized in Table 5.4. In order to validate our method of prior 

elicitation we generated a random sample from the prior distributions of the (ajd ,  bjd) 

pairs using the parameter values in Table 5.4 and calculated the mean sensitivities 



n I Mean I s.D.* 1 I I Mean I s.D.* 1 

* S.D. = Standard Deviation 

Table 5.4: Prior means and standard deviations for parameters determining sensitivity and specificity 
in the random effects model. 

and specificities. The means and 95% probability intervals of these samples were 

found to be close to the corresponding values for the sensitivities and specificities 

presented earlier in Table 5.3. 

5.3.3 Results 

A C++ program, which is listed in the Appendix, was used to implement the Gibbs 

sampler for the random effects model. The values of posterior medians and 95% 

posterior probability intervals thus obtained are listed in Table 5.5. The Gibbs Sam- 

pler takes about one hour to complete 20000 iterations. It is slowed down chiefly by 

the fact that there are several parameter values, such as the individual sensitivities 

and specificities of each subject and their intensities, that need to be calculated and 

stored. The results that would have been obtained had we ignored the conditional 

dependence and used the Bayes conditional independence model are presented in Ta- 

ble 5.6. Figure 5.2 is a plot of the prior distribution of the prevalence overlaid by the 

posterior distributions obtained when the conditional dependence is taken into ac- 

count and when it is ignored. Figure 5.3 is a similar plot for the sensitivity of Test 2. 

Once again we see that the prevalence has been underestimated when the conditional 

dependence is ignored, whereas the sensitivity of Test 2 is overestimated. The same 

is true for the remaining sensitivities and specificities. A representative sample of 

the posterior medians and 95% posterior probability intervals of the intensity for 16 



11 Variable 1 Median 1 95% PI 

Table 5.5: Posterior medians and 95% posterior probability intervals of the prevalence and test 
parameters obtained using the random efkects model. 



Table 5.6: Posterior medians and 95% posterior probability intervals of the prevalence and test 
parameters obtained using the conditional independence model. 

subjects falling into each of the four classifications is presented in Table 5.7. We can 

see a clear distinction in the distribution of the intensity across the four cells with the 

subjects falling in the (TL = 1, T2 = 1) having the highest intensity and those falling 

in the (TI = 0, T2 = 0) having the lowest intensity. 

The overlaid trace plots of the posterior distribution of the prevalence obtained 

from 5 different runs of the Gibbs sampler starting from overdispersed initial values 

are presented in Figure 5.4. We present only the first 500 observations for the sake 

of clarity. Clearly all sequences reach convergence fairly quickly. This is confirmed 

by Gelman and Rubin's statistic for all the parameters which is displayed in Table 

5.9. The high value of Raftery and Lewis' Nmin diagnostic, in Table 5.8, indicates the 

presence of autocorrelation between successive observations. This is to be expected 

since our parameters are intimately related. For example, decreasing the sensitivity 

of a test will result in an increase in the prevalence, since it is presumed that there 

are more false negative subjects and so on. 



Table 5.7: Posterior medians and 95% posterior probability intervals of the marginal posterior 
distributions of a sample of the ik values. 
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Figure 5.2: Prior distribution of a overlaid by posterior distributions obtained using the random 
effects and conditional independence models. 

Summary 

In this chapter we have presented a Bayesian method to model the conditional depen- 

dence between tests by allowing for individual variability in test performance. This 

method accounts for the simultaneous dependence between three or more tests. The 

main advantage of the Bayesian approach is that it provides a solution even in the 

situation when we have non-identifiable parameters due to there being less than 4 or 

5 tests. While no closed-form solution exists, this method can be implemented using 

a G i b b  sampler. With 4 or more tests, the Bayesian approach can still be useful 

if there is good prior information on one or more of the parameters which will lead 



Figure 5.3: Prior distribution of S2 overlaid by posterior distributions obtained using the random 
effects and conditional independence models. 

to narrowed posterior distributions. A minor drawback of this method is that it is 

computationally expensive, since the Gibbs sampler takes almost 10 times as much 

time to complete a given number of iterations compared to the fixed effects model. 

In the next chapter we compare the performance of both the fixed and random 

effects models in adjusting for the conditional dependence between two tests using a 

'real-life' problem. 



Iterations used for diagnostic = 2500:4999 

Thinning interval = 1 

11 Sample size per chain = 4999 
- 

[rv&kble 1 Point est. of R 1 97.5% quantile 

Table 5.8: Gelman and Rubin 50% and 97.5% shrink factors. 



Iterations used = 1:1999 

Thinning interval = 1 

Sample size per chain = 1999 

Quantile = 0.025 

.Accuracy = +/- 0.01 
Probability = 0.95 

Table 5.9: Raftery and Lewis convergence diagnostic. 

L, 

Dependence factor 

(1) 

2.09 

0.993 

1.41 

9.87 

1.3 

2.33 

2.37 

1.08 
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Figure 5.4: Overlaid trace plot's of the prevalence from 5 different chains of the Gibbs sampler. 



In this chapter we apply the methods developed in Chapters 4 and 5 to the Strongy- 

loides infection problem which was introduced in Section 3.2.3. This data set was 

obtained as part of a study conducted among a group of Cambodian refugees in 

Montr6a1, Canada. The purpose of this chapter is to illustrate the practical aspects 

of using the methods described earlier, to account for the conditional dependence 

between two imperfect tests. 

The cross-classification of the results from the stool examination and the serology 

test are repeated in Table 6.1 for convenience. 

I Stool Examination I 11 
+ I - 

I I Total I 40 1 122 1162  I 

Total 11 
11 Serology 

Table 6.1: Results of tests for Strongyloides infection among a group of Cambodian refugees. 

+ 38 87 125 
n 



Table 6.2: 95% Prior probability intervals for sensitivity and specificity of the stool examination and 
the serology test. 

> 

6.1 Elicitation of the prior distributions 

Both the stool examination and serology test are commonly used diagnostic tools 

in infectious disease practice. Since a positive result on the stool examination re- 

quires that the parasite actually be detected in the stool specimen, this test tends 

to underestimate the population prevalence. The serology test, on the other hand, 

is expected to overestimate the prevalence due to cross-reactivity or persistence of 

reactivity following the parasite cure. The lack of gold standard tests for most par- 

asitic infections, however, means that the parameters for these tests are not known . 

with a high accuracy. In consultation with the faculty from the McGill Centre for 

Tropical Disease, Joseph et al., 1995, determined equal tailed 95% prior probability 

intervals for the sensitivities and specificities of the two tests as presented in Table 

6.2. These were determined from information documented in previous studies and 

clinical opinion (Gam et al., 1987, Genta, 1988, Nutman et al., 1987, Genta, 1989, 

Carol1 et al., 1981, Bailey, 1989, Pelletier et al., 1988, Douce et al., 1987). 

Since very little was known a priori about the prevalence of Strongyloides infection 

in a Cambodian population, a diffuse or non-informative prior was used over this 

parameter. 

95% PI 

0.05-0.45 

0.90-1 .OO 

0.65-0.95 

0.35-1.00 

Stool 

Examination 
1. 

Serology 

Test 

For this example, we retain the prior distributions used by Joseph et al., 1995, 

Parameter 

Sensitivity 

Specificity 

Sensitivity 

Specificity 



Table 6.3: Prior distribution parameters for sensitivities and specificities in the fixed effects model. 

and explain in the following two sections how the corresponding prior distribution 

parameters are elicited for the fixed and the random effects models. In doing so, it 

is important to note that the parameters for the sensitivity and specificity given in 

Table 6.2 represent marginal prior information, as the tests are now correlated. In 

addition, the random effects model allows for subject-to-subject variations in the test 

properties, depending on the 'intensity'. In this case, the values given in Table 6.2 

represent marginal prior information for the mean over all subjects in the popula- 

tion. Su bject-specific sensitivities and specificities vary about this mean, as discussed 

below. 

3 

Stool 

Examination 

Serology 

Test 

EJici tation of prior distribution parameters for the fixed effects model 

a 

4.44 

71.25 

21.96 

4.1 

Parameter 

Sensitivity 

Specificity 

Sensitivity 

Specificity 
L 

The parameters for the Beta(a, P )  prior distributions of the sensitivities and speci- 

ficities were determined by solving the two equations which match the center of the 

parameter range to its mean, &, and a quarter of the 95% prior probability interval 

S.D." 

0.10 

0.025 

0.075 

0.1625 

,8 

13.31 

3.75 

5.49 

1.76 

to its standard deviation, ,/A. These two equations determine a and P 

Mean* 

0.25 

0.95 

0.80 

0.70 

uniquely. The (a, ,O) values for the prior distributions of the sensitivities and speci- 

ficities are presented in Table 6.3. Since the prior distribution for the prevalence is 

diffuse the corresponding Beta distribution parameters are (aT = 1, /3, = 1). 



As discussed in Chapter 3, in order to obtain a meaningful solution for a non- 

identifiable problem, we need to have informative prior distributions on at least as 

many parameters as  would need to be constrained in a frequentist approach. For the 

fixed effects model this means we must have informative distributions on at least 

(2 x 2 + 2 x *C2 + 1) - (2* - 1) = 4 parameters. 

In this particular example, we were able to determine informative prior distributions 

for the sensitivities and specificities. Since we did not have exact information about 

the covariance between tests, it was decided to use.diffuse generalized beta prior 

distributions over the two covariance parameters, i . e .  prior distributions which assign 

equal weight to all values in the admissible range of the two covariances as follows: 

covp - GenBeta(1, 1 ) ,  0 5 coup 5 rnin(SI, S2) - Sl Spy 
and, covn - GenBeta(1, l), 0 coun 5 mzn(CI, C2) - CICP. 

A Generalized Beta distribution is simply a standard Beta distribution as discussed 

in Chapter 4, which has been stretched or compressed and then translated to accom- 

modate a wider or a narrower range than (O,1). 

Elicitation of prior distribution parameters for the random effects model 

In the case of the random effects model, we can use the bisection algorithm described 

in Section 5.3.2 to obtain the mean values of the prior distribution parameters for 

the sensitivities and specificities. We denote the Stool Examination as Test 1 and 

the Serology Test as Test 2. Unlike for the fixed effects model, the values for the 

covariances among the diseased and non-diseased subjects must be specified in order 

to uniquely determine the (aJD,  b D ) ,  J = 1,2, D = 0 , l  parameter pairs. The mean 

sensitivities and specificities were taken to be equal to the middle value of their ranges 

in the Table 6.2. Using the expression derived in equation (4.8), and the mean values 



of the sensitivities, we can estimate the range of values in which the mean covariance 

among the diseased subjects lies as 

0 5 covp 5 min(Sl, So) - S I S 2  

= mirb(0.25,0.8) - (0.25)(0.8) = 0.05. (6.1) 

For purposes of estimating the prior densities of all ,  a21 and b l ,  we arbitrarily fixed 

c w p  = 0.025 since this value lies in the middle of the range in equation (6.1). We 

discuss later that this choice has little effect on the final prior parameter values. The 

mean values of the sensitivities from Table 6.2 together with this value of covp were 

used to solve for the mean values of (all, all ,  b l )  as foilows 

The possible range of values for the mean covariance among the non-diseased subjects, 

coun, was determined using the equation (4.7) and the two mean specificities such 

that 

Once again we arbitrarily set covn = 0.0175 which is the mid-point of the range in 

equation (6.3). The mean values of the specificities in Table 6.2 together with this 

value of coon were used to solve the equations involving (alo, azo, bo) as follows: 



It must be stressed that the values we have selected for the covariance parameters are 

by no means unique. In the absence of any information about the covariance between 

the tests, it seems sensible to use the mid-point of the range as the prior mean, so 

that the prior distribution can easily cover the feasible range. Another approach may 

be to first run the fixed effects model and then use the mean values of the posterior 

distributions for the covariance parameters obtained there. 

The solution to the equations in (6.2) is (all = -0.856,azl = 1.068, bl = 0.782). 

To determine the approximate prior standard deviations for all,  a21 and bl we used 

contour plots of Sl on the (all ,  61) plane and S2 on the (anl, bl) plane as illustrated 

in Figures 6.1 and 6.2, respectively. From Figure 6.1, we can see that as S, ranges 

from 0.05 to 0.45 (its 95% prior probability interval), all ranges approximately from 

-2.08 to 0.16. The standard deviation of a l l  was taken to be a quarter of this range 
0.16-(-2.08) namely sd(al 1 ) = 4 = 0.56. The range of bl is less obvious, since the same 

value of bl could correspond to the entire range of values of S1. We can deduce from 

this that the value of Sl is mainly determined by al l ,  while the value of bl has a 

greater bearing on the value of the covariance between the tests. 

Keeping in mind that we have no prior information on cwp, and that its knead 

value was arbitrarily selected, it was thought prudent to use a wide prior distribution 

for bl, ie one with a high standard deviation. Such a prior distribution would assign 

similar probabilities to a sufficiently large range of values of bl corresponding to a wide 

range of values of the covariance. Similar to our comment in our discussion of the 

prior distributions for the fixed effects model, we should be able to attain reasonable 

results here, since we have fairly strong priors on the four aid, j = 1,2, d = 0, l  

parameters. Of course, if in other applications there is better information on bl , this 

will further sharpen the posterior inferences. 



Figure 6.1: Contour plot of S1 on the (all, bl)  plane. 

The range of values of the a21 can similarly be deduced from Figure 6.2 to be 0.48 

to 1.68. Once again we notice that the value of S2 is mainly determined by azl and 

not bl . The standard deviations for (alo, azo, bo) were determined in a similar fashion. 

The values of the means and standard deviations of the prior distributions of 

the (ajd, bid) parameter pairs are summarized in Table 6.4. In order to validate our 

method of prior elicitation we generated a random sample of 1000 observations from 

the prior distributions of the (ajd, bjd) pairs using the parameter values in Table 

6.4 and calculated the mean sensitivities and specificities. The medians and 95% 

probability intentals of these samples, which are presented in Table 6.5, were found 



Figure 6.2: Contour plot of S2 on the (azl, b l )  plane. 

to be very close to the desired values in Table 6.2. Therefore, we conclude that our 

somewhat ad hoc method of determining the prior parameters for this problem has 

worked well. 

6.2 Results 

The results obtained by Joseph et al., 1995, when applying the Bayesian conditional 

independence model to the Strongyloides infection problem are repeated Table 6.6 

to facilitate comparison with the results obtained from the fixed and random effects 

models. 



Mean S.D.' I ( Mean ( S.D.' 11 

* S.D. = Standard Deviation 

Table 6.4: Prior mean and standard deviation for parameters determining sensitivity and specificity 
in the random effects model. 

Stool 

Examination 

Table 6.5: Prior medians and 95% prior probability intervals for sensitivity and specificity of the 
stool examination and the serology test calculated using estimated (ajd, bd) parameters. 

Serology 

Test 

Parameter 

Sensitivity 

Specificity 

Sensitivity 

Specificity 

Median 

0.252 

0.947 

95% PI 

0.046-0.493 

0.802-0.995 

0.766 

0.684 

0.602-0.920 

0.417-0.971 



11 I Median ( 95% PI 11 
I I I Prevalence 1 0.76 1 0.52-0.91 (1 
1 1  Stool I Sensitivity 1 0.31 1 0.22-0.44 11 

Table 6.6: Posterior medians and 95% posterior probability intends of the prevalence and test 
parameters obtained using the conditional independence model. 

Examination 

Serology 

Test 

Results from the fixed effects model 

Using the prior distributions determined in the previous section, we implemented the 

Gibbs sampler for the Bayesian fixed effects model described in Section 4.2.3. The 

posterior medians and 95% posterior probability intervals for the prevalence and test 

parameters thus obtained are presented in Table 6.7. As was noticed in the example 

using simulated data in Chapter 4, the median prevalence obtained using the fixed 

effects model is greater than that obtained using the conditional independence model. 

The 95% posterior probability interval, however, is not very different and does not 

give any clear indication of a shift in the value of the prevalence due to accounting 

for the dependence between tests. 

-- 

Specificity 

PV+ 

PV- 

Sensitivity 

Specificity 

PV+ 

PV- 

To determine the degree to which the two posterior densities differ, we calculated 

the probability P(rBCI < rFE) where BCI refers to the Bayesian Conditional In- 

dependence model, and FE refers to the Fixed Effects model. This was done by 

sampling with replacement 10,000 pairs of values, one from each of the two posterior 

0.96 

0.98 

0.30 

0.89 

0.67 

0.90 

0.70 

0.91-0.99 

0.88-1.00 

0.11-0.63 

0.80-0.95 

0.36-0.95 

0.62-1.00 

0.28-0.92 
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Stool 

Examination 

PV+ 

PV- 

I I I PV- 1 0.4073 1 0.0302 - 0.7857 11 

Sensitivity 

Specificity 

Serology 

Test 

Table 6.7: Posterior medians and 95% posterior probability intenmls of the marginal posterior 
distributions of the prevalence and test parameters obtained using the fixed effects model. 

0.9824 

0.1801 

0.2749 

0.9353 

0.8189 - 0.9979 
0.0123 - 0.5460 

Sensitivity 

Specificity 

0.1993 - 0.3914 
0.8640 - 0.9785 

0.8305 

0.6776 

0.7391 - 0.9247 
0.3013 - 0.9369 



distributions of s, and then calculating the proportion of times T ~ c r  was less than 

~ F E .  It was estimated that P(r sc I  < ?TFE )=0.715, indicating that the prevalence 

was more likely to be greater when the conditional dependence between the tests was 

taken into account than when i t  was ignored. If the two distributions were identical, 

we would have P(xBCI < rFE)=0.5, while if the distributions were non-overlapping 

we would have P ( r B C 1  < rFE)=O or 1, indicating certainty of a difference. Our result 

is intermediate to these extremes. The shift in the prevalence when accounting for 

conditional dependence is clearly seen in Figure 6.3, which is a plot of the posterior 

densities obtained from the three different methods. 

Figure 6.3: Posterior distributions of the prevalence obtained using the three models. 



The posterior medians of the sensitivities and specificities are lower than those 

obtained using the conditional independence model. The 95% posterior probability 

intervals of these parameters are, however, wider due to the addition of the covari- 

ance parameters, and due to the non-informative prior distributions over them. Our 

overall conclusion, then, is that if we take into account the possibility of correlation, 

this may have a substantive effect on the posterior estimates of the prevalence and 

test properties. Unless something is known a priori about the degree of correlation, 

however, we also add 'noise' to the modeling process, especially in the non-identifiable 

case of two tests. 

The diagnostic parameters obtained from the methods due to Gelman and Rubin, 

1992, and Raftery and Lewis, 1992 are presented at the end of the chapter in Tables 

6.12 and 6.13, respectively. The value of the R statistic remained close to 1 for all 

parameters when comparing five different runs with over-dispersed starting points, 

indicating that the Gibbs sampler had likely converged. The same inference can be 

drawn from the low value of the burn-in iterations suggested by the method of Raftery 

and Lewis. However, the high value of the dependency factor, I, is indicative of high- 

autocorrelation between successive values sampled. Therefore, we ran a large number 

of iterations (20,000), in order to obtain accurate inferences from the Gibbs sampler. 

Since the run-time was only about 2 minutes, it was not thought necessary to seek a 

reparameterization or other method to reduce the autocorrelations. 

Results born the random effects model 

The posterior medians and 95% posterior probability intervals obtained using the 

random effects model are presented in Table 6.8. The median prevalence is greater 

than that obtained with the conditional independence model, though not as great 

as that obtained with the fixed effects model. However, the 95% posterior probebil- 

ity interval is similar to that obtained with the other two models. We found that 



n I Variable I Median 1 95% PI I 

Stool I Sensitivity / 0.2761 / 0.0761 - 0.6132 /I 
Examination 

Serology 

Table 6.8: Posterior medians and 95% posterior probability intervals of the prevalence and test 
parameters obtained using the random effects model. 

Specificity 

PV+ 

Test 

P(rsc1 < nRE) = 0.634, where RE denotes the Random Effects model. This indi- 

cates that the prevalence estimate obtained using the random effects model is greater 

than that obtained using the conditional independence model, in the sense that the 

posterior density is somewhat shifted to the right, as seen in Figure 6.3. 

PV- 

Sensitivity 

The median sensitivities were somewhat lower than those obtained using the con- 

ditional independence model, while the median specificities remained about the same. 

Their 95% posterior probability intervals are even wider than those obtained with the 

fixed effects model. This is due to the additional uncertainty added on by the latent 

0.9810 

0.9886 

Specificity 

PV+ 

0.8148 - 0.9997 
0.8405 - 0.9998 

0.2367 

0.8038 

C 

0.0172 - 0.5935 

0.6632 - 0.9203 
0.6622 

0.9093 

0.1830 - 0.9230 
0.5194 - 0.9972 



'intensity' variable. 

The values of the Gelman and Rubin, and Raftery and Lewis diagnostic statistics 

revealed that while the Gibbs' sampler converges fairly quickly, there was again a 

high degree of autocorrelation between successive observations. These results are 

presented in Tables 6.14 and 6.15 at the end of the chapter. 

Results using priors with smaller variance 

A plausible reason why we do not see a more substantial change from the results 

obtained with the conditional independence model is because of the lack of strong 

prior information on the covariance parameters. In fact, the prior distributions for 

the sensitivities and specificities are also very wide, which further compounds the 

problem. In order to demonstrate that adjusting for the dependence between tests, 

when it exists, could create an important difference in the results, we reduced the 

variability in the parameters by halving the standard deviations of the informative 

prior distributions. The results for the conditional independence model, the fixed 

effects modei and the random effects models are presented in Tables 6.9, 6.10 and 

6.1 1, respectively. 

We see that the median prevalence obtained from the fixed and random effects 

models is greater than that obtained when assuming conditional independence. The 

95% probability intervals are now tighter making it possible to distinguish the two 

situations when the conditional dependence is taken into account and when it is 

ignored. This result is illustrated in Figure 6.4. 



1 I Median I 95% PI 11 

Table 6.9: Posterior medians 
parameters obtained using the 
have a reduced variance. 

and 95% posterior probability intervals of the prevalence and test 
using the conditional independence model when prior distributions 

Stool 

Examination 

Serology 

Test 

6.3 A brief note on model selection 

0.6636-0.9646 

0.2 120-0.3769 

0.9255-0.9727 

0.6112-0.8406 

0.6763-0.8103 

0.7698-0.8889 

0.5162-0.8399 

Given that we have described three competing models, each of which provide some- 

what different inferences, it is natural to ask which model is best supported by the 

data. If necessary, this can be accomplished using Bayes Factors (Kass and Raftery, 

1995). Given data D and two models, say MI and h12, the Bayes Factor of Model 2 

compared to Model 1 is defined as 

I 

* 

Prevalence 

Sensitivity 

Specificity 

PV+ 

PV- 

Sensitivity 

Specificity 

The Bayes Factor, therefore, provides the ratio of the probability of observing the 

data under Model 2 compared to the probability of obtaining the data under Model 

1. Intuitively, if the data are more likely under Model 2, then & > 1, and M2 is 
preferred. If Bzl < 1 then MI is preferred, and if Bzl = 1 then the data do not 

0.8294 

0.2858 

0.9529 

0.7368 

0.7428 

0.8352 

0.6938 
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Table 6.10: Posterior medians and 95% posterior probability intervals of the prevalence and test 
parameters obtained using the fixed effects model when prior distributions have a reduced variance. 

0.9433 

0.9767 

0.1280 

0.8089 

0.6966 

0.9614 

0.5137 - 0.8437 

0,8393 - 0.9975 

0.8884 - 0.9680 

0.9130 - 0.9984 

0.0089 - 0.3457 

0.7431 - 0.8701 

I .  
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Sensitivity 0.2772 0.0928 - 0.5212 
Specificity 0.9546 0.8490 - 0.9972 

1) Test 
7 

Specificity 0.6832 0.4729-0.882 

Serology 

I PV- ( 0.2749 1 0.0204 - 0.6544 11 
Table 6.11: Posterior medians and 95% probability intervals of the prevalence and test parameters 
obtained using the random effects model when prior distributions have a reduced variance. 

PV- 

Sensitivity 

distinguish between these models. 

In order the calculate Bayes Factors, one needs to calculate terms of the form 

p(D1il.I). In general, suppose that the model M contains the vector of unknown 

parameters 8.  We can write 

0.1241 

0.8102 

In other words, p(D1M) can usually be expressed as the integral of the product 

0.0111 - 0,3296 
0.7291 - 0.8982 



Figure 6.4: Posterior distributions of the prevalence obtained using the three models when prior 
distributions have a reduced variance. 

of the prior distribution of 0 times the likelihood function of the data given 0, with 

respect to 0. 

In our problem, however, equation (6.5) appears intractable even for the simplest 

case of the conditional independence model, so that we cannot directly apply equa- 

tion (6.4) to calculate the desired Bayes Factors. Several authors (for example, see 

Chib, 1995) have discussed approximating Bayes Factors from the output of a Gibbs 

sampler. The idea is as follows: 

For any given model, from Bayes Theorem, we can write: 



where m ( D )  = J p(DIO)p(O)dO is the marginal distribution of the data D. Rearranging 

terms, we can write (6.6) as 

Since (6.7) must hold for all 8, this equation shows that one can estimate m(D) 

provided that each of p(DlO), p(O), and p(81D) can be estimated for a t  least one value 

of 0. Often a good choice is the posterior mean of 0, since it is usually a point of high 

density which induces stability into the estimator, and since it is easily estimated 

from the Gibbs sampler output. 

While this is sufficient for many problems, a further complication that applies to 

the models discussed in this thesis is that while the likelihood and prior densities are 

'fully available' in the sense that the normalizing constants are known, this is not the 

case for the posterior density. Chib, 1995 discusses how to estimate the normalit 

ing constant in such situations by using a 'Rao-Blackwell' (see Gelfand and Smith, 

1990) mixture estimate of the posterior density. Here one takes the full conditional 

distribution from which each unknown parameter was sampled during the running 

of the Gibbs sampler, and takes an average of the result over all iterations. This 

additional step would allow m(D) to be calculated for the conditional independence 

model, where all full conditional distributions are fully specified, including normal- 

izing constants. However, both models developed in this thesis for correlated had 

full conditional distributions with unknown nornlalizing constants, wherein the SIR 

algorithm was employed, so that the methods of Chib, 1995 could not be employed 

here. 

Other methods have appeared for calculating Bayes Factors from the output of a 

Gibbs sampler. For example, Carlin and Polson, 1991 suggested running all competing 



models simultaneously, and adding a parameter as a model indicator. This method, 

however, requires a carefully selected tuning parameter which essentially balances the 

probabilities that each model is selected for the next iteration, so that proper mixing 

of the Gibbs sampler occurs. Newton and Raftery, 1994 showed that the marginal 

density could be estimated by a harmonic mean involving only the likelihood function 

given the Gibbs sampler output, but this estimate has been criticized as being unstable 

and therefore unreliable as input into a Bayes Factor equation. 

Given the above considerations, we decided that it was not worthwhile here to 

compare models via Bayes Factors, as the posterior inferences were not sufficiently 

dissimilar to warrant the considerable effort required, and since the only applicable 

method is known to be unreliable. Further research is clearly required in this area. 

6.4 Summary 

In this chapter we have seen that adjusting for the conditional dependence between di- 

agnostic tests can result in substantial changes to the posterior densities of the preva- 

lence and test parameters. However, the magnitudes of these changes are dependent 

on informative content of the prior distributions used, and on the data themselves, 

particularly since we have only two tests. 



Iterations used for diagnostic = 2500:4999 

Thinning interval = 1 

Sample size per chain = 1999 

Variable Point est. of R 97.5% quantile 

7r 1 .O1 1.02 

c o v  1 .OO 1 .oo 
covn 1 .OO 1.00 

Stool Sensitivity 

PV+ 

Serology Sensitivity 1 .OO 1 .OO 

Test Specificity 1 .OO 1 .OO 

PV+ 1.01 1 .03 

PV- 1 .OO 1 .oo 

Table 6.12: Gehan and Rubin 50% and 97.5% shrink factors for the fixed effects model. 



Iterations used = 1:4999 

Thinning interval = 1 

Sample size per chain = 4999 

Quantile = 0.025 

Accuracy = +/- 0.005 

Probability = 0.95 

Burn-in Total 

(MI (N) 

Lower bound Dependence factor I 

11 Stool ( Sensitivity 1 2 ( 
)I Examination I Specificity I 1 I 

11 Serology ( Sensitivity I 1 1 
-st ( Specificity 1 2 ( 

Table 6.13: Rahery and Lewis convergence diagnostic for the fixed effects model. 



/I Iterations used for diagnostic = 2500:4999 

I1 Thinning interval = 1 

11 Sample size per chain = 4999 

I Variable I Point est. of R ( 97.5% quantile 

11 Examination I Specificity I 1.00 I 1.00 

U PV- I 1.01 I 1.02 

11 Serology Sensitivity 1 .OO 1 .OO 

Test Specificity 

PV- 1.00 1 .oo 

Table 6.14: Gelman and Rubin 50% and 97.5% shrink factors for the random effects model. 



Iterations used = 1:4999 

Thinning interval = 1 

Sample size per chain = 4999 

Quantile = 0.025 

Accuracy = +/- 0.005 
Probability = 0.95 

-. . -- --- - 

Table 6.15: Raftery and Lewis convergence diagnostic for the random effects modei. 
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Development of methods for the analysis of results from diagnostic tests is a very 

active area of biostatistical research. This is not surprising given the bearing the 

inferences drawn from these methods have on medical decision making. Accurate 

estimates of the prevalence and test parameters help to improve the organization of 

health care at both clinical and public health levels. 

In this thesis we have addressed the issue of statistical analysis when tests are con- 

ditionally dependent. Although there is an enormous literature on statistical methods 

for diagnostic test data, there are no frequentist solutions that directly address the 

problem of estimating parameters in the presence of three or less correlated tests. To 

our knowledge there is also no literature discussing a Bayesian solution to this prob- 

lem, even for identifiable cases. This thesis has addressed this gap in the literature. 

The problem with less than 3 tests is non-identifiable since in the absence of a gold 

standard test we need at least 4 tests to obtain a direct solution using a frequentist 

approach. Due to time and cost constraints, for example, there are often occasions 

when we have to make do with the results from less than four tests, and hence there 

is a need for methods which provide the best possible estimates of the parameters 

of interest in such situations. Even though the successful application of the methods 

presented here depend to a very large extent on the prior distributions, this solution is 

preferable to no solution at all, especially given the frequency with which the problem 

occurs. 



We have demonstrated how a Bayesian approach can be used when we have a 

non-identifiable problem, since it can provide simultaneous estimates of all important 

parameters without having to impose unrealistic constraints on the unknown param- 

eters. The Bayesian approach also allows us to utilize valuable prior information to 

draw inferences from the data at hand. To carry out the Bayesian analyses, we have 

used computational methods such as the Gibbs sampler and the Sampling-Importance 

Resampling (SIR) algorithms. 

We have discussed two methods for evaluating the possible effects that correlation 

between tests may have on their results. The first method postulates that the condi- 

tional dependence between two tests has a fixed effect on their joint probability. This 

can be modeled by way of the covariance between the tests among the diseased and 

non-diseased populations. In Chapter 4 we showed that the two covariance parame- 

ters can be expressed in terms of the sensitivities and specificities, thus making this 

model easy to interpret. In a simulated example we found that this method gives 

more accurate estimates of the posterior prevalence and test parameters, than would 

be obtained by assuming conditional independence between the tests. 

The second method we propose allows for variation in the performance of individual 

subjects on each diagnostic test. This variation is incorporated by way of a latent 

'intensity' variable which is independent of the disease status and could be taken 
- to mean 'severity of disease' or 'ease of detection'. The 'intensity' which follows a 

N(0,l)  distribution is modeled as a random effect which induces correlation between 

the tests. The results of applying this model to a simulated data set showed that 

it also provided more accurate estimates of the prevalence and test parameters than 

when ignoring the dependence between tests. 

In Chapter 6, we applied both methods to the Strongyloides infection data set 

used earlier in the paper by Joseph et al., 1995. Here we found that in the absence of 

strong prior distributions, the improvement in the results obtained by adjusting for 



conditional dependence, though evident, is not substantial, Unless good information 

is available about the degree of correlation between tests or about the test properties 

themselves, there will always be some uncertainty about whether correlation exists, 

and about how important it is to correct for possible correlations. This problem is 

especially acute when there is no gold standard, and when the number of available 

tests is less than 4, which is usually the case. When results from more thao 4 tests are 

available, one may apply the recently developed method of Qu et al., 1996. Even then 

the Bayesian methods presented here may be useful in allowing for more accurate 

estimation via prior information. Nevertheless, when there are less than 4 tests, 

checking for the effect of correlation is important. 

Although in all the examples we have used there was no information about the 

prevalence and therefore we used a diffuse prior distribution over this parameter, the 

methods developed here can also be used in other situations. For example, when 

evaluating the accuracy of a new test by comparing it to a gold standard test whose 

properties are well known, we could use diffuse distributions over its sensitivity and 

specificity. We could also use these methods in the situation when we have informative 

prior distributions over the prevalence and sensitivities and specificities of the two 

tests and we are interested to know about the covariance between the two tests 

among diseased and non-diseased subjects. 

While concluding this thesis we feel that the following will be important for future 

research in this area: 

1. The methodology developed here may be viewed as a 'mapping' from a given set 

of prior distributions to the corresponding set of posterior distributions. There- 

fore, the posterior density can always be interpreted as a coherent updating of 

the prior distribution upon seeing the data, but any extrapolation to the 'truth' 

involves a leap of faith. Thus the accurate elicitation of prior distributions is 



very important. Though there is much literature on the general problem of 

elicitation, elicitation of prior distributions for the diagnostic testing problem 

remains to be addressed. Not all tests perform uniformly well across difFerent 

populations, and this is difficult to quantify. 

2. It would be of interest to compare performance of the models developed here 

with other models which can be used for adjusting for the conditional depen- 

dence between tests, such as a logistic regression model or the ordinal regression 

models used for the analysis of parametric ROC curves. These models bring 

their own problems in non-identifiable situations. For example, in a logistic 

regression the binary outcome of 'disease' or 'free of disease' is latent, so that 

one would need a good method for eliciting prior information on the regression 

parameters relating test results to disease status. 

3. In both the models developed here we assumed that the observed data were 

collected from a random sample of the population. Another area worthy of 

interest would be the extension of these models to the situation when test 

results are obtained from a non-random population, such as might be observed 

in a clinic-based study. In such a situation we would need to adjust for the 

'work-up' bias that might occur, when the prevalence and test parameters are 

estimated based only on the results of the subjects studied. 

Although much remains to be done, the work presented here shows that the diagnostic 

testing problem for correlated data is manageable from a Bayesian point-of-view even 

under non-identifiability, modulo a careful treatment of the prior information. 



A.1 The Albert and Chib method 

In this section we describe one of the methods presented in the paper titled 'Bayesian 

Analysis of Binary and Polychotomous Data' by Albert and Chib, 1993, in which the 

authors propose Bayesian approaches to modeling categorical response data using a 

Gibbs sampler. 

Let Y1,  . . . , YN be N independent, observed Bernoulli variables with probability 

of success pk = P(Yk = I), k = 1,. . . , N. The probability pk is a function of n 

known covariates such that pk  = H ( Y c : ~ ) .  The vector of covariates is denoted by 

x k  = ( x k l ,  . . . , xh) and P is an n x 1 vector of unknown parameters. H is a known 

cumulative distribution function. In the case when H is the normal distribution we 

have the probit model, p k  = O(xEp). The likelihood function of the observed data is 

then given by 

Let * ( P )  be the joint prior density of the parameters of interest, P. Then the posterior 

distribution of 0 would be given by 

In the particular case when n(P) is the normal distribution &(p, C), (A.1) reduces 



Since the expression in the denominator of A.2 is very difficult to solve analytically, 

it is not straightforward to sample from this distribution. However, the structure of 

the problem is simplified by introducing N independent, latent variables ZI , . . . , ZN, 
where Zk - N(xr4.1). If the Zk were known this would correspond to  the standard 

normal linear model, for which the solution is available. However, since they are not 

known, we can link the Zk to xzP via the known yk. Define yk such that yk = 1 

if 4 > 0 and yk = 0 if Zk 2 0. The yk then have a Bernoulli distribution with 

probability cP(xzp). 

Treating the 4 ' s  as the augmented data, the posterior distribution for @ can be ob- 

tained using the Gibbs sampler. The joint posterior distribution of the unobservables 

B and Zk7s is given by 

The function 1(X E A) is the indicator function that is equal to 1 if the random 

variable X is contained in set A. From (A.3) we can see that the posterior distribution 

of p conditional on Z is given by 



When the prior distribution of P is Nk(P, C), then the posterior distribution of is 

given by 

The posterior distribution of Z conditional on ,Ll also has a simple form, 

Zily, P - N ( X $ P ,  1) truncated at  the left by 0, if yk = 1, and 

Zi ly, /3 - N ( X ; P ,  1) truncated at  the right by 0, if yk = 0. (A-5) 

Using the Gibbs sampler algorithm one can alternately sample from (A.4) and (A.5) 

to obtain a sample from the posterior distribution of b. This method can be applied 

to obtain a sample from the posterior distribution of the (ajd,  bjd)'s in the random 

effects model developed in Chapter 5. The form of their posterior distributions can 

be seen from (5.5) and (5.6) to be similar to that in (A.2). The yk's representing the 

true disease status are Bernoulli random variables and the i values are the covariates. 

Though in truth, neither of these variables is observed, at each iteration of the Gibbs 

sampler (described in section 5.2.3) they take on specific values. 



B. 1 Programs used for the Bayesian fixed effects model in 
Section 4.3 

B. 1.1 S-Plus program used to calculate cross-classiiica tion of test re- 
sults in Tables 4.5 and 4.6 

simulate<-f unct ion(x) ( 

# setting test parameters to the mean value of their prior 
# distributions 
sic-0 5 
8%-0.8 
c1+0.9 
c2<-0.7 
covpc-0.046 
corn<-0.023 
preve-0.73 

# calculating the number of subjects in each cross-classification 
# when the tests are dependent 
d[1] +n*(prev* (sl*s2+covp)+(l-prev) * ( (1-ci) * (1-c2)+covn) ) 
d [2] C-n* (prev* (sl* (1-s2) -covp) +(I-prev) * ( (1-cl) *c2-covn) ) 
d[3] c-n* (prev* ((1-el) *el-covp)+(l-prev) * (cl* (1-c2) -corn) ) 
d[41 +n* (prev* ((1-sl) * * 1  (l-s2)+covp)+(I-prev) (cl*c2+covn) 

W calculating the number of subjects in each cross-classification 



# when the tests are dependent 
i [I] <on* (prev* (sl*s2)+(1-prev) * ((1-cl) * (1-c2) 1) 
i [2] <-n* (prev*(si* (1.~2) ) +(imprev) *((I-cl) *c2) 
i [3] <-n* (prev* ((1-sl) *s2) +(loprev) *(ci* (19~2) 1) 
i [4] con* (prev*((l-81) * (1-s2))+(l-prev) *(cl*c2) ) 

B. 1.2 C++ program to implement the Gib bs sampler for the Bayesian 
fixed effects model 

For the sake of brevity only the functions related to the Gibbs sampler are included 
here and standard functions, such as those used to sample random variables, are 
omitted. 

// global constants 
int n11=68 ; 
int n10=10; 
int n01=65 ; 
int n00=57 ; 
int sum=200; 

// declaring the variables used in the program 
int yLy2,y3,y4; 
double *prev. *sensl, *speci, *rens2, *spec2, p l l ,  p10, pol, pOO; 
double scovp, *corn, *pvp1, *pvn1, *pvp2, *pvn2; 
int s ize=SOOO, int i ; 

// output file 
of stream f out ('Id: /cpp/f ixedu) ; 



// body of main program 
void main(void) { 

//initiating a random seed 
srand ( (unsigned) time ( NULL ) ; 
long seed=rand 0 ; 
long *idum=&seed; 

// declaring prior distributions 
double alphaprev = 1; 
double betaprev = 1; 

double alphasensl = 34; 
double betasensl = 34; 
double alphaspec1 = 90; 
double betaspecl = 10; 
double alphasensl = 32; 
double betasens2 = 8; 
double alphaspec2 = 42; 
double betaspec2 = 18; 
double alphacovp = 23; 
double betacovp = 477; 
double a l p h a c o ~  = 23; 
double betacovn = 477; 

// allocating memory for pointers 
prev-samp = (double *)malloc (size*eizeof (double) ) ; 
sens 1 = (double *) malloc (size*sizeof (double) ) ; 
sens2 = (double *)malloc(size*sizeof (double)); 
spec1 = (double * )malloc (size*sizeof (double) ) ; 
spec2 = (double *)malloc (size*sizeof (double) ) ; 
pvpl = (double *) malloc (size*sizeof (double) ) ; 
pvn1 = (double *) malloc (size*sizeof (double) ) ; 
pvp2 = (double *) malloc (sizetsizeof (double) ) ; 
pvn2 = (double *) malloc (size*sizeof (double) ) ; 
covp = (double *)malloc (size*eizeof (double) ) ; 
covn = (double *) malloc (size*sizeof (double) ) ; 

// starting values 
double prev-start=ruoif (idum) ; 



double sens l,start=runif (idum) ; 
double specl,start=runif (idum) ; 
double sens2,start=runif (idum) ; 
double spec2-start=runif (idurn) ; 

// determining the lower and upper bounds for the 
// starting values of the covariance parameters 

double ubp=--min(sensi-start, sens2-start ) 
-sensl,start*aens2,start; 
double lbp=O ; 
double ubn=--min (spec 1-start , spec2-start) 
-sped-start*spec2_start; 
double lbn=O ; 

// starting values of the covariance parameters 
double covp-start=runif(idum)*(ubp-lbp)+lbp; 
double covn,start=runif (idum) * (ubn-lbn) +lbn; 

// initializing all array elements to 1 
for (i=O; icsize; i++) 

*(prev+i) = 1 .O; 
*(sensl+i) = 1.0; 
*(specl+i) = 1 .O; 
*(sens2+i) = 1.0; 
* (spec2+i) = 1.0 ; 
*(covp+i) = 1.0; 
*(covn+i) = 1.0; 
1 

// setting the first entry in each array to the starting value 
*prev = prev-start; 
*sensl = sensl-start; 
*spec1 = specl-start; 
*sens2 = sens2,start; 
*spec2 = epec2-start; 
*covp = covp,start; 
* C O W  = covI1,start; 

// the SO00 iterations of the Gibbs sampler begin 



for (i=l; icsize; i++) < 

// calculating the value of a true positive in 
// each cross-classification of the two tests 
pi1 = (*(prev+i-1) * (*(aensl+i-I)* *(sensl+i-l)+*(covp+i-1)) ) /  
(* (prev+i-I)* (*(sensl+i-1) * *(sens2+i-l)+*(covp+i-1)) 

+(l-*(prev+i-l))*((l- *(specl+i-1))*(1- *(spec2+i-1)) 
+* (coM+~-1) ) ) ; 

yl = rbin(n11 ,pll, idum) ; 

p10 = (* (prev+i-1) * (* (sensl+i-1) * (1- *(senal+i-1) )-* (covp+i-1))) / 
(* (prev+i-1) * (* (sensl+i-1) * (1- * (sensZ+i-1)) -* (covp+i-1) ) 
+(lo* (prev+i-1) ) * ((1- *(apeci+i-1)) * * (spec2+i-1) 

-* (coM+~-1) ) ) ; 
y2 = rbin (n10, p10, idum) ; 

pol = (*(prev+i-1) * ((1- *(aensl+i-1)) * *(ssnsl+i-1) - *(covp+i-l)))/ 
(*(prev+i-l)*( (1- *(sensl+i-1)) * * (sensl+i-1)- *(covp+i-1)) 

+(I-* (preri-l))* (*(specl+i-1)*(1- *(specl+i-1)) 
- * (com+i-1) ) ) ; 

y3 = rbin(n01, pol, idum) ; 



// drawing the estimated prevalence from a beta distribution 
*(prev+i)=rbeta(y1+y2+y3+y4+alphaprevJ 

sum- (yl+y2+y3+y4) +betaprev, idum) ; 

// updating the sensitivities and specificities 
sir-sans1 (alphasens1 ,betasensi, i , 
sensl , sens2, covp, y1, y2, y3, y4, idurn) ; 
sir~specl(alphaspec1,betaspec1,i,spec1,spec2,com, 
nll,n1O,n01,nOO,yl,y2,y3,y4,idum) ; 
sir-sens2(alphasens2,batasens2,i, 
sens1 ,sene:!, covp ,y1, y2 ,y3 ,y4, idum) ; 
sir~spec2(alphaspec2,betaspec2,i,spec1,spec2,co~, 
nll ,n10 ,no1 ,no0 ,y1 ,y2,y3, y4, idum) ; 

// updating the covariances 
sir-covp(alphacovp, betacovp, covp, i, 
sens 1, sens2, y1, y2, y3, y4, idum) ; 
sir-covn (alphacovn, betacovn, corn , i , spec1 , spec2, 
nil ,n10 ,no1 ,no0 ,yl ,y2,y3 ,y4, idum) ; 
> 
> 
\\ SIR for updating the sensitivity of the first test 
void sir-sensl(doub1e alphasens1,double betasensl, int ii, 
double *sensl, double *sens2, double *covp, 
int yl , int y2, int y3, int y4, long *idurn) 
C 
double p , cusum C503 , w [SO] , k C501. g C501, lb , ub ; 
cusum Co I =o ; cusum c491 =l ; 

for ( int  i=l; iC49; i++) 
C 
g [i] =runif (idum) ; 
k Cil =(ub-lb) *@I +lb ; 
u [i] =pou(k[i] * * (sena2+ii-1) + * (covp+ii-1) ,y1) 
*pov(k [i] * (1- * (aensl+ii-1) ) - * (covp+ii-1) , y2) 



cusum[i] =cusum Ci-11 + w M  ; 
1 
p=runif (idurn) ; 
for (i=l ; iC49 ; i++) C 
cusum [il /= cusum C48l; 
if ( (p>cusum [i-13 ) && (~<=CUSU CiI ) ) C 
* (sensl+ii) =k Cil ; 
break ; 
1 
1 
1 

\\ SIR for updating the specificity of the first test 
void sir-spec1 (double alphaspecl , double betaspecl , int ii , 
double *specl, double *spec2, double *con, 
int ni, i n t  n2, int n3, int n4, 
int yl , int y2, int y3, int y4, long *idurn) 

< 
double p , cusum [50] , w f.501, k 1501 , g [5O] , lb , ub ; 
cusum LO1 =O ; cusum C491=1; 

for (int i=1; iC49; i++) 
C 
g [i] =runif (idurn) ; 
k ti ] = (ub-lb) *g Ci] +lb ; 
v [i] =pow (k[i] * * (specl+ii-1) + * (covn+ii-1) , (n4-y4) ) 
*pow(k[iJ * (1- *(spec2+ii-1)) - *(covn+ii-1) , (n3-y3)) 
*pow ( (1-k [i] ) * * (specl+ii-1) - *(covn+ii-1) , (10-y2) ) 
* pow((1-k[i] ) * (1 - *(spec2+ii-1)) + *(covn+ii-1) , (nl-yi)) 
*pow(k[i] . (alphaspecl-l))*pou((i-k[i]), (betaspecl-1)) ; 
cusum [i3 =cusum ti-13 +w Cil ; 
1 





\\ SIR for updating the specificity of the second test 
void sir-spec2(double alphaspec2, double betaspec?, int ii, 
double *specl, double *spec2, double *con, 
int nl , int n2, int n3, int n4, 
int yl , int y2, int y3, int y4, long *idum) 

double p , cusum [50] , u C501, k C501, g [501, lb, ub; 
cusum Lo] =o ; cusum c491=1; 

for (int i=l; i<49; i++) 
< 
g [i] =runif (idum) ; 
k [i] = (ub-lb) *g [i] +lb ; 
w [i] =pov(k [i] * * (specl+ii) + * (covn+ii-1) , (n4-y4) ) 

*pow (k[i] * (l- * (specl+ii) ) - *(covn+ii-1) , (n2-y2)) 
*pow((l-k[i] ) * *(speci+ii) - *(covn+ii-l) , (n3-y3)) 
*pov((l-k[i]) * (1 - *(specl+ii)) + * (covn+ii-1) , (nl-yl)) 
*pov(k [i] , (alphaspec2-1) * p o d  (1-k [i] ) , (betaspec2-1) ) ; 

cusumCi ] =cusum[i-11 +w Cil ; 
> 
p=runif (idum) ; 
for (i=i ; i<49; i++) C 
cusum[i] /= cusum[48] ; 
if ( (p>cusum [i-1 J ) Irk (p<=cusum Ci.3 ) < 
*(spec2+ii)=k[i] ; 
break ; 
1 
> 
> 
\\ SIR for updating the covariance among the diseaeed subjects 
void sir-covp(doub1e alphacovp, double betacovp, double *covp, int  ii, 
double *sensl, double *sens2, 
int yl, int y2, int y3, int y4, long *idurn) 
< 
double p , cusum C501, w C501, k C503 , g C503 , lb , ub ; 



cusum [o] =O ; cusum C491=1; 

for (int i=1; i<49; i++) 
I 
g[i] =runif (idum) ; 
k [i] =g [i] * (ub-lb) +lb ; 

p=runif (idurn) ; 
for (i=1; i<49 ; i++) < 
cusum [i] /= cusum[481; 
if ( (pxusum Ci-11 k t  (pc=cusum Cil < 
* (covp+ii) =k[i] ; 
break ; 
1 
1 
> 
\\ SIR for updating the covariance among the non-diseased subjects 
void sir-covn(doub1e alphacovn, double betacovn, double *covn, 
int ii, double *speci, double *spec?, 
int nl, int n2, int n3, i n t  n4, 
int y1, int y2, int y3, int y4, long *idurn) 
€ 
double p,cusumC50] ,w[50] ,k[50] ,g[50] ,lb,ub; 
cusum CO 1 =o ; cusum C49 I =I; 



for (int i=1; i<49; i++) 
{ 
g [i] =runif (idum) ; 
k [i] =g [i] * Cub-lb) +lb ; 
w[i]=pow(*(specl+ii) * *(specl+ii) + k[i] ,(n4-y4)) 

*pow (* (specl+ii) * (1- * (spec2+ii) ) - k [i] , (n3-y3) ) 
*pow ( (I-* (specl+ii) ) * * (specl+ii) - k [i] , (n2-y2) ) 

*pow ( (lo* (specl+ii) ) * (1 - * (spec2+ii) ) + k [i] . (nl-y1) ) 
*pow (k [i] , (alphacorn-1) ) *pow( (1-k (i] ) , (betacon-1) ) ; 

p=runif (idum) ; 
for (i=1; i<49 ; i++) { 
cusumCi1 /= cusumC481; 
if ( (p>cusum[i-11) && (p~=cusum[il) ) < 
* (covn+ii) =k [i] ; 
break ; 
3 
> 



C. 1 Programs used for the Bayesian random effects model 
in Section 5.3 

C. 1.1 S-Plus program used to calculate cross-classification of test re- 
sults in Table 5.2 

sim6<-f unct ion (x) i 

pilc-prev* (sl*s2) + (1-prev) * ((1-c1) * (1-c2)) 
~10~-prev* (sl* ( 1~32 ) )  +(I-prev) * ((1-cl) *c2) 
pol<-prev* ((1-sl) *s2) +(I-prev) * (cl* (1-c2)) 
p00<-prev*((l-sl)*~l-s2))+(1-prev)*(c1*c2) 



C.1.2 C++ program used to implement the Gibbs sampler for the 
Bayesian random effects model 

For the sake of brevity only the functions related to the Gibbs sampler are included 
here and standard fi~nctions: such as those used to sample random variables. are 
omitted. 

#include 
it include 
#include 
#include 
#include 
#include 
#include 
#include 

<iostream. h> 
<stdlib.h> 
<math. h> 
Cf stream. h> 
<time . h> 
"matrix.hN 
Vandom . h" 
I4sir6. h" 

// prototypes of functions appearing in the body of the progan 
int sumarr(int arr n , int nl , int n2) ; 
void sir(int *y - sap ,  int ii, double *abi_samp, double *abO_samp, 
double *t, long *idurn) ; 

// global variables 
int nl l=?S ; 
int n10=5 ; 
int nO1=58; 
int n00162; 
int sum=200; 
int mum0 ; 
int eigma=l ; 
double *T; 
double mean=O; 

// declaring the variables used in the program 
int *y,samp ; 



double *prev_samp, *abl-samp, *abO-samp; 
double *sensl, *speci, *sens2. *spec2, pll, p10. pol, pOO; 
double *sensl-samp, *sens2-samp, *specl-samp, *spec2-samp; 
double *pvpl. *pvnl, *pvp2, *pvn2; 
double *sensl,checkl, sensi-check2; 

// output file 
of stream f out ("d: /main/cpp/thesis/results/chap5l") ; 

// main body of program 
void main (void) 
< 
//details of iterations 
int size=5000 ; 
int i,j; 
srand( (unsigned)time( NULL ) ; 
long seedrrand (1 ; 
long *idum=&seed; 

/ /  declaring prior distributions 
double alphaprev = 1; 
double betaprev = 1; 

double all, a10, a21, a20, bi, bO; 
double a1lBstar , alOBstar, a?iBstar, a20Bstar, bllstar , b0Bstar; 

all = 0; a10 = 2.253658; a21 = 1.362548; a20 = 0.9221768; 
b1 = 1.273193; bO = 0.91; 

// allocating memory for pointers 
y_samp = (int *)malloc (eum*sizeof (int) ) ; 
prev-samp = (double *)malloc (size*eizeof (double) ) ; 
s e m i  = (double *)malloc(size*sizeof (double) ) ; 
sen82 = (double *)malloc (size*sizeof (double) ) ; 



spec1 = (double *)malloc (size*sizeof (double) ) ; 
spec2 = (double *)malloc (size*sizeof (double) ) ; 
sensl-samp = (double *)malloc(size*sum*sizeof(double)); 
specl-samp = (double *)malloc(size*sum*sizeof (double) ) ; 
sens2-samp = (double *)malloc(size*sum*sizeof(double)); 
spec2-samp = (double *)malloc(size*sum*sizeof(double)); 
sensl-check1 = (double *)malloc~sum*sizeof (double)) ; 
pvpl = (double *)malloc (size*sizeof (double) ) ; 
pvn1 = (double *)malloc(size*sizeof(double)); 
pvp2 = (double *) malloc (size*sizeof (double) ) ; 
pvn2 = (double *)malloc (size*sizeof (double) ) ; 
T = (double *) malloc (2*sum*size*sizeof (double) ) ; 
abl-samp = (double *)malloc (3*size*eizeof (double) ) ; 
ab0-samp = (double *)malloc (3*size*sizeof (double) ) ; 

// setting the first entry in each array to a random starting value 
* (prev-samp) =ran2 (idurn) ; 
* (abi-sap) =ran2 (idum) ; 
* (abl,samp+l)=ranl(idu) ; 
* (abl-samp+2) =ran2 (idum) ; 
* (ab0-samp) =ran2 (idum) ; 
* (abO_aamp+l)=ranl(idum) ; 
* (abO-samp+2) =ran2 (idum) ; 

// initializing all array elements to 1 
for (i=l; iqsize; i++) 
< 
* (prev-aamp+i) = 1.0 ; 
* (abl_samp+3*i) = 1.0 ; 
*(abl_samp+3*i+1) = 1.0; 
*(abl-samp+J*i+l) = 1.0; 
* (abO_samp+3*i) = 1.0 ; 
* (abO,samp+d*i+l) = 1.0; 
*(abO_samp+l*i+?) = 1.0; 

for ( i = O ;  iqsize; i++) 
< 
*(sensl+i) = 1.0; 
*(specl+i) = 1.0; 



for (i=O; i<size; i++) < 
for (j=O; j<sum; j++) I 
* (sensl-samp+i*sum+ j) = 1.0; 
* (specl-samp+i*sum+j) = 1.0; 
* (sena2-samp+i*sum+j) = 1.0 ; 
*(spec?-samp+i*sum+j) = 1.0; 
1 
> 

// drawing random N(0,l) values for the initial t values 
for (j=O; j<sum; j++) < 
*(y-aamp+j) = 1 ; 
*(T+j*2) = 1; 
* (T+ j *2+1) = gasdev (0,l. idud ; 
> 
// the 5000 iterations begin 

for (i=1; i<size; i++) 
< 
* (sensl+i-1) = pnorm(* (abi_samp+3* (i-1)) /sqrt (1 
+*(abl-samp+3*(i-l)+2) **(abl_samp+3* (i-1)+2))) ; 
*(specl+i-1) = pnorm(* (abo_samp+~*(i-1)) /sqrt (1 
+* (ab0_samp+3*(i-l)+2) **(abO-samp+3* (i-1) +2) 1) ; 
* (sens2+i-1) = pnorm(* (abi-samp+3*(i-l)+l)/sqrt (1 
+* (abl_samp+3* (i-l)+2) **(abl_samp+3* (i-1) +?) ) ; 
*(spec?+i-1) = pnorm(*(ab0_samp+3*(i-l)+1) /sqr t  (1 
+* (ab~-samp+3* (i-1) +2) ** (abO_sanp+3* (i-1) +2) ) ) ; 

/// calculating the predictive value positive and negative 
* (pvpl+i-1) = (* (prev-eamp+i-1) * * (sensl+i-1) ) / 
(* (prev-samp+i-1) * * (sensl+i-1) 
+ (I-* (prev-samp+i-1) ) * (1-*(specl+i-1) 1) ; 



// calculating the S and C's for each subject as a function of t 
for 0 j<sum; j++) 
I 
f out CC * (T+(i-1) *2*sum* j*2+1) << "\t" ; 
* (sensl-samp+(i-1) *sum+ j) = pnorm(* (abl-samp+3*(i-1) ) 
+* (abi_samp+3* (i-1) +2) ** (T+ (i-1) *2*sum+ j*2+1) ) ; 
*(specl-samp+(i-1) *sun+j) = pnorm(*(abO-samp+3*(i-1)) 
+* (ab0-samp+3*(i-1) +2) ** (T*(i-1) *2*sum+j*2+1) ) ; 
*(sens2-samp+(i-l)*sum+j) = pnorm(*(abl~eamp+3*(i-l)+i) 
+*(abl,samp+3*(i-l)+2)**(T+(i-i)*2*sum+j*2+1)); 
* (spec2_sanp+(i-1) *sum+j ) = pnorm(* (abO,samp+3* (i-1)+1) 
+* (abO_samp+3* (i-l)+2) ** (T+(i-1) *2*sum+ j*2+1)) ; 
1 

// calculating the value of a true positive in each of the four 
// segments nil ,nlO ,no1 ,no0 
for ( j=O;  jqnil; j++) 



for (j=nll; j<(nll+nlO) ; j++) 
< 
pi0 = (* (prev-samp+i-1) * * (sensl-samp+ (i-1) *sum+ j) 
*(I- *(sens2-samp+(i-l)*sum+j) ) I /  
(* (prev-samp+i-1) * * (senat-samp+(i-1) *sum+j) 
*(I- *(sens2-samp+(i-l)*sum+j) ) 
+(l-* (prev-samp+i-1)) * (1- * (specl-samp+(i-i)*sum+j) ) 
* * (spec2-samp+(i-1) *sum+j) 1 ; 
*(y-samp+j) = rbern(p10,idum); 
1 

for (j=(nll+nlO) ; j<(nll+nlO+nOl) ; j++) 
.c 
p01 = (* (prev-samp+i-1) * (l- * (sensl_samp+ ( i - I )  *sum+ j) ) * 
* (sens2-samp+(i-1) *sum+j 1) / 
(* (prev-samp+i-1) *(I- * (sensi-samp+(i-1) *sum+j) ) * 
* (sens2-samp+(i-1) *sum+ j ) 
+(l-* (prev,samp+i-1)) * * (specl,samp+(i-1) *sum+j) * 
(1- *(spec2-samp+(i-l)*aum+j))) ; 
* (y-sap+ j ) = tbern (pol, idud ; 
> 
for (j=(nll+nlO+nOl) ; jcsum; j++) 
C 
pOO = (* (prev-samp+i-1) *(lo * (sensi_samp+(i-1) *sum+j) ) * 
(1- * (sens2_samp+(i-1) *sum+ j) 1) / 
(*(prev-aamp+i-l)*(i- *(sensi_samp+(i-1) *sua+j) ) *  

(1- * (sens2-samp+(i-1) *sum+ j) 
+(I-*(prev_aamp+i-I))* *(speci,ramp+(i-l)*sum+j)* 

* (spec2-eamp+(i-1) *sum+j) ; 
* (y-samp+ j) = rbern(p00, idum) ; 



// estimated number of  true positives in each segment 
int yl = smarr(y-samp,O,nll); 

int y2 = sumarr (y-sap, nl1 ,nll+nlO) ; 
int y3 = sumarr (y-samp ,nll+nlO ,n1l+n10+nO1) ; 
int y4 = sumarr (y-samp, nil+n10+n01, sum) ; 

// sirs to pick b values 
sir~b0(y~samp,i,T,M),b0Bstar,ab0~samp,idum,nll,n1O,n01,nOO); 
sir-alO(y-samp, i ,TJalO, alOBstar,abO-samp, idum,n11 ,nlO,nOl ,nOO) ; 
sir~a20(y~samp,i,T,a20,a20Bstar~ab0~samp,idum,n1l,niO,n01,nOO); 

sir-bl (y-samp, i jT,bl ,blBstar,abl-samp,idum,nll ,nlO ,nOl,nOO) ; 
sir~al1(y~samp,i,T,al1,allBstar,abl~samp,idum,nll,n10,nO1,nOO); 
sir~a21(y~samp,i,T,a21,a2lBstar,abl~samp,idum,nll,n1O,nOt,nOO); 
//sirs t o  pick a values 

// drawing t h e  estimated prevalence from a beta distribution 
* (prev-samp+i) =rbeta(yl+y2+y3+y4+alphaprev, 

sum-(yi+y2+y3+y4)+betaprev,idum); 

// drawing the updated t's using a sir function 
sir(y-samp, i ,abl-samp,abO-sap ,T, idurn) ; 
3 

// sumarr called to sum the elements of an array 
int sumarr(int *am, int nl, int n2) 
I 
int total = 0; 
for (int i=nt ; iCn2 ; i++) 
t o t a l  = total + *(art+i) ; 
return total ; 
3 

// SIR to pick t values 
void sir (int *y-samp, int ii , double *ab1-samp, double *abO-samp. 
double *t, long *idurn) 
E 



int i,j; 
double k [25] , d25] , cusum [25] ; 
for (j=O; jcaum; j++) < 
double p=ran2(idum); 
cusum[ol = 0; cusumC241=1; 
if (y_samp[j]==l) I 
for (i=l; iC24; i++) < 
k [i] =gasdev (mu, 1, idum) ; 
if (j cnli) w [i] =pnorm(* (abl-samp+t*ii) +* (abl_samp+3*ii+2) *k Ci] ) * 
pnorm(* (abl_samp+3*ii+l)+* (abl_samp+3*ii+2) *k[iI ) 
*exp (-k [i] *mu+(mu*mu) / 2 )  ; 
if ( (j>=n11) %& ( j  < (nll+nlO) ) ) w [i] =pnorm(* (abl_samp+3*ii) + 
* (abl_samp+3*ii+2) *k [i] ) *pnorm(-(* (abl-samp+t*ii+l) + 
* (abl_samp+3*ii+2) *k[i] ) ) *exp(-k [i] *mu+ (mu*mu) /2) ; 
if (( j>=(nll+nlO) ) && (j<(nll+nlO+nOl) 1) 
w [i] =pnorm(-(* (abl_samp+3*ii) + 
* (abl-samp+S*ii+?) *k [i] ))  *pnorm(*(abl-samp+S*ii+i)+ 
* (abl_samp+3*ii+l) *k[i] ) *exp(-kli] *mu+(mu*mu) /2) ; 
if (j >= (nll+nlO+nOl)) w [i] =pnorm(- (* (abi-eamp+d*ii) + 
*(abl-~amp+3*ii+2)*k[i]))*pnorm(-(*(abl_samp+3*ii+l)+ 
* (abl_samp+3*ii+l) *k [i] ) ) *exp (-k [i] *mu+ (mu*mu) /2) ; 
cusum [i] =cusum [i-11 +w [i] ; 
3 
> 
else if (y_samp[j]==O) C 
for (ill; i<24; i++) ( 
k [i] =gasdev (-mu, 1, idum) ; 
if (j<ni 1) w [i] =pnorm(- (* (abO_samp+3*ii) + 
*(abO-samp+3*ii+2)*k[i]))*pnorm(-(*(abO~samp+3*ii+l)+ 
* (abO_samp+d*ii+2) *k [i] ) ) *exp (+k [i] *mu+ (mu*mu) /2) ; 
if ((j>=nll) %& (j<(nli+niO))) u[i]=pnom(-(*(ab0-samp+3*ii)+ 
* (abO_samp+3*ii+2) *k[i] ) ) *pnorm( (* (ab0-samp+S*ii+l) + 
* (abO_samp+3*ii+2) *k [i] ) ) *exp (+k [i] *mu+ (mu*mu) /2) ; 
if ((j>=(nll+nlO)) && (j<(nli+nlO+nOi))) u [i] =pnorm(*(abO-samp+3*ii)+ 
* (abO_samp+3*ii+2) *k [i] ) *pnorm(- (* (abO-samp+S*ii+l) + 
* (abO_samp+3*ii+2) *k[i] ) ) *exp(+k [i] *mu+(mu*mu) /2) ; 
if ( j>= (ni l+nlO+n01) ) v ti] =pnorm(* (abO,samp+S*ii) + 
* (abO,samp+3*ii+2) *k[i] ) *pnorm(* (abO,samp+l*ii+l) + 
* (abO_samp+2*ii+2) *k [i] ) *exp (+k [i] *mu+ (mu*mu) /2) ; 
cusum [il =cusum Ci- 1 J +w Ci] ; 
1 



1 
for (i=1; i(25; i++) < 
if (i<24) cusum[i] /= cusum[23] ; 
if ( (p>cusum [i-11) && (p<=cusum Ci] i 
* (t+ii*2*sum+j*2+1)=k[i] ; 
break; 

1 
> 
3 
/ /  SIR for picking b values when bit = bl, ie SJs share same b 
void sir-bl(int *y,  int ii, double *T, double bl, double ad, 
double *abi-sap, long *idurn, int nil, int n10, int nO1, int nOO) C 
double p , cusum [loo] , w [loo] , k [loo] , wi C2001; 
int i,j; 

p=ran2 (idurn) ; 
cusum CO] =o ; cusum C991=1; 
for (i=l;i<99;i++) i 
k [i] =gasdev(bl , sd , idum) ; 
v[i]=O.O; 

for (j=O;j<200;j++) < 
if (*(y+j)==O) vi[j]=log(l*l) ; 
else ( 
if (j<nli) i 
wi [j]=log(l*pnorm(*(abl-samp+3*(ii-1) )+k[i] **(T+(ii-1)*400+j*2+1)) 
*pnorm(* (abl_samp+3* (ii-1) +I) +k[i] ** (T+(ii-1) *4OO+j *2+1) ) ) ; 
3 
if (j>=nli && j<(nll+niO)) { 
wi [j] =log(l*pnom(*(abl-samp+3*(ii-1) )+k[i] **(T+(ii-1) *400+j*2+1) ) 
* (1-pnorm(*(abl-samp+3*(ii-1) +1) +k[i] ** (T+(ii-1)*400+j*2+1) ) ) ) ; 
> 
if (j>=(nll+niO) P& j<(nll+nlO+nOl)) i 
wi[j]=log(i*(l-pnotm(* (abl-samp+3*(ii-l))+k[i] **(T+(ii-1)*400+j*2+1) 1) 
*pnorm(*(abl-samp+d*(ii-i)+l)+k[i] **(T+(ii-1)*400+j*2+1)) ) ; 
1 
if (j>=nll+n1O+n01) { 
wi [j] =lo@ (1-pnorm(* (abl-samp+3* (ii-i))+k[i] ** (T+(ii-1) *4OO+j *2+1) ) ) 
* (1-pnorm (* (abi_samp+3* (ii-1) +1) +k [i] ** (T+(ii-1) *400+ j *2+1) ) ) ) ; 
1 



> 
cusum [i J =cusum[i-11 +exp (W Ci3 ) ; 
1 

f o r  (is1 ; i(100; i++) { 
if (i(99) cusum Ci] /= cusumC983 ; 
i f  ( (p>cusum [i-11) && (p<=cusum Ci3 ) ) 
* (abl_samp+3*ii+2) =k [i] ; 
break ; 
> 
1 
3 

// SIR for picking b values when biO = bO, ie S's share same b 
void sir-bO(int *y, int ii, double *T, double bO, double s d ,  
double *abO-samp, long *idurn, int nil, int n10, int nO1, int nOO) < 
double p , cusum[100] , w [loo] , k [loo] , wi [ZOO] ; 
int i , j ;  

p=ran2 (idum) ; 
cusum co I -0 ; cusum c991 =I ; 
f o r  (i=i ; i<99 ; i++) I 
k [i] =gasdev (bO , ad, idum) ; 
v[i]=O.O; 

f o r  (j=O;j<200;j++) < 
if (*(y+j)==l) wi[j]=log(l*l) ; 
else ( 



wi [j] =log(l*pnorm(*(abO-samp+3* (ii-l))+k[i] **(~+(ii-1) *400+j*2+1)) 
*(I-pnorm(*(abO-samp+3*(ii-l)+l)+k[i] ** (T+(ii-1) *400+j*2+1)) 1) ; 
3 
if (j~=nll+nlO+nOl) I 
wi [j] =log(l*pnorm(* (abO_samp+3* (ii-1) ) +k [i] ** (T+(ii-1) *400+j*2+1) ) 
*pnonn(* (abO_samp+3* (ii-1) +1) +k [i] ** (~+(ii-1) *4OO+j*2+1)) ) ; 
3 
1 
w[il += w i C j l ;  
> 
cusum [i 1 =cusum Ci-11 +exp (w Ci] ) ; 
3 
for (i=l;i<iOO;i++) ( 
if (i<99) cusum[i] /= cusum[98] ; 
if ( (p>cusum[i-l] ) && (p<=cusum[i] ) ) I 
* (abO_samp+3*ii+2) =k [i] ; 
break ; 
1 
3 
> 
// SIR for picking a11 values 
void sir-all(int *y, int ii, double *T, double all, double sd, 
double *abl-samp, long *idurn, int nll, int n10, int n01, int nOO) < 
double p , cusum[100] , w [100] , k ClOO] , wi [200] ; 
int i,j; 

p=ran2 ( idum) ; 
cusum [Ol =o ; cusum C991=1; 
for (i=i;i<99;i++) C 
k [i] =gasdev (a11 ad, idurn) ; 
w [il =O ; 

for (j=O;j<200;j++) 
if (* (y+ j) ==O) wi [j] =10g(l*1) ; 
else C 
if (j<(nll+nlO)) wi[j]=log(l*pnorm(k[i]+ 
* (abi-~amp+3*ii+2) ** (T+(ii-1) *4OO+j*2+l) ) ) ; 
else wi [j] =log(l* (1-pnom(k[i] +*(abi_samp+J*ii+2) * 
*(T+(ii-1)*4OO+j*2+1)))) ; 
1 



> 
w[i] += wiCj1 ; 
cusum[i] =cusum[i-11 +exp(w [ill ; 
1 
for (i=1; iC100 ; I++) < 
if (i<99) cusum ti] /= cusum[98] ; 
if ( (p>cusum [i- 11 ) %I (p<=cusumfi] ) ) 
* (abl_samp+3*ii) =k[i] ; 
break; 
1 
1 
> 
// SIR for picking a10 values 
void sir,alO(int *y, int ii, double *T, double a10, double sd, 
double *ab0-samp, long *idurn, int nil, int n10, int n01, int nOO) 
double p , cusum [loo] , v [100] , k [loo'] , vi [200] ; 
int i,j; 

p=ran2 (idum) ; 
cusum [o] =o ; cusum c991=1; 
for (i=l ; iC99 ; i++) < 
k [i] =gaadev(alO , sd, idud ; 
wCi]=O; 

for (j=O;j<200;j++) { 
if (*(y+j)==l) wi[j]=log(l*l) ; 
else ( 
if (j<(nll+niO) ) vi [j J=log(l*(l-pnorm(k [i] +*(abO_samp+3*ii+2)* 
*(T+(ii-1)*400+j*2+1) 1)) ; 
else vi [j] =log(l*pnorm(k[i] +* (ab0_samp+3*ii+2) * 
*(T+(ii-1)*400+j*2+1))) ; 
> 
wCi3 += wiCj1; 
1 
cusum [i] =cusum Ci-11 +exp (w Ci3 ) ; 
1 

for (i=l ; i*100; i++) 
if (i~99) cusumCi3 /= cusun(98] ; 
if ( (p~usum [i-I] &L (p<=cueum Cil 1 i 



* (abO_samp+3*ii) =k [i] ; 
break ; 
1 
1 
3 

// SIR for picking a21 values 
void sir-all(int *y, int ii, double *T, double a21, double sd, 
double *abl-samp, long *idurn, int nll, int n10, int nO1, int nOO) < 
double p , cusum [loo] , w [100], k [loo] . v i  C2001; 
int i,j; 
p=ran2 (idurn) ; 
cusum to] =o ; cusum C991=1; 
for (i=l ; i<99; i++) 
k [i] =gasdev (a21, sd , idum) ; 
w [i] =O ; 

for (j=O;j<200;j++) < 
if (*(y+j)==O) wiCj]=log(l*l) ; 
else < 
if (jcnll I I (j>=(nli+nlO) LO j<(nli+n10+nOl) 1) 
vi [j] =log(l*pnorm(k[i] +* (abl_samp+3*ii+2)* 
* (T+(ii-1) *4OO+j*2+l) 1) ; 
else ui [j] =log(l* (1-pnorm(k [i] +* (abl_samp+3*ii+2) * 
*(T+(ii-l)*400+j*2+1)))) ; 
> 
w [ i ]  += ui[j]; 
> 
cusum [i J =cusum[i-11 +exp (w [ill ; 
> 
for (i=l ; iC100 ; i++) < 
if (i(99) cusum [i] /= cusum[98] ; 
if ( (p>cusum[i-11) %& (p<=cusum~il) ) C 
* (abl_samp+3*ii+l) =k [i] ; 
break ; 
> 
3 
> 
// SIR for picking a20 values 
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